
McGill University

School of Computer Science

Sable Research Group

A portable and high-performance matrix operations library
for CPUs, GPUs and beyond

Sable Technical Report No. sable-2013-1

Rahul Garg and Laurie Hendren

30 April 2013

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 OpenCL background 4

3 General design of RaijinCL 5

3.1 Autotuning 5

3.2 Easy deployment 5

3.3 Asynchronous API 5

3.4 Control over resource allocation 5

4 Autotuning process and kernel design 6

4.1 Kernels for general matrix-matrix multiply (GEMM) 6

4.1.1 GEMM Background .. . 6

4.1.2 Codelets and search parameters 7

4.2 Kernels for general matrix-vector multiply (GEMV) 8

4.3 Kernels for transpose 9

5 Experimental results and analysis 9

5.1 Architecture Tested 14

5.2 Discussion of Results 14

6 Related Work 16

7 Conclusions 17

1

List of Figures

1 Tiles computed by a work-item, consecutive or offset elements 8

2 GPU performance for SGEMM 11

3 GPU performance for DGEMM 12

4 GPU performance for CGEMM 13

5 SGEMM performance on Evergreen on NT kernel, internally converted to TN by RaijinCL . 15

List of Tables

1 Optimal Parameters for SGEMM, DGEMM and CGEMM 10

2 Percentage of peak obtained on each device in best case 12

2

Abstract

High-performance computing systems today include a variety of compute devices such as multi-core
CPUs, GPUs and many-core accelerators. OpenCL allows programming different types of compute
devices using a single API and kernel language. However, there is no standard matrix operations library
in OpenCL for operations such as matrix multiplication thatworks well on a variety of hardware from
multiple vendors. We implemented an OpenCL auto-tuning library for real and complex variants of
general matrix multiply (GEMM) and present detailed performance results and analysis on a variety of
GPU and CPU architectures. The library provides good performance on all the architectures tested, and
is competitive with vendor libraries on some architectures(such as AMD Radeons) We also present brief
analysis for related kernels such as matrix transpose and matrix-vector multiply.

1 Introduction

Hardware trends in fields ranging from supercomputing to mobile computing point to a future where differ-
ent types of compute devices (CPUs, GPGPUs, DSPs and many-core processors like Xeon Phi) co-exist. We
refer to non-CPU devices as accelerators for brevity. Densematrix operations are an important use-case for
accelerators and operations like general matrix-multiply(GEMM) are particularly important. Application
programmers would prefer their code to be portable across machines. Portability of code requires a portable
programming language as well as uniform APIs for important libraries. On CPUs, standards have been
formed for programming languages (such as Fortran and C/C++). For dense matrix operations on CPUs,
users can rely on the BLAS (basic linear algebra subsystem) [7] application programming interface (API).
BLAS implementations are available from many vendors and open-source solutions such as ATLAS [3] and
OpenBLAS are also available.

The problem of portability across compute devices is still being solved. OpenCL [1] is emerging as a
common, portable programming language across various compute devices and implementations are already
available from many vendors for a variety of compute devices(CPUs, GPGPUs, Xeon Phi, FPGAs and
DSPs). However, there is no standardized OpenCL BLAS API, nor any high-performance open-source
portable solution. For example, AMD provides an OpenCL BLAS[2] but it does not perform well on
non-AMD hardware, while Nvidia’s CUBLAS library [4] is onlyavailable to users of Nvidia’s proprietary
CUDA toolkit. In absence of a standardized OpenCL BLAS API, users may think about writing their own
OpenCL kernels for operations like GEMM. OpenCL’s programming model enables two features necessary
for obtaining high performance: expressing parallelism, and a portable SIMD abstraction through built-
in short-vector types such as float4 types. However, these features are not sufficient for achieving high
performance. Important details like memory hierarchy and thread dispatch mechanics vary widely between
architectures and hence a single OpenCL kernel does not offer great performance across architectures.

We provide a solution to the challenge of a vendor-neutral, high-performance OpenCL library for matrix
operations. We have designed and implemented an OpenCL library called RaijinCL that provides high-
performance implementations of general matrix-matrix multiply (GEMM), general matrix-vector multiply
(GEMV) and matrix transpose. The library has been tested on GPUs and CPUs from multiple vendors such
as AMD, ARM, Intel and Nvidia. The library is an auto-tuning library that tests various types of kernels and
tuning parameters on each compute device in a user’s machine, and caches the best found kernel for each
compute device. The library is available as open-source andwe have received many queries about the library
from both academic and commercial users, indicating that the library is of high interest to the community.

We make four contributions in this paper. First, we describethe design and implementation of our auto-
tuning library. We describe the basic design decisions of the library, as well as the set of kernels and

3

parameter space explored by the library for GEMM, GEMV and transpose kernels. Second, we present
performance results from a range of architectures (both CPUs and GPUs, from low-power to high end)
from multiple vendors on SGEMM, DGEMM and CGEMM. We show thatGEMM routines selected by our
library achieve good performance in every case, and are competitive with the vendor’s proprietary BLAS
on various GPUs. We are the first to present results on Intel’sintegrated GPUs on Ivy Bridge processors.
Our third contribution is the analysis of performance of theexplored kernels on the tested architectures. We
base our analysis upon the architectural disclosures made by vendors and the disassembly of the OpenCL
kernels where available. Our fourth contribution is the discussion of good API design for an OpenCL auto-
tuning BLAS library. We describe design decisions such as ease of installation, managing resource-usage
and asynchronous design.

The structure of the paper is as follows. Some key backgroundabout OpenCL is given in Section 2, and the
design of our library is presented in Section 3. The details of GEMM kernels are presented in Section 4.1,
GEMV kernels in Section 4.2 and transpose kernels in Section4.3. Performance results and analysis are
presented in Section 5. Related literature is described in Section 6 and we present our conclusions in
Section 7.

2 OpenCL background

OpenCL offers a SPMD-like parallel programming model. Programmers writekernel functions in a C99-
derived kernel language and then dispatch it across a numberof work-items. A work-item can be thought
of as a lightweight or fine-grained thread. Each work-item executes the same kernel function, but each
work-item has its own independent control flow. Work-items are organized into work-groups. Items within
a work-group can read/write from a small pool of memory (typically a few kilobytes) that is calledlocal
memory. Work-items within a work-group can also synchronize with each other through the user of barriers.
However, work-items from different work-groups cannot synchronize with each other.

OpenCL kernel functions operate in their own address space.OpenCL requires the programmers to allocate
OpenCL memory objects and OpenCL provides API functions to transfer data between the OpenCL memory
objects and the regular application data structures. On discrete GPUs and accelerators such as Xeon Phi,
OpenCL memory objects will typically reside on GPU’s on-board high-speed memory. OpenCL offers
two types of memory objects: buffers and images. Buffers aresimilar to linear arrays in C. Image data-
types, as the name implies, are intended for image data and are less flexible than the buffer data-type.
On GPUs, memory operations on images are performed through specialized texture-sampling units. The
texture samplers are generally optimized for certain read/write patterns and may have their own caches.
It is sometimes beneficial to store non-image data as image data-types because it gives us access to the
texture-sampling hardware.

So far we have described OpenCL functionality relevant to one OpenCL-capable device in a machine. A
machine may have more than one OpenCL capable device and eachdevice is exposed separately to the
programmer. Consider a machine with a CPU and a GPU. Let us assume we want to execute an expensive
computation on the GPU. While the GPU is busy computing, for best application performance the CPU
should not sit idle waiting for the result. OpenCL offers an asynchronous design to solve this problem.
OpenCL kernel calls do not block the execution of the program. Instead, kernels are enqueued into a device-
specific work-queue. The API call to enqueue kernel calls returns an event object. The program can enqueue
a kernel call and then proceed with other useful work. Later,the application can query the status of the event,
choose to wait until the event is complete or register a callback function to be executed whenever the event
is complete. RaijinCL builds upon OpenCL’s asynchronous API design style.

4

3 General design of RaijinCL

RaijinCL has twin goals of being portable, and being usable in the real-world. Accordingly, we have adopted
the following design decisions.

3.1 Autotuning

OpenCL is a portable API but it is not performance-portable.The same OpenCL kernel does not work well
across devices. Thus, for each problem, RaijinCL implements a number of parameterized OpenCL kernel
code generators calledcolts. Each modeled represents a particular algorithmic variation for the problem.
For example, we have six codelets for GEMM that are describedin Section 4.1. Each codelet may be
parameterized with a number of integer and boolean parameters such as the vector length and work-group
size. If there areN parameters, we get aN -dimensional search space associated with each codelet. AN -
dimensional point in the search space can be passed to the codelet’s code generator and results in a unique
OpenCL kernel. RaijinCL generates a kernel for all valid combinations of codelets and points in the search
space. The performance of all generated kernels is measuredand RaijinCL stores the best performing kernel.

3.2 Easy deployment

One issue with autotuning libraries is that deployment of the library can be hard. We have tried to simplify
this task. RaijinCL itself can be distributed in binary formand comes with a small command-line utility for
performing autotuning. The user specifies the device to tunefor from the list of OpenCL capable devices
installed on his/her machine. The tuning application only requires the OpenCL driver and does not require
the user to install a C/C++ compiler. The tuning applicationgenerates and tests many different OpenCL
kernels, and creates a device profile for the specified device. The device profile contains the best found
OpenCL kernels as well as some metadata. The device profile isa simple self-contained text file and can
be easily redistributed for deployment by other users of thesame device. Device profiles for some popular
devices like AMD Tahiti (which powers GPUs such as Radeon 7970) are available on our website. If a
device profile is already available for your device, then youcan simply download the profile and skip the
tuning process completely. We are hoping that the communityand hardware vendors will contribute many
device profiles which will further simplify the deployment process.

3.3 Asynchronous API

Following OpenCL’s design principles outlined in Section 2, RaijinCL’s API is also asynchronous. Compu-
tationally heavy API calls in RaijinCL, such as GEMM, perform minimal setup and simply enqueue relevant
kernel calls to the OpenCL device. Thus, RaijinCL API calls finish very fast without blocking the CPU and
return an OpenCL event object.

3.4 Control over resource allocation

Efficient implementation of GEMM routines can require copying the arguments into a more efficient layout
into a temporary buffer. Usually the GEMM library implementation will allocate, use and destroy the
temporary buffers automatically without exposing them to the application programmer. RaijinCL offers

5

both a high-level API, that is similar to other GPU BLAS APIs such as AMD’s OpenCL BLAS, and a low-
level API. The high-level API implementation automatically allocates the temporary buffers, performs the
appropriate copy or transpose operation and registers a callback with OpenCL to destroy the buffers when
the kernel call is complete.

However, there are two performance related concerns with this high-level approach. First, consider a se-
quence of three matrix multiplication callsA · B, A · C, andA ·D. Here, the GEMM library will perform
the allocate-copy-destroy operation forA three times which is inefficient. Second, memory available to
discrete GPU devices is often very limited and thus the application may want to know the exact memory
usage of library routines and may want to explicitly manage the life-cycle of the memory objects allocated
by the library. This is difficult to achieve in a high-level API. In the case of our high-level API, OpenCL
runtime does not provide a guarantee of the amount of delay between the finishing of the kernel call and
execution of the callback to destroy the buffers. Thus, in addition to the high-level API, we offer a four-step
low-level API. First routine in the low-level API determines the size and type of temporary buffers required
for a given input size and layout, and allocates them. The buffers may be reused for multiple problems of
the same size and layout. Second, the programmer calls the copy routine. Third, the computation kernels
are called. Finally, the temporary buffers can be deallocated.

Thus, RaijinCL offers a choice between the convenience of a high-level API and control of a low-level API.

4 Autotuning process and kernel design

To implement the RaijinCL autotuner we have identified the key parameters that affect performance of each
kernel and designed a set of parameterized codelets that cover the design space. For example, RaijinCL
implements six codelets for SGEMM and DGEMM, and six different codelets for CGEMM. The codelets
are parameterized over a variety of different features, forexample the work-group size. An important part of
the design of RaijinCL was determining the correct codeletsand parameters, so that the right design space
is exposed for each kernel.

RaijinCL’s autotuner generates kernels for each valid combination of codelet and search parameters and
measures the performance on a particular problem size (2048x2048 by default). The best performing kernel
and metadata (such as work-group size) required for execution of the kernel is stored in the device profile.
Once the tuning process is over, calls to RaijinCL APIs will utilize the kernels stored in the device profile.
If the input matrices happen to be much larger than the tuningsize, then the input matrices are tiled into
smaller matrices of the tuned size.

4.1 Kernels for general matrix-matrix multiply (GEMM)

In this section we first give some background on GEMM and discuss general ideas, and then we discuss the
codelets and search space for RaijinCL’s GEMM algorithms.

4.1.1 GEMM Background

General matrix-multiply (GEMM) computes the operationsC = αop(A)op(B)+βC whereA, B andC are
matrices,α andβ are scalars.op(A) is eitherA orAT , andop(B) is eitherB orBT depending on input flags
specified by the caller. Our GEMM API supports both row-majorand column-major orientations. However,

6

for this paper, we only consider row-major layouts. We support three possible datatypes for the elements of
A, B andC: single-precision floating point, double-precision floating point and complex double-precision
floating point which correspond to SGEMM, DGEMM and CGEMM in the BLAS terminology.

Four variations of GEMM can be considered:C = αAB + βC, C = αATB+ βC, C = αABT + βC and
C = αATBT + βC. These are called the NN, TN, NT and TT kernels respectively where N corresponds to
no transpose and T corresponds to transpose. For square matrices the memory read pattern in TT kernel is
very similar to the NN kernel, and we focus on NT, TN and NN layouts only for this paper. Let us assume
we have an efficient kernel for any one of the three cases, and we have efficient transpose and copy routine.
Then, one need not find efficient routines for the remaining layouts. One can simply transpose or copy the
inputs appropriately, and then call the most efficient kernel. However, the memory access pattern for the
TN, NT and NN cases can be quite different from each other and the layout found to perform the best on one
architecture may not be the best layout on another architecture. Thus, we have implemented three variations
of matrix multiplication: TN, NT and NN.

A naive row-major NN matrix-multiply kernel is shown in Listing 1. A naive OpenCL implementation will
assign computation of one element ofC to one work-item. However, such an implementation will make
poor use of the memory hierarchy of current compute devices.Thus, typically matrix multiplication is tiled.
Each of the three loop directionsi,j andk, can be tiled with tiling parametersTi, Tj andTk and each
work-item is assigned to compute a tileTi × Tj of C. This tile is computed as a sum of a series of matrix
multiplications ofTi × Tk andTk × Tj tiles ofA andB respectively.

i n t i , j , k ;
f o r (i =0; i<M; i ++) {

f o r (j =0; j<N; j ++){
f o r (k =0; k<K; k++){

C[i] [j] += A[i] [k] ∗B[k] [j] ;
}

}
}

Listing 1: Row-major NN matrix-multiply

Consider a work-group of sizeWx,Wy, where each work-item computes a tile of size(Ti, Tj). The work-
group will compute a(Wx × Ti,Wy × Tj) tile of C. While we have specified the tile size, we have not
specified how the tile-elements are assigned to work-items.We have implemented two possible assign-
ments. The first assignment is that each work-item computes atile consisting ofTi consecutive rows and
Tj consecutive columns. The second possibility is that theTi rows are offset byWx from each other, and
Tj tiles are offset byWy from each other. We give a visual example. Consider a work-group of size(8, 8)
where each work-group is assigned(2, 2) tile. Then, two possibilities for elements computed by the(0, 0)
work-item are shown in Figure 1.

4.1.2 Codelets and search parameters

Our autotuner has six codelets for GEMM. Each codelet implements a particular layout (NT, TN or NN) and
a particular element assignment scheme (consecutive or offset), thus giving six combinations. Each codelet
has the following parameters:

Tile sizes: A tuple of three values(Ti, Tj , Tk, indicating the tile size in the three loop directions.

7

(a) consecutive elements (b) offset elements

Figure 1: Tiles computed by a work-item, consecutive or offset elements

SIMD width: All loads and multiply-accumulate operations are done according to the value of this pa-
rameter. Our code generator explores SIMD widths of 1,2,4 and 8 for SGEMM and 1,2 and 4 for
DGEMM.

Work-group size: The number of work-items inside the group. We currently search for four possibilities:
(8, 8),(16, 4),(4, 16) and(16, 16). We chose this set because most current GPU optimization manuals
recommend work-group size be 64 or a multiple of 64.

Local memory usage: Each input matrix can be brought into a workgroup’s local memory, which is shared
across work-items, or fetched directly from global memory.Thus, there are two possible options for
each input, and four possible values for this parameter.

Use of OpenCL images: Storing the input matrices as OpenCL images may be beneficial on some GPU
architectures. Again, each input may or not be stored as an image, and thus there are four possible
values for this parameter.

On CPUs, we restrict the search space based upon common CPU performance characteristics. First, we
restrict our search to codelets with NT layout. Other layouts access the matrices column-wise, accessing a
large number of pages which may lead to translation look-aside buffer (TLB) misses. Second, on CPUs our
autotuner skips kernels that use OpenCL images because CPUsdo not have dedicated texturing hardware
and thus storing data as images will not provide any benefit. Finally, our autotuner skips kernels using
local memory for loading inputs A or B on CPU devices because CPU devices lack dedicated local memory
hardware.

4.2 Kernels for general matrix-vector multiply (GEMV)

The general matrix-vector multiply (GEMV) operation is defined as follows:y = α · op(A) · y + β · y,
whereop(A) is eitherA or AT , x andy are vectors andα andβ are scalars. Vectorsx andy need not be
contiguous, they can be strided with specified strides. We have a generic untuned implementation of GEMV
that handles all the cases. We have also generated an autotuned optimized codepath for the case wherex

andy are contiguous.

Our autotuner considers several codelets. In the first codelet, the autotuner considers implementation where
one work-item computes one output element. For example, consider a matrix of size2048 × 2048 being
multiplied by a vector of size2048. In this case, we can launch a total of 2048 work-items. However, such a

8

strategy may not have enough parallelism to be a good fit for GPUs and may not exploit memory coalescing
properties. The only parameter in this case is the work-group size.

In the second codelet, multiple work-items in a work-group work together to load a strip of matrix data, and
corresponding vector data, into shared memory. In this case, memory coalescing can be achieved. Work-
group size and the size of the strip of data to be loaded are both parameters. Once the strip of data is loaded, a
reduction-type computation needs to be performed. We assign one work-item per output element to perform
the reduction.

The third codelet is similar to the second, except that the sum computation is performed in two stages by
multiple work-items in a tree reduction.

4.3 Kernels for transpose

RaijinCL’s GEMM implementation requires a high-performance implementation of transpose kernels. Rai-
jinCL’s GEMM implementation specifies the type of output memory object (buffer object or image datatype)
and the vector length of the elements of output buffer, and asks our transpose API to return a kernel. Thus,
we autotune a family of transpose kernels.

The simplest codelet considered by our autotuner is that each work-item picks element from input matrix and
writes it to the transposed index in the output matrix. The only parameter in this case is the work-group size.
However, this may not be optimal on some architectures. Transpose is a memory-bandwidth-bound kernel.
For optimal memory bandwidth, some GPUs require that the accesses to memory be coalesced. Memory
coalescing is achieved when multiple work-items in the samework-group access the same aligned block of
memory, where the required block size is architecture-dependent. Thus, our second codelet implements a
scheme where items in a work-group bring data into local memory in a coalesced manner. The work-items
then perform the transposed load from the local memory instead of global memory.

5 Experimental results and analysis

To evaluate our auto-tuning library we measured the performance of the kernels across 5 GPU and 2 CPU
devices, as described in detail in Section 5.1.

We first summarize the results, and then present a more detailed evaluation. The optimal parameters found
for SGEMM, DGEMM and CGEMM are summarized in Table 1. We also report percentage of peak attained
by RaijinCL and vendor BLAS (where available) on each architecture in the best case for each library in
Table 2. Details of performance for the GPU devices, across different problem sizes are given in Figure 2
for SGEMM, Figure 3 for DGEMM, and Figure 4 for CGEMM.

The highlights are our results are:

• The GEMM routine generated by our library outperformed AMD’s OpenCL BLAS on AMD GCN
architecture, reaching over 3 TFlops on SGEMM and CGEMM.

• Our library was very close to the performance of CUBLAS on Nvidia GPUs.

• Our autotuner found different parameter settings for all architectures, but found that TN was the best
suited layout for all GPUs.

9

Architecture GCN Evergreen Fermi Kepler IB GPU IB CPU Shanghai
Vendor AMD AMD Nvidia Nvidia Intel Intel AMD
Type GPU GPU GPU GPU GPU CPU CPU

Layout TN TN TN TN TN NT NT
Elements are consecutive No No No No No Yes Yes
Tile size (8,8,1) (8,8,2) (4,8,16) (8,4,16) (8,4,8) (4,2,8) (4,2,4)
Work-group size (8,8) (8,8) (8,8) (16,16) (8,8) (4,16) (16,4)
SIMD width 4 4 4 2 4 8 4
Bring A to local memory No No Yes Yes Yes No No
Bring B to local memory No No Yes Yes Yes No No
Store A in image No No No No No No No
Store B in image No No Yes No No No No

(a) SGEMM

Architecture GCN Evergreen Fermi IB CPU Shanghai
Vendor AMD AMD Nvidia Intel AMD
Type GPU GPU GPU CPU CPU

Layout TN TN TN NT NT
Elements are consecutive No No No Yes Yes
Tile size (4,4,1) (8,8,1) (4,4,8) (4,2,4) (4,2,2)
Work-group size (8,8) (8,8) (8,8) (8,8) (8,8)
SIMD width 2 2 2 4 2
Bring A to local memory No No Yes No No
Bring B to local memory No No Yes No No
Store A in image No No Yes No No
Store B in image No No Yes No No

(b) DGEMM

Architecture GCN Evergreen Fermi Kepler IB GPU
Vendor AMD AMD Nvidia Nvidia Intel
Type GPU GPU GPU GPU GPU

Layout TN TN TN TN TN
Elements are consecutive No No No No No
Tile size (4,4,2) (4,4,2) (4,4,8) (4,4,8) (4,4,4)
Work-group size (8,8) (8,8) (8,8) (16,4) (4,16)
Complex vector size 2 2 2 2 1
Bring A to local memory No No Yes No Yes
Bring B to local memory No No Yes No Yes
Store A in image No No Yes Yes No
Store B in image No No Yes Yes No

(c) CGEMM

Table 1: Optimal Parameters for SGEMM, DGEMM and CGEMM

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

(a) AMD Graphics Core Next (b) AMD Evergreen

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

CUBLAS
RaijinCL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

CUBLAS
RaijinCL

(c) Nvidia Kepler (d) Nvidia Fermi

 0

 20

 40

 60

 80

 100

 120

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

RaijinCL

(e) Intel Ivy Bridge GPU

Figure 2: GPU performance for SGEMM

11

Architecture GCN Evergreen Fermi Kepler IB GPU IB CPU Shanghai
Vendor AMD AMD Nvidia Nvidia Intel Intel AMD
Type GPU GPU GPU GPU GPU CPU CPU

SGEMM (Rai-
jinCL)

81.6 57.5 69.0 36.1 36.6 51.9 52.4

SGEMM (vendor) 66.6 64.7 68.8 37.3 N/A 86.9 86.0
DGEMM (Rai-
jinCL)

89.3 75.6 59.2 N/A N/A 48.7 49.1

DGEMM (vendor) 81.6 82.0 61.1 N/A N/A 87.5 90
CGEMM (Rai-
jinCL)

79.2 64.3 77.3 41.4 41.2 N/A N/A

CGEMM (vendor) 73.6 63.5 80.8 42.9 N/A N/A N/A

Table 2: Percentage of peak obtained on each device in best case

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

 0

 50

 100

 150

 200

 250

 300

 350

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

(a) AMD Graphics Core Next (b) AMD Evergreen

 0

 50

 100

 150

 200

 250

 300

 350

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

CUBLAS
RaijinCL

(c) Nvidia Fermi

Figure 3: GPU performance for DGEMM

12

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 1200 1400 1600 1800 2000 2200 2400 2600

G
flo

ps

Size

clAmdBlas
RaijinCL

(a) AMD Graphics Core Next (b) AMD Evergreen

 0

 50

 100

 150

 200

 250

 300

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

CUBLAS
RaijinCL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

CUBLAS
RaijinCL

(c) Nvidia Kepler (d) Nvidia Fermi

 0

 20

 40

 60

 80

 100

 120

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

RaijinCL

(e) Intel Ivy Bridge GPU

Figure 4: GPU performance for CGEMM

13

• The GEMM routine generated by our library was slower than an optimized BLAS on CPUs, but we
still achieved about 50% of peak in SGEMM and DGEMM.

5.1 Architecture Tested

AMD Graphics Core Next architecture: We tested AMD Radeon HD 7970 GPU which is based upon the
Graphics Core Next architecture. The machine configurationwas Core i7 3820 CPU, 12GB DDR3
RAM, 2x Radeon HD 7970 2GB, Kubuntu 12.04 and Catalyst 13.4 GPU drivers. Performance was
compared against AMD’s OpenCL BLAS APPML v1.10. AMD’s BLAS comes with its own auto-
tuner, and this tuner was run before the experiments.

AMD Evergreen architecture: We tested AMD Radeon HD 5850 GPU based upon AMD Evergreen ar-
chitecture. The machine configuration was AMD Phenom II x4 925 CPU, 8GB DDR3 RAM, Radeon
HD 5850 1GB, Kubuntu 12.04 and Catalyst 12.10 GPU drivers. Performance was tested against
AMD’s OpenCL BLAS v1.10. AMD’s auto-tuner was run before theexperiments.

Nvidia Fermi architecture: We tested Tesla C2050 GPU based upon Nvidia Fermi architecture. The ma-
chine configuration was Core i7 920 CPU, 6GB DDR3 RAM, Tesla C2050 3GB, GTX 480 GPU,
Ubuntu 12.04 and Nvidia 295.13 drivers. Performance Performance was compared against CUBLAS
v4.1.

Nvidia Kepler architecture: We tested Nvidia GT650M GPU based upon the Nvidia Kepler architecture
in a laptop with a Core i7 3610QM CPU, 6GB DDR3 RAM, Windows 7 x64 and Nvidia 314.07
drivers. Our GT650M unit has a clockspeed of 835MHz with turbo, and equipped with 2GB GDDR5
RAM with 64GB/s of bandwidth. Performance was compared against CUBLAS v5.0.

Intel Ivy Bridge GPU architecture: The machine used for this test was the same as the machine usedfor
Nvidia Kepler test, except that the Intel Ivy Bridge GPU [6] HD 4000 was tested. We used Intel driver
build version 9.18.10.3071. Intel does not supply a BLAS forthe Ivy Bridge GPU.

Intel Ivy Bridge CPU architecture: We tested Core i7 3610QM CPU based upon Ivy Bridge architecture.
The hardware configuration is the same as mentioned in Ivy Bridge GPU section. Software platform
was Kubuntu 12.04 64-bit and we used OpenCL CPU implementation shipped with AMD’s APP SDK
2.8. Performance was compared against OpenBLAS [15]

AMD Shanghai CPU architecture: The configuration mentioned is the same as that mentioned in the
AMD Evergreen GPU tests. We used the OpenCL CPU implementation shipped with AMD’s APP
SDK 2.8. Performance was compared against OpenBLAS.

5.2 Discussion of Results

We first discuss some architecture-independant issues and then discuss results on each architecture sepa-
rately.

During the development of the library, we investigated FMA (fused multiply-add) instructions. OpenCL
supports FMA as a built-in function. Some architectures provide a FMA instruction in hardware. OpenCL
provides a preprocessor macro FPFAST FMAF for OpenCL kernels. If the implementation supports a fast
FMA operation, then the macro should be defined. However, we discovered that some implementations do
define the macro, but our kernels achieved 10 to 20% lower performance when using the FMA built-in on

14

 0

 200

 400

 600

 800

 1000

 1200

 1000 1500 2000 2500 3000 3500 4000 4500

G
flo

ps

Size

clAmdBlas
RaijinCL

Figure 5: SGEMM performance on Evergreen on NT kernel, internally converted to TN by RaijinCL

single-precision operations. Now we do not generate calls to FMA for single-precision on any architecture,
and only generate them for double-precision if the implementation defines FPFAST FMA.

Now we look at individual architectures, starting with AMD’s Graphics Core Next (GCN) architecture. We
compared performance of RaijinCL to AMD’s OpenCL BLAS on SGEMM, DGEMM and CGEMM, shown
in Figure 2 (a), Figure 3(a) and 4(a) respectively. RaijinCLsignificantly outperforms AMD’s OpenCL
BLAS on all GEMM kernels and reached a peak of about 3.1 teraflops on SGEMM. As shown in Table 1,
we found that the best performing kernels on GCN do not utilize local memory and do not copy data into
images.

On AMD’s prior-generation Evergreen architecture, RaijinCL again found that the best kernels do not utilize
local memory. Previously, some researchers, such as Du et al. [5], had noted that copying data into images is
required for a high-performance GEMM implementation on Evergreen. However, the best kernels found by
RaijinCL for Evergreen shown in column 2 of Table 1 a,b and c donot utilize images. The discrepancy can
be explained. Evergreen has a L1 data cache for read-only data which is quite important for performance on
GEMM. Previously, this L1 cache was only used for image data but recent improvements in AMD’s drivers
now enable use of this cache for OpenCL buffers as well.

AMD’s OpenCL BLAS was slightly faster than RaijinCL on SGEMMand DGEMM on TN kernels. How-
ever, we also found that AMD’s library shows a performance drop on inputs not in the TN layout. As
discussed, RaijinCL’s autotuner found that TN was the best layout for Evergreen. After tuning, when the
user calls RaijinCL’s GEMM API on Evergreen with parametersother than TN, RaijinCL transforms the
input to the optimal format internally. We tested the performance of RaijinCL (post-tuning) and AMD’s
BLAS on SGEMM NT layout and performance is shown in Figure 5. RaijinCL outperformed AMD’s li-
brary significantly in this case.

On Nvidia Fermi architecture, RaijinCL’s performance is very close to the vendor’s CUBLAS on SGEMM
and DGEMM(Figures 2(c),3(c) and 4(c)). We found that using local memory for both operands was highly
desirable. On SGEMM, while the best kernel found by RaijinCLutilized OpenCL images, the performance
boost of using OpenCL images over using buffers was minimal in this case. However, for DGEMM, using
OpenCL images gave a performance boost of almost 40% compared to not using images.

On Nvidia Kepler architecture, we again found that the highest performing SGEMM kernels utilized local
memory. Both RaijinCL and CUBLAS only achieved about 40% of theoretical peak. We suspect that the
performance of SGEMM is limited by memory bandwidth from local memory. Kepler GPU is divided into
cores called SMX units. Each SMX has 192 ALUs each capable of one FMA instruction per cycle, but the
associated local memory can only service 32 floats per cycle.The tile size of the best found kernel was

15

8 × 4. This kernel will perform 12 loads from local memory for every 32 multiply-adds. However, given
the 32 floats/cycle limit on bandwidth, the instruction throughput is theoretically limited to only 44%, thus
showing the memory bandwidth limitation. On CGEMM, we foundthat the best kernel did not utilize local
memory at all and instead relied upon loading data directly into registers from images. This is in contrast to
the general recommendation that GEMM-type kernels should use local memory on Nvidia GPUs.

Intel Ivy Bridge GPU (HD 4000) architecture is not well knownin high performance computing related
literature, and thus we provide a brief description. HD 4000has 16 execution units, and each EU has two
4-wide SIMD pipes, and each pipe can perform 4 single-precision multiply-accumulate (MAC) operations.
Thus, each EU has a theoretical peak of 16 flops/cycle. The HD 4000 SKU in our machine is clocked at
1.1GHz, and has a peak of281.6 GFlops. The 16 EUs share 128kB of local memory, which can provide a
sustained read bandwidth of upto 128 bytes/cycle.

Intel does not provide a BLAS for the HD 4000 that we could compare against, but some insight into
RaijinCL’s performance can be gained from the percentage ofpeak attained. RaijinCL achieved about
36.5% on SGEMM (Figure 2(e)), and more than 40% on CGEMM(Figure 4(e)). We found that using image
datatype typically gave very bad performance compared to buffers. Intel‘s method of mapping of work-
items to EUs is another interesting issue. If the kernel is performing operations with SIMD width less than
the SIMD width of the EU, then multiple work-items may get mapped to individual ALU pipes in the EU.
However, if the kernel code is predominantly using vector width matching the EU width, then a single work-
item may occupy the full width of the EU. Our hypothesis is that the former case happens for the best-found
CGEMM kernel, and the latter case happens for SGEMM.

We also compared the performance of RaijinCL with OpenBLAS on AMD and Intel CPUs. We found that
RaijinCL was much slower than OpenBLAS but delivered around40% of peak. We examined the assembly
generated by OpenCL CPU drivers and found that the OpenCL compiler successfully mapped the SIMD
constructs in OpenCL to SIMD instruction set of CPUs for our kernel. However, we also noticed that AVX
and SSE registers were poorly utilized, with compilers generating some unnecessary move instructions
as well as unnecessary register spills. Thus, there remainssignificant room of improvement in OpenCL
compilers for CPUs. We also experimented with an alternate strategy for our code-generator. Instead of
generating work-groups of size, say(8, 8), we collapsed the work-group into a single item by insertingan
explicit outer loop in the kernel body. The idea was that a work-group is typically mapped to a single CPU
core, and thus there is no need for more fine-grained parallelism. However, we found that the performance
of collapsed and non-collapsed work-groups was nearly identical.

6 Related Work

Autotuning is a well-established technique on CPUs. ATLAS [3] is a well-known example of an autotuning
BLAS. Autotuning has also been used for some FFT libraries such as FFTW. However, FFT libraries typ-
ically used an online tuner where the user application first creates a plan and then executes the plan. The
autotuner is called by the plan creation routine whereas libraries like ATLAS perform autotuning at install
time and thus the applications using the application do not need to call any plan creation routines. Our
approach is similar to ATLAS in this regard.

Implementing a fast GEMM routine on accelerators has been ofconsiderable interest in the past few years.
Several researchers have written hand-tuned implementations for particular GPU architectures Volkov et
al. [13] described a fast GEMM prototype in CUDA for Nvidia’sTesla architecture. Their ideas have now
been included in Nvidia’s CUBLAS library. Nakasato [9] described a fast GEMM prototype for AMD’s

16

Cypress GPU (which powered products such as Radeon 5870). Their implementation was written in AMD’s
CAL API, which was a low-level pseudo-assembler exposed by AMD for their previous-gen GPUs. CAL
API has now been deprecated. Nath et al. [10] report a fast CUDA GEMM implementation for Nvidia
Fermi GPUs. Tan et al. [12] describe a fast CUDA GEMM implementation for Nvidia’s Fermi architecture.
They wrote their implementation in PTX, which is a pseudo-assembler for CUDA. This allowed tighter
control over instruction scheduling compared to high-level languages like CUDA-C and OpenCL. They
report better performance than CUBLAS. Matsumoto et al. [8]reported several high-performance OpenCL
GEMM kernels for AMD’s Tahiti GPU. Their implementation uses an autotuner to search for parameters,
though they limit their experimental evaluation to only onearchitecture so it is not clear how well it will
translate to other architectures. Schneider et al. [11] implemented a fast ZGEMM routine on Cell Broadband
Engine that ran on Cellś Synergistic Processing Unit (SPU). They optimized their implementation for the
vector instruction set of the Cell processor.

Several researchers have looked at portable OpenCL GEMM implementations for multiple architectures.
Du et al. [5] present a study of a portable GEMM impelementation. They had two codepaths. One codepath
was an OpenCL translation of Fermi GEMM routines from MAGMA’s CUDA kernels. This was essentially
a handwritten implementation with only a few parameters. Second codepath was an autotuning implementa-
tion for AMD GPUs. In comparision, our library offers a unified and completely autotuning implementation
for all architectures. In terms of performance, our implementation offers about 10% higher performance
on SGEMM on Nvidia GPUs, and similar performance on AMD GPUs.They did not test their library on
CPUs. Weber et al. [14] discussed an autotuning implementation on AMD’s GCN GPUs. However, their
reported results for AMD Radeon 7970 (1.7 teraflops on SGEMM and 650 teraflops on DGEMM) are much
slower than our results.

7 Conclusions

OpenCL is emerging as a common, portable programming language for a wide variety of compute devices
available from many different vendors. However, even though OpenCL is portable, different devices require
different OpenCL implementations of common BLAS routines in order to achieve high performance. In this
paper we presented a solution to this problem via the design,implementation and evaluation of RaijinCL, a
portable and practical autotuning OpenCL library for GEMM and other matrix operations.

In designing RaijinCL we aimed for a solution that was both autotuning and easy to deploy. Users of the
library only need to tune the library once, by either runningour command utility (which only requires the
OpenCL driver), or by simply reusing a previously generateddevice profile. We have generated profiles for
the devices we have experimented with, and we hope the community and hardware vendors will contribute
more.

Our solution follows the asynchronous design of OpenCL, so that RaijinCL provides an asynchronous API
whereby calls to the OpenCL device will not block computations on the CPU.

A further design decision was to provide both a high-level API, which is similar to other GPU BLAS APIs,
as well as a lower-level API which exposes temporary buffersto the API user. This allows the user of the
API to know more precise memory requirements and to handle the reuse of memory between several API
calls.

Our autotuning approach was designed by identifying a collection of codelets for each kernel. Different
versions of the codelets expose important algorithmic variations. For example, for GEMM the codelet
variants expose the argument layout (transposed or not) andthe element assignment scheme (consecutive or

17

offset). Within each codelet we identified important parameters such as tile sizes, SIMD width, work-group
size, how to handle local memory and whether or not to use OpenCL images. Given the group of codelets
and the parameter space, the autotuner evaluates all pointsin the search space and identifies the best codelet,
and the best parameters for that codelet.

We experimented on a wide variety of devices, including 5 GPUs and 2 CPUs, including devices from AMD,
Nvidia and Intel. We found that the autotuner did find different parameter settings for different devices, so
our choice of search parameters seems to be reasonable.

In terms of performance, for each device we compared our autotuned library to the vendor’s specialized
library (when one was available). We found that for the GPUs we sometimes outperformed the vendor’s
library and we never under-performed by a significant margin. Thus, we did achieve the goal of having
a portable and high-performance solution across a range of GPUs. The performance on the CPUs was
reasonable, but vendor’s specialized CPU libraries were significantly better. We hope that as the OpenCL
compilers get better, some of that gap will be reduced.

RaijinCL is open source, and we hope that users will use it on many different devices. As we gain more
experience and feedback from users we may be able to further tune to library by exposing further codelets
and additional parameters.

References

[1] The OpenCL Specification.http://www.khronos.org/opencl.

[2] AMD. AMD Accelerated Parallel Processing Math Libraries. http://developer.amd.com/
tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-
processing-math-libraries/.

[3] Clint Whaley Antoine, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimization of
software and the ATLAS project.Parallel Computing, 27:2001, 2000.

[4] NVIDIA Corp. Nvidia CUBLAS library. http://developer.nvidia.com/cublas.

[5] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Dongarra. From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming.
Parallel Computing, 38(8):391 – 407, 2012.

[6] David Kanter. Intel Ivy Bridge Graphics Architecture.http://www.realworldtech.com/
ivy-bridge-gpu/.

[7] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra Subprograms for
Fortran usage.ACM Trans. Math. Softw., 5(3):308–323, September 1979.

[8] Kazuya Matsumoto, Naohito Nakasato, and Stanislav G. Sedukin. Implementing a code generator for
fast matrix multiplication in OpenCL on the GPU. Technical Report 2012-002, Graduate School of
Computer Science and Enginering, The University of Aizu, July 2012.

[9] Naohito Nakasato. A fast GEMM implementation on the Cypress GPU.SIGMETRICS Perform. Eval.
Rev., 38(4):50–55, March 2011.

18

[10] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An improved Magma GEMM for Fermi graphics
processing units.International Journal of High Performance Computing Applications, 24(4):511–515,
November 2010.

[11] T. Schneider, T. Hoefler, S. Wunderlich, T. Mehlan, and W. Rehm. An optimized ZGEMM imple-
mentation for the Cell BE. InProceedings of the 9th Workshop on Parallel Systems and Algorithms
(PASA), Dresden, Germany, February 2008.

[12] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao, and Ninghui Sun. Fast
implementation of DGEMM on Fermi GPU. InProceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’11, pages 35:1–35:11, New
York, NY, USA, 2011. ACM.

[13] Vasily Volkov and James W. Demmel. Benchmarking GPUs totune dense linear algebra. InSC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–11, Piscataway, NJ,
USA, 2008. IEEE Press.

[14] Rick Weber and Gregory Peterson. A trip to Tahiti: Approaching a 5 Tflop SGEMM using 3 AMD
GPUs. InSymposium on Application Accelerators in High Performance Computing (SAAHPC), 2012,
2012.

[15] Zhang Xianyi, Qian Wang, and Zhang Yunquan. Model-driven level 3 BLAS Performance Optimiza-
tion on Loongson 3A Processor. InIEEE 18th International Conference on Parallel and Distributed
Systems (ICPADS), December 2012.

19

