
McGill University

School of Computer Science

Sable Research Group

McSAF: A Static Analysis Framework for MATLAB1

Sable Technical Report No. sable-2011-01

Jesse Doherty and Laurie Hendren

December 15, 2011 (updated version)

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Overview 4

3 Intermediate Representations and Simplifications 5

3.1 High-level AST . 6

3.2 Simplification process . 7

3.3 Exposing Implicit Control Flow . 7

3.4 Simplifying Control Constructs . 9

3.5 Simplifying Single Statements and Expressions . 9

3.6 Dealing with multiple assignments . 10

3.7 Simplification Dependencies . 11

3.8 Simplification Frequencies . 12

4 Analysis Framework 12

4.1 Traversal Mechanism . 13

4.2 Representations for Flow-Data . 15

4.3 Depth-first Analysis . 15

4.4 Structure-based Analysis . 18

4.4.1 Handling Control Flow: . 19

4.4.2 Creating an analysis instance: . 19

4.5 Analyses for Language Extensions . 19

5 Related Work 21

6 Conclusions and Future Work 22

1

List of Figures

1 Overview ofMcLab andMcSaf. The grey boxes indicate the components presented
in this paper: Simplifications are discussed in Section 3 and the Flow Analysis Frame-
work is presented in Section 4. The dotted boxes correspond to existing analyses
implemented using McSaf. 5

2 AST Definition . 6

3 Simplifications . 8

4 Example of simplifying short-circuit && . 8

5 Example of simplifying for loops . 9

6 LValue grammar . 10

7 Dependencies for Simplifications . 11

8 Frequencies for Simplifications . 12

9 Excerpt of AST class hierarchy. The grey class, CheckScalarStmt is an AST node
that is part of McLast and not McAst. All white classes in this diagram are part
of both McLast and McAst. 13

10 Example traversal counting statements . 14

11 flow-data class hierarchy . 15

12 Class hierarchy snipet for depth-first analysis . 16

13 Depth-first caseASTNode(...) source code . 16

14 NameCollector definition . 17

15 Class hierarchy snipet for structural analysis . 18

16 Diagrammatic illustration of structural traversal rules 20

2

Abstract

Matlab is an extremely popular programming language used by scientists, engineers, re-
searchers and students world-wide. Despite its popularity, it has received very little attention
from compiler researchers. This paper introduces McSaf, an open-source static analysis frame-
work which is intended to enable more compiler research forMatlab and extensions ofMatlab.
The framework is based on an intermediate representation (IR) called McLast, which has been
designed to capture all the key features of Matlab, while at the same time as being simple for
program analysis. The paper describes both the IR and the procedure for creating the IR from
the higher-level AST. The analysis framework itself provides visitor-based traversals including
fixed-point-based traversals to support both forwards and backwards analyses. McSaf has been
implemented as part of the McLab project, and the framework has already been used for a
variety of analyses, both for Matlab and the AspectMatlab extension.

1 Introduction

Matlab is a popular dynamic (“scripting”) programming language that has been in use since
the late 1970s, and a commercial product of MathWorks since 1984, with millions of users in the
scientific, engineering and research communities.2 There are currently over 1200 books based on
Matlab and its companion software, Simulink (http://www.mathworks.com/support/books).

Despite the popularity of the language, there exits relatively little compiler research for Matlab,
and without an existing framework it is difficult for researchers to tackle such research. McSaf, the
topic of this paper, is a compiler analysis framework that is intended to enable compiler research by
providing both a convenient intermediate representation and an intraprocedural analysis framework
which can be used both for Matlab and language extensions of Matlab. It has been developed
as a key component of the McLab project[3].

This paper does not just report on a standard compiler engineering effort. Designing an intermediate
representation (IR) for Matlab that is suitable for program analysis was quite challenging for three
reasons. First, the Matlab language has grown somewhat organically and does not have a precise
documented semantics. Thus, the IR needs to expose those semantics both correctly and in a
manner that simplifies subsequent analyses. One example is the correct handling of the “&” and
“|” operators, which are short-circuiting in some situations and not in others. Secondly, Matlab

supports several high-level features that are convenient for programmers, but difficult for compilers.
For example, an assignment statement may assign to numerous variables at the same time, and
the number of such variables may not be known statically. The IR must expose and simplify such
features. Thirdly, the IR must correctly encode which identifiers refer to variables, and which refer
to named functions. This is not trivial since the syntax of Matlab is ambiguous, and there are
no explicit declarations of variables. For example, the expression “a(i)” could mean four different
things, depending on whether “a” is a variable or function, and whether “i” is a variable or a
function. Consider two of the cases. If both “a” and “i” are variables, the expression “a(i)” means
the ith element of array “a”. If both “a” and “i” are named functions, then “a(i)” is a call to
function “a”, where the argument is a call to the built-in function “i” (which returns the complex
value i). Clearly a program analysis will apply very different analysis rules for an array access or
a function call. Thus, these syntactic ambiguities should be resolved in the IR.

2The most recent data from MathWorks shows that the number of users of Matlab was 1 million in 2004, with
the number of users doubling every 1.5 to 2 years.(From www.mathworks.com/company/newsletters/news notes/-

clevescorner/jan06.pdf.)

3

Given a suitable IR, another important challenge is to design an analysis framework that supports
a wide variety of intraprocedural analyses. Our goal was to design a framework that is easy to use,
thus enabling others to design new analyses. We also felt that it was important that our approach
should support language extensions so that an analysis originally designed for Matlab could be
easily adapted to an extension of Matlab.

In this paper we provide our solution to these challenges. Our contributions are as follows:

Design of McLast IR: The design and implementation of McLast, a lower-level AST-based
intermediate representation that both exposes important Matlab semantics and simplifies
program analysis.

Generating McLast: The design and implementation of a collection of simplifying transforma-
tions that together provide a mechanism for generating the McLast IR from the higher-level
AST. This simplification framework encodes the dependency structure between simplifications
to enable the application of a subset of simplifications and also to allow for a structured way of
introducing future simplifications. The simplifying transformations themselves support both
standard and Matlab-specific transformations.

Analysis Framework: The design and implementation of an extensible program analysis frame-
work for Matlab. The framework supports a variety of visitor-based traversal mechanisms
including a depth-first style traversal suitable for flow-insensitive analyses and a structured-
program-analysis traversal which supports both forward and backwards flow-sensitive analy-
ses. The flow-sensitive traversal mechanism automatically supports conditional control flow,
and iterative constructs, including support for “break” and “continue” statements.

Extensibility: Both the simplification and analysis frameworks have been designed to support
extensions of Matlab.

The remainder of this paper is structured as follows. In Section 2 we provide an overview of the
whole McLab project and show how the McSaf framework fits into the big picture. Section 3
introduces the McLast IR and the simplifying transformations, while Section 4 describes the
analysis framework. Related work is discussed in Section 5 and Section 6 concludes.

2 Overview

The McSaf system forms a key component of the McLab project as illustrated in Fig. 1. As a
whole, McLab is intended as a complete toolkit for Matlab systems including an extensible front-
end built using MetaLexer[5] and JastAdd[2, 12], and several back-ends including source-to-source
tools like the refactoring toolkit[17], static compilers such as the Matlab-to-Fortran translator
(McFor)[15] and the Matlab Tamer[10], and dynamic virtual machine/JIT systems (McVM)[6].
All parts of McLab, with the exception of McVM, are implemented using Java and Java-based
tools.

McSaf is the heart of the system, providing both the lower-level McLast IR and the analysis
toolkit/engine (as indicated by the grey boxes). The dotted boxes in Fig. 1 denote existing imple-
mentations of flow analyses that use the McSaf toolkit. Note that McSaf can be used to build
analyses both on the higher-level AST (for example, kind analysis), as well as on the lower-level

4

*.m

MATLAB Tamer

Front
End

Kind
Analysis

Standard
Analyses

VMMc

Specialized
Analyses

Specialized
Analyses

Refactoring
Toolkit

Simplifications

McLAST + flow info

FORMc

McLAST + kinds

AST + kinds

AST

Flow

Analysis

Framework

Figure 1: Overview of McLab and McSaf. The grey boxes indicate the components presented in
this paper: Simplifications are discussed in Section 3 and the Flow Analysis Framework is presented
in Section 4. The dotted boxes correspond to existing analyses implemented using McSaf.

McLast. McSaf includes three different implementations of kind analysis[9], and a variety of
standard dataflow analyses. Other components of the larger McLab system also build analyses
using McSaf. The refactoring toolkit implements a variety of specialized analyses to enable refac-
toring transformations[17], and the Matlab Taming toolkit implements specialized simplifications
and analyses to generate a call graph and type/class information[10]. McVM uses both the IR
and some standard flow analysis information generated by McSaf.3

It is our intention that future users of McSaf would add to both the standard flow analyses and
develop new specialized analyses for both our existing back-ends and for their own projects/tools.

3 Intermediate Representations and Simplifications

One of the key steps in designing McSaf was to design and implement an appropriate intermediate
representation which exposed key semantics of Matlab and provided a good basis for analyses.
Although we hope the end result is quite clean and accomplishes these goal, the process of de-
termining the correct IR was not at all straightforward. In this section we introduce the existing
high-level AST and then discuss the simplifications we developed that result in the lower-level IR,
McLast.

3Specialized analyses in McVM are implemented in C++ and LLVM[14], and thus do not use McSaf.

5

3.1 High-level AST

The McLab front-end already has a well-defined AST specification and a Java implementation of
the AST that is generated based on a JastAdd specification. Fig. 2 gives an extract of the AST
specification.

1 // Top−level structure
2 abstract Program;
3 CompilationUnits ::= Program*;
4 Script : Program ::= HelpComment* Stmt*;
5 FunctionList : Program ::= Function*;
6 Function ::= OutputParam:Name* <Name:String> InputParam:Name*
7 HelpComment* Stmt* NestedFunction:Function*;
8

9 // Statements
10 abstract Stmt;
11 WhileStmt : Stmt ::= Expr Stmt*;
12 ForStmt : Stmt ::= AssignStmt Stmt*;
13 BreakStmt : Stmt;
14 ContinueStmt : Stmt;
15 ReturnStmt : Stmt;
16 IfStmt : Stmt ::= IfBlock* [ElseBlock];
17 IfBlock ::= Condition:Expr Stmt*;
18 ElseBlock ::= Stmt*;
19 SwitchStmt : Stmt ::= Expr SwitchCaseBlock* [DefaultCaseBlock];
20 SwitchCaseBlock ::= Expr Stmt*;
21 DefaultCaseBlock ::= Stmt*;
22 AssignStmt : Stmt ::= LHS:Expr RHS:Expr;
23 ExprStmt : Stmt ::= Expr;
24

25 // Expressions
26 abstract Expr;
27 abstract LiteralExpr : Expr;
28 abstract LValueExpr : Expr;
29 abstract UnaryExpr : Expr ::= Operand:Expr;
30 abstract BinaryExpr : Expr ::= LHS:Expr RHS:Expr;
31 NameExpr : LValueExpr ::= Name;
32 ParameterizedExpr : LValueExpr ::= Target:Expr Arg:Expr*;
33 CellIndexExpr : LValueExpr ::= Target:Expr Arg:Expr*;
34 DotExpr : LValueExpr ::= Target:Expr Field:Name;
35 MatrixExpr : LValueExpr ::= Row*;
36 Name ::= <ID : String>;
37 Row ::= Element:Expr*;
38 ...
39 RangeExpr : Expr ::= Lower:Expr [Incr:Expr] Upper:Expr;
40 ColonExpr : Expr;
41 EndExpr : Expr;
42 CellArrayExpr : Expr ::= Row*;
43 FunctionHandleExpr : Expr ::= Name;
44 LambdaExpr : Expr ::= InputParam:Name* Body:Expr;

Figure 2: AST Definition

For those not familiar with JastAdd, we give a quick introduction. Each declaration defines a node
type, which may be abstract or concrete. An abstract declaration, such as in line 2, will result in
an abstract Java class being generated. Declarations can declare subtypes, for example on lines 4

6

and 5, Script and FunctionList are declared to be subtypes of Program. Each declaration may list
children, for example, lines 6-7 declare that a Function has six children. Children may be explicitly
named or not. For example, the first child of Function has the name OutputParam, whereas the
fourth and fifth children are not named. A child may be a list of a specific type (indicated by *),
a singleton, or optional (indicated by [...]).

The AST definition follows the natural abstract syntax of Matlab. A Matlab program consists
of a collection of compilation units. Each compilation unit can contain either a script or a list of
functions. Scripts contain only comments and statements. Functions have output parameters, input
parameters, and possibly nested functions. The function body consists of comments and statements.
Statements can be simple expression or assignment statements or control-flow statements. Since
Matlab supports many high-level array operations, there are quite a few types of expressions.

3.2 Simplification process

Although it is possible to define program analyses over the high-level AST, such an analysis must
be able to handle arbitrarily complicated expressions and must correctly handle the semantics of
Matlab constructs. Thus, we have defined a lower-level, simpler AST called McLast. Fig. 3
shows the overall simplification process. The front-end delivers the high-level AST (also called
McAst) and we wish to create a semantically equivalent lower-level representation.

One of the first surprises for us was that we could not create a lower-level AST before we resolved the
meaning of all identifiers. For example, it is not possible to correctly simplify an expression of the
form a(f(end)) before one knows whether f is a function or a variable. Thus, before simplification,
kind analysis[9] must be applied to determine the meaning of identifiers (AST nodes of type Name

). The kind analysis has itself been implemented using the McSaf framework presented in this
paper, and it computes, for each Name node, one of the following kinds: Var, the Name refers to a
variable; Fn, the Name refers to a named function; or Id, the Name could be either a Var or Fn

at run-time.

Another challenge is that the simplifying transformations depend on each other, and we wanted to
be able to: (1) support applying only some transformations; and (2) allow for new transformations
to be added in a consistent and simple fashion. Thus, each simplification forms part of a dependency
structure which is enforced by the framework.

In the following sections, Sec. 3.3 to Sec. 3.6 outline the highlights of the individual simplfications,
and then in Sec. 3.7 we describe our approach to handling dependencies between simplifications.
We also provide some emprical measurements on the frequency of simplifications in Sec. 3.8. More
detailed descriptions can be found in the first author’s thesis[8] and in the implementation[3].

3.3 Exposing Implicit Control Flow

One important group of simplifications is to expose implicit control flow. Explicit and simple control
flow makes the subsequent implementation of flow-sensitive analyses much more straightforward.

The case of Matlab short-circuit operators illustrates the difficulty in capturing the semantics of
Matlab, which often includes special and somewhat irregular rules that seem to have emerged
over time. Matlab supports implicit control flow via the scalar logical operators && and ||, which
are always short-circuit operators in the usual sense. The logical operator simplification transforms

7

T
ra

ns
fo

rm
at

io
n

1

T
ra

ns
fo

rm
at

io
n

2

T
ra

ns
fo

rm
at

io
n

N

Front−End Kind
Analysis

Simplifier

Simplification Phase

kind info
McLASTsource McAST +

McAST

Figure 3: Simplifications

all occurrences of these operators to equivalent explicit control flow with conditional statements,
ensuring that code copying is minimized. For example, the original expression in Fig. 4(a) would
be converted to the conditional statement in Fig. 4(b).

1 t = E1 && E2;

1 t = E1;

2 if (E1)

3 t = E2;

4 else

5 t = false;

6 end

1 t = E1;

2 CheckScalarStmt(t);

3 if (E1)

4 t = E2;

5 CheckScalarStmt(t);

6 else

7 t = false;

8 end

(a) original (b) first try (c) correct

Figure 4: Example of simplifying short-circuit &&

In implementing the short-circuit transformations we were careful not to duplicate code and we
were also quite careful to capture the correct Matlab semantics of short-circuits. In particular,
the Matlab semantics for the scalar logical operators dictate that the result of any operand that is
evaluated must be a scalar logical, and if it is not a scalar, a run-time error is raised. However, the
same run-time check is not made for conditional expressions for if and while statements. These
conditional statements are considered true when the result is non-empty and contains all nonzero
elements (logical or real numeric), and false otherwise. Thus, to maintain the correct semantics the
simplification introduces new CheckScalarStmt nodes, as shown in Fig. 4(c).

Another non-obvious twist is that Matlab also has implicit short-circuits for the element-wise
operators & and |, but only when they appear as the top-level operators in the condition of a if

or while construct. Thus, the simplification for element-wise logical operators must ensure that
the short-circuit simplification is applied in the correct contexts. In particular, such simplifications
must be done before another transformation moves the expression out of the condition.

8

3.4 Simplifying Control Constructs

In addition to exposing implicit control flow, simplifications are also applied to if and for state-
ments. The if simplification simply restructures elseif constructs to equivalent nested if-else
constructs. This ensures that subsequent flow analyses only have to deal with two control-flow
branches.

The for simplification is somewhat more Matlab-specific. Many Matlab for loops are written
in the style of Fig. 5(a), where i takes on values from 1 to n in steps of k. This style of loop,
which we call a range for loop, is ideal for subsequent analysis and loop transformations. However,
the general form of a Matlab for loop is shown in Fig. 5(b). The general semantics is that the
expression E is evaluated to an array a, and a is treated as a two-dimensional array. The loop
iterates over a, assigning to i the i’th column of a. If a is empty, then the loop body does not
execute, and the final value of i is the empty array. Fig. 5(c) shows the simplification that converts
a general array to an equivalent range for loop.

1 for i = 1:k:n

2 <BODY>

3 end

1 for i = E

2 <BODY>

3 end

1 t1=E;

2 [t2,t3] = size(t1);

3 i = [];

4 for t4 = 1:t3

5 i = t1(:,t4);

6 <BODY>

7 end

(a) range for loop (b) original general loop (c) simplified loop

Figure 5: Example of simplifying for loops

3.5 Simplifying Single Statements and Expressions

A key part of the simplification process is simplifying single assignment statements and expressions.
The key idea is that each statement and expression is simplified as much as possible, thus reducing
the complexity for subsequent analyses. The first simplification merely divides an assignment so
that it has a complex expression only on the right-hand-side (rhs) or only on the left-hand-side (lhs).
Thus, statements of the form E1=E2; are transformed to t1=E2; E1=t1;. Subsequent simplifications
then simplify either the rhs (RValue) or the lhs (LValue).

Each RValue is simplified so that it contains at most one complex operation (function call, operand,
index, field access or range expression). For example, assuming that x, a and i have kind Var,
the RValue expression in lhs = a(f(g(i),sin(x))).b would be simplified to t1=g(i); t2=sin(x);

t3=f(t1,t2); t4=a(t3); lhs = t4.b.

Simplifying complex expressions that are LValue’s (i.e. expressions on the lhs of assignment state-
ments) is more difficult because the expression now denotes an address and not a value andMatlab

has no natural way of expressing addresses. Thus, the simplification of LValues simplifies internal
expressions as much as possible, but does allow for a chain of indexing and field expressions. The
grammar in Fig. 6 gives the rules for LValue, with a further restriction that NameExpr must refer to
names with kind Var. If we take the same expression as before but use it as an LValue, as in the as-
signment statement a(f(g(i),sin(x))).b = rhs, the simplification would be: t1=g(i); t2=sin(x);

9

t3=(t1,t2); a(t3).b = rhs. Note that the final statement in the simplification uses the chain of
references a(t3).b, which cannot be further simplified.

LV alue := NameExpr

| Indexing

| Access

Indexing := NameExpr(NameOrV al∗)

| Access(NameOrV al∗)

Access := LV alue.Name

NameOrV al := NameExpr

| LiteralExpr

Figure 6: LValue grammar

There is one additional Matlab-specific expression that must be simplified correctly, which is
the end expression. The end expression binds to the tightest enclosing array or cell array, and
it returns the last index of the dimension in which it appeared. For example, the expression
a(foo()).b(i,end,k) where a has kind Var and foo has kind Fn, end refers to the last index
of the second dimension of the 3-dimensional view of the array resulting from the evaluation of
a(foo()).b. The end simplification replaces the end expression with an explicit call to the endfn

function which has three arguments: the array, the dimension in which the end expression was found,
and the total number of dimensions. For the example above, the simplification is quite straight-
forward and would be t1=foo(); t2=a(t1); t3=t2.b; t4=endfn(t3,2,3); t3(i,t4,k). However,
more complex situations can arise, especially when end is used inside an LValue. Consider the
example, a(foo()).b(i,bar(end),k)=rhs, assuming bar has kind Fn. This will be simplified to
t1=foo(); t2=endfn(?,2,3); t3=bar(t2); a(t1).b(i,t3,k)=rhs where the ? must be filled in with
correct simplified LValue, which in this case is a(t1).b.

3.6 Dealing with multiple assignments

In the previous simplifications we have assumed that assignments have a simple lhs. However,
Matlab supports assignments to multiple variables on the lhs. Dealing with multiple values on
the lhs is not usually difficult, but with Matlab there is an important complication. That is, that
Matlab allows an unknown number of lhs variables. The simplifications handle the simple and
more complicated cases as follows.

In the case where the number of lhs variables is known, the simplification ensures that only simple
variables, without repetition occur on the lhs. For example, [a,b.c,a]=lhs would be simplified to
[a,t1,t2]=lhs; b.c=t1; a=t2. This simplification simplifies subsequent interprocedural analyses
since the number and names of the return parameters are explicit.

10

The case where the number of variables on the lhs is not known is more harder, and it was quite
difficult to decide how to handle this case. In the end we decided to introduce a new CSL IR
node. A typical example is the statement [a,b{:},c]=rhs. In Matlab this specifies that the first
return value is bound to a, the last return value is bound to c, and the middle values are bound
to the cell array b. The simplification for these cases introduces an explicit CSL node for each
item in the return list than can possibly correspond to a list of values (known in Matlab as a
Comma Separated List (CSL)). For each such CSL, the simplification introduces an explicit CSL

node associated with a new temporary name. For example, [a,b{:},c]=rhs would be simplified to
[a,CSL[t1],c] = rhs; [b{:}] = CSL[t1].

3.7 Simplification Dependencies

The complete simplification procedure is implemented as a collection of simplifying transformations.
Some simplifications depend upon others having already been applied. The dependencies between
the existing simplifications is given in Fig. 7. The simplification called FULL represents the case where
all simplifications should be applied. However, framework users might want to only apply some
simplifications, for example loop transformations may just want to apply the FOR simplifications.

Multi
Assign

Simple
Assign

CSL
left

Simple
IF

FULL

FORLeft COND

Right

Element−wise
short circuit

Figure 7: Dependencies for Simplifications

To enforce the dependencies, the framework provides the Simplifier class. In addition, each sim-
plification is implemented as a class extending AbstractSimplifica tion. The Abstract Simplification class
requires that each simplification have a method called getDependencies that returns a set of de-
pendencies. In order to use the simplifier, an instance must be constructed with a given set of
simplifications to perform. The simplifier then performs a depth first traversal of the dependency
DAG producing a list of simplifications, avoiding duplication. Executing the simplifications in the
order of the list will ensure that all dependencies will be met. To make it simpler to perform any
given simplification and its dependencies, each simplification has a getStartSet static method. This
method returns a singleton set containing the simplification itself. Clearly framework users can
add new simplifications and state their dependencies quite easily. In fact, the Matlab Taming

11

project has recently built upon the McSaf framework by introducing new simplifications which
were inserted quite easily using this approach.

3.8 Simplification Frequencies

In order to examine the relative frequency applications for each simplification type, we instrumented
our simplification framework to count the number of times each simplification caused a statement
to be rewritten and the number of times the simplification extracted an expression to a temporary
variable. We applied the instrumented simplifier to a large collection of Matlab functions and
scripts.4 The benchmarks come from a wide variety of application areas including Computational
Physics, Statistics, Computational Biology, Geometry, Linear Algebra, Signal Processing and Image
Processing. We analyzed 3057 projects composed of 11698 functions and 2349 scripts. The projects
vary in size between 283 files in one project to a single file. A summary of the data collected is
given in Fig. 8, ordered by increasing frequency.

Simplification # rewrites # temps extracted
FOR 329 329
Multi-Assign 354 651
Element-wise short-circuit 1791 4068
Simple IF 4518 0
Left 6649 7969
Simple-Assign 24478 24478
Right 306397 325780

Figure 8: Frequencies for Simplifications

These results show that the FOR and Simple IF transformations are applied relatively infrequently.
The benchmarks contained 12189 for statements and only 329 required the FOR simplifications.
Similarly only 4518 elseif statements needed to be simplified, out of a total of 31758 if statements
in the benchmarks. We were somewhat surprised that there were almost 1800 occurrences of the
element-wise short-circuit simplification. The use of element-wise short-circuiting is discouraged
by MathWorks, but it appears that existing code does use this feature. This may be a potential
refactoring opportunity. It was also interesting to note that there were fairly few applications of the
Multi-Assign simplification, especially as compared to the Simple-Assign. As expected, by far the
most frequent simplification was the Right simplification which simplifies expressions by extracting
sub-expressions to a temporary.

4 Analysis Framework

A key part of the McSaf toolkit is an analysis framework that supports a variety of pre-defined
and extensible traversal mechanisms; built-in and extensible support for representing a variety of
flow data types; and support for depth-first and structure-based analyses. The toolkit has been
designed to work both for the higher-level AST, as well as for the lower-level McLast IR.

4Benchmarks were obtained from individual contributors plus projects from http://www.mathworks.com/-

matlabcentral/fileexchange, http://people.sc.fsu.edu/~jburkardt/m src/m src.html, http://-

www.csse.uwa.edu.au/~pk/Research/MatlabFns/ and http://www.mathtools.net/MATLAB/. This is the same
set of benchmarks that are used in [9].

12

4.1 Traversal Mechanism

The traversal mechanism is central to the framework - in fact it is used both to drive the simpli-
fications presented in the previous section and the analyses presented later in this section. The
framework accommodates different traversals by implementing a variant of the visitor pattern. The
IR consists of instances of different types of AST nodes. The types form a class hierarchy, which is
induced by the JastAdd specification, an excerpt of the hierarchy is depicted in Fig. 9.

Figure 9: Excerpt of AST class hierarchy. The grey class, CheckScalarStmt is an AST node that is
part of McLast and not McAst. All white classes in this diagram are part of both McLast and
McAst.

To facilitate traversal, there is a Java interface, NodeCaseHandler, that consists of methods of the
form void caseStmt(Stmt node). There is one such method for every AST class. The framework also
provides a simple abstract implementation called AbstractNodeCaseHandler. This implementation
provides default behaviour for each node case. This default behaviour is that for each AST class,
the node case for that class simply forwards to the node case of its parent class. The forwarding is
done by calling the case for the parent class with the input from the case for the given class. We
demonstrate this with the following excerpt from AbstractNodeCaseHandler for the AssignStmt and
Stmt classes. Notice that case AssignStmt(...) is forwarding up to the case belonging to its parent
class, Stmt.

public void caseAssignStmt(AssignStmt node) { caseStmt(node); }
public void caseStmt(Stmt node) { caseASTNode(node); }

Fig. 9 shows that the AssignStmt node type extends the Stmt node type. This means that the
default behaviour for case AssignStmt(...) is to forward to case Stmt(...), which is done by passing the
argument from case AssignStmt(...) to case Stmt(...). The definition for the case AssignStmt(...) method
demonstrates the forwarding behaviour. This method takes in an instance of AssignStmt and calls
case Stmt(...) with that instance. Note that ASTNode is the root type of the AST class hierarchy.
The Stmt class is a top level node type, which directly extends ASTNode, so the case Stmt(...)

will forward to case ASTNode(...). The AbstractNodeCaseHandler leaves the case ASTNode(...) method
unimplemented.

Each AST class implements a method called analyze that takes a NodeCaseHandler as an argument.
These methods will call the appropriate node case of the given handler, passing itself to the handler.
For example, here is the code implementing the analyze method in the AssignStmt class.

public void analyze(NodeCaseHandler handler) { handler.caseAssignStmt(this); }

In order to create a particular traversal, a programmer needs to create a specialized NodeCaseHandler

. The different types of analyses are implemented in this manner, but a programmer can also directly

13

create a specialized traversal. To demonstrate this process we present a simple traversal, called
StmtCounter, that counts the number of statements in a given AST. Code for this traversal is given
is Fig. 10.

1 public class StmtCounter extends AbstractNodeCaseHandler {
2 private int count = 0;
3 private StmtCounter() { super(); }
4

5 public static int countStmts(ASTNode tree) { tree.analyze(new StmtCounter()); }
6

7 public void caseASTNode(ASTNode node)
8 { for(int i = 0; i<node.getNumChild(); i++)
9 node.getChild(i).analyze(this);

10 }
11

12 public void caseStmt(Stmt node) { count++; caseASTNode(node); }
13 }

Figure 10: Example traversal counting statements

To use this class, a programmer simply needs to call the static method countStmts. This method
creates a new instance of the traversal and starts the analysis off.

This traversal will visit all nodes in the tree in depth-first order, and count each statement node.
There are two important details to note from this example. The first thing is the case ASTNode(-

...) implementation. In this example, this method does the actual traversal over the tree, looping
through and visiting each of a node’s children. Since StmtCounter extends AbstractNodeCaseHandler

all cases that are not overridden will forward up until they reach this case. This means that the
default behaviour for AST nodes will be to simply traverse through their children. This is a common
pattern when implementing traversals. The flow-insensitive traversal is implemented similar to this,
and the flow-sensitive traversals have a similar case ASTNode(...) with other behaviour implemented
for control structures like loops and conditionals.

The second thing to notice is the case Stmt(...) method. Besides case ASTNode(...), this is the only
case implemented by StmtCounter. Again, since StmtCounter extends AbstractNodeCaseHandler, all
node types that are descendants of Stmt will forward up to this case. So this case will capture
all statements, which gives a good place to perform the count. Note that this implementation of
case Stmt(...) forwards to case ASTNode(...). This is because there are some statements, such as if
statements, that can contain other statements. We wish to visit all of the statements contained
in other statements, so we need to visit the children of a given statement. To do this, we simply
forward to case ASTNode(...).

The StmtCounter example does have some inefficiencies. It will visit all children of a given node, even
children that cannot be, or contain, statements. For example, the children of an expression cannot
be a statement, nor can it contain statements. This shortcoming can be overcome by providing
specialized implementations of appropriate cases. To avoid visiting unnecessary expression children
one could add the following method to the class. This method will prevent all children of any
expression from being visited.

...
public void caseExpr(Expr node) { return; }
...

14

The example can be refined further, but the original version is concise and correct, and demon-
strates how simple it can be to create new traversals. The traversal mechanism is also used by the
simplifications presented in Sec. 3. There is a specialized traversal created for all simplifications.
This traversal implements the rewrite mechanisms as well as the AST traversal. Each simplifica-
tion extends this simplification traversal, implementing it’s own behaviour for the appropriate node
cases.

4.2 Representations for Flow-Data

An analysis is written to produce information about the program being analyzed. McSaf’s analysis
classes are generic in the type of information produced. An analysis of type StructuralAnalysis<D>

is an analysis that produces information of type D. To make the framework as general as possible,
the information can be of any type. However, the type of information often falls into certain
categories. One example is an analysis that produces, for every program point, a set of variables
that must be defined at that program point. Alternatively, for every program point, the analysis
could have produced a map from variable names to their types. To make implementing analyses
that produce such information easier, theMcSaf framework defines interfaces and implementations
for basic flow-data. A class hierarchy for flow-data structures provided by the framework is given
in Fig. 11.

Figure 11: flow-data class hierarchy

The FlowData<D> interface is the base type for all predefined flow-data representations. This type
represents a collection of data of type D. The interface is primarily intended to tag a class as
representing flow-data. As such, it defines no methods. In addition to this basic interface, the
framework also provides two more specific interfaces, one for sets and the other for maps. For each
of these, an abstract implementation is provided to make creating new implementations simpler.
In addition, each of these interfaces also have concrete implementations.

4.3 Depth-first Analysis

The simplest form of analysis supported by the framework is the depth-first analysis. This type of
analysis is intended to traverse the tree structure of the AST, visiting each node in a depth-first
order. The depth-first analysis type can be used to implement flow-insensitive analyses.

15

This type of analysis is implemented by extending the AbstractDepthFirstAnalysis<A> class. The Abs

tractDepthFirstAnalysis implements the Analysis interface and extends AbstractNodeCaseHandler. This
relationship is depicted in Fig. 12.

Figure 12: Class hierarchy snipet for depth-first analysis

It should be noted that AbstractDepthFirstAnalysis<A> is generic with the type variable A. This is
important because it also provides a new method, newInitialFlow (). The newInitialFlow () method
returns a value of type A, representing an initial flow value. This type variable represents the type
of data being computed by the analysis. It is an unbounded type variable, but in practice, it will
usually be a subclass of FlowData. The reason it is kept unbounded is to increase flexibility for the
framework.

Since AbstractDepthFirstAnalysis extends AbstractNodeCaseHandler it inherits all the default traversal
behaviour. It extends this behaviour with default implementations of the new case methods defined
by the Analysis interface. The behaviour for these new cases is to forward to the case associated
with the type of the argument that the case accepts. For instance case LoopVar(AssignStmt loopVar)

accepts an AssignStmt. So the default behaviour will be to forward to case AssignStmt(...). The case

WhileCondition(...) and case IfCondition(...) are exceptions to this. These cases are specialized versions
of case Condition(...) so they will both forward to case Condition(...) by default.

The most important feature of AbstractDepthFirstAnalysis is that it implements a case ASTNode(...)

method. The implementation of this method provides the basic traversal for this type of analysis.
Fig. 13 presents the source code for this method. The case ASTNode(...) method takes in the ASTNode
being visited. For each child of that node, that child is analyzed. So to reiterate, since AbstractDepth

FirstAnalysis extends AbstractNodeCaseHandler, and due to its implementation of case ASTNode(...), the
default behaviour for every node is to simply analyze all children of that node.

1 public void caseASTNode(ASTNode node)
2 { // visit each child node in forward order
3 for(int i = 0; i<node.getNumChild(); i++){
4 if (node.getChild(i) != null)
5 node.getChild(i).analyze(callback);
6 }
7 }

Figure 13: Depth-first caseASTNode(...) source code

AbstractDepthFirstAnalysis also defines some new methods and fields for storing and accessing the data
being produced by the analysis. It provides a map from AST nodes to the data being computed.
This allows data to be associated with any desired node. In order to implement a new depth-
first analysis, a programmer must create a concrete class that extends AbstractDepthFirstAnalysis.
To create this class, a programmer must: (1) select an analysis data type; (2) implement an
appropriate newInitialFlow method; and (3) implement an appropriate constructor. This will result

16

in an analysis that will traverse the entire tree visiting each node in depth-first order. To get the
analysis to perform a useful task, the programmer must override appropriate case methods. The
analysis will usually build up flow-data, and can also associate flow-data with particular nodes in
the tree.

To demonstrate the process of implementing a depth-first analysis, we present a simple example
analysis, given in Fig. 14. This analysis collects all names that are assigned to. It performs two
tasks. First, for each assignment statement in the tree, it associates all names that are assigned
to by that assignment statement to the assignment statement. Second, it collects in one set, all
names that are assigned to in the entire AST. Names are stored as strings, so the flow-data has
type HashSetFlowSet<String>. The analysis defines a field to store the full set of names, and a flag
for indicating when the traversal is in the lhs of a statement. There are two accessor methods, one
to get all the names, and the other to get the full set. The core of the analysis is defined by the
three “case” methods which guide the traversal and collect the information.

1 public class NameCollector extends

2 AbstractDepthFirstAnalysis<HashSetFlowSet<String>>

3 { private HashSetFlowSet<String> fullSet;
4 private boolean inLHS = false;
5

6 public NameCollector(ASTNode tree)
7 { super(tree);
8 fullSet = new HashSetFlowSet<String>();
9 }

10

11 public HashSetFlowSet<String> newInitialFlow()
12 { return new HashSetFlowSet<String>(); }
13

14 public Set<String> getAllNames() { return fullSet.getSet(); }
15

16 public Set<String> getNames(AssignStmt node)
17 { HashSetFlowSet<String> set = flowSets.get(node);
18 if (set == null) return null; else return set.getSet();
19 }
20

21 public void caseName(Name node)
22 { if (inLHS) currentSet.add(node.getID()); }
23

24 public void caseAssignStmt(AssignStmt node)
25 { inLHS = true;
26 currentSet = newInitialFlow(); // init set for this stmt
27 analyze(node.getLHS()); // analyze only the lhs
28 flowSets .put(node,currentSet); // store names in node
29 fullSet .addAll(currentSet); // add to full set
30 inLHS = false;
31 }
32

33 public void caseParameterizedExpr(ParameterizedExpr node)
34 { analyze(node.getTarget()); } // only the target can be a defn
35 }

Figure 14: NameCollector definition

17

4.4 Structure-based Analysis

Structure-based flow analysis is the core part of the analysis framework. Structure-based flow anal-
yses perform a complete forwards or backwards analysis over the AST or McLast representation,
merging control flow for conditional and switch statements and computing fixed-points for loops,
including the proper handling of break and continue statements. The computational part is driven
via specialized traversal mechanisms, either forwards or backwards. The user of the framework only
needs to focus on the analysis rules for basic statements and the implementation of the flow-data
type (which is either a direct use of a flow-data type provided by the framework or a specialized
user-provided type).

The organization of the structure-based analyses are illustrated in Fig. 15. The abstract implemen-
tation, called AbstractStructuralAnalysis, provides constructors and implementations for most of the
API methods and has extensions to support forwards and backwards analyses.

Figure 15: Class hierarchy snipet for structural analysis

The AbstractStructuralAnalysis implementation is similar to the AbstractDepthFirstAnalysis implementa-
tion in that it also provides a protected method void analyze(ASTNode node) and is also intended
to abstract away from the basic traversal mechanism. Unlike AbstractDepthFirstAnalysis, AbstractStruc

turalAnalysis does not provide an implementation for case ASTNode(...). This is because structural
analyses are split into two flavours, forwards and backwards, and each of these flavours requires its
own implementation of case ASTNode(...). The forwards and backwards analyses are implemented in
a similar way. For each, the framework provides a general abstract implementation and a simple
abstract implementation.

The general implementation provides an implementation for the basic API methods. It also provides
an implementation for some traversal methods, including loops and conditionals. These implemen-
tations for the traversal methods are what makes analyses derived from these classes capable of
computing flow-sensitive analyses. In the case of the loop cases, case ForStmt(...) and case WhileStmt

(...), they provide the fixed-point computation procedure, and the traversal also correctly handles
the control-flow due to break and continue statements.

18

The simple implementations go beyond this core functionality. They implement certain behaviour
that would not be applicable to all analyses. Such behaviour includes how to deal with continue

and break statements. These implementations represent the functionality needed to write analyses
that do not need more complex behaviour. They were provided to make analyses simpler to write,
requiring less duplication of code.

4.4.1 Handling Control Flow:

Unlike analysis frameworks that operate on control flow graphs, our framework computes the flow
information based on the structure of the AST. Fig. 16 gives a high-level diagrammatic view of how
the traverser handles the control flow. Fig. 16(a) demonstrates that the condition is evaluated first,
and then the flow information is sent to the if and else branches. The user of the toolkit is given the
ability to specialize the flow sets for each branch, so an analysis can use the results of analyzing the
condition to specialize the analysis for different branches. The ./ operator demonstrates where the
data flow merge operation is applied. Fig. 16(b) gives the traversal for switches which demonstrates
that for Matlab the conditions can be arbitrary expressions that must be evaluated before the
body of the case. Fig. 16(c) and (d) illustrate the behaviour for while and for loops. In this
case the framework takes care of merging the flow information from breaks and continues at the
appropriate places, as well as computing a fixed point.

These general implementations represent the core functionality that is needed for these types of
analyses. This functionality should be applicable to most analyses of this type, and most flow
analysis developers should not have to override them. However, should a flow analyses developer
have a special kind of fixed point that he/she would like to implement, this can be done by specifying
a new specialized traversal.

4.4.2 Creating an analysis instance:

To create a forwards analysis, a programmer must extend one of the forward classes from Fig. 15.
The flow-analysis computations are implemented in the case methods for various node types. The
case ASTNode(...) implements the basic traversal. It does this by looping through the children of a
given node and using the provided analyze (ASTNode node) method. Recall that this method deals
with basic traversal and also guarantees that the current InSet is set to the previous current OutSet

. The case IfStmt(...) and case SwitchStmt(...) implement the behaviour for non-looping branching
code. The if statement behaviour provides what we call branching analysis. This means that, if
the analysis writer wishes, they can provide a different out flow for when the if condition is true
or false. This would be done in an implementation of case IfCondition(...). When a programmer
provides true and false flow-data, case IfStmt(...) will ensure that each branch of the if will have
the appropriate in flow-data.

Creating a backwards analysis is very similar, except that the backwards analysis does not support
the option of different flow information for the different branches of an if.

4.5 Analyses for Language Extensions

One of the goals of the McLab project is to support modularly defined language extensions (as
illustrated by the extension for AspectMatlab [19]). Extensibility is also one of the goals for

19

fa
ls

e
flo

w

<COND>

In

Out

<THEN PART>

end

<ELSE PART>
else

true flow

if

Out

<SWITCH EXP>

case <CASE EXP 1>

case <CASE EXP 2>

otherwise

<BODY 3>

<BODY 1>

<BODY 2>

end

In

switch

(a) if (b) switch

no

continue
...

break
...

continue
...

break
...

FP

C

B

while <COND>

end

yes

In

Out

...

no

B

...

continue
...

break
...

continue
...

break
...

INIT COND UPDATE<LV>for

end

FP

C

Out

In

yes

(c) while (d) for

Figure 16: Diagrammatic illustration of structural traversal rules

20

the design of McSaf. The framework has been designed to support three kinds of extensions: (1)
adding new syntactic nodes that are desugared before analysis; (2) adding nodes that need to be
included in existing and new analyses; and (3) adding nodes that require new kinds of complex
flow analysis - for example a new kind of loop. The framework comes with three example language
extensions, one for each type. Although the second and third kind require slightly more glue code,
all three kinds of extensions can be accomplished by defining new pieces and reusing the previous
code.

5 Related Work

The McLab Static Analysis Framework is an extensible framework for creating static analyses for
the Matlab language. This is the first open framework created for analyzing Matlab.

Soot[20] is one example of an optimization framework for Java which was developed by our research
group for over a decade. McSaf emulates many of the positive features of Soot, including having
a well-defined IR and a flexible and easy-to-use flow analysis framework. However, McLab solves
very Matlab-specific problems in the IR design and uses a structured traversal-based approach
(rather than a graph-based approach) to the flow analysis framework. So, in the end we found our
experience with Soot helped us know the goals for the McSaf project, but developing a framework
for Matlab required solving very different problems. Soot has enabled a lot of research for Java
and we hope that McSaf will do the same for Matlab.

The JastAdd toolkit is designed for creating extensible compilers[2, 12] and was also used in the
development of McLab and McSaf. One feature of JastAdd that was not discussed in great detail
in this paper is its attribute grammar system. JastAdd allows a developer to define attributes as
part of the AST grammar specification. These attributes are effectively functions operating on the
AST nodes. They can be used to propagate information through the tree and they can even be
defined in a circular fashion. The JastAdd system provides a fixed-point computation for calculating
the results of such circular attributes. JastAdd’s attribute system provides a low-level means of
performing flow analysis on an AST. It is up to the compiler writer to use these tools and to take the
semantics of the language they are implementing into account, in order to create any meaningful
analyses. It isn’t a full dataflow analysis framework. However, some work[16] has been done to
implement flow analysis for Java using the JastAdd extensible Java compiler[11].

In the past, there has also been some work towards open Matlab systems such as Octave[1]. These
systems concentrate on front-ends and interpreters and so do not include analysis and optimization
frameworks.

There has also been work on optimizing Matlab. The FALCON project[18, 7] aimed to compile
Matlab code into Fortran. Falcon focuses on type inference and code inlining to produce
Fortran code. The Magica tool[13] focuses on type inference for matrix operations and functions.
It not only infers the intrinsic type of matrices, such as int32, double, or char; but also matrix
sizes and shapes. Magica is part of a larger Matlab compiler project, and is used for performing
code optimizations. MaJIC incorporates a Just-In-Time(JIT) compiler component[4]. This allows
it to achieve speedups similar to those produced by Falcon, without sacrificing the interactive
nature of Matlab. These projects differ from McSaf in that their main goal was to improve
the performance of Matlab programs. McSaf, on the other hand, was created with the goal of
creating an open tool for researching compiler techniques in scientific programming. In fact the

21

techniques used in these other projects could have been implemented using McSaf.

6 Conclusions and Future Work

In this paper we have presented the McSaf framework, an open source toolkit for developing
analyses for Matlab. The goal of the toolkit is to enable compiler researchers to develop a
wide variety of analyses which can target optimizations, source-to-source translators, and software
engineering tools such as refactoring tools.

The toolkit includes a suite of simplifications which convert the high-level AST to a lower-level
AST which is designed to expose important Matlab-specific semantics and to provide a simple
IR which eases the burden of developing new analyses rules. Our simplifying transformations have
been implemented along with a dependency structure so that it is easy for a user to enable only
some simplifications or add new simpflications, while at the same time ensuring that all prerequisite
simplifications have already been performed.

The heart of the toolkit is the support for different kinds of flow analysis driven by a collection
of traversals, including a depth-first traversal which works well for flow-insensitive analyses and a
family of structure-based traversals for forward and backward flow-sensitive analyses.

Developing this toolkit was not just an engineering exercise. At each step we had to understand the
very Matlab-specific requirements and ensure that our approach captured the correct semantics
in a way that made the IR and flow analysis framework easy to use. Indeed, we found the entire
exercise much harder than we had anticipated, with the Matlab semantics often going against our
expectations or enforcing some constraint that was not obvious.

Our goal was to make a toolkit that is easy to understand, and which is easy to extend. We don’t
want the compiler/analysis/tool developer to have to worry about all of the details of Matlab,
but rather concentrate on using a well-structured object-oriented toolkit that provides an IR and
analysis framework which has dealt with the messy details.

The McSaf toolkit has been implemented in Java as part of the McLab system and numerous
analyses have already been implemented using it, including those mentioned in Fig. 1. To date we
have found that toolkit users find it quite easy to use and we look forward to feedback from users
to help us improve it further.

Our intention is to continue using the toolkit in our own back-ends and tools, and we hope that
other compiler researchers will also be able to use the toolkit as a simple and low overhead way to
apply their research to the very popular Matlab language.

References

[1] GNU Octave. http://www.gnu.org/software/octave/index.html.

[2] JastAdd. http://jastadd.org/.

[3] McLAB . http://www.sable.mcgill.ca/mclab/, 2011.

22

[4] G. Almási and D. Padua. MaJIC: compiling MATLAB for speed and responsiveness. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pages 294–303, New York, NY, USA, 2002. ACM.

[5] A. Casey and L. Hendren. MetaLexer: A modular lexical specification language. In AOSD,
pages 7–18, 2011.

[6] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing MATLAB through just-
in-time specialization. In International Conference on Compiler Construction, pages 46–65,
March 2010.

[7] L. Derose, L. D. Rose, K. Gallivan, K. Gallivan, E. Gallopoulos, E. Gallopoulos, B. Marsolf,
B. Marsolf, D. Padua, and D. Padua. FALCON: A MATLAB interactive restructuring com-
piler. In In Languages and Compilers for Parallel Computing, pages 269–288. Springer-Verlag,
1995.

[8] J. Doherty. McSAF: An extensible static analysis framework for the MATLAB language.
Master’s thesis, McGill University, December 2011.

[9] J. Doherty, L. Hendren, and S. Radpour. Kind analysis for MATLAB. In OOPSLA, 2011.

[10] A. Dubrau. Taming MATLAB. Master’s thesis, McGill University, February 2012.

[11] T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In OOPSLA ’07: Proceedings
of the 22nd annual ACM SIGPLAN conference on Object-oriented programming systems and
applications, pages 1–18, New York, NY, USA, 2007. ACM.

[12] T. Ekman and G. Hedin. The JastAdd system – modular extensible compiler construction.
Science of Computer Programming, 69(1-3):14–26, 2007.

[13] P. G. Joisha and P. Banerjee. MAGICA: A software tool for inferring types in MATLAB. Oct
2002.

[14] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong program analysis and
transformation. In CGO, pages 75–88, 2004.

[15] J. Li. McFor: A MATLAB to FORTRAN 95 compiler. Master’s thesis, McGill University,
August 2009.

[16] E. Nilsson-Nyman, G. Hedin, E. Magnusson, and T. Ekman. Declarative intraprocedural flow
analysis of Java source code. Electron. Notes Theor. Comput. Sci., 238:155–171, October 2009.

[17] S. Radpour. Understanding and Refactoring MATLAB. Master’s thesis, McGill University,
January 2012.

[18] L. D. Rose and D. Padua. Techniques for the translation of MATLAB programs into Fortran
90. ACM Trans. Program. Lang. Syst., 21(2):286–323, 1999.

[19] A. D. Toheed Aslam, Jesse Doherty and L. Hendren. AspectMatlab: An aspect-oriented
scientific programming language. In AOSD, pages 181–192, March 2010.

[20] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Opti-
mizing Java bytecode using the Soot framework: Is it feasible? In Compiler Construction, 9th
International Conference (CC 2000), pages 18–34, 2000.

23

