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Abstract

Thread-level Speculation (TLS) is a technique for automatic parallelization that has shown
excellent results in hardware simulation studies. Existing studies, however, typically require a
full stack of analyses, hardware components, and performance assumptions in order to demon-
strate and measure speedup, limiting the ability to vary fundamental choices and making basic
design comparisons difficult. Here we approach the problem analytically, abstracting several
variations on a general form of TLS (method-level speculation) and using our abstraction to
model the performance of TLS on common coding idioms. Our investigation is based on ex-
haustive exploration, and we are able to show how optimal performance is strongly limited by
program structure and core choices in speculation design, irrespective of data dependencies.
These results provide new, high-level insight into where and how thread-level speculation can
and should be applied in order to produce practical speedup.

1 Introduction

Thread-level speculation (TLS) has been the subject of a large number of research studies, with a
wide variety of system proposals and experimental studies [10, 4, 23, 17, 14, 8]. Best performance in
such systems, however, typically depends on a complex set of analyses and component assumptions,
designed to ensure that TLS resources are focused directly on the most profitable scenarios. This
typically requires identifying and avoiding (or efficiently repairing) data-dependencies, reducing
the costs of misspeculation, and heuristically and dynamically locating code segments that respond
best to a speculative approach.

Despite the many successes, however, generally good performance remains somewhat elusive. Not
all benchmarks respond well [8], and the heuristic ability to identify ideal fork-points for thread-
based speculation tends to be relatively fragile with strong input or program sensitivity. Beyond
being complex or having intricate data-dependencies, the precise reasons why a program fails to
parallelize well are not entirely clear. Part of the problem is in understanding the characteristics
of TLS itself; speculation with limited resources is fundamentally a feedback-sensitive technique,
where even if decisions are determined to be locally efficient they may nevertheless have important
non-local impact by effectively prohibiting future choices. In understanding TLS it is clear that
data dependency concerns are extremely important; it is our contention, however, that ignoring
the interplay of code structure and speculation model misses a substantial part of the TLS story.

In this work we make an initial foray into understanding how the parallelism found through individ-
ual choices implied by specific TLS designs affects global performance. Our approach is to perform
a limit study, attempting to determine maximum performance irrespective of and orthogonal to
other (still important) concerns of data-dependence. We develop an abstract, flexible and general
model of Method-Level Speculation (MLS) as a representative approach to TLS, and perform ex-
haustive analysis of different behaviours when applied to very basic code idioms. This technique
has a number of advantages over existing heuristic performance analyses embedded within specific
projects. A methodical approach to analysis clearly exposes the difference between several core
MLS designs, and by separating concerns of how TLS responds to input program structure from
how it responds to data-dependencies we are able to make progress in understanding the feedback
complexity of TLS, providing further insight into why TLS does or does not perform well for a
given program. Examination of the results of our analysis shows strong dependencies exist between
TLS design and program structure, that some TLS designs are better than others for certain coding
practices, and reveals potential for future work that can exploit these differences.
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Specific contributions of our work include:

• We define a general and expressive algorithmic abstraction of thread-based, method-level specu-
lation. Our design allows for exhaustive, analytical exploration of behaviour, and clearly reveals
several subtle variations in TLS approach.

• We extend our base model with incremental complexity, representing three core forms of TLS,
in-order, out-of-order, and nested threading models. We show how to represent different par-
ent/child signaling disciplines, and can incorporate both the representation of unsafe instructions
and multiple forms of TLS overhead.

• We apply our formalism to several basic coding patterns (idioms), experimentally examining
the interplay between overall TLS design, fork heuristics, and code structure. We show that
even simple programming design differences can result in significantly different parallelization
performance, independent of data-dependency considerations.

2 MLS Background

Method-Level Speculation (MLS) is a conceptually straightforward technique for improving per-
formance based on the existence of otherwise idle multiple-CPU resources. At a given method
invocation site, an MLS system launches or forks a speculative thread to execute the method con-
tinuation (i.e., the code following the method call site), while the original parent thread proceeds
with normal, non-speculative execution of the method call itself. Upon returning from the method
call, the parent thread joins with the speculative thread and validates the speculative execution,
ideally resulting in parallel execution of the method body and some portion of its continuation.

Other models of TLS direct parallelization to different code structures. Loop-level speculation, for
instance, performs a very similar activity to MLS but using a loop iteration entry as a fork point—
the parent thread forks a speculative thread to execute the subsequent loop iteration at the same
time as the parent iteration [6]. Arbitrary speculation is also possible, forking speculative threads
to execute any given future code sequence [2]. While arbitrary speculation seems most general, all
these forms of speculation can in fact subsume each other with appropriate code transformations,
conceptual or actual—arbitrary or method-level speculation can be modeled in loop-level as loop
bodies branching on the loop index, and loop and method-level speculation can trivially be treated
as arbitrary. In this study we used method-level speculation as a general form, making use of the
fact that both loop bodies and arbitrary chunks of code can be outlined into methods.

There are of course a number of safety and efficiency concerns in any TLS model, and a few specific
to MLS as well. Safety is primarily ensured through strong isolation of the speculative execution,
and the validation process during joining. Isolation is required to ensure speculative writes do
not conflict with non-speculative reads or writes prior to validation. Validation is required to
ensure that speculative execution represents behaviour based on the correct input-state of the
continuation code, which is potentially affected by the writes of the non-speculative parent. Only
once a speculative thread has been appropriately validated should its results be committed to main,
non-speculative memory.

Significant performance concerns arise in the implementation of the various required components.
Some overhead is of course necessary for thread initialization and for signaling/termination, while
isolation implies some cost in modifying code to appropriately buffer speculative writes, and vali-

2



dation requires recording and comparing input assumptions made by the speculative code, perhaps
also including thread abortion if these assumptions are not correct (misspeculation). For MLS
in particular, speculative input-state often includes the output or return-value of the method call
preceding the continuation, and so the likelihood of successful validation can be improved by return-
value prediction, which itself can have non-trivial cost. In an overall and approximate sense these
costs can be aggregated into fork and join overhead, with the former including thread initializa-
tion, code-preparation and return-value prediction, and the latter including signaling/termination,
validation, and return-value prediction updates. Since many hardware designs allow for read-
monitoring at little to no additional cost, we make no attempt to explicitly model that in this
work.

Within the scope of assumed, basic overhead costs, the main limiting factor on potential speedup
is imposed by the actual choice of fork points. To reduce misspeculation, these points must ob-
viously result in few data-dependency conflicts between parent and child threads. They should
also include an appropriate balance of work within the method and its continuation, large enough
that parallelization benefits exceed overhead concerns, but small enough that the probability of
misspeculation does not grow too large [8]. Importantly, there are strong feedback concerns in fork-
ing heuristics—CPU resources are limited and technical demands of MLS implementation impose
limitations as well, and so forking a thread at one point may preclude forking at a point in the
near future, making the entire process extremely sensitive to the exact fork heuristic and program
input. It is the latter property that we focus on in this work.

3 Modeling MLS

Our system for modeling MLS is based on a simple, stack-oriented program execution model. A
program executes sequential code, including properly nested method calls. In order to model the
control flow of MLS applied to such an execution we need to only identify calls, return points
(continuations), and the base, sequential work performed. It is important to note that we do not
track data-dependencies or consider misspeculation in this model. Our goal is to examine the
patterns of execution and parallelism generated within the combinations of program structure and
MLS control flow, and in this sense misspeculation adds overhead and reduces efficiency, but not
does not introduce new possibilities.

Our model thus begins from a sequential trace of actions, consisting of either method calls or basic
work. Incorporating MLS involves adding in speculative thread forks (and joins), based on call-
continuation pairings. This gives us a straightforward input representation we refer to as the MLS
constraint graph.

Definition 1 Let T = t1, . . . , tn be a sequential trace of actions from a properly nested execution,
where each of ti is either a work action or a call. The MLS constraint graph is a directed graph
(V,E = E′ ∪ C), where V = {t1, . . . , tn}, E′ = {(ti, ti+1)}, i = 1, . . . , n − 1, and C is a set of
call-continuation edges, consisting of all (p, q) s.t. p is a call and q is the first statement in the
continuation of p. An example is shown in Figure 1.

The MLS constraint graph works in conjunction with a model of MLS execution. Perhaps the
simplest MLS model allows just one speculative thread, and does not permit joining. A speculative
child once launched thus “runs to completion.” Note that we may also consider this a model of a
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a) A() { B() { C() {
work1 work3 work5

B() C() }
work2 work4

} }

A()

b) A → w1 → B → w3 → C → w5 → w4 → w2 → 0

c)

Figure 1: a) Code, b) an execution sequence given the single call to A(), and c) the corresponding
MLS constraint graph; dashed edges are continuation edges.

system where joins involve the parent thread transferring its state to the speculative child, rather
than vice versa, as is more typical (and of course not launching further speculation).

The potential behaviour of this model is relatively easy to determine. Given the sequential execution
trace described in Figure 1, for example, the MLS system may choose to insert a single fork point
before any call as the non-speculative thread executes. All possible resulting execution sequences
are shown in Figure 2.

(1) ; (A→w1→B→w3→C→w5→w4→w2) | (0)

(2) A→w1 ; (B→w3→C→w5→w4) | (w2→0)

(3) A→w1→B→w3 ; (C→w5) | (w4→w2→0)

(4) A→w1→B→w3→C→w5→w4→w2→0

Figure 2: Possible MLS execution sequences for the code in Figure 1. The fork point is shown by
a ‘;’ and is followed by a parallel computation separated by a ‘|’.

Note that we can already observe in this simple execution context that the parallelism generated
strongly depends on the specific forking choices made. Sequence (1) achieves no parallelism but does
have speculative overhead. Sequences (2) and (3) have some parallel execution, but have different
degrees of balance between threads. Sequence (4) follows if none of the fork points are selected, and
is just sequential execution. Also note that not all sequences represent good fork choices—sequence
(1) implies launching a speculative thread that does nothing but terminate. As we will see below
it is also possible for a parent thread to immediately join with a just-launched speculative thread.
In order to keep our model exhaustive, however, we include even these suboptimal possibilities.

In this design, each potential MLS execution consists of three main sections. An execution consists
of a sequential preamble terminating in a fork and method-call (or program end in the trivial case).
A fork point divides subsequent execution into 2 pieces: a (non-speculative) parent thread that
executes until just before the continuation point, and a (speculative) child-thread that executes all
code from the continuation onward. That is, our original sequential execution can “parsed” into
an MLS execution:

preamble(S) ; non-spec(A) | speculative(B)

The process for discovering all MLS executions is then straightforward. We incrementally grow the
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preamble S . If we encounter a potential fork point we consider 2 options, one where we launch a
speculative thread and split the execution into A and B, and one where we do not and just continue
growing the preamble.

Calculating parallel speedup in this model is analytically trivial. Given a base sequential sequence
t1, . . . , tn the time taken can be calculated (simply) by summing the weight (ω) of each individual
operation. Time taken by a sequence containing a fork is calculated (in general) recursively, con-
sidering the overlap of parent and child executions, as well as a fork cost (F ) and a join cost (J).
This gives us the following definition for a time calculation function τ :

τ(t1, . . . , tn) =

n∑

i=1

ω(ti) no forking

τ(S;A|B) = τ(S) + F +max(τ(A), τ(B)) + J forking

Speedup is of course given by the ratio of the cost of sequential execution to τ(T ).

3.1 Multiple speculative threads

Most speculative systems allow multiple speculative threads, taking advantage of as many of the
available CPUs as possible to improve parallelism. Three main ways exist to extend a basic 2-thread
MLS system, out-of-order speculation, in-order speculation, and nested speculation.

Perhaps the most straightforward approach is out-of-order speculation. In this model a non-
speculative parent thread may create multiple children as it descends down a call chain. Thus
a single non-speculative thread can have many speculative children, although speculative threads
do not have further speculative children. An example is shown in Figure 3; here out-of-order
parallelism helps significantly in improving parallelism.

a) A() { B() { C() {
B() C() work3

work1 work2 }
} }

A()

b) A → B → C → w3 → w2 → w1 → 0

c) ; (A → ; (B → ; (C → w3) | w2) | w1) | 0

Figure 3: a) Code, b) a sequential execution sequence, and c) an out-of-order MLS execution
assuming an arbitrary number of threads (CPUs) available.

An alternative and symmetric design is to allow speculative children to themselves launch specula-
tive children. This is known as in-order speculation, wherein each thread, speculative or not, may
have at most one speculative child. Conceptually, in-order speculation tends to perform well in situ-
ations where out-of-order speculation does not, and vice versa. An example of in-order speculation
is shown in Figure 4. Note that out-of-order speculation would result in less possible parallelism
here, since the lack of nested calls in any preamble means that at best a single speculative thread
could be forked.

Finally, one may of course combine out-of-order and in-order techniques, allowing each thread to
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a) A() { B() { C() {
work1 work2 work3

} } }

A();B();C();

b) A → w1 → B → w2 → C → w3 → 0

c) ; (A → w1) | (; (B → w2) | (; (C → w3) | 0))

Figure 4: a) Code, b) sequential execution sequence, and c) an in-order MLS execution assuming
an arbitrary number of threads (CPUs) available.

have any number of speculative children, whether the parent thread is speculative or not. This is
nested speculation. An example is shown in Figure 5.

a) A() { B() { C() {
B1() C1() workC

B2() C2() }
workA workB

} }

A()

b) A → B1 → C1,1 → wC1 → C1,2 → wC2 → wB1 →
B2 → C2,1 → wC3 → C2,2 → wC4 → wB2 → wA → 0

c) A → ; (B1 → ; (C1,1 → wC1) |

(; (C1,2 → wC2) | wB1)) |

(; (B2 → ; (C2,1 → wC3) |

(; (C2,2 → wC4) | wB2)) |

(wA → 0))

Figure 5: a) Code, b) sequential execution sequence, and c) a nested MLS execution.

Although it is more difficult to see, nested speculation results in an optimal parallelism, parallelizing
both calls to B() and to C() in our example. This can be contrasted with out-of-order and in-order
designs, which parallelize along only one major branch of the computation in each case. This is
shown in Figure 6.

a) A → ; (B1 → ; (C1,1 → wC1) |

(; (C1,2 → wC2) | wB1)) |

(B2 → C2,1 → wC3 → C2,2 → wC4 →
wB2 → wA → 0)

b) A → ; (B1 → C1,1 → wC1 → C1,2 → wC2 → wB1) |

(; (B2 → ; (C2,1 → wC3) |

(; (C2,2 → wc4) | wB1)) |

(wA → 0))

Figure 6: a) An out-of-order execution of the trace from Figure 5, and b) an in-order execution of
the same trace.
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3.2 Signaling, Joining and Stopping

In the above examples the performance of out-of-order and in-order alone can be suboptimal, at
least partly because joins are only abstractly present, and our simple run-to-completion model
does not allow threads to be reused after joining—in the case of pure out-of-order threading,
launching a speculative thread forever prevents any further speculation within the continuation
code, even if the parent execution was relatively short. A practical design, however, allows for
thread reuse, redeploying the speculative thread resource once a speculation execution has been
joined or otherwise terminated.

To accommodate this kind of behaviour we need to explicitly recognize the point at which threads
are signaled to stop execution and prepare for joining. There are in fact two main approaches
to thread joining that are possible and can be represented in our system: forward-signaling and
backward-signaling. We address both below, as well as how we could incorporate the existence of
speculative unsafe instructions, which prevent speculation from proceeding further.

Forward-signaling is perhaps the most common form of parent/child join-synchronization used in
MLS. The main idea is that once a parent thread reaches the execution point at which its child began
execution, it signals the child to stop, joins it, and then proceeds having recovered the speculative
thread resource. This enables reuse of the speculative child-thread in subsequent execution and
thus further speculation within the continuation of the first speculative execution’s original scope.
The end effect is similar to allowing a nested threading model, but differs by limiting the choice of
fork points in the continuation to those encountered after the join point with the speculative child.
An example trace and resulting out-of-order MLS execution, with and without forward-signaling is
shown in Figure 7. Note how the MLS execution without signaling has limited parallelism, greatly
improved by the use of forward-signaling.

a) W() { work }

W() W() W() W()

b) W → work → W → work → W → work → W → work → 0

c) (no signal) ; (W → work) |

(W → work → W → work → W → work → 0)

d) (w/ signal) ; (W → work) | (W → work) [join]

; (W → work) | (W → work)

Figure 7: a) Code, b) Trace of a nested execution, c) out-of-order MLS execution without explicit
signaling, d) out-of-order MLS execution with forward-signaling. Note that we assume equal time
(cost) to execute each work unit.

Forward-signaling applies most naturally to out-of-order execution, but unfortunately is not as
effective for in-order execution. With in-order speculation, a long but potentially parallelizable
parent execution will not be exploited since the parent thread must complete all of its work before
it reaches the join point and is able to recover and reuse the speculative child-thread. In-order
models benefit instead from backward-signaling, wherein signaling roles are reversed to allow the
parent thread to receive “advance notice” of terminated speculative child-threads.

Backward-signaling is performed when a speculative child which has terminated signals its par-
ent. The parent thread can then store the child state for later joining, and reuse the speculative
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execution resource to launch a subsequent speculative child prior to joining. An example of in-order
execution with and without backward signaling is shown in Figure 8. As with forward-signaling,
backward-signaling produces an effect similar to nested speculation; in this case differing in that
parent threads may not launch more speculation children until a speculative child has terminated.

a) A() { B() {
B() workB

workA }
}

A()

b) A → B → workB → workA → 0

c) (no signal) ; (A → B → workB → workA) | 0

d) (w/ signal) ; (A → ; (B → workB) | workA) | 0

Figure 8: a) Code, b) Trace of a nested execution, c) in-order MLS execution without signaling, d)
in-order MLS execution with backward-signaling.

Backward-signaling has the disadvantage that terminated speculative thread states need to be
retained until parent execution reaches the corresponding continuations. In the rest of this work
we model only forward-signaling. Explicit modeling of backward-signaling is possible in our design,
but adds significant further complexity and so is left for future work.

We incorporate a forward-signaling joining procedure by extending our MLS representation. Instead
of just S;A|B, we allow the execution of B to be truncated, splitting B into two pieces, the code
executed prior to the signal, and the code executed after the parent joins with its child. The latter
code is the then evaluated recursively adding back in the recovered speculative thread resource. As
a general template then, we model MLS execution of a sequence as a recursive decomposition of a
sequential sequence into S;A|B + C. S is the sequential preamble ending in a function call, A is
the function body, B is the continuation up to the point at which the speculative thread is joined,
and C is the remaining execution, giving us an overview equation:

MLS(T = SABC) = S ; MLS(A) | MLS(B) + MLS(C)

Unsafe instructions are instructions which may not be executed safely in a speculative context.
These typically include I/O, synchronization, and any other instructions that may have a global
effect not completely captured and made reversible by buffering basic reads and writes. An unsafe
instruction is easily modeled within the same abstraction; if a speculative thread encounters an
unsafe instruction execution is terminated, with the process identical to stopping due to a parent
signal. In the case of in-order or nested speculation, attempts to execute the unsafe instruction
will result in further recursive unwindings of speculative parents, eventually reaching the main,
non-speculative parent.

Exhaustive Algorithm Figure 9 formalizes the notions discussed in this section. Given a sequen-
tial execution, it expresses all possible in-order, out-of-order, or nested MLS executions, accommo-
dating forward-signaling, non-speculative instructions, and limited thread resources.

The process begins by providing an input consisting of the sequential sequence to decompose (T ), a
number of available speculative threads (σ), and a timeout for when the execution will be joined—
for initial (top-level) input the timeout is infinite, as the non-speculative thread is not joined. The
MLS function then returns all possible MLS executions of that sequence. The function initially and
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Let T = t1, t2, . . . , tn be a sequential trace of actions.
MLS(T ,σ,time) =
for all S = preamble(T, σ) s.t. τ(S) ≤time
let (t|S|+1,tb) be a continuation edge

TA = t|S|+1, . . . , tb−1

for all σ1, σ2 = σ-1,0 // for out-of-order
0,σ-1 // for in-order
split(σ-1) // for nested

for all A = MLS(TA,σ1,time-τ(S)-F )
TB = tb, . . . , tn
for all B = MLS(TB,σ2,τ(A))
TC = t|S|+|A|+|B|+1, . . . , tn
τ(S;A|B) = τ(S) + F +max(τ(A), τ(B)) + J

for all C = MLS(TC ,σ,time-τ(S;A|B))
τ(T ) = τ(S;A|B) + τ(C)
return S ; A | B + C

Figure 9: Algorithm for enumerating in-order, out-of-order, or nested MLS executions, with
forward-signaling and a bounded number of threads. T is the input trace of actions, σ the number
of speculative threads that are available for allocation, and time is the maximum time before a
parent signal will occur. The preamble(T ,σ) function returns T and if σ > 0 then all prefixes of
T that end before a function call (fork point) as well. The split(σ − 1) function returns all non-
negative pairs σ1, σ2 such that σ1 + σ2 = σ − 1. The τ() function returns the time used by the
given sequence.

optimistically tries to decompose T into S;A|B, splitting off C and creating S;A|B + C instead
only if necessary.

Within the function, all possible preambles (up to the timeout limit) are considered, each of which
is assumed to terminate in a function call (if not then then the result is just a single, sequential
execution of T ). The function call defines the split between the preamble S, the function body A,
and its continuation B. Once that split point is established, a speculative thread will be in use to
execute B, and the remaining threads are allocated to the recursive decompositions of A and B. In
the case of out-of-order all threads go to A, for in-order threads go to B, and for nested all possible
splits of the thread resources must be considered.

Recursive decompositions of A are then computed given the input timeout, subtracting the time
consumed by the preamble and the forking itself. Since B can only execute until joined, its timeout
is given by the duration of the recursive execution of (a given) A. Joining prior to the completion
of all B (with a slight abuse of notation) splits B into BC, with C being the remaining execution,
after A and B join. Since C executes after the join it has available the full thread resources, and
whatever time remains after S;A|B (any code of C still remaining after timeout is left unexecuted,
and becomes the C part of the prior, recursive execution). For assessing speedup, the total time
taken is calculated and associated with the input sequence.

Note how the timeouts are used to enforce forward-signaling (only). To model backward-signaling
we would need to invert the dependencies of A and B, evaluating B first and passing the elapsed
time as a minimum timeout before a thread could be launched to the recursive evaluation of A.
Modeling both forward and backward-signaling, i.e., a complete bidirectional-signalingmodel, could
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Name Description

iter A sequence of 10 calls to the same work function.
head Head-recursion, 10 levels deep, each call executing a work function upon return [19].
tail Tail-recursion, 10 levels deep, each call executing a work function before the recursive

call [19].
treeAdd A double head-recursion, corresponding to a recursive descent of a binary tree down

to 3 levels (7 units of work total). Modeled after the “TreeAdd” JOlden benchmark.

Figure 10: Synthetic benchmark suite. Note that these represent control-flow abstractions only,
and do not include data-dependencies.

be computed as a fixed-point, balancing the time consumed by A given the resources passed back
from B, the amount of which recursively depends on the time consumed by A. Given the greater
importance of forward-signaling, and the complexity of modeling bidirectional-signaling, we here
restrict ourselves to just forward-signaling.

4 Experimental Analysis

An experimental investigation is performed by executing the algorithm of Figure 9 under different
parameter assumptions and applied to different program structures, represented through sequential
program traces. Although these are synthetic traces, not including data dependencies or misspec-
ulation behaviours, they show how choices of in-order, out-of-order, or nested speculation affect
potential performance, the impact of different overhead costs (fork and join), and how the resulting
parallelism is altered by trivial variation in code structure.

As a benchmark suite we use small program traces based on coding-idioms that correspond to
common programming styles. These are summarized in Figure 10 and partly extend the basic
models considered in work by Pickett et al. [19]. For most of these idealized examples we also
assume a very simple model of execution and overhead costs: method-calls take 5 units, forks 5
units, joins take 20 work units each, and actual work execution takes 1000 units. The cost of calling
and the thread fork/join operations are chosen to roughly match the assumed cycle-cost of similar
operations in typical TLS hardware simulations [21], and the work-weight is chosen to be much
larger in proportion. Section 4.2 further investigates how the relative weight of work and overhead
affects performance, providing justification for our use of such simplistic choices.

4.1 Speedup

A central question in our analysis is how the combination of code structure and MLS design relate
to potential speedup. Different choices of how and when threads are forked are expected to impact
the final performance. We thus analyze the three basic MLS models (in-order, out-of-order, and
nested), under forward-signaling for all of our benchmarks. We consider a range of thread resources
(from 1 to 9 speculative threads available), and measure the maximal speedup possible under any
forking strategy, the speedup obtained by a “greedy” forking heuristic, and an “average” speedup
over all possibilities. Maximal speedup provides a theoretical optimum that limits any fork heuristic,
averaging is meant to provide a baseline showing behaviour when no effort is made to develop an
effective fork heuristic, while greedy represents a straightforward, but still reasonable fork heuristic.
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Figure 11: Speedup for benchmarks given different maximal thread resources, thread models, and
fork heuristics. A graph is shown for each benchmark; for each number of available speculative
threads, maximal speedup, greedy speedup, and average speedup are grouped and shown for in-
order, then out-of-order, and finally mixed speculative strategies respectively. Maximum theoretical
speedup is 10 in all cases except for treeAdd, where to maintain symmetry of the tree-based
recursion maximum theoretical speedup of 7 is used, indicated by the dotted horizontal line.

Note that with pure in-order and out-of-order MLS only a single greedy choice is possible in each
case; with a nested model, however, depending on how thread resources are divided between the
in-order and out-of-order strategies (a choice made at each method call) there are multiple possible
greedy results. Results for the greedy option under nesting show the maximum speedup possible
for any possible thread division.

Also note that in our model, units of execution (trace symbols) are either executed or not—even with
signaling we do not split work units when a signal occurs, and assume that a signal occurring within
a work-unit is not acted upon until the work is completed by the speculative thread. Although
this limits how work can be partitioned, it also more accurately models the common practice of
using infrequent polling (eg on method entries, exits, and backward loop branches) instead of true
asynchronous signaling for inter-thread communication.

Results are shown in Figure 11. In terms of maximal possible performance, striking differences are
evident in how the thread models respond to each of the different benchmark structures. An in-
order approach is generally more effective than out-of-order, and this can be understood from how
the strategies interact with the benchmark structure. In the case of iteration and tail recursion, in-
order performs better than out-of-order since subsequent iterations (or recursive calls) are essentially
always contained in the continuation of the current iteration (call). Head recursion allows both
strategies to be effective since out-of-order can launch threads as the recursion descends, while in-
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order can be effectively applied once the recursion bottoms out. The nested model, unsurprisingly,
is able to combine and sometimes exceed the benefit of either in-order or out-of-order alone. This is
most apparent in treeAdd, where the pure strategies are basically limited to exploiting one branch
down the tree while a nested approach lets the best individual strategy be selected at each branch
in the descent.

Average performance is mainly interesting in providing evidence of the extent of bias toward sub-
optimal performance. The low average behaviour suggests the bulk of fork strategies do not provide
much speedup, and good performance is only found by applying some effort to identify the few,
best forking choices.

In many cases, however, greedy behaviour turns out to be effective at finding these better fork
points, although this too depends on the MLS design. In the case of iter, greediness is optimal
irrespective of the MLS model. In head, tail, and treeAdd greedy works well for out-of-order and
of course nested, but quite poorly for in-order. For in-order, a simple greedy approach tends to
fail due to the fact that there is a single method call entry point to all these tests—launching
threads for the continuation has little to no impact on the bulk of the work. This may be partly
considered an artifact of limitations in our MLS abstraction, and a model where idle threads may
be repurposed after completion but before joining (i.e., backward-signaling), would improve the
results for in-order.

4.2 Weight Sensitivity

An important and interesting question for TLS is to what extent overhead has an impact on
potential performance. Most TLS studies approach speculative designs assuming forking, joining
and other overheads will be a major bottlenecks for performance. Certainly in software these costs
can be relatively high [17, 18]. Hardware and hybrid designs thus often expend significant effort on
features that mitigate these costs, in some cases reducing them to just around the same order of
magnitude as normal instructions, at least in simulation; Mitosis, for example, assumes just 5 cycles
for a thread fork and 20 for a join [21], and we have replicated those assumptions in our study here.
In this experiment we thus vary fork and join costs from 0 to 10000 work units, to determine how
sensitive our behavioural observations are to the actual overhead assumptions. Speedup results are
shown in Figure 12 with respect to fork cost; for simplicity, in this data joins are assumed to be
twice as expensive as the forks.

In an overall sense, a degradation in scalability, roughly proportional to the increase in overhead
is to be expected, and indeed this is evident in the experimental data. The effect is not entirely
uniform, however, with head, tail, and treeAdd showing more resilience (degrading less quickly)
than iter, at least until overhead costs become very large. The extent of performance change can
in fact be more closely related to the maximum speedup the benchmarks exhibit—in the absence
of misspeculation, overhead in our abstraction is entirely created at thread forks and joins, and so
the more threads used (and thus greater potential speedup) the more overhead sensitivity. It does,
however, show that overhead is a largely separate and independent concern from code structure
and one that does not overly perturb our results—relative differences do not strongly depend on
subtle changes to overhead values, as long as overhead does not overwhelm thread-length, a factor
already well-known to be important in fork heuristics.
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Figure 12: Maximum speedup under different overhead assumptions (joining is twice the cost of
forking), given nested threading and forward-signaling, and a maximum of 9 speculative threads.
Note that the X-axis scale is only piece-wise linear.

4.3 Code Structure

Our basic thesis is that the interplay of code structure and MLS design has a large impact on
speedup. Certainly, this is true of core, algorithmic structure, as shown in Figure 11; it is also true,
however of quite trivial code modifications. Here we consider three, conceptually simple changes
to each of our benchmarks made by adding a small amount of work and a method call in three
symmetric positions:

prefix The benchmark has a method call prepended to it, such that the main benchmark code
is executed in the continuation of a short (100 units) method call.

wrap A call is made to the main benchmark code, with a short (100 units) amount of work
performed afterward.

suffix A short (100 units) amount of work is done in a call which is performed after (in the
continuation of) the main benchmark code.

In terms of optimal performance, these changes are very minor—the addition of a small amount of
work and an extra call can be accommodated by allocation of an extra thread resource, reducing
threading efficiency, but otherwise having very minimal impact on maximal possible speedup. The
impact on more realistic fork heuristics is however quite large, and Figure 13 shows how speedup
is affected by these code changes for the greedy strategy.

First, as mentioned for optimal threading, the extra method call used results in slightly less efficient
use of threads, an effect most obvious in the case nested MLS. Most striking, however, is how
radically performance is altered for the different benchmarks in the case of the less-comprehensive,
pure in-order and out-of-order models. Iter, for instance, has prefix and suffix versions similar to
the normal version, showing slight reductions owing to the small amount of serial work introduced
before or after the main code. Wrapping, however, has a large impact for in-order threading,
effectively eliminating all speedup. In the wrapped version in-order threads are captured in the
small amount of work that constitutes the continuation of the wrapped call. These threads must
then wait for the main thread to join before releasing resources; again, demonstrating the value of
being able to archive thread state and reuse unjoined threads for best performance.

Other benchmarks show some initially surprising and counter-intuitive behaviours for the in-order
approach. The greedy strategy was originally ineffective in pure in-order for head, tail, and treeAdd,
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Figure 13: Speedup values under a greedy strategy for benchmarks given different maximal thread
resources. For each number of available speculative threads, speedup is shown for normal (i.e.,
the same greedy data from Figure 11), prefixed, wrapped, and suffixed versions of the benchmarks
grouped together, for in-order, then out-of-order, and finally nested MLS.

but here shows great improvements when new work is introduced in the prefix variation, especially
for head. Improving speedup by adding work illustrates the complex, non-linear feedback properties
found in speculative thread allocation. Here the effect is mainly due to the way prefixing moves
the main benchmark code into a continuation, allowing in-order (and consequently nested) MLS
to be better exploited. It is interesting that the poor behaviour associated with being unable to
repurpose in-order threads is largely eliminated by this simple code transformation, contradicting
the need for unjoined thread-state storage mechanisms found in the case of wrapping and iter.

Out-of-order turns out to be more resilient to wrapping and suffixing, showing little impact in all
benchmarks from these modifications. Prefixing, however, has a significant but in this case negative
impact, most clearly evident on the head benchmark. In this situation the good scaling of out-of-
order speedup on the normal version is absent when prefixing is applied. This occurs because of
the way the prefix code causes better opportunities to be missed. In the normal greedy version,
threads are launched as the head recursion descends, and each is given ample time to complete its
computation while the main thread descends. In the prefixed version the main benchmark body in
the prefix continuation is initially executed by a single speculative thread due to the out-of-order
model, and this thread has sufficient time to descend several levels before the main thread joins
it, thread resources are recovered and the system can begin again spawning multiple threads as it
completes the descent.
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5 Related Work

A wide variety of TLS [10] (and MLS [4]) approaches have been defined, in most cases supporting
unique variants of out-of-order, in-order, or different forms of nested threading models. Research
has concentrated on hardware and hybrid hardware/software designs [23], primarily as a means of
ensuring low overhead and maximizing potential speedup. Pure software approaches to TLS are
less common, but have also been explored [17]; fine-grain speculation and short thread-lengths,
however, can easily lead to relatively large overhead concerns. More recently, Ding et al. proposed
coarse-grain, software-based Behavior Oriented Parallelism, which which uses the virtual memory
system to isolate “possibly-parallel” regions [7]. This design allows for overhead concerns to be
hidden by larger scale parallelism, and the authors show factor-of-2 speedups on several realistic,
originally sequential benchmarks.

Whatever the threading model, determining where and when to fork threads is one of the funda-
mental challenges of a TLS system. As well as the basic safety problem of avoiding or repairing
data-dependencies, in order to show speedup it is necessary that the amount of work exceeds any
actual overhead, and thus the “length” or duration of speculative threads is recognized as an im-
portant heuristic criterion. Warg and Stenström explore this behaviour in an MLS system, and
show that a simple “last-value” predictor (applied to thread length) can be a very effective way
of ensuring this property, eliminating a large proportion of unnecessary overhead caused by lack
of actual parallelism [26]. Other work on fork heuristics has shown that a careful balance must
be achieved in heuristic choices—applied too conservatively, fork heuristics can lead to significant
under-speculation, also reducing performance [27]. The recent POSH system uses several optimiza-
tions as part of fork (task refinement) heuristics, considering thread-length, dependency and profiler
information [14]. Their system requires tasks be spawned in reverse execution order, imposing an
out-of-order speculation model. Simulation results with this design show an average 1.3 speedup
on SpecInt benchmarks, the same behaviour as others have reported with optimized out-of-order
designs [22].

Abstract models of parallel execution have been of academic interest for some time. Many have been
developed in the context of pure or partial functional languages, where dependency requirements
are simplified. An early approach was given by Greiner and Blelloch, defining a parallel speculative
λ-calculus to model “call-by-speculation,” an approach to parallelism wherein function arguments
are evaluated concurrently with the function itself [12]. Their concern is in further parallelizing
initial designs that serialize behaviour within a queueing model typically used to block threads
accessing the same, but unavailable argument data. Provable time efficiency is then demonstrated
within a λ-calculus implementation. Baker-Finch et al., develop a detailed operational semantics
for an extended λ-calculus representing GpH, a parallel version of the Haskell language with lazy
evaluation [1]. Their design allows for expression of control-based parallelism based on the par
annotation, although it could be extended to implicit and fully speculative models.

Our approach in this work is partly inspired by previous work done by Oplinger et al., examining
behaviour of an abstract “greedy” TLS thread model, either always forking threads or (in the case
of a bounded number of threads) using heuristic thread-priorities to model scheduling concerns [16].
They also use a trace-based analysis, abstracting many overhead and machine details to determine
optimal performance, at least under their fork and scheduling assumptions. Although their design
considers only one threading behaviour and is not an exhaustive exploration, this allows for some
important conclusions to be made about structure, and in particular they are able to show that
both loop and procedure-based parallelism are necessary to best exploit the potential parallelism
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of realistic applications. This is a position also argued in more recent experimental work by other
researchers [14].

A more detailed and hardware-specific abstraction of TLS has been used to build a complete TLS
taxonomy. Garzarán et al. focus on buffer-management, how or whether distinct (speculative)
versions of data are differentiated and merged in a TLS system, and define a taxonomy that
describes approaches in those terms [11]. This relates to our work in that low-level considerations
of the number of data versions, access costs, and ordering constraints imply different speculative
control strategies—their SingleT category, for example, maps onto a system where a parent thread
can have only one speculative child, while MultiT/SV allows for a limited form of multiple-child
speculation, as long as a specific datum is not duplicated more than once. They conclude that
supporting multiple data versions is an overall effective means of improving performance; this does
not map precisely to either out-of-order or in-order designs, but is instead a general requirement
on any system that allows more than one speculative child.

The abstraction we investigate here does not try to form an explicit taxonomy, but instead builds
on recent results described by Pickett et al. on modeling and understanding MLS [19]. Their work
does not perform exhaustive analysis, aiming more at a visualization system, but has inspired our
basic approach, and we have used several of the code idioms they describe in the context of our
investigation.

With less abstraction, detailed performance models have also been defined, with the majority of
attention devoted to improving loop-based speculation. As an extension to their Hydra design, Chen
and Olukotun’s TEST system defines hardware-based support for estimating the performance of
different thread decompositions [3]. This is applied during runtime to help identify loops appropriate
for TLS execution, allowing the rest of the Jrpm hardware-software hybrid system [5] to then
recompile the corresponding method to take advantage of speculative hardware. The TEST system
considers iteration dependencies, as well as lower-level considerations such as the potential for buffer
overflows.

There are many ways to approach and estimate the potential of loop-level speculation. Du et al.
also define a cost metric, using a data-dependence graph annotated with probabilities to estimate
the cost of misspeculation [9]. They use this to locate minimal cost candidates suitable for TLS.
Wang et al. build a loop graph, modeling the nesting relation between loops within a program,
and use this in conjunction with coverage and individual loop speedup estimates to compute a
heuristically optimal selection of loops upon which to apply loop-level TLS [25].

Dou and Cintra take a more exhaustive approach, incorporating thread sizes as well as branch
probabilities and TLS overheads, in order to form “tuples” describing different combinations of all
possible executions of a loop body, from which a minimal execution set can be extracted [8]. To
maintain practicality within a compiler framework, they do not extend their model to nested loops
or recursion. Interestingly, even with this intricate model simulation results show a broad range of
speedup and slowdowns depending on the benchmark.

Quantitative approaches have also been extended to the similar world of transactional memory
designs. von Praun et al., for example, define an approach using both control and data-oriented
density metrics, heuristically measuring the extend of dependency between potentially parallel
critical sections, and thus their suitability with respect to different parallelization modes [24].
They demonstrate their technique on several explicitly parallel algorithms, although the model
would naturally extend to TLS.

16



Given the complexity and variable results from TLS designs, considering completely different par-
allelization paradigms is attractive, and other, highly general approaches to automatic parallelism
are being aggressively explored. The Galois project [20] focuses on data-parallelism of irregular
applications, where it can be demonstrated that a significant amount of potential parallelism exists
in terms of data locality, despite the complexity of extracting it through standard control flow [13].
A data-parallel approach is also at the basis of Lublinerman et al.’s recently proposed Chorus
programming model [15]. Chorus exposes dynamic data-partitioning to the programmer through
“object assemblies,” providing convenient mechanisms to define, split, and merge localized data.
Our results here echo the motivations for these approaches, control flow is indeed a central concern
with respect to efficient parallelization, although as we show success and failure in parallelization
can be at least partially back-attributed to the combination of specific code structures and the
basic approach to parallelism used, and so may be subject to greater control.

6 Conclusions and Future Work

Our work here complements the many existing efforts that concentrate primarily on ameliorating
the impact of data dependencies in TLS systems. We have shown that a deep and more holistic
understanding of code structure is a further, essential property of MLS performance that must be
considered to achieve reliable and practical speedup. Using an exhaustive exploration of even small
code idioms we demonstrate the large impact code structure has on potential speedup, and show how
structure and fork choices can interact to drastically alter performance. Better understanding of
this behaviour is a basis for developing code modifications and tailoring fork strategies to maximize
performance, in a way largely orthogonal to data dependency considerations.

There are many interesting aspects of speculation we can further explore with our model. Adding
in misspeculation costs is trivial, although a full consideration would greatly magnify the effort
required to perform exhaustive consideration. A more useful extension may be to incorporate
backward-signaling, for a more complete model of complex (state-saving) MLS designs. Our main
interest, however, is in scaling up the design as much as possible, and using the results as a further
source of heuristic information to guide threading decisions within a complete MLS prototype.
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Tradeoffs in buffering speculative memory state for thread-level speculation in multiprocessors.
ACM Transactions on Architecture and Code Optimization (TACO), 2(3):247–279, Sept. 2005.

[12] J. Greiner and G. E. Blelloch. A provably time-efficient parallel implementation of full specu-
lation. TOPLAS: ACM Transactions on Programming Languages and Systems, 21(2):240–285,
1999.

[13] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How much parallelism
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