McGill University
School of Computer Science
Sable Research Group

Taming MATLAB

Sable Technical Report No. sable-2012-02

Anton Dubrau and Laurie Hendren

April 13, 2012

www.sable.mcgill. ca

Contents

1

Introduction

MATLAB - adynamic language

2.1 BasiCS e e
2.2 MATLAB Type System e e e
2.3 MATLAB Functions and Specialization 0a..
24 MATLAB Classes e
25 FunctionHandles e
2.6 Function Parameters and Arguments e e e e e
2.7 WildDynamic Features e e e e
2.8 lllustrative Example e e e e e

2.9 SUMMANY e e e e e e

Framework for Builtins

3.1 LearningaboutBuiltins e e
3.1.1 Identifying Builtins: e
3.1.2 Finding Builtin Behaviours:

3.2 Specifying Builtins e e e

3.3 Specifying Builtin attributes L e e
3.3.1 The®Class™attribute
3.3.2 OtherAttributes

34 SUMMANY e e e e e e e e

TamelR

4.1 Specialized ASTnodes e e e
4.2 Lambda Simplification e e e
4.3 Switch simplification e e

4.4 Example e e e e e

Interprocedural Value Analysis and Call Graph Construction
5.1 The Interprocedural Analysis Framework
5.2 Introducing the Value Analysis

5.2.1 Mclasses, Valuesand Value Sets:,

13
13
13
14
15
16
17
17
17

18
18
18
19
20

5.3 FlowEquations e e e e
5.4 Structures, Cell Arrays and FunctionHandles

5.4.1 struct ,cell :

542 function _handle :
5.5 The Simple Matrix Abstraction
56 Example e e e e
5.7 Applyingthe Value Analysis e e

Building on the Tamer

6.1 Usingthe Tamer for furtheranalyses
6.1.1 Implementing new Value Abstractions
6.1.2 Implementing other Interprocedural Analyses

6.2 Usingthe Tamerforback-ends i
Related Work

Conclusions

Example Result

TIR Grammar

28
28
28
29
29

29

31

32

36

List of Figures

1 Overviewofthe MATLAB Tamer o i e e e e e 5
2 Superior/inferior class relationships foravias L 8

3 MATLAB numerical example 21
4 Example mclass results for groups of Built-in binaryopars 14

5 Subtree of builtin tree, showing all defined floating poiniltns of MATLAB 16

6 Specializations of the assignment statement 18

7 Transformingambda expressions e 19
8 Transformingswitch statements 19
9 Tame IR version of the functiosolveSystem from the example in Figure3 20
10 Assignment Statments e 37
11 Non-assignment statements e 37
12 Compound SErUCtUreS e e e e e e e 38
13 OtherTameIRNodes e 38

List of Tables

I Results of Running Value Analysis 28
Listings

MAaIN.M . . e e e e e e e e e e 12

rexample2.m e e e e e e 20

result.m . . . e 33

Abstract

MATLAB is a dynamic scientific language used by scientists, enggregal students worldwide. Al-
though MATLAB is very suitable for rapid prototyping and developmensmJAB users often want to
convert their final M\TLAB programs to a static language such aRFRAN. This paper presents an ex-
tensible object-oriented toolkit for supporting the gextiem of static programs from dynamicAviLAB
programs. Our open source toolkit, called them™as Tamer, identifies a large tame subset oAV
LAB, supports the generation of a specialized Tame IR for tHagedy provides a principled approach
to handling the large number of builtin MLAB functions, and supports an extensible interprocedural
value analysis for estimating M LAB types and call graphs.

1 Introduction

MATLAB is a popular numeric programming language, used by milla@drsientists, engineers as well as
students worldwide[16]. MTLAB programmers appreciate the high-level matrix operatdues,fact that
variables and types do not need to be declared, the largeerushbbrary and builtin functions available,
and the interactive style of program development avail#ireugh the IDE and the interpreter-style read-
eval-print loop. However, even thoughAViLAB programmers appreciate all of the features that enabld rapi
prototyping, they often have other ultimate goals. Fretjyehey wish to convert their MTLAB code to a
more static language such as#®rrAN or C.

There are several reasons why users would like to have statee First, users may want source code, which
can be compiled into a self-contained executable with stahdnd freely available compilers. This allows
them to easily distrubute both the source and executabtmn8eusers may want to generate code that can
be integrated into existing systems. As just one example,abrour users wanted to generatoHFTRAN
code that can be plugged into a weather simulation envirohnténally, users may wish to generate code
that can take advantage of high-performance optimizingaoalfelizing compilers (such asdRTRAN), or
novel parallel systems (such as X10).

This paper addresses the problem of how to provide the bbdggeen the dynamic realities of NILAB
and the ultimate goal of wanting efficient and static proggathis not realistic to support all the MLAB
features, but our goal is to define and provide support forra kagge subset of MTLAB, which includes
dynamic typing, variable numbers of input and output arguisiesupport for a variety of MrLAB data
types including arrays, cell arrays and structs, and stpofunction handles and lambda expressions.

Providing this bridge presents two main challenges. Theifirhat MATLAB is actually quite a complex
language. It evolved over many years and has non-standaedijes and function lookup semantics. The
second major challenge is properly dealing with the largaber of builtin and library functions, which
have also been developed over time and which sometimes haxpected or irregular behaviour.

Our solution is an open-source, extensible, objectedimibframework, implemented in Java, as presented
in Figure 1. The overall goal of the system is to takamaB programs as input and produce output
which is suitable for static compilation, a process that & Taming MATLAB. Given a.m file as input,
which is the entry point, the kMrLas Tamer produces as output: (1) a Tame IR for all functionsh(lser

"We should note that another way to achieve performance is¢anore dynamic techniques with a virtual machine and an
optimizing/parallelizing JIT. For a dynamic language IMTLAB, this seems to be a good fit, and in fact our research group is
developing dynamic techniques with the McVM project [4] arallel with our work for static compilers. Somewhat to oursise
there has been much more user interest in the static coippifatoject, for the reasons we have given. Thus, we thinkghesuing
both the static and dynamic approaches are worthwhile.

sann [T N

I
l Refactor

McLAB Front-end

l McAST
MCcSAF Taming
Kind Analysis Transformations
Function Lookup (Section 4)
Tame IR
Initial Call Graph
Builder
(Section 5)
v
Built=in Interprocedural
Framework 4% Value Analysis
(Section 3) (Section 5)

e

X10

Figure 1. Overview of our MTLAB Tamer. The shaded boxes indicate the components presentieg i
paper. The other solid border boxes correspond to existioyAd tools we use, and the dashed boxes
boxes correspond to ongoing projects which are using thdtsedsf this paper.

and library) which are reachable from the entry point, (2pmplete call graph, and (3) an estimation of
classesl/types for all variables.

There are some features inAVLAB that are simply too wild to handle, and so our system will ¢ceje
programs using those features. The user will need to reféotir program to eliminate the use of those
wild features. Thus, another important goal in our work idefine an as large as possible subset af M\B
that can be tamed without user intervention.

The main contributions of this paper are as follows.

* We present an overall design and implementation for theritMe Tamer, an extensible object-
oriented framework which provides the bridge between theadyic MATLAB language and static
back-end compilers.

* We describe the key features ofAVLAB necessary for compiler developers and for tool writers to
understand MTLAB and the analyses in this paper. We hope that by carefullya@kpt these ideas,
we can enable other researchers to also work on static moldATLAB . Our discussion of MTLAB
features also motivates our choice of the subset afiMB that we aim to tame.

» We provide a principled approach to understanding, graypand analyzing the large number of
MATLAB builtin functions. This is a non-trivial effort that is réalneeded in order to be able to
properly analyze MTLAB programs which typically make heavy use of library funcéion

* We provide extensions to the Mg$8 [5] framework to support a lower-level and more specialized
Tame IR, suitable for back-end static code generation.

* We present an interprocedural flow analysis framework toatputes both abstract values and the
complete call graph. This flow analysis provides an objeetrted approach which allows for exten-
sion and refinement of the abstract value representations.

The remainder of the paper is structured as follows. Sectr@duaces the key MrLAB features, Sec. 3
describes our approach toAvViLAB builtins, Sec. 4 describes the Tame IR and transformatiSes, 5
explains our extensible and interprocedural value aralgsd call graph construction, Sec. 6 summarizes
how our framework can be used, Sec. 7 provides an overvieelatid work and Sec. 8 concludes.

2 MATLAB -adynamic language

In this section we describe key MLAB semantics and features to provide necessary backgroumdior
piler writers and tool developers to understandm4aB and its challenges, and to motivate our approach
of constructing a “tame” intermediate representation ardIMB callgraph. In each subsection we give a
description followed by annotated examples using th@ DB read-eval-print loop. In the examples;>”
indicates a line of user input, and the following line(s)egthe printed output.

2.1 Basics

MATLAB was originally designed in the 1970s to give access to featof FORTRAN (like LINPACK,
EispACK) without having to learn BRTRAN[17]. As the name MTLAB (MATrix LABoratory) suggests,
MATLAB is centered around numerical computation. Floating poiatrices are the core of the language.
However, the language has evolved beyond just simple reatand now has a type system including matri-
ces of different types, compound types including cell asrand structs, as well as function references.

Given its origins, MhTLAB is a language that is built around matrices. Every valueNsaaix with some
number of dimensions, so every value has an associatedsiragg. Even scalar values arg 1 matrices.
Vectors are eitheft x n or n x 1 matrices and strings are just vectors of characters. Mostatipns
are defined for matrices, for example« b specifies matrix multiplication if botla andb are matrices.
Operators are overloaded and sometimes refer to scalaatmpey, for exampla * b specifies an element-
wise multiplication ifa is a matrix anc is a scalar.

>> size(3) % the scalar 3 is a 1x1 matrix
1 1

>> size([1 2 3)) % a 1x3 vector
1 3

>> size([5; 6; 7; 8; 9]) % a 5x1 vector
5 1

>> size('hello world") % a string, which is a 1x11 vector
1 11

>> [a' 'b; ‘e 'f] % a 2—dimensional matrix of chars
ab

ef

2.2 MATLAB Type System

MATLAB is dynamically typed - variables need not be declared, th#yake on any value that is assigned
to them. Every MTLAB value has an associatedavLAB class (henceforth we will use the nammelass
when referring to a MTLAB class, in order to avoid confusion with the usual notion da£). The mclass
generally denotes the type of the elements of a value. Fangbea the mclass of an array of doubles is
double . The default numeric mclassd®uble . While MATLAB also includes integer types, all numeric
literals are doubles.

>> n = 1 % input literal and output look like an int

1

>> class(n) % however, mclass is really double, the default
double

>> class(1:100) % mclass of vector [1, 2, ..., 100] is double
double

MATLAB has a set of builtin mclasses, which can be summarized asv&ll

» double ,single : floating point values

e uint8 ,uintl6 ,uint32 ,uint64 ,int8 ,intl6é ,in32 ,int64 : integer values
* logical : boolean values

 char : character values (strings)

» cell : heterogenous arrays

e struct : structures

« function handle : references to functions

Given that by default any numerical value inAVLAB is adouble , all values that are intended to be of a
different numeric type have to be specifically convertedisB®iso means that when combining a value of
some non-double mclass with a value that doaible , the result will be of the non-double mclass. This
leads to the surprising semantics that addingnsgger and adouble results in aninteger , because
that is the more specialized type.

>> X = 3 % x is implicitly a double

>> y = int8(5); %y is explictly an integer

>> class(x) % the class of x is double
double

>> class(y) % the class of y is int8
int8

>> class(x+y) % the result of x+y is int8, not double
int8

2.3 MATLAB Functions and Specialization

A MATLAB function is defined in am file which has the same name as the funcfioo, for example, a
function namedoo would be defined in a filfoo.m , and that file needs to be placed either in the current
directory, or in a directory on the MLAB path. A.m file can also define subfunctions following the main

2In the case where the name of the file and the function do nathmite name of the file takes precedence.

(primary) function definition in a file, but those subfuncigoare only visible to the functions within the file.
Functions may also be defined irpavate/ directory, in which case they are visible only to functions
defined in the parent directory.

MATLAB allows overriding or specializing operations and functido operate on specific mclasses. This
is accomplished by defining the function in a file inside a sdlycnamed directory which starts with the
character@followed by the name of the mclass. For example, one couldtera specialized function
firstWord defined for Strings, by creating a fi@char/firstWord.m somewhere on the MLAB
path. Functions that are specialized in such a way have gieace over non-specialized functions, but they
do not have precedence over inner functions, subfunctaefingd in the same file) or private functions (de-
fined in the/private directory). So, in our example, if there existed two defams offirstWord.m
one general implementation somewhere on thierde path, and one specialized implementation in a di-
rectory@char on the MATLAB path, then a call tiirstWord with achar argument will result in a call

to @char/firstWord.m , Whereas a call with an argument with any other mclass, egllt in a call to
the generafirstWord.m definition.

When calling a function that has mclass-specialized vessiith multiple arguments of different mclasses,
MATLAB has to resolve which version of the function to call. Theregitt exist a standard inheritance
relationship between the builtin mclasses. Rathesxrde has the notion of auperior or inferior class.
We were unable to find a succinct summary of these relatipasisio we generated aAWILAB program
which exercised all cases and which produceda file describing all relationships, with all transitive
relationships removed. Figure 2 shows the relationshipeden different builtin mclasses, showing su-
perior classes above inferior classes. Note that some seddsmave no defined relationship, for example,
there are no defined inferior/superior relationships betwibe different integer mclasses. Further, note that
double , being the default mclass, is inferior to integer mclassdso, the compound mclasses (struct and
cell), are superior to all matrix mclasses.

function_handle

G G

Figure 2: Superior/inferior class relationships forMAB

When resolving a call with multiple arguments,AWMLAB finds the most superior argument, and uses its

8

mclass to resolve the call. If multiple arguments have nanddfisuperior/inferior relationships, AMLAB
uses the leftmost superior argument. For example, if a fmmds called with three arguments with the
mclassesdouble , int8 , uint32), in that order, M\TLAB attempts to find a specialized version for
mclassint8 . If none is found, MTLAB attempts to find a non-specialized version.

The class specialization semantics fontMlAB means that if one intends to build a complete callgraph, i.e.
resolve all possible call edges, one has to find all possibiglMB classes for all arguments, and one must
safely approximate the lookup semantics of functions idiclg the correct lookup of specialized functions
using the mclass and the superior/inferior mclass relahips from Figure 2.

2.4 MATLAB Classes

It is important to note that the mclass of a value does not ¢etely define its type. For example, numeric
MATLAB values may be real or complex, and matrices have an arragstigqth of these properties are
defined orthogonally to the notion of its mclass. Althouglomputation can ask whether a value is complex
or real, and can ask for the shape of an array, the lookup semaolely depend on the mclass, which is
effectively just a name. Within the MLAB language, there is no dedicated class of values to represent
mclasses. Usually, strings (char vectors) are used to denofasses. For examplaes(3,2,'single’) ,

will call the builtin function 'ones’ and create3ax 2 array of unit values of mclasgngle

2.5 Function Handles

MATLAB values with mclasfunction _handle store a reference to a function. This allows passing
functions as arguments to other functions. Function handéam either be created to refer to an existing
function, or can be a lambda expression. Lambda expressiagsalso encapsulate state from the current
workspace via free variables in the lambda expression.

>> f = @sin % a function handle to a named function

f = @sin

>> g = @X) exp(@a *x) % alambda with a free variable "a”
g = @(x)exp(a *x)

Function handles, and especially lambdas, are useful inerivat computing, for example when calling
numerical solvers, as illustrated below.

f = @(y) D *t + c¢; % setup derivative function
span = [0 1]; % set interval
y0 = [0:0.1:10]; % set initial value
result = ode23s(f,span,y0);
% use matlab library function to solve

When building a callgraph of a program that includes functi@ndles, one needs to propagate function
handles through the program interprocedurally in ordernd fut which variables may refer to function
handles, and to find associated call edges.

2.6 Function Parameters and Arguments

MATLAB uses call-by-value semantics, so that each parameteredeadtesh copy of a variabfe This
simplifies interprocedural analyses for static compilatig calling a function cannot directly modify local
variables in the caller.

In MATLAB, function arguments are optional. That is, when callingrecfion one may provide fewer argu-
ments than the function is declared with. HowevesamJAB does not have a declarative way of specifying
default values, nor does it automatically provide defaaltgs. That is, a parameter corresponding to an ar-
gument that was not provided will simply be unassigned anshime error will be thrown if an unassigned
variable is read.

MATLAB does provide the functionargin to query how many arguments have been provided to the
currently executing function. This allows the programneeuse the value of nargin to explicitly assign
values to the missing parameters, as illustrated below.

function [resultl, result2] = myFunction(argl,arg2)
if (nargin < 1)

argl = 0;
end
if (nargin < 2)
arg2 = 1;
end;
end

As shown above, MTLAB also supports assigning multiple return variables. A fiomctall may request
any number of return values simply by assigning the call @teector of Ivalues. Just like the function
arguments, the return values don't all need to be assignelch auntime error is thrown if a requested return
value is not assigned. MLAB provides thenargout function to query how many results need to be
returned.

Clearly a static compiler for MrLAB must deal with optional arguments in a sound fashion.

2.7 Wild Dynamic Features

Whereas features like dynamic typing, function handled,\amiable numbers of input arguments are both
widely used and possible to tame, there are other truly wiltadhic features in MTLAB that are not as
heavily used, are sometimes abused, and are not amenabtatforcompilation.

These features include the use of scripts (instead of fum}j arbitrary dynamic evaluatioe\al), dy-
namic calls to functions usintgval , deletion of workspace variablesl¢ar), assigning variables at
runtime in the caller scope of a functioassignin), changing the function lookup directories during run-
time (cd) and certain introspective features. Some of these caroglest available static information, even
information associated with different function scopes.

Our approach to these features is to detect them and helpigggmmers to remove them via refactorings.
Some refactorings can be automated. For example, Adcdlready supports refactorings to convert scripts
to functions and some calls feval to direct function calls[19]. Other refactorings may need¢ done

by the programmer. For example, the programmer mayds® change directory to access some data file,

Actual MATLAB implementations only make copies where actually necessaiyg either lazy copying when writing to an
array with reference count greater than 1, or by using ssaétyses to determine where to insert copies[13].

10

not being aware that this also changes the function lookdprofThe solution in this case is to use a path
to access the data file, and not to perform a dynamic caltitoWe have also observed many cases where
dynamiceval orfeval calls are used because the programmer was not aware of tieetadirect syntax

or programming feature to uéeFor examplefeval s often used to evaluate a function name passed as a
String, where a more correct programming idiom would be ®aifunction handle.

2.8 lllustrative Example

The example in Figure 3 exemplifies some of the ideas presémtidie previous section. It is a complete,
valid MATLAB program, performing some numerical computatjamsing common features and functinal-
ity. It is a program using multiple user-defined functions,veell as MATLAB builtin functions, and one
MATLAB library function (the call tdoeplitz in function Dxx).

Note the use ofingle values. These single values are created only in the firstibmmain). But they

are superior taouble values used in the other functions, and all the values in¢cheabcomputation are a
result of operating on the incomirgingle values, so the overall computation is done usimgle val-

ues. Essentially functions performing the actual computatare agnostic to the mclasses of the arguments
(including the MATLAB functiontoeplitz itself).

Note also the use of the following MLAB features presented in the previous discussion:

« use of a structure (imain)
« use of alambda expression encapsulating local variablesistruct a function reference @nlveSystem)

« use of optional input arguments @olveSystem), where optional parameters are assigned using a
switch statement onargin

« use of multiple return values (iDxx).

In the following sections we will illustrate the relevantipts using this example. The complete result of
running the Tamer on the example in Figure 3 is shown in Appefd

2.9 Summary

In this section we have outlined keyAviLAB features and semantics, especially concentrating on fire de
nition of mclass and function lookup. Our approach is to tamenuch of MATLAB as possible, including
support for function pointers and lambda definitions. Captuas much as possible of the evolved lan-
guage is not just useful to allow access to a wider set afIMB features for user code. Also, a significant
portion of MATLAB’s extensive libraries are written in MLAB itself, and make extensive use of some of
the features discussed above. Since we implement thie M3 lookup semantics, and allow the inclusion
of the MATLAB path, our callgraph will automatically include availablexMAB library functions. Thus,
implementing more features will also benefit users who damadte direct use of advanced features.

“This is at least partly due to the fact that older versions affM\s did not support all of the modern features.

SWhile the presented example is a complete, valigrMaB program, and uses features and the kind of functions onedwoul
commonly see used in NfLAB, it does not represent a meaningful way to solve the cordamnerical problem, because it is
highly unstable. We created this example for the purposdhkusfrating different MaTLAB language ides, and for brevity.

11

function result = main(N)
% set up sytem conditions/variables
rod.L = single(10);
rod.Ta = single(3);

rod.Tb = single(4);
a=.2
A = 0.05;

Tspan = [0 20];

% solve system

result = solveSystem(rod,a,A,N,Tspan);
end

% solves the heat equation for some rod of length rod.L,
% initially at temperature rod.Ta, rod.Th, using N subdivisions.
% uses default values for Tspan, Tsteps if they are undefined
functi on out=solveSystem(rod,a,A,N,Tspan,Tsteps)

swi t ch nargin

case 4
Tspan = [0, 10]; Tsteps = 100;
case 5
Tsteps = 100;
end
h = rod.L/(N+1); % step size in x
X = [h:hirod.L-h].; % create x axis with subidivisions

U0 = X; % allocate u0
mid = round(length(X)/2);

UO(1:mid) = rod.Ta; % set left to Ta

UO(mid: end) = rod.Tb; % set rightto Tb

[D,c] = Dxx(N,rod.Ta,rod.Th,h); % set up derivative matrix

f=@(u a *[D+*u + c) + A; % right hand side of ODE

[T,out] = RungeKutta2(f, Tspan,U0,Tsteps); % solve ODE
end

% creates a centered—in—space finite difference differentiation
% matrix for the second spatial derivative.
function [D,c]=Dxx(N,a,b,h)
D= toeplitz([-2;1;zeros(N-2,1)],
[-2,1,zeros(1,N-2)])./h"2;
¢ = [a/h"2; zeros(N-2,1); b/h™2];
end

% Runge—Kutta 2 implementation solving the system
% y'=f(t.y), y(a)=y0
% over tspan=[a,b], using function f, and N integration steps
function [X,Y]=RungeKutta2(f,tspan,y0,N)
a=tspan(1); % initial time
b=tspan(2); % final time
h=(b-a)/N; % step size
Y = [y0 zeros(length(y0),N)]; % result matrix, with yO
X = (ath:b); % set times
for j=1:N % integration steps
k1 = h=f(X(), YCJ)):
k2 = h=f(X(G)+ h, Y(.,j) + k1);
Y(C,j+1)=Y()) + 1/2 * (k1 + k2);
end
end

Figure 3: I\/lATLABlgumericaI example

3 Framework for Builtins

One of the strengths of MLAB is in its large library, which doesn't only provide accesstarge number
of matrix computation functions, but packages for otheersific fields. Even relatively simple programs
tend to use a fair number of library functions. Many librampétions are actually implemented inAVLAB
code. Thus, to provide their functionality, the callgrapimstruction needs to include anyAviLAB function

on the MATLAB path, if it is available. Thus we can provide access to a latgaber of library functions
as long as we can support the language features they use.veipwendreds of MTLAB functions are
actually implemented in native code. We call these funetibuiltins or builtin functions. Every MrLAB
operator (such as, %) is actually a builtin function; the operations are mergmtactic sugar for calling
the functions that represent the operations (like 'plusitimes’). Thus, for an accurate static analysis of
MATLAB programs one requires an accurate model of the builtinsyaydo deal with the many builtins.
Consider that the example presented in Figure 3 at first siglyt seems to use some basic matrix arith-
metic and some comparison operators; however, the fullrpmgincluding the embeddedAviLAB library
function call, refers to a total of twenty-six builtifs.

In this section we describe how we have modeled the builthtsteow we integrate the analysis into the
static interprocedural analysis framework.

3.1 Learning about Builtins

As a first step to build a framework of builtin functions, weedeto identify builtins, and need to find out
about their behavior, especially with respect to mclasses.

3.1.1 Identifying Builtins:

To make the task of building a framework for builtins manddeawe wanted to identify the most commonly
used builtin functions and organize those into a framew@ther builtins can be added incrementally, but
this initial set was useful to find a good structure.

To identify commonly used builtins we used the MafcH framework[19] to find all references to functions
that occur in a large corpus of over 300aMAB programs. We recorded the frequency of use for every
function and then using the MLAB functionexist , which returns whether a name is a variable, user-
defined function or builtin, we identified which one of theaadtions is a builtin function. This provided us
with a list of builtin functions used in real MLAB programs, with their associated frequency of use. We
selected approximately three hundred of the most frequenatibns, excluding very dynamic functions like
eval as our initial set of builtin function$.

Smtimes, vertcat, single, transpose, conj, round, colon, It , isequal, mrdivide,
length, horzcat, mpower, end, plus, minus, nargin, class, o nes, message, uminus,
zeros, ne, rdivide, ctranspose, warning
"This is the same set of projects that are used in [6]. The leadts come from a wide variety of application areas inclgdin
Computational Physics, Statistics, Computational Bigldgeometry, Linear Algebra, Signal Processing and Imagee?ising.
8The complete list can be foundwtvw.sable.mcgill.ca/mclab/tamer.html

13

3.1.2 Finding Builtin Behaviours:

In order to build a call graph it is very important to be ablepproximate the behaviour of builtins. More
precisely, given the mclass of the input arguments, onestmekinow a safe approximation of the mclass
of the output arguments. This behaviour is actually quitdglex, and since the behaviour ofAviLAB 7 is
the defacto specification of the behaviour we decided to éaaegrammatic approach to determining the
behaviours.

We developed a set of scripts that generated rand@mLiB values of all combinations of builtin mclasses,
and called selected builtins using these arguments. Kermdifft random values of the same mclass result
in consistent resulting mclasses over many trials, thetscrecord the associated mclass propagation for
builtins in a table, and collect functions with the same reglaropagation tables together. Examples of three
such tables are given in Figure4.

[e [it6 [i32 [i64 [32 [fed [c _[b][|8 [i16 [i32 [i64 [32 [f64 [c [b |
i8 ||i8 |- - - - i8 |i8 |- i8 ||i8 |- - - - - i8 |-
i16 |- |i16 |- - - i16 |il6 |- i16 |- |i16 |- - - - i16 |-
i32 (|- |- i32 |- - i32 |i32 |- i32 (|- |- i32 |- - - i32 |-
i64 |- |- - i64 |- i64 |i64 |- i64 (|- |- - i64 |- - i64 |-
f32 ||- |- - - f32 |f32 |f32 |f32 ||f32 ||- |- - - f32 |- f32 |32

f64 ||i8 |il6 |i32 |i64 [f32 |f64 |f64 |f64 ||f64 ||i8 |il6 |i32 |i64 |f32 |64 |f64 |f64
c i8 |i16 |i32 |i64 |f32 |f64 |f64 |f64 ||C i8 [il6 |i32 |i64 |f32 |f64 |f64 |f64
b - - - - f32 |f64 |f64 |f64 ||b - - - - f32 |f64 |f64 |-
(@) plus , minus , mtimes , times , kron (b) mpower, power

[8 [it6 [i32 [i64 [32 [fd [c_[b |

i8 i8 |- - - - i8 |i8 |-
i16 ||- |i16 |- - - i16 |i16 |-
i32 |- |- i32 |- - i32 |i32 |-
i64 |- |- - i64 |- i64 |i64 |-
f32 ||- |- - - f32 |f32 |32 |f32

f64 ||i8 |il6 |i32 |i64 |f32 |f64 |f64 |f64
c i8 [il6 [i32 |i64 |f32 |f64 |f64 |f64
b - - - - f32 |f64 |f64 |-
(c) midivide , mrdivide ,Idivide ,rdivide ,mod rem, mod

Figure 4. Example mclass results for groups of Built-in byjn@perators. Rows correspond to the mclass of
the left operand, columns correspond to the mclass of thé ojgerand, and the table entries give the mclass
of the result. The labels i8 to i64 represent the classestimtigh int64, f32 is single, f64 is double, c is
char, and b is logical. Entries of the form “-” indicate thlaistcombination is not allowed and will result in

a runtime error.

As compared with type rules in other languages, these sasudlyy seem a bit strange. For example, the “-”
entry forplus(int16,int32) in Figure 4(a) shows that it is an error to add an int16 to at@RinHowever
adding an int64 to a double is allowed and it results in anding8lso, note that although the three tables in
Figure 4 are similar, they are not identical. For exampldsigure 4(a), multiplying a logical with a logical

°To save space we have not included the whole table, we haxaulethe columns and rows for unsigned integer mclasses and
for handles. All result tables can be foundmatw.sable.mcgill.ca/mclab/tamer.html

14

results in a double, but using the power operator with twackag is an error. Finally, note that the tables
are not always symmetrical. In particular, fisd column and row in Figure 4(b) are not the same.

The reader may have noticed how the superior/inferior rasctalationships as shown in figure Figure 2
seem to resemble the implicit type conversion rules foxTMAB builtin functions. For example, when
adding an integer and a double, the result will be double. élew it is not sufficient to model the implicit
MATLAB class conversion semantics by just using class-speddiirections and their relationships. Many
MATLAB builtins perform explicit checks on the actual runtime ty@ad shapes of the arguments and
perform different computations or raise errors based oselohecks.

Through the collection of a large number of tables we fourat thany builtins have similar high-level
behaviour. We found that some functions work on any matarjes work on numeric data, some only work
on floats, and some work on arbitrary builtin values, inahgdcell arrays or function handles.

3.2 Specifying Builtins

To capture the regularities in the builtin behaviour we ged all of the builtins in a hierarchy - a part of
the hierarchy is given in Figure 5. Leaves of the hierarchyespond to actual builtins and upper levels
correspond to abstract groups which share some sort ofasitmdhaviour. The motivation is that some
flow analyses need only specify the abstract behaviour obapmrand the flow analysis framework will

automatically apply the correct (most specialized) behavior a specific builtin.

To specify builtins and their relationships, we developathgple domain-specific language. One just needs
to specify the name of a builtin. If the builtin is abstrace(iit refers to a group of builtins), the parent group
has to be specified. If no parent is specified, the specifiecensian actual builtin, belonging to the group
of the most recently specified builtin. This leads to a vemnpact representation, allowing builtins to be
specified on one line each, as illustrated by the followirniggset of the builtin specification:

floatFunction; matrixFunction
properFloatFunction; floatFunction
unaryFloatFunction; properFloatFunction
elementalUnaryFloatFunction; unaryFloatFunction
sqrt

realsqrt

erf

improperFloatFunction; floatFunction

The builtin framework takes a builtin specification and gates a set of Java classes whose inheritance
relationship reflects the specified tree. It also generatgsitar class, which allows annotating methods
to Builtins using the visitor pattern - a pattern that is athg extensively used in the Ma® framework[5]
upon which the Tamer is built.

We categorize the MrLAB builtin functions according to many properties, such asasgl arity, shape,
semantics. This means that different analyses or attshzda be specify at exactly the required category. It
also means that when adding builtins that do fit in alreadgtij categories, one does not need to add all
required attributes or flow equations.

15

EIementaIBinaryFIoatF

BinaryFloatFn———» ArrayBinaryFloatFn hypot
ProperFloatFn
cumsum
/
FloatFn eDS /CumprOd mode
ImproperFIoatFn—» DimensionSensitiveFloatFr— DimensionCollapsingFloatFr— Fs)Lorg
\ - mean
eig
norm
MatrixLibaryFn rank
I cond
det
rcond
linsolve
FacotorizationFn schur
ordschur
lu sin
chol cos
svd tan
ar cot
sqrt
realsqrt))) — sec
erf RadianTrigonometricFn csc
erfinv -
erfc sind
erfcinv cosd
gamma tand
gammaln / cotd
exp secd
log DegreeTrigonometricFn cscd
log2 -
log10 sinh
cosh
ForwardTrigonometricFn— HyperbolicTrigonometricFn—- E:aont:
__— sech
ElementalUnaryFloatFn csch
/ asin
acos
UnaryFloatFn RadianinverseTrigonmetricFa—s 22}?
InverseTrigonmetrian\» asec
\FegreelnverseTrigonmetrian acsc
ArrayUnaryFloatFn W
> HyperboliclnverseTrigonmetricFn | asind
SquareArrayUnaryFloatFn acosd
logm atand
sqrtm acotd
expm asecd
inv acscd
asinh
acosh
atanh
acoth
asech
acsch

Figure 5: Subtree of builtin tree, showing all defined flogtoint builtins of MATLAB

3.3 Specifying Builtin attributes

It is not sufficient to just specify the existence of builtitiseir behavior needs to be specified as well. In
particular, we need flow equations for the propagation ofasg#s. Thus the builtin specification language
allows the addition of properties. A property is just a namigh a set of arguments that follow it. A specific
property can be defined for any builtin, and it will triggeethddition of more methods in the generated Java
code as well as the inclusion of interfaces. In this way, aperty defined for an abstract builtin group is

defined for any builtin inside that group as well, unless tsgeverridden.

16

3.3.1 The “Class” attribute

The first property we defined was the propetlass . When specified for a builtin, it forces the inclusion of
the Java interfac€lassPropagationDefined in the generated Java code, and will add a method that
returns an mclass flow equation. The mclass flow equatiolfi issgpecified as an argument to tdass
attribute using a small domain specific language that allmaching argument mclasses, and returns result
mclasses based on matches. An example snippet is given béimh shows the specification of mclass
flow equations for unary functions taking numeric argumefisnctions in that group accept any numeric
argument and return a result of the same mclasmric->0), a char or logical argument will result in a
double .

unaryNumericFunction; properNumericFunction;
-Class(numeric->0, \
char|logical->double)

elementalUnaryNumericFunction; unaryNumericFunction;
-abstract

real

imag

abs

conj;; MatlabClass(logical->error, natlab)

sign;; MatlabClass(logical->error, natlab)

We have noticed some irregularities in the puramias semantics, and our specification sometimes re-
moves those. In order to keep a record of the differences wahedMatlabClass specification which
allows us to specify the exact MLAB semantics - and thus provides an exact definition and dociatiem

of MATLAB class semantics. In the example above, we specify that tiidmsconj andsign have
different MATLAB semantics: they disallovogical = arguments, which will result in an error.

3.3.2 Other Attributes

It is possible to add new kinds of attributes to the builtieafication language. One merely has to add a
function to the builtin generator with a specific functioneriace and the same name as the new attribute.
This function has to return Java code that will be insertetthéngenerated Builtin class. The function may
also force that Builtin class to implement a certain integfé.e. to signify that certain methods were added
to it). We will use this facility to add more information akiduuiltins or flow equations for the operations
they represent. It will conversely allow us to quickly prdeiinformation about builtins that we add to the
framework.

3.4 Summary

We have performed an extensive analysis of the behavior afus builtin functions. Based on that we
developed a framework that allows to specifiaMAB builtin functions, their relationships and properties
such as flow equations in a compact way. This framework isnekiée both by allowing the quick addition
of more builtin functions; and by allowing to specify infoation and behavior for builtin functions. This
can be done either adding new properties to the framewael;its by implementing visitor classe&’

%The complete specification of builtins, documentation of 8pecification and diagrams of all builtins is available at
www.sable.mcgill.ca/mclab/tamer.html

17

4 Tame IR

As indicated in Figure 1, we build upon the MesS framework by adding taming transformations and
by producing a more specialized Tame IR. To produce an easédjyzable Tame IR we have made three
important additions: (1) generating more specialized A®8des, (2) translatingwitch statements to
equivalent conditional statements, and (3) transformamghda expressions to analyzable equivalents. One
might wonder why these transformations are not alreadygddffcSAF. The important point is that Mc§-
must handle all of MTLAB, whereas for our Tame IR we can make restrictions that asonedle for the
purposes of static compilation. This allows us to make the&#R more specialized and enables more
simplifying transformations.

AssignStmt

[y

TIRAbstractAssignStmt

‘ TIRAbstractAssignFromVarStmt ‘ ‘ TIRAsbtractAssignToListStmt ‘ ‘TIRAbslractAssignToVarSlmt ‘

TIRArraySetStmt HTIRCeHAHaySetSImt H T\RDotSetStm/ ‘ TIRAssignLiteralStmt H TIRCopyStmt H TIRAbstractCreateFunctionHandleStmt ‘

‘ TIRArrayGetStmt H TIRCellArrayGetStmt H TIRDotGetStmt H TIRCallStmt ‘ ‘ TIRCreateFunctionReferenceStmt H TIRCreateLambdaStmt ‘

Figure 6: Specializations of the assignment statement

4.1 Specialized AST nodes

One goal for our Taming framework was to produce an IR thagig gimple to analyze, and has operations
that are low-level enough to map fairly naturally to statioduages like BRTRAN. As one example, in
McSAF there is only one kind of assignment statement, assignamy ém expression to an lvalue expression.
For the Tame IR, we have many more specialized cases asatksin Figure 6. We also extended M¢Ss
analysis framework to recognize these new IR nodes, so flaat@ms can be specified for all these new
nodes. Note how the Tame IR has a different statement for@ifumcall or an array indexing operation.
In MATLAB these use the same syntax, a parameterized expression.eWeeusnd analysis[6] to resolve
names to being a function or variable, but there are raresaalen this is not possible. TameaAVLAB will
reject these cases.

4.2 Lambda Simplification

MATLAB supports lambda expressions. In order to be compatiblethatffame IR, their bodies need to be
converted to a three address form in some wayTMB lambda expressions are just a single expression
(rather than, say, statement lists), so we extract the bbthedambda expression into an external function.
The lambda expression still remains, but will encapsulalg a single call, all whose arguments are vari-
ables. For example, the lambda simplification will transfdhe expression in Figure 7(a) to the code in
Figure 7(b).

The new lambda expression encapsulates a call to the nevidintembdal . Note that the first two argu-
ments are variables from the workspace, the remaining ardgb@parameters of the lambda expression. In
the analyses, we can thus model the lambda expression uaitigl pvaluation of the functiotfambdal .

18

function outer function outer
f= @ty D *t + ¢ f = @(ty) lambdal(D,c,ty)
end end

function r = lambdal(D,c,t,y)
r = D*xt + ¢
end

(a) lambda (b) transformed lambda

Figure 7: Transformingambda expressions

To make this transformation work, the generated functiorstmeturn exactly one value, and thus Tame
MATLAB makes the restriction that lambda expressions return desiadue (of course that value may be
an array, struct or cell array).

4.3 Switch simplification

As illustrated in Figure 8(a), MrLAB has support for very flexible switch statements. Unlike iheot
languages, all case blocks have implicit breaks at the emarder to specify multiple case comparisons
for the same case block, MLAB allows using cell arrays of case expressions, for exaniple3 } in
Figure 8(a). Indeed, MrLAB allows arbitrary case expressions, such &sthe example. It refers to a
cell array, then the case will match if any element of the aethy matches. Without knowing the static type
and size of the case expressions, a simplification transfitomis not possible. Thus, to enable the static
simplification shown in Figure 8(b) we add the constrainttfer Tame MTLAB that case-expressions are
only allowed to be syntactic cell arrays.

switch n t=n
case 1 i f (isequal(t,1))
case {2, 3} el sei f (isequal(t,2) ||
isequal(t,3))
case ¢
el sei f (isequal(t,c))
ot herwi se
el se
end
end
(a) switch (b) transformed switch

Figure 8: Transformingwitch statements

19

4.4 Example

1 functi on [out] = solveSystem(rod,a,A,N,Tspan,Tsteps)ss mc_t40 = 2;

2 % solves the heat equation for some rod of length.. 39 [mc_t26] = mrdivide(mct27, mct40);

3 % initially at temperature rod.Ta, rod.Th, using.. 40 [mid] = round(mct26);

4 % uses default values for Tspan, Tsteps if they.. 41 [mc_tl3] = rod.Ta;

5 [mc_t10] = nargin (); 42 mctdl=1;

6 Mct34 = 4; 43 [mc_t15] = colon(mct4l, mid);

7 [mct12] = isequal (mal0, mct34); 44 UO(mctl5) = metl3;

g i f mctl2 45 % set left to Ta

9 mc.t36 = 0O; 46 [mc_t1l4] = rod.Th;

10 mc._t37 = 10; 47 mc.t28 = mid;

11 [Tspan] = horzcat (m¢36, mct37); 48 mctd2 = 1;

12 Tsteps = 100; 49 mct43=1;

13 el se 50 [mc_t29] = end(U0, mct42, mct43);

14 mc_t38 = 5; 51 [mc_tl6] = colon(mct28, mct29);

15 [mc_t11] = isequal (mca10, mct38); 52 UO(mctl6) = mctls;

16 if mctll 53 % set right to Tb

17 Tsteps = 100; 54 mct30 = N;

18 el se 55 mct31 = rod.Ta;

19 end 56 mc.t32 = rod.Th;

20 end 57 mct33 =nh;

21 [mc_tl7] = rod.L; 58 [D, c¢] = Dxx(mc_t30, mct31, mct32, mct33);
22 mct39=1; 59 % set up derivative matrix

23 [mc_t18] = plus(N, mct39); 0 f = (@(, u) lambdal(a, D, c, A, t, u));
24 [h] = mrdivide(mctl7, mctl8); 61 % right hand side of ODE

25 % step size in x 62 [T, out] = RungeKutta2(f, Tspan, UO, Tsteps);
26 mct21 = h; 63 end

27 mct22 = h; 64

28 [mc_t24] = rod.L; 65 functi on [mct0] =lambdal(a, D, c, A, t, u)
29 mc.t25 = h; 66 mMctl48 = a;

30 [mc_t23] = minus(mct24, mct25); 67 [mc_t150] = mtimes(D, u);

31 [mc_t20] = colon(mct21, mct22, mct23); 68 mc.tl5l=c;

32 [mc_tl9] = vertcat (mct20); 69 [mc_t149] = plus(mct150, mctl51);

33 [X] = ctranspose (md19); 70 [mc_t146] = mtimes(mal48, mctl149);

34 9% create x axis with subidivisions 71 mctld7 = A;

3 U0=X; 72 [mc_t0] = plus(mctl46, mctl47);

36 % allocate u0 73 end

w
J

[mc_t27] = length (X);

Figure 9: Tame IR version of the functi@olveSystem from the example in Figure 3

The solveSystem function from the example in Figure 3 gets transformed ihi ¢ode shown in Fig-
ure 9. The code has been transformed into a three-addresenjerith many temporaries, and all expres-
sions have been turned into calls to the equivalent builticfions. Note how the switch amargin()

gets transformed into a series of if-statements (lines)5&td how the lambda expression is turned into a
function. The original lambda expression is representea single call (on line 60) to a newly introduced
function (lines 65-73) that holds the body of the lambda egpion. Comments in the original code get
preserved in empty statements that hold the comm@nBQommentStmt). This means that no other
statement contains any comments, and every statement taamgformed without having to worry about
preserving comments.

20

5 Interprocedural Value Analysis and Call Graph Construction

The core of the MTLAB Tamer is thevalue analysis. It's an extensible monolithic context-sensitive inter-
procedural forward propagation of abstrachiAB values. For every program point, it estimates what
possible values every variable can take on. Most notablyndsfithe possible set of mclasses. It also
propagates function handle values. This allows resoluifaall possible call edges, and the construction of
a complete call graph of a tameAviLAB program.

The value analysis is part of an extensible interprocedamalysis framework. It contains a set of modules,
one building on top of the other. All of them can be used by siséthe framework to build analyses.

» Theinterprocedural analysis framework (section 5.1) builds on top of the Tame IR and the MES
intraprocedural analysis framework. It allows the cortam of interprocedural analyses by extend-
ing an intraprocedural analysis built using the MeSramework. This framework works together
with a callgraph object implementing the correckMAB look up semantics. An analysis can be
run on an existing callgraph object, or it can be used to neld callgraph objects, discovering new
functions as the analysis runs.

» The abstract value analysis (section 5.2), built using the interprocedural analysisrfework, is a
generic analysis of abstractAILAB values. The implementation is agnostic to the actual repres
tation of abstract values, but is aware oM AB mclasses. It can thus build a call graph using the
correct function lookup semantics including function spkzation.

* We provide an implementation cgbmposite values like cell arrays, structures and function handles,
which is generic in the implementation of abstract matrikuga (section 5.4). This makes composite
values completely transparent, allowing users to impldéngery fine-grained abstract value analyses
by only providing an abstraction for MriLAB values which are matrices.

« Building on top of all the above modules and putting evanghogether, we provide an abstraction
for all MATLAB values, which we call simple values (section 5.5). Sincadtudes the function
handle abstractions, this can be used by users to build aletartame MTLAB callgraph. This is
the concrete value analysis, whose results are presented in section 5.7.

5.1 The Interprocedural Analysis Framework

The interprocedural Analysis framework is an extensiomefibtraprocedural flow analyses provided by the
McSAF framework. It is context-sensitive to aid code generatargdting static languages likeORTRAN.
FORTRAN's polymorphism features are quite limited; every genetat@iable needs to have one specific
type. The backend may thus require that everyTMAB variable has a specific known mclass at every
program point. Functions may need to be specialized foewdifft kinds of arguments, which a context-
sensitive analysis provides at the analysis level.

In the Tamer framework an interprocedural analysis is a&ctbn of interprocedural analysis nodes, which
represent a specific intraprocedural analysis for sometifimand some context. The context is usually a
flow representation of the passed arguments. Every suadipiotedural analysis node produces a result set
using the contained intraprocedural analysis.

Every interprocedural analysis has an associated caligrbject, which may initially contain only one func-
tion acting as the entry point for the program. The interptheal analysis requires a context or argument
set for the entry point function.

21

The analysis starts by creating an interprocedural arsalysde for the entry point function and the as-

sociated context, which triggers the associated intragghoi@l flow analysis. As the intraprocedural flow

analysis encounters calls to other functions, it has taereantext objects for those calls, and ask the inter-
procedural analysis to analyze the called functions ugieggiven context. The call also gets added to the
set of call edges associated with the interprocedural aisatyde.

As the interprocedural has to analyze newly encounterdd, ¢k associated functions are resolved, and
loaded into the callgraph if necessary. The result is a cetaallgraph, and an interprocedural analysis.

The interprocedural analysis framework supports simpterantual recursion by performing a fixed point
iteration within the first recursive interprocedural asaynode.

5.2 Introducing the Value Analysis

The abstract value analysis is a forward propagation ofrieabstract M\TLAB values. The mclass of any
abstract value is always known.

A specific instance of a value analysis may use differentesgrtations for values of different mclasses.
For example, function handle values may be representediffeeethit way than numeric values. This in turn
means that values of different Matlab classes can not beeddjgined).

5.2.1 Mclasses, Values and Value Sets:

To define the value analysis independently of a specific sgpitation of values, We first define the set of
all mclasses:
C = {double ,single ,logical ,cell ,...}

For each mclass, we need some lattice of values that represtimations of MTLAB values of that class:

Vinelass ={v : v approximates a value with mclass-lass},

mclass € C
We require that merge operations are defined, so
Vo1, v2 € Vinclass; V1 A V2 € Vinclass-
We can not join values of different mclasses, because toaiabrepresentation may be incompatible. So

Ve is not a lattice.

In order to allow union values for variables, i.e. to allowighles to have more than one possible mclass,
we estimate the value of a MLAB variable as a set of pairs of abstract values and their nedasgere
the mclasses are disjoint. We call this a value set. Moredtiymwe define a value set as:

ValueSet = {(mclassy,v1), ..., (mclass,,vy,) :

class; # class;, class; € C,v; € Vegss, b
Or the set of all possible value sets given algedf lattices for every mclass.

Sy = {{(mclassg,v) :
mclass; # mclass;, v; € Vipelass;s k € 0.n} :
0<n<|[C[}

22

This is a lattice, with the join operation which is the simpk union of all the pairs, but for any two pairs
with matching mclasses, their values get joined, resuitingnly one pair in the result set.

While the notion of a value set allows the analysis to deahwainbiguous variables, still building a com-
plete callgraph and giving a valid estimation of types, hg\ambiguous variables is not conducive to code
generation for a language likeoRTRAN. So

if ()

t = 4
el se

t = 'hi,
end

results int having the abstract value
{(double ,4),(char ,’hi")}.

This example is not tame MLAB.

5.2.2 Flow Sets:
We define a flow set as a set of pairs of variables and valuei sets,

flow = {(vary, s1), (vary, $2), ..., (vary, sp) :

si € Sy, var; # varj}
and we define an associated look-up operation
flow(var) = sif (var,s) € flow

This is a lattice whose merge operation resembles that ofatue sets.

Flow sets may bewonviable, representing non-reachable code (for statements aft@rseior non-viable
branches). Joining any ndmttom flow set with thenonviable set results in the viable flow set. joining
bottom andnonviable results innonviable.

5.2.3 Argument and Return sets:

The context or argument set for the interprocedural argmligsa vector of values representing argument
values. Arguments are not value sets, but simple values V, with a single known mclass. When
encountering a call, the analysis has to construct all coatioins of possible argument sets, construct a
context from that and analyze the call for all such conteixts.example, if we reach a call

r = foo(a,b)}

with a flow set
{(a,{(double ,v1),(char ,v9)}), (b,{(logical ,vs3)})},

the value analysis constructs two contexts, fi@m v3) and(vs, v3), and analyzes functiofoo with each
context. Note how the dominant argument for the first contextouble , whereas it ischar for the
second. If there exist mclass specialized versiongdor, then this results in call edges to, and analysis of,
two different functions.

23

More formally, for a callfunc(a, as, - - - , ay) at program poinp, with the input flow setf,,, we have the
set of all possible contexts

allargs =fp(a1) x fplaz) x -+ x fpla,) = H fplai).

1<i<n

The interprocedural analysis needs to analyzec with all these contexts and merge the result,

R= /\ analyze(func, arg).

arg€allargs

To construct a context, the value analysis may simplify (jpuis) values to a more general representation.
For example, if the value abstraction includes constahéspush up operation may turn constants ija
Otherwise, the number of contexts for any given function i@y unnecessarily large.

The result of analyzing a function with an argument set is@areof value sets, where every component
represents a returned variable. They are joined by compariea joining of the value sets. In the value
analysis we require that for a particular call, the numberetdirned variables is the same for all possible
contexts.

5.2.4 Builtin Propagators:

Every implementation of the value abstractions needs teigeca builtin propagator, which provides flow
equations for builtins. 1B is the set of all defined builtin functionlus , minus ,sin ,...}, then the
builtin propagatorP;, for some representation of valu&s is a function mapping a builtin and argument
set to a result set.

Py:Bx | JVr—= [J(Sv)"

neN neN

The builtin framework provides tools to help implement tnilpropagators by providing builtin visitor
classes. The framework also provides attributes for buflinctions, for example the class propagation
information attributes.

5.3 Flow Equations
In the following subsection we will show a sample of flow edoas to illustrate the flow analysis. We

assume a statement to be at program ppjrwith incoming flow setf,. The flow equation for program
pointp results in the new flow sef,

* vary = wvars:

fp = fp \{(vary, fy(vary))} U{(var, f,(vars))}

* var = [, wherel is a literal with mclasg; and value representatian:

fp = Fo \{(var, fp(var))} U{(var, {(ci,v)})}

24

o [t1,t, .., t] = func(ay, asg, ..., ay), afunction call to some functiofiunc:

with

Py (b,args)

call) -if funcwith args refers to a builtir
func,arg = analyze(f,args)

-if func(args) refers to a functiory

we set
R= /\ Callfunc,args
args€ fp(a1)x fp(az) XX fp(an)

then

m

=P\ UL o)y U L, R))
1=1

1=1

Note that when analyzing a call to a function in an m-file, trguement values will be pushed up. For calls
to builtins, the actual argument values will be used, eiffett in-lining the behaviour of builtin functions.

5.4 Structures, Cell Arrays and Function Handles

We implemented a value abstraction for structs, cell araagfunction handles (which we calggrValue
internally). This abstraction is again modular, this onthwespect to the representation of matrix values (i.e.
values with mclasslouble , single , char ,logical or integer). Structures, cell arrays and function
handles act as containers for other values, making therote#/ transparent. A user may provide a fine-
grained abstraction for just matrix values and combine tihabstraction of composite values to implement
a concrete value analysis.

5.4.1 struct ,cell

For structures and cell arrays, there are two possibleadbitns:

* tuple: The exact index set of thetruct /cell is known and every indexing operation can be com-
pletely resolved statically. Then the value is represeatea set of pair§(iy, s1), (i2, $2), -, (in, Sn) :
i € I,s, € Sy}, where | is an index set - integer vectors for cell arrays, rrardes for structs.

» collection: Not all indexing operations can be statically resolvedherset of indices is unknown. In
this case, all value sets contained in the struct or cell amged together, and the representation is a
single value set € Sy.

The usual representation for a structure is a tuple, beaamusaly all accesses (dot-expressions) are explicit
in the code and known. Cell arrays are usually a collecti@eabse the index expressions are usually not
constant. But cell arrays tend to have homogeneous mclasssyao there is some expectation that any
access of gtruct orcell results in some unambiguous mclass and thus allows statipitation.

25

5.4.2 function _handle :

As explained in section 2.5, function handles can be creatédr by referring to an existing function, or
by using a lambda expression to generate an anonymousdnngting a lambda expression. The lambda
simplification (presented in section 4.2) reduces lambgasssions to single calls.

We model all function handles as sets of function handlespaifunction handle pair consists of a reference
to a function and a vector of partial argument value sets.n&tion handle value may thus refer to multiple
possible function/partial argument pairs.

Given some flow sef), defined at the program poipt
. g = @sin
results in
fy =Fp \ (g, fp(g))U
{(g,{(function _handle ,{(sin ,())}H)}}
o g = @(ty) lambdal(D,c,ty)
results in

Iy =1\ (9, fr(9))V
{(g,{(function _handle ,

{(lambdal , (f,(D), fp(c))})})}

Note that function handles get invoked at array get statésnesther than calls. That is because the tame
IR is constructed without mclass information, and will emtty interpret a function handle as a variable.
When the target of an array get statement is a function hatidleanalysis inserts one or more call edges at
that program point, referring to the functions containethmfunction handle.

5.5 The Simple Matrix Abstraction

Using the value abstraction for structures, cell arrays fandtion, we implemented a concrete value ab-
straction by adding an abstraction for matrix values, whighcall simple matrix values. On top of the
required mclass, this abstraction merely adds constaptgation for scalar doubles, strings (char vectors),
and scalar logicals.

This allows the analysis of MrLas code utilizing optional function arguments using the lwiftinction
nargin , and some limited dynamic features utilizing strings. B@raple, a call likeones(n,m,’int8")
can be considered tame.

This implementation represents the concrete value asalyat is used to construct complete callgraphs.

5.6 Example

The concrete value analysis using simple matrix valuesléstatbuild a complete callgraph for our example
introduced in Sec. 2.8, and find a unique mclass for evenabbriat every program point. It includes

and analyzes the MLAB library functiontoeplitz . This includes resolution of structures as well as
function handles created by a lambda expression.

26

The analysis finds the following function calls, with thegsaciated arguments and return values:

main:
double -> single

solveSystem:
struct{Ta=single, Tb=single, L=single},
double, double, double, double -> single

Dxx:
double, single, single, single
-> single, single

toeplitz:
double, double -> double

RungeKutta2:
(handle, @lambda_1(double, single, single,
double,..),
double, single, double -> double, single

lambda_1:
double, single, single, double, double,
single -> single

Note the structure and the function handle, and the mbsirujle anddouble values.

We have included the complete program, which is the resuti@famer, in appendix A. It is shown in the
Tame IR form, with the result of the value analysis annotébegl/ery assignment statement.

The complete resolution of every value is only possible beeave include constant propagation. For
example, it allows the value analysis to know which case liergwitch statement isolveSystem is
valid. Also, the included functiotoeplitz includes the lines

[xclass] = class(x); % xclass=(char,double)
[mc_t90] = zeros(xclass); % mc_t90=(double)

Without knowing that the variabbeclass holds the string “double”, the following call weros wouldn’t
be known to return double , and the value analysis would have to assume the result bewddy numerical
value @ouble ,single , or any integer).

5.7 Applying the Value Analysis

In order to exercise the framework, we applied it to the sevarichmarks we have previously used for
evaluating McVM/McJIT[13], a dynamic system. The benchksaand results are given in Table I. About
half of the benchmarks come from the FALCON project[20] arelfaurely array-based computations. The
other half of the benchmarks were collected by the MBlteam and cover a broader set of applications
and use more language features such as lambda expressibas;ays and recursion. The columns labeled
#Fn correspond to the number of user functions, and the ¢olabreled #BFn corresponds to the number
of builtin functions used by the benchmark. Note the high bamnof builtins. The column labeled “Wild”
indicates if our system rejected the program as too wildy@m sdku benchmark was rejected because it
used thdoad library function which loads arbitrary variables from arst file. It is likely that we should
provide a tamer version of load. The column labeled “Mclasslicates “unique” if the interprocedural

27

value propagation found a unique mclass for every variabtea program. Only three benchmarks had one
or more variables with multiple different mclasses. Wefigdlithat it was really the case that a variable had

two different possible classes in those three cases.

Name | Description Source #Fn | #BFn Features Wild | Mclass
adpt Adaptive quadrature Numerical Methods| 1 17 no unique
beul Backward Eurler McLAB 11 30 lambda no unique
capr Capacitance Chalmers EEK 170| 4 12 no unique
clos Transitive Closure Otter 1 10 no unique
crni Tridiagonal Solver Numerical Methods| 2 14 no unique
dich Dirichlet Solver Numerical Methods| 1 14 no unique
diff Light Diffraction Appelbaum (MUC) 1 13 no unique
edit Edit Distance Castro (MUC) 1 6 no unique
fdtd Finite Distance Time Domain | Chalmers EEK 170 1 8 no unique
fft Fast Fourier Transform Numerical Recipes | 1 13 no multi
fiff Finite Difference Numerical Methods| 1 8 no unique
mbrt Mandelbrot Set McLAB 2 12 no unique
mils Mixed Integer Least Squares Chang and Zhou 6 35 no unique
nbld | 1-D Nbody Otter 2 9 no unique
nb3d | 3-D Nbody Otter 2 12 no unique
nfrc Newton Fractal McLAB 4 16 no unique
nne Neural Net McLAB 3 16 cell no unique
play Minimax Search McLAB 5 26 recursive, cell| no multi
rayt Raytracer Aalborg (Jensen) 2 28 no unique
sch2 Soarse Schroed. Egn Solver McLAB 8 32 cell, lambda no unique
schr Schroedinger Eqn Solver McLAB 8 31 cell, lambda no unique
sdku Sodoku Puzzle Solver McLAB 8 load yes

sga \ectorized Genetic Algorithm | Burjorjee 4 30 no multi
svd SVD Factorization McLAB 11 26 no unique

Table I: Results of Running Value Analysis

Although the main point of this experiment was just to exadhe framework, we were very encouraged
by the number of benchmarks that were not wild and the ovacalliracy of the basic interprocedural value
analysis. We expect many other analyses to be built usinfrdingework, with different abstractions. By
implementing them all in a common framework we will be be @bleompare the different approaches.

6 Building on the Tamer

The Tamer framework, as presented in this paper, is intebdétito support further analyses and to provide
the building blocks for a variety of back-ends.

6.1 Using the Tamer for further analyses

There are several ways in which the Tamer supports extensiofurther analyses.

6.1.1 Implementing new Value Abstractions

As discussed in Sec. 5.5, we have built a concrete value sigdahat is used to build the callgraph, which
is built on top of the composite value abstraction for stutes, cell arrays and function handles. The most
common case to extend the value analysis is to provide aeliffémplementation for matrix values, while
reusing the abstraction for the composite values.

28

Many flow analyses that attempt to estimate some aspectof M3 values are only concerned withAvwl-

LAB values that are matrices. They are basically independethtedbehavior of composite values, except
that these may contain matrices. This can be exactly adatdssproviding a new matrix abstraction: the

user only has to provide the abstraction for matrix valudactory class that can produce these matrix val-
ues, and a class that defines the flow equations for builtimh&b matrix abstraction. The whole machinery

of the value analysis can be reused, as well as compositesvathey simply contain whatever matrix value

abstraction is being used, as needed.

For example, an analysis writer may want to implement anyaigthat tracks whether matrices are sparse
or not (i.e. contain mostly zeros). Sparse matrices can jpeesented with special data types that can
leverage performance sparseness. This property is omyam to matrices, so the analysis can reuse the
implemented composite values and only provide an abstraéir matrices. The user can combine their
information about matrices with other components that we lzdready implemented (like constants) to get
a richer or more detailed abstraction.

Users could also implement a complete new abstraction faesabut still reuse the analysis itself.

6.1.2 Implementing other Interprocedural Analyses

The interprocedural analysis framework provides a cormr@rframework for developing new flow analyses,
forward or backward, that must be interprocedural, whiah r@ot necessarily based on flowing abstract
representations of MrLAB values forward. For example, a user may implement an irdgeguiural side-
effect analysis, computed on a callgraph that was produgeddovalue analysis.

All interprocedural analysis use Ma8-based intraprocedural analysis operating on the Tamer IR.

6.2 Using the Tamer for bac k-ends

The tamer provides a convenient IR, a complete call grapthtlza mclass information for each variable.
This provides a good starting point for developing backsend the Mclas group we are developing two
such back-ends, one for generatingRFRAN and another for generating X10 code. Other research groups
are also starting to use the Tamer framework, including pgeptdor a back-end for Modelica.

We would like to encourage other compiler writers interdsteMATLAB to consider using the Tamer, so
that they can focus on issues in their backend. For examplecent MATLAB compiler system called
MEGHA (“MATLAB Execution on GPU based Heterogeneous Arehiures”)[18] focuses on translating
programs for parallel execution on GPU and CPU. They useaéively small subset of MTLAB that does
not even include user functions; the whole program is asdumbe one script. Using the Tamer they could
support a wider set of features, even if the Tamer were juest tespre-process programs into a single inlined
function (which is one possible output).

7 Related Work

There are several categories of related work. First, we thevinmediate work upon which we are building.
The McLaB project already provided the front-end and the Me$5, 9] analysis framework, which pro-
vided an important basis for the Tamer. We also learned adat McLAB's previous McFOR project[14]
which was a first prototype MrLAB to FORTRAN9S compiler. McR supported a smaller subset of the

29

language, did not have a comprehensive approach to thénbuitictions, and had a much more ad hoc
approach to the analyses. However, it really showed thatersion of MATLAB to FORTRAN95 was pos-
sible, and that BRTRAN9S is an excellent target language. In this paper we have lgadie to the basics
and defined a much larger subset oANMAB , taken a more structured and extensible approach to bgildin
a general toolkit, tackled the problem of a principled apptoto the builtins, and defined the interproce-
dural analyses in a more rigorous and extensible fashioe.nEt generation of MabRr, as well as other
backends, can now be built upon these new foundations.

Although we were not able to find publicly available versiotigere have been several excellent previous
research projects on static compilation oAM AB which focused particularly on the array-based subset of
MATLAB and developed advanced static analyses for determiningestand sizes of arrays. For example,
FALCON [20] is a MATLAB to FORTRAN9O translator with sophisticated type inference algorghr@ur
Tamer is targeting a larger and more modern set af MB that includes other types of data structures such
as cell arrays and structs, function handles and lambdassijons, and which obeys the modern semantics
of MATLAB 7. We should note that FALCON handled interprocedural isdmefully inlining all of the

the code. MaJIC[2], a MATLAB Just-In-Time compiler, is patied after FALCON. It uses similar type
inference techniques to FALCON, but are simpler to fit thectiitext. MAGICA [12, 11] is atype inference
engine developed by Joisha and Banerjee of Northwestewetsity, and is written in Mathematica and is
designed as an add-on module used by MAT2C compiler [10]. Wy ho learn from the advanced type
inference approaches in these projects and to implemeiiasiapproximations using our interprocedural
value analysis.

The previously mention MEGHA project[18] provides an igsting appraoch to map MLAB array oper-
ations to CPUs and GPUSs, but only supports a very small sob8¢ATLAB .

There are also commercial compilers, which are not pub&ehilable, and for which there are no research
articles. One such product is thMATLAB Coder recently released by MathWorks[15]. This product pro-
duces C code for a subset ofaviLAB. According to our preliminary tests, this product does mpear to
support cell arrays except in very specific circumstancesdnoes it support a general form of lambda ex-
pressions, and was therefore unable to handle quite a fewrdfenchmarks. However, the key differences
with our work is that we are designing and providing an extdasand open source toolkit for compiler and
tool researchers. This is clearly not the main goal of peipriy compilers.

There are other projects providing open source implementabdf MATLAB -like languages, such as Octave[1]
and Scilab[8]. Although these add valuable contributianthe open source community, their focus is on
providing interpreters and open library support and thexeheot tackled the problems of static compilation.
Thus, we believe that our contributions are complementary.

Other dynamic languages have had very successful effortiefining compilable subsets and statically
analyzing whole programs. For example RPython[3] uses #dasimpproach to ours, defining a reduced
set of python that can be statically compiled, requiring Hievariables have a unique possible type, while
providing an analysis and compiler to compile that subsBtytRon does not produce multiple versions of a
function if it is called with different arguments; so evennttion can only be used with one set of argument

types.

DiamondbackRuby (DRuby) is a static type inference todtkitRuby [7], mostly with the goal to gain the
advantage of static languages to report potential erragadbf time. Ruby, like MTLAB, is a dynamic,
interpreted language, with many library functions in natbede - which may also have different behaviours
depending on the incoming argument types. Thus DRuby haotede type information for builtin func-
tions. In order to that, DRuby includes a type annotatioglege, which can also be used to specify types

30

for functions with difficult behaviour. DRuby constrainsthet of supported language features to enable the
static analysis, but allows some of them by inserting ruathecks to still be able to support them. These
are included in such a way as to help users identify wheretlgxhe error occurred.

8 Conclusions

This paper has introduced theAVLAB Tamer, an extensible object-oriented framework for sujppgpthe
translation from dynamic MTLAB programs to a Tame IR, call graph and class/type informatigtable

for generating static code. We provided an introductiorh&ofeatures of MTLAB in a form that we believe
helps expose the semantics of mclasses and function loakugpmpiler and tool writers. We tackled the
somewhat daunting problem of handling the large number itifbfunctions in MATLAB by defining an
extensible hierarchy of builtins and a small domain-spetiafiguage to define their behaviour. We defined a
Tame IR and added functionality to Ma8 to produce the IR and to extend the analysis framework toleand
the new IR nodes introduced. Finally, we developed an eitlenmterprocedural analysis framework and
an extensible value analysis that can be used to build a edenghligraph, which estimates the mclass of
every variable. We provide these frameworks, for users f@ment further interprocedural analyses, or as
an entry point for static MTLAB compilers.

Our initial experiments with the framework are very encgimg and we are now working on using the
framework to implement back-ends, and we hope that othdtsalso use the framework for a variety of
static MATLAB tools!! We also plan to continue developing the value analysis taiatidr abstractions for
shape and other data structure properties. Finally, astapararger project on benchmarkingAviLAB,
we hope to expand our set of benchmarks and to further exawtiieh features might be tamed, and to
extend our set of automated refactorings.

References

[1] GNU Octave.http://www.gnu.org/software/octave/index.html

[2] G. Almasi and D. Padua. MaJIC: compiling MATLAB for sgkand responsiveness. RLDI '02:
Proceedings of the ACM S GPLAN 2002 Conference on Programming language design and implemen-
tation, pages 294-303, New York, NY, USA, 2002. ACM.

[3] D.Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpytharstep towards reconciling dynamically
and statically typed oo languages. IS '07: Proceedings of the 2007 symposium on Dynamic
languages, pages 53-64, New York, NY, USA, 2007. ACM.

[4] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. tiyizing MATLAB through Just-In-Time
Specialization. Irinternational Conference on Compiler Construction, pages 46—65, March 2010.

[5] J. Doherty. McSAF: An Extensible Static Analysis Franoelvfor the MATLAB Language. Master's
thesis, McGill University, December 2011.

[6] J. Doherty, L. Hendren, and S. Radpour. Kind analysisM&TLAB. In In Proceedings of OOPSLA
2011, pages 99-118, 2011.

1The URL for a distribution will be released with the final pape

31

[7] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Staticayipference for Ruby. IfProceedings of
the 2009 ACM symposium on Applied Computing, SAC '09, pages 1859-1866, New York, NY, USA,
2009. ACM.

[8] INRIA. Scilab, 2009.http://www.scilab.org/platform/

[9] L. H. Jesse Doherty. MCcSAF: A static analysis framewak MATLAB. In Proceedings of ECOOP,
2012.

[10] P. G. Joisha. a MATLAB-to-C translator, 2003.

[11] P. G. Joisha and P. Banerjee. Correctly detectingnisittitype errors in typeless languages such as
MATLAB. In APL '01. Proceedings of the 2001 conference on APL, pages 7-21, New York, NY,
USA, 2001. ACM.

[12] P. G. Joisha and P. Banerjee. Static array storage watiion in MATLAB. In PLDI '03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and implementation, pages
258-268, New York, NY, USA, 2003. ACM.

[13] N. Lameed and L. J. Hendren. Staged static techniqueitiently implement array copy semantics
in a MATLAB JIT compiler. InProceedings of the International Compiler Conference (CC11), pages

22-41, 2011.

[14] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master'shesis, McGill University, August
20009.

[15] MathWorks. MATLAB Coder. http://lwww.mathworks.com/products/

matlab-coder/

[16] C. Moler. The Growth of MATLAB and The MathWorks over TwiDecades. http://www.
mathworks.com/company/newsletters/news_notes/cleves corner/jan06.pdf

[17] C. Moler. The Origins of MATLAB. http://www.mathworks.com/company/
newsletters/news_notes/clevescorner/dec04.html

[18] A.Prasad, J. Anantpur, and R. Govindarajan. Autonwgiopilation of MATLAB programs for syner-
gistic execution on heterogeneous processor®rdneedings of the 32nd ACM SGPLAN conference
on Programming language design and implementation, PLDI '11, pages 152-163, New York, NY,
USA, 2011. ACM.

[19] S. Radpour. Understanding and Refactoring MATLAB. ké&s thesis, McGill University, January
2012.

[20] L. D. Rose and D. Padua. Techniques for the translatiddAT LAB programs into Fortran 90ACM
Trans. Program. Lang. Syst., 21(2):286—-323, 1999.

A Example Result

The following code is what the Tamer produces for the exanml®duced in section Sec. 2.8. Since
MATLAB is a proprietary system, we opted to omit the body of the fipfanction that was included in the
callgraph.

32

% args: {N=(double)}
function [result] = main(N)
mc_t4 = 10;

[mc_t1] = single(mc_t4);
rod.L = mc_t1;

mc_t5 = 3;

[mc_t2] = single(mc_t5);
rod.Ta = mc_t2;

mc_t6 = 4;

[mc_t3] = single(mc_t6);
rod.Tb = mc_t3;
a .2;

A =0.

mc_t8
mc_t9
[Tspan] =
[result] =

5;
0;
20;

ninor-

end
% results: [(single)]

horzcat(mc_t8, mc_t9);
solveSystem(rod, a, A, N, Tspan);

% mc_t4=(double,10.0)
% mc_tl=(single)

% rod=struct{L=(single)}
% mc_t5=(double,3.0)

% mc_t2=(single)

% rod=struct{ Ta=(single), L=(single)}

% mc_t6=(double,4.0)
% mc_t3=(single)

% rod=struct{Ta=(single), Th=(single), L=(single)}

% a=(double,0.2)
% A=(double,0.05)
% mc_t8=(double,0.0)
% mc_t9=(double,20.0)
% Tspan=(double)

% result=(single)

% args: {rod=struct{Ta=(single), Tb=(single), L=(single)},
% a=(double), A=(double), N=(double), Tspan=(double)}
function [out]=solveSystem(rod,a,A,N,Tspan,Tsteps)

[mc_t10] = nargin();

mc_t34 = 4;
[mc_t16] = isequal(mc_t10,mc_t34);
if mc_t16
mc_t36 = O;
mc_t37 = 10;
[Tspan] = horzcat(mc_t36, mc_t37);
Tsteps = 100;
el se
mc_t38 = 5;
[mc_t15] = isequal(mc_t10,mc_t38);
if mc_t15
Tsteps = 100;
el se
end
end
[mc_t17] = rod.L;
mc_t39 = 1;

[mc_t18] = plus(N, mc_t39);

[h] = mrdivide(mc_t17, mc_t18);
mc_t21 = h;

mc_t22 = h;

% mc_t10=(double,5.0)
% mc_t34=(double,4.0)
% mc_t16=(logical,false)

% non—viable
% non—viable
% non-—viable
% non—viable

% mc_t38=(double,5.0)
% mc_t15=(logical,true)

% Tsteps=(double,100.0)

% mc_t17=(single)
% mc_t39=(double,1.0)
% mc_t18=(double)
% h=(single)
% mc_t21=(single)
% mc_t22=(single)
% mc_t24=(single)
% mc_t25=(single)
% mc_t23=(single)

% mc_t20=(single)
% mc_t19=(single)
% X=(single)

% UO0=(single)

% mc_t27=(double)

[mc_t24] = rod.L;

mc_t25 = h;

[mc_t23] = minus(mc_t24, mc_t25);
[mc_t20] = colon(mc_t21, mc_t22, mc_t23);
[mc_t19] = vertcat(mc_t20);

[X] = ctranspose(mc_t19);

uo = X;

[mc_t27] = length(X);

mc_t40 = 2;

[mc_t26] = mrdivide(mc_t27, mc_t40);

[mid] = round(mc_t26);

% mc_t40=(double,2.0)
% mc_t26=(double)
% mid=(double)

33

[mc_t11] = rod.Ta;

mc_t41 = 1,

[mc_t13] = colon(mc_t41, mid);
Uo(mc_t13) = mc_t11;
[mc_t12] = rod.Th;

% mc_tl1l=(single)

% mc_t41=(double,1.0)
% mc_t13=(double)

% UO0=(single)

% mc_t12=(single)

mc_t28 = mid; % mc_t28=(double)

mc_t42 = 1; % mc_t42=(double,1.0)
mc_t43 = 1; % mc_t43=(double,1.0)
[mc_t29] end(U0, mc_t42, mc_t43); % mc_t29=(double)

[mc_t14] = colon(mc_t28, mc_t29); % mc_tl4=(double)
Uo(mc_t14) = mc_t12; % UO0=(single)

mc_t30 = N; % mc_t30=(double)
mc_t31 = rod.Ta; % mc_t31=(single)
mc_t32 = rod.Tb; % mc_t32=(single)
mc_t33 = h; % mc_t33=(single)

[D, c] = Dxx(mc_t30, mc_t31, mc_t32, mc_t33);
% D=(single), c=(single)
f = (@(t, u) lambda_1(a, D, c, A, t, u));
% f=(handle,@lambda_1((double), (single), (single), (double),..))
[T, out] = RungeKutta2(f, Tspan, UO, Tsteps);
% T=(double), out=(single)
end
% results: [(single)]

% args: {N=(double), a=(single), b=(single), h=(single)}
function [D, c] = Dxx(N, a, b, h)

mc_t62 = 2;
[mc_t51] = uminus(mc_t62);
mc_t63 = 2;

[mc_t53] = minus(N, mc_t63);

% mc_t62=(double,2.0)

% mc_t51=(double)

% mc_t63=(double,2.0)
% mc_t53=(double)

mc_t64 = 1; % mc_t64=(double,1.0)
[mc_t52] = zeros(mc_t53, mc_t64); % mc_t52=(double)
mc_t65 = 1; % mc_t65=(double,1.0)

[mc_t46] = vertcat(mc_t51, mc_t65, mc_t52);
% mc_t46=(double)

mc_t66 = 2; % mc_t66=(double,2.0)
[mc_t48] = uminus(mc_t66); % mc_t48=(double)

mc_t67 = 2; % mc_t67=(double,2.0)
[mc_t50] = minus(N, mc_t67); % mc_t50=(double)
mc_t68 = 1; % mc_t68=(double,1.0)
[mc_t49] = zeros(mc_t68, mc_t50); % mc_t49=(double)
mc_t70 = 1, % mc_t70=(double,1.0)

[mc_t47] = horzcat(mc_t48, mc_t70, mc_t49);

% mc_t47=(double)
[mc_t44] = toeplitz(mc_t46, mc_t47); % mc_t44=(double)
mc_t71 = 2; % mc_t71=(double,2.0)
[mc_t45] = mpower(h, mc_t71); % mc_t45=(single)
[D] = rdivide(mc_t44, mc_t45); % D=(single)

mc_t60 = a; % mc_t60=(single)
mc_t72 = 2; % mc_t72=(double,2.0)
[mc_t61] mpower(h, mc_t72); % mc_t61=(single)

[mc_t54] = mrdivide(mc_t60, mc_t61); % mc_t54=(single)

mc_t73 = 2; % mc_t73=(double,2.0)
[mc_t59] = minus(N, mc_t73); % mc_t59=(double)
mc_t74 = 1; % mc_t74=(double,1.0)
[mc_t55] = zeros(mc_t59, mc_t74); % mc_t55=(double)
mc_t57 = b; % mc_t57=(single)

mc_t75 = 2; % mc_t75=(double,2.0)

34

[mc_t58] = mpower(h, mc_t75); % mc_t58=(single)

[mc_t56] = mrdivide(mc_t57, mc_t58); % mc_t56=(single)

[c] = vertcat(mc_t54, mc_t55, mc_t56); % c=(single)
end

% results: [(single), (single)]

% args: {c=(double), r=(double)}
function [t] = toeplitz(c, r)

[mc_t80] = nargin(); % mc_t80=(double,2.0)
. Code Omitted
t) = mc_t77, % t=(double)
end

% results: [(double)]

% args: {f=(handle,@lambda_1((double),(single),(single),(double), ..)),

% tspan=(double), yO=(single),
N=(double)}
function [X, Y] = RungeKutta2(f, tspan, y0, N)
mc_t139 = 1, % mc_t139=(double,1.0)
[a] = tspan(mc_t139); % a=(double)
mc_t140 = 2; % mc_t140=(double,2.0)
[b] = tspan(mc_t140); % b=(double)
[mc_t116] = minus(b, a); % mc_t116=(double)
mc_t117 = N; % mc_t117=(double)
[h] = mrdivide(mc_t116, mc_t117); % h=(double)
mc_t118 = yO0; % mc_t118=(single)
[mc_t120] = length(y0); % mc_t120=(double)
mc_t121 = N; % mc_t121=(double)
[mc_t119] = zeros(mc_t120, mc_t121); % mc_t119=(double)
[Y] = horzcat(mc_t118, mc_t119); % Y=(single)
[mc_t122] = colon(a, h, b); % mc_t122=(double)
[X] = transpose(mc_t122); % X=(double)
mc_t145 = 1; % mc_t145=(double,1.0)
for j = (mc_t145 : N);
mc_t123 = h; % mc_t123=(double)
[mc_t125] = X(j); % mc_t125=(double)
[mc_t126] = Y(:, j); % mc_t126=(single)
[mc_t124] = f(mc_t125, mc_t126); % mc_t124=(single)
[k1] = mtimes(mc_t123, mc_t124); % kl1=(single)
mc_t127 = h; % mc_t127=(double)
[mc_t133] = X(j); % mc_t133=(double)
mc_t134 = h; % mc_t134=(double)

[mc_t129] = plus(mc_t133, mc_t134);
% mc_t129=(double)

[mc_t131] = Y(, j); % mc_t131=(single)

mc_t132 = Ki; % mc_t132=(single)
[mc_t130] = plus(mc_t131, mc_t132); % mc_t130=(single)
[mc_t128] = f(mc_t129, mc_t130); % mc_t128=(single)
[k2] = mtimes(mc_t127, mc_t128); % k2=(single)
[mc_t135] = Y(:, j); % mc_t135=(single)

mc_t142 = 1; % mc_t142=(double,1.0)
mc_t143 = 2; % mc_t143=(double,2.0)

[mc_t137] = mrdivide(mc_t142, mc_t143);

% mc_t137=(double)
plus(kl, k2); % mc_t138=(single)
mtimes(mc_t137, mc_t138);

% mc_t136=(single)

[mc_t138]
[mc_t136]

35

[mc_t114] = plus(mc_t135, mc_t136); % mc_t114=(single)

mc_tl44 = 1; % mc_t144=(double,1.0)
[mc_t115] = plus(j, mc_t144); % mc_t115=(double)
Y(:;, mc_t115) = mc_t114; % Y=(single)
end
end

% results: [(double), (single)]

% args: {a=(double), D=(single), c=(single), A=(double),

% t=(double), u=(single)}
function [mc_t0] = lambda_1(a, D, c, A, t, u)
mc_t148 = g; % mc_t148=(double)
[mc_t150] = mtimes(D, u); % mc_t150=(single)
mc_t151 = c; % mc_t151=(single)
[mc_t149] = plus(mc_t150, mc_t151); % mc_t149=(single)
[mc_t146] = mtimes(mc_t148, mc_t149); % mc_t146=(single)
mc_t147 = A; % mc_t147=(double)
[mc_t0] = plus(mc_t146, mc_t147); % mc_t0=(single)
end

% results: [(single)]

B TIR Grammar

In this appendix we present the absract syntax tree steicturesponding to the grammar for the tame IR.

We have listed all tame IR nodes, together with the paremsscad the nodes they contain. All tame IR
nodes either extend M@$’s AST nodes, or other Tame IR Nodes. This means that any TRmedle is
also a a valid Mc&F AST node. Tame IR nodes may contain other AST nodes, bedaegate effectively
little AST subtrees. Users of the Tame IR should not modifyNiBdes, except th€lRStatementList

They should also only use the accessor methods providedebyaime IR interfaces. By following these
conventions users will always create correct Tame IR bectngsconstructors of the Tame IR nodes enforce
the constraints of the Tame IR.

Figure 10 shows all IR statement nodes that are derived fesigaments (Figure 6 in Sec. 4.1 shows their
hierarchy as a tree), Figure 11 shows all remaining statenutes, Figure 12 shows all Tame IR nodes that
may contain statements, Figure 13 shows all remaining t&wedes.

36

node | extends | contains
TIRAbstractAssignStmt | AssignStmt | -
TIRAbstractAssignFromVarStmt TIRAbstractAssignStmt Name rhs

TIRArraySetStmt

TIRAbstractAssignFromVarStmt

Name arrayVar,
TIRCommaSeparatedList indices,
Name rhs

TIRCellArraySetStmt

TIRAbstractAssignFromVarStmt

Name arrayVar,
TIRCommaSeparatedList indices,
Name rhs

TIRDotSetStmt

TIRAbstractAssignFromVarStmt

Name dotVar, Name field, Name rhs

TIRAbstractAssignToListStmt

TIRAbstractAssignStmt

IRCommaSeparatedList targets

TIRArrayGetStmt

TIRAbstractAssignToListStmt

Name lhs, Name rhs,
TIRCommaSeparatedList indices

TIRCellArrayGetStmt

TIRAbstractAssignToListStmt

Name cellVar,
TIRCommaSeparatedList targets,
TIRCommaSeparatedList indices

TIRDotGetStmt

TIRAbstractAssignToListStmt

TIRCommaSeparatedList |hs,
Name dotVar, Name field

TIRCallStmt

TIRAbstractAssignToListStmt

Name function,
TIRCommaSeparatedList targets,
TIRCommaSeparatedList args

TIRAbstractAssignToVarStmt

TIRAbstractAssignStmt

Name |hs

TIRAssignLiteralStmt

TIRAbstractAssignToVarStmt

Name lhs, LiteralExpr rhs

TIRCopyStmt

TIRAbstractAssignToVarStmt

Name |Ihs, Name rhs

TIRAbstractCreateFunctionHandleStmt

TIRAbstractAssignToVarStmt

Name lhs, Name function

TIRCreateFunctionReferenceStmt

TIRAbstractCreateFunctionHandleStmt

Name |Ihs, Name function

TIRCreateLambdaStmt

TIRAbstractCreateFunctionHandleStmt

Name lhs, Name function
List<Name> lambdaParameters,
List<Name> enclosedVariables

Figure 10: Assignment Statments

node | extends | contains
TIRReturnStmt ReturnStmt -

TIRBreakStmt BreakStmt -
TIRContinueStmt | ContinueStmt | —

TIRGIlobalStmt GlobalStmt List<Name> names
TIRPersistentStmt PersistentStm{ List<Name> names
TIRCommentStmt| EmptyStmt -

Figure 11: Non-assignment statements

37

node | extends

| contains

TIRFunction Function

List<Name> outputParams,

String name,

List<Name> inputParams,
List<HelpCommer# helpComments,
TIRStmtList stmts,
List<TIRFunctior» nestedFunctions

TIRStmtList List<Stmt>

List<TIRStmt> statements

TIRIfStmt IfStmt

Name ConditionVar,
TIRStmtList IfStmts,
TIRStmtList ElseStmts

TIRWhileStmt | WhileStmt

Name condition, TIRStmtList body

TIRForStmt ForStmt

Name var, Name lower, (Name inc),
Name upper, TIRStmtList stmts

Figure 12: Compound Structures

| node | extends | contains |

| TIRCommaSeparatedList List<Expr> | List<Expr> elements]

Figure 13: Other Tame IR Nodes

38

