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Abstract

MATLAB is a popular dynamically-typed array-based langeiaghe built-in functiorfeval is an
important MATLAB feature for certain classes of numericabgrams and solvers which benefit from
having functions as parameters. Programmers may passt&ofuname or function handle to the solver
and then the solver usdésval to indirectly call the function. In this paper, we show thithaugh
feval provides an acceptable abstraction mechanism for thess tfpapplications, there are signifi-
cant performance overheads for function callsfeiaal , in both MATLAB interpreters and JITs. The
paper then proposes, implements and compares two on-theeflizanisms for specialization fafval
calls. The first approach specializes calls of functiongféval using a combination of runtime input
argument types and values. The second approach uses @rregpéacement technology, as supported
by McVM/McOSR. Experimental results on seven numericalad show that the techniques provide
good performance improvements.

1 Introduction

MATLAB is dynamic array-based language used by scientists and engineers idis@pynes. MATLAB'’S
high-level matrix operators and dynamic typing makes the language suitaldenole variety of numer-
ical computations. An additional important feature oRRMAB is its support of higher-order functions
through thefeval construct which is widely used in many classes of numerical computatiothsding
fitting functions, estimating Ordinary Differential Equations, machine learaliggrithms such as simulated
annealing, and general plotting functions. All of these applications shammilar pattern, the main com-
putation function has a function parameter that can accept either a fuhetimte, or a function name as
the actual argument. The body of the computation function then repeatedilagas the function passed in
usingfeval

Historically, MATLAB has been mainly an interpreted language, with an emphasis on efficieniekhrar
but no particular focus on efficient execution. More recently, theve baen several efforts to provide more
efficient execution engines such as Mathworks’ proprietary MATLAB Accelerator, first introduced in
MATLAB 6.5[22], and research efforts such as MaJIC [1] and the_MB group’s open source VM/JIT,
McVM [16, 4].

This paper focuses on determiningelval causes significant overheads in both the interpreter and JIT
settings, and then proposes two mechanisms to optifeizd

To determine potential overheadsfefal , we identified a set of seven benchmarks that use algorithms
that naturally uséeval , and performed initial experiments on three interpreters (Octave, MakisWbhT-
LAB 7 in interpreter mode, and McVM in interpreter mode), plus two JITs (Mattks MATLAB with the
JIT enabled, and McVM with the JIT enabledY.hese experiments showed, in both the interpreter and JIT
situations, that there are significant overheads for call$ewial , as compared to direct function calls and
inlined function calls.

To reduce the overheadsfefval we then designed and implemented two alternative mechanisms. The
first mechanism extends the McVM JIT on-the-fly code specialization nmésiingto specialize on thealue
of function parameters in those cases where the parameter is used insiomyhef the function as the
first argument tdeval . The second mechanism is more general, can handle a wider varietysopfuse
feval , and is based on on-the-fly code generation and on-stack replac€@®R) techniques imple-
mented in McVM[13]. The OSR-based technique identifies potentially impofésal  calls, and then
uses McVM'’s OSR technology to specialize fiegal calls to specific direct calls, and to provide correct
backup to the general case when the specialized calls do not match the catitegt.

!Octave is an open source interpreter-only implementation which doesweehlIT.



The main contributions of this paper are:

Measuring the cost of f eval : We evaluated the overheadsfeal and show significant overheads for
calls viafeval for important classes of benchmarks.

JIT value-based specialization: We designed an extension to the McVM JIT specialization mechanism.
Previously specialization was performed based only on the dyngmés of function arguments. In the
new approach, we also specialize on tiaéue of a function argument, for the case where that argument
is used as the first argument to a calfégal inside the body of the function to be compiled.

OSR-based specialization of f eval : Not all feval calls fit the pattern handled by the JIT value-based
specialization approach. Thus, we also developed a more generaigieeha detect and instrument
importantfeval sites with OSR points, and we designed an OSR-based transformation vaidiec
done at the LLVM IR-level, without requiring access to the generateehalsly code. We also designed
appropriate JIT-time tests to optimize the guards required to determine if thialggezt call could be
made or if the general backup path should be taken.

Implementation in McVM/McOSR: We implemented both proposed approaches in McVM. Our imple-
mentation is open source.

Experimental Results: We evaluated both approaches, comparing them both to the origirsdl imple-
mentation, as well as to hand-specialized versions of the program.

The remainder of the paper is structured as follows. In Section 2 werggrassomplete MTLAB ex-
ample, and we show our initial experiments that demonstrate the large adefloeteval . In Section 3
provide key background to LLVM, McVM and McVM’s OSR support. 8en 4 provides the details of
our first approach based on specializing on the values of key funciianeters. Section 5 gives the key
ideas of our second approadbyal optimization and how we implemented it in McVM/McOSR. Sec-
tion 6 reports on our experiments. For a set of seven benchmark pregnee first discuss the overheads of
feval ;then we assess the impact of our OSR-based function specializationthresedifferent optimiza-
tion settings; we conclude this section by comparing the OSR-based spéiializdah the JIT value-based
specialization. We end the paper with a discussion of related work in Sectiot Gonclusions in Section 8.

2 Motivation and Problem

In this section we provide some key background ontMaB and itsfeval function, as well our experi-
mental results which demonstrate the significant overheafdaf

21 MATLAB and f eval

In order to provide some intuition aboutAviLAB and thefeval challenges, consider the examplexi
LAB functionnewtonin Figure 1. As shown on line 1, the function takes four input arguments tiagtffirst
argumenfun corresponding to either the name of a function or a function handle.

Note that MaTLAB has no declared types, although the programmer certainly has some exjypet®
in mind, as indicated by the comments on lines 3 to 13. Indeed, not only doesotrammer expect the
first argument to be a string containing the name of a function, but shegisate the named function to
take one input argument and produce two outputs. This is also clear frerA2invherdeval is used to
call the function provided by the arguménin. Lines 30 to 35 provide the definition &t3n, which is one
possible function that could be providedriewton



1 function r = newton(fun,x0, xtol , ftol )
2
3
4
5
6
7
8
9

10

11

12

13

14

15 Xeps =max(xtol,5~eps);

16 feps =max(ftol,5* eps);

17 X=x0; k=0;

18 maxit = 15;

19 while k < maxit

20 k=k+ 1;

21

22 [f,dfdx] = feval (fun,x);

23 dx = f/dfdx;

24 X =X —dx;

25 if (abs(f) <feps ), r =x; return; end
26 if ( abs(dx) <xeps ), r =Xx; return; end
27 end

28 end

s function [f, dfdx] = fx3n(x)

33 f=x—x.(1/3) -2
sa dfdx = 1 —(1/3wx."(—2/3);
35 end

Figure 1: Newton’s method to find a root of the scalar equation f(x) = @ptedl from [19, 20]

The MaTLAB functionfeval is a built-in function, that is used in MLAB to indirectly evaluate a
function at runtimefeval is overloaded, with two versions available:

[yl, y2, ..] =feval (fhandle, x1, ..., xn)
[yl, y2, ..] =feval (fname, x1, ..., xn)

wherefhandleis a first class type in MTLAB which can be bound to a MLAB built-in function or a
user-defined function using the ‘@’ operator. If the second versiasésl, therfnamemust be a string
containing a single function name and cannot contain a path to a functiorirecsody?

For our example program in Figure 1, a typical call would be one of theviirig:
newton(@fx3n, 3, 5e16, 5e-16)

23eehttp:/iwww.mathworks.com/help/matlab/ref/feval.html



newton(fx3n', 3, 5e-16, 5e-16)

where the first case passes a function handle and the second ces® galring containing the name of the
function.

Clearly algorithms such asewtonare naturally parameterized over the evaluation function, and-M
LAB’'s feval provides a mechanism for this abstraction. However, one might wondex ifgh offeval
causes any significant slow down. To determine this, we studied the desabf implementations in three
implementations of MTLAB : (1) Mathworks’ implementation for the MLAB programming language; (2)
Octave, a GNU open-source implementation of theAVLAB language; and (3) McVM, our open source
MATLAB framework.

The Mathworks’ MaTLAB system (called MTLAB in the tables) provides an interpreter for the language
and also an accelerator (a JIT compiler). Octave is an interpreter for sneAd language. It does not have
a JIT compiler. Like Mathworks’ MTLAB, McVM has an interpreter and an optimizing JIT compiler.

We conducted our experiments on these systems over a setnfAd programs from numerical com-
puting domain. These benchmarks include programs for finding the rogislypfomials and to integrate
first order ordinary differential equations. All but orsirfLanl 4) of our benchmarks were collected from
[20]. We give a short description, together with a static count of the tetalber offeval calls in the
program in Table I. The table also shows the numbdewél calls in a loop in each benchmark.

| BM | Description | #feval | #LPfeval |
bisect Uses bisection to find a root of the scalar equation f(x) =0 3 1
newton Newton’s method to find a root of the scalar equation f(x) =0 1 1
odeEuler || Euler's method for integration of a single, first order ODE 1 1
odeMidpt | Midpoint method for integration of a single, first order ODE 2 2
odeRK4 Fourth order Runge-Kutta method for a single, first order ODE 4 4
gaussQuad| Composite Gauss-Legendre quadrature 1 1
sim_anl Minimizes a function with the method of simulated annealing 2 1

Table I:feval benchmarks

We conducted all our experimental work on a computer with the following gordtion.

Processor: AMD Athlon™ 64 X2 Dual Core Processor 3800+;
RAM: 4GB RAM;

Cache Memory: L1 128KB, L2 512KB;

Operating System: Ubuntu 11:04 x86-64;

LLVM Compiler framework: version 3.0;

McJIT: version 1.1; McOSR: version 1.1;

GNU Octave: 3.0.5;

MATLAB: Version 7.12.0.635 (R2011a) 32-bit (gInx86).

In Table Il, for each benchmark, we show the execution time for the tlysterns: Octave, MrLAB and
McVM. The column labellednterpretergives the execution times measured in seconds when the bench-
marks were interpreted under the three systems. Similarly, the column lal€llagives the execution
times, also measured in seconds, when the benchmarks were run usdexgvand McVM. As we men-
tioned earlier, Octave does not have a JIT compiler. So, we recordéat @ach cell under the JIT category

Swww. http://www.gnu.org/software/octave/
“http://www.mathworks.com/matlabcentral/fileexchange



Interpreter JIT
feval (F) direct(D) inlined(l)|| Dvs.F lvs.F| feval (F) direct(D) inlined(l)|| Dvs.F lvs.F
t(s) t(s) t(s)|| % impr % impr t(s) t(s) t(s)|| % impr % impr
bisect
Octave 29.31 27.70 19.46 5.50 33.59 * * * * *
MATLAB 13.67 12.45 7.09 8.91 48.12 6.94 6.24 0.74| 10.07 89.31
McVM 13.81 13.69 9.76 0.90 29.36 10.26 7.89 4.63| 23.06 54.90
newton
Octave 29.94 27.90 19.17 6.81 35.97 * * * * *
MATLAB 15.17 13.79 8.38 9.08 44,71 8.17 7.61 1.60 6.85 80.35
McVM 21.91 21.53 13.94 1.74 36.37 12.45 7.56 2.92| 39.28 76.54
odeEuler
Octave 60.55 56.17 38.85 7.22 35.84 * * * *
MATLAB 29.45 26.16 15.30| 11.17 48.06 7.30 5.96 4.47|| 18.29 38.74
McVM 31.04 29.01 19.43 6.51 37.40 18.36 3.37 3.23| 81.63 82.43
odeMidpt
Octave 103.35 94.44 55.6( 8.63 46.20 * * * * *
MATLAB 46.87 41.83 19.1| 10.75 59.12 8.34 7.32 4.49|| 12.22 46.22
McVM 48.37 47.98 29.14 0.80 39.76 24.86 2.72 2.66] 89.05 89.29
odeRK4
Octave 186.01 172.16 93.86 7.45 49.54 * * * * *
MATLAB 84.50 74.06 27.71| 12.36 67.21 12.88 11.13 5.35| 13.58 58.44
McVM 94.76 92.37 51.09 251 46.08 50.01 3.40 3.40| 93.00 93.57
gaussQuad
Octave 39.09 37.09 29.63 5.12 24.19 * * * * *
MATLAB 34.28 33.56 28.42 2.10 17.10 8.87 8.58 6.23 3.28 29.72
McVM 16.74 15.89 11.94 5.09 28.67 5.62 4.34 431 22.69 23.22
sim_anl
Octave 39.74 38.54 35.39 3.01 10.93 * * * * *
MATLAB 43.50 43.09 40.51 0.94 6.87 9.58 9.50 9.07 0.83 5.35
McVM 18.15 16.79 14.39 7.49 20.70 15.50 12.12 8.87| 21.80 42.79
Table Il:feval overheads as compared to direct and inlined calls.

for Octave. Under the column labelléaterpreter, we show the result of running the original benchmarks

(with feval

of each benchmark witFeval

calls) undeff eval (F). The column labelledirect(D) shows the results of running a version
call replaced (by hand) with with a direct call to the input function used

to run the benchmark. We show the result of running yet another ves$ieach benchmark in which the
input function has been hand-inlined under the column labéll@ted(l). We show the results for the cases
f eval (F), direct(D), inlined(l) ran when the JIT compiler was enabled under the coldinUnder both

theInterpreterandJIT categories, we show the improvements in percentage (%iyext andinlined over
underD vs Fandl vs F respectively.

thefeval

There are clear overheads feval

3 Background

, when thefeval

is replaced by a direct call, improvements were
from 1% to 12% in the interpreter settings and 7% to 50% in the JIT settings. Furtheovements are
enabled by inlining the direct calls, ranging from 6% to 67% for the interpeatd 5% to 89% for the JITs.

In this section we provide key background and overview overview oirtfrastructure on which we are
building, namely McVM and McOSR.




31 McVM and MclIT

The Mathworks implementation of MLAB is a closed source proprietary product, so we are not able to
experiment with the implementation’s code. McVM is an open source implementdtav® with an
LLVM-based JIT, which also has support for OSR, and is thus suitablinis research.

The overall structure of McVM is given in Figure 2. Itis composed offacimpiler known as McJIT and
an interpreter. The JIT compiler can switch to the interpretation mode for #ieation of some complex
expressions, or for functionality unsupported by the JIT. The intemstietween these two components
is facilitated via a symbol environment. McJIT is built upon the LLVM framewb8 14], and as such it
generates LLVM IR. The LLVM system performs the low-level optimizatiod aade generation to produce
target machine code. The techniques presented in this paper operatly emtithe McJIT and LLVM IRs,
and do not require any modification of machine code. Thus, the technégagsortable across different
target architectures.

< parsing >
McLab Front-end | « parsing >
McVM

¥

Language Core . Analyses
TR Types " Interpreter Type Inference
Data Types Live Variable

] Fallback Logic
Reaching Defs
v. || Versioning Logic|| _
Func Handles ) i Bounds Check

eval Opt. Logi

LLVM Emission Copy Analyses

=

~

- —»f
[

ATLAS, BLAS LLVM
Boehm GC LAPACK McOSR Framework

Figure 2: Overview of McVM

As illustrated in Figure 3, McJIT is a specializing JIT. When a function is cdlienl left of figure), the
JIT first looks at the runtime types of the arguments and determines if targetnsatching those argument
types is already available in the code cache, and if so executes it. OthaheisSéT looks to see if it already
has the McJIT IR, and if not it requests the front-end to parse the matsbinge code (.m) file and it builds
the IR. McJIT then performs its own analysis and transformations, thesrgies LLVM IR, specialized to
the current argument types. LLVM then performs the final low-level opttions and generates target
code, which is stored in the Code Cache and executed.

3.2 feval inMcVM

When McJIT encounters a MLAB statement involving a call tteval |, it generates LLVM code to call
to a dynamic dispatcher. For example, when forfthal statement at line 22 of Figure 1, it generates the
code in Figure 4. Let us examine this code snippet. The compiler generatesd to save the arguments
to thefeval call into an array of objects. This is shown in lines 1-5. And then genetta¢esall to the
dynamic function dispatcher, that is, the calliterpreter::callFunctionin line 6.
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Figure 3: Running a function in McJIT.

%argsPtr = call i8x @"ArrayObj::create”(i64 2)
call void @"ArrayObj::addObject”(i8 % ar gsPtr,
i8« %argl)
call void @"ArrayObj::addObject”(i8 % ar gsPtr,
i8x %arg2)
%retVal = call i8+ @”Interpreter :: callFunction”
(i8* 9% funchtr,
i8+ %argsPtr,
i64 % nargout)

© 00 N o g~ W N

Figure 4: LLVM code generated forfaval call

When the dispatcher is called at runtime, it examines its first argument to degettmainthis arfeval
call site. It then calls the library functidieval passing it its own second argument — the array contain-
ing the arguments to thieval call. Thefeval library examines its own first argument and determines
the right function to dispatch. It then prepares the input arguments ddwgdthis function and calls the
function. The result of executing this function is what the dispatchertaaéiy returns in line 6.

The foregoing procedure can be slow, and furthermore it inhibits fumatiining and other flow analy-
ses. However, since the value of the function featl built-in evaluates at runtime cannot be determined
statically in general, this implementation represents what is typically done to impl¢nedaval library
function.

A key point to note is that function binding and the argument types of thdiuncalled byfeval often
do not change through the whole loop execution, or even through thkewiethod execution, as is the
case for the typical example in Figure 1. For this class effMAB programs, we can improve the runtime
performance if it is possible to dynamically do on-the-fly code transformati@hfunction specialization
and possibly inlining.



3.3 OSR Background

McVM has support of OSR[13, 12] which works completely at the LLVMI&Rel. The main idea is that
LLVM IR instructions can be tagged as interesting, and OSR points candradn any loop that encloses
the tagged instructions. Each OSR point is associated with an LLVM-IRftnaner, which is applied when
the OSR point triggers. The OSR library takes care of saving the apat®gtate, and restarting the trans-
formed code at the appropriate location and state. In Section 5 we proeidketails of how we leverage
the OSR machinery to optimiZeval

4 JIT Value-based Specialization

Ouir first approach to optimizinfgval calls is based on the observation that, for some classafLig
programs, a function with afeval call often accepts as an argument the name or the function handle to
a function evaluated by tHeval call. Further, the call is often executed repeatedly within a long-running
loop.

As in most implementations of the MLAB language, the code generated fofewal call by our JIT
compiler can be significantly less efficient.

An feval call often prevents compiler optimizations because its input function canngérieral, be
determined until the run time. In MLAB, the value of the input function of deval call — which we
shall from now calf eval evaluated functioiffef) — can be formed dynamically (e.g., a string formed by
a concatenation of some run-time values). The value can also come fram strd@ture (e.g., an array or a
struct) or as a return value from a function call.

Our JIT-time code specialization feeval replaces calls to a function that hasfamal call with a call
to a special dispatch function. This dispatch function (called the dispdimh&hort) evaluates the value of
the parameter that corresponds tdei It then generates a new version of the function with allfthal
calls replaced with direct calls to tlief. This is illustrated in Figure 5.

caller(...) g(func, ...) ¢ (func, ...)

g(myFunc, ...); r = feval(func, x, ...); r = func(x, ...);

(a) (b) ()
Figure 5:feval runtime code specialization.

In Figure 5, functiorcaller calls functiong. As shown in (b), functiow has arfeval call that evaluates
one of its parameters, naméiync Functioncaller calls g with an argumentmyFung¢ which references
a function (e.g., a function handle or a function name). This is the functidritbdeval call in g will
evaluate.

However in Figure 5(c), a new version of functigmamedy’ is created and all thieval calls that
evaluatefunchave been replaced with direct calls to functfanc

In the next section, we describe in detail the implementation of this approaghn &ection 5, we de-
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scribe a more powerful approach that is capable of optimifengl calls within a loop where théef of
anfeval is not required to be a parameter of fegal call's enclosing function.

4.1 JIT Code Specialization for f eval

During the parsing of the XML string for a compilation unit (i.e., a list oAMAB functions in a MaT-
LAB mfile (Figure 3)), McJdr analyzes all the functions in the compilation unit and annotates those with an
feval call, whosefef, that is, the first parameter, is a read-only parameter of the enclosiotjdion

Normally, after McJT has compiled the right version of a function at a call site, it inserts the sjoorel-
ing LLVM call instruction into the current basic block. However, to supploe runtime code specialization
for feval , we modified McJdr so that it does not insert the call instruction but, instead, generates a hew
instruction of the form

call void @"JITExt:: dispatchFunction (i8* % basel RPtr,
i8+ %fefValue,
i8+ %inArgsPktr,
i8+ %retValsktr,
i32 %csID)

that calls the dispatcher. The dispatcher, that is, funclidext::dispatchFunctionaccepts five argu-
ments:

(1) the first is the pointer to the base IR (i.e., the original version of the IR) thraésponds to the called
function at the call site;

(2) the second is a pointer to the argument that corresponds feftfiee., the first parameter) of a marked
feval call in the called function;

(3) the third is a pointer to a structure containing the input arguments to the calletibfun
(4) the fourth is a pointer to a structure containing the return values;

(5) the last argument is an integer that denotes the index of a cache slotaybheirger to the descriptor of
the AST can be located.

Each AST representing a function with eval call has one or more code cache descriptors. A code
cache descriptor contains information related to the code of the AST thasponds to the types of the
arguments passed to the function at a call site.

A function that is called with different argument types at different callssites a code cache descriptor
for each call site. A code cache descriptor is a four-tuple.

descriptor = < entry addressargumenttypes
counter fevalversions>

whereentry addresds the address of the entry to the compiled code corresponding to the ASTazIkbe
function. We shall denote the called function at a call site vfitfrield argumenttypesdenotes the types of
the arguments at the call site. Due to Micd code specialization on argument types at call sites, the set of
types for the arguments at a call site is immutable. Féeldnterdenotes a compilation counter that counts

11



the number of versions that are generated at different consecuéeatens of the call to the dispatcher in-
struction. Fieldeval versionss a map containingAST, entry addres$ pairs. The first member of the pair
is the IR corresponding to the value of the parameter used as the firast@mgto somdeval calls in f.
The second member of the pair is the address of the entry point to the compile@tf that corresponds
to anfef.

4.1.1 Functions of the Dispatcher

At run time, the dispatcher first uses a combination of its first parameter (eed31) and its last parameter
(i.e., the cache slot index) to retrieve the code cache descriptor that m#behargument types at this call
site. From the code cache descriptor, it compares the current value obtimter with a givethreshold If
the counter has exceeded the threshold, the dispatcher executes theddiigenerated for the AST at this
call site.

if, however, the counter is below the threshold, the dispatcher perfolmoegaip, using its second param-
eter, to determine whether a corresponding code version had beemigendf the look-up is successful,
the dispatcher executes the function at the address returned by thedoGktherwise, the dispatcher clones
the original AST and replaces all the markedal calls with direct calls to the evaluated function given as
its second parameter. After, the dispatcher retrieves the types attacheddalltbite and calls the compiler
to compile and generate the correct code matching the argument types atlthitec

After the compilation of a new version, the dispatcher enters an entry, theapigir comprising of the
AST corresponding to the compiled code and the entry point addressaditigled code, into a map in the
code cache descriptor of the base IR so that if the function is called agihithefef value, the dispatcher
can retrieve and execute the correct code. Finally, the dispatchetespttie counter associated with the
cache slot descriptor and executes the function.

Even though the base AST and new versions of the AST have identicalenwhmput and output pa-
rameters, the types of the values returned by the compiled code thatpmmdesto a giverief may be
different. This presents a problem in that the rest of the code of the céallimgion was generated using the
information obtained from the base AST. We resolved this problem by gengra wrapper that converts
from the types returned by a new version to the types used in generatingdbdor the original version.
Because of this problem, we always call the code corresponding tef ate a wrapper. A wrapper is a
short function that is composed of a call instruction and the instructionctimaert the return values to
their expected types.

A code cache miss causes a compilation of a new version. For this actiomguhtecassociated with
the code cache descriptor is incremented. The counter is reset to yate(@ry code cache hit. As men-
tioned earlier, if the counter exceeds a given threshold, the dispatdpesr compiling a new version and
always executes the original code generated for the base AST ofltbe ftanction. This is useful in cases
where multiple functions are being called. However, this rarely happensatige. So, we expect only a
reasonable number of new versions to be generated.

Again, we stress that this approach only works in cases whefeftbéanfeval call in the called func-
tion is a read-only function parameter. This covers most of the prograder study. In the next section,
we discuss a more powerful approach that uses OSR to supportthe-@ig-specialization ofeval calls,
and in Section 6.3, we compare the performance of this approach with theapiiv®ach, which we shall
now describe.
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5 OSR-based f eval Transformation

In Section 2, we discussed the cosfefal in MATLAB programs and the challenges to an efficient im-
plementation ofeval in a MATLAB JIT compiler. We begin this section with a short discussion of the
objectives for our approach to optimiteval , and then we highlight the major steps in our approach to
on-the-fly specialization using OSR.

5.1 feval Optimization Goalsand Strategy

In Figure 4 we illustrated the code currently generated for a cédal . Line 6 contains the key problem,
which is an indirect call to the interpreteallFunctionmethod is required in order to dispatch to the correct
function.

The aim of our approach is to replace the call to the dispatcher with a daked ¢he function given as
the first argument to thieval  call while maintaining the correctness of the code. To maintain correctness
we will need some safety checks that will backup to the general case itithent call does not match the
last specialized version. Thus, another key challenge is minimizing theeaakfbr the check.

Our solution strategy has three important steps, the first two steps aratdbmeompilation time (for ex-
ample, when functionewtonis first JIT-compiled), whereas the third step happens at run-time (éonpbe,
when the while loop inside afewtonexecutes).

Dispatcher call annotation: During JIT-compilation of a function body, all dispatcher calls that cgoes
tofeval calls must be identified and marked. This is discussed in detail in Section 5.2.

OSR instrumentation: If the first phase identifies sonieval dispatcher calls, then the closest enclos-
ing loop of each such dispatcher call must be instrumented to include a coatl®&R trigger, usually
based on the number of loop iterations. In addition, an OSR point must be&ithsehere the OSR point
is associated with thieval  optimizing transformation. We discuss this further in Section 5.3.

Triggering an OSR event at run time: At run time, if an OSR is triggered by a running function, the code
transformer attached to that OSR point will be executed. In our apprtashs where théeval opti-
mizing transformation is actually performed. This transformation must rewritelt®! IR to replace
the annotatefeval call with the appropriate direct (or inlined) call, and it must also insert@mate
guards to ensure that the specialized call is only executed for the tepegalized function and argu-
ment types, and it must backup to the general case otherwise. We giteiled description of the code
transformer in Section 5.4.

5.2 Dispatcher call siteannotation

As mentioned in the introduction to this section, we have added a pass to th€ ddedpiler to identify all

the calls to the dispatcher that correspond tdeaal call. Theses call sites are annotated with the OSR
ID of their closest enclosing loop. For example, for fegal call in Figure 6, the following would be
generated:

%retV =call I8+ @"Interpreter :: callFunction "(i8 %funcPtr,
i8+ %argsPtr, i64 %nargout), !FI 'OSR1

where!Fl and!OSR1are the metadata used to annotate the call sites with the call to the dispatcher for
anfeval call. The stringgOSR1lindicates that this call site will be considered forfamal optimizing
transformation if OSR is triggered in the loop identified with OSR ID 1.
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We also assign a unique ID to eafdval call site. This ID is used to index a fixed memory area for
caching the types that the arguments to the dispatcher had just before @&fgdsed at run time. To
facilitate this process, store instruction of the following form is generated:

store I8+ %argsPtr, i8» addrOfCacheSlot, !FI

which stores the pointer to the array of objects passed to the dispatchexed adche slot associated with
the currenfeval call. Notice that this instruction is also annotated with the same metadata as the call to
the dispatcher.

The metadaté-1 encapsulates some JIT-time information about the arguments of the asséevated
call. Itis a 3-tuple. The first operand or field is the unique ID assignedisddlal call; the second
and the third represent relevant JIT-time facts aboutielral call site. We defer the discussion on the
information collected at the JIT-time to Section 5.5.

The annotations attached to the call to the dispatcher are consumed by ¢heastdormer during an
OSR event. We discuss the transformer in more detail in Section 5.4.

5.3 OSR Instrumentation

At JIT compilation time for a function, if a loop contains &wval call, the loop must be instrumented
with a test that determines whether a loop counter has reached a giveimatldceT his is the OSR condition.
We experimented with a threshold value set at 2. So, at run time, after tbetiexeof the second iteration
of the loop, the OSR condition will be satisfied. The conditional executioneo©&8R point is achieved by
generating the following LLVM conditional instruction at end of the loop rezad

br i1 %osrTriggeringCond, label% OSRBB, label% BodyBB

This instruction inspects the OSR conditi®adsrTriggeringConiland branches to the basic block named
%OSRBB (which triggers the OSR) if the test is successful. Otherwiseaariches t®BodyBBwhere the
body of the loop will be executed as normal.

For ourfeval optimization, we use a closest-enclosing-loop strategy for the placemanGSR point.
The McOSR library requires that each OSR point is associated with a @yd#drmer - it is this transformer
that will execute when the OSR triggers. Thus, faual optimizing transformation logic is implemented
by the code transformer that we attach to the inserted OSR point. Our codétraer has the following
signature:

void transformFeval (Ilvm:: FunctionF, osr:: OSRLabel L);

whereF is the LLVM IR of the function that has triggered an OSR event, Ariglthe OSR label of the loop
where an OSR has been triggered. We discuss in detail the logic of théraodBormer in Section 5.4.

Figure 6 shows a code snippet from our running example, and in in Fl@ure show in a simplified
form, the corresponding control flow graph (CFG) in LLVM IRH1 is the loop header block and termi-
nates with a conditional branch instruction. The basic block branches todpéody ati BB or the loop
exit block atLE depending on the loop exit conditio®{oopExitCond.

The CFG shown in Figure 7 is transformed into that shown in Figure 8 afterting an OSR point. As
can be observed from the figure, the loop header block now contaimssthéaction to compute the OSR trig-
gering condition %osrTriggeringCongland terminates with a conditional branch instruction as discussed
earlier.
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while k < maxit
k=k+ 1;
[f, dfdx] = feval (fun,x);

end
end

N o s W N P

Figure 6:while loop extracted from (Figure 1)

ENTRY:

]

A 4
LH1:

br il %loopExitCond,
label %LB, label JLE

false rue

LE: BodyBB:(LB:)

br label %LH1

I

Figure 7: A CFG for the MTLAB while loop in Figure 6.

ENTRY:

)

LHO:

br il JosrTriggeringCond,
label %0SRBB, label %LH1

OSRBB: (OSR:) LH1:

call void @ osrSignal(...)l—s, ., %loopExitCond,

br label %LH1 label %BodyBB, label JLE
/ L
LE: BodyBB: (LB:)

br label %LHO

L |

Figure 8: The CFG of a loop with an OSR point.

5.4 OSR Triggering and Runtime Transfor mation

At the heart of our implementation is the code transformer that is attached t8RrpQint. When an OSR
is triggered at run time, the OSR runtime system passes control to the cosfetnaer. This is where our
feval optimizing transformation is performed.
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OBB:

br label NBB

OBB:
CBB: NBB:
br label NBB
T r CBB = call f r NBB = call dispatch OSR1|
v br label CONTBB
OBB: NBB:
i ‘ ;
rOBB = call dispatch OSR1 T NBB = call dispatch OSR1 CONTBB:
br ... br ... br ...
(a) (b) (©)

Figure 9: Actions of the code transformer. Basic bl&@BB in (a) is split into two. The result of the
splitting process is shown in (b). In (d}BBis split intoNBBandCONTBB A new unlinked basic block
namedCBBis also generatedCBB contains a call to the new compiled functiof) (

The code transformer first traverses its input function (i.e, the LLVM tRhe running function) and
collects all the calls to the dispatcher that are associated witevahcall site in the source program. The
transformer can identify these call sites using the OSR label attached tanstrzictions at their creation
time. The transformer also identifies and removes alstbee  instructions that were inserted to cache the
last-known types for the arguments to the dispatcher.

The transformer then processes the call instructions as follows. Homdesgatcher call, the transformer
extracts the cache slot ID of the current call dispatcher. It then usesatthe slot ID as an index into the
cache to retrieve the pointer to the array of objects containing the last antgipassed to the dispatcher.
Using this pointer, the code transformer determines the function being diggate thefef — at this call
site. However, if the cache slot is unset, the processing of the cuakid aborted and the code transformer
continues with the next call.

Having determined precisely the function passetét@l at this call site, the transformer begins a se-
ries of transformations at the basic block containing the current call. Werdtesthe actions of the code
transformer in Figure 9 and Figure 10.

Figure 9(a) shows a basic blockWBB) with a call to the dispatcher, represented wdtbpatcherOSR1
As shown in the figure, the call to the dispatcher is annotated with OSRQ:HRIL

The transformer first splits the original basic blo€&Bin Figure 9(a)) to obtain the basic blocks shown
in Figure 9(b). In Figure 9(b), the call to the dispatche©iBB has been moved into the beginning of a new
basic block namedIBB.

Later, the transformer forms a string from the types determined for thertastnants passed to the dis-
patcher. This string forms a key into the code cache. Recall thatiMathes code based on the types of
the arguments passed to a function at a call site. The code transformectsige code cache using this
key. If no matching compiled code is found, the code transformer calls thpiter to compile the function.
Let us call such a newly compiled functigh Note that the code transformer may choose to infirigit
considers it as a good inlining candidate and performs further optimizatiotieeaalling function as well.

After the compilation, the transformer creates a new basic block and ctbatésstructions to call the
compiled function ). This new block is shown in Figure 9(c) &B8B. To terminateCBB, the code trans-
former must first determine the continuation block. Of course, after théocflin CBBreturns, the execu-
tion must continue with the code after the call to the dispatcher in the origindd B@BBin Figure 9(a)).
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OBB:

if (guard)

,///jiﬁg////\\\\\ﬁyfi\\\\\*

CBB: NBB:
r CBB = call f r NBB = call dispatch_0SR1
br label MBB br label MBB

\/

MBB:
r = phi i8+ [r_CBB, CBB], [r_MBB, MBB]
br label CONTBB

CONTBB:

br ...

Figure 10: Actions of the code Transformer. Two new basic blocks haee inserted into the CF@BB
contains a call to the compiled functiorf)( and MBB merges the results from the call @BB and the
original call to the dispatcher iNBB.

Thus, the code transformer spIkBB after the call to the dispatcher to obtain a new basic bloGNTBB
This is the continuation block faCBB.

Now, we have two alternative paths to evaluating functforfl) via a direct call inCBBand (2) via the
call to the dispatcher iNBB. Because the code in the curréiBB (Figure 9(c)) is always executed before
the call to the dispatcher in the origin@BB (Figure 9(a)), it must follow that the curre@BB dominates
bothCBBandNBB. Thus, the code transformer termina@B8Bwith a runtimeguard We discuss thguard
in the next section. The transformer also creates a new basic block MdBBdAs shown in Figure 10,
MBB merges the results fro@BB andNBB via aphi instruction generated by the code transforniéBB
then terminates with a branch to the continuation bl@RNTBBas shown in Figure 10.

The code transformer essentially implements our OSR-bfesed  optimization. The runtime perfor-
mance is to a certain degree depends on the cost of evaluatiggdhetthat determines the execution path
taken at run time. We now discuss the functions ofghard

5.5 Runtimeguards

The code transformer generates a runtime guard (shown in Figure 1®illdetermine the path taken by
the program at run time. It chooses from among several guards diegesn the quality of the metadata it
retrieved from the call instruction that calls the dispatcher. In Section ®2nentioned that we collect a
variety of JIT compilation-time facts dieval call sites in théFI metadata. The second parameter of the
metadata is an unsigned integer. It encodes three bits of informationsjgonding to the following queries.

1. Is the first argument to deval call a read-only variable in the function?
2. Is the first argument a loop constant variable?
3. Is there a possibility that any of the arguments toféwal call can have multiple types at run time?

The first two pieces of information are computed at JIT compilation time usingatdrilow analyses.
The third is computed using McJIT’s type inference [4], which starts withattteal runtime types for all
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arguments to the function and infers a set possible types for each vaiaslery program point. Therefore
at the call to arfeval , the type-inference can determine the set of possible types for all thmargs to
thefeval call. If more than one type exists in the type set for any argument, then thegtiers is true.

The combination of these queries guides the choice of the guards geneyatee transformer. If query
(1) is true, we can move the part of the computation of the guard (to deterrhieer or not the the run-
time value of this argument corresponds to the function that will be call&@B&shown in Figure 10) to
the function’s entry block.

If query (2) is true, we can compute the guard outside the loop and usedhk to determine the path
taken by the program aft@BB. If query (3) is false, it means that all the arguments are monomorphic and
we can completely eliminate the check that determines whether the type of amgeargchanges at run
time. We discuss this further below.

Let
f: denote the first argument to &&val call;
P: denote the set of the remaining argumentsps, ..., p, to thefeval call;
| ast Val ue: denote a function that returns the cached valug; of
newval ue: denote a function that returns the current valugof

| ast Type: denote a function that returns the cached type of a variable syeh as ..., p,; and

newType: be a function that returns the current type of a variable.

We enumerate in Table lll, the different possible guards (based onréxe dlueries) that the code trans-
former can generate together with the optimal point to compute a guard.

Define
funccond = lastValue (f) == newValue (f)
argcond = V(pe€ P),lastType (p) == newType (p)
# | Query(1) | Query(2)| Query(3)| Guard Compute Point
1 true true true funccondA arg_cond | func.cond entry block;arg_condat OBB.
2 true true false funccond func.cond entry block.
3 true false true * *
4 true false false * *
5 false true true func.condA arg_cond | func.condat loop entry blockarg_condat OBB.
6 false true false funccond func.cond loop entry block.
7 false false true func.condA arg_cond | func.condat OBB; arg_.condat OBB.
8 false false false func.cond func.condat OBB.

Table 11I: Guard truth table (a “*” denotes an impossible result).
Let us examine Table Ill. In the first case (i.e., table row 1), the results the three queries are true, in

this case, the required guard that the code transformer must generate is
guard= func.condA arg_cond
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this is because the type of each argumerjtioay change at run time. Furthermore, if after transforming the
code, the value of changes (i.e., in a subsequent call of the function wittfelal call), the backup path
must be taken. Th&inc.condcomponent of the guard can be evaluated at the function’s entry basikc blo
becausef is read-only in the calling function. It must be a parameter of the functiorweder, because
the types of the arguments may change beforefélial call site, the second component of the guard,
arg_cond must be evaluated just before the use of the guard in basic BIB&

In case 2 (i.e., table row 2), onfunc.condshould be computed and can be done at the calling function’s
entry basic block. Query(3) is false. Thus, we know that the runtime tfpaah argument at thfeval
call site is fixed so, there is no need to include the degtcondin theguardat OBB.

Cases 3 and 4 represent impossible cases because it cannot pesthaead-only variable in the calling
function and at the same time not be a loop constant in that function.

Case 5 is similar to Case 1 except that Query(1) is false, meaning thatot a read-only variable but it
is a loop constant. For this reason, like Case 1, the required guard is
guard = func.condA arg_cond

However, unlike Case 1, the optimal point to comutec_condis at the loop entry basic block (also referred
to as the loop initialization basic block). The second comporegt¢ond must still be computed &BB.

In Case 6, onlfunc.condshould be computed and this can be done in the loop entry basic block.

Case 7 requires that bothinc.condandarg_condbe computed aDBB before the use of the guard in the
block. This is becausg is neither a read-only nor a loop constant variable. And the types of gjuenants
may change at run time as indicated by the value of Query(3) in row 7 of Tdb@bserve that this is the
most expensive guard computation the code transformer can generate.

The last case is less expensive than Case 7 because in this caseywibdtrtbe arguments have constant
types at thdeval call site. But we also know that is neither a read-only nor a loop constant. So, the
required guard is to evaluate orflync.condat OBBbefore the use of the guard.

The least expensive guard is in Case 2. This our ideal case. In tist gaze (Case 7), the code trans-
former inserts a relatively expensive guard at the endBBthat tests whether the current runtime value of
fef (of anfeval call) corresponds to the compiled function and that the remaining argumesetStadle
types. This may have an impact on performance, although we believe thisrsblibpens within the class
of the applications that we have considered.

5.6 Resuming execution after an OSR istriggered

You will note that we have only focused on defining the OSR points and theftnamation that occurs
when an OSR triggers, but have not defined how the newly transforoddlis executed and how the state
is restored or how control flow is correctly resumed. These importaniislate handled automatically by
the McOSR library[13].

6 Experimental Results

In Section 5, we presented a general OSR-based technique which alltiwscompiler to generate better
code on-the-fly for dispatchinfieval calls. Furthermore, in Section 4, we presented a relatively light-
weight approach to optimizinggeval calls. Here, we first discuss in detail the costfefal calls in
MATLAB programs. Then, we present the results of the experiments that wecteddo assess the effec-
tiveness of our two specialization approachesfémal calls. Later, we compare the performance of the
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two approaches on the benchmarks described in Section 2.
6.1 Cost of f eval

In Section 2, we summarised the results of the experiment conducted toteviilaacost offeval in
MATLAB programs. Now, we discuss the results in detail. From Table Il, we caenabshat function
evaluation vigeval incur overheads. When we compared fbéeal anddirect, we found performance
improvements from 0.8% to 12.36%. This was consistent across the thtemsys

When we compareteval andinlined versions under interpretation. Here we found a significant dif-
ference for each benchmark. In fact, we found performance impremefrom 6.87% gim.anl, with the
MATLAB interpreter) to 67.21%0deRK4 also with the MATLAB interpreter). When we computed a similar
statistic for Octave alone, we found performance improvement from 10(8iB%anl) to 49.54% ¢deRKJ.
And for McVM we found 20.71%gim anl) to 46.08% 0deRK4. The three different systems (Octave,
MATLAB and McVM) gave the lowest improvement when runnsigLanl and the highest improvement
when runningpdeRK4

We comparedeval anddirectunder the JIT category. We found performance improvement from 0.83%
(simanl, under the MTLAB JIT) to 92.99% ¢deRK4 under the McVM JIT). The comparable statistic for
feval againstinlined was performance improvement from 5.34%aéRK4 under the MTLAB JIT) to
93.57% 6deRK4 under the McVM JIT).

As shown in Table I, th@deRK4benchmark has fouieval calls in its only loop. It is therefore not
surprising that both the MrLAB JIT and McVM JIT recorded significant improvement when féxeal
calls were eliminated in thmlined version of the benchmark. Although teem.anl benchmark has only
onefeval callin along-running loop, the evaluated function was largely interpretesibMcVM JIT as
it computes a complicated expression. The relatively low improvement reddrglboth the MTLAB and
McVM JITs under this benchmark may be due to the complicated nature of athgyutations performed
by the benchmark. Although odieval optimization was still able to improve the performance of this
benchmark. We return to this discussion in Section 6.2.

These statistics are interesting. They revealed to us that the direct aretiraist of arfeval call in a
long-running loop can be significant. Thus, calliegal in along-running loop presents an optimization
opportunity, which we decided to explore further and develop an apprimeoptimizing arfeval call in
long-running MATLAB loops. We discuss the impact of our OSR-bat®al optimization in the next
section.

6.2 OSR-based f eval optimization

In Table 1V, the column labelleBlormal shows the results of executing the benchmarks with McVM JIT
in normal mode. Colum@pt-0shows similar results when the benchmarks were run with our basic OSR-
basedeval optimization enabled. The column labell©gt-1shows the result of running the benchmarks
with the OSR-baseteval optimization plus inlining optimization that is performed on a suitable com-
piled function by the code transformer. We show similar results when we ttaseptimization level and
include our symbol environment optimization on the larger scope enableditipdgunder columrOpt-2

In the last part of the table, under the column labellagrovementwe show the percentage improvement
recorded at the three OSR-badedal optimization levels over McVM in the normal mode.

From our results, we found that ofeval optimization was effective. Oueval optimization con-
sistently outperformed the McVM JIT. We recorded the highest improvewiesd.45% runningnewton
at theOpt-2 optimization level (i.e.feval optimization plus inlining and interpreter-interaction simplifi-
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Normal f eval Optimization
t(s) t(s) Improvement (%)

Normal(N) || Opt-0 | Opt-1 | Opt-2 || Opt-Ovs N | Opt-1vs N| Opt-2 vs N
bisect 10.26| 9.09| 9.16| 9.02 11.34 10.67 12.11
Newton 12.45 887 | 887| 6.17 28.79 28.74 50.45
odeEuler 18.36| 13.80| 13.20| 13.36 24.82 28.09 27.22
odeMidPoint 24.86| 16.48| 16.19| 17.14 33.71 34.85 31.03
odeRK4 50.01 || 31.65| 31.13| 30.78 36.72 37.76 38.44
gaussQuad 5.62| 4.02| 4.29| 4.15 28.46 23.67 26.16
sim_an| 15.50| 12.59| 12.85| 10.87 18.80 17.07 29.85

Table IV: The McVM JIT vs thedeval  optimizing McVM JIT.

cation enabled by inlining). It does seem that the benchmark does netitbieom inlining alone as the
result unde©Opt-1(i.e.,feval optimization plus inlining) suggests. Only tbelebenchmarksodeEulery
odeMidptandodeRK4show some improvements@pt-1 Thefeval calls in these benchmarks evaluated
the same function. And if the LLVM code of the inlined function is composed maihipteractions with

the interpreter, as it is the case with thewvtonbenchmark, it may not lead to performance improvement be-
cause interpretation dominates. However, this class of code presehts foptimization opportunity: after
inlining, the interaction with the interpreter may be simplified. This can lead to a signifperformance
improvement. Our result for theewtonbenchmark supports this.

We recorded the lowest improvement of 10.67% vhitsectrunning at theDpt-1optimization level. The
feval calls in this benchmark evaluated the same function asehg¢onbenchmark. Likenewton bisect
performed better undedpt-2 Again, the simplification of the interpreter-JIT compiler interaction code
benefits this benchmark and others as shown in the table.

The McVM JIT plus our OSR-basddval optimizing transformation outperformed the standard McVM
JIT in all the benchmarks. Another important question is to see how it compatbe hand-coded direct
versions and the hand-inlined versions. Our OSR-based versiorrfauiped the hand-codetirect version
shown Table Il under the standard McVM JIT in three of the benchmaston gaussQuadcndsim.anl.
Further, it outperformed the standard McVM JIT even undeiritieed version in the case @faussQuad

What then makes our optimization effective? Our results suggest thatfanplementation, the inlining
optimization is not enough. However, as our interaction simplification optimizatiows, inlining is a big
enabler of other optimizations. The interaction simplification code was parficeléective for most of the
benchmarks.

Thus, converting an indirect call to a direct call can reveal good opttiorzapportunities that may be
exploited for performance improvement. We conclude that our OSR-fagald optimizing transforma-
tion technique is effective and practical. We will continue to improve our optinzimd we believe that our
technique can be used to improve performance in similar JIT compilers.

6.3 A Comparison of the OSR and JIT value-based-specialization approaches

In this section, we evaluate and compare the performance of our O®R-apgroach against the JIT value-
based-specialization approach.

In Figure 11, we show the execution times of the benchmarks under the proeaihes. It is clear from
the figure that the JIT value-based approach significantly outperforen®8R-based approach in five of
the seven benchmarks. On our benchmark set, the JIT value-bageddapjs about 1 — 8 times faster than
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the OSR approach. The average speed up is 2.3. Why does the JITbeales approach perform better?

A comparison of the OSR-based approach and the JIT value-based approach.
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Figure 11: OSR vs JIT.

To understand why the JIT value-based approach provides betfermpance, we need to examine the
quality of the LLVM code generated for each benchmark, and the sewfoeverheads under the two ap-
proaches.

Under the OSR-based approach, Mcdenerates less efficient code. This is so becausem™gherates
a call to the interpreter for a@eval call afterboxingthe arguments to thieval call to make them more
generic (the return values anaboxedvhen the call returns). In addition, because the called functeshdt
the call site is unknown during the compilation time, the type inference enginaldaito infer precise types
for the values returned by tHeval call, thus forcing the compiler to generate more generic instructions
that are suitable for handling different types. This is a major source fidiemcy in the OSR approach.

In fact, runtime guards computation can be expensive. The OSR appgeaerates runtime guards,
which, as discussed in Section 5.5, depend on whether or not the anguimenfeval call have a fixed
type. In the thre@debenchmarks, the type inference engine infers that the types to thiefiedt call in
the three benchmarks are variable, forcing the code transformer toageae expensive guard in this case.
For the remainindgeval calls (cdeMidpthas 2; andbdeRK4has 4 (Table 1)), the type inference engine
infers that the arguments have a fixed type and generates a much lessiexpgeard.

The JIT value-based approach is less affected by the foregoingidéaé thefeval calls in a function
have the samief and thefef is a read-only parameter of the function, then the specialized code tghera
match thefef at run time will not contain anfeval call implementation. Eacfeval call in the AST of
the function would have been replaced with a direct call tod¢fieThis allows the type inference engine to
analyze the called function, which, in turn, allows Nicfo further specialize the call site and generate effi-
cient code. Thédeval calls in all the benchmarks have théfs passed as a parameter, thus contributing
to the generation of more efficient code for the specialized versions.

It is, however, true that the JIT value-based approach incurs somiensuioverheads, including that of
the code cache look-up. But this is small given the expected gains.

We conclude that, although, the JIT value-based approach is lessfpbilvan the OSR-based approach,
it is much more effective on our benchmark set. The JIT approach onlgswehere thdef is passed as
a read-only parameter to a function. It does not work iffésfeis a local variable in the function with the
feval call. The OSR approach works in all cases but incurs much more runtimiesack It is possible to
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combine the two approaches in a JIT compiler by first analyzing a functioranféeval call to determine
whether a call of the function can benefit from the JIT value-basedlajmation approach.

7 Related Work

Historically, function dispatch in dynamic languages was implemented with a disloatc-up table. This
was found to be slow. More efficient approaches have emerged; fiegyeanploy a variety of caching tech-
nigues to speed up table look up. Smalltalk-80 [7, 11] uses a global cachpriave look up performance.

Our OSR-based approach is more related to the inline caching [5] ajpposad in another Smalltalk
implementation. Interestingly, the Smalltalk implementation was based on seveiabsiti§malltalk pro-
grams that revealed that 95% of the time, the type of a Smalltalk message réseiwastant [5, 23, 24].
Our approaches teval optimization are also based on the observationfthatl calls in most MRTLAB
loops have unchanging first argument.

The inline caching technique used in the Smalltalk compiler involves caching tmesadof a looked-up
method at the call site by modifying the compiled target code on-the-fly — bynoiteng the call instruc-
tion. This allows the method to be called directly in a subsequent executiddiraythe need for a look up.
It also involves generating additional code (often called prologue) in tHkeadehat tests that the receiver
type is correct before executing the body of the method. However, if gieloes not succeed, it calls the
look-up code.

Holzle et al extended the inline caching technique to handle polymorphic calllsiténcluding more
than one cached look-up result per call site. This technique is knowalasprphic inline caching (PIC)
[8]. The PIC approach caches all the receiver types at a call sitstmddhat is generated on-the-fly and
rebinds the call to the stub routine.

In contrast to these approaches, our implementation is done completely diiveIR level, and not
at target code level. Without on-stack replacement support [9, I8,8,, 13], it is hard to cache previous
function look-up result “inline”(i.e., at the call site). We also do not negditional code in the called func-
tion. We insert runtime guards so that execution can continue with the origafidb the dispatcher if the
guard fails. Also our backup path obviates the need to cache look-ultsrgsa stub as in PIC case used in
the implementations of SELF [3, 10].

Although multi-paradigm programming languages such as Python, Java8adfunctional languages,
including Lisp, Haskell, Scheme support higher-order functions, thetiion arguments are directly evalu-
ated at runtime and often lead to runtime code generation that is typically segy polymorphic type
inference, and sometimes, binding time analysis [17]. ThaMB feval is an overloaded built-in that
accepts a function name as a string or function handle and indirectly evglaateintime, the function
argument. Our approaches are supported by a type-inferenceianalygugh it is explicit that thieval
built-in evaluates functions only. Our approaches are aimed at improvingohhpiled code, and facilitat-
ing efficient compilation of the MTLAB feval , which can be extended to handle similar features in other
dynamic languages, where it would have otherwise appeared impossible.

To the best of our knowledge, we are not aware of any work on optimiz&tichnique fofeval in a
JIT compiler for MATLAB .

8 Conclusionsand Future Work

MATLAB programmers often udeval to implement a wide variety of numeric solvefeval provides
a mechanism to pass function names or function handles as parametersus@luffeval is a very
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reasonable way to implement general-purpose solvers, but in this papshowed thateval incurs a
significant performance overhead, both on interpreted systems anigtimg3IT compilers.

We introduced an effective JIT value-based specialization techniguapfonizingfeval calls, whose
first argument is a function parameter. We also proposed a more geneta-fly mechanism for specializ-
ingfeval callsin hot loops using the OSR mechanism available in McVM, an open smsgearch virtual
machine for MATLAB.

We collected a set of seven typical benchmarks thatexsd , and demonstrated that our specialization
approaches provide significant speedups over the flees¢ implementation for this benchmark set. In
some cases the performance is near to the optimal performance of a iaad4anction, but in other cases
a gap remains. We would like to continue to develop new optimizations to furthee that gap, and to
apply the same sort of transformations to other dynamic featuresninMs .

A somewhat surprising discovery in this work was the complex interplay legtiree JIT-time interpro-
cedural type analysis and the on-the-fly transformations. The JIT ‘balsed specialization can replace
feval calls with direct calls in a function body, before doing the type analysis offtimetion body, thus
leading to much better specialized code (because the interprocedulsaisitan handle the direct calls
much more precisely). On the other hand, this specialization can only hapgienfunction level, and only
when thefeval target function corresponds to a read-only parameter. The OSH-basthod is more
general, and can be applied at the level of loops, but suffers fraplesise type information. It would be
interesting to look at future work that combine the strengths of both appesac
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