
McGill University
School of Computer Science

Sable Research Group

A Modular Approach to On-Stack Replacement in LLVM

Sable Technical Report No. sable-2012-01-rev2

Nurudeen A. Lameed and Laurie Hendren

(Original version, March 28, 2012, Revised version (rev1: Sept 14, 2012, rev2: November 22, 2012))

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 The OSR API 5

2.1 Adding the OSR Point Inserter 6

2.2 Adding the OSR Transformation Pass 6

2.3 Initialization and Finalization .. . 7

3 Implementation 8

3.1 Implementation Challenges .. . 8

3.2 OSR Point .. . 9

3.3 The OSR Pass 9

3.3.1 Saving Live Values .. 11

3.4 Restoration of State and Recompilation 12

3.4.1 Restoration of State .13

3.4.2 Recompilation . 15

3.5 Inlining Support 15

4 Case Study: Dynamic Inlining 15

4.1 The McJIT dynamic inliner 16

4.2 Experimental Evaluation 17

4.2.1 Cost of Code Instrumentation and OSR .. . 20

4.2.2 Effectiveness of Selective Inlining With OSR 20

5 Related Work 21

6 Conclusions and Future Work 22

1

List of Figures

1 Retrofitting an existing JIT with OSR .. 5

2 A Code Transformer 7

3 Sample Code for Inserting an OSR Point 7

4 The OSR Pass Interface 8

5 Initialization and Finalization in the JIT’smainfunction . 8

6 A CFG of a loop with no OSR points. .. 10

7 The CFG of the loop in Figure 6 after inserting an OSR point. 10

8 The transformed CFG of the loop in Figure 7 after running the OSR Pass. 11

9 OSR Instrumentation .. 12

10 State Management Cycle 12

11 A CFG of a loop of a running function before inserting the blocks for state recovery. 13

12 The CFG of the loop represented by Figure 11 after inserting the state recovery blocks. . . . 14

13 A loop nest showing the placement of OSR point using the closest or outer-most Strategies . 17

List of Tables

I The Benchmarks .. . 18

II Experimental Results (lower execution ratio is better) 19

2

Abstract

On-stack replacement (OSR) is a technique that allows a virtual machine to interrupt running code
during the execution of a function/method, to re-optimize the function on-the-fly using an optimizing JIT
compiler, and then to resume the interrupted function at thepoint and state at which it was interrupted.
OSR is particularly useful for programs with potentially long-running loops, as it allows dynamic opti-
mization of those loops as soon as they become hot.

This paper presents a modular approach to implementing OSR for the LLVM compiler infrastruc-
ture. This is an important step forward because LLVM is gaining popular support, and adding the OSR
capability allows compiler developers to develop new dynamic techniques. In particular, it will enable
more sophisticated LLVM-based JIT compiler approaches. Indeed, other compiler/VM developers can
use our approach because it is a clean modular addition to thestandard LLVM distribution. Further, our
approach is defined completely at the LLVM-IR level and thus does not require any modifications to the
target code generation.

The OSR implementation can be used by different compilers tosupport a variety of dynamic opti-
mizations. As a demonstration of our OSR approach, we have used it to support dynamic inlining in
McVM. McVM is a virtual machine for MATLAB which uses a LLVM-based JIT compiler. MATLAB
is a popular dynamic language for scientific and engineeringapplications that typically manipulate large
matrices and often contain long-running loops, and is thus an ideal target for dynamic JIT compilation
and OSRs. Using our McVM example, we demonstrate reasonableoverheads for our benchmark set,
and performance improvements when using it to perform dynamic inlining.

1 Introduction

Virtual machines (VMs) with Just-in-Time (JIT) compilers have become common place for a wide variety of
languages. Such systems have an advantage over static compilers in that compilation decisions can be made
on-the-fly and they can adapt to the characteristics of the running program. On-stack replacement (OSR) is
one approach that has been used to enable on-the-fly optimization of functions/methods [12, 10, 18, 21].
A key benefit of OSR is that it can be used to interrupt a long-running function/method (without waiting
for the function to complete), and then restart an optimized version of the function at the program point and
state at which it was interrupted.

LLVM is an open compiler infrastructure that can be used to build JIT compilers for VMs [14, 1]. It
supports a well-defined code representation known as the LLVM IR, as well as supporting a large number of
optimizations and code generators. LLVM has been used in production systems, as well as in many research
projects. For instance, MacRuby is an LLVM-based implementation of Ruby on Mac OS X core technolo-
gies1; Rubinus2 is another implementation of Ruby based on LLVM JIT. Unladen-swallow is a fast LLVM
implementation of Python3. VMKit 4 is an LLVM-based project that works to ease the development of new
language VMs, and which has three different VMs currently developed(Java, .Net, and a prototype R im-
plementation). A common theme of these diverse projects is that they could benefit from further on-the-fly
optimizations, but unfortunately LLVM does not support OSR-based optimizations. Indeed, we agree with
the developers of VMKit who believe that using OSR would enable them to speculate and develop runtime
optimizations that can improve the performance of their VMs5. Thus, given the value of and need for OSR
and the wide-spread adoption of LLVM in both industry and academia, our paper aims to fill this important
void and provide an approach and modular implementation of OSR for LLVM.

1http://macruby.org/
2http://rubini.us
3http://code.google.com/p/unladen-swallow/
4Previously http://vmkit.llvm.org and now http://vmkit2.gforge.inria.fr
5Private communication with the authors, October 2012.

3

Implementing OSR in a non-Java VM and general-purpose compiler toolkits such as LLVM requires
novel approaches. Some of the challenges to implementing OSR in LLVM include:

(1) At what point should the program be interrupted and how should such points be expressed within the
existing design of LLVM, without changing the LLVM IR?

(2) The static single-assignment (SSA) nature of the LLVM IR requires correct updates of control flow
graphs (CFGs) of LLVM code, thus program transformations to handle OSR-related control flow must be
done carefully and fit into the structure imposed by LLVM.

(3) LLVM generates a fixed address for each function; how then should thecode of a new version of the
running function be made accessible at the old address without recompiling thecallers of the function?
This was actually a particularly challenging issue to solve.

(4) The OSR implementation must provide a clean integration with LLVM’s capabilities for function inlin-
ing.

(5) As there are many users of LLVM, the OSR implementation should not require modifications to the ex-
isting LLVM installations. Ideally the OSR implementation could just be added to an LLVM installation
without requiring any recompilation of the installation.

We addressed these and other challenges by developing a modular approach to implementing OSR that
fits naturally in the LLVM compiler infrastructure.

To illustrate a typical use of our OSR implementation, we have used the implementationto support a
selective dynamic inlining optimization in a MATLAB VM. M ATLAB [15] is a popular platform for pro-
gramming scientific applications [17]. It is a dynamic language designed for manipulation of matrices and
vectors, which are common in scientific applications [9]. The dynamic features of the language, such as dy-
namic typing and loading, contribute to its appeal but also prevent efficientcompilation. MATLAB programs
often have potentially long-running loops, and because its optimization can benefit greatly from on-the-fly
information such as types and array shapes, we believe that it is an ideal language for OSR-based optimiza-
tions. Thus, we wanted to experiment with this idea in McVM/McJIT [7, 16], an open source VM and JIT
for MATLAB , which is built upon LLVM.

The main contributions of this paper are:

Modular OSR in LLVM: We have designed and implemented OSR for LLVM. Our approach provides
a clean API for JIT compiler writers using LLVM and clean implementation of thatAPI, which inte-
grates seamlessly with the standard LLVM distribution and that should be useful for a wide variety of
applications of OSR.

Integrating OSR with inlining in LLVM: We show how we handle the case where the LLVM inliner in-
lines a function that contains OSR points.

Using OSR inMcJIT for selective dynamic inlining: In order to demonstrate the effectiveness of our OSR
module, we have implemented an OSR-based dynamic inliner that will inline functioncalls within dy-
namically hot loop bodies. This has been completely implemented in McVM/McJIT.

Experimental measurements of overheads/benefits:We have performed a variety of measurements on
a set of 16 MATLAB benchmarks. We have measured the overheads of OSRs and selective dynamic
inlining. This shows that the overheads are usually acceptable and that dynamic inlining can result in
performance improvements.

4

The rest of the paper is organized as follows. In Section 2, we outline the application programming in-
terface (API) and demonstrate the usage our OSR module, from a JIT compiler writer’s point of view. In
Section 3, we describe the implementation of our API and the integration of inlining. In Section 4, we
present a case study of using the OSR support to implement a selective anddynamic inlining of function
calls in long-running loops in the McJIT compiler for MATLAB . Section 5 reviews some related work upon
which we are building. We conclude the paper and highlight some future work in Section 6.

2 The OSR API

The key objective of this work was to build a modular system with a clean interface that is easy to use for
VM and JIT compiler writers. In this section, we present the API of our OSRmodule and how JIT compiler
developers who are already building JITs/VMs with LLVM can use our module to add OSR functionality to
their existing JITs. We provide some concrete examples, based on our McJIT implementation of OSR-based
dynamic inlining.

Figure 1(a) represents the structure of a typical JIT developed using LLVM. LLVM CodeGenis the front-
end that produces LLVM IR for the JIT. The JIT compiler may perform transformations on the IR via the
LLVM Optimizer. This is typically a collection of transformation and optimization passes that are run on
the LLVM IR. The output (i.e., the transformed LLVM IR) from the optimizer is passed to the target code
generator,Target CodeGen, that produces the appropriate machine code for the code in LLVM IR.

In Figure 1(b), we show a JIT (such as that shown in Figure 1(a)) thathas been retrofitted with OSR sup-
port components (the shaded components). We describe the functions ofInserterandOSR Passshown in
Figure 1(b) shortly. In Section 3, we present the implementation of these components and how they interact
with the JIT to provide OSR support to the JIT.

LLVM CodeGen

LLVM Optimizer

LLVM IR

Target CodeGen

LLVM IR

Machine Code

(a) Existing JIT

LLVM CodeGen

InserterInserter

LLVM Optimizer

LLVM IR

OSR PassOSR Pass

LLVM IR

Target CodeGen

LLVM IR

Machine Code
(b) Retrofitted JIT

Figure 1: Retrofitting an existing JIT with OSR

5

2.1 Adding the OSR Point Inserter

To support OSR, a JIT compiler must be able to mark the program points (henceforth called OSR points)
where a running program may trigger OSR. A developer can add this capability to an existing JIT by mod-
ifying the compiler to call thegenOSRSignalfunction, provided by our API, to insert an OSR point at the
beginning of a loop during the LLVM code generation of the loop. The LLVMIR is in SSA form. As
will be shown later, an OSR point instruction must be inserted into its own basic block, which must be
preceded by the loop header block containing all theφ nodes. This ensures that if OSR occurs at runtime,
the continuation block can be efficiently determined.

In addition to marking the spot of an OSR point, the JIT compiler writer will want toindicate what trans-
formation should occur if that OSR point triggers at runtime. Thus, thegenOSRSignalfunction requires an
argument which is a pointer to acode transformerfunction - i.e. the function that will perform the required
transformation at runtime when an OSR is triggered. A JIT developer that desires different transformations
at different OSR points can simply define multiple code transformers, and then insert OSR points with the
desired transformation for each point. A valid transformer is a function pointer of the typeTransformerthat
takes two arguments as shown below.

typedef unsigned int OSRLabel;
typedef bool
(* Transformer) (llvm::Function * , OSRLabel);

The first argument is a pointer to the function to be transformed. The second argument is an unsigned integer
representing the label of the OSR point that triggered the current OSR event. The code of the transformer is
executed if the executing function triggers an OSR event at a corresponding label. A user may specify anull
transformer if no transformation is required. As an example of a transformation, our OSR-based dynamic in-
liner (Section 4.1) uses the transformer shown in Figure 2. It inlines all callsites annotated with labelosrPt.

After the inliner finishes, the OSR pass is executed over the new version ofthe function to process, any
remaining OSR points. Finally, as shown in lines 13 – 18 of the figure, some LLVM optimization passes are
run on the new version of the function.

To illustrate with a concrete example of inserting OSR points, our OSR-based dynamic inlining imple-
mentation uses the code snippet shown in Figure 3 to insert conditional OSR points after generating the loop
header block containing onlyφ nodes. In the code snippet (lines 6 – 11), a new basic blockosr is created
and the call togenOSRSignalinserts an OSR point into the block. The rest of the code inserts a conditional
branch instruction intotargetand completes the generation of LLVM IR for the loop.

2.2 Adding the OSR Transformation Pass

After modifying the JIT with the capability to insert OSR points, the next step is to add the creation and
running of the OSR transformation pass. When the OSR pass is run on a function with OSR points, the pass
automatically instruments the function by adding the OSR machinery code at all theOSR points (note that
the JIT-compiler developer only has to invoke the OSR pass, the pass itself isprovided by our OSR module).

The OSR pass is derived from the LLVM function pass. Figure 4 shows asimplified interface of the pass.
An LLVM front-end, that is, an LLVM code generator, can use the following code snippet to run create and
run the OSR pass on a functionF after the original LLVM optimizer in Figure 1(b) finishes.

llvm::FunctionPass * OIP = osr::createOSRInfoPass();
OIP->runOnFunction(* F);

6

1 bool inlineAnnotatedCallSites (llvm :: Function*F,
2 osr :: OSRLabel osrPt){
3 ...
4 llvm :: McJITInliner inliner (FIM, osrPt , TD);
5 inliner.addFunction (inlineVersion);
6 inliner.inlineFunctions ();
7 ...
8 // create and run the OSR Pass
9 llvm :: FunctionPassManager FPM(M);

10 FPM.add(createOSRInfoPass());
11 FPM.run(*runningVersion);
12

13 // create and run LLVM optimization passes
14 llvm :: FunctionPassManager OP(M);
15 OP.add(llvm:: createCFGSimplificationPass ());
16 OP.add(llvm:: ConstantPropagationPass ());
17 ...
18 OP.run(* runningVersion); ...
19 }

Figure 2: A Code Transformer

1 ...
2 // get the loop header block−−− the target
3 llvm :: BasicBlock* target = builder.GetInsertBlock ();
4 llvm :: Function* F = target−>getParent();
5 // create the osr instruction block
6 llvm :: BasicBlock* osrBB =
7 llvm :: BasicBlock :: Create(F−>getContext(), ”osr ”, F);
8 // now create an osr pt and register a transformer
9 llvm :: Instruction* marker =

10 osr :: Osr ::genOSRSignal(osrBB,
11 inlineAnnotatedCallSites ,
12 loopInitializationBB);
13 ...
14 // create the osr condition instruction
15 llvm :: Value *osrCond = builder.CreateICmpUGT(counter,
16 getThreshold (context), ”ocond”);
17 builder.CreateCondBr (osrCond, osrBB, fallThru);
18 ...

Figure 3: Sample Code for Inserting an OSR Point

The OSR pass can also be added to an LLVM function pass manager.

2.3 Initialization and Finalization

To configure the OSR subsystem during the JIT’s start-up time, the JIT developer must add a call to the
methodOsr::init. This method initializes the data structures and registers the functions used later by the
OSR subsystem. The JIT developer must also add a call to the methodvoid Osr:releaseMemory()
to de-allocate the memory allocated by the OSR system. The code snippet in Figure 5 show how an existing

7

namespace osr {
class OSRInfoPass : public llvm::FunctionPass {
public:

OSRInfoPass();
virtual bool runOnFunction(llvm::Function& F);
virtual const char * getPassName() const
{ return "OSR Info Collection Pass";} ...

};
llvm::FunctionPass * createOSRInfoPass();

}

Figure 4: The OSR Pass Interface

JIT can initialize and release the memory used by the OSR subsystem. As shownin line 4, the arguments to
Osr::init are: a JIT execution engine and the module. The execution engine and the module are used to
register the functions used by the system.

1 int main(int argc , const char** argv) {
2 ...
3 // initialize the OSR data structures ...
4 Osr :: init (EE, module);
5

6 ... // JIT ' s Code
7

8 // free up the memory used for OSR ...
9 Osr :: releaseMemory();

10 ...
11 return 0;
12 }

Figure 5: Initialization and Finalization in the JIT’smainfunction

3 Implementation

In the previous section, we outlined our API which provides a simple and modular approach to adding
OSR support to LLVM-based JIT compilers. In this section, we present our implementation of the API.
We first discuss the main challenges that influenced our implementation decisions, and our solution to those
challenges.

3.1 Implementation Challenges

Our first challenge was how to mark OSR points. Ideally, we needed an instruction to represent an OSR point
in a function. However, adding a new instruction to LLVM is a non-trivial process and requires rebuilding the
entire LLVM system. It will also require users of our OSR module to recompile their existing LLVM instal-
lations. Hence, we decided to use the existing call instruction to mark an OSR point. This also gives us some
flexibility as the signature of the called function can change without the need torebuild any LLVM library.

A related challenge was to identify at which program points OSR instructions should be allowed. We
decided that the beginning of loop bodies were ideal points because we could ensure that the control flow
and phi-nodes in the IR could be correctly patched in a way that does not disrupt other optimization phases
in LLVM.

8

The next issue that we considered was portability. We decided to implement atthe LLVM IR, rather than
at a lower level, for portability. This is similar to the approach used in Jikes research VM [10], which uses
byte-code, rather than machine code to represent the transformed code. This approach also fits well with the
extensible LLVM pass manager framework.

A very LLVM-specific challenge was to ensure that the code of the new version is accessible at the old
address without recompiling all the callers of the function. Finding a solution tothis was really a key point
in getting an efficient and local solution.

Finally, when performing an OSR, we need to save the current state (i.e., theset of live values) of an
executing function and restore the same state later. Thus, the challenge is how to restore values while at the
same time keeping the SSA-form CFG of the function consistent.

We now explain our approach which addresses all these challenges. Inparticular, we describe the imple-
mentation ofInserterandOSR Passshown in Figure 1(b).

3.2 OSR Point

In Section 2.1, we explained how a developer can add the capability to insertOSR points to an existing JIT.
Here we describe the representation of OSR points.

We represent an OSR point with a call to a native function named@ osrSignal. It has the following
signature.

declare void @__osrSignal(i8* , i64)

The first formal parameter is a pointer to some memory location. A corresponding argument is a pointer
to the function containing the call instruction. This is used to simplify the integrationof inlining; we discuss
this in detail in Section 3.5. The second formal parameter is an unsigned integer. A function may have
multiple OSR points; the integer uniquely identifies an OSR point.

The OSR module maintains a table named OSR function table (oft). The table maps a function in LLVM
IR onto a set of OSR-point entries. The set can grow or shrink dynamically as new OSR points are added
(e.g., after a dynamic inlining) and old OSR points removed (e.g., after an OSR). An entrye in the set is an
ordered pair.

e = (osr call inst, codetransformer)

The first member of the pair —osr call inst — is the call instruction that marks the position of an OSR
point in a basic block. The second is thecodetransformer(Section 2.1).

3.3 The OSR Pass

The OSR pass in Figure 1(b) is a key component of our OSR implementation. Asshown in Figure 4, the
OSR transformation pass is derived from the LLVMFunctionPasstype. Like all LLVM function passes, the
OSR pass runs on a function via itsrunOnFunction(Figure 4) method.

The pass first inspects a function’soft to determine if it has at least one OSR point. It returns immediately
if the function has no OSR points. Otherwise, it instruments the function at each OSR point. Figure 6
shows a simplified CFG of a loop with no OSR points. The basic block labelledLH1 is the loop header.LB
contains the code for the body of the loop; and the loop exits atLE.

Figure 7 shows a simplified CFG for the loop in Figure 6 with an OSR point. This represents typical
code an LLVM front-end will generate with OSR enabled. Insertion of OSRpoints is performed byInserter

9

ENTRY:
...

LH1:
...

br i1 %loopCond,
label %LB, label %LE

LE:
...

LB:
...

br label %LH1

false true

Figure 6: A CFG of a loop with no OSR points.

shown in Figure 1(b). The loop header block (nowLH0 in the Figure 7) terminates with a conditional branch
instruction that evaluates the Boolean flag%osrCondand branches to either the basic block labelledOSRor
to LH1. LH1 contains the loop termination condition instruction.LB contains the code for the body of the
loop; the loop exits atLE.

ENTRY:
...

LH0:
...

br i1 %osrCond,
label %OSR, label %LH1

OSR:

call void @ osrSignal(...)

br label %LH1

LH1:
...

br i1 %loopCond,
label %LB, label %LE

LE:
...

LB:
...

br label %LH0

true
false

false true

Figure 7: The CFG of the loop in Figure 6 after inserting an OSR point.

The OSR compilation pass performs a liveness analysis on the SSA-form CFG to determine the set of live
variables at a loop header such asLH0 in Figure 7. It creates, using the LLVM cloning support, a copy of the
function named thecontrol version. As we explain later in this section, this is used to support the transition
from one version of the function to another at runtime. It also creates a descriptor [12, 10] for the function.
The descriptor contains useful information for reconstructing the state ofa function during an OSR event.
In our approach, a descriptor is composed of:

• a pointer to the current version of the function;

10

• a pointer to the control version of the function;
• a map of variables from the original version of the function onto those in thecontrol version; and
• the sets of the live variables collected at all OSR points.

ENTRY:
...

LH0:
...

br i1 %osrCond,
label %OSR, label %LH1

OSR:

call void @ osrSignal(...)

store ...
...

ret ...

LH1:
...

br i1 %loopCond,
label %LB, label %LE

LE:
...

LB:
...

br label %LH0

true
false

false true

Figure 8: The transformed CFG of the loop in Figure 7 after running the OSRPass.

After running the OSR pass on the loop shown in Figure 7, the CFG will be transformed into that shown
in Figure 8. Notice that in the transformed CFG, the OSR block now contains thecode to save the runtime
values of the live variables and terminates with a return statement. We now describe in detail the kinds of
instrumentation added to an OSR block.

3.3.1 Saving Live Values

To ensure that an executing function remains in a consistent state after a transition from the running version
to a new version, we must save the current state of the executing function.This means that we need to
determine the live variables at all OSR points where an OSR transition may be triggered. Dead variables are
not useful.

As highlighted in Section 2, we require that the header of a loop with an OSR point always terminates
with a conditional branch instruction of the form:

br i1 %et, label %osr, label %cont

This instruction tests whether the function should perform OSR. If the test succeeds (i.e.,%etis set totrue),
the succeeding block beginning at label%osrwill be executed and OSR transition will begin. However, if
the test fails, execution will continue at the continuation block%cont. This is the normal execution path.

In %osr block, we generate instructions for saving the runtime value of each live variable computed by
the liveness analysis. The code snippet in Figure 9 shows a typicalosr block in a simplified form.

The call to@ osrSignal(f, i64 1)in line 2 marks the beginning of the block. Following this call is a
sequence ofstore instructions. Each instruction in the sequence saves the runtime value of a live variable
into a global variable@live*. The last store instruction stores the value 1 into@osr flag. If @osr flag is

11

1 osr :
2 call void @ osrSignal(f , i64 1)
3 store double%7,double* @live
4 store double%8,double* @live1
5 ...
6 store i32 1, i32* @osrflag
7 call void @ recompile(f , i32 1)
8 call void @f(...)
9 call void @ recompileOpt(f)

10 ret void

Figure 9: OSR Instrumentation

non-zero at runtime, then the executing function is performing an OSR transition. We explain the functions
of the instructions in lines 7 – 10 later.

The saved variables are mapped onto the variables in the control version.This is a key step as it allows
us to correctly restore the state of the executing function during an OSR.

3.4 Restoration of State and Recompilation

The protocol used to signify that a function is transitioning from the executing version to a new version,
typically, a more optimized version6, is to set a global flag. The flag is reset after the transition.

At runtime, the running function executes the code to save its current state.It then calls the compiler to
recompile itself and, if a codetransformeris present, the function is transformed before recompilation. The
compiler retrieves the descriptor of the function and updates the running version using thecontrol version
as illustrated in Figure 10.

fo

fc

fo

fc

CT :
fc = clone(fo)OT :

move(fc, fo)

Figure 10: State Management Cycle

Let fo denote the original version of the LLVM IR of the running function, andfc denote the control
version that was generated by cloning the original version. We denote theset of all the live variables offo at
the program pointpo with Vo(po). Similarly,Vc(pc) denotes the state of the control version at the matching
program pointpc. Becausefc is a copy offo, it follows thatVo(po) ≡ Vc(pc).

Figure 10 illustrates the state management cycle of the running function. The function starts with version
fo. At compilation time7 (shown as eventCT in Figure 10), we clonefo to obtainfc. We then compilefo.
At runtime, when an OSR (eventOT in Figure 10) is triggered by the running function, we first remove the
instructions info and thenmovethe code (LLVM IR) offc into fo, transform/optimize as indicated by the
OSR transform, and then recompilefo and execute the machine code offo.

6It may also transition from an optimized version to a less optimized version depending on the application.
7This includes the original compilation and all subsequent recompilations due to OSR.

12

ENTRY:
...

LH1:

%i = phi i64
[1, %Entry], [%i.u, %LB]

...
br i1 %loopCond,

label %LB, label %LE

LE:
...

LB:...

%i.u = add i64 %i, 1
...

br label %LH1

false
true

Figure 11: A CFG of a loop of a running function before inserting the blocks for state recovery.

This technique ensures that the machine code of the running function is always accessible at the same
address. Hence, there is no need to recompile its callers: the machine code of the transformedfo is imme-
diately available to them at the old entry point of the running function.

To locate the continuation program pointpo (po ≡ pc), the compiler recovers the OSR entry of the current
OSR identifier; using the variable mappings in the descriptor, finds the instruction that corresponds to the
current OSR point. From this, it determines the basic block of the instruction.And since the basic block of
an OSR point instruction has one and only one predecessor, the compiler determines the required target,po.

3.4.1 Restoration of State

To restore the state of the executing function, we create a new basic block namedprolog and generate in-
structions to load all the saved values in this block; we then create another basic block that merges a new
variable defined in theprolog with that entering the loop via the loop’s entry edge. We ensure that a loop
header has only two predecessors and because LLVM IR is in SSA form,the new block consists ofφ nodes
with two incoming edges: one from the initial loop’s entry edge and the other from prolog. Theφ nodes
defined in the merger block are used to update the users of an instruction that corresponds to a saved live
variable in the previous version of the function.

Figure 11 shows a typical CFG of a running function before inserting the code for recovering the state of
the function. The basic blockLH1 defines aφ node for an induction variable (%i in Figure 11) of a loop in
the function. The body of the loop,LB, contains aadd instruction that increments the value of%i by 1.

Assuming that we are recovering the value of%i from the global variable@live i, Figure 12 shows the
CFG after inserting the blocks for restoring the runtime value of%i. In this figure,prolog contains the
instruction that will load the runtime value of%i from the global variable@live i into % i; similarly, the
basic blockprolog.exitcontains aφ instruction (% m i) that merges% i from prolog and the value 1 from
ENTRY. This variable (i.e.,% m i) replaces the incoming value (1) fromENTRYin the definition of%i in
the loop header (LH1) as shown in Figure 12. Notice that the incoming blockENTRYhas been replaced
with prolog.exit(PE) in the definition of%i in LH1.

13

prolog.entry:
...

br i1 %ocond,
label %ENTRY, label %prolog

prolog:

% i = load i64* @live i
...

br label %prolog.exit

ENTRY:
...

LH1:

%i = phi i64
[% m i, %PE], [%i.u, %LB]

...
br i1 %loopCond,

label %LB, label %LE

LE:
...

prolog.exit(PE):

% m i = phi i64

[1, %Entry], [% i, %prolog]
...

br label %LH1

LB:...

%i.u = add i64 %i, 1
...

br label %LH1

false
true

Figure 12: The CFG of the loop represented by Figure 11 after inserting the state recovery blocks.

Fixing the CFG to keep the SSA form consistent is non-trivial. A simple replacement of a variable with
a new variable does not work. Only variables dominated by the definitions in the merger block need to be
replaced. Newφ nodes might be needed at some nodes with multiple incoming edges (i.e., only thosethat
are in the dominance frontier of the merger block). Fortunately, the LLVM framework provides an SSA
Updater that can be used to update the SSA-form CFG. We exploited the SSAUpdater to fix the CFG.

To complete the state restoration process, we must fix the control flow to ensure that the function continues
at the correct program point. For this, we insert a new entry block namedprolog.entrythat loads@osr flag
and tests the loaded value for zero to determine, during execution, whetherthe function is completing an osr
transition or its being called following a recent completion of an OSR. The content of the new entry block
is shown in the following code snippet.

1 prolog.entry :
2 %osrPt =load i32* @osrflag
3 %cond =icmp eq i32%osrPt, 0
4 br i1 %cond,label %entry, label %prolog

If %osrP t is non-zero, the test succeeds and the function is completing an OSR; it will branch to%prolog.
In %prolog, all the live values will be restored and control will pass to the target block: the loop header
where execution will continue. However, if%osrP t is zero, the function is not currently making a transition:
it is being called anew. It will branch to the original entry, where its execution will continue.

As shown in Figure 12, the basic blockprolog.entryterminates with a conditional branch instruction. The
new version of the running function will begin its execution fromprolog.entry. After executing the block, it
will continue at eitherprologor ENTRY(the original entry block of the function) depending on the runtime
value of%cond.

14

3.4.2 Recompilation

We now return to the instructions in lines 7 – 10 of Figure 9. The instruction in line7 calls the compiler to
perform OSR and recompilef using the code transformer attached to OSR point 1. After that, functionf

will call itself (as shown in line 8), but this will execute the machine code generated for its new version. This
works because the LLVM recompilation subsystem replaces the instruction at the entry point of functionf
with a jump to the entry point of the new version. During this call, the function completes OSR and resumes
execution. The original call will eventually return to the caller any return value returned by the recursive call.

Normally after an OSR, subsequent calls (if any) off executes the code in theprolog.entry, which tests
whether or not the function is currently performing an OSR. However, thistest succeeds only during an
OSR transition; in other words, the execution of the code inprolog.entryafter an OSR has been completed
is redundant. To optimize away theprolog.entry, we again call the compiler (line 9 in Figure 9) but this
time, the compiler only removes theprolog.entryand consequently, other dead blocks, and recompilef . In
Section 4.2, we compare the performance of our benchmarks when theprolog.entryis eliminated with the
performance of the same benchmarks when theprolog.entryis not eliminated.

3.5 Inlining Support

Earlier, we discussed the implementation of OSR points and how the OSR transformation pass handles OSR
points. However, we did not specify how we handled OSR points inserted into a function from an inlined
call site. A seamless integration of inlining optimization poses further challenges. When an OSR event is
triggered at runtime, the runtime system must retrieve the code transformer attached to the OSR point from
theoft entry of the running function. How then does the system know the original function that defined an
inlined OSR point? Here we explain how our approach handles inlining.

Remember that an OSR point instruction is a call to a function. The first argument is a pointer to the
enclosing function. Therefore, when an OSR point is inlined from another function, the first argument to
the inlined OSR point (i.e., a call instruction) is a function pointer to the inlined function. From this, we can
recover thetransformerassociated with this point by inspectingoft using this pointer. We can then modify
these OSR points by changing the first argument into a pointer to the currentfunction and assign a new ID
to each inlined OSR point. We must also update theoft entry of the caller to reflect these changes.

We distinguish two inlining strategies: static and dynamic. In static inlining, a call siteis expanded before
executing thecaller. This expansion may introduce a new OSR point from thecallee into the caller and
invalidates all the state information collected for the existing OSR points. We regenerate this information
after any inlining process.

Dynamic inlining concerns inlining of call sites in a running function during the execution of the function
after observing, for some time, its runtime behaviour. Typically, we profile a program to determinehot call
sites and inline those subject to some heuristics. We used OSR support to implement dynamic inlining of
call sites in long-running loops. We discuss this implementation next.

4 Case Study: Dynamic Inlining

In this section we present an example application of our OSR approach to support selective dynamic inlining
in McJIT. We selected this as our first application of OSR because the inliningcan provide larger scopes for
subsequent optimizations.

15

4.1 The McJIT dynamic inliner

In our approach to dynamic inlining, we first modified McJIT identify potentialinlining candidates. In our
case, a call is considered an inlining candidate if the body of the called function is less than 20 basic blocks,
or it is less than 50 basic blocks and it has an interpreter environment associated with the body (in our case
inlining can reduce the interpreter environment overheads).

We then modified McJIT so that loops which contain potential inlining candidatesare instrumented with
with a hotness counter and a conditional which contains an OSR point (where the OSR point is associated
with a new McJIT inlining transformer). When an OSR triggers (i.e. the hotnesscounter reaches a thresh-
old), the McJIT inlining transformation will inline all potential inlining candidates associated with that OSR
point.

There are many strategies for determining which loops should be given an OSR point, and a JIT devel-
oper can define any strategy that is suitable for his/her situation. For McJIT, we defined two such general
strategies, as follows:

CLOSEST Strategy: The LLVM front-end is expected to insert OSR points only in the loop that is closest
to the region that is being considered for optimization. For example, to implement adynamic inlining
optimization using this strategy, an OSR point is inserted at the beginning of the closest loop enclosing
an interesting call site. This strategy is useful for triggering an OSR as early as possible, i.e., as soon as
that closest enclosing loop becomes hot.

OUTER Strategy: The LLVM front-end is expected to insert an OSR point at the beginning ofthe body of
the outer-most loop of a loop nest containing the region of interest. This approach is particularly useful
for triggering many optimizations in a loop nest with a single OSR event. In the case of dynamic inlining,
one OSR will trigger inlining of all inlining candidates within the loop nest. The potential drawback
of this strategy is that the OSR will not trigger until the outermost loop becomes hot, thus potentially
delaying an optimization.

In Figure 13, we illustrate the difference between the two strategies using anhypothetical loop nest. We
use a call site to represent an interesting region for optimization.

A loop is represented with a box. The box labelledL0 denotes the outer-most loop of the loop nest. The
nest contains four loops and has a depth of 3. LoopsL1 andL3 are at the same nesting level. AndL2

is nested insideL1. The loop nest has three call sites:C0 in loop L0, C2 in loop L2, andC3 in loop L3.
Figure 13(a) shows the loop nest with no OSR points.

With the outer-most-loops strategy, an OSR point will be inserted only at the beginning of the outer-most
loop,L0 as shown in Figure 13(b). However, if the strategy is closest-enclosing loops, the front-end will
insert an OSR point at the beginning of loopsL0, L2, andL3 as shown in Figure 13(c). AlthoughC2 is
insideL1, no OSR points are inserted intoL1 becauseL1 is not the closest-enclosing loop ofC2.

As shown in the figure, the outer-most-loops strategy causes only one OSRpoint to be inserted into the
entire loop nest, while the closest-enclosing-loops strategy causes three OSR points to be inserted. Thus,
depending on the optimization performed during an OSR event, the choice of strategy can make a difference
in performance.

In our VM, a user specifies an OSR strategy from the command line when invoking the VM, like the
following example.

./mcvm -jit_enable true -jit_osr_enable true

16

L0

L1

C2: call f()

L2

C3: call g()

L3

C0: call h()

(a) A four-loop loop nest

L0

OSR Point 1:
L1

C2: call f()

L2

C3: call g()

L3

C0: call h()

(b) Outer-most-loops Strategy

L0

OSR Point 1:
L1

C2: call f()

OSR Point 2:

L2

C3: call g()

OSR Point 3:

L3

C0: call h()

(c) Closest-loops Strategy

Figure 13: A loop nest showing the placement of OSR point using the closest or outer-most Strategies

-jit_osr_strategy outer.

This command starts McVM with OSR enabled withouterstrategy. In our JIT, the default strategy isouter.

When the OSR triggers it calls the McJIT inliner transformation. Our McJIT inliner calls the LLVM basic-
inliner library to do the actual inlining. However, the McJIT inliner must also dosome extra work because it
must inline the correct version ofcalleefunction body. The key point is that if thecalleehas an OSR point, it
must not inline the version of the callee which has already been instrumented with the code to store values of
the live variables at this OSR point. If this version is inlined into thecaller — the function that is performing
OSR— the instrumentation becomes invalid as the code does not correctly savethe state of the caller at that
inlined OSR point. We resolved this problem by recovering thecontrolversion of the called function (callee)
and modifying the call site. We change the function called by the call instructionto the control version of
the callee. For instance, if the inlined call site iscall void @f(...) , and the control version off
is f ′, then the call site will be changed tocall void @f'(...) . Note that the control version has an
identical OSR point but is not instrumented to save the runtime values of live variables at that program point.
For consistency, the function descriptor of the function is updated after inlining as outlined earlier.

4.2 Experimental Evaluation

We used our McJIT dynamic inliner to study the overheads of OSR and the potential performance benefit
of inlining. We used a collection of MATLAB benchmarks from a previous MATLAB research project and
other sources [20, 9, 19], Table I gives a short description of eachbenchmark. All the benchmarks have one
or more loops, the table also lists the total number of loops and max loop depth foreach benchmark.

The configuration of the computer used for the experimental work is:

Processor: Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
RAM: 16 GB;
Cache Memory: L1 32KB, L2 256KB, L3 12MB;
Operating System: Ubuntu 12.04 x86-64;
LLVM: version 3.0; and McJIT: version 1.0.

17

BM Description #
Lo

op
s

M
ax

D
ep

th

adpt adaptive quadrature using Simpsons rule 4 2
capr capacitance of a transmission line using finite 10 2

difference and and Gauss-Seidel iteration.
clos transitive closure of a directed graph 4 2
crni Crank-Nicholson solution to the one 7 2

dimensional heat equation
dich Dirichlet solution to Laplaces equation 6 3
diff Youngs two-slit diffraction experiment 13 4
edit computes the edit distance of two strings 7 2
fdtd 3D FDTD of a hexahedral cavity 1 1

with conducting walls
fft fast fourier transform 6 3
fiff finite-difference solution to the wave equation 13 4
mbrt mandelbrot set 3 2
nb1d N-body problem coded using 1d arrays 6 2

for the displacement vectors
nfrc computes a newton fractal in the 3 2

complex plane -2..2,-2i..2i
nnet neural network learning AND/OR/XOR functions11 3
schr solves 2-D Schroedinger equation 1 1
sim Minimizes a function with simulated annealing 2 2

Table I: The Benchmarks

Our main objectives were:

• To measure the overhead of OSR events on the benchmarks over the outer-most and closest-loop strate-
gies. The overhead includes the cost of instrumentation and performing OSR transitions. We return to this
in Section 4.2.1.

• To measure the impact of selective inlining on the benchmarks. We discuss this in detail in Section 4.2.2.

We show the results of our experiments in Table II(a) and Table II(b). For these experiments, we collected
the execution times (shown ast(s) in the tables) measured in seconds, for 7 runs of each benchmark. To
increase the reliability of our data, we discarded the highest and the lowestvalues and computed the aver-
age of the remaining 5 values. To measure the variation in the execution times, wecomputed the standard
deviation (STD) (shown asstd) of the 5 values for each benchmark under 3 different categories. Allthe
results shown in the both tables were collected using the outer-most-loops strategy, with the default LLVM
code-generation optimization level.

The column labelledNormal gives the average execution times and the corresponding STDs of the bench-
marks ran with OSR disabled, while the column labelledWith OSR gives similar data when OSR was
enabled. ColumnWith OSR in Table II(b) shows the results obtained when dynamic inlining plus some
optimizations enabled by inlining were on.

The number of OSR points instrumented at JIT compilation time is shown underI of the column labelled

18

Normal(N) With OSR(O) #OSR Ratio
BM t(s) std t(s) std I T O/N
adpt 17.94 0.06 17.84 0.08 1 1 0.99
capr 11.61 0.01 11.63 0.02 2 2 1.00
clos 16.96 0.01 16.96 0.01 0 0 1.00
crni 7.20 0.04 7.40 0.04 1 1 1.03
dich 13.92 0.01 13.92 0.00 0 0 1.00
diff 12.73 0.07 12.80 0.09 0 0 1.01
edit 6.58 0.03 6.66 0.09 1 0 1.01
fdtd 12.14 0.03 12.16 0.05 0 0 1.00
fft 13.95 0.05 14.05 0.03 1 1 1.01
fiff 8.02 0.01 8.05 0.01 1 1 1.00
mbrt 9.05 0.11 9.22 0.11 1 1 1.02
nb1d 3.44 0.02 3.47 0.01 0 0 1.01
nfrc 9.68 0.05 10.00 0.04 2 2 1.03
nnet 5.41 0.02 5.59 0.03 2 1 1.03
schr 11.40 0.01 11.42 0.03 0 0 1.00
sim 15.26 0.03 15.92 0.07 1 1 1.04

(a) OSR Overhead
Normal(N) With OSR(O) #OSR Ratio

BM t(s) std t(s) std I T FI CA O/N
adpt 17.94 0.06 17.85 0.06 1 1 1 F 0.99
capr 11.61 0.01 11.69 0.02 2 2 2 T 1.01
clos 16.96 0.01 17.18 0.22 0 0 0 F 1.01
crni 7.2 0.04 6.73 0.24 1 1 1 T 0.93
dich 13.92 0.01 13.94 0.01 0 0 0 F 1.00
diff 12.73 0.07 12.74 0.04 0 0 0 F 1.00
edit 6.58 0.03 6.66 0.07 1 0 0 F 1.01
fdtd 12.14 0.03 12.13 0.03 0 0 0 F 1.00
fft 13.95 0.05 13.91 0.02 1 1 2 F 1.00
fiff 8.02 0.01 8.26 0.03 1 1 1 F 1.03
mbrt 9.05 0.11 9.06 0.03 1 1 1 F 1.00
nb1d 3.44 0.02 3.47 0.01 0 0 0 F 1.01
nfrc 9.68 0.05 4.26 0.02 2 2 5 T 0.44
nnet 5.41 0.02 5.71 0.03 2 1 1 F 1.05
schr 11.4 0.01 11.45 0.05 0 0 0 F 1.00
sim 15.26 0.03 14.72 0.09 1 1 1 F 0.96

(b) Dynamic Inlining using OSR

Table II: Experimental Results (lower execution ratio is better)

#OSR; while the number of OSR events triggered at runtime is shown under the columnlabelledT of
#OSR. The execution ratio for a benchmark is shown as the ratio of the average execution time when OSR
was enabled to the average execution time when OSR was disabled (this is the default case). ColumnsO/N
of Table II(a) andO/N of Table II(b) show, respectively, the ratio for each benchmark whenOSR only was
enabled and when OSR and inlining were enabled. In Table II(b), we show the number of functions inlined

19

underFI . The column labelledCA indicates whether at least one function in the benchmark is called again
after it has completed an OSR event.

The STDs of our data sets range from 0.00 to 0.24, showing that the execution times are quite reliable.
We now discuss the results of our experiments in detail.

4.2.1 Cost of Code Instrumentation and OSR

Because our approach is based on code instrumentation, we wanted to measure the overhead of code in-
strumentation and triggering OSRs. This will allow us to assess the performance and develop an effective
instrumentation strategy.

ColumnO/N of Table II(a) shows that the overheads range from about 0 to 4%; thisis also the range
for the closest-enclosing-loops strategy, suggesting that the overheads under the two strategies are close.
Out of the 16 benchmarks, 10 have at least one OSR point; and 8 of these10 benchmarks triggered one or
more OSR events. We have not shown the table of the results for the closest-enclosing loops because out of
the 8 benchmarks that triggered an OSR event, the outer-most and the closest-enclosing loops are different
only in 3 benchmarks:mbrt, nfrc, andsim. The execution ratios for these benchmarks under the closest-
enclosing-loops strategy are: 1.00 formbrt, 1.02 fornfrc, and 1.04 forsim. Thembrt andnfrc benchmarks
have lower execution ratios under the closest-enclosing-loops strategy.It is not entirely clear whether the
closest-enclosing-loops strategy is more effective than the outer-most-loops strategy; although, with these
results, it appears that using the closest-loops strategy results in lower overheads. The choice between these
two will depend largely on the kinds of the optimizing transformations expected at OSR points. We return to
this discussion in Section 4.2.2, where we examine the effectiveness of ourdynamic inlining optimization.

We investigated the space performance and found that, depending on the strategy, the three benchmarks
(mbrt, nfrc andsim) compiled up to 3% more instructions under the closest-enclosing-loops strategy. This is
hardly surprising; the OSR overhead depends on the number of OSR points instrumented and the number of
OSR points triggered at runtime. The size of the instrumentation code added atan OSR point in a function
depends on the size of the live variables of the function at that point, and this varies depending on the position
of the OSR point in a loop nest. The outer-most loop is likely to have the smallest set of live variables.

Although the overhead peaked at 4%, we conclude that on average, theoverhead is reasonable and practi-
cal for computation-intensive applications. As we continue to develop effective optimizations for MATLAB

programs, we will work on techniques to use OSR points in locations where subsequent optimizations are
likely to offset this cost and therefore increase performance.

4.2.2 Effectiveness of Selective Inlining With OSR

Our objective here is to show that our approach can be used to supportdynamic optimization. So, we mea-
sured the execution times of the benchmarks when dynamic inlining is enabled. When an OSR is triggered,
we inline call sites in the corresponding loop nest. ColumnWith OSR of Table II(b) shows the results of
this experiment.

The results show significant improvements forcrni, nfrc andsim. This shows that our dynamic inlining
is particularly effective for this class of programs. Further investigation revealed that these benchmarks in-
lined multiple small functions and several of these functions fall back to the McVM’s interpreter to compute
some complicated expressions. McJIT’s interactions with the interpreter is facilitated by setting up a symbol
environment for binding variables at runtime. Our dynamic inlining enables optimization that eliminates the
environment set-up instructions in the inlined code. This is the main cause of performance improvement in
nfrc andsim, and is impossible to do without inlining.

20

Only thefiff andnnetshow a real decrease in performance when using the outer-most-loop strategy with
inlining. We found that the function inlined bynnetcontains some expensive cell array operations, which
our optimizer is currently unable to handle. The benchmark also triggered OSR event once, but performed
three OSR instrumentation phases: two at the compilation time and one re-instrumentation during the only
OSR event.

We wanted to assess the impact of recompilation to optimize theprolog.entryblock added during an OSR
event; so we turned off recompilation after OSR and re-collected the execution times for the benchmarks.
Out of the 9 benchmarks that performed inlining, only 3 benchmarks containat least a further call to a
function that completed an OSR. These are the rows with the value “T” against the column labelledCA
in Table II(b). The results for these benchmarks under the no-recompilation after OSR is: 1.01 forcapr,
0.95 for crni, and 0.45 fornfrc. These results suggest that the recompilation to remove theprolog.entry
contributes to the increase in performance forcapr andnfrc. The block has the potential to disrupt LLVM
optimizations and removing it might lead to better performance. The recompilation after OSR does not
result in a slowdown for the other benchmarks.

In Section 4.2.1, we mentioned that the kinds of the optimizing transformations canguide the choice of
strategy that lead to better performance. Considering the 3 benchmarks witha loop nest where the outer-
most and closest-enclosing loops are different, that is,mbrt, nfrc andsim, we found that the outer-most-loop
strategy outperforms the closest-enclosing-loop strategy. In particular,thesimbenchmark results in about
5% performance degradation. These results support our claim.

We conclude that our OSR approach is effective, in that efficiently supports this optimization, and that it
works smoothly with inlining. To see further benefits of OSR for MATLAB , we shall develop more sophis-
ticated optimizations that leverage the on-the-fly dynamic type and shape information that is very beneficial
for generating better code.

5 Related Work

Hölzle et al [12] used an OSR technique to dynamically de-optimize running optimized code to debug the
executing program. OSR techniques have been in used in several implementations of the Java programming
language, including Jikes research VM [10, 3] and HotSpot [18] to support adaptive recompilation of run-
ning programs. A more general-purpose approach to OSR for the Jikes VM was suggested by Soman and
Krintz [21] which decouples OSR from the program code. Our approach is more similar to the original Jikes
approach in that we also implement OSR points via explicit instrumentation and OSRpoints in the code.
However, we have designed our OSR points and OSR triggering mechanismto fit naturally into the SSA-
form LLVM IR and tool set. Moreover, the LLVM IR is entirely different from Java byte-code and presents
new challenges to OSR implementation at the IR level (Section 3). Our approach is also general-purpose in
the sense that the OSR can potentially trigger any optimization or de-optimization that can be expressed as
an LLVM transform.

Recently, S̈usskraut et al [23] developed a tool in LLVM for making a transition froma slow version of
a running function to a fast version. Like Süsskraut et al, our system is based on LLVM. However, there
are significant differences in the approaches. While their system creates two versions of the same function
statically, and transitions from one version to another at runtime, our proposed solution instruments and
recompiles code dynamically at runtime. This is more suitable for an adaptive JIT. Secondly, the approach
used by S̈usskraut et al stores the values of local variables in a specially allocatedarea that is always ac-
cessible when an old stack frame is destroyed and a new stack frame is created for the executing function.
This requires a special memory management facility beyond that provided byLLVM. In contrast to their
approach, our approach does not require a special allocation because the stack frame is not destroyed until

21

OSR transition is completed. The recursive call of the executing function essentially extends the old stack
frame. We only have to copy the old addresses and scalar values from theold stack frame onto the new
stack frame. Finally, another notable difference between our approachand that taken by S̈usskraut et al is
that their approach requires instrumenting the caller to support OSR in a called function. This may result in
high instrumentation overhead. In our approach, we do not instrument a caller to support OSR in a callee.

Inlining is an important compiler optimization. It has been used successfully in many production com-
pilers, especially compilers for object-oriented programming languages. Several techniques for effective
inlining were introduced in the several implementations of SELF [6, 13]. SELF-93 [13] uses heuristics to
determine the root method for recompilation by traversing the call stack. It then in-lines the traversed call
stack into the root method. The HotSpot Server VM [18] uses a similar inlining strategy.

Online profile-directed inlining has been explored in many VMs [8, 4, 5, 22,2, 11]. The Jikes research
VM [3] considers the effect of inlining in its cost-benefit model for recompilation by raising the expected
benefit of recompiling a method with a frequently executed call site. Suganumaet al report that for inlining
decisions for non-tiny methods, heuristics based solely on online profile data outperforms those based on
offline, static data [22]. Online profile-directed inlining in a MATLAB compiler has not been reported in the
literature. We expect that by using online profiling information to identify hot call sites and guide inlining
decisions, inlining of the most critical call sites will boost performance.

6 Conclusions and Future Work

In this paper, we have introduced a modular approach to implementing OSR forLLVM-based JIT compil-
ers, and demonstrated the approach by implementing selective dynamic inlining for MATLAB . Our approach
should be very easy for others to adopt because it is based on the LLVMand is implemented as an LLVM
pass. Furthermore, we found a solution which does not require any special data structures for storing stack
frame values, nor any instrumentation in the callers of functions containing OSR points. It also does not
introduce any changes to LLVM which would require rebuilding the LLVM system. Finally, our approach
also provides a solution for the case where a function body containing OSRpoints is inlined, in a way that
maintains the OSR points and adapts them to the inlined context.

We used our OSR strategy in the McJIT implementation, and using this implementation, we demonstrated
the feasibility of the approach by measuring the overheads of the OSR instrumentation for two OSR place-
ment strategies: outer-most loops and closest-enclosing loops. On our benchmark set, we found overheads
of 0 to 4%. Further, we used the OSR machinery to implement dynamic incrementalfunction inlining. On
our benchmarks, we found some performance improvements and slight degradations, with several bench-
marks showing good performance improvements.

Our ultimate goal is to use OSR to handle recompilation of key loops, taking advantage of type knowledge
to apply more sophisticated loop optimizations, including parallelizing optimizations which can leverage
GPU and multicores. Thus, as McJIT and MATLAB -specific optimizations develop, we plan to use OSR to
enable such optimizations. In addition to our own future uses of our OSR implementation, we also hope that
other groups will also use our OSR approach in LLVM-based JITs for other languages, and we look forward
to seeing their results.

References

[1] LLVM. http://www.llvm.org/ .
[2] A. Adl-Tabatabai, J. Bharadwaj, D. Chen, A. Ghuloum, V. Menon, B. Murphy, M. Serrano, and T. Shpeisman.

StarJIT: A Dynamic Compiler for Managed Runtime Environments. Intel Technology Journal, 7(1):19–31, feb
2003.

22

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind,
K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar.The Jikes Research Virtual Machine Project:
Building an Open-Source Research Community.IBM Syst. J., 44(2):399–417, 2005.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive Optimization in the Jalapenó JVM. In
Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’00, pages 47–65, New York, USA, 2000. ACM.

[5] M. Arnold, M. Hind, and B. G. Ryder. Online Feedback-Directed Optimization of Java. InProceedings of
the 17th ACM SIGPLAN Conference on Object-oriented programming, Systems, Languages, and Applications,
OOPSLA ’02, pages 111–129, New York, USA, 2002. ACM.

[6] C. Chambers and D. Ungar. Making Pure Object-Oriented Languages Practical. InConference Proceedings on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA ’91, pages 1–15, New York,
USA, 1991. ACM.

[7] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing MATLAB through Just-In-Time Specializa-
tion. In International Conference on Compiler Construction, pages 46–65, March 2010.

[8] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. PracticingJUDO: Java Under Dynamic Optimizations. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,
PLDI ’00, pages 13–26, New York, USA, 2000. ACM.

[9] Cleve Moler.Numerical Computing with MATLAB. SIAM, 2004.
[10] S. J. Fink and F. Qian. Design, Implementation and Evaluation of Adaptive Recompilation with On-stack

Replacement. InProceedings of the International Symposium on Code generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO ’03, pages 241–252, Washington, DC, USA, 2003. IEEE Computer
Society.

[11] K. Hazelwood and D. Grove. Adaptive Online Context-Sensitive Inlining. InProceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization, CGO ’03,
pages 253–264, Washington, DC, USA, 2003. IEEE Computer Society.

[12] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized Code with Dynamic Deoptimization. In
Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design and Implementation,
PLDI ’92, pages 32–43, New York, NY, USA, 1992. ACM.

[13] U. Hölzle and D. Ungar. A third-generation self implementation: Reconciling responsiveness with performance.
In Proceedings of the ninth annual conference on Object-oriented programming systems, language, and
applications, OOPSLA ’94, pages 229–243, New York, NY, USA, 1994. ACM.

[14] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In CGO ’04: Proceedings of the International Symposium on CodeGeneration and Optimization, pages 75–86,
Washington, DC, USA, 2004. IEEE Computer Society.

[15] MathWorks.MATLAB Programming Fundamentals. The MathWorks, Inc., 2009.
[16] McLAB. The mcvm virtual machine and its jit compiler, 2012. http://www.sable.mcgill.ca/

mclab/mcvm_mcjit.html .
[17] C. Moler. The Growth of MATLAB™and The MathWorks over Two Decades, 2006. http:

//www.mathworks.com/company/newsletters/news_notes/ clevescorner/jan06.pdf .
[18] M. Paleczny, C. Vick, and C. Click. The Java HotSpot Server Compiler. InProceedings of the 2001 Symposium

on JavaTM Virtual Machine Research and Technology Symposium - Volume 1, JVM’01, pages 1–12, Berkeley,
CA, USA, 2001. USENIX Association.

[19] Press, H. William and Teukolsky, A. Saul and Vetterling, T. William and Flannery, P. Brian.Numerical Recipes
: the Art of Scientific Computing. Cambridge University Press, 1986.

[20] L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. Marsolf, and D. A. Padua. FALCON: A MATLAB Interactive
Restructuring Compiler. InLCPC ’95: Proceedings of the 8th International Workshop on Languages and
Compilers for Parallel Computing, pages 269–288, London, UK, 1996. Springer-Verlag.

[21] S. Soman and C. Krintz. Efficient and general on-stack replacement for aggressive program specialization. In
Software Engineering Research and Practice, pages 925–932, 2006.

[22] T. Suganuma, T. Yasue, and T. Nakatani. An Empirical Study of Method In-lining for a Java Just-In-Time
Compiler. InProceedings of the 2nd Java Virtual Machine Research and Technology Symposium, pages 91–104,
Berkeley, CA, USA, 2002. USENIX Association.

23

[23] M. Süsskraut, T. Knauth, S. Weigert, U. Schiffel, M. Meinhold, and C. Fetzer. Prospect: A Compiler Framework
for Speculative Parallelization. InProceedings of the 8th Annual IEEE/ACM International Symposium on Code
generation and Optimization, pages 131–140, New York, USA, 2010. ACM.

24

