McGill University
School of Computer Science
Sable Research Group

A Modular Approach to On-Stack Replacement in LLVM

Sable Technical Report No. sable-2012-01-rev2

Nurudeen A. Lameed and Laurie Hendren

(Original version, March 28, 2012, Revised version (revl: Sept 14, 2012, rev2: November 22, 2012))

www.sable.mcgill. ca

Contents

1

Introduction

The OSR API
2.1 Addingthe OSR PointInserter e e
2.2 Addingthe OSR TransformationPass «....

2.3 Initialization and Finalization

Implementation

3.1 Implementation Challenges e

3.2 OSRPOINt. e
33 TheOSRPass o
3.3.1 SavingLiveValues

3.4 Restoration of State and Recompilation

3.4.1 RestorationofState.

3.4.2 Recompilation e

3.5 Inlining Support e e e

Case Study: Dynamic Inlining

4.1 TheMcdITdynamicinliner e

4.2 Experimental Evaluation e
4.2.1 Costof Code Instrumentatonand OSR
4.2.2 Effectiveness of Selective Inlining WithOSR

Related Work

Conclusions and Future Work

15
16
17
20
20

21

22

15

List of Figures

1 Retrofitting an existing JITwWithOSR 5
2 ACode Transformer 7
3 Sample Code for Insertingan OSR Paint «.o... 7
4 TheOSRPassInterface e 8
5 Initialization and Finalization in the JITimainfunction 8
6 ACFGofaloopwithnoOSRpoints. ittt iu. 10
7 The CFG of the loop in Figure 6 after insertingan OSR point. 10
8 The transformed CFG of the loop in Figure 7 after running the OSR Pass. 11
9 OSRInstrumentation 12
10 State ManagementCycle e e, 12
11 A CFG of aloop of a running function before inserting the blocks faestecovery. 13
12 The CFG of the loop represented by Figure 11 after inserting the stateerg blocks. . . . 14

13 Aloop nest showing the placement of OSR point using the closest oroott Strategies . 17

List of Tables
I The Benchmarks e 18
Il Experimental Results (lower executionratioisbetter) 19

Abstract

On-stack replacement (OSR) is a technique that allows aafihachine to interrupt running code
during the execution of a function/method, to re-optimtzefunction on-the-fly using an optimizing JIT
compiler, and then to resume the interrupted function aptiiet and state at which it was interrupted.
OSR is particularly useful for programs with potentiallypéprunning loops, as it allows dynamic opti-
mization of those loops as soon as they become hot.

This paper presents a modular approach to implementing @6&é LLVM compiler infrastruc-
ture. This is an important step forward because LLVM is gagrpopular support, and adding the OSR
capability allows compiler developers to develop new dyicaechniques. In particular, it will enable
more sophisticated LLVM-based JIT compiler approachededd, other compiler/VM developers can
use our approach because it is a clean modular addition &tahdard LLVM distribution. Further, our
approach is defined completely at the LLVM-IR level and thassinot require any modifications to the
target code generation.

The OSR implementation can be used by different compilesufpport a variety of dynamic opti-
mizations. As a demonstration of our OSR approach, we hase g0 support dynamic inlining in
McVM. McVM is a virtual machine for MATLAB which uses a LLVM-&sed JIT compiler. MATLAB
is a popular dynamic language for scientific and engineexpglications that typically manipulate large
matrices and often contain long-running loops, and is thugleal target for dynamic JIT compilation
and OSRs. Using our McVM example, we demonstrate reasomailiheads for our benchmark set,
and performance improvements when using it to perform dyoartining.

1 Introduction

Virtual machines (VMs) with Just-in-Time (JIT) compilers have become comrtameor a wide variety of
languages. Such systems have an advantage over static compilers inrtpdation decisions can be made
on-the-fly and they can adapt to the characteristics of the runninggrogdn-stack replacement (OSR) is
one approach that has been used to enable on-the-fly optimization ¢cibhsimethods [12, 10, 18, 21].
A key benefit of OSR is that it can be used to interrupt a long-runningtimm/method (without waiting
for the function to complete), and then restart an optimized version of tlitidurat the program point and
state at which it was interrupted.

LLVM is an open compiler infrastructure that can be used to build JIT conspitar VMs [14, 1]. It
supports a well-defined code representation known as the LLVM IRgdss/supporting a large number of
optimizations and code generators. LLVM has been used in productitensy,sas well as in many research
projects. For instance, MacRuby is an LLVM-based implementation of Rakiylac OS X core technolo-
gies; Rubinug is another implementation of Ruby based on LLVM JIT. Unladen-swallow istlfa/M
implementation of Pythoh VMKit# is an LLVM-based project that works to ease the development of new
language VMs, and which has three different VMs currently develdpaeh, .Net, and a prototype R im-
plementation). A common theme of these diverse projects is that they coulfit themme further on-the-fly
optimizations, but unfortunately LLVM does not support OSR-based omiioizs. Indeed, we agree with
the developers of VMKIit who believe that using OSR would enable them twutge and develop runtime
optimizations that can improve the performance of their YMEhus, given the value of and need for OSR
and the wide-spread adoption of LLVM in both industry and academia, apempaims to fill this important
void and provide an approach and modular implementation of OSR for LLVM.

http://macruby.org/

2http://rubini.us

3http://code.google.com/p/unladen-swallow/

“Previously http://vmkit.Ilvm.org and now http://vmkit2.gforge.inria.fr
SPrivate communication with the authors, October 2012.

Implementing OSR in a non-Java VM and general-purpose compiler toolkits asi¢.LVM requires
novel approaches. Some of the challenges to implementing OSR in LLVM include

(1) At what point should the program be interrupted and how should suicltspoe expressed within the
existing design of LLVM, without changing the LLVM IR?

(2) The static single-assignment (SSA) nature of the LLVM IR requires coupdates of control flow
graphs (CFGs) of LLVM code, thus program transformations to han8e-@lated control flow must be
done carefully and fit into the structure imposed by LLVM.

(3) LLVM generates a fixed address for each function; how then shoulddtie of a new version of the
running function be made accessible at the old address without recompilicgltees of the function?
This was actually a particularly challenging issue to solve.

(4) The OSR implementation must provide a clean integration with LLVM'’s capabilitiefifection inlin-
ing.
(5) As there are many users of LLVM, the OSR implementation should not requidéioations to the ex-

isting LLVM installations. Ideally the OSR implementation could just be added to &ML_installation
without requiring any recompilation of the installation.

We addressed these and other challenges by developing a modulaacpmyomplementing OSR that
fits naturally in the LLVM compiler infrastructure.

To illustrate a typical use of our OSR implementation, we have used the implemertatopport a
selective dynamic inlining optimization in a MLAB VM. M ATLAB [15] is a popular platform for pro-
gramming scientific applications [17]. It is a dynamic language designed foipulation of matrices and
vectors, which are common in scientific applications [9]. The dynamic feabirine language, such as dy-
namic typing and loading, contribute to its appeal but also prevent efficienpilation. MATLAB programs
often have potentially long-running loops, and because its optimization cefibgreatly from on-the-fly
information such as types and array shapes, we believe that it is an idgaatze for OSR-based optimiza-
tions. Thus, we wanted to experiment with this idea in McVM/Mc[¥, 16], an open source VM and JIT
for MATLAB, which is built upon LLVM.

The main contributions of this paper are:

Modular OSR in LLVM: We have designed and implemented OSR for LLVM. Our approach provides
a clean API for JIT compiler writers using LLVM and clean implementation of &kiat, which inte-
grates seamlessly with the standard LLVM distribution and that should baldsefa wide variety of
applications of OSR.

Integrating OSR with inlining in LLVM: We show how we handle the case where the LLVM inliner in-
lines a function that contains OSR points.

Using OSR inMcJiT for selective dynamic inlining: In order to demonstrate the effectiveness of our OSR
module, we have implemented an OSR-based dynamic inliner that will inline funcaiéswithin dy-
namically hot loop bodies. This has been completely implemented in McVMiicJ

Experimental measurements of overheads/benefitsVe have performed a variety of measurements on
a set of 16 M\TLAB benchmarks. We have measured the overheads of OSRs and selgoaweid
inlining. This shows that the overheads are usually acceptable and thamdyinlining can result in
performance improvements.

The rest of the paper is organized as follows. In Section 2, we outlinepiilecation programming in-
terface (API) and demonstrate the usage our OSR module, from a JlTileomgter’s point of view. In
Section 3, we describe the implementation of our APl and the integration of inlifm@ection 4, we
present a case study of using the OSR support to implement a selectidy@andic inlining of function
calls in long-running loops in the Mcd compiler for MATLAB . Section 5 reviews some related work upon
which we are building. We conclude the paper and highlight some future w@&ection 6.

2 The OSR API

The key objective of this work was to build a modular system with a clean ictifzat is easy to use for
VM and JIT compiler writers. In this section, we present the API of our @&Rlule and how JIT compiler
developers who are already building JITs/VMs with LLVM can use our nethuadd OSR functionality to

their existing JITs. We provide some concrete examples, based on our Mplementation of OSR-based
dynamic inlining.

Figure 1(a) represents the structure of a typical JIT developed usMiILLLVM CodeGers the front-
end that produces LLVM IR for the JIT. The JIT compiler may perfornmg¢farmations on the IR via the
LLVM Optimizer This is typically a collection of transformation and optimization passes thauarern
the LLVM IR. The output (i.e., the transformed LLVM IR) from the optimizer isged to the target code
generatorTarget CodeGerthat produces the appropriate machine code for the code in LLVM IR.

In Figure 1(b), we show a JIT (such as that shown in Figure 1(a)hdmbeen retrofitted with OSR sup-
port components (the shaded components). We describe the functittsederand OSR Passhown in
Figure 1(b) shortly. In Section 3, we present the implementation of thesearmnts and how they interact
with the JIT to provide OSR support to the JIT.

LLVM CodeGen

LLVM CodeGen
Inserter

LLVM IR LLVM IR

LLVM Optimizer
LLVM Optimizer

LLVM IR

LLVM IR OSR Pass

LLVM IR

Target CodeGen

l

Machine Code

Target CodeGen

Machine Code
(a) Existing JIT (b) Retrofitted JIT

Figure 1: Retrofitting an existing JIT with OSR

2.1 Adding the OSR Point Inserter

To support OSR, a JIT compiler must be able to mark the program pointsdtoetih called OSR points)
where a running program may trigger OSR. A developer can add thibidipto an existing JIT by mod-
ifying the compiler to call thggenOSRSigndlunction, provided by our API, to insert an OSR point at the
beginning of a loop during the LLVM code generation of the loop. The LLVR/Mis in SSA form. As
will be shown later, an OSR point instruction must be inserted into its own b#si&,bvhich must be
preceded by the loop header block containing allgh®des. This ensures that if OSR occurs at runtime,
the continuation block can be efficiently determined.

In addition to marking the spot of an OSR point, the JIT compiler writer will wamdicate what trans-
formation should occur if that OSR point triggers at runtime. ThusggreOSRSigndlinction requires an
argument which is a pointer toc@de transformefunction - i.e. the function that will perform the required
transformation at runtime when an OSR is triggered. A JIT developer teaedalifferent transformations
at different OSR points can simply define multiple code transformers, andriiert OSR points with the
desired transformation for each point. A valid transformer is a functiont@oati the typelransformerthat
takes two arguments as shown below.

typedef unsigned int OSRLabel,
typedef bool
(* Transformer) (llvm::Function *, OSRLabel);

The first argument is a pointer to the function to be transformed. The d@gament is an unsigned integer
representing the label of the OSR point that triggered the current O&R.élhe code of the transformer is
executed if the executing function triggers an OSR event at a corrésyplabel. A user may specifyraull
transformer if no transformation is required. As an example of a transtmmaur OSR-based dynamic in-
liner (Section 4.1) uses the transformer shown in Figure 2. Itinlines aléitadl annotated with labekrPt

After the inliner finishes, the OSR pass is executed over the new versibe &inction to process, any
remaining OSR points. Finally, as shown in lines 13 — 18 of the figure, somdIlLaptimization passes are
run on the new version of the function.

To illustrate with a concrete example of inserting OSR points, our OSR-baseanic inlining imple-
mentation uses the code snippet shown in Figure 3 to insert conditional QISR after generating the loop
header block containing onky nodes. In the code snippet (lines 6 — 11), a new basic lidscks created
and the call tagenOSRSignahserts an OSR point into the block. The rest of the code inserts a condlitiona
branch instruction inttargetand completes the generation of LLVM IR for the loop.

2.2 Adding the OSR Transformation Pass

After modifying the JIT with the capability to insert OSR points, the next step igltbthe creation and
running of the OSR transformation pass. When the OSR pass is run oot@fuwith OSR points, the pass
automatically instruments the function by adding the OSR machinery code at @&Repoints (note that
the JIT-compiler developer only has to invoke the OSR pass, the pass ifgelfided by our OSR module).

The OSR pass is derived from the LLVM function pass. Figure 4 shasirmplified interface of the pass.
An LLVM front-end, that is, an LLVM code generator, can use the follaywcode snippet to run create and
run the OSR pass on a functiénafter the original LLVM optimizer in Figure 1(b) finishes.

livm::FunctionPass * OIP = osr:createOSRInfoPass();
OIP->runOnFunction(*F);

bool inlineAnnotatedCallSites (llvm :: FunctiofF,
osr :: OSRLabel osrPt)

1

2

3

4 llvm::McJITInliner inliner (FIM, osrPt, TD);
s inliner.addFunction (inlineVersion);
6 inliner.inlineFunctions ();

7

8

9

llvm :: FunctionPassManager FPM(M);
10 FPM.add(createOSRInfoPass());
11 FPM.rungrunningVersion);
12
13
14 llvm:: FunctionPassManager OP(M);
15 OP.add(llvm:: createCFGSimplificationPass ());
16 OP.add(llvm:: ConstantPropagationPass ());
17
18 OP.run¢ runningVersion)

19 }

Figure 2: A Code Transformer

llvm:: BasicBlock target = builder.GetlnsertBlock ();
llvm:: Functiorr F = target—>getParent();

1
2
3
4
5
6 llvm:: BasicBlock osrBB =

7 llvm:: BasicBlock:: Create (F>getContext(), "osr”, F);

8

9 llvm:: Instruction* marker =

10 osr :: Osr::genOSRSignal(osrBB,

1 inlineAnnotatedCallSites ,

12 looplnitializationBB);

13 ...

14

15 llvm:: Value ~osrCond = builder.CreatelCmpUGT(counter,
16 getThreshold (context), "ocond”);

17 builder.CreateCondBr (osrCond, osrBB, fallThru);

18 ...

Figure 3: Sample Code for Inserting an OSR Point

The OSR pass can also be added to an LLVM function pass manager.

2.3 Initialization and Finalization

To configure the OSR subsystem during the JIT’s start-up time, the Jdlaper must add a call to the
methodOsr::init. This method initializes the data structures and registers the functions usebyldte
OSR subsystem. The JIT developer must also add a call to the methatl Osr.releaseMemory()

to de-allocate the memory allocated by the OSR system. The code snippet ia Figlusw how an existing

© 00 N o U~ W N

PR e
N P O

namespace osr {

class OSRInfoPass : public llvm::FunctionPass {

public:
OSRInfoPass();
virtual bool runOnFunction(llvm::Function& F);
virtual const char * getPassName() const
{ return "OSR Info Collection Pass";} ...

}.

llvm::FunctionPass * createOSRInfoPass();
}

Figure 4: The OSR Pass Interface

JIT can initialize and release the memory used by the OSR subsystem. AsisHowert, the arguments to
Osr::init are: a JIT execution engine and the module. The execution engine anddinéerace used to
register the functions used by the system.

int main(int argc, const char argv) {

Osr:: init (EE, module);

Osr::releaseMemory();

return O;

}

Figure 5: Initialization and Finalization in the JITisainfunction

3 Implementation

In the previous section, we outlined our API which provides a simple and lmodpproach to adding
OSR support to LLVM-based JIT compilers. In this section, we presentroplementation of the API.
We first discuss the main challenges that influenced our implementation decesimhour solution to those
challenges.

3.1 Implementation Challenges

Ouir first challenge was how to mark OSR points. Ideally, we needed andtistr to represent an OSR point
in a function. However, adding a new instruction to LLVM is a non-trivialgess and requires rebuilding the
entire LLVM system. It will also require users of our OSR module to recompde #xisting LLVM instal-
lations. Hence, we decided to use the existing call instruction to mark an G8R Plis also gives us some
flexibility as the signature of the called function can change without the neethtdd any LLVM library.

A related challenge was to identify at which program points OSR instructionsld be allowed. We
decided that the beginning of loop bodies were ideal points becauseuldeatsure that the control flow
and phi-nodes in the IR could be correctly patched in a way that doessnmoptiother optimization phases
in LLVM.

The next issue that we considered was portability. We decided to implemibietlatVM IR, rather than
at a lower level, for portability. This is similar to the approach used in Jike=areb VM [10], which uses
byte-code, rather than machine code to represent the transformedituslapproach also fits well with the
extensible LLVM pass manager framework.

A very LLVM-specific challenge was to ensure that the code of the nesioris accessible at the old
address without recompiling all the callers of the function. Finding a solutidmisavas really a key point
in getting an efficient and local solution.

Finally, when performing an OSR, we need to save the current state (i.esetloé live values) of an
executing function and restore the same state later. Thus, the challengets festore values while at the
same time keeping the SSA-form CFG of the function consistent.

We now explain our approach which addresses all these challengearticular, we describe the imple-
mentation ofinserterandOSR Passhown in Figure 1(b).

3.2 OSR Point

In Section 2.1, we explained how a developer can add the capability to @S&tpoints to an existing JIT.
Here we describe the representation of OSR points.

We represent an OSR point with a call to a native function na@edsrSignal It has the following
signature.

declare void @__osrSignal(i8*, i64)

The first formal parameter is a pointer to some memory location. A corresmpatjument is a pointer
to the function containing the call instruction. This is used to simplify the integrafiorlining; we discuss
this in detail in Section 3.5. The second formal parameter is an unsignedrinteganction may have
multiple OSR points; the integer uniquely identifies an OSR point.

The OSR module maintains a table named OSR function taltje The table maps a function in LLVM
IR onto a set of OSR-point entries. The set can grow or shrink dyndynasmnew OSR points are added
(e.g., after a dynamic inlining) and old OSR points removed (e.g., after an.@8Rntrye in the set is an
ordered pair.

e = (osr_call_inst, codetransformej

The first member of the pair —-esr_call_inst — is the call instruction that marks the position of an OSR
point in a basic block. The second is ttede transformer(Section 2.1).

3.3 The OSR Pass

The OSR pass in Figure 1(b) is a key component of our OSR implementatioshodm in Figure 4, the
OSR transformation pass is derived from the LL\RUnctionPassype. Like all LLVM function passes, the
OSR pass runs on a function via itmOnFunction(Figure 4) method.

The pass first inspects a functio to determine if it has at least one OSR point. It returns immediately
if the function has no OSR points. Otherwise, it instruments the function &t ®&R point. Figure 6
shows a simplified CFG of a loop with no OSR points. The basic block labeldds the loop headet.B
contains the code for the body of the loop; and the loop exit&at

Figure 7 shows a simplified CFG for the loop in Figure 6 with an OSR point. Tipiesents typical
code an LLVM front-end will generate with OSR enabled. Insertion of @8Rts is performed binserter

ENTRY

i

br il %loopCond,
label %LB, label %LE

LH1:

false

LE:

rue

LB:

br label %LH1

I

Figure 6: A CFG of a loop with no OSR points.

shown in Figure 1(b). The loop header block (noMO in the Figure 7) terminates with a conditional branch
instruction that evaluates the Boolean flagsrCondand branches to either the basic block labe@&Ror
to LH1. LH1 contains the loop termination condition instructidB contains the code for the body of the

loop; the loop exits atE.

ENTRY:

]

|

LHO:

br i1 J%osrCond,
label %0SR, label JLH1

‘///fﬂﬁﬁ////, alse

OSR
call void @_osrSignal(...)

br label JLH1

LH1:

br i1 %loopCond,

label %LB, label %LE

false

LE:

rue

br label %LHO

LB:

L

Figure 7: The CFG of the loop in Figure 6 after inserting an OSR point.

The OSR compilation pass performs a liveness analysis on the SSA-fo@ddfetermine the set of live
variables at a loop header suchL� in Figure 7. It creates, using the LLVM cloning support, a copy of the
function named theontrol version As we explain later in this section, this is used to support the transition
from one version of the function to another at runtime. It also createsaigeor [12, 10] for the function.
The descriptor contains useful information for reconstructing the stadefuriction during an OSR event.

In our approach, a descriptor is composed of:

 a pointer to the current version of the function;

10

* a pointer to the control version of the function;
» a map of variables from the original version of the function onto those iodhéol version; and
* the sets of the live variables collected at all OSR points.

ENTRY:

]

LHO:

br i1 %osrCond,
label %0SR, label YLH1

bzziﬁﬁ;/”' alse

OSR:
kall void @_osrSignal(...) L¥{h
store ... br i1 %loopCond,
label /LB, label %LE
ret ...

falsg rue

LE: LB:

br label %LHO

L

Figure 8: The transformed CFG of the loop in Figure 7 after running the P&iR.

After running the OSR pass on the loop shown in Figure 7, the CFG will befoamed into that shown
in Figure 8. Notice that in the transformed CFG, the OSR block now contaireotteto save the runtime
values of the live variables and terminates with a return statement. We novib@eiscdetail the kinds of
instrumentation added to an OSR block.

3.3.1 Saving Live Values

To ensure that an executing function remains in a consistent state aftasifidrafrom the running version

to a new version, we must save the current state of the executing fundtlia.means that we need to
determine the live variables at all OSR points where an OSR transition may ¢perety Dead variables are
not useful.

As highlighted in Section 2, we require that the header of a loop with an OS8R glways terminates
with a conditional branch instruction of the form:

br il %et, |abel %osr, |abel %cont

This instruction tests whether the function should perform OSR. If thedesegds (i.e Yoetis set tarue),
the succeeding block beginning at laB&bsrwill be executed and OSR transition will begin. However, if
the test fails, execution will continue at the continuation bl&@tont This is the normal execution path.

In %osr block, we generate instructions for saving the runtime value of each Inabla computed by
the liveness analysis. The code snippet in Figure 9 shows a tyggchlock in a simplified form.

The call to@__osrSignal(f, i64 1)in line 2 marks the beginning of the block. Following this call is a
sequence oftore instructions. Each instruction in the sequence saves the runtime value efvaligble
into a global variable@live*. The last store instruction stores the value 1 i@osrflag. If @osrflagis

11

1
2
3
4
5
6
7
8
9

10

osr:
call void @__osrSignal(f, i64 1)
store double%7,doublex @live
store double%8, doublex @livel

store i32 1, i32« @osrflag

call void @__recompile(f, i32 1)
call void @f(...)

call void @__recompileOpt(f)
ret void

Figure 9: OSR Instrumentation

non-zero at runtime, then the executing function is performing an OSRtteam3Ne explain the functions
of the instructions in lines 7 — 10 later.

The saved variables are mapped onto the variables in the control vef$isnis a key step as it allows
us to correctly restore the state of the executing function during an OSR.

3.4 Restoration of State and Recompilation

The protocol used to signify that a function is transitioning from the exegutarsion to a new version,
typically, a more optimized versiénis to set a global flag. The flag is reset after the transition.

At runtime, the running function executes the code to save its current Ht#ten calls the compiler to
recompile itself and, if a code@ansformeris present, the function is transformed before recompilation. The
compiler retrieves the descriptor of the function and updates the runnie@raising thecontrol version
as illustrated in Figure 10.

cT

or f. = clone(f,)

move(fe, fo)

Figure 10: State Management Cycle

Let f, denote the original version of the LLVM IR of the running function, afaddenote the control
version that was generated by cloning the original version. We denosetloé all the live variables of, at
the program poinp, with V,(p,). Similarly, V.(p.) denotes the state of the control version at the matching
program poinp.. Becausef, is a copy off,, it follows thatV,(p,) = V.(p.).

Figure 10 illustrates the state management cycle of the running functionumbidn starts with version
f,. At compilation timé (shown as evenf'T in Figure 10), we clong, to obtainf.. We then compilef,,.
At runtime, when an OSR (evettT in Figure 10) is triggered by the running function, we first remove the
instructions inf, and thermovethe code (LLVM IR) of f. into f,, transform/optimize as indicated by the
OSR transform, and then recompjigand execute the machine codefpf

®It may also transition from an optimized version to a less optimized versiperiting on the application.
"This includes the original compilation and all subsequent recompilatica$cd0SR.

12

ENTRY:

|

T

[}

[}

)
LH1:
/i = phi i64
[1, %Entryl, [%i.u, %LB]

br i1 %loopCond,
label %LB, label %LE

false

tru

LB:

LE:
%i.u = add i64 %i, 1

br label %LH1

I

Figure 11: A CFG of a loop of a running function before inserting the ddok state recovery.

This technique ensures that the machine code of the running functionagsalecessible at the same
address. Hence, there is no need to recompile its callers: the machineftbddransformed’, is imme-
diately available to them at the old entry point of the running function.

To locate the continuation program pojnt(p, = p.), the compiler recovers the OSR entry of the current
OSR identifier; using the variable mappings in the descriptor, finds the itistnitbat corresponds to the
current OSR point. From this, it determines the basic block of the instructiod.since the basic block of
an OSR point instruction has one and only one predecessor, the congtdemihes the required target,

3.4.1 Restoration of State

To restore the state of the executing function, we create a new basic ldowdprolog and generate in-
structions to load all the saved values in this block; we then create anosierdback that merges a new
variable defined in therolog with that entering the loop via the loop’s entry edge. We ensure that a loop
header has only two predecessors and because LLVM IR is in SSAtieemgew block consists af nodes

with two incoming edges: one from the initial loop’s entry edge and the otben firolog. The ¢ nodes
defined in the merger block are used to update the users of an instructiaotfesponds to a saved live
variable in the previous version of the function.

Figure 11 shows a typical CFG of a running function before insertingalde for recovering the state of
the function. The basic blodkH1 defines a node for an induction variabl&{; in Figure 11) of a loop in
the function. The body of the loopB, contains add instruction that increments the value%t by 1.

Assuming that we are recovering the valu¢Zaffrom the global variablélive_i, Figure 12 shows the
CFG after inserting the blocks for restoring the runtime valuéwof In this figure,prolog contains the
instruction that will load the runtime value & from the global variablélive_i into %_:; similarly, the
basic blockprolog.exitcontains ap instruction {4_m_i) that merge$%_i from prolog and the value 1 from
ENTRY This variable (i.e.%_m_i) replaces the incoming value (1) froBNTRYin the definition of%:7 in
the loop headerLH1) as shown in Figure 12. Notice that the incoming bl&KTRYhas been replaced
with prolog.exit(PE) in the definition of%3 in LHL1.

13

AW N P

prolog.entry:

br il %ocond,
label %ENTRY, label %prolog

prolog: ‘\"\\“‘~\§\\\‘\-\-\~N\\A

%1 = load i64* @live i

br label Yprolog.exit

iy I

prolog.exit(PE):
%mi = phi 164 i = phi i64
[1, %Entryl, [%-i, %prolog] [%mi, %PE], [%i.u, %LBI

br i1 %loopCond,
label %LB, label J%LE

l
/ tru
LB:

LE:

br label JLH1

i.u = add 164 %i, 1

br label %LH1

[|

Figure 12: The CFG of the loop represented by Figure 11 after inserngiaite recovery blocks.

Fixing the CFG to keep the SSA form consistent is non-trivial. A simple repiac¢ of a variable with
a new variable does not work. Only variables dominated by the definitiong imérger block need to be
replaced. Newp nodes might be needed at some nodes with multiple incoming edges (i.e., onlyitabse
are in the dominance frontier of the merger block). Fortunately, the LLV&vhBwork provides an SSA
Updater that can be used to update the SSA-form CFG. We exploited thé)g&her to fix the CFG.

To complete the state restoration process, we must fix the control flow toeghatithe function continues
at the correct program point. For this, we insert a new entry block ngmudaly.entrythat loads@ost flag
and tests the loaded value for zero to determine, during execution, witetHfenction is completing an osr
transition or its being called following a recent completion of an OSR. The nbofdhe new entry block
is shown in the following code snippet.

prolog.entry :
%osrPt =load i32x @ostflag
%cond =icmp eq i32%osrPt, 0
br i1 %cond,label %entry, label %prolog

If %osr Pt is non-zero, the test succeeds and the function is completing an OSR; itaviitbto%prolog.

In %prolog, all the live values will be restored and control will pass to the target bltioé loop header
where execution will continue. Howeverifosr Pt is zero, the function is not currently making a transition:
it is being called anew. It will branch to the original entry, where its exeautidl continue.

As shown in Figure 12, the basic blopkolog.entryterminates with a conditional branch instruction. The
new version of the running function will begin its execution frprolog.entry After executing the block, it
will continue at eitheprolog or ENTRY(the original entry block of the function) depending on the runtime
value of%cond

14

3.4.2 Recompilation

We now return to the instructions in lines 7 — 10 of Figure 9. The instruction inflicalls the compiler to
perform OSR and recompilg using the code transformer attached to OSR point 1. After that, fungtion
will call itself (as shown in line 8), but this will execute the machine code gerdrfor its new version. This
works because the LLVM recompilation subsystem replaces the instru¢tiba antry point of functiory
with a jump to the entry point of the new version. During this call, the function detep OSR and resumes
execution. The original call will eventually return to the caller any retutneveeturned by the recursive call.

Normally after an OSR, subsequent calls (if any)fafxecutes the code in tipeolog.entry which tests
whether or not the function is currently performing an OSR. However,tésssucceeds only during an
OSR transition; in other words, the execution of the coderatog.entryafter an OSR has been completed
is redundant. To optimize away tlpeolog.entry we again call the compiler (line 9 in Figure 9) but this
time, the compiler only removes tipeolog.entryand consequently, other dead blocks, and reconfpile
Section 4.2, we compare the performance of our benchmarks whemalog.entryis eliminated with the
performance of the same benchmarks wherptoéog.entryis not eliminated.

3.5 Inlining Support

Earlier, we discussed the implementation of OSR points and how the OSR traatifin pass handles OSR
points. However, we did not specify how we handled OSR points insertecifunction from an inlined
call site. A seamless integration of inlining optimization poses further challeneégn an OSR event is
triggered at runtime, the runtime system must retrieve the code transfornudreatt@ the OSR point from
the oft entry of the running function. How then does the system know the origimaiion that defined an
inlined OSR point? Here we explain how our approach handles inlining.

Remember that an OSR point instruction is a call to a function. The first argusia pointer to the
enclosing function. Therefore, when an OSR point is inlined from amdthetion, the first argument to
the inlined OSR point (i.e., a call instruction) is a function pointer to the inlinedtfan. From this, we can
recover theéransformerassociated with this point by inspectio§ using this pointer. We can then modify
these OSR points by changing the first argument into a pointer to the cturetibn and assign a new ID
to each inlined OSR point. We must also updatedfientry of the caller to reflect these changes.

We distinguish two inlining strategies: static and dynamic. In static inlining, a calksi#égpanded before
executing thecaller. This expansion may introduce a new OSR point fromdaakleeinto the caller and
invalidates all the state information collected for the existing OSR points. Waeegte this information
after any inlining process.

Dynamic inlining concerns inlining of call sites in a running function during tkeceation of the function
after observing, for some time, its runtime behaviour. Typically, we profileogram to determingot call
sites and inline those subject to some heuristics. We used OSR support to imptymamic inlining of
call sites in long-running loops. We discuss this implementation next.

4 Case Study: Dynamic Inlining

In this section we present an example application of our OSR approacpporsselective dynamic inlining
in McJIT. We selected this as our first application of OSR because the intaimgrovide larger scopes for
subsequent optimizations.

15

4.1 The McJIT dynamic inliner

In our approach to dynamic inlining, we first modified McJIT identify poteritiihing candidates. In our

case, a call is considered an inlining candidate if the body of the calletiduaris less than 20 basic blocks,
or it is less than 50 basic blocks and it has an interpreter environmeiassbwith the body (in our case
inlining can reduce the interpreter environment overheads).

We then modified McJIT so that loops which contain potential inlining candidgatemstrumented with
with a hotness counter and a conditional which contains an OSR pointdulielOSR point is associated
with a new McJIT inlining transformer). When an OSR triggers (i.e. the hoto@sster reaches a thresh-
old), the McJIT inlining transformation will inline all potential inlining candidatssaciated with that OSR
point.

There are many strategies for determining which loops should be givers&pOint, and a JIT devel-
oper can define any strategy that is suitable for his/her situation. ForfMeél defined two such general
strategies, as follows:

CLOSEST Strategy: The LLVM front-end is expected to insert OSR points only in the loop that isedb
to the region that is being considered for optimization. For example, to implensyrianic inlining
optimization using this strategy, an OSR point is inserted at the beginning ofoestloop enclosing
an interesting call site. This strategy is useful for triggering an OSR &sasapossible, i.e., as soon as
that closest enclosing loop becomes hot.

OUTER Strategy: The LLVM front-end is expected to insert an OSR point at the beginninigeobody of
the outer-most loop of a loop nest containing the region of interest. Thimagipis particularly useful
for triggering many optimizations in a loop nest with a single OSR event. In tleeafadyynamic inlining,
one OSR will trigger inlining of all inlining candidates within the loop nest. The pixé drawback
of this strategy is that the OSR will not trigger until the outermost loop becormgghus potentially
delaying an optimization.

In Figure 13, we illustrate the difference between the two strategies usingpathetical loop nest. We
use a call site to represent an interesting region for optimization.

A loop is represented with a box. The box labellegdenotes the outer-most loop of the loop nest. The
nest contains four loops and has a depth of 3. Lobpsnd L3 are at the same nesting level. Aiid
is nested insidd.;. The loop nest has three call sitegs; in loop Ly, Cs in loop Ly, andC3 in loop Ls.
Figure 13(a) shows the loop nest with no OSR points.

With the outer-most-loops strategy, an OSR point will be inserted only at thieriag of the outer-most
loop, Lo as shown in Figure 13(b). However, if the strategy is closest-enclosops/dhe front-end will
insert an OSR point at the beginning of loopg, L2, and L3 as shown in Figure 13(c). Although is
inside L1, no OSR points are inserted infq becausd.; is not the closest-enclosing loop 6%.

As shown in the figure, the outer-most-loops strategy causes only ong@Qi8Ro be inserted into the
entire loop nest, while the closest-enclosing-loops strategy causes tBR@ants to be inserted. Thus,
depending on the optimization performed during an OSR event, the choitatelgy can make a difference
in performance.

In our VM, a user specifies an OSR strategy from the command line whehiigvthe VM, like the
following example.

J/mcvm -jit_enable true -jit_osr_enable true

16

Lo Lo Lo

I I OSR Point 1: I OSR Point 1:

Lo Lo Lo
OSR Point 2:
Cy: call £() Cy: call £() Cy: call £()

Ls L3 L3
OSR Point 3:
C3: call g() Cs: call g() C: call g()
Co: call h() Co: call h() Co: call h()

(a) A four-loop loop nest (b) Outer-most-loops Strategy (c) Closest-loops Strategy

Figure 13: A loop nest showing the placement of OSR point using the tloseater-most Strategies

-jit_osr_strategy outer.

This command starts McVM with OSR enabled watliter strategy. In our JIT, the default strategyoister.

When the OSR triggers it calls the McJIT inliner transformation. Our McJIT énlgalls the LLVM basic-
inliner library to do the actual inlining. However, the McJIT inliner must als@dme extra work because it
must inline the correct version oélleefunction body. The key point s that if trealleehas an OSR point, it
must not inline the version of the callee which has already been instrumeitteith@/code to store values of
the live variables at this OSR point. If this version is inlined into¢hler — the function that is performing
OSR— the instrumentation becomes invalid as the code does not correctiheatate of the caller at that
inlined OSR point. We resolved this problem by recoveringcitrarol version of the called functiorcéllee
and modifying the call site. We change the function called by the call instrutditime control version of
the callee. For instance, if the inlined call sitecial | void @f(...) , and the control version of
is f/, then the call site will be changed t@l | voi d @f(...) . Note that the control version has an
identical OSR point but is not instrumented to save the runtime values of hiagbles at that program point.
For consistency, the function descriptor of the function is updated afteinig as outlined earlier.

4.2 Experimental Evaluation

We used our McJIT dynamic inliner to study the overheads of OSR and teetf performance benefit
of inlining. We used a collection of MrLAB benchmarks from a previous AMLAB research project and
other sources [20, 9, 19], Table | gives a short description of banhhmark. All the benchmarks have one
or more loops, the table also lists the total number of loops and max loop degadobenchmark.

The configuration of the computer used for the experimental work is:

Processor: Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz
RAM: 16 GB;

Cache Memory: L1 32KB, L2 256KB, L3 12MB;
Operating System: Ubuntu 12.04 x86-64;

LLVM: version 3.0; and Mcdr: version 1.0.

17

BM Description

adpt || adaptive quadrature using Simpsons rule
capr || capacitance of a transmission line using finite
difference and and Gauss-Seidel iteration.

S| || # Loops
N[Df| Max Depth

clos | transitive closure of a directed graph 2

crni || Crank-Nicholson solution to the one 7|2
dimensional heat equation

dich || Dirichlet solution to Laplaces equation 6 | 3

diff Youngs two-slit diffraction experiment 13| 4

edit | computes the edit distance of two strings 7|2

fdtd || 3D FDTD of a hexahedral cavity 1|1
with conducting walls

fft fast fourier transform 6 | 3

fiff finite-difference solution to the wave equation | 13| 4

mbrt || mandelbrot set 3|2

nbld || N-body problem coded using 1d arrays 6 |2
for the displacement vectors

nfrc || computes a newton fractal in the 3|2

complex plane -2..2,-2i..2i
nnet | neural network learning AND/OR/XOR functionsll | 3
schr || solves 2-D Schroedinger equation 1
sim || Minimizes a function with simulated annealing | 2 | 2

=

Table I: The Benchmarks

Our main objectives were:

» To measure the overhead of OSR events on the benchmarks over thenosteand closest-loop strate-
gies. The overhead includes the cost of instrumentation and performiRgr@Sssitions. We return to this
in Section 4.2.1.

» To measure the impact of selective inlining on the benchmarks. We disdsigs dietail in Section 4.2.2.

We show the results of our experiments in Table Il(a) and Table Il(b) tlese experiments, we collected
the execution times (shown &S) in the tables) measured in seconds, for 7 runs of each benchmark. To
increase the reliability of our data, we discarded the highest and the lgaless and computed the aver-
age of the remaining 5 values. To measure the variation in the execution timespvpeited the standard
deviation (STD) (shown astd) of the 5 values for each benchmark under 3 different categoriesthall
results shown in the both tables were collected using the outer-most-lodeggtraith the default LLVM
code-generation optimization level.

The column labelletlormal gives the average execution times and the corresponding STDs of ttte ben
marks ran with OSR disabled, while the column labeN&dh OSR gives similar data when OSR was
enabled. Columiwith OSR in Table II(b) shows the results obtained when dynamic inlining plus some
optimizations enabled by inlining were on.

The number of OSR points instrumented at JIT compilation time is shown urdéine column labelled

18

Normal(N) | With OSR(O) || #OSR || Ratio
BM t(s) | std t(s) std|| 1| T O/N
adpt || 17.94| 0.06 (| 17.84| 0.08|| 1| 1| 0.99
capr || 11.61| 0.01| 11.63| 0.02|| 2| 2| 1.00
clos || 16.96| 0.01|| 16.96| 0.01| 0| 0| 1.00
crni 7.20| 0.04(7.40| 004| 1| 1| 1.08
dich | 13.92| 0.01 || 13.92| 0.00| 0| 0| 1.00
diff 12.73] 0.07 || 12.80| 0.09{ 0| 0| 1.01
edit 6.58| 0.03|| 6.66| 0.09||1| 0| 1.01
fdtd || 12.14| 0.03 || 12.16| 0.05| 0| 0| 1.00
fft 13.95| 0.05| 14.05| 0.03| 1| 1| 1.01
fiff 8.02| 0.01f| 805| 001||1| 1| 1.00
mbrt | 9.05|0.11| 9.22| 0.11(1| 1| 1.02
nbld| 3.44| 0.02| 3.47 0.01|0| O 1.01
nfrc 9.68| 0.05(10.00| 0.04| 2| 2| 1.03
nnet | 5.41|0.02|| 559| 0.03||2| 1| 1.03
schr || 11.40| 0.01| 11.42| 0.03|| 0| 0| 1.00
sim || 15.26| 0.03| 15.92| 0.07|| 1| 1| 1.04
(a) OSR Overhead
Normal(N) || With OSR(O) || #OSR Ratio
BM t(s) | std t(s) stdi| I | T | FI|CA O/N
adpt | 1794|006 1785 0.06(| 1| 1| 1| F 0.99
capr | 11.61|0.01| 1169 0.02(|2| 2| 2| T 1.01
clos | 16.96| 0.01| 17.18| 0.22|0| O O| F 1.01
crni 721 0.04| 6.73 024\ 1| 1 1| T 0.93
dich || 13.92| 0.01| 13.94| 0.01|0| O} O| F 1.00
diff 12,731 0.07 || 1274 004 0| O} O| F 1.00
edit 6.58| 0.03|| 6.66| 0.07|| 1| 0| O| F 1.01
fdtd | 12.14| 0.03| 12.13| 0.03|0| O}| O| F 1.00
fft 1395/ 0.05| 1391| 002| 1| 1| 2| F 1.00
fiff 8.02/0.01|| 826| 003||1| 1| 1| F 1.03
mbrt | 9.05|0.11| 9.06| 003|1| 1| 1| F 1.00
nbld| 3.44|0.02| 347 001} 0| Of O| F 1.01
nfrc 9.68| 0.05|| 426 002 2| 2| 5| T 0.44
nnet 541|0.02| 5.71 0032 1| 1| F 1.05
schr 1141 0.01 11.45| 0.050| O O| F 1.00
sim || 15.26| 0.03| 14.72| 009 1| 1| 1| F 0.96

#OSR while the number of OSR events triggered at runtime is shown under the cdalratbed T of
#OSR The execution ratio for a benchmark is shown as the ratio of the avexaget®mn time when OSR
was enabled to the average execution time when OSR was disabled (this ifthle cese). Column®/N
of Table Il(a) andO/N of Table Il(b) show, respectively, the ratio for each benchmark wb8R only was
enabled and when OSR and inlining were enabled. In Table II(b), we gf@number of functions inlined

(b) Dynamic Inlining using OSR

Table II: Experimental Results (lower execution ratio is better)

19

underFl. The column labelle€A indicates whether at least one function in the benchmark is called again
after it has completed an OSR event.

The STDs of our data sets range from 0.00 to 0.24, showing that thetmretmes are quite reliable.
We now discuss the results of our experiments in detail.

4.2.1 Costof Code Instrumentation and OSR

Because our approach is based on code instrumentation, we wanted trertbasoverhead of code in-
strumentation and triggering OSRs. This will allow us to assess the perfoenaawicdevelop an effective
instrumentation strategy.

ColumnO/N of Table ll(a) shows that the overheads range from about 0 to 4%isthilso the range
for the closest-enclosing-loops strategy, suggesting that the overbedér the two strategies are close.
Out of the 16 benchmarks, 10 have at least one OSR point; and 8 oftbdmmnchmarks triggered one or
more OSR events. We have not shown the table of the results for the obmsdssing loops because out of
the 8 benchmarks that triggered an OSR event, the outer-most and th&-elnsksing loops are different
only in 3 benchmarksmbrt, nfrc, andsim The execution ratios for these benchmarks under the closest-
enclosing-loops strategy are: 1.00 fabrt, 1.02 fornfrc, and 1.04 forsim Thembrt andnfrc benchmarks
have lower execution ratios under the closest-enclosing-loops strdtegyot entirely clear whether the
closest-enclosing-loops strategy is more effective than the outer-mgs-$¢b@tegy; although, with these
results, it appears that using the closest-loops strategy results in loar&ieads. The choice between these
two will depend largely on the kinds of the optimizing transformations expett®&R points. We return to
this discussion in Section 4.2.2, where we examine the effectiveness dfmamic inlining optimization.

We investigated the space performance and found that, depending drateg\s the three benchmarks
(mbrt, nfrc andsim) compiled up to 3% more instructions under the closest-enclosing-loopgystratas is
hardly surprising; the OSR overhead depends on the number of OSR pwittumented and the number of
OSR points triggered at runtime. The size of the instrumentation code added>&R point in a function
depends on the size of the live variables of the function at that point, aahities depending on the position
of the OSR point in a loop nest. The outer-most loop is likely to have the smadiest bve variables.

Although the overhead peaked at 4%, we conclude that on averagwdteead is reasonable and practi-
cal for computation-intensive applications. As we continue to developteféeoptimizations for M\TLAB
programs, we will work on techniques to use OSR points in locations whésegquent optimizations are
likely to offset this cost and therefore increase performance.

4.2.2 Effectiveness of Selective Inlining With OSR

Our objective here is to show that our approach can be used to suyparnic optimization. So, we mea-
sured the execution times of the benchmarks when dynamic inlining is enablesh & OSR is triggered,
we inline call sites in the corresponding loop nest. Colutith OSR of Table lI(b) shows the results of
this experiment.

The results show significant improvements ¢oni, nfrc andsim This shows that our dynamic inlining
is particularly effective for this class of programs. Further investigaéeealed that these benchmarks in-
lined multiple small functions and several of these functions fall back to théNViinterpreter to compute
some complicated expressions. McJIT’s interactions with the interpreteilissfi®ed by setting up a symbol
environment for binding variables at runtime. Our dynamic inlining enablésgation that eliminates the
environment set-up instructions in the inlined code. This is the main causefofrpance improvement in
nfrc andsim, and is impossible to do without inlining.

20

Only thefiff andnnetshow a real decrease in performance when using the outer-most-latgggtwith
inlining. We found that the function inlined liynetcontains some expensive cell array operations, which
our optimizer is currently unable to handle. The benchmark also trigger&de@ént once, but performed
three OSR instrumentation phases: two at the compilation time and one re-ind@tioreduring the only
OSR event.

We wanted to assess the impact of recompilation to optimizprthleg.entryblock added during an OSR
event; so we turned off recompilation after OSR and re-collected the exedimes for the benchmarks.
Out of the 9 benchmarks that performed inlining, only 3 benchmarks coatdi#ast a further call to a
function that completed an OSR. These are the rows with the valu@adainst the column labelleGA
in Table ll(b). The results for these benchmarks under the no-recdiopilafter OSR is: 1.01 focapr,
0.95 forcrni, and 0.45 fomfrc. These results suggest that the recompilation to removertileg.entry
contributes to the increase in performancedapr andnfrc. The block has the potential to disrupt LLVM
optimizations and removing it might lead to better performance. The recompildtem@SR does not
result in a slowdown for the other benchmarks.

In Section 4.2.1, we mentioned that the kinds of the optimizing transformationguida the choice of
strategy that lead to better performance. Considering the 3 benchmarka leitp nest where the outer-
most and closest-enclosing loops are different, thamkst, nfrc andsim, we found that the outer-most-loop
strategy outperforms the closest-enclosing-loop strategy. In partitesim benchmark results in about
5% performance degradation. These results support our claim.

We conclude that our OSR approach is effective, in that efficiently@tpphis optimization, and that it
works smoothly with inlining. To see further benefits of OSR forMAB, we shall develop more sophis-
ticated optimizations that leverage the on-the-fly dynamic type and shapmation that is very beneficial
for generating better code.

5 Related Work

Holzle et al [12] used an OSR technique to dynamically de-optimize running optihtiade to debug the
executing program. OSR techniques have been in used in several implgarentéthe Java programming
language, including Jikes research VM [10, 3] and HotSpot [18] tpet@mdaptive recompilation of run-
ning programs. A more general-purpose approach to OSR for the JMesas suggested by Soman and
Krintz [21] which decouples OSR from the program code. Our appr@amore similar to the original Jikes
approach in that we also implement OSR points via explicit instrumentation andpOB& in the code.
However, we have designed our OSR points and OSR triggering mechanfgmaturally into the SSA-
form LLVM IR and tool set. Moreover, the LLVM IR is entirely differentdm Java byte-code and presents
new challenges to OSR implementation at the IR level (Section 3). Our afpialso general-purpose in
the sense that the OSR can potentially trigger any optimization or de-optimizatiarathhe expressed as
an LLVM transform.

Recently, Sisskraut et al [23] developed a tool in LLVM for making a transition frarslow version of
a running function to a fast version. LikdiSskraut et al, our system is based on LLVM. However, there
are significant differences in the approaches. While their system srwateversions of the same function
statically, and transitions from one version to another at runtime, our pegpsolution instruments and
recompiles code dynamically at runtime. This is more suitable for an adaplive&tondly, the approach
used by 8sskraut et al stores the values of local variables in a specially alloastdadthat is always ac-
cessible when an old stack frame is destroyed and a new stack frametesidiegathe executing function.
This requires a special memory management facility beyond that providéd\Hy. In contrast to their
approach, our approach does not require a special allocationdeettaistack frame is not destroyed until

21

OSR transition is completed. The recursive call of the executing functmenéally extends the old stack
frame. We only have to copy the old addresses and scalar values frooidtetack frame onto the new
stack frame. Finally, another notable difference between our apperatthat taken by i&skraut et al is
that their approach requires instrumenting the caller to support OSR in d @afletion. This may result in
high instrumentation overhead. In our approach, we do not instrumetiea t support OSR in a callee.

Inlining is an important compiler optimization. It has been used successfully iy praduction com-
pilers, especially compilers for object-oriented programming languageserédechniques for effective
inlining were introduced in the several implementations of SELF [6, 13]. S& FL3] uses heuristics to
determine the root method for recompilation by traversing the call stack. ntithknes the traversed call
stack into the root method. The HotSpot Server VM [18] uses a similar inlintnageg)y.

Online profile-directed inlining has been explored in many VMs [8, 4, 52221]. The Jikes research
VM [3] considers the effect of inlining in its cost-benefit model for recdatpn by raising the expected
benefit of recompiling a method with a frequently executed call site. Sugaatiahaeport that for inlining
decisions for non-tiny methods, heuristics based solely on online proféeaddperforms those based on
offline, static data [22]. Online profile-directed inlining in aaAWLAB compiler has not been reported in the
literature. We expect that by using online profiling information to identify fait ites and guide inlining
decisions, inlining of the most critical call sites will boost performance.

6 Conclusions and Future Work

In this paper, we have introduced a modular approach to implementing OSRM&-based JIT compil-
ers, and demonstrated the approach by implementing selective dynamic intinMgfLAB . Our approach
should be very easy for others to adopt because it is based on the kiddNt implemented as an LLVM
pass. Furthermore, we found a solution which does not require agiabdata structures for storing stack
frame values, nor any instrumentation in the callers of functions containirgy g@$ts. It also does not
introduce any changes to LLVM which would require rebuilding the LLVMtsyn. Finally, our approach
also provides a solution for the case where a function body containingg@B is inlined, in a way that
maintains the OSR points and adapts them to the inlined context.

We used our OSR strategy in the Mtdmplementation, and using this implementation, we demonstrated
the feasibility of the approach by measuring the overheads of the OSRnesitation for two OSR place-
ment strategies: outer-most loops and closest-enclosing loops. Onraimbark set, we found overheads
of 0 to 4%. Further, we used the OSR machinery to implement dynamic increri@mt#ibn inlining. On
our benchmarks, we found some performance improvements and slighddégns, with several bench-
marks showing good performance improvements.

Our ultimate goal is to use OSR to handle recompilation of key loops, taking &djeof type knowledge
to apply more sophisticated loop optimizations, including parallelizing optimizatiomshvdan leverage
GPU and multicores. Thus, as MtJnd MATLAB -specific optimizations develop, we plan to use OSR to
enable such optimizations. In addition to our own future uses of our OSR imptatios, we also hope that
other groups will also use our OSR approach in LLVM-based JITstferdanguages, and we look forward
to seeing their results.

References

[1] LLVM. http://www.llvm.org/ .

[2] A. Adl-Tabatabai, J. Bharadwaj, D. Chen, A. Ghuloum, \&hbn, B. Murphy, M. Serrano, and T. Shpeisman.
StarJIT: A Dynamic Compiler for Managed Runtime Environtseintel Technology Journal7(1):19-31, feb
2003.

22

(3]

(4]

(5]

(6]

[7]
(8]

9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cdui¢ P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind,
K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. SarKgine Jikes Research Virtual Machine Project:
Building an Open-Source Research CommuriBM Syst. J.44(2):399-417, 2005.

M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. ajtive Optimization in the JalaperdVM. In
Proceedings of the 15th ACM SIGPLAN Conference on Objeigtr@d Programming, Systems, Languages,
and ApplicationsOOPSLA '00, pages 4765, New York, USA, 2000. ACM.

M. Arnold, M. Hind, and B. G. Ryder. Online Feedback-Qited Optimization of Java. IRroceedings of
the 17th ACM SIGPLAN Conference on Object-oriented prognarg, Systems, Languages, and Applications
OOPSLA '02, pages 111-129, New York, USA, 2002. ACM.

C. Chambers and D. Ungar. Making Pure Object-Orienteaguages Practical. I8onference Proceedings on
Object-Oriented Programming Systems, Languages, andaapipihs OOPSLA '91, pages 1-15, New York,
USA, 1991. ACM.

M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge.ti®izing MATLAB through Just-In-Time Specializa-
tion. In International Conference on Compiler Constructipages 46—65, March 2010.

M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. PracticidgDO: Java Under Dynamic Optimizations. In
Proceedings of the ACM SIGPLAN 2000 Conference on Progragniranguage Design and Implementation
PLDI '00, pages 13-26, New York, USA, 2000. ACM.

Cleve Moler.Numerical Computing with MATLABSIAM, 2004.

S. J. Fink and F. Qian. Design, Implementation and Eatidn of Adaptive Recompilation with On-stack
Replacement. IProceedings of the International Symposium on Code geioerahd Optimization: Feedback-
Directed and Runtime Optimizatip@GO '03, pages 241-252, Washington, DC, USA, 2003. |IEEE (ilder
Society.

K. Hazelwood and D. Grove. Adaptive Online Context-§iive Inlining. InProceedings of the International
Symposium on Code Generation and Optimization: Feedbaecied and Runtime Optimizatio€GO '03,
pages 253-264, Washington, DC, USA, 2003. IEEE Computgef§oc

U. Holzle, C. Chambers, and D. Ungar. Debugging Optimized Coib @ynamic Deoptimization. In
Proceedings of the ACM SIGPLAN 1992 Conference on Progragiranguage Design and Implementation
PLDI '92, pages 32—-43, New York, NY, USA, 1992. ACM.

U. Holzle and D. Ungar. A third-generation self implementatiBeconciling responsiveness with performance.
In Proceedings of the ninth annual conference on Object-teirprogramming systems, language, and
applications OOPSLA '94, pages 229-243, New York, NY, USA, 1994. ACM.

C. Lattner and V. Adve. LLVM: A Compilation Frameworkifaifelong Program Analysis & Transformation.
In CGO '04: Proceedings of the International Symposium on Gédeeration and Optimizatigpages 75—-86,
Washington, DC, USA, 2004. IEEE Computer Society.

MathWorks.MATLAB Programming Fundamental§he MathWorks, Inc., 2009.

McLAB. The mcvm virtual machine and its jit compiler, 2. http://www.sable.mcgill.ca/
mclab/mcvm_mocjit.html

C. Moler. The Growth of MATLAB™and The MathWorks over ©wDecades, 2006. http:
[lIwww.mathworks.com/company/newsletters/news_notes/ clevescorner/jan06.pdf

M. Paleczny, C. Vick, and C. Click. The Java HotSpot $e@ompiler. InProceedings of the 2001 Symposium
on JavaTM Virtual Machine Research and Technology Symposidblume 1JVM'01, pages 1-12, Berkeley,
CA, USA, 2001. USENIX Association.

Press, H. William and Teukolsky, A. Saul and VetterliigWilliam and Flannery, P. BriarNumerical Recipes

: the Art of Scientific ComputingCambridge University Press, 1986.

L. D. Rose, K. Gallivan, E. Gallopoulos, B. A. MarsolipéD. A. Padua. FALCON: A MATLAB Interactive
Restructuring Compiler. Il.CPC '95: Proceedings of the 8th International Workshop andguages and
Compilers for Parallel Computingpages 269-288, London, UK, 1996. Springer-Verlag.

S. Soman and C. Krintz. Efficient and general on-stagkaeement for aggressive program specialization. In
Software Engineering Research and Practigages 925-932, 2006.

T. Suganuma, T. Yasue, and T. Nakatani. An Empiricad$gtaf Method In-lining for a Java Just-In-Time
Compiler. InProceedings of the 2nd Java Virtual Machine Research andntdogy Symposiunpages 91-104,
Berkeley, CA, USA, 2002. USENIX Association.

23

[23] M. Susskraut, T. Knauth, S. Weigert, U. Schiffel, M. MeinholddaC. Fetzer. Prospect: A Compiler Framework
for Speculative Parallelization. Froceedings of the 8th Annual IEEE/ACM International Sysimom on Code
generation and Optimizatigpages 131-140, New York, USA, 2010. ACM.

24

