McGill University
School of Computer Science
Sable Research Group

Refactoring MATLAB

Sable Technical Report No. 2011-2

Soroush Radpour and Laurie Hendren

October 15, 2011

www.sable.mcgill. ca

Contents

T Toctiod
2 Background and Motivating Examples
2.1 MATLAB functions and scriptd
2.2 MATLAB programd
IZ.B_ImpaQt Qf klnds Qll Iﬁfas:lﬂl lnd
Mmpaﬂiiﬁlnﬂtlﬂll].QQkLlp Qll Iﬁfas:“zl lnd
|2,5 I;ﬁia&tQIlng :i(:l luld
B.1 Inline Scriptl . . . o o oo
[3.1.1 Simple checks that immediately pass
3.1.2 Kind conflicts resolved by variable renaming
.13 Kind specializationdo
B.2 Tnline Function . . .« o v v ot e
e - T————
5 Replacing feval
6 Evaluation
ki.l I;ﬁsﬁal(:h. Qllﬁs(;l()llé
ki,z I]X[)QI lnlﬁnlal :iﬁl l],[) alld Iiﬁn(:hnlalkd
6.3 Tnlining SCripte . -« « o v e e e
6.4 TInlining Functiond« . oo
6.5 Converting Scripts to FUNCHONS - « « « « v v v v oo e
ki,ﬁ I;ﬁula(:lng feﬂall
6.7 Threats to Validity o o o
l7_Related Work
8 _Conclusion

13

15

15
16
16
17
17
18
19
19

19

20

List of Figures

List of Tables

Refactoring MATLAB

Soroush Radpour and Laurie Hendren

October 15, 2011

Abstract

MATLAB is a very popular dynamic “scripting” language for numerical computations used
by scientists, engineers and students world-wide. MATLAB programs are often developed incre-
mentally using a mixture of MATLAB scripts and functions and frequently build upon existing
code which may use outdated features. This results in programs that could benefit from refac-
toring, especially if the code will be reused and/or distributed. Despite the need for refactoring
there appear to be no MATLAB refactoring tools available. Furthermore, correct refactoring
of MATLAB is quite challenging because of its non-standard rules for binding identifiers. Even
simple refactorings are non-trivial.

This paper presents the important challenges of refactoring MATLAB along with automated
techniques to handle a collection of refactorings for MATLAB functions and scripts including:
function and script inlining, converting scripts to functions, and converting dynamic feval calls
to static function calls. The refactorings have been implemented using the MCLAB compiler
framework, and an evaluation is given on a large set of MATLAB benchmarks which demonstrates
the effectiveness of our approach.

1 Introduction

Refactoring may be defined as the process of applying a set of behavior-preserving transformations
in order to change the structure of a program. The goal can be to improve readability, maintain-
ability, performance or to reduce the complexity of code. Refactoring has developed for the last 20
years, starting with the seminal theses by Opdyke [I] and Griswold [2], and the well known book
by Fowler [3]. Many programmers have come to expect refactoring support and popular IDEs such
as Eclipse, Microsoft’s Visual Studio, Sun’s NetBeans have integrated support for automated refac-
torings. However, the benefits of refactoring tools have not yet reached the millions of MATLAB
programmers. Currently neither the proprietary Mathworks’ MATLAB IDE, nor open-source tools
provide refactoring support.

MATLAB is a popular dynamic (”scripting”) programming language that has been in use since
the late 1970s, and a commercial product of MathWorks since 1984, with millions of users in the
scientific, engineering and research communities There are currently over 1200 books based on
MATLAB and its companion software, Simulink (http://www.mathworks. com/support/books).

As we have collected and studied a large body of MATLAB programs, we have found that the code
could benefit from refactoring for several reasons. First, the MATLAB language has evolved over

The most recent data from MathWorks shows that the number of users of MATLAB was 1 million in 2004, with
the number of users doubling every 1.5 to 2 years.(From www.mathworks.com/company/newsletters/news_notes/-
clevescorner/jan06.pdf.)

the years, incrementally introducing many valuable high-level features such as functions, nested
functions, packages and so on. However, MATLAB programmers often build upon code available
online or code found from books and frequently that code does not use the modern high-level
features. Thus, although code reuse has been an essential part of the MATLAB eco-system, code
cruft, obsolete syntax and new language features complicates this reuse. Since MATLAB doesn’t
currently have refactoring tools, programmers either do not refactor, or they refactor code by hand
which is time-consuming and error-prone. Secondly, the interactive nature of developing MATLAB
programs promotes a style of programming in which the organization of functions and scripts is
relatively unstructured and not modular. When developing small one-off scripts this may not be
important, but when developing a complete application or library, refactoring the code to be better
structured and more modular is key for reuse and maintenance.

Although desirable, developing correct and automatic refactorings for MATLAB is actually quite
challenging. In particular, to ensure behavior-preserving refactorings, it is important to verify
that identifiers maintain their correct kind[4] (variable or function) and in the case of functions,
identifiers must resolve to the correct function after refactoring. Furthermore, there are some
MATLAB features that are undesirable. For example, MATLAB scripts are a hybrid of macros and
functions and can lead to unstructured code which is hard to analyze and optimize. Dynamic
features like feval also complicate programs and are often used inappropriately. Thus, MATLAB-
specific refactorings, which eliminate these features, are also very useful.

In this paper we introduce a family of behavior-preserving and automated refactorings aimed at
restructuring functions and scripts, and calls to functions and scripts. We start with a standard
refactoring, function-inlining, which demonstrates the key concepts of ensuring that the kind and
lookup of identifiers remains correct. Function-inlining is useful in MATLAB for efficiency reasons as
many JIT-level optimizations work best intra-procedurally. Thus, the function inlining refactoring
may be useful both for the programmer and for other compiler tools. We then describe two
refactorings for scripts, inlining scripts into functions and converting scripts to functions. Both of
these are useful for eliminating scripts. Finally, we present a refactoring to replace calls of feval
to direct function calls.

We have implemented our refactoring transformations in our MCLAB compiler framework[5], and
evaluated the refactorings on a collection of 3057 MATLAB programs. We found that the vast
majority of refactoring opportunities could be handled.

The main contributions of this paper are:

e Identifying a need for refactoring tools for MATLAB and the key static properties that must
be checked for such refactorings.

e Introducing a family of behavior-preserving refactorings for MATLAB functions and scripts.
e An implementation of these refactoring transformations in McLAB.

e An evaluation of the refactorings on a large set of publicly-available MATLAB programs.

The remainder of this paper is structured as follows. In Section Pl we provide some motivating
examples and background about kind analysis and name lookup. In Section Bl we present inlining
refactorings for inlining functions and scripts. Section [describes the refactoring for converting
scripts to functions and Section Bl presents a refactoring to replace calls to feval with direct function

[
(=)

function r = MultiplyCompatible (n, m)
ndims = size(n);

mdims = size (m);

r = ((length(ndims)==2) && ...
(length (mdims)==2) && ...
(ndims(2)==mdims (1)));

end

% kinds
% VAR: r,n,m,ndims,mdims, r
% FN: size, length

Listing 1: Function stored in MultiplyCompatible.m

calls. Section [6] evaluates the refactorings on our benchmark set, Section [7] gives related work and
Section [8 concludes.

2 Background and Motivating Examples

In this section we introduce the key features of MATLAB and to give some motivating examples for
the kinds of refactorings that are useful and the MATLAB-specific issues that must be considered.

2.1 MATLAB functions and scripts

MATLAB programs consist of a collection of functions and scripts. Listing [illustrates a typical
function called MultiplyCompatible. This function takes as input two arrays, n and m, and returns
true if they are both 2-dimensional arrays and the the number columns of n the same as the number
of rows of m

In general, MATLAB functions have input parameters (n and m in Listing [I) and may also have
output parameters (r in Listing [I)). Parameters obey call-by-value semantics where semantically a
copy of each input and output parameter is made

MATLAB does not explicitly declare local variables, nor explicitly declare the types of any variables.
Input and output parameters are explicitly declared as variables, whereas other variables are im-
plicitly declared upon their first definition. For example, statements 2 and 3 define the variables
ndims and mdims. Variables defined within a function body are local to the function unless they
are explicitly declared to be global or persistent.

It is important to note that it is not possible to syntactically distinguish between references to
variables and calls to functions. For example, size(n) on line 2 is a call to a function, whereas
ndims(2) on line 6 is a reference to a variable, even though they use the same syntactic structure.
This lack of syntactic distinction between variables and functions leads to complications that must
be correctly handled by refactorings, as illustrated in Section 2.3l

MATLAB scripts are even more unstructured than functions. Scripts are simply a sequence of

ZNote that we have put the kind of each identifier in comments at the end of each function/script definition. This
is just to help us explain kind analysis later in this paper.

3 Actual implementations of MATLAB optimize this using either lazy copying using reference counts, or static
analyses to insert copies only where necessary[6].

© 00 N O U R W N =

ndims = size(n); % ndims has kind VAR

mdims = size (m);

isCompatible = ((length(ndims)==2) && ...
(length (mdims)==2) && ...
(ndims(2)==mdims (1)));

% kinds
% VAR: ndims,mdims, isCompatible
% ID: size, length

Listing 2: Script stored in SMultiplyCompatible.m

statements that can be invoked. For example, consider the script in Listing 2] which looks similar
to the body of the function in Listing [

A script is executed in the workspace from which it was called, either the main workspace, or
the workspace of the last-called functionH For example, if sMultiplyCompatible is invoked from a
workspace which contains a variable size, then lines 1 and 2 of Listing 2 would refer to elements
of that variable. If the invoking workspace does not contain a variable called size, then lines 1 and
2 refer to a call to the built-in function size. Furthermore, if the script defines new variables, those
will be put in the workspace of the caller. Clearly scripts are not very modular, and thus developing
refactorings to eliminate them by inlining or converting scripts to functions is beneficial.

2.2 MATLAB programs

MATLAB programs are defined as directories of files. Each file of the form £.m contains either: (a) a
script, which is simply a sequence of MATLAB statements; or (b) a sequence of function definitions.
If the file £.n defines functions, then the first function defined in the file should be called £ (although
even if it is not called £ it is known by that name in MATLAB). The first function is known as the
primary function. Subsequent functions are subfunctions. The primary and subfunctions within
f.m are visible to each other, but only the primary function is visible to functions defined in other
.m files. Functions may be nested, following the usual static scoping semantics of nested functions.
That is, given some nested function £, all enclosing functions, and all functions declared in the
same nested scope are visible within the body of £’.

MATLAB directories may contain special private, package and type-specialized directories, which are
distinguished by the name of the directory. Private directories must be named private/, Package
directories start with a ‘4+’, for example +mypkg/. The primary function in each file f.m defined
inside a package directory +p corresponds to a function named p.f. To refer to this function one
must use the fully qualified name, or an equivalent import declaration. Package directories may be
nested. Type-specialized directories have names of the form e<typename>, for example eint32/. The
primary function in a file £.m contained in a directory etypename/ matches calls to f(at,...), where
the run-time type of the primary (first) argument is typename.

4In MATLAB, workspaces store the values of variables. There is an initial “main” workspace which is acted upon
by commands entered into the main read-eval-print loop. There is a also a stack of workspaces corresponding the the
function call stack. A call to a function creates and pushes a new workspace, which becomes the current workspace.

1
2
3
4
5
6
7
8
9

function r = MultiplyFn(a, b)
if (ndims(a)==3 && ndims(b)==3) % ndims has kind FN
r = Do3DMult(a,b);

else
n=a; m=b;
SMultiplyCompatible;
if (isCompatible)
r = a *x b;
else
error ('Matrix Dimension Error’);
end
end
end
% Kinds

% VAR: r, a, b, n, m
% FN: ndims, Do3DMult, SMultiplyCompatible
% ID: isCompatiblefunction

Listing 3: A function calling a script

2.3 Impact of kinds on refactoring

Since MATLAB does not syntactically distinguish between variables and functions, modern imple-
mentations of MATLAB have added a static analysis which determines the kind of each identifier at
compile-time. In this paper, we have indicated the results of the kind analysis as comments at the
end of each function/script definition.

Kind analysis assigns one of the following kinds to each identifier: VAR- the identifier must be
looked up as a variable in a workspace; FN- the identifier must be looked up as a named function;
or ID- the kind is not known, so at runtime the identifier must first be looked up in the workspace
and then if not found, it will be looked up as a function. It is a compile-time error if an identifier
has conflicting kinds (one occurrence is a VAR and the other is a FN).

This static kind assignment is now an integral part of the semantics of MATLAB, and refactorings
must ensure that the meaning of identifiers is maintained and that the refactoring will not introduce
any new kind errors. Let us consider the example in Listing [Bl

This function first checks to see if the number of dimensions of a and b are 3, and if so, calls a
general multiplication function, otherwise it continues to check for the ordinary 2-D case. If we
were to inline the call to the script SMutiplyCompatible (as given in Listing [2]) care must be taken
with the identifier ndims. In MultiplyFn the identifier ndims refers to a function and will have kind
FN, whereas in MultiplyCompatible ndims is assigned to, and will have kind VAR.

If we inlined without appropriately renaming ndims, as shown in Listing M, we would introduce a
kind error because the inlined source would use ndims in a conflicting manner. Thus, at compile-time
a conflicting kind error would be triggered on line 8. We return to this example in Section [B.1l

2.4 Impact of function lookup on refactoring

In MATLAB the lookup of a script/function is performed relative to: f, the current function/script
being executed; sourcefile, the file in which f is defined; fdir, the directory containing the last
called non-private function (calling scripts or private functions does not change fdir); dir, the

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

function r = MultiplyFn(a, b)
if (ndims(a)==3 && ndims(b)==3) % ndims has kind FN
r = Do3DMult(a,b);
else
n=a; m=b;
% —— begin inlined script SMultiplyCompatible
ndims = size(n); % ndims has kind VAR — kind error
mdims = size (m);
isCompatible = ((length(ndims)==2) && ...
(length (mdims)==2) && ...
(ndims(2)==mdims (1)));
% —— end of inlined script SMultiplyCompatible
if (isCompatible)
r = a *x b;
else
error ('Matrix Dimension Error’);
end
end
end
% Kinds

% VAR: r, a, b, n, m, isCompatible
% FN: Do38DMult, size, length
% ERROR: ndims

Listing 4: Example of kind error due to script inlining

current directory; and path, a list of other directories. When looking up function/script names,
first f is searched for a nested function, then sourcefile is searched for a subfunction, then the
private directory of fdir is searched, then dir is searched, followed by the directories on path.

In the case where there is both a non-specialized and type-specialized function matching a call, the
non-specialized version will be selected if it is defined as a nested, subfunction or private function,
otherwise the specialized function takes precedence.

Obviously if a piece of a program is moved from one directory to another, one must ensure that the
function lookup remains the same. A simple example of a lookup problem would be if the function
MultiplyCompatible was inlined into a a function which had a private/ directory which included a
new definition of the function size. The inlined version would now call the private/size.m function
instead of the standard library function.

A further complicating factor for MATLAB is that some of the arguments to the lookup function use
dynamic values. These are: fdir (changes each time a function is called), dir (can be changed by the
cd function) and path (can be dynamically set in the program). The fact that the function lookup
relies on some dynamic information means that a static refactoring must use a static approximation
to estimate the function lookup results.

2.5 Refactoring Scripts

Refactoring scripts by inlining them or converting them to functions is particularly beneficial, as
scripts lead to non-modular programs, and scripts are hard to optimize for Just-In-Time compilers.
However, scripts present more challenges than functions. There are two reasons.

First, the kind analysis for scripts leads to many identifiers being assigned a kind of ID. For
example, note that identifiers size and length in the script in Listing 2] both have kind ID, whereas
in the equivalent function in Listing [l they both have kind FN. Thus, if code from a script is inlined
into a function or if a script is converted to a function, the kind analysis will often give a more
specialized kind of VAR or FN, rather than ID. Each of these cases must be checked to ensure that
this more specialized kind information does not change the meaning of the program.

Second, the lookup of function calls within the body of a script depends on the directory of the
last-called function. Thus, if we convert a script s to a function s the last-called function changes.
Before conversion the last-called function was the caller of s and after conversion it is s itself.

3 Inlining Scripts and Functions

In this section we present our approach for the Inline Function and Inline Script refactorings.
The programmer identifies a particular call site which should be refactored by inlining. There are
several reasons why MATLAB programmers may want to apply such a refactoring. They may want
to inline calls to scripts in order to eliminate them. They may want to inline functions at key call
sites to enable other MATLAB optimizations or tools, or as a precursor to another refactoring.

Our approach is to create an inlining candidate and then analyze if the inlining is safe or not.
Inlinings that are safe are performed, whereas inlinings that definitely are not safe generate an
error message and will not be performed. Inlinings that may be safe under a reasonable assumption
generate warnings to the programmer, so the programmer can decide whether to proceed or not.

If an inlining is performed, the inlining procedure attempts to keep the original identifier names,
renaming identifiers only when necessary to ensure the same semantics.

3.1 Inline Script

The Inline Script refactoring proceeds as follows. Given a call site ¢ in function f that calls script
s, the refactoring procedure creates fs, a copy of f with s inlined, and then verifies that fs has the
same behaviour as f. To create function f, if s contains return statements, a transformation is
applied to s to only have one exit point at the end of the script. Then the call site ¢ is replaced
with the body of s. Listing [illustrates the result of this first step, inlining the call to script
SMultiplyCompatible.

The verification phase starts with checking the lookup semantics. Scripts run in the same workspace
and function lookup environment as the script call site with the exception that scripts don’t have
access to nested functions in the caller function - subfunctions or functions inside private folder of
the calling function are still accessible. The inliner checks to see if any possible call site that was
originally in s can resolve to a nested function in fs and if so issues a NameResolutionChangeFEx-
ception. In this case the refactoring cannot be done.

The next step is to verify f; regarding the kind analysis semantics. To perform the verification the
flow-sensitive kind analysis presented in [4] must be run on the original script s, the original version
of f, and the inlined copy fs;. Given the kind analysis results, all identifiers in fs are verified as
follows.

3.1.1 Simple checks that immediately pass

Any identifier ¢ that is in f, but not in s, needs no further verification since introducing the body
of s into f cannot possibly impact the kind of i.

Any identifier ¢ which has the same kind in s, f and fs will have the same meaning in the inlined
version and so no further verification is necessary.

Any identifier 4 which is not defined in f, but has the same kind in s and f; also retains its meaning
and no further verification is necessary.

3.1.2 Kind conflicts resolved by variable renaming

An identifier ¢ with kind FN in f and kind VAR in s or vice-versa will lead to a kind mismatch error
for fs. This is precisely the problem demonstrated in Listing 4l where ndims has kind FN at line
2 and kind VAR at line 7. This means that the refactoring is not behavior-preserving, because the
inlined version would result in a compile-time kind error, whereas the original version would not.
This mismatch can be resolved by applying a variable renaming refactoring. If ¢ initially had a kind
of VAR in s, then a copy of s is created in which ¢ is renamed to a fresh name, otherwise a copy
of f is created in which ¢ is renamed to a fresh name. After renaming, the inlining refactoring is
restarted. In our example from Listing [4] the variable ndims at lines 7, 10 and 12 would be renamed
to ndims2.

Such a renaming is usually semantics preserving, except when the variable being renamed is refer-
enced via a dynamic feature like eval. For example, it would be incorrect to name variable x in
the statement sequence x = 3; eval(’x=x+1"); y = x; since eval would not refer to the renamed x.

It would be possible to warn the user of such renamings so that the user can verify that the renamed
variable is not being accessed via a dynamic feature.

3.1.3 Kind specializations

The remaining cases all involve situations where the original kind of an identifier z (in either s
or f) was ID, and the inlined version fs has a more specialized kind for (VAR or FN). This is a
potential problem because an identifier with kind ID has a very general lookup (first the current
workspace is searched for variable and if a variable is not found then a function lookup is used). If
a more precise kind is assigned to the inlined identifier, then the lookup is specialized to that kind
(VAR is only looked up as a variable in the workspace and FN is only looked up as a function).
Since the lookup becomes more specific the behaviour may change. Thus, we must consider two
cases, when an ID is specialized to a VAR, and when an ID is specialized to a FN.

An ID z with a kind that is specialized to VAR is semantics-preserving if all uses of x have definitely
been preceded by a an assignment to x. In this case the lookup will always find the variable in the
current workspace, and thus an ID lookup is the same as a VAR lookup. Thus, for these situations
we check that x is assigned on all paths, and if so, we allow the refactoring. If x is not assigned on
all paths we reject the factoring with a IDNotDefAssigned Exception.

An ID g with a kind that is specialized to FN is in practice usually also semantics-preserving.
The only case in which this occurs is when there is no explicit definition of g in fs (otherwise g
would have kind VAR) and ¢ is found the library of named functions (i.e. there does exist a named

10

function called g). Thus, it is highly likely that the programmer intends this to be looked up as
a function. In this case we issue a warning that we are assuming that g refers to a function and
the user can accept the refactoring if this assumption is correct. The assumption would only be
incorrect if g was being assigned to via a dynamic feature.

Our example from Listing [l illustrates the most common case of specialization. In the inlined
version both size and length have kind FN, whereas in the script they had kind ID.

3.2 Inline Function

The Inline Function refactoring allows the programmer to identify a call site ¢ inside a function
f in form of [output]=g(input);d Before applying this refactoring, we assume assume that all
calls to scripts in f or g have already been inlined or converted to a function call using our other
refactorings. This allows us to reason about definitions, uses and liveliness intra-procedurally.

The function inliner creates the function f,. f, is created as a copy of f with the call site replaced
with a statement sequence. For each input expression e; which corresponds to parameter inparam;
a new assignment statement p; = e; is created at program-point ¢. The body of ¢ is transformed so
as to have only one exit point is then inserted after the last assignment for input arguments. After
that assignment assignments of the form p; = e; is added for each output parameter p;. Figure[Ia)
shows an example function MultiplyFn2 and Figure [I(b) shows the initial inlining of the call to
“isCompatible = MultiplyCompatible(a,b)”.

We also handle inlining for functions with variable numbers of input or output arguments. MATLAB
functions may define variable input arguments by by using “varargin” as the name of the last input
argument. Similarly for variable output arguments the name of the last output parameter should

be “varargout” .

Our inlining refactoring handles these cases as follows. In the case where the function g has
“varargin” as the last argument, the last assignment in the inlined is created with the rest of provided
arguments varargin = {enpinput, ---» Eminput }; instead where ninput is number of arguments in g and
minput is the number of provided input arguments. In case there is an identifier with name varargin
in f, the variable varargin and all its uses will get renamed. The solution is similar for varargout, if
the last output argument is varargout the statement is created as varargout = epoutput; ---» Emoutput
instead and renaming is performed if necessary.

A key step is deciding whether or not to accept the inlining by verifying the conditions. If the
conditions are verified a clean up process removes as many unnecessary introduced variables as
possible.

The verification process starts with matching the name resolution results. For every identifier in g
with kind FN, the program checks if the lookup returns the same results before and after inlining
and otherwise rejects the refactoring by raising a NameResolutionChangeEzception.

The next step is to verify the kind analysis results using the following rules.

e For every identifier that is only present in one of the functions f or g no further verification
is necessary.

5In MATLAB programs many function calls are not in this form directly, but are embedded in some more complex
expression. Thus, we also implemented a transformation that can safely simplify a complex expression so that the
call is extracted with this form.

11

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

function r = MultiplyFn2(a, b)

if (ndims(a)==3 && ndims(b)==3)
r = do3DMult(a,b);

else
isCompatible = MultiplyCompatible (a,b);
if (isCompatible)

r a x b;

else

error ('Matrix Dimension Error
end
end
end

)5

% Kinds
% VAR:
% FN:
%

r J a7
ndims ,
error

b, isCompatible
do8DMult, MultiplyCompatible ,

(a) original function

function r MultiplyFn2 (a, b)
if (ndims(a)==3 && ndims(b)==3)
r = do3DMult(a,b);
else
% ——— start of inlined
n = a;
m = b;
ndims2 size(n);
mdims = size (m);
r2 = ((length(ndims2)==2) && ..
(length (mdims)==2) && .
(ndims2(2)==mdims (1)));
isCompatible = r2;
% — end of inlined
if (isCompatible)
r a % b;
else
error ('Matrix Dimension Error’);
end
end
end

call

call

% Kinds

% VAR: r, 12, a, b,
% isCompatible
% FN: do8DMult, error, length ,

(c) inlined with renamings

n, m, mdims, ndims2,

size , ndims

1
2
3
4
5
6
7
8
9

W N

© 0 9 D »

function r = MultiplyFn2(a, b)
if (ndims(a)==3 && ndims(b)==3)
r = do3DMult(a,b);
else

% ——— start of inlined call

n = aj;

m= b;

ndims = size(n);

mdims = size (m);

r = ((length(ndims)==2) &&
(length (mdims)==2) &&
(ndims(2)==mdims (1)));

isCompatible = r;

% — end of inlined call

if (isCompatible)

r = a *x b;
else
error ('Matrix Dimension Error’);
end
end
end
% Kinds
% VAR: v, a, b, m, m, mdims, isCompatible
% FN: do3DMult, size, length, error
% ERROR: ndims

(b) initial inlined code with kind error

function r = MultiplyFn2(a, b)
if (ndims(a)==3 && ndims(b)==3)
r = do3DMult(a,b);
else
% —— start of inlined call
ndims2 = size(a);
mdims = size(b);
r2 = ((length(ndims2)==2) && ..
(length (mdims)==2) && ...
(ndims2(2)==mdims (1)));
% — end of inlined call
if (r2)
r =a *x b;
else
error ('Matrix Dimension Error’);
end
end
end
% Kinds
% VAR: r, r2, mdims, ndims2
% FN: doS8DMult, error, size, length, ndims

(d) spurious copies removed

Figure 1: Example of Function Inlining

12

e For every identifier with kind FN in both f and g, no further verification is necessary.

e For every identifier with kind VAR in one of the functions f or g, and kind VAR, ID or FN in
the other, a rename refactoring is triggered for the variable. Note that in script inlining we
only needed to do renaming for conflicts between VAR and FN because a script uses the same
workspace as its caller. However, when inlining a function, we are merging the workspaces of
f and g and if an identifier occurs in both f and g we must distinguish them by renaming.

e For every identifier with kind ID in one of the functions f or g, and with the kind ID or FN
in the other function an IDConflictException is raised, and the refactoring will not be done.
The rational for this decision is that within functions identifiers will only have a kind ID when
there is neither an explicit assignment nor a function of that name in the library. This implies
that the identifier is being defined through some dynamic feature, and thus the inlining is not
safe.

Figure [Il(c) shows the result of our example after the verification and renaming has been done.
Note that variable ndims was renamed due to a kind conflict, and variable r was renamed because
this was a VAR in both the caller and the callee.

At this point the verification is complete and if no exceptions were raised, then f; has the same
behaviour as f. However, the inlined code may have a significant number of new copy statements
(one for each input and output parameter). Thus, to make the output code cleaner, for each new
assignment statement that was introduced for the parameters another refactoring process checks if
it’s necessary and if not removes the assignment and performs a copy propagation. More precisely,
for each statement stmt in the form p = e; where e is also a variable, we want to replace every
use of p in f, with e. In order to do that we compute the use-def relationships. For every use of p
defined by stmt the algorithm uses Reaching Copy Analysis to see if the use is a copy of e in the
statement stmt. If all the uses were copies of the definition in stmt, the assignment statement can
be removed and all the uses of p are changed to use e.

Figure [[(d) shows the result after copy elimination for our running example. Note that the copies
to a, b and isCompatible have been removed.

4 Converting Scripts to Functions

Given that MATLAB scripts are very non-modular, a refactoring that converts scripts into functions
is useful for improving the overall structure of MATLAB programs. The programmer provides a
complete program, and also identifies the script to be converted to a function. If the refactoring
can be done in a semantics-preserving manner, the Script-to-Function refactoring converts the
script to a function and replaces all calls to the script with calls to the new function. Although
useful, this refactoring is more complex than either function or script inlining.

This refactoring requires the use of two additional analyses, Reaching Definitions and Liveness.
These are standard analyses which we have implemented in a way that enables our refactoring.

In our implementation of reaching definition analysis, every identifier is initialized to be have a
special reaching definition of “undef”. This means that if “undef” is not in the reaching definition
set for an identifier at some program point p, then this identifier is definitely assigned in all the
paths to p. Further, if the reaching definition of an identifier only contains “undef”, the variable is

13

not assigned to on any paths. Calls to scripts can change reaching definition and liveliness results
so we look into the called scripts’ body during the analyses.

Our liveness analysis is intra-procedural and handles global and persistent variables in a conservative
manner. We safely approximate that all all MATLAB global variables are always live and persistent
variables are live at the end of function with which they are associated. Also, in functions that have
nested functions all the variables that are also used in nested functions are kept alive for simplicity.

To convert a script s to function f we need to: (1) determine input and output arguments that
will work for all calls to s, and (2) make sure that program behaviour will stay the same after
conversion.

To determine the input and output arguments, We first compute script De f Assigned(s), the set of
variables that are definitely assigned by s (i.e. all variables that don’t have “undef” in the reaching
definitions at the end of script). We also compute script MayAssigned(s), the set of variables that
are assigned at least in one path to end of s (i.e. have at least one reaching definition at the end of
script that’s not “undef”). Finally, we compute scriptLives(s), the set of live identifiers with kind
VAR or ID at the beginning of the body of s.

In order to build the function f some information about the contexts that script s is being used is
necessary. For each call ¢; to the script s, the following steps are performed:

e If the call site is inside some other script s, a script a ScriptCallFromScriptException is raised.
The lack of structure in scripts makes it impossible to compute the set of inputs and outputs
for the script s.

e For each call site ¢;, the set callAssigned(c;) of definitely assigned variables and the set
call Lives(c;) of live variables are computed at program point of ¢;. The set input; is de-
fined as scriptLives(s) N call Assigned(c;) and output; is defined as script MayAssigned(s) N
call Lives(c;). If any identifier in the output; is not in scriptDef Assigned(s) an OutputNot-
DefinitelyAssignedException is raised.

e The set lookup; is defined as: {(n : ResolveName(n))|n € identifers(f) A kind(n) €
{Ip, FN}}

After computing the input;, output; and lookup;, for each call site, first we verify that all the call
sites have the same input set. If there was any difference in any of the sets an InputArgsNot-
MatchingEzception is raised. If they all match the set is used as the set of input arguments for the
function f. The output arguments are constructed using |J;-_; output;. Some of the outputs from
script s might not be used at a specific call site (i.e. that identifier is not live). But the refactoring
can continue and the unused outputs can be ignored using “~” syntax or a temporary variable.
Then the function f is built using the constructed inputs, outputs and the body of s.

The next step is checking name resolution results. For every identifier n with kind ID or FN in
f, the pair (n : ResolveName(n)) should match the pair in lookup;, ..., lookup,. If there were
any mismatches a NameResolutionChangeException is raised. To perform ResolveName, f is
assumed to be a primary function in the same folder as s.

The final step is to check kind results. Similar to script inlining, identifiers with kind ID can turn
to F'N, or remain ID and identifiers with kind VAR and can cause a kind conflict. The precise rules
are:

14

o Identifiers that stay VAR or FN don’t need any further verification.

e Identifiers with kind ID in both s and f might be referring to variables created dynamically
in the calling functions. Since the function f is no longer running in the calling function
environment and workspace, it can not access to those variables. So for any identifier with
kind ID in function f an UnresolvedIDFEzception is raised.

e For all identifiers with kind ID in s and kind FN in f it is possible to warn the user that the
refactoring is assuming the ID is a function, which is the usual case.

e For all identifiers with kind VAR in s and kind conflict in f an UnresolvedKindConflictExcep-
tion is raised. This type of kind conflict can not be resolved with renaming because it’s not
clear when the identifier was meant be to a function and when it was meant to be a variable.

After the verification process each call ¢; to script s is replaced with an assignment. The left hand
side of the assignment is formed by putting o; for every output argument o; in f that is also present
in output; and putting “~” for those arguments that are not. The right hand side of the assignment
is formed by simply a call to f with all the input arguments.

5 Replacing feval

The MATLAB builtin function feval takes a reference to a function (a function handle or a string
with the name of the function) as an argument and calls the function. If an feval can be replaced
by a direct call to a function, this leads to cleaner and more efficient code.

Somewhat to our surprise, we found numerous cases where programmers used a string literal in
feval, for example feval('myfunc’;x). Consider the code in Listing [l extracted from one of our
benchmarksd Tt appears that every time the programmer invokes his own function, he uses feval
(lines 17, 23 and 25). This must have been a programming misunderstanding, as there is no valid
reason to use feval rather than a direct call in this program.

Our refactoring tool looks for those calls to feval which have a string constant as the first argument,
and then uses the results from kind analysis to determine if an identifier with kind VAR with the
same name exists. If there is no such identifier in the function, the call to feval is replaced with a
direct call to the function named inside the string literal. Of course, with more complex string and
call graph analyses one could support even more such refactorings. However, it is interesting that
such a simple refactoring is useful.

6 Evaluation

In this section we present our evaluation of the refactoring algorithms on a large set of open-source
MATLAB libraries and applications.

SExtracts from http://mathworks.fr/matlabcentral/fileexchange/22774-wave-vector-diagram-for-a-2d-
-photonic-crystal/content/pwem2Db.m.

15

© 00 N O U R W N

[S I R R e e e
B W RN R O © 0 N oA W N~ O

25
26
27
28

ST I I I I I I I T T T e e e S 6 I e e e e e e Ve e b b e I T T T e i e e e 60606 06%
% this program calculates and plots the wave—vector
% diagram (i.e.%photonic bands at constant frequency)
% ...
T R eI I T R e e T e e I e e e I e e e e I e e e e I e e B e i T e e e i 7o e 6606 %
%%% the package contains the following programs:
%%% pwem2Db.m — main program
%% epsgg.m — routine for calculating the matrix
%%% of Fourier coeff of dielectric fn
clear all
tic
omega=0.45; % normalized frequency “a/lambda”
r=0.43; % radius of cylindrical holes
na=1; nb=3.45; % refractive indices
%%% matriz of Fourier coefficients
epsl = feval (’epsgg’,r,na,nb,bl,b2 /N1 ,N2);
S=2.5; % point size for scatter plot
for j=1:length(BZx)

%%% diagonal matrices with elements

%%% (kz+Gz) si (ky+Gy)

[kGx, kGy] = feval(’kvect2’ ,BZx(j),BZy(j),

bl,b2 ,N1,N2);
[P, beta]=feval(’oblic_eigs’,omega, kGx,kGy,
epsl ,N);

end

Listing 5: Extracts from a script which uses feval (... corresponds to elided code)

6.1 Research Questions

In order to measure the effectiveness of our approach, we aim to answer these questions for each
refactoring:

RQ1 How many refatoring opportunities are available?

RQ2 How many times the algorithm could complete without any user validation?

RQ3 How many times there were assumptions that needed to be verified by the programmer?
RQ4 How many times each exception occurs?

RQ5 How invasive are the changes to the user code?

6.2 Experimental Setup and Benchmarks

In order to experiment with our analyses we gathered a large number of MATLAB projectsm The
benchmarks come from a wide variety of application areas including Computational Physics, Statis-
tics, Computational Biology, Geometry, Linear Algebra, Signal Processing and Image Processing.

"Benchmarks were obtained from individual contributors plus projects from http://www.mathworks.com/-
matlabcentral/fileexchange, http://people.sc.fsu.edu/" jburkardt/m_src/m_src.html,
http://wuw.csse.uwa.edu.au/ " pk/Research/MatlabFns/ and http://www.mathtools.net/MATLAB/. This is
the same set of projects that are used in [4].

16

We analyzed 3057 projects composed of 11698 functions and 2349 scripts. The projects vary in
size between 283 files in one project to a single file. A summary of the size distribution of the
benchmarks is given in Table [Il which shows that the benchmarks tend to be small to medium in
size. However, we have also found 9 large and 2 very large benchmarks. The benchmarks presented
here are the most downloaded projects among the mentioned categories which may mean that the
average code quality is higher than many less used projects.

Benchmark Category # Benchmarks
Single (1 file) 2051

Small (2-9 files) 848

Medium (10-49 files) 113

Large (50-99 files) 9

Very Large (> 100 files) | 2

Total 3024

Table 1: Distribution of size of the benchmarks

6.3 Inlining Scripts

As shown in Table 2 to answer the research questions for script inlining, we counted: RQ1, every
call to a script from a function as an inlining opportunity (191 calls); RQ2, the number of simple
cases with and without renaming (104) which corresponds to the number of inlinings that succeed
without user intervention; RQ3, the number of times some that IDs were changed to FNs; and
RQ4, the number of times each exception occurs. The results show that more than half the
inlining refactorings finished without any user intervention (104 of 191). For 77 cases the user has
to verify that there is no hidden variable definition, and for 10 out of 191 cases the inlining was
not possible. For RQ5, the only change to the source codes that was necessary to finish in this
refactoring was renaming variables, which is not a significant change to the program.

Inlining result # call sites
Simple with no renames 104
Renames required 0

ID to FN warning 77

Name Resolution Change 0
Unassigned IDs 10

Total number of opportunities | 191

Table 2: Results from inlining all the calls to scripts

6.4 Inlining Functions

RQ1 For inlining functions, we counted each function call of form [output|=g(input); where the
target was not a MATLAB builtin as an inlining opportunity. We measured:

e RQ2, the number of simple cases, cases with variable arguments, and cases with renames.

17

¢ RQ4, the number of cases where the process failed with some exceptions. For this refactoring
there weren’t any cases where name resolution changes (NameResolutionChangeException)
or an ID that is not definitely assigned turns to VAR (IDNotDefAssignedException) .

For RQ3, there are no situations where user intervention is needed. In this algorithm, it will either
succeed or fail.

Inlining result # Number of call sites
Simple 527

Variable arguments 125

Renames required 2352

Name Resolution Change 0

Conflicting IDs 0

Total number of opportunities | 3004

Table 3: Results from inlining all the calls to functions

As indicated in Table[3l there were 3004 call sites, and all could be successfully inlined. 527 of those
were the simple case where no renaming was required. All of the remaining cases could be handled
with either our technique for handling varargs or by renaming. To answer RQ5 we also measured
the number of new statements that were added and the number of times these statements were
removed. For the simple case (527 call sites) there were 1456 new statements (on average fewer
than 3 statements) added to the code for assigning input and output arguments; Of those 1456
statements copy propagation could remove 896 statements leaving only about 1 added statement
on average.

6.5 Converting Scripts to Functions

To measure RQ1 for converting scripts to functions, each script is considered a candidate. Answers
to RQ2, RQ3 and R4 are available in Table[d In particular the table shows the number of: simple
cases where no user intervention was necessary (Simple); times that kind result for some identifiers
changed from ID to more specialized kind FN; cases where there is a possible change in the name
resolution; cases where a script is called from other scripts and as a result there isn’t enough context
information available; times where the input arguments don’t match at every call site; cases where
some of the IDs couldn’t be resolved to either VAR or FN; and cases where the resulting function
had conflicting kinds. It’s important to note that all of those 705 cases where there were unresolved
IDs were inside scripts that weren’t called inside the project. These scripts were actually single
file projects that were meant to be used in other projects with some variables set before they get
called. Aside from these cases, the vast majority of the remaining cases are successfully refactored,
making this a very useful refactoring for cleaning up MATLAB programs that use scripts.

To answer RQ5 we measured the number of variables that have to be passed as parameters to the
created functions. A large number of input and output parameters can clutter the code. So the
function should only contain the necessary parameters. For those scripts that were called at least
once the number of inputs range between 0 to 5 with the average of 1 and the number of outputs
range between 0 to 12 with the average of 1.1. This shows that the algorithm is fairly efficient in
choosing a minimal set of parameters.

18

Conversion result # Scripts
Simple 201
Warnings for IDs changed to FNs | 1294
Name Resolution Change 0
Unresolved IDs 705

Call from script 148
Input Arguments mismatch 1
Unresolved Kind Conflicts 0

Total number of opportunities 2349

Table 4: Results from converting scripts to functions
6.6 Replacing feval

There were 23 calls to feval with a string literal argument as target and all of them could be
converted to direct function calls.

6.7 Threats to Validity

The validity of each refactoring depends on the validity of the static analyses on which they are
built. The kind and name analyses do not handle dynamic calls to cd, and eval is not handled by
the liveness or reaching definition analysis. Further, as we pointed out earlier, renaming variables
is only correct if that variable is not accessed via a dynamic feature.

7 Related Work

There is a wide variety of work on factoring covering a large number of programming languages.
In particular, there is a considerable body of work on automatic refactoring for statically typed
languages such as Java with quite well developed and rigorous approaches for specifying correct
refactorings[7l [8, [9]. Our approach for refactoring MATLAB has similar aims in that we want to
precisely state that conditions under which a refactoring is semantics-preserving.

There are also interesting approaches for other languages including Erlang[10, [I1], Fortran[12] [13],
14], Haskell[15] 16] and Javascript[I7], all of which present special benefits and challenges, just
as our approach has special benefits and challenges for MATLAB. The work on JavaScript[17]
has similarities with our work in that both JavaScript and MATLAB have some “nasty” dynamic
features which pose challenges for automated refactoring. Some of our goals are also similar, in
that both approaches suggest some language-specific refactorings that help clean up the code. Our
approach shares an important similarity with the Fortran refactoring work. Overbey et. al. [13] [14]
point out the benefits of refactoring for languages that have evolved over time. This is also one our
main motivations for refactoring MATLAB. Although the specific refactorings are quite different,
the motivation and the applicability of our approaches is very similar.

We are not aware of any refactoring work for MATLAB, but there is one related paper on source-
level transformation for MATLAB [I8]. In this work the authors show that a variety of source-level
transformations can have important performance benefits. These transformations go beyond the

19

typical loop transformations and capture MATLAB-specific behaviour such as converting loops to
calls to libraries and restructuring loops to avoid incremental array growth. Automating these
transformations would be an interesting next step, and our foundational analyses and refactorings
should aid in that process.

8 Conclusion

In this paper we have identified an important domain for refactoring, MATLAB programs. Millions
of scientists, engineers and researchers use MATLAB to develop their applications, but no tools are
available to support refactoring their programs. This means that it is difficult for the programmers
to improve upon old code which use out-of-date language constructs or to restructure their initial
prototype code to a state in which it can be distributed.

To address this new refactoring domain we have developed a set of refactoring transformations for
functions and scripts, including function and script inlining, converting scripts to functions, and
eliminating simple cases of feval. For each refactoring we established a procedure which defined
both the transformation and the conditions which must be verified to ensure that the refactoring
is semantics-preserving. In particular, we emphasized that both the kinds of identifiers and the
function lookup semantics must be considered when deciding if a refactoring can be safely applied
or not.

We have implemented all of the refactorings presented in the paper using our MCLAB compiler
toolkit, and we applied the refactorings to a large number of MATLAB applications. Our results
show that, on this benchmark set, the refactorings can be effectively applied. We plan to continue
our work, adding more refactorings, including performance enhancing refactorings and refactorings
to enable a more effective translation of MATLAB to Fortran.

Acknowledgments

This work has been supported by NSERC (Canada) and the Leverhulme Trust (UK). We would
also like to give special acknowledgment to Frank Tip and Max Shéfer for introducing us to the
world of refactoring and helping to define the direction of this work.

References

[1] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. thesis, University of Illinois
at Urbana-Champaign, 1992.

[2] W. G. Griswold, “Program restructuring as an aid to software maintenance,” Ph.D. thesis,
University of Washington, 1991.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code. ~Addison-Wesley, 1999.

[4] J. Doherty, L. Hendren, and S. Radpour, “Kind analysis for MATLAB,” in In Proceedings of
OOPSLA 2011, 2011.

[5] “McLab,” http://www.sable.mcgill.ca/mclab/.

20

http://www.sable.mcgill.ca/mclab/

[6]

[11]

[12]

N. Lameed and L. J. Hendren, “Staged static techniques to efficiently implement array copy
semantics in a matlab jit compiler,” in C'C, ser. Lecture Notes in Computer Science, J. Knoop,
Ed., vol. 6601. Springer, 2011, pp. 22-41.

M. Schaefer and O. de Moor, “Specifying and implementing refactorings,” SIGPLAN Not.,
vol. 45, pp. 286-301, October 2010.

F. Tip, R. M. Fuhrer, A. Kiezun, M. D. Ernst, I. Balaban, and B. D. Sutter, “Refactoring
using type constraints,” ACM Trans. Program. Lang. Syst., vol. 33, pp. 9:1-9:47, May 2011.

M. Schéfer, A. Theis, F. Steimann, and F. Tip, “A comprehensive approach to naming and
accessibility in refactoring Java programs,” IBM, Tech. Rep. IBM Research Report RC25201
(W1108-027), August 2011.

K. Sagonas and T. Avgerinos, “Automatic refactoring of Erlang programs,” in Proceedings of
the Eleventh International ACM SIGPLAN Symposium on Principles and Practice of Declar-
ative Programming. New York, NY, USA: ACM, Sep. 2009, pp. 13-24.

H. Li, S. Thompson, and L. Lvei, “Refactoring erlang programs,” in In The Proceedings of
12th International Erlang/OTP User Conference, 2006.

J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refactorings for Fortran and high-
performance computing,” in Proceedings of the second international workshop on Software

engineering for high performance computing system applications, ser. SE-HPCS '05. New
York, NY, USA: ACM, 2005, pp. 37-39.

J. L. Overbey, S. Negara, and R. E. Johnson, “Refactoring and the evolution of Fortran,” in
Proceedings of the 2009 ICSE Workshop on Software Engineering for Computational Science
and Engineering, ser. SECSE ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
28-34.

J. L. Overbey and R. E. Johnson, “Regrowing a language: refactoring tools allow programming
languages to evolve,” SIGPLAN Not., vol. 44, pp. 493-502, October 2009.

H. Li, C. Reinke, and S. Thompson, “Tool support for refactoring functional programs,” in
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, ser. Haskell '03. New York,
NY, USA: ACM, 2003, pp. 27-38.

D. Y. Lee, “A case study on refactoring in Haskell programs,” in Proceeding of the 33rd
international conference on Software engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 1164-1166.

A. Feldthaus, T. Millstein, A. Mgller, M. Schéfer, and F. Tip, “Tool-supported refactoring for
JavaScript,” in In Proceedings of OOPSLA 2011, 2011.

V. Menon and K. Pingali, “A case for source-level transformations in MATLAB,” in Proceed-
ings of the 2nd conference on Domain-specific languages, ser. DSL '99. New York, NY, USA:
ACM, 1999, pp. 53-65.

21

	Introduction
	Background and Motivating Examples
	MATLAB functions and scripts
	MATLAB programs
	Impact of kinds on refactoring
	Impact of function lookup on refactoring
	Refactoring Scripts

	Inlining Scripts and Functions
	Inline Script
	Simple checks that immediately pass
	Kind conflicts resolved by variable renaming
	Kind specializations

	Inline Function

	Converting Scripts to Functions
	Replacing feval
	Evaluation
	Research Questions
	Experimental Setup and Benchmarks
	Inlining Scripts
	Inlining Functions
	Converting Scripts to Functions
	Replacing feval
	Threats to Validity

	Related Work
	Conclusion

