
McGill University
School of Computer Science

Sable Research Group

Compiling Matlab for High Performance Computing via X101

Sable Technical Report No. sable-2013-03

Vineet Kumar and Laurie Hendren

October 12, 2013

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Background 5

3 Introduction to X10 arrays 7

4 Compilation to X10 arrays 7

4.1 Techniques for compiling to Simple Arrays . 8

4.2 Techniques for compiling to Region Arrays . 9

4.3 Evaluation and Comparison . 11

5 Introducing concurrency controls in Matlab 13

5.1 Introduction to X10 concurrency controls: . 13

5.2 Introducing concurrency controls in Matlab . 14

5.3 Handling parfor and vectorized instructions . 14

5.4 Evaluation . 16

6 Related Work 18

7 Conclusions and Future Work 18

1

List of Figures

1 Overview of MiX10 structure . 5

2 Speedups for Java backend . 12

3 Speedups for C++ backend . 13

4 Example of introduced concurrency controls, Matlab with introduced concurrency
on the left, generated X10 on the right. 14

5 Example of parfor, Matlab with parfor on the left, generated X10 on the right. . 15

6 Speedups for parallel executions . 17

2

Abstract

Matlab is a popular dynamic array-based language commonly used by students, scientists
and engineers, who appreciate the interactive development style, the rich set of array operators,
the extensive builtin library, and the fact that they do not have to declare static types. Even
though these users like to program in Matlab, their computations are often very compute-
intensive and are better suited for emerging high performance computing systems. Our solution
is MiX10, a source-to-source compiler that automatically translates Matlab programs to X10,
a language designed for ”Performance and Productivity at Scale”; thus, helping scientific pro-
grammers make better use of high performance computing systems.

This paper addresses two major challenges in compiling Matlab to X10 for high perfor-
mance computing: (1) efficiently transforming dynamically-typed Matlab arrays to the best
high-level, statically-typed array representation in X10; and (2) effectively exposing concur-
rency in Matlab and generating efficient concurrent code in X10. We have implemented the
techniques presented in this paper and provide an empirical study on a set of benchmarks, exam-
ining both the efficiency of the generated sequential X10 code and speedups for the concurrent
versions.

1 Introduction

Matlab is a popular numeric programming language, used by millions of scientists, engineers as
well as students worldwide [17]. Matlab programmers appreciate the high-level matrix operators,
the fact that variables and types do not need to be declared, the large number of library and builtin
functions available, and the interactive style of program development available through the IDE and
the interpreter-style read-eval-print loop. However, even though Matlab programmers appreciate
all of the features that enable rapid prototyping, their applications are often quite compute intensive
and time consuming. These applications could perform much more efficiently if they could be easily
ported to a high performance computing system.

On one hand, all the aforementioned characteristics of Matlab make it a very user-friendly and
thus a popular application to develop software among a non-programmer community. On the
other hand, these same characteristics, together with a lack of a formal language specification,
unconventional semantics, and the fact that it closed source, make it challenging to develop a static
Matlab compiler. Furthermore, the use of arrays as default data type and the dynamicity of the
base types and shapes of arrays make it even harder to add support for concurrency in a static
Matlab compiler.

The de facto standard, the Mathworks’ implementation of Matlab, is essentially an interpreter
with a JIT accelerator [22], which is generally slower than highly-optimized static languages. Math-
works’ proprietary solution for concurrency is the Parallel Computing Toolbox [16], which allows
users to use multicore processors, GPUs and clusters. However, this toolbox uses heavyweight
worker threads and has limited scalability.

Our aim is to provide Matlab’s ease of use, to benefit from the advantages of static compilation,
and to expose scalable concurrency. Our solution is MiX10, an open source-to-source compiler that
statically translates Matlab programs to X10. X10 is an object-oriented and statically-typed
language which uses cilk-style arrays indexed by Point objects and rail-backed multidimensional
arrays, and has been designed with well-defined semantics and high performance computing in
mind [8]. The X10 compiler can generate C++ or Java code and supports various communication

3

interfaces including sockets and MPI for communication between nodes on a parallel computing
system.

We have concentrated both on providing an efficient translation for the sequential core of X10,
as well as providing an effective bridge to the concurrency features of X10. One key way in
which we interface with concurrency in Matlab is by designing and implementing a translation
of the Matlab parfor construct to X10. We also introduced concurrency constructs in Matlab
analogous to those provided in X10, thus allowing users to further specify fine-grained concurrency
in their programs.

The overall goal of the MiX10 project it to allow scientists and engineers to write programs in
Matlab (or use existing programs already written in Matlab), and at the same time enjoy the
benefits of high performance computing via the X10 system without having to learn a new and
unfamiliar language. Also, since the X10 compiler has back-ends that can produce both C++ and
Java, MiX10 can also be used by systems that use Matlab for prototyping and C++ or Java for
production.

The major contributions of this paper are as follows:

Identifying key challenges: We have identified the key challenges in compiling Matlab to X10.

Techniques for efficiently compiling Matlab arrays: Arrays are the core of Matlab. All
data, including scalar values are represented as arrays in Matlab. Efficient compilation of
arrays is the key for good performance. We provide techniques to compile Matlab arrays to
two different representations of arrays provided by X10.

Comparison of the two array representations: X10 provides two types of array representa-
tions for multidimensional arrays: (1) Cilk-styled, region-based arrays and (2) rail-backed
arrays. We compare and contrast these two array forms for a high performance computing
language in context of being used as a target language.

Code generation strategies for parfor and vectorized instructions: parfor allows paral-
lel execution of for loop iterations in Matlab. We provide technique to effectively compile
parfor construct to X10. We also discuss our strategy to handle vectorized instructions in a
concurrent fashion.

Introduction of fine-grained concurrency constructs in Matlab: We have introduced X10
like concurrency constructs in Matlab, allowing Matlab programmers to expose fine-
grained concurrency in their programs.

Open implementation and empirical evaluation: We have implemented the techniques pro-
vided in this paper in an open and extensible framework (www.sable.mcgill.ca/mclab/
mix10.html), and have experimented with it on a set of benchmarks. Our initial results show
considerable improvements when customized and optimized X10 array representations are
used, and that X10 parallel performance significantly outperforms Matlab on our bench-
marks.

The remainder of this paper is structured as follows. In Section 2 we describe the background,
and how the entire project is structured. Section 3 gives an introduction to arrays in X10. In
Section 4 we provide our compilation strategies for different array representations and a comparison

4

of both the approaches. In Section 5 we describe our strategies for handling parfor and vectorized
instructions, we describe how we introduced fine-grained concurrency constructs in Matlab, and
we provide an empircal evaluation of our approach. Finally, we provide a discussion of related work
in Section 6, and conclude and discuss some planned future work in Section 7.

2 Background

MiX10 is implemented on top of several existing Matlab compiler tools. The overall structure
is given in Figure 1, where the new parts are indicated by the shaded boxes, and future work is
indicated by dashed boxes.

X10−specific Analyses

McSAF

Kind Analysis

Refactor

Generator

Mix10.x10

X10 Generator

myprog.m

McAST

McLAST + Kinds

[OOPSLA12]

 OOPSLA11]

[ECOOP12,

Tamer

Interprocedural Value Analysis

Built−in template file + X10−specific analysis info
Tame IR + types + call graph

McLAB Front−end

Concurrency Constructs

Built−in Handler
X10 Source Code

.m

.x10

Figure 1: Overview of MiX10 structure

As illustrated at the top of the figure, a Matlab programmer only needs to provide an entry-point
Matlab function (called myprog.m in this example), plus a collection of other Matlab functions
and libraries (directories of functions) which may be called, directly or indirectly, by the entry
point. The programmer may also specify the types and/or shapes of the input parameters to the
entry-point function. As shown at the bottom of the figure, our MiX10 compiler automatically
produces a collection of X10 output files which contain the generated X10 code for all reachable
Matlab functions, plus one X10 file called mix10.x10 which contains generated and specialized
X10 code for the required builtin Matlab functions. Thus, from the Matlab programmer’s point
of view, the MiX10 compiler is quite simple to use.

Matlab is actually quite a complicated language to compile, starting with its rather unusual
syntax, which cannot be parsed with standard LALR techniques. There are several issues that

5

must be dealt with including distinguishing places where white space and new line characters have
syntactic meaning, and filling in missing end keywords, which are sometimes optional. The McLab
front-end handles the parsing of Matlab through a two step process. There is a pre-processing
step which translates Matlab programs to a cleaner subset, called Natlab, which has a grammar
that can be expressed cleanly for a LALR parser. The McLab front-end delivers a high-level AST
based on this cleaner grammar. For the MiX10 project we have extended the front-end to handle
X10- inspired concurrency constructs, exposed in the Matlab program as extended comments.

After parsing, the next major phase of MiX10 uses the McSaf framework [3, 4] to disambiguate
identifiers using kind analysis [5], which determines if an identifier refers to a variable or a named
function. This is required because the syntax of Matlab does not distinguish between variables
and functions. For example, the expression a(i) could refer to four different computations, a could
be an array or a function, and i could refer to the builtin function for the imaginary value i, or it
could refer to a variable i. The McSaf framework also simplifies the AST, producing a lower-level
AST which is more amenable to subsequent analysis.

The next major phase is the Tamer [6], which is a key component for any tool which statically
compiles Matlab. The Tamer generates an even more defined AST called Tamer IR, as well as
performing key interprocedural analyses to determine both the call graph and an estimate of the
base type and shape of each variable, at each program point. The call graph is needed to determine
which files (functions) need to be compiled, and the type and shape information is very important
for generating reasonable code when the target language is statically typed, as is the case for X10.

The Tamer may find dynamic Matlab features which cannot be statically compiled, in which case
it flags that feature as not tame, and the ultimate goal is to support a refactoring tool which would
aid the programmer to restructure their input Matlab program in order to eliminate the wild
feature.

The Tamer also provides an extensible interprocedural value analysis and an interprocedural analysis
framework that extends the intraprocedural framework provided by McSaf. Any static backend
will use the standard results of the Tamer, but is also likely to implement some target-language-
specific analyses which estimate properties useful for generating code in a specific target language.
We have currently added an analysis for determining if a Matlab variable is real or complex.

For the purposes of MiX10, the output of the Tamer is a low-level, well-structured AST, which
along with key analysis information about the call graph, the types and shapes of variables, and
X10-specific information. These Tamer outputs are provided to the code generator, which generates
X10 code, and which is the main focus of this paper. As shown in the X10 generator box in Figure 1,
the X10 source code generator actually gets inputs from two places. It uses the Tamer IR it receives
from the the Tamer to drive the code generation, but for expressions referring to built-in Matlab
functions it interacts with the Built-in Handler which used the built-in template file we provide.
We have described the functioning of the built-in handler and the basic code generation strategy for
ordinary sequential constructs at the X10 workshop [12], where we also pointed out the challenges
of generating efficient code for X10 arrays. In this paper we provide an overview of the whole X10
compiler, but most importantly we focus on the key challenges of generating efficient array code
and effectively utilizing the X10 concurrency features.

6

3 Introduction to X10 arrays

In order to understand the challenges of translating Matlab to X10, one must understand the
different flavours and functionality of X10 arrays.

At the lowest level of abstraction, X10 provides an intrinsic one-dimensional fixed-size array called
Rail which is indexed by a Long type value starting at 0. This is the X10 counterpart of built-in
arrays in languages like C or Java. In addition, X10 provides two types of more sophisticated array
abstractions in packages, x10.array and x10.regionarray.

Rail-backed Simple arrays are a high-performance abstraction for multidimensional arrays in X10
that support only rectangular dense arrays with zero-based indexing. Also, they support only up
to three dimensions (specified statically) and row-major ordering. These restrictions allow effective
optimizations on indexing operations on the underlying Rail. Essentially, these multidimensional
arrays map to a Rail of size equal to number of elements in the array, in a row-major order.

Region arrays are much more flexible. A region is a set of points of the same rank, where Points

are the indexing units for arrays. Points are represented as n-dimensional tuples of integer values.
The rank of a point defines the dimensionality of the array it indexes. The rank of a region is the
rank of its underlying points. Regions provide flexibility of shape and indexing. Region arrays are
just a set of elements with each element mapped to a unique point in the underlying region. The
dynamicity of these arrays come at the cost of performance.

Both types of arrays also support distribution across places. A place is one of the central innovations
in X10, which permits the programmer to deal with notions of locality.

4 Compilation to X10 arrays

Arrays are the core of the Matlab programming language. Every value in Matlab is a Matrix
and has an associated array shape. Even scalar values are represented as 1 × 1 arrays. Most of
the data read and write operations involve accessing individual or a set of array elements. Given
the central role of arrays in Matlab, it is of utmost importance for our MiX10 compiler to find
effective and efficient translations to X10 arrays.

Our strategy is use the more efficient rail-backed simple arrays whenever possible, and to fall back
to the more flexible, but less efficient region-based arrays when necessary. In addition, we have
made a custom version of the rail-backed array implementation which maps well to Matlab arrays,
thus giving even better performance.

MiX10 uses the shape analysis engine built on top of McSaf analysis framework [3,4] and Tamer [6],
to statically estimate the shapes of involved arrays. When the shapes can be determined accurately,
the rail-backed simple arrays are used. When it is not possible to statically determine the accurate
shape of the involved matrix, and when arrays of have more than three dimensions, MiX10 falls
back on region arrays which are flexible enough to support such dynamic array operations. MiX10
users can also explicitly force our compiler to always use the region arrays, which allows them to
experiment with different kinds of generated code.

7

4.1 Techniques for compiling to Simple Arrays

In dealing with the simple rail-backed arrays, there were two important challenges. First, we
needed to determine when it is safe to use the simple rail-backed arrays, and second, we needed
an implementation of simple rail-backed arrays that handles the column-major, 1-indexing, and
linearization operations required by Matlab.

When to use simple rail-backed arrays: After the shape analysis of the source Matlab program,
if shapes of all the arrays in the program: (1) are known statically, (2) remain same at all points
in the program and (3) are supported by the X10 implementation of simple arrays; then MiX10
generates X10 code that uses simple arrays.

Enhancements to the X10 implementation of simple arrays: In order to make X10 simple arrays
more compatible with Matlab we modified the implementation of the Array_2 and Array_3 classes
in x10.array package to use column-major ordering instead of the default row-major ordering when
linearizing multidimensional arrays to the backing Rail storage. Matlab.2 Matlab uses column-
major ordering to linearize arrays. This modification also makes it trivial to support linear indexing
operations in Matlab.3 We also added methods to get the sub-array of an array, given the range
of indices for the sub-array in each dimension of the array. These methods are especially useful for
supporting the colon operator in Matlab.4

Given that we can determine when it is safe to use the simple rail-backed arrays, and our improved
X10 implementation of them, we then designed the appropriate translations from Matlab to X10,
for array construction, array accesses for both individual elements and ranges.

Array construction: Given the number of dimensions and the size of each dimension, it is easy to
construct a simple array. For example a two-dimensional array A of type T and shape m × n can
be constructed using a statement like val A:Array_2[T] = new Array_2[T](m,n);. Additional
arguments can be passed to the constructor to initialize the array.

Array access: In Matlab, an individual array element can be accessed using one or more integral
subscripts and a set of elements can be accessed using an expression involving colon operator
instead of an integer subscript. Also, note that Matlab uses one-based indexing, whereas X10
uses zero-based indexing; thus all array access indices need to be offset by one.

Matlab naturally supports linear indexing for individual element access. More precisely, if the
number of subscripts in an array access is less than the number of dimensions of the array, the
last subscript is linearly indexed over the remaining number of dimensions in a column-major
fashion. Our modification to use column-major ordering for the backing Rail make it easier and
more efficient to support linear indexing by allowing direct access to the underlying Rail at the
calculated linear offset.

Matlab allows the use of an expression such as a:b (or colon(a,b)) to create a vector of integers
[a, a+1, a+2, ... b]. In another form, an expression like a:i:b can be used to specify an integer

2http://www.sable.mcgill.ca/mclab/mix10/x10_update/
3http://www.mathworks.com/help/matlab/math/matrix-indexing.html
4http://www.mathworks.com/help/matlab/ref/colon.html.

8

interval of size i between the elements of the resulting vector. Use of a colon expression for array
subscripting takes all the elements of the array for which the subscript in a particular dimension is
in the vector created by the colon expression in that dimension.5 Consider the following Matlab
code:

function [x] = crazyArray(a)
y = ones(3,4,5);
x = y(1,2:3,:) ;

end

Here y is a three-dimensional array of shape 3 × 4 × 5 and x is a sub-array of y of shape 1 × 2 × 5.
Such array accesses can be handled by simply calling the getSubArray[T]() that we introduced
in the X10 runtime library. The generated X10 code for this example is as follows:

static def crazyArray (a: Double){
val y: Array 3[Double] = new Array 3[Double](Mix10.ones(3, 4, 5));
val mc t0: Array 1[Double] = new Array 1[Double](Mix10.colon(2, 3));
var x: Array 3[Double];
x = new Array 3[Double](Helper.getSubArray(1, 1, mc t0(0), mc t0(1), 1, 5, y)) ;
return x;

}

4.2 Techniques for compiling to Region Arrays

With Matlab’s dynamic nature and unconventional semantics, it is not always possible to statically
determine the shape of an arrays accurately. Luckily, with some thought to a proper translation,
X10’s region arrays are flexible enough to support Matlab’s “wild” arrays. Also, since Point

objects can be a set of arbitrary integers, there is no restriction on the starting index of the
arrays. Region arrays can easily use one-based indexing. Matlab allows the use of keyword end

or an expression involving end (like end-1) as a subscript. end denotes the highest index in that
dimension. If the highest index is not known the numElems_i property of the simple arrays is used
to get the number of elements in the ith dimension of the array.

Array construction: Array construction for region arrays involves creating a region over a set of
points (or index objects) and assigning it to an array. Regions of arbitrary ranks can be created
dynamically. For example, consider the following Matlab code snippet:

function[x] = foo(a)
t = bar(a);
x = t;
...

end

function[y] = bar(a)
if (a == 3)

y = zeros(a,a+1,a+2,a+3);
else

y = zeros(a,a+1,a+2);
end

end

In this code, the number of dimensions of array t and hence array x cannot be determined statically
at compile-time. In such case, it is not possible to generate X10 code that uses simple arrays,
however, it can still be compiled to the following X10 code for function foo().

5Use of ’:’ in place of an index without lower and upper bounds indicates the use of all the indices in that
dimension.

9

static def foo(a: Double){
val t: Array[Double] =

new Array[Double](bar(a));
val x: Array[Double] =

new Array[Double](t);
...
return x;
}

static def bar(a:Double){
var y:Array[Double]=null;
if (a == 3) {
y = new Array[Double]
(Mix10.zeros(a,a+1,a+2,a+3));

}
else {
y = new Array[Double]
(Mix10.zeros(a,a+1,a+2));

}
return y;
}

In this generated X10 code, t is an array of type Double which can be created by copying from
another array returned by bar(a) without knowing the shape of the returned array.

Array access: Subscripting operations to access individual elements are mapped to X10’s region
array subscripting operation. If the rank of array is 4 or less, it is subscripted directly by integers
corresponding to subscripts in Matlab otherwise we create a Point object from these integer
values and use it to subscript the array. In case an expression involving end is used for indexing
and the complete shape information is not available, method max(Int i), provided by the Region

class is used, allowing to determine the highest index for a particular dimension at runtime.

Mapping an array access for a set of elements indexed by an expression involving colon operator
in a completely dynamic manner is more complex for region arrays than it is for simple arrays.
The X10 code below shows how the previously shown crazyArray() method is mapped for using
region arrays without any statically known shape information.

public static def crazyArray(a: Double){
val y: Array[Double] = new Array[Double](Mix10.ones(3,4,5));
val mc t0: Array[Double] = new Array[Double](Mix10.colon(2,3));
val x: Array[Double];
val mix10 pt y: Point;
mix10 pt y = Point.make(1−(1L), 1−(mc t0(1,mc t0.region.min(1)) as Int), 0);
x = new Array[Double](
(Region.make((1..1)) ∗
(Region.make((mc t0.region.min(1)) as Int .. (mc t0.region.max(1)) as Int)) ∗
(Region.make((y.region.min(2)) .. y.region.max(2))),
(p:Point(3))=>y(p.operator−(mix10 pt y))

);
}

If the shape of an array involving colon operator is not known, the
Region.min(Int i) and Region.max(Int i) methods are used to compute the correct values
at run time. In the above code, a new Point object is created that serves as an offset to get the
elements at the correct position of the array accessed. Then the new array with region derived from
the resultant vector from the colon operator for second dimension and from the third dimension
of the source array y is created. Thus the resultant array x has the region 1..1*1..2*1..5.

Rank specialization: Although region arrays can be used with minimal compile-time informa-
tion, providing additional static information can improve performance of the resultant code by
eliminating run-time checks involving provided information. One of the key specializations that we
introduced with use of region arrays is to specify the rank of an array in its declaration, whenever it

10

is known statically. For example if rank of an array A of type T is known to be two, it can be declared
as val A:Array[T](2);. This specialization provided substantial performance improvements over
unspecialized code as shown in section 4.3.

4.3 Evaluation and Comparison

In order to evaluate the effectiveness of our strategy to use simple arrays when we have the required
information and fall back to region arrays when necessary, we did a performance comparison of
simple arrays, region arrays and region arrays with rank specialization. For this experiment we
used some of the benchmarks used in the previous McFor project [13]. For this paper we present
the results for the following seven benchmarks.

• bubble is the standard bubble sort. We chose this because it involves nested loops and consists
of many array read and copy operations.

• capr computes the capacitance per unit length of a coaxial pair of rectangles. It involves four
methods and operations on 2-dimensional matrices. It is also dominated by a large number
of 2-dimensional array accesses.

• dich finds the Dirichlet solution to Laplace’s equation. It involves mathematical operations on
a 2-dimensional matrix and is dominated by a large number of 2-dimensional array accesses
inside nested loops.

• fiff is a finite difference solution to a wave equation. It is dominated by a number of trigono-
metric operations and involves 2-dimensional matrix data.

• mbrt computes a mandelbrot set. The main features of this benchmark are computations
involving complex numerical values and loops.

• nb1d simulates the gravitational movement of a set of objects. It involves computations on
column vectors inside nested loops.

• nb1d a is a version of nb1d that uses a specialized version of the MiX10 library which has
specialized methods for column vectors.

Our previous experiments showed the performance characteristics for X10 code generated by
MiX10 and compiled with different X10 compiler options [12], and we noted the overheads when
using region arrays. Based on those results we developed the techniques presented in this paper,
and we compare the performance of X10 code generated with different kinds of arrays (region
arrays, region arrays with rank specialization and simple arrays).

X10 compilation flow: X10 provides a native(C++) backend and a separate managed(Java)
backend. Both the backends provide various switches to manage optimization of generated binary
or bytecode. According to [7] two switches -O and -NO_CHECKS are important for achieving ac-
ceptable multi-dimensional array performance. -O turns on the X10 compiler’s optimizations and
-NO_CHECKS turns off the array bounds checking.

11

Experimental setup: We compiled the X10 code generated by our current implementation of
MiX10 using both C++ and Java backends with following optimization switches: -NO_CHECKS

and -O -NO_CHECKS. We also tested our benchmarks for correctness using small data sizes. For
performance measurements, we chose a data size for which the original Matlab code took around
100 seconds to execute. All the programs were executed on a machine with Intel(R) Core(TM)
i7-3820 CPU @ 3.60GHz processor and 16 GB memory running GNU/Linux(3.2.0-26-generic #41-
Ubuntu). The Matlab version used was R2011a and X10 programs were built and executed using
pre-release version of x10-2.4 checked out from the trunk in June 2013, Oracle Java version 1.7.0
and gcc version 4.6.3. We collected the execution times (averaged over 5 runs) of Matlab programs
and generated X10 code for them for all three versions of arrays for both backends for -NO_CHECKS
and -O -NO_CHECKS switches. We normalized the executions times for Matlab programs to one
and measured speedups compared to them for all executions of respective X10 programs.

bubble
capr

dich
fiff

mbrt
nb1d

nb1d_a
0

0.5
1

1.5
2

2.5
3

3.5

MATLAB region arrays

region arrays specialized simple arrays

Java backend -NO_CHECKS

sp
e

e
d

u
p

bubble
capr

dich
fiff

mbrt
nb1d

nb1d_a
0
1
2
3
4
5
6

MATLAB region arrays

region arrays specialized simple arrays

Java backend -O -NO_CHECKS

sp
e

e
d

u
p

Figure 2: Speedups for Java backend

Figure 2 shows the speedups, as compared to the original Matlab code, for X10 code compiled
with Java backend. The graph on the left, with unoptimized compilation of X10 code does not show
speedups for simple arrays (compared to other two arrays) except for mbrt, nb1d and nb1d_a. This
is expected because performance of simple arrays rely on the optimizations implemented for Rail.
mbrt involves library calls on complex numbers, for which Java libraries are not optimized. nb1d

and nb1d_a are 2.02 and 3.39 times more efficient than their respective region array versions. nb1d
involves operations on column-vectors, which thanks to our modification to X10 runtime library to
use column-major layout, are much more efficient with simple arrays. nb1d_a is further optimized
for column-vector operations, hence the high speedup, with -O they give even better speedups.

With -O turned on, we get 1.4 to 5.5 (averaging 2.6) times speedups for simple arrays over Matlab.
It is particularly interesting to note the huge difference between region arrays and simple arrays
for the capr and dich benchmarks when using the -O flag. These benchmarks are characterized
by many 2-dimensional array accesses. With the region arrays the X10 compiler inlines a large
number of dynamic shape checks for each array access, which in turn causes the Java JIT compilers
to fail, and to revert to the interpreter, leading to 100 times slowdowns. However, with simple
arrays these benchmarks show 1.5 to 2 times speedups. bubble uses 1-dimensional arrays, which
do not benefit from simple arrays because of the conversion overhead to Rail, instead they should
directly be expressed as a rail.

Speedups for the C++ backend are shown in Figure 3. Elimination of dynamic checks by using
simple arrays provide around 10 to 20 percent improvements in performance over the region array

12

bubble
capr

dich
fiff

mbrt
nb1d

nb1d_a
0

0.2
0.4
0.6
0.8

1
1.2
1.4

MATLAB region arrays

region arrays specialized simple arrays

C++ backend -NO_CHECKS

sp
e

e
d

u
p

bubble
capr

dich
fiff

mbrt
nb1d

nb1d_a
0

1

2

3

4

5

MATLAB region arrays

region arrays specialized simple arrays

C++ backend -O -NO_CHECKS

sp
e

e
d

u
p

Figure 3: Speedups for C++ backend

versions. For mbrt we observed around 2 times better speedup. Using the -O -NO_CHECKS switch
we consistently achieved around 20 percent better performance than Matlab.

To conclude, by using simple arrays, significant performance gains can be achieved, specially for
programs that involve large number of multi-dimensional array accesses. Even though X10 provides
fairly dynamic array operations, it is very beneficial to gather static information for using X10 as
a target language.

5 Introducing concurrency controls in Matlab

Matlab programmers often recognize the parallel nature of computations involved in their pro-
grams but cannot express it due to the lack of fine-grained concurrency controls in Matlab. Some
concurrency can be achieved using controls like parfor and other tools in Mathwork’s parallel
computing toolbox, but this has several drawbacks: (1) the parallel toolbox is limited in terms
of scaling (Matlab currently supports only up to 12 workers processes to execute applications
on a multicore processor [16]); (2) the parallel toolbox must be purchased separately, so not even
all licensed Matlab users will have it available; and (3) Matlab’s concurrency is often slower
compared to X10’s concurrency controls (as shown in section 5.4).

Vectorization 6 is a technique to convert loop-based scalar operations to vector operations, for
which Matlab is optimized. So, another way of exposing parallelism in Matlab is to optimize
these instructions to perform the computations concurrently on the elements of the vector.

5.1 Introduction to X10 concurrency controls:

The Asynchronous Partitioned Global Address Space Model [9] provides the following four types
of concurrency constructs [10]:

1. Async is the fundamental concurrency construct in X10. async S creates an “activity” that
executes statement S in parallel to the parent activity and share the same heap memory as
the parent.

6http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

13

2. Finish is a construct that waits on all the activities spawned transitively from within its
scope, to terminate.

3. Atomic specifies a set of statements to be executed in a single step with respect to all other
activities in the system. When is a conditional atomic statement.

4. at simply specifies a X10 place(a processing unit in X10) at which a certain activity should
be executed.

5.2 Introducing concurrency controls in Matlab

In order to enable Matlab to be compiled for high performance computing it is important to
let programmers exploit fine-grained concurrency in their Matlab programs. Due to the lack of
fine-grained concurrency controls in traditional Matlab, we decided to introduce such controls
in Matlab that can be translated by our MiX10 compiler to analogous concurrency controls in
X10. However it was important that introduction of such controls should not have any side-effects
when compiled by traditional Mathworks’ Matlab compiler, so we introduced them as structured
special comments.

We introduced the following concurrency constructs in Matlab: (1) %!async, (2) %!finish, (3)
%!atomic, (4) %!when(condition) (5) (where condition is a boolean expression) and (6) %!at(p)
(where p is an integer value denoting a place in X10). Programmers can express these constructs
before the statements that they want to control and specify the end of a control by using %!end

after the statements. Note that because of the preceding % sign these constructs will be treated
like comments by other Matlab compilers and will not cause any side effects. Figure 4 shows an
example of how to use these controls in Matlab followed by the generated X10 code for it.

function [x] = parallelFoo(a)
%!finish
for (i = 1:length(a))

%!async
a(i)=a(i)∗2;
%!end

end
%!end

end

static def parallelfoo (a: Array 1[Double]){
var mc t2: Double = Mix10.length(a);
var mc t4: Double = 1;
var i: Double;
finish {

for (i in (mc t4 as Long)..(mc t2 as Long)){
async{

var mc t0: Double;
mc t0 = mtimes(a(i as Int −1), 2) ;
a(i as Int −1) = mc t0 ;
}
}
}
val x: Array 1[Double] = new Array 1[Double](a);
return x;
}

Figure 4: Example of introduced concurrency controls, Matlab with introduced concurrency on
the left, generated X10 on the right.

5.3 Handling parfor and vectorized instructions

For high performance computing, besides introducing new concurrency controls, it is also important
to support important parallelization instructions supported by Matlab by default (with the use

14

of parallel computing toolbox) and to exploit concurrency in other kind of instructions that can
benefit from parallelization.

Supporting parfor instruction: parfor (or parallel for loop) is an important parallelization control
provided by the Matlab parallel computing toolbox that can be used to execute each iteration of
the for loop in parallel with each other. The challenge was to implement it with X10’s concurrency
controls while maintaining its complex semantics and aiming for better performance than provided
by the parallel computing toolbox.

There are three important semantic characteristics of Matlab’s parfor loop: (1) the scope of
variables inside a parfor loops, including the loop index variable, is limited to each iteration; (2)
if a variable defined outside the loop is modified inside the loop such that its value after the loop is
dependent on the sequence of execution of iterations, then its value after the loop is set to its value
before the loop; and (3) if a variable defined outside the loop is modified in a reduction assignment
i.e., the final value after the iterations is independent of the order of execution of iterations, the
updated value is retained after the parfor loop. Consider the Matlab code given on the left of
Figure 5.

function [] = saneParfor(v)
d = v;
x=0;
A=zeros(1,10);
parfor i = 1:10

x = x+i;
d = i∗2;
A(i) = d;

end
disp(d);
end

static def saneParfor (v: Double)
{ var d: Double = v;

var x: Double = 0;
val A: Array 1[Double] =

new Array 1[Double](Mix10.zeros(1, 10));
var mc t3: Double = 1;
var mc t4: Double = 10;
finish {

for (i in (mc t3 as Long)..(mc t4 as Long))
async {

atomic x = Mix10.plus(x, i as Double);
var mc t2: Double = 2;
var d local: Double =

Mix10.mtimes(i as Double, mc t2);
A(i as Long −1) = d local ;

}
}
}

Figure 5: Example of parfor, Matlab with parfor on the left, generated X10 on the right.

Here x = x+i; is a reduction assignment [15] statement. The value of d is local to each iteration
and the initial value before the loop is retained after the loop. Note that the value of d outside
the loop is invisible inside the loop. For statement A(i) = d;, each iteration modifies a unique
element accessible only to it, hence the final value of A is independent of order of execution; thus
its value is updated after the loop. Our MiX10 translator uses the following strategy to translate
it to X10:

1. Introduce finish and async constructs to control the flow of statements in parallel.

2. Any variable defined inside the loop and not declared outside the loop previously is declared
inside the async scope to make it local to the iteration.

15

3. Any variable defined inside the loop that is previously defined outside the loop and is not a
reduction variable is replaced by a local temporary variable defined inside the loop.

4. Statements identified to be reduction statements are made atomic by using the atomic con-
struct in X10.

An example of the X10 code generated for the example Matlab code is given on the right side of
Figure 5.

Thus we can translate the parfor in Matlab to semantically equivalent code in X10 and since
X10 can handle massive scaling, we can get significantly better performance for X10 compared to
Matlab as shown by our experimental results.

parallelizing vectorized instructions: The use of vectorized instructions is another optimization
technique used by Matlab to speedup single operations on multiple scalar values by combining
scalar values in a vector and executing the operation on the vector. Such Single instruction, multiple
data style operations are good candidates for parallelization. However, efficiency of parallelization
of such operations depends on the size of the vector, the complexity of the operation involved, and
the executing hardware. Thus, in order to make it most effective, we wanted to provide full support
for parallelization of vector instructions and give the programmer the ability to control when the
vector operation is executed concurrently, based on the size of the vector.

Our solution to the problem is to introduce a parallelization specialization in the MiX10’s builtin
handling framework. We implemented a concurrent version of the relevant builtin operations that
can operate in a parallel fashion on vectors of arbitrary sizes. We also introduced a compiler switch
for MiX10 that lets programmers specify a vector length threshold for all builtins or a specific
builtin above which the concurrent version of the builtin will be executed. For example, if the
user wants an operation sin(A) to be executed concurrently only if A is a vector of length greater
than, say, 1000; then while invoking the MiX10 compiler she can specify the threshold by using
the switch -vec_par_length sin=1000. MiX10 will generate a call to the concurrent version of
sin() if the length of A is greater than 1000 else it will call the sequential version. Using the
-vec_par_length switch programmer can specify threshold for one or more or all builtin methods.
For example -vec_par_length all=500 sin=1000 cos=1000 will set the threshold for sin() and
cos() to 1000 and to 500 for all other builtins.

5.4 Evaluation

To evaluate the performance of supporting parallel constructs in Matlab, we performed two ex-
periments. First we compared speedups of X10 sequential version, Matlab parfor version and
X10 parallel version (generated by MiX10) to Matlab sequential version, normalized to one. We
did this for both Java and C++ backends. This experiment was done on a 4-core processor. For
the second experiment we repeated the first experiment on a 10-core processor and compared the
speedups for the two machines. The hardware for first experiment and software for both experi-
ments was the same as in 4.3. The 10-core machine had an Intel(R) Xeon(R) CPU E7- 4850 @
2.00GHz processor and 64 GB memory. We considered the best configuration of number of worker
threads (worker pools for Matlab) and compiler switches for each execution and considered the
average of 5 runs for each execution. We used three benchmarks: (1)Matmul, which is the standard

16

matrix multiplication, (2)mcpi, Monte Carlo method for calculating the value of π and (3)nb1d,
which is the same used in 4.3 and involves computations on column-vectors inside nested for loops.

MatmulMatmul 5x mcpi mcpi 5x nb1d nb1d 5x
0

2

4

6

8

10

12

14

16

18
Java backend on 4 core machine

S
p

e
e

d
u

p

MATLAB sequential

X10 sequential

MATLAB parfor

X10 parallel

Matmul Matmul 5x mcpi mcpi 5x nb1d nb1d 5x
0

10

20

30

40

50

60

70

80

Java backend on 10 core machine

MATLAB sequential
X10 sequential
MATLAB parfor
X10 parallel

S
p

e
e

d
u

p

MatmulMatmul 5x mcpi mcpi 5x nb1d nb1d 5x
0

5

10

15

20

25

C++ backend speedup on 4-core desktop

MATLAB sequential
X10 sequential
MATLAB parfor
X10 parallel

S
p

e
e

d
u

p

Matmul Matmul 5x mcpi mcpi 5x nb1d nb1d 5x
0

10
20
30
40
50
60
70
80
90

100

C++ backend speedup on 10-core server

MATLAB sequential
X10 sequential
MATLAB parfor
X10 parallel

S
p

e
e

d
u

p

Figure 6: Speedups for parallel executions

Figure 6 shows the speedup graphs for Java and C++ backends on both the machines compared
to normalized sequential Matlab code. Note that 5x signifies a scale of 5 times in terms of input
data size. It is exciting to note that the parallel version of X10 is almost always significantly faster
than Matlab’s sequential and parfor versions. On the 4-core machine speedups range from 2
to 20 times for C++ backend and 5 to 16 times on Java backend over sequential Matlab code
and around 2 times over parallel Matlab code. On the 10-core machine, speedups are even more
exciting, ranging from 30 to 90 times for C++ backend over sequential Matlab code and around
10 times over parallel Matlab code and 10 to 70 times for Java backend code over sequential
Matlab code and around 6-7 times over Matlab parallel code. Thus, X10 scales significantly
better than Matlab.

nb1d 7 is a noticeable exception. It creates a large number of concurrent activities each with
significantly small computation. Even the Matlab parallel version is twice as slow as the sequential
version. For C++ backend on 4-core machine we get around 2 times speedup as compared to only
0.5 times on 10-core machine. This slowing down for 10-core machine is also seen for Java backend
for which the speedup on 4-core machine is 15 times and on 10-core machine is 10 times. Also,
speedups for X10 parallel code are around 10% better than sequential X10 code for C++ and over
2 times better for Java backend.

7Note that we have used the version of nb1d with MiX10 library functions specialized for column vectors

17

To summarize, X10 concurrency constructs are really powerful and much more efficient than Mat-
lab parallel computing toolbox. Although, it is important to use concurrency only with programs
where each concurrent unit performs substantial amount of computations.

6 Related Work

The work presented in this paper provides an alternative to Mathworks’ de facto proprietary imple-
mentation of Matlab. Our approach is open and extensible and leverages the high-performance
computing abilities of X10.

Although our focus is on handling Matlab itself, notable open source alternatives of Matlab
like Scilab [11], Julia [2] and NumPy [20] and Octave [1] provide limited concurrency features.
They concentrate on providing open library support and have not tackled the problems of static
compilation. We are investigating if there is any way of sharing some of their library support
with MiX10. The MEGHA project [18] provides an interesting approach to map Matlab array
operations to CPUs and GPUs, but supports only a very small subset of Matlab.

There have been previous research projects on static compilation of Matlab which focused particu-
larly on the array-based subset of Matlab and developed advanced static analyses for determining
shapes and sizes of arrays. For example, FALCON [19] is a Matlab to Fortran90 translator with
sophisticated type inference algorithms. The McLab group has previously implemented a prototype
Fortran 95 generator [13], and is developing the next generation Fortran generator in parallel with
the MiX10 project. Some of the solutions can be shared between the projects, especially the parts
which extend the Tamer.

MATLAB Coder is a commercial compiler by MathWorks [14], which produces C code for a subset
of Matlab.

In terms of source-to-source compilers for X10, we are aware of two other projects. StreamX10
is a stream programming framework based on X10 [23]. StreamX10 includes a compiler which
translates programs in COStream to parallel X10 code. Tetsu discusses the design of a Ruby-based
DSL for parallel programming that is compiled to X10 [21].

7 Conclusions and Future Work

This paper is about providing a bridge between two communities, the scientists/engineers/stu-
dents who like to program in Matlab on one side; and the programming language and compiler
community who have designed elegant languages and powerful compiler techniques on the other
side.

The X10 language has been designed to provide high-level array and concurrency abstractions, and
our main goal was to develop a tool that would allow programmers to automatically convert their
Matlab code to efficient X10 code. In this way programmers can port their existing Matlab
code to X10, or continue to develop in X10 and use our MiX10 compiler as a backend to generate
X10 code. Since X10 is publicly available under the Eclipse Public License (x10-lang.org/
home/x10-license.html), users could have efficient high-performance code that they could freely
distribute. Further, X10 itself can compile the code to either Java or C++, so our tool could be
used in a tool chain to convert Matlab to those languages as well.

18

Our tool itself is part of the McLab project, which is entirely open source. Thus, we are provid-
ing infrastructure for other compiler researchers to build upon this work, or to use some of our
approaches to handle other popular languages such as R.

In this paper we demonstrated the end-to-end organization of the MiX10 tool, and we identified
that the correct handling of arrays and concurrency features were the key challenges. We developed
a custom version of the simple rail-backed X10 arrays, and identified where and how this could
be used for generating efficient X10 code. For cases where precise static array shape and type
information is not available, we showed how we can use the very flexible region-based arrays from
X10, and our experiments demonstrated that it is very important to use the simple rail-backed
arrays, for both the Java and C++ backends.

One of the main motivations of choosing X10 as the target language is that it supports high-
performance computing, which is often desirable for the computation-intensive applications devel-
oped by the engineers and scientists. We have identified three main ways of effectively exposing and
using the X10 concurrency. The first is by implementing an effective translation of the Matlab
parfor construct to semantically equivalent X10. The second is by exposing the key X10 con-
currency constructs to the Matlab programmer via structured comments. These comments will
be ignored by standard Matlab implementations, but will be used to generate concurrent X10
code by our MiX10 tool. Finally, we provided a parallel version of Matlab vector operations, and
compile-time switches to control when the parallel versions should be used.

Our experiments showed significant performance gains for our generated parallel X10 code, as
compared to Matlab’s parallel toolbox. This confirms that compiling Matlab to a modern high-
performance language can lead to significant performance improvements.

Based on our positive experiences to date, we plan to continue improving the MiX10 tool. The
code that we generate is already quite clean, but we would like to apply further transformations
on it to aggregate some low-level expressions, and to make the generated code look as “natural”
as possible. We also would like to experiment further to find the best way to tune the generated
code for different sorts of parallel architectures. We also hope that other research groups will use
our infrastructure.

References

[1] GNU Octave. http://www.gnu.org/software/octave/index.html.

[2] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A Fast Dynamic Language for
Technical Computing. CoRR, abs/1209.5145, 2012.

[3] J. Doherty. McSAF: An Extensible Static Analysis Framework for the MATLAB Language.
Master’s thesis, McGill University, December 2011.

[4] J. Doherty and L. Hendren. McSAF: A static analysis framework for MATLAB. In Proceedings
of ECOOP 2012, pages 132–155, 2012.

[5] J. Doherty, L. Hendren, and S. Radpour. Kind analysis for MATLAB. In In Proceedings of
OOPSLA 2011, pages 99–118, 2011.

[6] A. Dubrau and L. Hendren. Taming MATLAB. In Proceedings of OOPSLA 2012, pages
503–522, 2012.

19

[7] IBM. Performance tuning. http://x10-lang.org/documentation/

practical-x10-programming/performance-tuning.html, Feb. 2012.

[8] IBM. X10 programming language. http://x10-lang.org, Feb. 2012.

[9] IBM. Apgas programming in x10 2.4, 2013. http://x10-lang.org/documentation/

tutorials/apgas-programming-in-x10-24.html.

[10] IBM. An introduction to x10, 2013. http://x10.sourceforge.net/documentation/intro/

latest/html/node4.html.

[11] INRIA. Scilab, 2009. http://www.scilab.org/platform/.

[12] V. Kumar and L. Hendren. First steps to compiling Matlab to X10. In Proceedings of the third
ACM SIGPLAN X10 Workshop, X10 ’13, pages 2–11, New York, NY, USA, 2013. ACM.

[13] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill University,
August 2009.

[14] MathWorks. MATLAB Coder. http://www.mathworks.com/products/matlab-coder/.

[15] Mathworks. Reduction variables. http://www.mathworks.com/help/distcomp/

advanced-topics.html#bq_of7_-3.

[16] MathWorks. Parallel computing toolbox, 2013. http://www.mathworks.com/products/

parallel-computing/.

[17] C. Moler. The Growth of MATLAB and The MathWorks over Two Decades. http://www.

mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf.

[18] A. Prasad, J. Anantpur, and R. Govindarajan. Automatic compilation of MATLAB pro-
grams for synergistic execution on heterogeneous processors. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementation, PLDI ’11, pages
152–163, New York, NY, USA, 2011. ACM.

[19] L. D. Rose and D. Padua. Techniques for the translation of MATLAB programs into Fortran
90. ACM Trans. Program. Lang. Syst., 21(2):286–323, 1999.

[20] Scipy.org. Numpy. http://www.numpy.org/.

[21] T. Soh. Design and implementation of a DSL based on Ruby for parallel programming. Tech-
nical report, The University of Tokyo, Jan. 2011.

[22] The Mathworks. Technology Backgrounder: Accelerating MATLAB, September 2002. http:

//www.mathworks.com/company/newsletters/digest/sept02/accel_matlab.pdf.

[23] H. Wei, H. Tan, X. Liu, and J. Yu. StreamX10: a stream programming framework on X10. In
Proceedings of the 2012 ACM SIGPLAN X10 Workshop, X10 ’12, pages 1:1–1:6, New York,
NY, USA, 2012. ACM.

20

