
McGill University

School of Computer Science

Sable Research Group

Taming MATLAB

Sable Technical Report No. sable-2011-04

Anton Dubrau and Laurie Hendren

December 17, 2011

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

2 MATLAB - a dynamic language 6

2.1 Basics . 6

2.2 Matlab Type System . 6

2.3 Matlab Functions and Specialization . 7

2.4 Matlab Classes . 9

2.5 Function Handles . 9

2.6 Function Parameters and Arguments . 9

2.7 Wild Dynamic Features . 10

2.8 Summary . 10

3 Framework for Builtins 11

3.1 Learning about Builtins . 11

3.1.1 Identifying Builtins: . 11

3.1.2 Finding Builtin Behaviours: . 12

3.2 Specifying Builtins . 13

3.3 Specifying Builtin attributes . 14

3.4 Summary . 15

4 Tame IR 15

4.1 Specialized AST nodes . 16

4.2 Lambda Simplification . 16

4.3 Switch simplification . 16

5 Interprocedural Value Analysis and Call Graph Construction 17

5.1 The Interprocedural Analysis Framework . 18

5.2 Introducing the Value Analysis . 19

5.2.1 Mclasses, Values and Value Sets: . 19

5.2.2 Flow Sets: . 20

5.2.3 Argument and Return sets: . 20

5.2.4 Builtin Propagators: . 21

5.3 Flow Equations . 21

1

5.4 Structures, Cell Arrays and Function Handles . 21

5.4.1 struct, cell: . 22

5.4.2 function handle: . 22

5.5 The Simple Matrix Abstraction . 22

5.6 Applying the Value Analysis . 23

6 Related Work 24

7 Conclusions and Future Work 25

2

List of Figures

1 Overview of the Matlab Tamer . 5

2 Superior/inferior class relationships for Matlab . 8

3 Example mclass results for groups of Built-in binary operators 12

4 Subtree of builtin tree, showing all defined floating point builtins of Matlab 14

5 Specializations of an assignment statement . 16

6 Transforming lambda expressions . 17

7 Transforming switch statements . 17

List of Tables

I Results of Running Value Analysis . 23

3

Abstract

Matlab is a dynamic scientific language used by scientists, engineers and students world-
wide. Although Matlab is very suitable for rapid prototyping and development, Matlab users
often want to convert their final Matlab programs to a static language such as Fortran. This
paper presents an extensible object-oriented toolkit for supporting the generation of static pro-
grams from dynamic Matlab programs. Our open source toolkit, called the Matlab Tamer,
identifies a large tame subset of Matlab, supports the generation of a specialized Tame IR for
that subset, provides a principled approach to handling the large number of builtin Matlab

functions, and supports an extensible interprocedural value analysis for estimating Matlab

types and call graphs.

1 Introduction

Matlab is a popular numeric programming language, used by millions of scientists, engineers
and students worldwide [13]. Matlab programmers appreciate the high-level matrix operators,
the fact that variables and types do not need to be declared, the large number of library and
builtin functions available, and the interactive style of program development available through the
IDE and the interpreter-style read-eval-print loop. However, even though Matlab programmers
appreciate all of the features that enable rapid prototyping, they often have other ultimate goals.
Frequently their computations are quite computationally intensive and they really want an efficient
implementation. Programmers also often want to integrate their Matlab program into existing
static systems. As just one example, one of our users wanted to generate Fortran code that can
be plugged into a weather simulation environment.

This paper addresses the problem of how to provide the bridge between the dynamic realities of
Matlab and the ultimate goal of wanting efficient and static programs in languages like Fortran.
It is not realistic to support all the Matlab features, but our goal is to define and provide support
for a very large subset of Matlab which includes dynamic typing, variable numbers of input and
output arguments, support for a variety of Matlab data types including arrays, cell arrays and
structs, and support for function handles and lambda expressions.

Providing this bridge presents two main challenges. The first is that Matlab is actually quite a
complex language which has evolved over many years and which has non-standard type rules and
function lookup semantics. The second major challenge is properly dealing with the large number
of builtin and library functions, which have also been developed over time and which sometimes
have unexpected or irregular behaviour.

Our solution is an open-source extensible objected-oriented framework, implemented in Java, as
presented in Fig. 1. The overall goal of the system is to take Matlab programs as input and
produce output which is suitable for static compilation, a process that we call Taming Matlab.
Given a .m file as input, which is the entry point, the Matlab Tamer produces as output: (1) a
Tame IR for all functions (both user and library) which are reachable from the entry point, (2) a
complete call graph, and (3) an estimation of classes/types for all variables.

There are some features in Matlab that are simply too wild to handle, and so our system will
reject programs using those features, and the user will need to refactor their program to eliminate
that feature. Thus, another important goal in our work is to define as large as possible subset of
Matlab that can be tamed without user intervention.

4

McLAB Front−end

.m

McAST

Tame IR

FORTRAN
Generator Generator

X10

TOO
WILD!!

Refactor

Initial Call Graph
Builder

(Section 5)

(Section 5)

Interprocedural
Value Analysis

Built−in
Framework

(Section 3)

(Section 2)

Tame IR + classes + types + call graph

McSAF

Function Lookup
Kind Analysis

Taming
Transformations

(Section 4)

Figure 1: Overview of our Matlab Tamer. The shaded boxes indicate the components presented
in this paper. The other solid boxes correspond to existing McLab tools we use, and the dashed
boxes correspond to ongoing projects which are using the results of this paper.

The main contributions of this paper are as follows.� We present an overall design and implementation for the Matlab Tamer, an extensible
object-oriented framework which provides the bridge between the dynamic Matlab language
and a static back-end compiler.� We describe the key features of Matlab necessary for compiler developers and for tool writers
to understand Matlab and the analyses in this paper. We hope that by carefully explaining
these ideas, we can enable other researchers to also work on static tools for Matlab. Our
discussion of Matlab features also motivates our choice of the subset of Matlab that we
aim to tame.� We provide a principled approach to understanding, grouping, and analyzing the large number
of Matlab builtin functions.� We developed extensions to the McSaf [4] framework to support a lower-level and more
specialized Tame IR, suitable for back-end static code generation.� We present an interprocedural flow analysis framework that computes both abstract values
and the complete call graph. This flow analysis provides an object-oriented approach which
allows for extension and refinement of the abstract value representations.

The remainder of the paper is structured as follows. Sec. 2 introduces the key Matlab features,
Sec. 3 describes our approach to Matlab builtins, Sec. 4 describes the Tame IR and transforma-

5

tions, Sec. 5 explains our extensible and interprocedural value analysis and call graph construction,
Sec. 6 provides an overview of related work and Sec. 7 concludes.

2 MATLAB - a dynamic language

In this section we describe key Matlab semantics and features to provide necessary background
for compiler writers and tool developers to understand Matlab and its challenges, and to motivate
our approach of constructing a “tame” intermediate representation and Matlab callgraph. In each
subsection we give a description followed by annotated examples using the Matlab read-eval-print
loop. In the examples, “>>” indicates a line of user input, and the following line(s) give the printed
output.

2.1 Basics

Matlab was originally designed in the 1970s to give access to features of Fortran (like Linpack,
Eispack) without having to learn Fortran [14]. As the name Matlab(MATrix LABoratory)
suggests, Matlab is centered around numerical computation. Floating point matrices are the core
of the language. However, the language has evolved beyond just simple matrices and now has a
type system including matrices of different types, compound types including cell arrays and structs,
and function references.

Given its origins, Matlab is a language that is built around matrices. Every value is a Matrix with
some number of dimensions, so every value has an associated array shape. Even scalar values are
1× 1 matrices. Vectors are either 1×n or n× 1 matrices and strings are just vectors of characters.
Most operations are defined for matrices, for example a * b specifies matrix multiplication if both a

and b are matrices. Operators are overloaded and sometimes refer to scalar operations, for example
a * b specifies an element-wise multiplication if a is a matrix and b is a scalar.

>> size(3) % the scalar 3 is a 1x1 matrix
1 1

>> size([1 2 3]) % a 1x3 vector
1 3

>> size([5; 6; 7; 8; 9]) % a 5x1 vector
5 1

>> size('hello world') % a string , which is a 1x11 vector
1 11

>> ['a' 'b'; 'e' 'f'] % a 2−dimensional matrix of characters
ab

ef

2.2 Matlab Type System

Matlab is dynamically typed - variables need not be declared, they will take on any value that is
assigned to them. Every Matlab value has an associated Matlab class (henceforth we will use
the name mclass when referring to a Matlab class, in order to avoid confusion with the usual
notion of a class). The mclass generally denotes the type of the elements of a value. For example,
the mclass of an array of doubles is double. The default numeric mclass is double. While Matlab

also includes integer types, all numeric literals are doubles.

6

>> n = 1 % the input literal and the ouput look like an integer
1

>> class(n) % however the mclass is is really double , the default
double

>> class(1:100) % the mclass of the vector [1, 2, ..., 100] is double
double

Matlab has a set of builtin mclasses, which can be summarized as follows:� double, single: floating point values� uint8, uint16, uint32, uint64, int8, int16, in32, int64: integer values� logical: boolean values� char: character values (strings)� cell: inhomogeneous arrays� struct: structures� function handle: references to functions

Given that by default any numerical value in Matlab is a double, all values that are intended
to be of a different numeric type have to be specifically converted. This also means that when
combining a value of some non-double mclass with a value that is a double, the result will be
of the non-double mclass. This leads to the surprising semantics that adding an integer and a
double results in an integer, because that is the more specialized type.

>> x = 3; y = int8(5); % assign to x and y, y is explictly an integer
>> class(x) % the class of x is double

double

>> class(y) % the class of y is int8
int8

>> class(x+y) % the result of x+y is int8 , not double
int8

2.3 Matlab Functions and Specialization

A Matlab function is defined in a .m file which has the same name as the function.1 So, for
example, a function named foo would be defined in a file foo.m, and that file needs to be placed
either in the current directory, or in a directory on the Matlab path. A .m file can also define
subfunctions following the main (primary) function definition in a file, but those subfunctions are
only visible to the functions within the file. Functions may also be defined in a private/ directory,
in which case they are visible only to functions defined in the parent directory.

Matlab allows overriding or specializing operations and functions to operate on specific mclasses.
This is accomplished by defining the function in a file inside a specially named directory which starts
with the character @ followed by the name of the mclass. For example, one could create a specialized
function firstWord defined for Strings, by creating a file @char/firstWord.m somewhere on the
Matlab path. Functions that are specialized in such a way have precedence over non-specialized

1In the case where the name of the file and the function do not match, the name of the file takes precedence.

7

functions, but they do not have precedence over inner functions, subfunctions (defined in the same
file) or private functions (defined in the /private directory). So, in our example, if there existed
two definitions of firstWord.m, one general implementation somewhere on the Matlab path, and
one specialized implementation in a directory @char on the Matlab path, then a call to firstWord
with a char argument will result in a call to @char/firstWord.m, whereas a call with an argument
with any other mclass, will result in a call to the general firstWord.m definition.

When calling a function that has mclass-specialized versions with multiple arguments of different
mclasses, Matlab has to resolve which version of the function to call. There doesn’t exist a stan-
dard inheritance relationship between the builtin mclasses. Rather, Matlab has the notion of a
superior or inferior class. We were unable to find a succinct summary of these relationships, so
we generated a Matlab program which exercised all cases and which produced a .dot file de-
scribing all relationships, with all transitive relationships removed. Fig. 2 shows the relationships
between different builtin mclasses, showing superior classes above inferior classes. Note that some
mclasses have no defined relationship, for example, there are no defined inferior/superior relation-
ships between the different integer mclasses. Further, note that double, being the default mclass,
is inferior to integer mclasses. Also, the compound mclasses (struct and cell), are superior to all
matrix mclasses.

single

double cha r

logical

in t8 in t16 in t32 in t64 u in t8 u in t16u in t32 u in t64

function_handle

s t ruc t cell

anObject

Figure 2: Superior/inferior class relationships for Matlab

When resolving a call with multiple arguments, Matlab finds the most superior argument, and uses
its mclass to resolve the call. If multiple arguments have no defined superior/inferior relationships,
Matlab uses the leftmost superior argument. For example, if a function is called with three
arguments with the mclasses (double, int8, uint32), in that order, Matlab attempts to find a
specialized version for mclass int8. If none is found, Matlab attempts to find a non-specialized
version.

The class specialization semantics for Matlab means that if one intends to build a complete
callgraph, i.e. resolve all possible call edges, one has to find all possible Matlab classes for all
arguments, and one must safely approximate the lookup semantics of functions, including the correct
lookup of specialized functions using the mclass and the superior/inferior mclass relationships from
Fig. 2.

8

2.4 Matlab Classes

It is important to note that the mclass of a value does not completely define its type. For example,
numeric Matlab values may be real or complex, and matrices have an array shape. Both of these
properties are defined orthogonally to the notion of its mclass. Although a computation can ask
whether a value is complex or real, and can ask for the shape of an array, the lookup semantics
solely depend on the mclass, which is effectively just a name. Within the Matlab language, there
is no dedicated class of values to represent mclasses. Usually, strings (char vectors) are used to
denote mclasses. For example, ones(3,2,'single'), will call the builtin function ’ones’ and create a
3× 2 array of unit values of mclass single.

2.5 Function Handles

Matlab values with mclass function handle store a reference to a function. This allows passing
functions as arguments to other functions. Function handles can either be created to refer to an
existing function, or can be a lambda expression. Lambda expressions may also encapsulate state
from the current workspace via free variables in the lambda expression.

>> f = @sin % a function handle to a named function
f = @sin

>> g = @(x) exp(a*x) % a lambda with a free variable ”a”
g = @(x)exp(a*x)

Function handles, and especially lambdas, are useful in numerical computing, for example when
calling numerical solvers, as illustrated below.

f = @(t,y) D*t + c; % set up derivative function
span = [0 1]; % set interval
y0 = [0:0.1:10]'; % set initial value
result = ode23s(f,span,y0); % use MATLAB library function to solve ODE

When building a callgraph of a program that includes function handles, one needs to propagate
function handles through the program interprocedurally in order to find out which variables may
refer to function handles, and to find associated call edges.

2.6 Function Parameters and Arguments

Matlab uses call-by-value semantics, so that each parameter denotes a fresh copy of a variable.2

This simplifies interprocedural analyses for static compilation as calling a function cannot directly
modify local variables in the caller.

In Matlab, function arguments are optional. That is, when calling a function one may provide
fewer arguments than the function is declared with. However, Matlab does not have a declarative
way of specifying default values, nor does it automatically provide default values. That is, a
parameter corresponding to an argument that was not provided will simply be unassigned and a
runtime error will be thrown if an unassigned variable is read.

Matlab does provide the function nargin to query how many arguments have been provided to the

2Actual Matlab implementations only make copies where actually necessary, using either lazy copying when
writing to an array with reference count greater than 1, or by using static analyses to determine where to insert
copies [10].

9

currently executing function. This allows the programmer to use the value of nargin to explicitly
assign values to the missing parameters, as illustrated below.

function [result1, result2] = myFunction(arg1,arg2)

if (nargin < 1)

arg1 = 0;

end

if (nargin < 2)

arg2 = 1;

end;

...

end

As shown above, Matlab also supports assigning multiple return variables. A function call may
request any number of return values simply by assigning the call into a vector of lvalues. Just
like the function arguments, the return values don’t all need to be assigned, and a runtime error
is thrown if a requested return value is not assigned. Matlab provides the nargout function to
query how many results need to be returned.

Clearly a static compiler for Matlab must deal with optional arguments in a sound fashion.

2.7 Wild Dynamic Features

Whereas features like dynamic typing, function handles, and variable numbers of input arguments
are both widely used and possible to tame, there are other truly wild dynamic features in Matlab

that are not as heavily used, are sometimes abused, and are not amenable for static compilation.

These features include the use of scripts (instead of functions), arbitrary dynamic evaluation (eval),
dynamic calls to functions using feval, deletion of workspace variables (clear), assigning variables
at runtime in the caller scope of a function (assignin), changing the function lookup directories
during runtime (cd) and certain introspective features. Some of these can destroy all available
static information, even information associated with different function scopes.

Our approach to these features is to detect such features and help programmers to remove them
via refactorings. Some refactorings can be automated. For example, McLab already supports
refactorings to convert scripts to functions and some calls to feval to direct function calls [15].
Other refactorings may need to be done by the programmer. For example, the programmer may
use cd to change directory to access some data file, not being aware that this also changes the
function lookup order. The solution in this case is to use a path to access the data file, and not to
perform a dynamic call to cd. We have also observed many cases where dynamic eval or feval
calls are used because the programmer was not aware of the correct direct syntax or programming
feature to use.3 For example, feval is often used to evaluate a function name passed as a String,
where a more correct programming idiom would be to use a function handle.

2.8 Summary

In this section we have outlined keyMatlab features and semantics, especially concentrating on the
definition of mclass and function lookup. Our approach is to tame as much of Matlab as possible,
including support for function pointers and lambda definitions. Capturing as much as possible of

3This is at least partly due to the fact that older versions of Matlab did not support all of the modern features.

10

the evolved language is not just useful to allow access to a wider set of Matlab features for user
code. Also, a significant portion of Matlab’s extensive libraries are written in Matlab itself,
and make extensive use of some of the features discussed above. Since we implement the Matlab

lookup semantics, and allow the inclusion of the Matlab path, our callgraph will automatically
include available Matlab library functions. Thus, implementing more features will also benefit
users who do not make direct use of advanced features.

3 Framework for Builtins

One of the strengths of Matlab is in its large library, which doesn’t only provide access to a large
number of matrix computation functions, but packages for other scientific fields. Even relatively
simple programs tend to use a fair number of library functions. Many library functions are actually
implemented in Matlab code. Thus, to provide their functionality, the callgraph construction
needs to include any Matlab function on the Matlab path, if it is available. Thus we can provide
access to a large number of library functions as long as we can support the language features they
use. However, hundreds of Matlab functions, termed builtin functions, are actually implemented
in native code. We call these functions builtins or builtin functions. Every Matlab operator (such
as +, ∗) is actually a builtin function; the operations are merely syntactic sugar for calling the
functions that represent the operations (like ’plus’, ’mtimes’). Thus, for an accurate static analysis
of Matlab programs one requires an accurate model of the builtins. In this section we describe
how we have modeled the builtins and how we integrate the analysis into the static interprocedural
analysis framework.

3.1 Learning about Builtins

As a first step to build a framework of builtin functions, we need to identify builtins, and need to
find out about their behavior, especially with respect to mclasses.

3.1.1 Identifying Builtins:

To make the task of building a framework for builtins manageable, we wanted to identify the most
commonly used builtin functions and organize those into a framework. Other builtins can be added
incrementally, but this initial set was useful to find a good structure.

To identify commonly used builtins we used the McBench framework [15] to find all references to
functions that occur in a large corpus of over 3000 Matlab programs.4 We recorded the frequency
of use for every function and then using theMatlab function exist, which returns whether a name
is a variable, user-defined function or builtin, we identified which one of these functions is a builtin
function. This provided us with a list of builtin functions used in real Matlab programs, with
their associated frequency of use. We selected approximately three hundred of the most frequent
functions, excluding very dynamic functions like eval as our initial set of builtin functions.5

4This is the same set of projects that are used in [5]. The benchmarks come from a wide variety of application areas
including Computational Physics, Statistics, Computational Biology, Geometry, Linear Algebra, Signal Processing
and Image Processing.

5The complete list can be found at www.sable.mcgill.ca/mclab/tamer.html

11

3.1.2 Finding Builtin Behaviours:

In order to build a call graph it is very important to be able to approximate the behaviour of
builtins. More precisely, given the mclass of the input arguments, one needs to know a safe ap-
proximation of the mclass of the output arguments. This behaviour is actually quite complex, and
since the behaviour of Matlab 7 is the defacto specification of the behaviour we decided to take
a programmatic approach to determining the the behaviours.

We developed a set of scripts that generated random Matlab values of all combinations of builtin
mclasses, and called selected builtins using these arguments. If different random values of the same
mclass result in consistent resulting mclasses over many trials, the scripts record the associated
mclass propagation for builtins in a table, and collect functions with the same mclass propagation
tables together. Examples of three such tables are given in Fig. 3.6

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -

i16 - i16 - - - i16 i16 -

i32 - - i32 - - i32 i32 -

i64 - - - i64 - i64 i64 -

f32 - - - - f32 f32 f32 f32

f64 i8 i16 i32 i64 f32 f64 f64 f64

c i8 i16 i32 i64 f32 f64 f64 f64

b - - - - f32 f64 f64 f64

(a) plus, minus, mtimes, times, kron

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - - i8 -

i16 - i16 - - - - i16 -

i32 - - i32 - - - i32 -

i64 - - - i64 - - i64 -

f32 - - - - f32 - f32 f32

f64 i8 i16 i32 i64 f32 f64 f64 f64

c i8 i16 i32 i64 f32 f64 f64 f64

b - - - - f32 f64 f64 -

(b) mpower, power

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -

i16 - i16 - - - i16 i16 -

i32 - - i32 - - i32 i32 -

i64 - - - i64 - i64 i64 -

f32 - - - - f32 f32 f32 f32

f64 i8 i16 i32 i64 f32 f64 f64 f64

c i8 i16 i32 i64 f32 f64 f64 f64

b - - - - f32 f64 f64 -

(c) mldivide, mrdivide, ldivide, rdivide, mod, rem, mod

Figure 3: Example mclass results for groups of Built-in binary operators. Rows correspond to the
mclass of the left operand, columns correspond to the mclass of the right operand, and the table
entries give the mclass of the result. The labels i8 to i64 represent the classes int8 through int64,
f32 is single, f64 is double, c is char, and b is logical. Entries of the form “-” indicate that this
combination is not allowed and will result in a runtime error.

As compared with type rules in other languages, these results may seem a bit strange. For example,
the “-” entry for plus(int16,int32) in Fig. 3(a) shows that it is an error to add an int16 to and int32.
However adding an int64 to a double is allowed and it results in an int64. Also, note that although
the three tables in Fig. 3 are similar, they are not identical. For example, in Fig. 3(a), multiplying

6To save space we have not included the whole table, we have left out the columns and rows for unsigned integer
mclasses and for handles. All result tables can be found at www.sable.mcgill.ca/mclab/tamer.html

12

a logical with a logical results in a double, but using the power operator with two logicals is an
error. Finally, note that the tables are not always symmetrical. In particular, the f64 column and
row in Fig. 3(b) are not the same.

The reader may have noticed how the superior/inferior m-class relationships as shown in figure Fig. 2
seem to resemble the implicit type conversion rules for Matlab builtin functions. For example,
when adding an integer and a double, the result will be double. However, it is not sufficient to
model the implicit Matlab class conversion semantics by just using class-specialized functions and
their relationships. Many Matlab builtins perform explicit checks on the actual runtime types
and shapes of the arguments and perform different computations or raise errors based on those
checks.

Through the collection of a large number of tables we found that many builtins have similar high-
level behaviour. We found that some functions work on any matrix, some work on numeric data,
some only work on floats, and some work on arbitrary builtin values, including cell arrays or function
handles.

3.2 Specifying Builtins

To capture the regularities in the builtin behaviour we arranged all of the builtins in a hierarchy
- a part of the hierarchy is given in Fig. 4. Leaves of the hierarchy correspond to actual builtins
and upper levels correspond to abstract groups which share some sort of similar behaviour. The
motivation is that some flow analyses need only specify the abstract behaviour of a group, and
the flow analysis framework will automatically apply the correct (most specialized) behaviour for
a specific builtin.

To specify builtins and their relationships, we developed a simple domain-specific language. One
just needs to specify the name of a builtin. If the builtin is abstract (i.e. it refers to a group of
builtins), the parent group has to be specifies. If no parent is specified, the specified name is an
actual builtin, belonging to the group of the most recently specified builtin. This leads to a very
compact representation, allowing builtins to be specified on one line each, as illustrated by the
following snippet of the specification.

floatFunction; matrixFunction

properFloatFunction; floatFunction

unaryFloatFunction; properFloatFunction

elementalUnaryFloatFunction; unaryFloatFunction

sqrt

realsqrt

erf

...

improperFloatFunction; floatFunction

...

The builtin framework takes a specification like above, and generates a set of Java classes, whose
inheritance relationship reflects the specified tree. It also generates a visitor class, which allows
annotating methods to Builtins using the visitor pattern - a pattern that is already extensively
used in the McSaf framework [4].

We categorize the Matlab builtin functions according to many properties, such as mclass, arity,
shape, semantics. This means that different analyses or attributes can be specify at exactly the
required category. It also means that when adding builtins that do fit in already existing categories,

13

FloatFn

ProperFloatFn

ImproperFloatFn

UnaryFloatFn

BinaryFloatFn

ElementalUnaryFloatFn

ArrayUnaryFloatFn

sqr t
realsqrt

erf
erfinv

erfc
erfcinv
g a m m a

g a m m a l n
e x p
log

log2
log10

ForwardTrigonometricFn

InverseTrigonmetricFn

RadianTrigonometricFn

DegreeTrigonometricFn

HyperbolicTrigonometricFn

sin
cos
t a n
cot
s e c
csc

sind
cosd
t a n d
cotd
s e c d
cscd

sinh
cosh
t a n h
coth
s e c h
csch

RadianInverseTrigonmetricFn

DegreeInverseTrigonmetricFn

HyperbolicInverseTrigonmetricFn

as in
acos
a t a n
acot
a s e c
a c s c

as ind
acosd
a t a n d
acotd
a s e c d
acscd

as inh
acosh
a t a n h
acoth
a s e c h
acsch

SquareArrayUnaryFloatFn

logm
s q r t m
e x p m

inv

ElementalBinaryFloatFn

ArrayBinaryFloatFn

a t a n 2

hypo t

e p s

DimensionSensitiveFloatFn

MatrixLibaryFn

FacotorizationFn

c u m s u m
cumprod

DimensionCollapsingFloatFn

m o d e
prod
s u m

m e a n
eig

n o r m
rank
cond
d e t

rcond
linsolve

schur
ordschur

lu
chol
s v d
qr

Figure 4: Subtree of builtin tree, showing all defined floating point builtins of Matlab

one does not need to add all required attributes or flow equations.

3.3 Specifying Builtin attributes

It is not sufficient to just specify the existence of builtins; their behavior needs to be specified
as well. In particular, we need flow equations for the propagation of mclasses. Thus the builtin
specification language allows the addition of properties. A property is just a name, with a set of
arguments that follow it. A specific property can be defined for any builtin, and it will trigger the
addition of more methods in the generated Java code as well as the inclusion of interfaces. In this

14

way, any property defined for an abstract builtin group is defined for any builtin inside that group
as well, unless it gets overridden.

The first property we defined was the property Class. When specified for a builtin, it forces the
inclusion of the Java interface ClassPropagationDefined in the generated Java code, and will
add a method that returns an mclass flow equation. The mclass flow equation itself is specified as
an argument to the Class attribute using a small domain specific language that allows matching
argument mclasses, and returns result mclasses based on matches. An example snippet is given
below which shows the specification of m-lass flow equations for unary functions taking numeric
arguments. Functions in that group accept any numeric argument and return a result of the same
mclass (numeric>0), a char or logical argument will result in a double.

unaryNumericFunction; properNumericFunction;; Class(numeric>0, char|logical>double)

elementalUnaryNumericFunction; unaryNumericFunction; abstract

real

imag

abs

conj;; MatlabClass(logical>error,natlab)

sign;; MatlabClass(logical>error,natlab)

We have noticed some irregularities in the pureMatlab semantics, and our specification sometimes
removes those. In order to keep a record of the differences we use the MatlabClass specification
which allows us to specify the exact Matlab semantics - and thus provides an exact definition and
documentation of Matlab class semantics. In the example above, we specify that the functions
conj and sign have different Matlab semantics: they disallow logical arguments, which will
result in an error.

3.4 Summary

We have performed an extensive analysis of the behavior of Matlab builtin functions. Based on
that we developed a framework that allows to specify Matlab builtin functions, their relationships
and properties such as flow equations in a compact way. This framework is extensible both by
allowing the quick addition of more builtin functions; and by allowing to specify information and
behavior for builtin functions. This can be done either adding new properties to the framework
itself; or by implementing visitor classes. 7

4 Tame IR

As indicated in Fig. 1, we build upon the McSaf framework by adding taming transformations
and by producing a more specialized Tame IR. To produce an easily analyzable Tame IR we
have made three important additions: (1) generating more specialized AST nodes, (2) translating
switch statements to equivalent conditional statements, and (3) transforming lambda expressions
to analyzable equivalents. One might wonder why these transformations are not already part of
McSaf. The important point is that McSaf must handle all of Matlab, whereas for our Tame

7The complete specification of builtins, documentation of the specification and diagrams of all builtins is available
at www.sable.mcgill.ca/mclab/tamer.html

15

IR we can make restrictions that are reasonable for the purposes of static compilation. This allows
us to make the Tame IR more specialized and enables more simplifying transformations.

4.1 Specialized AST nodes

One goal for our Taming framework was to produce an IR that is very simple to analyze, and has
operations that are low-level enough to map fairly naturally to static languages like Fortran.
As one example, in McSaf there is only one kind of assignment statement, assigning from an
expression to an lvalue expression. For the Tame IR, we have many more specialized cases as
illustrated in Fig. 5. We also extended McSaf’s analysis framework to recognize these new IR
nodes, so flow equations can be specified for all these new nodes. Note how the Tame IR has a
different statement for a function call or an array indexing operation. In Matlab these use the
same syntax, a parameterized expression. We use kind analysis to resolve names to being a function
or variable, but there are rare cases when this is not possible. Tame Matlab will reject these cases.

TIRAbstractAssignStmt

AssignStmt

TIRAbstractAssignFromVarStmt

TIRArraySetStmt TIRCellArraySetStmt TIRDotSetStmt

TIRAsbtractAssignToListStmt

TIRArrayGetStmt TIRCellArrayGetStmt TIRDotGetStmt TIRCallStmt

TIRAssignLiteralStmt

TIRAbstractAssignToVarStmt

TIRCopyStmt TIRCreateFunctionHandleStmt

Figure 5: Specializations of an assignment statement

4.2 Lambda Simplification

Matlab supports lambda expressions. In order to be compatible with the Tame IR, their bodies
need to be converted to a three address form in some way. Matlab lambda expressions are just a
single expression (rather than, say, statement lists), so we extract the body of the lambda expression
into an external function. The lambda expression still remains, but will encapsulate only a single
call, all whose arguments are variables. For example, the lambda simplification will transform the
expression in Fig. 6(a) to the code in Fig. 6(b). The new lambda expression encapsulates a call to
the new function lambda1. Note that the first two arguments are variables from the workspace, the
remaining ones are the parameters of the lambda expression. In the analyses, we can thus model the
lambda expression using partial evaluation of the function lambda1. To make this transformation
work, the generated function must return exactly one value, and thus Tame Matlab makes the
restriction that lambda expressions return a single value (of course that value may be an array,
struct or cell array).

4.3 Switch simplification

As illustrated in Fig. 7(a), Matlab has support for very flexible switch statements. Unlike in
other languages, all case blocks have implicit breaks at the end. In order to specify multiple case

16

function outer

...

f = @(t,y) D*t + c

...

end

function outer

...

f = @(t,y) lambda1(D,c,t,y)

...

end

function r = lambda1(D,c,t,y)

r = D*t + c

end

(a) lambda (b) transformed lambda

Figure 6: Transforming lambda expressions

comparisons for the same case block, Matlab allows using cell arrays of case expressions, for
example {2, 3} in Fig. 7(a). Indeed, Matlab allows arbitrary case expressions, such as c in the
example. If c refers to a cell array, then the case will match if any element of the cell array matches.
Without knowing the static type and size of the case expressions, a simplification transformation
is not possible. Thus, to enable the static simplification shown in Fig. 7(b) we add the constraint
for the Tame Matlab that case-expressions are only allowed to be syntactic cell arrays.

switch n

case 1

...

case {2, 3}

...

case c

...

otherwise

...

end

t = n

if (isequal(t,1))

...

elseif (isequal(t,2) || isequal(t,3))

...

elseif (isequal(t,c))

...

else

...

end

(a) switch (b) transformed switch

Figure 7: Transforming switch statements

5 Interprocedural Value Analysis and Call Graph Construction

The core of the Matlab Tamer is the value analysis. It’s an extensible monolithic context-sensitive
inter-procedural forward propagation of abstract Matlab values. For every program point, it
estimates what possible values every variable can take on. Most notably it finds the possible set
of mclasses. It also propagates function handle values. This allows resolution of all possible call
edges, and the construction of a complete call graph of a tame Matlab program.

The value analysis is part of an extensible interprocedural analysis framework. It contains a set of
modules, one building on top of the other. All of them can be used by users of the framework to
build analyses.

17

� The interprocedural analysis framework (section 5.1) builds on top of the Tame IR and
the McSaf intraprocedural analysis framework. It allows the construction of interprocedural
analyses by extending an intraprocedural analysis built using the McSaf framework. This
framework works together with a callgraph object implementing the correct Matlab look up
semantics. An analysis can be run on an existing callgraph object, or it can be used to build
new callgraph objects, discovering new functions as the analysis runs.� The abstract value analysis (section 5.2), built using the interprocedural analysis frame-
work, is a generic analysis of abstract Matlab values. The implementation is agnostic to the
actual representation of abstract values, but is aware of Matlab mclasses. It can thus build
a callgraph using the correct function lookup semantics including function specialization.� We provide an implementation of composite values like cell arrays, structures and func-
tion handles, which is generic in the implementation of abstract matrix values (section 5.4).
This makes composite values completely transparent, allowing users to implement very fine-
grained abstract value analyses by only providing an abstraction for Matlab values which
are matrices.� Building on top of all the above modules and putting everything together, we provide an
abstraction for all Matlab values, which we call simple values (section 5.5). Since it includes
the function handle abstractions, this can be used by users to build a complete tame Matlab

callgraph. This is the concrete value analysis, whose results are presented in section 5.6.

5.1 The Interprocedural Analysis Framework

The interprocedural Analysis framework is an extension of the intraprocedural flow analyses pro-
vided by the McSaf framework. It is context-sensitive to aid code generation targeting static
languages like Fortran. Fortran’s polymorphism features are quite limited; every generated
variable needs to have one specific type. The backend may thus require that every Matlab vari-
able has a specific known mclass at every program point. Functions may need to be specialized for
different kinds of arguments, which a context-sensitive analysis provides at the analysis level.

An interprocedural analysis is a collection of interprocedural analysis nodes, which represent a
specific intraprocedural analysis for some function and some context. The context is usually a flow
representation of the passed arguments. Every such interprocedural analysis node produces a result
set using the contained intraprocedural analysis.

Every interprocedural analysis has an associated callgraph object, which may initially contain only
one function acting as the entry point for the program. The interprocedural analysis requires a
context or argument set for the entry point function.

The analysis starts by creating an interprocedural analysis node for the entry point function and
the associated context, which triggers the associated intraprocedural flow analysis. As the intrapro-
cedural flow analysis encounters calls to other functions, it has to create context objects for those
calls, and ask the interprocedural analysis to analyze the called functions using the given context.
The call also gets added to the set of call edges associated with the interprocedural analysis node.

As the interprocedural has to analyze newly encountered calls, the associated functions are resolved,
and loaded into the callgraph if necessary. The result is a complete callgraph, and an interprocedural
analysis.

18

The interprocedural analysis framework supports simple and mutual recursion by performing a
fixed point iteration within the first recursive interprocedural analysis node.

5.2 Introducing the Value Analysis

The abstract value analysis is a forward propagation of generic abstract Matlab values. The
mclass of any abstract value is always known.

A specific instance of a value analysis may use different representations for values of different
mclasses. For example, function handle values may be represented in a different way than numeric
values. This in turn means that values of different Matlab classes can not be merged (joined).

5.2.1 Mclasses, Values and Value Sets:

To define the value analysis independently of a specific representation of values, We first define the
set of all mclasses:

C = {double, single, logical, cell, . . .}

For each mclass, we need some lattice of values that represent estimations of Matlab values of
that class:

Vmclass = {v : v represents a Matlab value with mclass mclass},mclass ∈ C

We require that merge operations are defined, so ∀v1, v2 ∈ Vmclass, v1 ∧ v2 ∈ Vmclass.

We can not join values of different mclasses, because their actual representation may be incom-
patible. In order to allow union values for variables, i.e. to allow variables to have more than one
possible mclass, we estimate the value of a Matlab variable as a set of pairs of abstract values and
their mclasses, where the mclasses are disjoint. We call this a value set. More formally, we define
a value set as:

V alueSet = {(mclass1, v1), (mclass2, v2), . . . , (mclassn, vn) :

classi 6= classj, classi ∈ C, vi ∈ Vclassi}

Or the set of all possible value sets given a set V of lattices for every mclass.

SV = {{(mclassk, vk) : mclassi 6= mclassj, vi ∈ Vmclassi , k ∈ 0..n} : 0 ≤ n ≤ |C|}}

This is a lattice, with the join operation which is the simple set union of all the pairs, but for any
two pairs with matching mclasses, their values get joined, resulting in only one pair in the result
set.

While the notion of a value set allows the analysis to deal with ambiguous variables, still building
a complete callgraph and giving a valid estimation of types, having ambiguous variables is not
conducive to code generation for a language like Fortran. So

if (...); t = 4; else; t = ’hi’; end

results in t having the abstract value {(double, 4), (char, ’hi’)}. This example is not tame Mat-

lab.

19

5.2.2 Flow Sets:

We define a flow set as a set of pairs of variables and value sets, i.e.

flow = {(var1, s1), (var2, s2), ..., (varn, sn) : si ∈ SV , vari 6= varj}

and we define an associated look-up operation

flow(var) = s if (var, s) ∈ flow

This is a lattice whose merge operation resembles that of the value sets.

Flow sets may be nonviable, representing non-reachable code (for statements after errors, or non-
viable branches). Joining any non-bottom flow set with the nonviable set results in the viable flow
set. joining bottom and nonviable results in nonviable.

5.2.3 Argument and Return sets:

The context or argument set for the interprocedural analysis is a vector of values representing
argument values. Arguments are not value sets, but simple values v ∈ Vc with a single known mclass
c. When encountering a call, the analysis has to construct all combinations of possible argument
sets, construct a context from that and analyze the call for all such contexts. For example, if we
reach a call r = foo(a,b), with a flow set

{(a, {(double, v1), (char, v2)}, (b, {(logical, v3)})},

the value analysis constructs two contexts, from (v1, v3) and (v2, v3), and analyzes function foo

with each context. Note how the dominant argument for the first context is double, whereas it is
char for the second. If there exist mclass specialized versions for foo, then this results in call edges
to, and analysis of, two different functions.

More formally, for a call func(a1, a2, · · · , an) at program point p, with the input flow set fp, we
have the set of all possible contexts

allargs =fp(a1)× fp(a2)× · · · × fp(an) =
∏

1≤i≤n

fp(ai)

the interprocedural analysis needs to analyze func with all these contexts and merge the result,

R =
∧

arg∈allargs

analyze(func, arg)

To construct a context, the value analysis may simplify (push up) values to a more general rep-
resentation. For example, if the value abstraction includes constants, the push up operation may
turn constants into top. Otherwise, the number of contexts for any given function may grow
unnecessarily large.

The result of analyzing a function with an argument set is a vector of value sets, where every
component represents a returned variable. They are joined by component-wise joining of the value
sets. In the value analysis we require that for a particular call, the number of returned variables is
the same for all possible contexts.

20

5.2.4 Builtin Propagators:

Every implementation of the value abstractions needs to provide a builtin propagator, which pro-
vides flow equations for builtins. IfB is the set of all defined builtin functions {plus, minus, sin, . . .},
then the builtin propagator PV for some representation of values VC is a function mapping a builtin
and argument set to a result set.

PV : B ×
⋃

n∈N

V n →
⋃

n∈N

(SV)
n

The builtin framework provides tools to help implement builtin propagators by providing builtin
visitor classes. The framework also provides attributes for builtin functions, for example the class
propagation information attributes.

5.3 Flow Equations

In the following subsection we will show a sample of flow equations to illustrate the flow analysis.
We assume a statement to be at program point p, with incoming flow set fp. The flow equation for
program point p results in the new flow set f ′

p� vart = vars: f ′
p = fp \ {(vart, fp(vart))} ∪ {(var, fp(vars))}� var = l, where l is a literal with mclass cl and value representation vl:

f ′
p = fp \ {(var, fp(var))} ∪ {(var, {(cl , vl)})}� [t1,t2,. . .,tm] = func(a1,a2,. . .,an), a function call to some function func:

with

callfunc,arg =

{

PV (b, args) if func with args refers to a builtin b

analyze(f, args) if func with args refers to a function f

we set
R =

∧

args∈fp(a1)×fp(a2)×···×fp(an)

callfunc,args

then
f ′
p = fp \

m
⋃

i=1

{(ti, fp(ti))} ∪

m
⋃

i=1

{(ti, Ri)}

Note that when analyzing a call to a function in an m-file, the argument values will be pushed up.
For calls to builtins, the actual argument values will be used, effectively in-lining the behaviour of
builtin functions.

5.4 Structures, Cell Arrays and Function Handles

We implemented a value abstraction for structs, cell arrays and function handles. This abstraction
is again modular, this one with respect to the representation of matrix values (i.e. values with
mclass double, single, char, logical or integer). Structures, cell arrays and function handles
act as containers for other values, making them effectively transparent. A user may provide a
fine-grained abstraction for just matrix values and combine it with abstraction of composite values
to implement a concrete value analysis.

21

5.4.1 struct, cell:

For structures and cell arrays, there are two possible abstractions:� tuple: The exact index set of the struct/cell is known and every indexing operation can be
completely resolved statically. Then the value is represented as a set of pairs {(i1, s1), (i2, s2), .., (in, sn) :
ik ∈ I, sn ∈ SV }, where I is an index set - integer vectors for cell arrays, and names for structs.� collection: Not all indexing operations can be statically resolved, or the set of indices is
unknown. In this case, all value sets contained in the struct or cell are merged together, and
the representation is a single value set s ∈ SV .

The usual representation for a structure is a tuple, because usually all accesses (dot-expressions) are
explicit in the code and known. Cell arrays are usually a collection, because the index expressions
are usually not constant. But cell arrays tend to have homogeneous mclass values, so there is some
expectation that any access of a struct or cell results in some unambiguous mclass and thus
allows static compilation.

5.4.2 function handle:

As explained in section 2.5, function handles can be created either by referring to an existing
function, or by using a lambda expression to generate an anonymous function using a lambda
expression. The lambda simplification (presented in section 4.2) reduces lambda expressions to
single calls.

We model all function handles as sets of function handle pairs. A function handle pair consists of
a reference to a function and a vector of partial argument value sets. A function handle value may
thus refer to multiple possible function/partial argument pairs.

Given some flow set fp defined at the program point p,

g = @sin results in
f ′
p = fp \ (g, fp(g)) ∪ {(g, {(function handle, {(sin, ())})})}

g = @(t,y) lambda1(D,c,t,y) results in
f ′
p = fp \ (g, fp(g)) ∪ {(g, {(function handle, {(lambda1, (fp(D), fp(c)))})})}

Note that function handles get invoked at array get statements, rather than calls. That is because
the tame IR is constructed without mclass information, and will correctly interpret a function
handle as a variable. When the target of an array get statement is a function handle, the analysis
inserts one or more call edges at that program point, referring to the functions contained in the
function handle.

5.5 The Simple Matrix Abstraction

Using the value abstraction for structures, cell arrays and function, we implemented a concrete
value abstraction by adding an abstraction for matrix values, which we call simple matrix values.
On top of the required mclass, this abstraction merely adds constant propagation for scalar doubles,
strings (char vectors), and scalar logicals.

22

This allows the analysis of Matlab code utilizing optional function arguments using the builtin
function nargin, and some limited dynamic features utilizing strings. For example, a call like
ones(n,m,’int8’) can be considered tame.

This implementation represents the concrete value analysis that is used to construct complete
callgraphs.

5.6 Applying the Value Analysis

In order to exercise the framework, we applied it to the set of benchmarks we have previously used
for evaluating McVM/McJIT [10], a dynamic system. The benchmarks and results are given in
Table I. About half of the benchmarks come from the FALCON project [16] and are purely array-
based computations. The other half of the benchmarks were collected by the McLab team and
cover a broader set of applications and use more language features such as lambda expressions, cell
arrays and recursion. The columns labeled #Fn correspond to the number of user functions, and
the column labeled #BFn corresponds to the number of builtin functions used by the benchmark.
Note the high number of builtins. The column labeled “Wild” indicates if our system rejected
the program as too wild. Only the sdku benchmark was rejected because it used the load library
function which loads arbitrary variables from a stored file. It is likely that we should provide a
tamer version of load. The column labeled “Mclass” indicates “unique” if the interprocedural value
propagation found a unique mclass for every variable in the program. Only three benchmarks had
one or more variables with multiple different mclasses. We verified that it was really the case that
a variable had two different possible classes in those three cases.

Name Description Source #Fn #BFn Features Wild Mclass
adpt Adaptive quadrature Numerical Methods 1 17 no unique
beul Backward Eurler McLAB 11 30 lambda no unique
capr Capacitance Chalmers EEK 170 4 12 no unique
clos Transitive Closure Otter 1 10 no unique
crni Tridiagonal Solver Numerical Methods 2 14 no unique
dich Dirichlet Solver Numerical Methods 1 14 no unique
diff Light Diffraction Appelbaum (MUC) 1 13 no unique
edit Edit Distance Castro (MUC) 1 6 no unique
fdtd Finite Distance Time Domain Chalmers EEK 170 1 8 no unique
fft Fast Fourier Transform Numerical Recipes 1 13 no multi

fiff Finite Difference Numerical Methods 1 8 no unique
mbrt Mandelbrot Set McLAB 2 12 no unique
mils Mixed Integer Least Squares Chang and Zhou 6 35 no unique
nb1d 1-D Nbody Otter 2 9 no unique
nb3d 3-D Nbody Otter 2 12 no unique
nfrc Newton Fractal McLAB 4 16 no unique
nne Neural Net McLAB 3 16 cell no unique
play Minimax Search McLAB 5 26 recursive, cell no multi

rayt Raytracer Aalborg (Jensen) 2 28 no unique
sch2 Sparse Schroed. Eqn Solver McLAB 8 32 cell, lambda no unique
schr Schroedinger Eqn Solver McLAB 8 31 cell, lambda no unique
sdku Sodoku Puzzle Solver McLAB 8 load yes

sga Vectorized Genetic Algorithm Burjorjee 4 30 no multi

svd SVD Factorization McLAB 11 26 no unique

Table I: Results of Running Value Analysis

Although the main point of this experiment was just to exercise the framework, we were very
encouraged by the number of benchmarks that were not wild and the overall accuracy of the basic
interprocedural value analysis. We expect many other analyses to be built using the framework,

23

with different abstractions. By implementing them all in a common framework we will be be able
to compare the different approaches.

6 Related Work

There are several categories of related work. First, we have the immediate work upon which we
are building. The McLab project already provided the front-end and the McSaf [4] analysis
framework, which provided an important basis for the Tamer. We also learned a lot from McLab’s
previous McFor project [11] which was a first prototype Matlab to Fortran95 compiler. Mc-

For supported a smaller subset of the language, did not have a comprehensive approach to the
builtin functions, and had a much more ad hoc approach to the analyses. However, it really showed
that conversion of Matlab to Fortran95 was possible, and that Fortran95 is an excellent tar-
get language. In this paper we have gone back to the basics and defined a much larger subset of
Matlab, taken a more structured and extensible approach to building a general toolkit, tackled
the problem of a principled approach to the builtins, and defined the interprocedural analyses in a
more rigorous and extensible fashion. The next generation of McFor can now be built upon these
new foundations.

Although we were not able to find publicly available versions, there have been several excellent
previous research projects on static compilation ofMatlab which focused particularly on the array-
based subset of Matlab and developed advanced static analyses for determining shapes and sizes
of arrays. For example, FALCON [16] is a Matlab to Fortran90 translator with sophisticated
type inference algorithms. Our Tamer is targeting a larger and more modern set of Matlab that
includes other types of data structures such as cell arrays and structs, function handles and lambda
expressions, and which obeys the modern semantics of Matlab 7. We should note that FALCON
handled interprocedural issues by fully inlining all of the the code. MaJIC [2], a MATLAB Just-In-
Time compiler, is patterned after FALCON. It uses similar type inference techniques to FALCON,
but are simpler to fit the JIT context. MAGICA [8, 9] is a type inference engine developed by
Joisha and Banerjee of Northwestern University, and is written in Mathematica and is designed as
an add-on module used by MAT2C compiler [7]. We hope to learn from the advanced type inference
approaches in these projects and to implement similar approximations using our interprocedural
value analysis.

There are also commercial compilers, which are not publicly available, and for which there are no
research articles. One such product is the MATLAB Coder recently released by MathWorks [12].
This product produces C code for a subset of Matlab. According to our preliminary tests, this
product does not appear to support cell arrays except in very specific circumstances, nor does it
support a general form of lambda expressions, and was therefore unable to handle quite a few of
our benchmarks. However, the key differences with our work is that we are designing and providing
an extensible and open source toolkit for compiler and tool researchers. This is clearly not the
main goal of proprietary compilers.

There are other projects providing open source implementations of Matlab-like languages, such as
Octave [1] and Scilab [6]. Although these add valuable contributions to the open source community,
their focus is on providing interpreters and open library support and they have not tackled the
problems of static compilation. Thus, we believe that our contributions are complementary.

Other dynamic languages have had very successful efforts in defining compilable subsets. For

24

example RPython [3] uses a similar approach to ours, defining a reduced set of python that can be
statically compiled, while providing an analysis and compiler to compile that subset.

7 Conclusions and Future Work

This paper has introduced the Matlab Tamer, an extensible object-oriented framework for sup-
porting the translation from dynamic Matlab programs to a Tame IR, call graph and class/type
information suitable for generating static code. We provided an introduction to the features of
Matlab in a form that we believe helps expose the semantics of mclasses and function lookup
for compiler and tool writers. We tackled the somewhat daunting problem of handling the large
number of builtin functions in Matlab by defining an extensible hierarchy of builtins and a small
domain-specific language to define their behaviour. We defined a Tame IR and added functionality
to McSaf to produce the IR and to extend the analysis framework to handle to new IR nodes in-
troduced. Finally, we developed an extensible interprocedural analysis framework and an extensible
value analysis that we used for estimating the mclass of every variable.

Our initial experiments with the framework are very encouraging and we are now working on using
the framework to implement back-ends, and we hope that others will also use the framework for a
variety of staticMatlab tools.8 We also plan to continue developing the value analysis to add richer
abstractions for shape and other data structure properties. Finally, as a part of a larger project on
benchmarking Matlab, we hope to expand our set of benchmarks and to further examine which
features might be tamed, and to extend our set of automated refactorings.

References

[1] GNU Octave. http://www.gnu.org/software/octave/index.html.

[2] G. Almási and D. Padua. MaJIC: compiling MATLAB for speed and responsiveness. In PLDI
’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design
and implementation, pages 294–303, New York, NY, USA, 2002. ACM.

[3] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython: a step towards reconciling
dynamically and statically typed oo languages. In DLS ’07: Proceedings of the 2007 symposium
on Dynamic languages, pages 53–64, New York, NY, USA, 2007. ACM.

[4] J. Doherty. McSAF: An Extensible Static Analysis Framework for the MATLAB Language.
Master’s thesis, McGill University, December 2011.

[5] J. Doherty, L. Hendren, and S. Radpour. Kind analysis for MATLAB. In In Proceedings of
OOPSLA 2011, pages 99–118, 2011.

[6] INRIA. Scilab, 2009. http://www.scilab.org/platform/.

[7] P. G. Joisha. a MATLAB-to-C translator, 2003.

8The URL for a distribution will be released with the final paper.

25

[8] P. G. Joisha and P. Banerjee. Correctly detecting intrinsic type errors in typeless languages
such as MATLAB. In APL ’01: Proceedings of the 2001 conference on APL, pages 7–21, New
York, NY, USA, 2001. ACM.

[9] P. G. Joisha and P. Banerjee. Static array storage optimization in MATLAB. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 258–268, New York, NY, USA, 2003. ACM.

[10] N. Lameed and L. J. Hendren. Staged static techniques to efficiently implement array copy se-
mantics in a MATLAB JIT compiler. In Proceedings of the International Compiler Conference
(CC11), pages 22–41, 2011.

[11] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill University,
August 2009.

[12] MathWorks. MATLAB Coder. http://www.mathworks.com/products/matlab-coder/.

[13] C. Moler. The Growth of MATLAB and The MathWorks over Two Decades. http://www.

mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf.

[14] C. Moler. The Origins of MATLAB. http://www.mathworks.com/company/newsletters/

news_notes/clevescorner/dec04.html.

[15] S. Radpour. Understanding and Refactoring MATLAB. Master’s thesis, McGill University,
January 2012.

[16] L. D. Rose and D. Padua. Techniques for the translation of MATLAB programs into Fortran
90. ACM Trans. Program. Lang. Syst., 21(2):286–323, 1999.

26

