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Abstract

MATLAB is a popular dynamically-typed array-based language. The built-in functionfeval is an
important MATLAB feature for certain classes of numerical programs and solvers which benefit from
having functions as parameters. Programmers may pass a function name or function handle to the solver
and then the solver usesfeval to indirectly call the function. In this paper, we show that although
feval provides an acceptable abstraction mechanism for these types of applications, there are signifi-
cant performance overheads for function calls viafeval , in both MATLAB interpreters and JITs. The
paper then proposes, implements and compares two on-the-flymechanisms for specialization offeval
calls. The first approach specializes calls of functions with feval using a combination of runtime input
argument types and values. The second approach uses on-stack replacement technology, as supported
by McVM/McOSR. Experimental results on seven numerical solvers show that the techniques provide
good performance improvements.

1 Introduction

MATLAB is dynamic array-based language used by scientists and engineers in manydisciplines. MATLAB ’s
high-level matrix operators and dynamic typing makes the language suitable for a wide variety of numer-
ical computations. An additional important feature of MATLAB is its support of higher-order functions
through thefeval construct which is widely used in many classes of numerical computations, including
fitting functions, estimating Ordinary Differential Equations, machine learningalgorithms such as simulated
annealing, and general plotting functions. All of these applications sharea similar pattern, the main com-
putation function has a function parameter that can accept either a functionhandle, or a function name as
the actual argument. The body of the computation function then repeatedly evaluates the function passed in
usingfeval .

Historically, MATLAB has been mainly an interpreted language, with an emphasis on efficient libraries,
but no particular focus on efficient execution. More recently, there have been several efforts to provide more
efficient execution engines such as Mathworks’ proprietary MATLAB JIT Accelerator, first introduced in
MATLAB 6.5[22], and research efforts such as MaJIC [1] and the McLAB group’s open source VM/JIT,
McVM [16, 4].

This paper focuses on determining iffeval causes significant overheads in both the interpreter and JIT
settings, and then proposes two mechanisms to optimizefeval .

To determine potential overheads offeval , we identified a set of seven benchmarks that use algorithms
that naturally usefeval , and performed initial experiments on three interpreters (Octave, Mathworks MAT-
LAB 7 in interpreter mode, and McVM in interpreter mode), plus two JITs (Mathworks MATLAB with the
JIT enabled, and McVM with the JIT enabled).1 These experiments showed, in both the interpreter and JIT
situations, that there are significant overheads for calls viafeval , as compared to direct function calls and
inlined function calls.

To reduce the overheads offeval we then designed and implemented two alternative mechanisms. The
first mechanism extends the McVM JIT on-the-fly code specialization mechanism to specialize on thevalue
of function parameters in those cases where the parameter is used inside thebody of the function as the
first argument tofeval . The second mechanism is more general, can handle a wider variety of uses of
feval , and is based on on-the-fly code generation and on-stack replacement(OSR) techniques imple-
mented in McVM[13]. The OSR-based technique identifies potentially importantfeval calls, and then
uses McVM’s OSR technology to specialize thefeval calls to specific direct calls, and to provide correct
backup to the general case when the specialized calls do not match the callingcontext.

1Octave is an open source interpreter-only implementation which does not have a JIT.
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The main contributions of this paper are:

Measuring the cost of feval: We evaluated the overheads offeval and show significant overheads for
calls viafeval for important classes of benchmarks.

JIT value-based specialization: We designed an extension to the McVM JIT specialization mechanism.
Previously specialization was performed based only on the dynamictypes of function arguments. In the
new approach, we also specialize on thevalue of a function argument, for the case where that argument
is used as the first argument to a call tofeval inside the body of the function to be compiled.

OSR-based specialization of feval: Not all feval calls fit the pattern handled by the JIT value-based
specialization approach. Thus, we also developed a more general technique to detect and instrument
importantfeval sites with OSR points, and we designed an OSR-based transformation which can be
done at the LLVM IR-level, without requiring access to the generated assembly code. We also designed
appropriate JIT-time tests to optimize the guards required to determine if the specialized call could be
made or if the general backup path should be taken.

Implementation in McVM/McOSR: We implemented both proposed approaches in McVM. Our imple-
mentation is open source.

Experimental Results: We evaluated both approaches, comparing them both to the originalfeval imple-
mentation, as well as to hand-specialized versions of the program.

The remainder of the paper is structured as follows. In Section 2 we present a complete MATLAB ex-
ample, and we show our initial experiments that demonstrate the large overheads for feval . In Section 3
provide key background to LLVM, McVM and McVM’s OSR support. Section 4 provides the details of
our first approach based on specializing on the values of key function parameters. Section 5 gives the key
ideas of our second approach,feval optimization and how we implemented it in McVM/McOSR. Sec-
tion 6 reports on our experiments. For a set of seven benchmark programs, we first discuss the overheads of
feval ; then we assess the impact of our OSR-based function specialization under three different optimiza-
tion settings; we conclude this section by comparing the OSR-based specialization with the JIT value-based
specialization. We end the paper with a discussion of related work in Section 7and conclusions in Section 8.

2 Motivation and Problem

In this section we provide some key background on MATLAB and itsfeval function, as well our experi-
mental results which demonstrate the significant overheads offeval .

2.1 MATLAB and feval

In order to provide some intuition about MATLAB and thefeval challenges, consider the example MAT-
LAB functionnewtonin Figure 1. As shown on line 1, the function takes four input arguments, withthe first
argumentfuncorresponding to either the name of a function or a function handle.

Note that MATLAB has no declared types, although the programmer certainly has some expected types
in mind, as indicated by the comments on lines 3 to 13. Indeed, not only does the programmer expect the
first argument to be a string containing the name of a function, but she also expects the named function to
take one input argument and produce two outputs. This is also clear from line 22, wherefeval is used to
call the function provided by the argumentfun. Lines 30 to 35 provide the definition offx3n, which is one
possible function that could be provided tonewton.
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1 function r = newton(fun,x0, xtol , ftol )
2

3 % newton Newton's method to find a root of the scalar
4 % equation f (x) = 0
5 % Synopsis: r = newton(fun,x0, xtol , ftol )
6 % Input: fun = ( string ) name of mfile that
7 % returns f (x) and f '( x ).
8 % x0 = initial guess
9 % xtol = absolute tolerance on x.

10 % Smallest : xtol =5*eps
11 % ftol = absolute tolerance on f (x ).
12 % Smallest : ftol =5*eps
13 % Output: r = the root of the function
14

15 xeps =max(xtol,5*eps );
16 feps =max(ftol,5* eps ); % Smallest tols are 5*eps
17 x = x0; k = 0;
18 maxit = 15; % Initial guess, current and max iterations
19 while k ≤ maxit
20 k = k + 1;
21 % Returns f ( x(k−1) ) and f '( x(k−1) )
22 [ f ,dfdx] = feval (fun,x );
23 dx = f /dfdx;
24 x = x − dx;
25 if ( abs(f ) < feps ), r = x; return; end
26 if ( abs(dx) < xeps ), r = x; return; end
27 end
28 end
29

30 function [ f , dfdx] = fx3n(x)
31 % fx3n Evaluate f (x) = x− x ˆ(1/3) − 2 and
32 % dfdx for Newton algorithm
33 f = x − x .ˆ(1/3) − 2;
34 dfdx = 1 −(1/3)*x .ˆ(−2/3);
35 end

Figure 1: Newton’s method to find a root of the scalar equation f(x) = 0, adapted from [19, 20]

The MATLAB function feval is a built-in function, that is used in MATLAB to indirectly evaluate a
function at runtime.feval is overloaded, with two versions available:

[y1, y2, ...] = feval ( fhandle , x1, ..., xn)
[y1, y2, ...] = feval (fname, x1, ..., xn)

wherefhandle is a first class type in MATLAB which can be bound to a MATLAB built-in function or a
user-defined function using the ‘@’ operator. If the second version isused, thenfnamemust be a string
containing a single function name and cannot contain a path to a function or a directory.2

For our example program in Figure 1, a typical call would be one of the following:

newton(@fx3n, 3, 5e−16, 5e−16)

2Seehttp://www.mathworks.com/help/matlab/ref/feval.html .
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newton('fx3n ' , 3, 5e−16, 5e−16)

where the first case passes a function handle and the second case passes a string containing the name of the
function.

Clearly algorithms such asnewtonare naturally parameterized over the evaluation function, and MAT-
LAB ’s feval provides a mechanism for this abstraction. However, one might wonder if the use offeval
causes any significant slow down. To determine this, we studied the cost offeval implementations in three
implementations of MATLAB : (1) Mathworks’ implementation for the MATLAB programming language; (2)
Octave, a GNU3 open-source implementation of the MATLAB language; and (3) McVM, our open source
MATLAB framework.

The Mathworks’ MATLAB system (called MATLAB in the tables) provides an interpreter for the language
and also an accelerator (a JIT compiler). Octave is an interpreter for the MATLAB language. It does not have
a JIT compiler. Like Mathworks’ MATLAB , McVM has an interpreter and an optimizing JIT compiler.

We conducted our experiments on these systems over a set of MATLAB programs from numerical com-
puting domain. These benchmarks include programs for finding the roots ofpolynomials and to integrate
first order ordinary differential equations. All but one (sim anl 4) of our benchmarks were collected from
[20]. We give a short description, together with a static count of the total number offeval calls in the
program in Table I. The table also shows the number offeval calls in a loop in each benchmark.

BM Description # feval # LP feval

bisect Uses bisection to find a root of the scalar equation f(x) = 0 3 1
newton Newton’s method to find a root of the scalar equation f(x) = 0 1 1
odeEuler Euler’s method for integration of a single, first order ODE 1 1
odeMidpt Midpoint method for integration of a single, first order ODE 2 2
odeRK4 Fourth order Runge-Kutta method for a single, first order ODE 4 4
gaussQuad Composite Gauss-Legendre quadrature 1 1
sim anl Minimizes a function with the method of simulated annealing 2 1

Table I:feval benchmarks

We conducted all our experimental work on a computer with the following configuration.

Processor: AMD Athlon™ 64 X2 Dual Core Processor 3800+;
RAM: 4GB RAM;
Cache Memory: L1 128KB, L2 512KB;
Operating System: Ubuntu 11:04 x86-64;
LLVM Compiler framework: version 3.0;
McJIT: version 1.1; McOSR: version 1.1;
GNU Octave: 3.0.5;
MATLAB : Version 7.12.0.635 (R2011a) 32-bit (glnx86).

In Table II, for each benchmark, we show the execution time for the three systems: Octave, MATLAB and
McVM. The column labelledInterpretergives the execution times measured in seconds when the bench-
marks were interpreted under the three systems. Similarly, the column labelledJIT gives the execution
times, also measured in seconds, when the benchmarks were run under MATLAB and McVM. As we men-
tioned earlier, Octave does not have a JIT compiler. So, we recorded a* for each cell under the JIT category

3www.http://www.gnu.org/software/octave/
4http://www.mathworks.com/matlabcentral/fileexchange
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Interpreter JIT
feval (F) direct(D) inlined(I) D vs. F I vs. F feval (F) direct(D) inlined(I) D vs. F I vs. F

t(s) t(s) t(s) % impr % impr t(s) t(s) t(s) % impr % impr
bisect
Octave 29.31 27.70 19.46 5.50 33.59 * * * * *
MATLAB 13.67 12.45 7.09 8.91 48.12 6.94 6.24 0.74 10.07 89.31
McVM 13.81 13.69 9.76 0.90 29.36 10.26 7.89 4.63 23.06 54.90
newton
Octave 29.94 27.90 19.17 6.81 35.97 * * * * *
MATLAB 15.17 13.79 8.38 9.08 44.71 8.17 7.61 1.60 6.85 80.35
McVM 21.91 21.53 13.94 1.74 36.37 12.45 7.56 2.92 39.28 76.54
odeEuler
Octave 60.55 56.17 38.85 7.22 35.84 * * * *
MATLAB 29.45 26.16 15.30 11.17 48.06 7.30 5.96 4.47 18.29 38.74
McVM 31.04 29.01 19.43 6.51 37.40 18.36 3.37 3.23 81.63 82.43
odeMidpt
Octave 103.35 94.44 55.60 8.63 46.20 * * * * *
MATLAB 46.87 41.83 19.16 10.75 59.12 8.34 7.32 4.49 12.22 46.22
McVM 48.37 47.98 29.14 0.80 39.76 24.86 2.72 2.66 89.05 89.29
odeRK4
Octave 186.01 172.16 93.86 7.45 49.54 * * * * *
MATLAB 84.50 74.06 27.71 12.36 67.21 12.88 11.13 5.35 13.58 58.44
McVM 94.76 92.37 51.09 2.51 46.08 50.01 3.40 3.40 93.00 93.57
gaussQuad
Octave 39.09 37.09 29.63 5.12 24.19 * * * * *
MATLAB 34.28 33.56 28.42 2.10 17.10 8.87 8.58 6.23 3.28 29.72
McVM 16.74 15.89 11.94 5.09 28.67 5.62 4.34 4.31 22.69 23.22
sim anl
Octave 39.74 38.54 35.39 3.01 10.93 * * * * *
MATLAB 43.50 43.09 40.51 0.94 6.87 9.58 9.50 9.07 0.83 5.35
McVM 18.15 16.79 14.39 7.49 20.70 15.50 12.12 8.87 21.80 42.79

Table II: feval overheads as compared to direct and inlined calls.

for Octave. Under the column labelledInterpreter, we show the result of running the original benchmarks
(with feval calls) underfeval (F). The column labelleddirect(D)shows the results of running a version
of each benchmark withfeval call replaced (by hand) with with a direct call to the input function used
to run the benchmark. We show the result of running yet another versionof each benchmark in which the
input function has been hand-inlined under the column labelledinlined(I). We show the results for the cases
feval (F), direct(D), inlined(I) ran when the JIT compiler was enabled under the columnJIT. Under both
the InterpreterandJIT categories, we show the improvements in percentage (%) ofdirect andinlined over
thefeval underD vs FandI vs F respectively.

There are clear overheads forfeval , when thefeval is replaced by a direct call, improvements were
from 1% to 12% in the interpreter settings and 7% to 50% in the JIT settings. Further improvements are
enabled by inlining the direct calls, ranging from 6% to 67% for the interpreter and 5% to 89% for the JITs.

3 Background

In this section we provide key background and overview overview of theinfrastructure on which we are
building, namely McVM and McOSR.
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3.1 McVM and McJIT

The Mathworks implementation of MATLAB is a closed source proprietary product, so we are not able to
experiment with the implementation’s code. McVM is an open source implementation of a VM with an
LLVM-based JIT, which also has support for OSR, and is thus suitable for this research.

The overall structure of McVM is given in Figure 2. It is composed of a JIT compiler known as McJIT and
an interpreter. The JIT compiler can switch to the interpretation mode for the evaluation of some complex
expressions, or for functionality unsupported by the JIT. The interactions between these two components
is facilitated via a symbol environment. McJIT is built upon the LLVM framework[15, 14], and as such it
generates LLVM IR. The LLVM system performs the low-level optimization and code generation to produce
target machine code. The techniques presented in this paper operate entirely on the McJIT and LLVM IRs,
and do not require any modification of machine code. Thus, the techniquesare portable across different
target architectures.

Boehm GC

ATLAS, BLAS

LAPACK McOSR

LLVM

Framework

McVM

Language Core Analyses

McJIT

McLab Front-end
Source m files

IM Commands
≪ parsing ≫

≪ parsing ≫

Data Types

IIR Types

Interpreter

Functions

Func Handles

Matrix Types

Fallback Logic

Versioning Logic

feval Opt. Logic

LLVM Emission

Type Inference

Live Variable

Reaching Defs

Bounds Check

Copy Analyses

Figure 2: Overview of McVM

As illustrated in Figure 3, McJIT is a specializing JIT. When a function is called(top left of figure), the
JIT first looks at the runtime types of the arguments and determines if target code matching those argument
types is already available in the code cache, and if so executes it. Otherwise, the JIT looks to see if it already
has the McJIT IR, and if not it requests the front-end to parse the matchingsource code (.m) file and it builds
the IR. McJIT then performs its own analysis and transformations, then generates LLVM IR, specialized to
the current argument types. LLVM then performs the final low-level optimizations and generates target
code, which is stored in the Code Cache and executed.

3.2 feval in McVM

When McJIT encounters a MATLAB statement involving a call tofeval , it generates LLVM code to call
to a dynamic dispatcher. For example, when for thefeval statement at line 22 of Figure 1, it generates the
code in Figure 4. Let us examine this code snippet. The compiler generates the code to save the arguments
to thefeval call into an array of objects. This is shown in lines 1–5. And then generatesthe call to the
dynamic function dispatcher, that is, the call toInterpreter::callFunctionin line 6.
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f(arg types)

Compiled code exists
in the code cache?

McVM IR exists?

Load function

Send code string/file
to the front-end

receive AST as XML

Parse function;
Generate XML

Parse XML;
build AST

Perform analyses
&

transformations

Execute function

Generate LLVM IR &
Machine code

yes
no

yes
no

Code Cache

McLab Front-end

Figure 3: Running a function in McJIT.

1 %argsPtr = call i8* @”ArrayObj::create”(i64 2)
2 call void @”ArrayObj::addObject”(i8* %argsPtr,
3 i8* %arg1)
4 call void @”ArrayObj::addObject”(i8* %argsPtr,
5 i8* %arg2)
6 %retVal = call i8* @” Interpreter :: callFunction ”
7 ( i8* %funcPtr,
8 i8* %argsPtr,
9 i64 %nargout)

Figure 4: LLVM code generated for afeval call

When the dispatcher is called at runtime, it examines its first argument to determine that this anfeval
call site. It then calls the library functionfeval passing it its own second argument — the array contain-
ing the arguments to thefeval call. Thefeval library examines its own first argument and determines
the right function to dispatch. It then prepares the input arguments needed by this function and calls the
function. The result of executing this function is what the dispatcher eventually returns in line 6.

The foregoing procedure can be slow, and furthermore it inhibits function inlining and other flow analy-
ses. However, since the value of the function thatfeval built-in evaluates at runtime cannot be determined
statically in general, this implementation represents what is typically done to implementthe feval library
function.

A key point to note is that function binding and the argument types of the function called byfeval often
do not change through the whole loop execution, or even through the whole method execution, as is the
case for the typical example in Figure 1. For this class of MATLAB programs, we can improve the runtime
performance if it is possible to dynamically do on-the-fly code transformationand function specialization
and possibly inlining.
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3.3 OSR Background

McVM has support of OSR[13, 12] which works completely at the LLVM IRlevel. The main idea is that
LLVM IR instructions can be tagged as interesting, and OSR points can be inserted on any loop that encloses
the tagged instructions. Each OSR point is associated with an LLVM-IR transformer, which is applied when
the OSR point triggers. The OSR library takes care of saving the appropriate state, and restarting the trans-
formed code at the appropriate location and state. In Section 5 we provide the details of how we leverage
the OSR machinery to optimizefeval .

4 JIT Value-based Specialization

Our first approach to optimizingfeval calls is based on the observation that, for some class of MATLAB

programs, a function with anfeval call often accepts as an argument the name or the function handle to
a function evaluated by thefeval call. Further, the call is often executed repeatedly within a long-running
loop.

As in most implementations of the MATLAB language, the code generated for anfeval call by our JIT
compiler can be significantly less efficient.

An feval call often prevents compiler optimizations because its input function cannot, ingeneral, be
determined until the run time. In MATLAB , the value of the input function of anfeval call — which we
shall from now callfeval evaluated function(fef) — can be formed dynamically (e.g., a string formed by
a concatenation of some run-time values). The value can also come from a data structure (e.g., an array or a
struct) or as a return value from a function call.

Our JIT-time code specialization forfeval replaces calls to a function that has anfeval call with a call
to a special dispatch function. This dispatch function (called the dispatcherfor short) evaluates the value of
the parameter that corresponds to anfef. It then generates a new version of the function with all thefeval
calls replaced with direct calls to thefef. This is illustrated in Figure 5.

caller(...)

g(myFunc, ...);

(a)

g(func, ...)

r = feval(func, x, ...);

(b)

g′(func, ...)

r = func(x, ...);

(c)

Figure 5:feval runtime code specialization.

In Figure 5, functioncaller calls functiong. As shown in (b), functiong has anfeval call that evaluates
one of its parameters, namelyfunc. Functioncaller calls g with an argument,myFunc, which references
a function (e.g., a function handle or a function name). This is the function that the feval call in g will
evaluate.

However in Figure 5(c), a new version of functiong namedg′ is created and all thefeval calls that
evaluatefunchave been replaced with direct calls to functionfunc.

In the next section, we describe in detail the implementation of this approach, and in Section 5, we de-
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scribe a more powerful approach that is capable of optimizingfeval calls within a loop where thefef of
anfeval is not required to be a parameter of thefeval call’s enclosing function.

4.1 JIT Code Specialization for feval

During the parsing of the XML string for a compilation unit (i.e., a list of MATLAB functions in a MAT-
LAB mfile (Figure 3)), McJIT analyzes all the functions in the compilation unit and annotates those with an
feval call, whosefef, that is, the first parameter, is a read-only parameter of the enclosing function.

Normally, after McJIT has compiled the right version of a function at a call site, it inserts the correspond-
ing LLVM call instruction into the current basic block. However, to support the runtime code specialization
for feval , we modified McJIT so that it does not insert the call instruction but, instead, generates a new
instruction of the form

call void @''JITExt :: dispatchFunction ''( i8* %baseIRPtr,
i8* %fefValue,
i8* %inArgsPtr,
i8* %retValsPtr,
i32 %csID)

that calls the dispatcher. The dispatcher, that is, functionJITExt::dispatchFunction, accepts five argu-
ments:

(1) the first is the pointer to the base IR (i.e., the original version of the IR) that corresponds to the called
function at the call site;

(2) the second is a pointer to the argument that corresponds to thefef (i.e., the first parameter) of a marked
feval call in the called function;

(3) the third is a pointer to a structure containing the input arguments to the called function;

(4) the fourth is a pointer to a structure containing the return values;

(5) the last argument is an integer that denotes the index of a cache slot wherea pointer to the descriptor of
the AST can be located.

Each AST representing a function with anfeval call has one or more code cache descriptors. A code
cache descriptor contains information related to the code of the AST that corresponds to the types of the
arguments passed to the function at a call site.

A function that is called with different argument types at different call sites has a code cache descriptor
for each call site. A code cache descriptor is a four-tuple.

descriptor = < entry address, argumenttypes,

counter, feval versions>

whereentry addressis the address of the entry to the compiled code corresponding to the AST of thecalled
function. We shall denote the called function at a call site withf . Fieldargumenttypesdenotes the types of
the arguments at the call site. Due to McJIT ’s code specialization on argument types at call sites, the set of
types for the arguments at a call site is immutable. Fieldcounterdenotes a compilation counter that counts
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the number of versions that are generated at different consecutive executions of the call to the dispatcher in-
struction. Fieldfeval versionsis a map containing (AST, entry address) pairs. The first member of the pair
is the IR corresponding to the value of the parameter used as the first argument to somefeval calls inf .
The second member of the pair is the address of the entry point to the compiled code off that corresponds
to anfef.

4.1.1 Functions of the Dispatcher

At run time, the dispatcher first uses a combination of its first parameter (i.e., the AST) and its last parameter
(i.e., the cache slot index) to retrieve the code cache descriptor that matches the argument types at this call
site. From the code cache descriptor, it compares the current value of the counter with a giventhreshold. If
the counter has exceeded the threshold, the dispatcher executes the initialcode generated for the AST at this
call site.

if, however, the counter is below the threshold, the dispatcher performs alook-up, using its second param-
eter, to determine whether a corresponding code version had been generated. If the look-up is successful,
the dispatcher executes the function at the address returned by the look-up. Otherwise, the dispatcher clones
the original AST and replaces all the markedfeval calls with direct calls to the evaluated function given as
its second parameter. After, the dispatcher retrieves the types attached to this call site and calls the compiler
to compile and generate the correct code matching the argument types at this call site.

After the compilation of a new version, the dispatcher enters an entry, that is, a pair comprising of the
AST corresponding to the compiled code and the entry point address of thecompiled code, into a map in the
code cache descriptor of the base IR so that if the function is called again with the fef value, the dispatcher
can retrieve and execute the correct code. Finally, the dispatcher updates the counter associated with the
cache slot descriptor and executes the function.

Even though the base AST and new versions of the AST have identical number of input and output pa-
rameters, the types of the values returned by the compiled code that corresponds to a givenfef may be
different. This presents a problem in that the rest of the code of the callingfunction was generated using the
information obtained from the base AST. We resolved this problem by generating a wrapper that converts
from the types returned by a new version to the types used in generating thecode for the original version.
Because of this problem, we always call the code corresponding to anfef via a wrapper. A wrapper is a
short function that is composed of a call instruction and the instructions thatconvert the return values to
their expected types.

A code cache miss causes a compilation of a new version. For this action, the counter associated with
the code cache descriptor is incremented. The counter is reset to zero (0) at every code cache hit. As men-
tioned earlier, if the counter exceeds a given threshold, the dispatcher stops compiling a new version and
always executes the original code generated for the base AST of the called function. This is useful in cases
where multiple functions are being called. However, this rarely happens in practice. So, we expect only a
reasonable number of new versions to be generated.

Again, we stress that this approach only works in cases where thefef of anfeval call in the called func-
tion is a read-only function parameter. This covers most of the programs under study. In the next section,
we discuss a more powerful approach that uses OSR to support an on-the-fly specialization offeval calls,
and in Section 6.3, we compare the performance of this approach with the other approach, which we shall
now describe.
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5 OSR-based feval Transformation

In Section 2, we discussed the cost offeval in MATLAB programs and the challenges to an efficient im-
plementation offeval in a MATLAB JIT compiler. We begin this section with a short discussion of the
objectives for our approach to optimizefeval , and then we highlight the major steps in our approach to
on-the-fly specialization using OSR.

5.1 feval Optimization Goals and Strategy

In Figure 4 we illustrated the code currently generated for a call tofeval . Line 6 contains the key problem,
which is an indirect call to the interpretercallFunctionmethod is required in order to dispatch to the correct
function.

The aim of our approach is to replace the call to the dispatcher with a direct call to the function given as
the first argument to thefeval call while maintaining the correctness of the code. To maintain correctness
we will need some safety checks that will backup to the general case if the current call does not match the
last specialized version. Thus, another key challenge is minimizing the overhead for the check.

Our solution strategy has three important steps, the first two steps are doneat JIT-compilation time (for ex-
ample, when functionnewtonis first JIT-compiled), whereas the third step happens at run-time (for example,
when the while loop inside ofnewtonexecutes).

Dispatcher call annotation: During JIT-compilation of a function body, all dispatcher calls that correspond
to feval calls must be identified and marked. This is discussed in detail in Section 5.2.

OSR instrumentation: If the first phase identifies somefeval dispatcher calls, then the closest enclos-
ing loop of each such dispatcher call must be instrumented to include a conditional OSR trigger, usually
based on the number of loop iterations. In addition, an OSR point must be inserted, where the OSR point
is associated with thefeval optimizing transformation. We discuss this further in Section 5.3.

Triggering an OSR event at run time: At run time, if an OSR is triggered by a running function, the code
transformer attached to that OSR point will be executed. In our approach, this is where thefeval opti-
mizing transformation is actually performed. This transformation must rewrite theLLVM IR to replace
the annotatedfeval call with the appropriate direct (or inlined) call, and it must also insert appropriate
guards to ensure that the specialized call is only executed for the correct specialized function and argu-
ment types, and it must backup to the general case otherwise. We give a detailed description of the code
transformer in Section 5.4.

5.2 Dispatcher call site annotation

As mentioned in the introduction to this section, we have added a pass to the McJIT compiler to identify all
the calls to the dispatcher that correspond to anfeval call. Theses call sites are annotated with the OSR
ID of their closest enclosing loop. For example, for thefeval call in Figure 6, the following would be
generated:

%retV = call i8* @” Interpreter :: callFunction ”( i8* %funcPtr,
i8* %argsPtr, i64 %nargout), !FI !OSR1

where!FI and !OSR1are the metadata used to annotate the call sites with the call to the dispatcher for
an feval call. The string!OSR1indicates that this call site will be considered for anfeval optimizing
transformation if OSR is triggered in the loop identified with OSR ID 1.
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We also assign a unique ID to eachfeval call site. This ID is used to index a fixed memory area for
caching the types that the arguments to the dispatcher had just before OSR istriggered at run time. To
facilitate this process, astore instruction of the following form is generated:

store i8* %argsPtr, i8** addrOfCacheSlot, !FI

which stores the pointer to the array of objects passed to the dispatcher to a fixed cache slot associated with
the currentfeval call. Notice that this instruction is also annotated with the same metadata as the call to
the dispatcher.

The metadata!FI encapsulates some JIT-time information about the arguments of the associatedfeval
call. It is a 3-tuple. The first operand or field is the unique ID assigned to this feval call; the second
and the third represent relevant JIT-time facts about thefeval call site. We defer the discussion on the
information collected at the JIT-time to Section 5.5.

The annotations attached to the call to the dispatcher are consumed by the code transformer during an
OSR event. We discuss the transformer in more detail in Section 5.4.

5.3 OSR Instrumentation

At JIT compilation time for a function, if a loop contains anfeval call, the loop must be instrumented
with a test that determines whether a loop counter has reached a given threshold. This is the OSR condition.
We experimented with a threshold value set at 2. So, at run time, after the execution of the second iteration
of the loop, the OSR condition will be satisfied. The conditional execution of the OSR point is achieved by
generating the following LLVM conditional instruction at end of the loop header.

br i1 %osrTriggeringCond, label%OSRBB, label%BodyBB

This instruction inspects the OSR condition (%osrTriggeringCond) and branches to the basic block named
%OSRBB (which triggers the OSR) if the test is successful. Otherwise, it branches to%BodyBBwhere the
body of the loop will be executed as normal.

For ourfeval optimization, we use a closest-enclosing-loop strategy for the placement of an OSR point.
The McOSR library requires that each OSR point is associated with a code transformer - it is this transformer
that will execute when the OSR triggers. Thus, ourfeval optimizing transformation logic is implemented
by the code transformer that we attach to the inserted OSR point. Our code transformer has the following
signature:

void transformFeval (llvm :: Function* F, osr :: OSRLabel L);

whereF is the LLVM IR of the function that has triggered an OSR event, andL is the OSR label of the loop
where an OSR has been triggered. We discuss in detail the logic of the codetransformer in Section 5.4.

Figure 6 shows a code snippet from our running example, and in in Figure7, we show in a simplified
form, the corresponding control flow graph (CFG) in LLVM IR.LH1 is the loop header block and termi-
nates with a conditional branch instruction. The basic block branches to theloop body atLBB or the loop
exit block atLE depending on the loop exit condition (%loopExitCond).

The CFG shown in Figure 7 is transformed into that shown in Figure 8 after inserting an OSR point. As
can be observed from the figure, the loop header block now contains theinstruction to compute the OSR trig-
gering condition (%osrTriggeringCond) and terminates with a conditional branch instruction as discussed
earlier.
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1 ...
2 while k ≤ maxit
3 k = k + 1;
4 [ f , dfdx] = feval (fun,x );
5 ...
6 end
7 end

Figure 6:while loop extracted from (Figure 1)

ENTRY:
...

LH1:
...

br i1 %loopExitCond,
label %LB, label %LE

LE:
...

BodyBB:(LB:)
...

br label %LH1

false true

Figure 7: A CFG for the MATLAB while loop in Figure 6.

ENTRY:
...

LH0:
...

br i1 %osrTriggeringCond,
label %OSRBB, label %LH1

OSRBB: (OSR:)

call void @ osrSignal(...)

br label %LH1

LH1:
...

br i1 %loopExitCond,
label %BodyBB, label %LE

LE:
...

BodyBB: (LB:)
...

br label %LH0

true
false

false true

Figure 8: The CFG of a loop with an OSR point.

5.4 OSR Triggering and Runtime Transformation

At the heart of our implementation is the code transformer that is attached to an OSR point. When an OSR
is triggered at run time, the OSR runtime system passes control to the code transformer. This is where our
feval optimizing transformation is performed.
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OBB:
...

r OBB = call dispatch OSR1
...

br ...

(a)

OBB:
...

br label NBB

NBB:

r NBB = call dispatch OSR1

...

br ...

(b)

OBB:
...

br label NBB

NBB:

r NBB = call dispatch OSR1

br label CONTBB

CONTBB:
...

br ...

CBB:

r CBB = call f

(c)

Figure 9: Actions of the code transformer. Basic blockOBB in (a) is split into two. The result of the
splitting process is shown in (b). In (c),NBB is split intoNBBandCONTBB. A new unlinked basic block
namedCBB is also generated.CBBcontains a call to the new compiled function (f ).

The code transformer first traverses its input function (i.e, the LLVM IR of the running function) and
collects all the calls to the dispatcher that are associated with anfevalcall site in the source program. The
transformer can identify these call sites using the OSR label attached to suchinstructions at their creation
time. The transformer also identifies and removes all thestore instructions that were inserted to cache the
last-known types for the arguments to the dispatcher.

The transformer then processes the call instructions as follows. For each dispatcher call, the transformer
extracts the cache slot ID of the current call dispatcher. It then uses the cache slot ID as an index into the
cache to retrieve the pointer to the array of objects containing the last arguments passed to the dispatcher.
Using this pointer, the code transformer determines the function being dispatched — thefef — at this call
site. However, if the cache slot is unset, the processing of the current call is aborted and the code transformer
continues with the next call.

Having determined precisely the function passed tofeval at this call site, the transformer begins a se-
ries of transformations at the basic block containing the current call. We illustrate the actions of the code
transformer in Figure 9 and Figure 10.

Figure 9(a) shows a basic block (OBB) with a call to the dispatcher, represented withdispatcherOSR1.
As shown in the figure, the call to the dispatcher is annotated with OSR labelOSR1.

The transformer first splits the original basic block (OBB in Figure 9(a)) to obtain the basic blocks shown
in Figure 9(b). In Figure 9(b), the call to the dispatcher inOBBhas been moved into the beginning of a new
basic block namedNBB.

Later, the transformer forms a string from the types determined for the last arguments passed to the dis-
patcher. This string forms a key into the code cache. Recall that McJIT caches code based on the types of
the arguments passed to a function at a call site. The code transformer inspects the code cache using this
key. If no matching compiled code is found, the code transformer calls the compiler to compile the function.
Let us call such a newly compiled functionf . Note that the code transformer may choose to inlinef if it
considers it as a good inlining candidate and performs further optimizations on the calling function as well.

After the compilation, the transformer creates a new basic block and createsthe instructions to call the
compiled function (f ). This new block is shown in Figure 9(c) asCBB. To terminateCBB, the code trans-
former must first determine the continuation block. Of course, after the callto f in CBBreturns, the execu-
tion must continue with the code after the call to the dispatcher in the original block (OBB in Figure 9(a)).
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OBB:
...

if (guard)

CBB:

r CBB = call f

br label MBB

NBB:

r NBB = call dispatch OSR1

br label MBB

MBB:

r = phi i8* [r CBB, CBB], [r MBB, MBB]

br label CONTBB

CONTBB:
...

br ...

true false

Figure 10: Actions of the code Transformer. Two new basic blocks havebeen inserted into the CFG:CBB
contains a call to the compiled function (f ), andMBB merges the results from the call inCBB and the
original call to the dispatcher inNBB.

Thus, the code transformer splitsNBBafter the call to the dispatcher to obtain a new basic blockCONTBB.
This is the continuation block forCBB.

Now, we have two alternative paths to evaluating functionf : (1) via a direct call inCBBand (2) via the
call to the dispatcher inNBB. Because the code in the currentOBB(Figure 9(c)) is always executed before
the call to the dispatcher in the originalOBB (Figure 9(a)), it must follow that the currentOBBdominates
bothCBBandNBB. Thus, the code transformer terminatesOBBwith a runtimeguard. We discuss theguard
in the next section. The transformer also creates a new basic block namedMBB. As shown in Figure 10,
MBB merges the results fromCBBandNBBvia aphi instruction generated by the code transformer.MBB
then terminates with a branch to the continuation block,CONTBBas shown in Figure 10.

The code transformer essentially implements our OSR-basedfeval optimization. The runtime perfor-
mance is to a certain degree depends on the cost of evaluating theguard that determines the execution path
taken at run time. We now discuss the functions of theguard.

5.5 Runtime guards

The code transformer generates a runtime guard (shown in Figure 10) that will determine the path taken by
the program at run time. It chooses from among several guards depending on the quality of the metadata it
retrieved from the call instruction that calls the dispatcher. In Section 5.2, we mentioned that we collect a
variety of JIT compilation-time facts onfeval call sites in the!FI metadata. The second parameter of the
metadata is an unsigned integer. It encodes three bits of information, corresponding to the following queries.

1. Is the first argument to anfeval call a read-only variable in the function?
2. Is the first argument a loop constant variable?
3. Is there a possibility that any of the arguments to thefeval call can have multiple types at run time?

The first two pieces of information are computed at JIT compilation time using standard flow analyses.
The third is computed using McJIT’s type inference [4], which starts with theactual runtime types for all
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arguments to the function and infers a set possible types for each variableat every program point. Therefore
at the call to anfeval , the type-inference can determine the set of possible types for all the arguments to
thefeval call. If more than one type exists in the type set for any argument, then the thirdquery is true.

The combination of these queries guides the choice of the guards generated by the transformer. If query
(1) is true, we can move the part of the computation of the guard (to determine whether or not the the run-
time value of this argument corresponds to the function that will be called atCBBshown in Figure 10) to
the function’s entry block.

If query (2) is true, we can compute the guard outside the loop and use the result to determine the path
taken by the program afterOBB. If query (3) is false, it means that all the arguments are monomorphic and
we can completely eliminate the check that determines whether the type of any argument changes at run
time. We discuss this further below.

Let

f : denote the first argument to anfeval call;

P : denote the set of the remaining argumentsp2, p3, ...,pn to thefeval call;

lastValue: denote a function that returns the cached value off ;

newValue: denote a function that returns the current value off ;

lastType: denote a function that returns the cached type of a variable such asp2, p3, ...,pn; and

newType: be a function that returns the current type of a variable.

We enumerate in Table III, the different possible guards (based on the three queries) that the code trans-
former can generate together with the optimal point to compute a guard.

Define

func cond = lastValue (f) == newValue (f)

arg cond = ∀(p ∈ P ), lastType (p) == newType (p)

# Query(1) Query(2) Query(3) Guard Compute Point
1 true true true func cond∧ arg cond func cond, entry block;arg condatOBB.
2 true true false func cond func cond, entry block.
3 true false true * *
4 true false false * *
5 false true true func cond∧ arg cond func condat loop entry block;arg condatOBB.
6 false true false func cond func cond, loop entry block.
7 false false true func cond∧ arg cond func condatOBB; arg condatOBB.
8 false false false func cond func condatOBB.

Table III: Guard truth table (a “*” denotes an impossible result).

Let us examine Table III. In the first case (i.e., table row 1), the results from the three queries are true, in
this case, the required guard that the code transformer must generate is

guard= func cond∧ arg cond
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this is because the type of each argument tof may change at run time. Furthermore, if after transforming the
code, the value off changes (i.e., in a subsequent call of the function with thefeval call), the backup path
must be taken. Thefunc condcomponent of the guard can be evaluated at the function’s entry basic block
becausef is read-only in the calling function. It must be a parameter of the function. However, because
the types of the arguments may change before thefeval call site, the second component of the guard,
arg cond, must be evaluated just before the use of the guard in basic blockOBB.

In case 2 (i.e., table row 2), onlyfunc condshould be computed and can be done at the calling function’s
entry basic block. Query(3) is false. Thus, we know that the runtime type of each argument at thefeval
call site is fixed so, there is no need to include the testarg condin theguardatOBB.

Cases 3 and 4 represent impossible cases because it cannot be thatf is a read-only variable in the calling
function and at the same time not be a loop constant in that function.

Case 5 is similar to Case 1 except that Query(1) is false, meaning thatf is not a read-only variable but it
is a loop constant. For this reason, like Case 1, the required guard is

guard= func cond∧ arg cond.

However, unlike Case 1, the optimal point to computefunc condis at the loop entry basic block (also referred
to as the loop initialization basic block). The second component (arg cond) must still be computed atOBB.

In Case 6, onlyfunc condshould be computed and this can be done in the loop entry basic block.

Case 7 requires that bothfunc condandarg condbe computed atOBBbefore the use of the guard in the
block. This is becausef is neither a read-only nor a loop constant variable. And the types of the arguments
may change at run time as indicated by the value of Query(3) in row 7 of TableIII. Observe that this is the
most expensive guard computation the code transformer can generate.

The last case is less expensive than Case 7 because in this case, we know that the arguments have constant
types at thefeval call site. But we also know thatf is neither a read-only nor a loop constant. So, the
required guard is to evaluate onlyfunc condatOBBbefore the use of the guard.

The least expensive guard is in Case 2. This our ideal case. In the worst case (Case 7), the code trans-
former inserts a relatively expensive guard at the end ofOBBthat tests whether the current runtime value of
fef (of an feval call) corresponds to the compiled function and that the remaining arguments have stable
types. This may have an impact on performance, although we believe this seldom happens within the class
of the applications that we have considered.

5.6 Resuming execution after an OSR is triggered

You will note that we have only focused on defining the OSR points and the transformation that occurs
when an OSR triggers, but have not defined how the newly transformed code is executed and how the state
is restored or how control flow is correctly resumed. These important details are handled automatically by
the McOSR library[13].

6 Experimental Results

In Section 5, we presented a general OSR-based technique which allowsa JIT compiler to generate better
code on-the-fly for dispatchingfeval calls. Furthermore, in Section 4, we presented a relatively light-
weight approach to optimizingfeval calls. Here, we first discuss in detail the cost offeval calls in
MATLAB programs. Then, we present the results of the experiments that we conducted to assess the effec-
tiveness of our two specialization approaches forfeval calls. Later, we compare the performance of the
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two approaches on the benchmarks described in Section 2.

6.1 Cost of feval

In Section 2, we summarised the results of the experiment conducted to evaluate the cost offeval in
MATLAB programs. Now, we discuss the results in detail. From Table II, we can observe that function
evaluation viafeval incur overheads. When we compared thefeval anddirect, we found performance
improvements from 0.8% to 12.36%. This was consistent across the three systems.

When we comparedfeval and inlined versions under interpretation. Here we found a significant dif-
ference for each benchmark. In fact, we found performance improvement from 6.87% (sim anl, with the
MATLAB interpreter) to 67.21% (odeRK4, also with the MATLAB interpreter). When we computed a similar
statistic for Octave alone, we found performance improvement from 10.93%(sim anl) to 49.54% (odeRK4).
And for McVM we found 20.71%(sim anl) to 46.08% (odeRK4). The three different systems (Octave,
MATLAB and McVM) gave the lowest improvement when runningsim anl and the highest improvement
when runningodeRK4.

We comparedfeval anddirectunder the JIT category. We found performance improvement from 0.83%
(sim anl, under the MATLAB JIT) to 92.99% (odeRK4, under the McVM JIT). The comparable statistic for
feval againstinlined was performance improvement from 5.34% (odeRK4, under the MATLAB JIT) to
93.57% (odeRK4, under the McVM JIT).

As shown in Table I, theodeRK4benchmark has fourfeval calls in its only loop. It is therefore not
surprising that both the MATLAB JIT and McVM JIT recorded significant improvement when thefeval
calls were eliminated in theinlined version of the benchmark. Although thesim anl benchmark has only
onefeval call in a long-running loop, the evaluated function was largely interpreted by our McVM JIT as
it computes a complicated expression. The relatively low improvement recorded by both the MATLAB and
McVM JITs under this benchmark may be due to the complicated nature of othercomputations performed
by the benchmark. Although ourfeval optimization was still able to improve the performance of this
benchmark. We return to this discussion in Section 6.2.

These statistics are interesting. They revealed to us that the direct and indirect cost of anfeval call in a
long-running loop can be significant. Thus, callingfeval in a long-running loop presents an optimization
opportunity, which we decided to explore further and develop an approach to optimizing anfeval call in
long-running MATLAB loops. We discuss the impact of our OSR-basedfeval optimization in the next
section.

6.2 OSR-based feval optimization

In Table IV, the column labelledNormalshows the results of executing the benchmarks with McVM JIT
in normal mode. ColumnOpt-0shows similar results when the benchmarks were run with our basic OSR-
basedfeval optimization enabled. The column labelledOpt-1shows the result of running the benchmarks
with the OSR-basedfeval optimization plus inlining optimization that is performed on a suitable com-
piled function by the code transformer. We show similar results when we raisethe optimization level and
include our symbol environment optimization on the larger scope enabled by inlining under columnOpt-2.
In the last part of the table, under the column labelledImprovement, we show the percentage improvement
recorded at the three OSR-basedfeval optimization levels over McVM in the normal mode.

From our results, we found that ourfeval optimization was effective. Ourfeval optimization con-
sistently outperformed the McVM JIT. We recorded the highest improvementof 50.45% runningnewton
at theOpt-2optimization level (i.e.,feval optimization plus inlining and interpreter-interaction simplifi-
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Normal feval Optimization
t(s) t(s) Improvement (%)

Normal(N) Opt-0 Opt-1 Opt-2 Opt-0 vs N Opt-1 vs N Opt-2 vs N
bisect 10.26 9.09 9.16 9.02 11.34 10.67 12.11
Newton 12.45 8.87 8.87 6.17 28.79 28.74 50.45
odeEuler 18.36 13.80 13.20 13.36 24.82 28.09 27.22
odeMidPoint 24.86 16.48 16.19 17.14 33.71 34.85 31.03
odeRK4 50.01 31.65 31.13 30.78 36.72 37.76 38.44
gaussQuad 5.62 4.02 4.29 4.15 28.46 23.67 26.16
sim anl 15.50 12.59 12.85 10.87 18.80 17.07 29.85

Table IV: The McVM JIT vs thefeval optimizing McVM JIT.

cation enabled by inlining). It does seem that the benchmark does not benefit from inlining alone as the
result underOpt-1 (i.e., feval optimization plus inlining) suggests. Only theodebenchmarks:odeEuler,
odeMidptandodeRK4show some improvements atOpt-1. Thefeval calls in these benchmarks evaluated
the same function. And if the LLVM code of the inlined function is composed mainlyof interactions with
the interpreter, as it is the case with thenewtonbenchmark, it may not lead to performance improvement be-
cause interpretation dominates. However, this class of code presents further optimization opportunity: after
inlining, the interaction with the interpreter may be simplified. This can lead to a significant performance
improvement. Our result for thenewtonbenchmark supports this.

We recorded the lowest improvement of 10.67% withbisectrunning at theOpt-1optimization level. The
feval calls in this benchmark evaluated the same function as thenewtonbenchmark. Likenewton, bisect
performed better underOpt-2. Again, the simplification of the interpreter-JIT compiler interaction code
benefits this benchmark and others as shown in the table.

The McVM JIT plus our OSR-basedfeval optimizing transformation outperformed the standard McVM
JIT in all the benchmarks. Another important question is to see how it compares to the hand-coded direct
versions and the hand-inlined versions. Our OSR-based version outperformed the hand-codeddirectversion
shown Table II under the standard McVM JIT in three of the benchmarks:newton, gaussQuadandsim anl.
Further, it outperformed the standard McVM JIT even under theinlined version in the case ofgaussQuad.

What then makes our optimization effective? Our results suggest that for our implementation, the inlining
optimization is not enough. However, as our interaction simplification optimization shows, inlining is a big
enabler of other optimizations. The interaction simplification code was particularly effective for most of the
benchmarks.

Thus, converting an indirect call to a direct call can reveal good optimization opportunities that may be
exploited for performance improvement. We conclude that our OSR-basedfeval optimizing transforma-
tion technique is effective and practical. We will continue to improve our optimizer and we believe that our
technique can be used to improve performance in similar JIT compilers.

6.3 A Comparison of the OSR and JIT value-based-specialization approaches

In this section, we evaluate and compare the performance of our OSR-based approach against the JIT value-
based-specialization approach.

In Figure 11, we show the execution times of the benchmarks under the two approaches. It is clear from
the figure that the JIT value-based approach significantly outperforms the OSR-based approach in five of
the seven benchmarks. On our benchmark set, the JIT value-based approach is about 1 – 8 times faster than
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the OSR approach. The average speed up is 2.3. Why does the JIT value-based approach perform better?

Figure 11: OSR vs JIT.

To understand why the JIT value-based approach provides better performance, we need to examine the
quality of the LLVM code generated for each benchmark, and the sources of overheads under the two ap-
proaches.

Under the OSR-based approach, McJIT generates less efficient code. This is so because McJIT generates
a call to the interpreter for anfeval call afterboxingthe arguments to thefeval call to make them more
generic (the return values areunboxedwhen the call returns). In addition, because the called function (fef) at
the call site is unknown during the compilation time, the type inference engine is unable to infer precise types
for the values returned by thefeval call, thus forcing the compiler to generate more generic instructions
that are suitable for handling different types. This is a major source of inefficiency in the OSR approach.

In fact, runtime guards computation can be expensive. The OSR approach generates runtime guards,
which, as discussed in Section 5.5, depend on whether or not the arguments to anfeval call have a fixed
type. In the threeodebenchmarks, the type inference engine infers that the types to the firstfeval call in
the three benchmarks are variable, forcing the code transformer to generate an expensive guard in this case.
For the remainingfeval calls (odeMidpthas 2; andodeRK4has 4 (Table I)), the type inference engine
infers that the arguments have a fixed type and generates a much less expensive guard.

The JIT value-based approach is less affected by the foregoing issues. If all thefeval calls in a function
have the samefef and thefef is a read-only parameter of the function, then the specialized code generated to
match thefef at run time will not contain anyfeval call implementation. Eachfeval call in the AST of
the function would have been replaced with a direct call to thefef. This allows the type inference engine to
analyze the called function, which, in turn, allows McJIT to further specialize the call site and generate effi-
cient code. Thefeval calls in all the benchmarks have theirfefs passed as a parameter, thus contributing
to the generation of more efficient code for the specialized versions.

It is, however, true that the JIT value-based approach incurs some runtime overheads, including that of
the code cache look-up. But this is small given the expected gains.

We conclude that, although, the JIT value-based approach is less powerful than the OSR-based approach,
it is much more effective on our benchmark set. The JIT approach only works where thefef is passed as
a read-only parameter to a function. It does not work if thefef is a local variable in the function with the
feval call. The OSR approach works in all cases but incurs much more runtime overhead. It is possible to

22



combine the two approaches in a JIT compiler by first analyzing a function withanfeval call to determine
whether a call of the function can benefit from the JIT value-based specialization approach.

7 Related Work

Historically, function dispatch in dynamic languages was implemented with a dispatch look-up table. This
was found to be slow. More efficient approaches have emerged; they often employ a variety of caching tech-
niques to speed up table look up. Smalltalk-80 [7, 11] uses a global cache toimprove look up performance.

Our OSR-based approach is more related to the inline caching [5] approach used in another Smalltalk
implementation. Interestingly, the Smalltalk implementation was based on several studies of Smalltalk pro-
grams that revealed that 95% of the time, the type of a Smalltalk message receiver is constant [5, 23, 24].
Our approaches tofeval optimization are also based on the observation thatfeval calls in most MATLAB

loops have unchanging first argument.

The inline caching technique used in the Smalltalk compiler involves caching the address of a looked-up
method at the call site by modifying the compiled target code on-the-fly — by overwriting the call instruc-
tion. This allows the method to be called directly in a subsequent execution, avoiding the need for a look up.
It also involves generating additional code (often called prologue) in the method that tests that the receiver
type is correct before executing the body of the method. However, if the test does not succeed, it calls the
look-up code.

Hölzle et al extended the inline caching technique to handle polymorphic call sites by including more
than one cached look-up result per call site. This technique is known as polymorphic inline caching (PIC)
[8]. The PIC approach caches all the receiver types at a call site in astubthat is generated on-the-fly and
rebinds the call to the stub routine.

In contrast to these approaches, our implementation is done completely at the LLVM-IR level, and not
at target code level. Without on-stack replacement support [9, 18, 6,2, 21, 13], it is hard to cache previous
function look-up result “inline”(i.e., at the call site). We also do not need additional code in the called func-
tion. We insert runtime guards so that execution can continue with the originalcall to the dispatcher if the
guard fails. Also our backup path obviates the need to cache look-up results in a stub as in PIC case used in
the implementations of SELF [3, 10].

Although multi-paradigm programming languages such as Python, JavaScript, and functional languages,
including Lisp, Haskell, Scheme support higher-order functions, the function arguments are directly evalu-
ated at runtime and often lead to runtime code generation that is typically supported by polymorphic type
inference, and sometimes, binding time analysis [17]. The MATLAB feval is an overloaded built-in that
accepts a function name as a string or function handle and indirectly evaluates, at runtime, the function
argument. Our approaches are supported by a type-inference analysis, although it is explicit that thefeval
built-in evaluates functions only. Our approaches are aimed at improving JIT compiled code, and facilitat-
ing efficient compilation of the MATLAB feval , which can be extended to handle similar features in other
dynamic languages, where it would have otherwise appeared impossible.

To the best of our knowledge, we are not aware of any work on optimization technique forfeval in a
JIT compiler for MATLAB .

8 Conclusions and Future Work

MATLAB programmers often usefeval to implement a wide variety of numeric solvers.feval provides
a mechanism to pass function names or function handles as parameters. Thisuse of feval is a very

23



reasonable way to implement general-purpose solvers, but in this paper we showed thatfeval incurs a
significant performance overhead, both on interpreted systems and in existing JIT compilers.

We introduced an effective JIT value-based specialization technique for optimizing feval calls, whose
first argument is a function parameter. We also proposed a more generalon-the-fly mechanism for specializ-
ing feval calls in hot loops using the OSR mechanism available in McVM, an open sourceresearch virtual
machine for MATLAB .

We collected a set of seven typical benchmarks that usefeval , and demonstrated that our specialization
approaches provide significant speedups over the basefeval implementation for this benchmark set. In
some cases the performance is near to the optimal performance of a hand-inlined function, but in other cases
a gap remains. We would like to continue to develop new optimizations to further close that gap, and to
apply the same sort of transformations to other dynamic features in MATLAB .

A somewhat surprising discovery in this work was the complex interplay between the JIT-time interpro-
cedural type analysis and the on-the-fly transformations. The JIT value-based specialization can replace
feval calls with direct calls in a function body, before doing the type analysis of that function body, thus
leading to much better specialized code (because the interprocedural analysis can handle the direct calls
much more precisely). On the other hand, this specialization can only happenat the function level, and only
when thefeval target function corresponds to a read-only parameter. The OSR-based method is more
general, and can be applied at the level of loops, but suffers from less precise type information. It would be
interesting to look at future work that combine the strengths of both approaches.
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