McGill University
School of Computer Science
Sable Research Group

A portable and high-performance matrix operations library
for CPUs, GPUs and beyond

Sable Technical Report No. sable-2013-1

Rahul Garg and Laurie Hendren

30 April 2013

www.sable.mcgill. ca

Contents

1

Introduction
OpenCL background

General design of RaijinCL
3.1 Autotuning

3.2 Easy deployment

3.3 Asynchronous API

3.4 Control over resource allocation

Autotuning process and kernel design
4.1 Kernels for general matrix-matrix multiply (GEMM)
4.1.1 GEMM Background

4.1.2 Codelets and search parameters

4.2 Kernels for general matrix-vector multiply (GEMV)

4.3 Kernels for transpose

Experimental results and analysis
5.1 Architecture Tested

5.2 Discussion of Results e e e e

Related Work

Conclusions

14
14

16

17

List of Figures

1 Tiles computed by a work-item, consecutive or offsetelme. 8
2 GPU performance for SGEMM e 11
3 GPU performance for DGEMM e 12
4 GPU performance for CGEMM e e 13
5

SGEMM performance on Evergreen on NT kernel, internallyvested to TN by RaijinCL . 15

List of Tables

1 Optimal Parameters for SGEMM, DGEMM and CGEMM

2 Percentage of peak obtained on each deviceinbestcase 12

Abstract

High-performance computing systems today include a waoetompute devices such as multi-core
CPUs, GPUs and many-core accelerators. OpenCL allows groging different types of compute
devices using a single API and kernel language. Howevee tkeno standard matrix operations library
in OpenCL for operations such as matrix multiplication tvarks well on a variety of hardware from
multiple vendors. We implemented an OpenCL auto-tuningatip for real and complex variants of
general matrix multiply (GEMM) and present detailed pemfance results and analysis on a variety of
GPU and CPU architectures. The library provides good pevémice on all the architectures tested, and
is competitive with vendor libraries on some architectisesh as AMD Radeons) We also present brief
analysis for related kernels such as matrix transpose atrikaractor multiply.

1 Introduction

Hardware trends in fields ranging from supercomputing toife@mmputing point to a future where differ-
ent types of compute devices (CPUs, GPGPUs, DSPs and mamypwzessors like Xeon Phi) co-exist. We
refer to non-CPU devices as accelerators for brevity. Deregeix operations are an important use-case for
accelerators and operations like general matrix-mult{@MM) are particularly important. Application
programmers would prefer their code to be portable acroshimas. Portability of code requires a portable
programming language as well as uniform APIs for importémalies. On CPUs, standards have been
formed for programming languages (such as Fortran and Q/CHer dense matrix operations on CPUs,
users can rely on the BLAS (basic linear algebra subsystéhgpplication programming interface (API).
BLAS implementations are available from many vendors arahegpurce solutions such as ATLAS [3] and
OpenBLAS are also available.

The problem of portability across compute devices is stliny solved. OpenCL [1] is emerging as a
common, portable programming language across various @@ngevices and implementations are already
available from many vendors for a variety of compute devigeBUs, GPGPUs, Xeon Phi, FPGAs and
DSPs). However, there is no standardized OpenCL BLAS ARil,amy high-performance open-source
portable solution. For example, AMD provides an OpenCL BLREbut it does not perform well on
non-AMD hardware, while Nvidia’s CUBLAS library [4] is onlgvailable to users of Nvidia’s proprietary
CUDA toolkit. In absence of a standardized OpenCL BLAS AREnrs may think about writing their own
OpenCL kernels for operations like GEMM. OpenCL’s programgmmodel enables two features necessary
for obtaining high performance: expressing parallelismg a portable SIMD abstraction through built-
in short-vector types such as float4 types. However, thesirkss are not sufficient for achieving high
performance. Important details like memory hierarchy dmdad dispatch mechanics vary widely between
architectures and hence a single OpenCL kernel does notgséat performance across architectures.

We provide a solution to the challenge of a vendor-neutrglh-4performance OpenCL library for matrix
operations. We have designed and implemented an OpenGirylibelled RaijinCL that provides high-
performance implementations of general matrix-matrixtiptyl (GEMM), general matrix-vector multiply
(GEMV) and matrix transpose. The library has been testedPld<zand CPUs from multiple vendors such
as AMD, ARM, Intel and Nvidia. The library is an auto-tuningriary that tests various types of kernels and
tuning parameters on each compute device in a user's machidecaches the best found kernel for each
compute device. The library is available as open-sourcenarighve received many queries about the library
from both academic and commercial users, indicating thelittihary is of high interest to the community.

We make four contributions in this paper. First, we desctiimdesign and implementation of our auto-
tuning library. We describe the basic design decisions eflitrary, as well as the set of kernels and

parameter space explored by the library for GEMM, GEMV arathsépose kernels. Second, we present
performance results from a range of architectures (both &tdl GPUs, from low-power to high end)
from multiple vendors on SGEMM, DGEMM and CGEMM. We show tdMM routines selected by our
library achieve good performance in every case, and are etitimp with the vendor’s proprietary BLAS
on various GPUs. We are the first to present results on Intekgrated GPUs on Ivy Bridge processors.
Our third contribution is the analysis of performance of éiplored kernels on the tested architectures. We
base our analysis upon the architectural disclosures maderuors and the disassembly of the OpenCL
kernels where available. Our fourth contribution is thecdgsion of good API design for an OpenCL auto-
tuning BLAS library. We describe design decisions such &g ed installation, managing resource-usage
and asynchronous design.

The structure of the paper is as follows. Some key backgratmodt OpenCL is given in Section 2, and the
design of our library is presented in Section 3. The detdilGBEMM kernels are presented in Section 4.1,
GEMYV kernels in Section 4.2 and transpose kernels in Seeti8n Performance results and analysis are
presented in Section 5. Related literature is describedenti® 6 and we present our conclusions in
Section 7.

2 OpenCL background

OpenCL offers a SPMD-like parallel programming model. Papgmers writekernel functions in a C99-
derived kernel language and then dispatch it across a nuofilvesrk-items. A work-item can be thought
of as a lightweight or fine-grained thread. Each work-iterecees the same kernel function, but each
work-item has its own independent control flow. Work-items arganized into work-groups. Items within
a work-group can read/write from a small pool of memory (tatly a few kilobytes) that is calletbcal
memory. Work-items within a work-group can also synchronize witlete other through the user of barriers.
However, work-items from different work-groups cannotd&yronize with each other.

OpenCL kernel functions operate in their own address sgapenCL requires the programmers to allocate
OpenCL memory objects and OpenCL provides API functionsatosfer data between the OpenCL memory
objects and the regular application data structures. Quoretess GPUs and accelerators such as Xeon Phi,
OpenCL memory objects will typically reside on GPU’s on-bhigh-speed memory. OpenCL offers
two types of memory objects: buffers and images. Bufferssarglar to linear arrays in C. Image data-
types, as the name implies, are intended for image data antkss flexible than the buffer data-type.
On GPUs, memory operations on images are performed thrquegiadized texture-sampling units. The
texture samplers are generally optimized for certain mgamy patterns and may have their own caches.
It is sometimes beneficial to store non-image data as imagetgaes because it gives us access to the
texture-sampling hardware.

So far we have described OpenCL functionality relevant te GpenCL-capable device in a machine. A
machine may have more than one OpenCL capable device anddewitle is exposed separately to the
programmer. Consider a machine with a CPU and a GPU. Let usn@swe want to execute an expensive
computation on the GPU. While the GPU is busy computing, &stlapplication performance the CPU
should not sit idle waiting for the result. OpenCL offers ayrachronous design to solve this problem.
OpenCL kernel calls do not block the execution of the progrinstead, kernels are enqueued into a device-
specific work-queue. The API call to enqueue kernel callenstan event object. The program can enqueue
a kernel call and then proceed with other useful work. Laterapplication can query the status of the event,
choose to wait until the event is complete or register a aakifunction to be executed whenever the event
is complete. RaijinCL builds upon OpenCL's asynchronous dd3ign style.

4

3 General design of RaijinCL

RaijinCL has twin goals of being portable, and being usabteé real-world. Accordingly, we have adopted
the following design decisions.

3.1 Autotuning

OpenCL is a portable API but it is not performance-portafilee same OpenCL kernel does not work well
across devices. Thus, for each problem, RaijinCL implesmamiumber of parameterized OpenCL kernel
code generators callemlts. Each modeled represents a particular algorithmic vanafbr the problem.
For example, we have six codelets for GEMM that are describeBection 4.1. Each codelet may be
parameterized with a number of integer and boolean parasngteh as the vector length and work-group
size. If there aréV parameters, we get-dimensional search space associated with each codeldt A
dimensional point in the search space can be passed to thletedode generator and results in a unique
OpenCL kernel. RaijinCL generates a kernel for all valid bamations of codelets and points in the search
space. The performance of all generated kernels is meaandddaijinCL stores the best performing kernel.

3.2 Easy deployment

One issue with autotuning libraries is that deployment eflibrary can be hard. We have tried to simplify
this task. RaijinCL itself can be distributed in binary foemd comes with a small command-line utility for
performing autotuning. The user specifies the device to ton&om the list of OpenCL capable devices
installed on his/her machine. The tuning application oslyuires the OpenCL driver and does not require
the user to install a C/C++ compiler. The tuning applicatgmerates and tests many different OpenCL
kernels, and creates a device profile for the specified devite device profile contains the best found
OpenCL kernels as well as some metadata. The device profilsiimple self-contained text file and can
be easily redistributed for deployment by other users oftirae device. Device profiles for some popular
devices like AMD Tabhiti (which powers GPUs such as RadeorQy@re available on our website. If a
device profile is already available for your device, then gan simply download the profile and skip the
tuning process completely. We are hoping that the commuamtyhardware vendors will contribute many
device profiles which will further simplify the deploymentogess.

3.3 Asynchronous API

Following OpenCL’s design principles outlined in SectigrRaijinCL's APl is also asynchronous. Compu-
tationally heavy API calls in RaijinCL, such as GEMM, perfominimal setup and simply enqueue relevant
kernel calls to the OpenCL device. Thus, RaijinCL API caltésih very fast without blocking the CPU and
return an OpenCL event object.

3.4 Control over resource allocation

Efficient implementation of GEMM routines can require capythe arguments into a more efficient layout
into a temporary buffer. Usually the GEMM library implematibn will allocate, use and destroy the
temporary buffers automatically without exposing themhe application programmer. RaijinCL offers

both a high-level API, that is similar to other GPU BLAS APigh as AMD’s OpenCL BLAS, and a low-
level API. The high-level APl implementation automatigadlllocates the temporary buffers, performs the
appropriate copy or transpose operation and registerdlamchklwith OpenCL to destroy the buffers when
the kernel call is complete.

However, there are two performance related concerns wighhigh-level approach. First, consider a se-
guence of three matrix multiplication calls- B, A - C', andA - D. Here, the GEMM library will perform
the allocate-copy-destroy operation fdrthree times which is inefficient. Second, memory available t
discrete GPU devices is often very limited and thus the apfiin may want to know the exact memory
usage of library routines and may want to explicitly mandgelife-cycle of the memory objects allocated
by the library. This is difficult to achieve in a high-level ARn the case of our high-level API, OpenCL
runtime does not provide a guarantee of the amount of delayelem the finishing of the kernel call and
execution of the callback to destroy the buffers. Thus, mhitaah to the high-level API, we offer a four-step
low-level API. First routine in the low-level API determisi¢he size and type of temporary buffers required
for a given input size and layout, and allocates them. Th&etsimay be reused for multiple problems of
the same size and layout. Second, the programmer calls fgyercatine. Third, the computation kernels
are called. Finally, the temporary buffers can be dealkxtat

Thus, RaijinCL offers a choice between the convenience daflakevel APl and control of a low-level API.

4 Autotuning process and kernel design

To implement the RaijinCL autotuner we have identified the p@rameters that affect performance of each
kernel and designed a set of parameterized codelets that tue design space. For example, RaijinCL
implements six codelets for SGEMM and DGEMM, and six différeodelets for CGEMM. The codelets
are parameterized over a variety of different featuresgxample the work-group size. An important part of
the design of RaijinCL was determining the correct codedeis parameters, so that the right design space
is exposed for each kernel.

RaijinCL's autotuner generates kernels for each valid doatlon of codelet and search parameters and
measures the performance on a particular problem size x2048 by default). The best performing kernel
and metadata (such as work-group size) required for execofithe kernel is stored in the device profile.
Once the tuning process is over, calls to RaijinCL APIs wiillize the kernels stored in the device profile.
If the input matrices happen to be much larger than the tusipg, then the input matrices are tiled into
smaller matrices of the tuned size.

4.1 Kernels for general matrix-matrix multiply (GEMM)

In this section we first give some background on GEMM and disgeneral ideas, and then we discuss the
codelets and search space for RaijinCL's GEMM algorithms.

4.1.1 GEMM Background

General matrix-multiply (GEMM) computes the operati@hs= cop(A)op(B)+ SC whereA, B andC are
matricesp andg are scalarsop(A) is eitherA or A”, andop(B) is eitherB or BT depending on input flags
specified by the caller. Our GEMM API supports both row-majod column-major orientations. However,

for this paper, we only consider row-major layouts. We supfioee possible datatypes for the elements of
A, B andC': single-precision floating point, double-precision flagtpoint and complex double-precision
floating point which correspond to SGEMM, DGEMM and CGEMM retBLAS terminology.

Four variations of GEMM can be considered:= a AB + C, C = aATB + C, C = aABT + 3C and

C = aATBT 4 B3C. These are called the NN, TN, NT and TT kernels respectivéigre'N corresponds to
no transpose and T corresponds to transpose. For squaieandire memory read pattern in TT kernel is
very similar to the NN kernel, and we focus on NT, TN and NN latgoonly for this paper. Let us assume
we have an efficient kernel for any one of the three cases, arfibme efficient transpose and copy routine.
Then, one need not find efficient routines for the remainigués. One can simply transpose or copy the
inputs appropriately, and then call the most efficient keritowever, the memory access pattern for the
TN, NT and NN cases can be quite different from each otherlamthiyout found to perform the best on one
architecture may not be the best layout on another archrecthus, we have implemented three variations
of matrix multiplication: TN, NT and NN.

A naive row-major NN matrix-multiply kernel is shown in Ligg 1. A naive OpenCL implementation will
assign computation of one element@fto one work-item. However, such an implementation will make
poor use of the memory hierarchy of current compute devitkss, typically matrix multiplication is tiled.
Each of the three loop directiongj and %, can be tiled with tiling parameters;, 7; and T}, and each
work-item is assigned to compute a tile x T; of C'. This tile is computed as a sum of a series of matrix
multiplications ofT; x T}, andT}, x 7} tiles of A and B respectively.
int i,j,k;
for (i=0;i<M;i++){
for (j=0;j<N;j++){
for (k=0;k<K; k++){
} Clillj] += A[i]1[k] «B[K][]I;

Listing 1. Row-major NN matrix-multiply

Consider a work-group of siz&’,,, W,, where each work-item computes a tile of s{z¢, 7). The work-
group will compute aW,, x T;, W, x T}) tile of C. While we have specified the tile size, we have not
specified how the tile-elements are assigned to work-itelfs. have implemented two possible assign-
ments. The first assignment is that each work-item computis eonsisting ofl; consecutive rows and
T; consecutive columns. The second possibility is thatftheows are offset byV, from each other, and
T; tiles are offset by, from each other. We give a visual example. Consider a wookygiof size(8, 8)
where each work-group is assigné] 2) tile. Then, two possibilities for elements computed by the))
work-item are shown in Figure 1.

4.1.2 Codelets and search parameters
Our autotuner has six codelets for GEMM. Each codelet implama particular layout (NT, TN or NN) and

a particular element assignment scheme (consecutivesathfthus giving six combinations. Each codelet
has the following parameters:

Tilesizes: Atuple of three value$T;, T;, Ty, indicating the tile size in the three loop directions.

7

(a) consecutive elements (b) offset elements

Figure 1: Tiles computed by a work-item, consecutive oraifedements

SIMD width: All loads and multiply-accumulate operations are done w@ting to the value of this pa-
rameter. Our code generator explores SIMD widths of 1,2di&for SGEMM and 1,2 and 4 for
DGEMM.

Work-group size: The number of work-items inside the group. We currently dedor four possibilities:
(8,8),(16,4),(4,16) and(16, 16). We chose this set because most current GPU optimizatiomatsan
recommend work-group size be 64 or a multiple of 64.

Local memory usage: Each input matrix can be brought intorkgvoup’s local memory, which is shared
across work-items, or fetched directly from global memdrigus, there are two possible options for
each input, and four possible values for this parameter.

Use of OpenCL images: Storing the input matrices as OpenGlgas may be beneficial on some GPU
architectures. Again, each input may or not be stored as agemand thus there are four possible
values for this parameter.

On CPUs, we restrict the search space based upon common CGRith@ece characteristics. First, we
restrict our search to codelets with NT layout. Other lag@atdcess the matrices column-wise, accessing a
large number of pages which may lead to translation loo#teauffer (TLB) misses. Second, on CPUs our
autotuner skips kernels that use OpenCL images because @Phtst have dedicated texturing hardware
and thus storing data as images will not provide any benefitallly, our autotuner skips kernels using
local memory for loading inputs A or B on CPU devices becauB&) @evices lack dedicated local memory
hardware.

4.2 Kernels for general matrix-vector multiply (GEMV)

The general matrix-vector multiply (GEMV) operation is aefil as follows:y = a - op(A) -y + 5 - v,
whereop(A) is eitherA or AT, andy are vectors and and 3 are scalars. Vectors andy need not be
contiguous, they can be strided with specified strides. We haeneric untuned implementation of GEMV
that handles all the cases. We have also generated an adatptimized codepath for the case where
andy are contiguous.

Our autotuner considers several codelets. In the first eqdblke autotuner considers implementation where
one work-item computes one output element. For examplesidena matrix of siz&048 x 2048 being
multiplied by a vector of siz€048. In this case, we can launch a total of 2048 work-items. Haresuch a

strategy may not have enough parallelism to be a good fit fay<zdhd may not exploit memory coalescing
properties. The only parameter in this case is the workysize.

In the second codelet, multiple work-items in a work-grougrkatogether to load a strip of matrix data, and
corresponding vector data, into shared memory. In this,casenory coalescing can be achieved. Work-
group size and the size of the strip of data to be loaded ahedasameters. Once the strip of data is loaded, a
reduction-type computation needs to be performed. Werassig work-item per output element to perform
the reduction.

The third codelet is similar to the second, except that te samputation is performed in two stages by
multiple work-items in a tree reduction.

4.3 Kernels for transpose

RaijinCL's GEMM implementation requires a high-perforncarimplementation of transpose kernels. Rai-
jinCL's GEMM implementation specifies the type of output nagnobject (buffer object or image datatype)

and the vector length of the elements of output buffer, akd aar transpose API to return a kernel. Thus,
we autotune a family of transpose kernels.

The simplest codelet considered by our autotuner is th&twadk-item picks element from input matrix and
writes it to the transposed index in the output matrix. Thiy parameter in this case is the work-group size.
However, this may not be optimal on some architectures. spese is a memory-bandwidth-bound kernel.
For optimal memory bandwidth, some GPUs require that thessss to memory be coalesced. Memory
coalescing is achieved when multiple work-items in the samik-group access the same aligned block of
memory, where the required block size is architecture-ddget. Thus, our second codelet implements a
scheme where items in a work-group bring data into local nrgrmoa coalesced manner. The work-items
then perform the transposed load from the local memoryaasté global memory.

5 Experimental results and analysis

To evaluate our auto-tuning library we measured the pedioa of the kernels across 5 GPU and 2 CPU
devices, as described in detail in Section 5.1.

We first summarize the results, and then present a moreettrhluation. The optimal parameters found
for SGEMM, DGEMM and CGEMM are summarized in Table 1. We akgmort percentage of peak attained
by RaijinCL and vendor BLAS (where available) on each asgttitre in the best case for each library in
Table 2. Details of performance for the GPU devices, acrdfreht problem sizes are given in Figure 2
for SGEMM, Figure 3 for DGEMM, and Figure 4 for CGEMM.

The highlights are our results are:
e The GEMM routine generated by our library outperformed Al@penCL BLAS on AMD GCN
architecture, reaching over 3 TFlops on SGEMM and CGEMM.
e Our library was very close to the performance of CUBLAS ondiiGPUs.

e Our autotuner found different parameter settings for ah#ectures, but found that TN was the best
suited layout for all GPUs.

Table 1. Optimal Parameters for SGEMM, DGEMM and CGEMM

10

Architecture GCN | Evergreen| Fermi | Kepler | IBGPU || IB CPU | Shanghai
Vendor AMD AMD Nvidia | Nvidia Intel Intel AMD
Type GPU GPU GPU GPU GPU CPU CPU
Layout TN TN TN TN TN NT NT
Elements are consecutive No No No No No Yes Yes
Tile size (8,8,1)| (8,8,2 | (48,16)| (8,4,16)| (8,4,8) | (4,2,8) | (4,2,4)
Work-group size (8,8) (8,8) (8,8) | (16,16) | (8,8) (4,16) (16,4)
SIMD width 4 4 4 2 4 8 4
Bring A to local memory No No Yes Yes Yes No No
Bring B to local memory No No Yes Yes Yes No No
Store A in image No No No No No No No
Store B in image No No Yes No No No No
(a) SGEMM
Architecture GCN | Evergreen| Fermi || IB CPU | Shanghai
Vendor AMD AMD Nvidia Intel AMD
Type GPU GPU GPU CPU CPU
Layout TN TN TN NT NT
Elements are consecutive No No No Yes Yes
Tile size 4,41)| (8,81 | (448 (424 | 4272
Work-group size (8,8) (8,8) (8,8) (8,8) (8,8)
SIMD width 2 2 2 4 2
Bring A to local memory No No Yes No No
Bring B to local memory No No Yes No No
Store A in image No No Yes No No
Store B in image No No Yes No No
(b) DGEMM
Architecture GCN | Evergreen| Fermi | Kepler | IB GPU
Vendor AMD AMD Nvidia | Nvidia | Intel
Type GPU GPU GPU | GPU GPU
Layout TN TN TN TN TN
Elements are consecutivg No No No No No
Tile size 44,2y 4,42 | (4,48)| (448)| (44,4
Work-group size (8,8) (8,8) (8,8) | (16,4) | (4,16)
Complex vector size 2 2 2 2 1
Bring A to local memory No No Yes No Yes
Bring B to local memory No No Yes No Yes
Store A in image No No Yes Yes No
Store B in image No No Yes Yes No
(c) CGEMM

3500 T T T T T T 1400

Gflops

Gflops

1200
1000
» 800
Q
o
O 600 F
400 +
4 200 4
clAmdBlas —— clAmdBlas ——
RaijinCL ---s—-- RaijinCL ---s—--
?000 1500 2000 2500 3000 3500 4000 4500 ?000 1500 2000 2500 3000 3500 4000 45
Size Size
(a) AMD Graphics Core Next (b) AMD Evergreen
300 T T T T T T 800 T T T T T T
R i
250 e
200 +
500
1%2]
Q
150 - S 400 L
o
300 |
100
200 +
50 - 4
CUBLAS —s— 100 - CUBLAS —— |
RaijinCL ---s—-- RaijinCL ---s---
?000 1500 2000 2500 3000 3500 4000 4500 ?000 1500 2000 2500 3000 3500 4000 45
Size Size
(c) Nvidia Kepler (d) Nvidia Fermi
120 T T T T T T
100 -
80 +
60 -
40 +
20 -
RaijinCL ——
?000 1500 2000 2500 3000 3500 4000 4500

Size

(e) Intel Ivy Bridge GPU

Figure 2: GPU performance for SGEMM

11

Architecture GCN | Evergreen| Fermi | Kepler | IB GPU | IB CPU | Shanghai
Vendor AMD AMD Nvidia | Nvidia Intel Intel AMD
Type GPU GPU GPU | GPU GPU CPU CPU
SGEMM (Rai- || 81.6 57.5 69.0 36.1 36.6 51.9 52.4
jinCL)

SGEMM (vendor) || 66.6 64.7 68.8 37.3 N/A 86.9 86.0
DGEMM (Rai- || 89.3 75.6 59.2 N/A N/A 48.7 49.1
jinCL)

DGEMM (vendor) || 81.6 82.0 61.1 N/A N/A 87.5 90
CGEMM (Rai- || 79.2 64.3 77.3 41.4 41.2 N/A N/A
jinCL)

CGEMM (vendor) || 73.6 63.5 80.8 42.9 N/A N/A N/A

Table 2: Percentage of peak obtained on each device in st ca

900

800 |
700l ¢
600 | |
2500 |
S /
(5 400 F

300

200 |

100 -

clAmdBlas —s— 7

RaijinCL

Q000 1800 2000

2500 3000

Size

3500 4000

(a) AMD Graphics Core Next

CUBLAS
RaijinCL
.

e

Q000 1800 2000

2500 3000

Size

3500

4000

(c) Nvidia Fermi

500

clAmdBlas —e—
RaijinCL

Q000 1500

2500 3000 3500

Size

(b) AMD Evergreen

2000

Figure 3: GPU performance for DGEMM

12

7000

4500

Gflops

3500 ! ! T T . ! 1400 ! ! T T T . .
1200
1000
@ 800 -
Q
o
O 600
400 -
500 | 1 200 | 1
clAmdBlas —— clAmdBlas —s—
RaijinCL ---s—-- RaijinCL ---s—--
000 1500 2000 2500 3000 3500 4000 4500 9000 1200 1400 1600 1800 2000 2200 2400 2600
Size Size
(a) AMD Graphics Core Next (b) AMD Evergreen
300 ! ! T T . T 900 ! ! T T . .
== ° 800 =
250 | ettt 1
o 700 |
200 | 1 600 |
& 500
150 |- k)
(5 400
100 |- 1 300 |
200 |
50 | 1
CUBLAS —=— 100 CUBLAS —=— 7
RaijinCL ---s—-- RaijinCL ---s---
000 1500 2000 2500 3000 3500 4000 4500 000 1500 2000 2500 3000 3500 4000 4500
Size Size

Gflops

(c) Nvidia Kepler (d) Nvidia Fermi

120 T T T T T T

100 -

40

20 -

RaijinCL ——
. . . I I !

?000 1500 2000 2500 3000 3500 4000 4500
Size

(e) Intel Ivy Bridge GPU

Figure 4: GPU performance for CGEMM

13

e The GEMM routine generated by our library was slower than gtinozed BLAS on CPUs, but we
still achieved about 50% of peak in SGEMM and DGEMM.

5.1 Architecture Tested

AMD Graphics Core Next architecture: We tested AMD Radeon HD 7970 GPU which is based upon the
Graphics Core Next architecture. The machine configuratias Core i7 3820 CPU, 12GB DDR3
RAM, 2x Radeon HD 7970 2GB, Kubuntu 12.04 and Catalyst 13./ @Rvers. Performance was
compared against AMD’s OpenCL BLAS APPML v1.10. AMD’s BLA®Smes with its own auto-
tuner, and this tuner was run before the experiments.

AMD Evergreen architecture. We tested AMD Radeon HD 5850 GPU based upon AMD Evergreen ar-
chitecture. The machine configuration was AMD Phenom Il X8 @PU, 8GB DDR3 RAM, Radeon
HD 5850 1GB, Kubuntu 12.04 and Catalyst 12.10 GPU driverstfoReance was tested against
AMD'’s OpenCL BLAS v1.10. AMD’s auto-tuner was run before #geriments.

Nvidia Fermi architecture. We tested Tesla C2050 GPU based upon Nvidia Fermi archigecline ma-
chine configuration was Core i7 920 CPU, 6GB DDR3 RAM, Tesl®%R23GB, GTX 480 GPU,
Ubuntu 12.04 and Nvidia 295.13 drivers. Performance Pexdoice was compared against CUBLAS
v4.1.

Nvidia Kepler architecture: We tested Nvidia GT650M GPU based upon the Nvidia Kepleritacture
in a laptop with a Core i7 3610QM CPU, 6GB DDR3 RAM, Windows 7xénd Nvidia 314.07
drivers. Our GT650M unit has a clockspeed of 835MHz with eidnd equipped with 2GB GDDR5
RAM with 64GB/s of bandwidth. Performance was comparedrag@@UBLAS v5.0.

Intel vy Bridge GPU architecture: The machine used for this test was the same as the machinéoused
Nvidia Kepler test, except that the Intel lvy Bridge GPU [@DH000 was tested. We used Intel driver
build version 9.18.10.3071. Intel does not supply a BLAShar vy Bridge GPU.

Intel vy Bridge CPU architecture: We tested Core i7 3610QM CPU based upon Ivy Bridge architectu
The hardware configuration is the same as mentioned in WjgBrGPU section. Software platform
was Kubuntu 12.04 64-bit and we used OpenCL CPU implementahipped with AMD’s APP SDK
2.8. Performance was compared against OpenBLAS [15]

AMD Shanghai CPU architecture: The configuration mentioned is the same as that mentionetlein t
AMD Evergreen GPU tests. We used the OpenCL CPU implementatiipped with AMD’s APP
SDK 2.8. Performance was compared against OpenBLAS.

5.2 Discussion of Results

We first discuss some architecture-independant issueshanddiscuss results on each architecture sepa-
rately.

During the development of the library, we investigated FMé#séd multiply-add) instructions. OpenCL
supports FMA as a built-in function. Some architecturess/igi® a FMA instruction in hardware. OpenCL
provides a preprocessor macro_FRST FMAF for OpenCL kernels. If the implementation supports & fa
FMA operation, then the macro should be defined. However,is@dered that some implementations do
define the macro, but our kernels achieved 10 to 20% loweoprence when using the FMA built-in on

14

1200

1000
800 | M

600 |

Gflops

400

200 -
clAmdBlas —e—
RaijinCL ---s---

.

000 1500 2000 2500 3000 3500 4000 4500
Size

Figure 5: SGEMM performance on Evergreen on NT kernel, iratly converted to TN by RaijinCL

single-precision operations. Now we do not generate callidMA for single-precision on any architecture,
and only generate them for double-precision if the impletaiton defines FFFAST_FMA.

Now we look at individual architectures, starting with AMDGraphics Core Next (GCN) architecture. We
compared performance of RaijinCL to AMD’s OpenCL BLAS on S@¥, DGEMM and CGEMM, shown

in Figure 2 (a), Figure 3(a) and 4(a) respectively. Raijin§ignificantly outperforms AMD’s OpenCL
BLAS on all GEMM kernels and reached a peak of about 3.1 tgyaftmn SGEMM. As shown in Table 1,
we found that the best performing kernels on GCN do not etilical memory and do not copy data into
images.

On AMD’s prior-generation Evergreen architecture, R&@jinagain found that the best kernels do not utilize
local memory. Previously, some researchers, such as Du[B},dlad noted that copying data into images is
required for a high-performance GEMM implementation onrgueen. However, the best kernels found by
RaijinCL for Evergreen shown in column 2 of Table 1 a,b and odoutilize images. The discrepancy can
be explained. Evergreen has a L1 data cache for read-ordyndath is quite important for performance on
GEMM. Previously, this L1 cache was only used for image datadcent improvements in AMD’s drivers
now enable use of this cache for OpenCL buffers as well.

AMD’s OpenCL BLAS was slightly faster than RaijinCL on SGEM&thd DGEMM on TN kernels. How-
ever, we also found that AMD’s library shows a performancepdon inputs not in the TN layout. As
discussed, RaijinCL's autotuner found that TN was the tegiut for Evergreen. After tuning, when the
user calls RaijinCL's GEMM API on Evergreen with parametetiser than TN, RaijinCL transforms the
input to the optimal format internally. We tested the pearfance of RaijinCL (post-tuning) and AMD’s
BLAS on SGEMM NT layout and performance is shown in Figure @ijiRCL outperformed AMD’s li-
brary significantly in this case.

On Nvidia Fermi architecture, RaijinCL's performance isyelose to the vendor's CUBLAS on SGEMM
and DGEMM(Figures 2(c),3(c) and 4(c)). We found that usimzal memory for both operands was highly
desirable. On SGEMM, while the best kernel found by Raijin@ilized OpenCL images, the performance
boost of using OpenCL images over using buffers was miniméiis case. However, for DGEMM, using
OpenCL images gave a performance boost of almost 40% cothfmret using images.

On Nvidia Kepler architecture, we again found that the higherforming SGEMM kernels utilized local
memory. Both RaijinCL and CUBLAS only achieved about 40%l@dretical peak. We suspect that the
performance of SGEMM is limited by memory bandwidth fromdbmemaory. Kepler GPU is divided into
cores called SMX units. Each SMX has 192 ALUs each capabl@efdA instruction per cycle, but the
associated local memory can only service 32 floats per cythe tile size of the best found kernel was

15

8 x 4. This kernel will perform 12 loads from local memory for ey&2 multiply-adds. However, given
the 32 floats/cycle limit on bandwidth, the instruction tingbput is theoretically limited to only 44%, thus
showing the memory bandwidth limitation. On CGEMM, we fouhdt the best kernel did not utilize local
memory at all and instead relied upon loading data direotly iegisters from images. This is in contrast to
the general recommendation that GEMM-type kernels shaggdacal memory on Nvidia GPUs.

Intel vy Bridge GPU (HD 4000) architecture is not well knowmhigh performance computing related
literature, and thus we provide a brief description. HD 46@8 16 execution units, and each EU has two
4-wide SIMD pipes, and each pipe can perform 4 single-pi@tisultiply-accumulate (MAC) operations.
Thus, each EU has a theoretical peak of 16 flops/cycle. The 60D £KU in our machine is clocked at
1.1GHz, and has a peak 281.6 GFlops. The 16 EUs share 128kB of local memory, which canigeoa
sustained read bandwidth of upto 128 bytes/cycle.

Intel does not provide a BLAS for the HD 4000 that we could carepagainst, but some insight into
RaijinCL's performance can be gained from the percentagpeak attained. RaijinCL achieved about
36.5% on SGEMM (Figure 2(e)), and more than 40% on CGEMM(fEgife)). We found that using image
datatype typically gave very bad performance compared tienisu Intel's method of mapping of work-
items to EUs is another interesting issue. If the kernel réopming operations with SIMD width less than
the SIMD width of the EU, then multiple work-items may get rpag to individual ALU pipes in the EU.
However, if the kernel code is predominantly using vectattvimatching the EU width, then a single work-
item may occupy the full width of the EU. Our hypothesis is the former case happens for the best-found
CGEMM kernel, and the latter case happens for SGEMM.

We also compared the performance of RaijinCL with OpenBLASAMD and Intel CPUs. We found that
RaijinCL was much slower than OpenBLAS but delivered arodidth of peak. We examined the assembly
generated by OpenCL CPU drivers and found that the OpenClpitensuccessfully mapped the SIMD
constructs in OpenCL to SIMD instruction set of CPUs for oairiel. However, we also noticed that AVX
and SSE registers were poorly utilized, with compilers gatigy some unnecessary move instructions
as well as unnecessary register spills. Thus, there rens@nificant room of improvement in OpenCL
compilers for CPUs. We also experimented with an alterneitgegly for our code-generator. Instead of
generating work-groups of size, sé&,8), we collapsed the work-group into a single item by inserting
explicit outer loop in the kernel body. The idea was that akagnoup is typically mapped to a single CPU
core, and thus there is no need for more fine-grained pasatieHowever, we found that the performance
of collapsed and non-collapsed work-groups was nearltiickdn

6 Related Work

Autotuning is a well-established technique on CPUs. ATLAH¢ a well-known example of an autotuning
BLAS. Autotuning has also been used for some FFT librariet s FFTW. However, FFT libraries typ-
ically used an online tuner where the user application firsates a plan and then executes the plan. The
autotuner is called by the plan creation routine whereaariis like ATLAS perform autotuning at install
time and thus the applications using the application do eedno call any plan creation routines. Our
approach is similar to ATLAS in this regard.

Implementing a fast GEMM routine on accelerators has be@omsiderable interest in the past few years.
Several researchers have written hand-tuned implemensator particular GPU architectures Volkov et
al. [13] described a fast GEMM prototype in CUDA for Nvididesla architecture. Their ideas have now
been included in Nvidia's CUBLAS library. Nakasato [9] debed a fast GEMM prototype for AMD'’s

16

Cypress GPU (which powered products such as Radeon 587@)).ifftplementation was written in AMD’s
CAL API, which was a low-level pseudo-assembler exposed BDAor their previous-gen GPUs. CAL
API has now been deprecated. Nath et al. [10] report a fast LZGEMM implementation for Nvidia
Fermi GPUs. Tan et al. [12] describe a fast CUDA GEMM impletagan for Nvidia’s Fermi architecture.
They wrote their implementation in PTX, which is a pseudseasbler for CUDA. This allowed tighter
control over instruction scheduling compared to highddaaguages like CUDA-C and OpenCL. They
report better performance than CUBLAS. Matsumoto et alr¢®@prted several high-performance OpenCL
GEMM kernels for AMD’s Tahiti GPU. Their implementation ssan autotuner to search for parameters,
though they limit their experimental evaluation to only arehitecture so it is not clear how well it will
translate to other architectures. Schneider et al. [11lémpnted a fast ZGEMM routine on Cell Broadband
Engine that ran on Cell§ Synergistic Processing Unit (SHHgy optimized their implementation for the
vector instruction set of the Cell processor.

Several researchers have looked at portable OpenCL GEMNemgntations for multiple architectures.
Du et al. [5] present a study of a portable GEMM impelemeatatiThey had two codepaths. One codepath
was an OpenCL translation of Fermi GEMM routines from MAGMEUDA kernels. This was essentially
a handwritten implementation with only a few parameterso8d codepath was an autotuning implementa-
tion for AMD GPUs. In comparision, our library offers a undiand completely autotuning implementation
for all architectures. In terms of performance, our implatagon offers about 10% higher performance
on SGEMM on Nvidia GPUs, and similar performance on AMD GPUBey did not test their library on
CPUs. Weber et al. [14] discussed an autotuning implementan AMD’s GCN GPUs. However, their
reported results for AMD Radeon 7970 (1.7 teraflops on SGEMWGH0 teraflops on DGEMM) are much
slower than our results.

7 Conclusions

OpenCL is emerging as a common, portable programming layegfea a wide variety of compute devices
available from many different vendors. However, even ttoOgenCL is portable, different devices require
different OpenCL implementations of common BLAS routinesider to achieve high performance. In this
paper we presented a solution to this problem via the desigrlementation and evaluation of RaijinCL, a
portable and practical autotuning OpenCL library for GEMMlather matrix operations.

In designing RaijinCL we aimed for a solution that was bottoauning and easy to deploy. Users of the
library only need to tune the library once, by either running command utility (which only requires the
OpenCL driver), or by simply reusing a previously generatedice profile. We have generated profiles for
the devices we have experimented with, and we hope the coityramd hardware vendors will contribute
more.

Our solution follows the asynchronous design of OpenCLhab RaijinCL provides an asynchronous API
whereby calls to the OpenCL device will not block computasion the CPU.

A further design decision was to provide both a high-level A#hich is similar to other GPU BLAS APIs,
as well as a lower-level API which exposes temporary bufferhe API user. This allows the user of the
API to know more precise memory requirements and to handledghse of memory between several API
calls.

Our autotuning approach was designed by identifying a ciidle of codelets for each kernel. Different
versions of the codelets expose important algorithmicatiams. For example, for GEMM the codelet
variants expose the argument layout (transposed or notharelement assignment scheme (consecutive or

17

offset). Within each codelet we identified important pargresuch as tile sizes, SIMD width, work-group
size, how to handle local memory and whether or not to use Opémages. Given the group of codelets
and the parameter space, the autotuner evaluates all pothtssearch space and identifies the best codelet,
and the best parameters for that codelet.

We experimented on a wide variety of devices, including 5 6Bt 2 CPUs, including devices from AMD,
Nvidia and Intel. We found that the autotuner did find diffgrparameter settings for different devices, so
our choice of search parameters seems to be reasonable.

In terms of performance, for each device we compared ourtued library to the vendor’s specialized

library (when one was available). We found that for the GPléssemetimes outperformed the vendor’s
library and we never under-performed by a significant mardihus, we did achieve the goal of having

a portable and high-performance solution across a rangePafsG The performance on the CPUs was
reasonable, but vendor’s specialized CPU libraries waeysifgiantly better. We hope that as the OpenCL
compilers get better, some of that gap will be reduced.

RaijinCL is open source, and we hope that users will use it anyndifferent devices. As we gain more
experience and feedback from users we may be able to furthertd library by exposing further codelets
and additional parameters.

References

[1] The OpenCL Specificatiorhtt p: / / ww. khr onos. or g/ opencl .

[2] AMD. AMD Accelerated Parallel Processing Math Libragientt p: / / devel oper. and. cont
t ool s- and- sdks/ het er ogeneous- conputi ng/ and- accel er at ed- paral | el -
processi ng-math-1i braries/.

[3] Clint Whaley Antoine, Antoine Petitet, and Jack J. Damga Automated empirical optimization of
software and the ATLAS projecParallel Computing, 27:2001, 2000.

[4] NVIDIA Corp. Nvidia CUBLAS library. ht t p: / / devel oper. nvi di a. com cubl as.

[5] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomowd@ary Peterson, and Jack Dongarra. From
CUDA to OpenCL: Towards a performance-portable solutiannfiolti-platform GPU programming.
Parallel Computing, 38(8):391 — 407, 2012.

[6] David Kanter. Intel Ivy Bridge Graphics Architecturéntt p: / / www. r eal wor | dt ech. coml
i vy- bri dge- gpu/.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Kroghasi® Linear Algebra Subprograms for
Fortran usageACM Trans. Math. Softw., 5(3):308-323, September 1979.

[8] Kazuya Matsumoto, Naohito Nakasato, and Stanislav @ulda. Implementing a code generator for
fast matrix multiplication in OpenCL on the GPU. Technicag®rt 2012-002, Graduate School of
Computer Science and Enginering, The University of Aizly 2012.

[9] Naohito Nakasato. A fast GEMM implementation on the Ggx GPUS GMETRICS Perform. Eval.
Rev., 38(4):50-55, March 2011.

18

[10] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An ioved Magma GEMM for Fermi graphics
processing unitdnternational Journal of High Performance Computing Applications, 24(4):511-515,
November 2010.

[11] T. Schneider, T. Hoefler, S. Wunderlich, T. Mehlan, andR8hm. An optimized ZGEMM imple-
mentation for the Cell BE. IfProceedings of the 9th Workshop on Parallel Systems and Algorithms
(PASA), Dresden, Germany, February 2008.

[12] Guangming Tan, Linchuan Li, Sean Triechle, EverettlPsi Yungang Bao, and Ninghui Sun. Fast
implementation of DGEMM on Fermi GPU. IRroceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC '11, pages 35:1-35:11, New
York, NY, USA, 2011. ACM.

[13] Vasily Volkov and James W. Demmel. Benchmarking GPUsutte dense linear algebra. 8C
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1-11, Piscataway, NJ,
USA, 2008. IEEE Press.

[14] Rick Weber and Gregory Peterson. A trip to Tahiti: Apgebing a 5 Tflop SGEMM using 3 AMD
GPUs. InSymposium on Application Accelerators in High Performance Computing (SAAHPC), 2012,
2012.

[15] Zhang Xianyi, Qian Wang, and Zhang Yunquan. Model-ehnivevel 3 BLAS Performance Optimiza-
tion on Loongson 3A Processor. IREE 18th International Conference on Parallel and Distributed
Systems (ICPADS), December 2012.

19

