
McGill University
School of Computer Science

Sable Research Group

Mc2for: a tool for automatically transforming Matlab to Fortran 95

Sable Technical Report No. sable-2013-04

Xu Li and Laurie Hendren

October 14, 2013

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Background and Overview 4

3 Shape Analysis 7

3.1 Handling Built-ins . 7

3.2 Typical Behaviors of Matlab Built-ins on Shapes 7

3.3 Shape Analysis through Matlab Built-ins . 8

3.4 Merging Shapes for Flow Control Statements . 11

3.5 Summary . 12

4 Range Value Analysis 12

4.1 Range Value Analysis through Matlab Built-ins . 13

4.2 Merging Range Values for Flow Control Statements 14

4.3 Shape Analysis for Matrix Indexing Gets and Sets 14

4.3.1 for Get Statements . 14

4.3.2 for Set Statements . 15

5 Transformation from Matlab to Fortran 15

5.1 Mapping Types . 17

5.1.1 Variables with more than one dynamic type 17

5.1.2 Implicit type conversion in Matlab . 18

5.2 Built-in Mapping Framework . 18

5.2.1 Directly-mapped . 18

5.2.2 Transform-then-inlined . 18

5.2.3 Not-directly-mapped . 19

5.3 Linear Indexing Transformation . 20

6 Experiments and Result Analysis 20

7 Related Work 23

8 Conclusion and Future Work 24

1

List of Figures

1 The Overview of Mc2for. We highlight the boxes which are the contributions of
this paper. Note the size of the boxes does not correspond to either the complexity
or the importance of the component. 6

2 Speedup of Generated Fortran over Matlab . 22

3 Code Size of Generated Fortran over Matlab . 23

List of Tables

I Shape merging relation table . 11

II Range Value Analysis Supported Operators . 13

III Mapping Matlab types to Fortran . 18

IV Benchmarks’ Execution Times in Seconds . 21

V LOC of Benchmarks . 22

2

Abstract

Matlab is a dynamic numerical scripting language widely used by scientists, engineers and
students. While Matlab’s high-level syntax and dynamic types makes it ideal for prototyping,
programmers often prefer using high-performance static programming languages such as Fortran
for their final distributable code. Rather than requiring programmers to rewrite their code
by hand, our solution is to provide a tool that automatically translates the original Matlab

program to produce an equivalent Fortran program. There are several important challenges
for automatically translating Matlab to Fortran, such as correctly estimating the static type
characteristics of all the variables in a Matlab program, mapping Matlab built-in functions,
and effectively mapping Matlab constructs to FORTRAN constructs.

In this paper, we introduce Mc2for, a tool which automatically translates Matlab to
Fortran. This tool consists of two major parts. The first part is an interprocedural analysis
component to estimate the static type characteristics, such as array shape and the range value
information, which are used to generate variable declarations in the translated Fortran program.
The second part is an extensible Fortran code generation framework to automatically transform
Matlab constructs to corresponding Fortran constructs. This work has been implemented
within the McLab framework, and we demonstrate the performance of the translated Fortran
code for a collection of Matlab benchmark programs.

1 Introduction

Matlab is a well established programming language commonly used by engineers, scientists and
students. This user community findsMatlab convenient for prototyping their applications because
of Matlab’s flexible syntax, the fact that no static declarations are required, the availability of
many high-level array operators, and access to a rich set of built-in functions. However, once the
user has developed their prototype application, he/she often wants to move to a more traditional
high-performance scientific language such as Fortran.

There are two compelling reasons to make such a transition to Fortran. Firstly, the user may
want high-performance code, which can be freely distributed. If the application has been translated
to Fortran, then the user may compile the code with any of the numerous high-performance
optimizing Fortran compilers, including open source compilers like GFortran [5]. Secondly, the
prototyped Matlab code may implement a function which needs to be integrated into an existing
system already implemented in Fortran. For example, a weather forecasting system may use
many different models, and new models must be implemented in Fortran for integration into the
system.

Given that converting from Matlab to Fortran is a common problem, our goal is to make
this easy for the programmers by providing Mc2for, a tool that automatically converts Matlab

programs to Fortran95 programs. This tool enables Matlab users to move their applications
from Matlab to Fortran without the effort and knowledge required of manually rewriting their
code. To be generally useful our tool needs to: (1) be easy to use, (2) produce efficient Fortran

code, and (3) produce readable Fortran code.

Although Matlab’s roots are as a simple scripting language to interface with Fortran matrix
libraries,1 modern Matlab has evolved into quite a complex language, with syntax and semantics
that have grown somewhat organically. Thus, although there is natural match between many array
operations available in Matlab and Fortran, there is actually a large gap between the dynamic

1See wwww.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html.

3

nature of Matlab and the statically compiled nature of Fortran. As one example, in Matlab

there are are no variable declarations, and variables may hold any type, and in fact may hold
different types at different program points. Whereas in Fortran all variables must be statically
declared and must have well-defined types. Thus, to perform an automatic translation, our tool
must implement sophisticated static analyses, including a mechanism to analyze the many built-in
functions.

The main contributions of this paper are as follows:

Identified need/challenges: We have identified the need for a tool to help programmers convert
Matlab to Fortran, and we have identified the main challenges.

Shape Analysis: We have designed and implemented an interprocedural shape analysis that es-
timates the number and extent of array dimensions, including handling built-in functions via
a domain-specific language for expressing shape rules.

Range Analysis: We have designed and implemented a custom range analysis that is used to
minimize the overhead of array bounds checking and array resizing in the generated Fortran

code.
Code Generation Strategies: We have designed and implemented code generation strategies

for both the simple control constructs and for the more difficult aspects of Matlab.
Tool Implementation and Empirical Evaluation: We have implemented the tool as an open

source project (www.sable.mcgill.ca/mclab/mc2for.html), and we have evaluated the tool
on a suite of benchmarks, showing that we can produce efficient and compact code.

The paper is structured as follows. In Section 2 we give the necessary background and the overall
structure of our tool. In Section 3 we provide a detailed explanation of our shape analysis, including
our approach for built-in functions. Section 4 describes our approach to range analysis, which is
used to minimize array bounds checks and array resizing checks. Section 6 provides our empirical
study of using the tool on a collection of Matlab benchmarks, Section 7 discusses related work,
and finally we conclude in Section 8.

2 Background and Overview

Matlab is widely used to prototype code for algorithms, implement solutions to complicated
mathematical problems and even run simulations for systems. Based on its array and dynamic
programming language nature, Matlab is especially suitable for solving linear algebra problems.
For example, Listing 1 shows a Matlab implementation of a well known linear algebra algorithm,
the Babai nearest plane algorithm. This algorithm is an approximation to solve the closest vector
problem and has pervasive applications in the field of wireless communication. Sometimes the
algorithm has to be implemented on hardware, which means that it requires a lot of efficiency.
Imagine that we want to transform this Matlab implementation to Fortran- what potential
problems we may encounter?

1 function z hat = babai (R, y)
2 %%
3 % compute the Babai e s t imat ion
4 % f ind a sub−optimal s o l u t i o n f o r min z | |R∗z−y | | 2
5 % R − an upper t r i a n gu l a r r e a l matrix o f n−by−n
6 % y − a r e a l vec tor o f n−by−1

4

7 % z hat − r e s u l t i n g i n t e g e r vec tor
8 %%
9 n=length (y) ;

10 z hat=ze r o s (n , 1) ;
11 z hat (n)=round (y (n) . /R(n , n)) ;
12

13 for k=n−1:−1:1
14 par=R(k , k+1:n)∗ z hat (k+1:n) ;
15 ck=(y (k)−par) . /R(k , k) ;
16 z hat (k)=round (ck) ;
17 end
18 end

Listing 1: Matlab implementation of Babai algorithm

First of all, how should we declare the Matlab variables in the transformed Fortran program?
Matlab is a dynamic programming language which doesn’t need variable declarations (although
for readability Matlab programmers often put some informal type information as comments),
while in Fortran, to declare an array variable, we need to know at least the type and the number
of dimensions of the variable, which means that in order to transform Matlab to Fortran, first
we need to find some way to obtain the type and shape information of all the variables in the given
Matlab program. Secondly, assuming that we can correctly declare all the variables, how should
we map those built-in functions in Matlab to Fortran? For example, in Listing 1, how should
we map the length function at line 9, the zeros function at line 10 and the round function at
lines 11 and 16. Thirdly, besides these two significant problems, we also need to think about how
to map Matlab constructs to the equivalent constructs in Fortran; how should we handle the
differences between Matlab and Fortran. For example, in Matlab the programmer may leave
out some of the trailing indices in an array reference, and the missing dimensions will be linearized,
while in Fortran the number of the indices must be the same as the number of dimensions of the
accessed array. Further, how should we map dynamic features such as the Matlab behaviour that
automatically grows an array when a write to that array is out of bounds?

In order to solve these problems, we designed and implemented the Mc2for tool, as illustrated in
Figure 1. First, focus on the input (top of figure) and output (bottom of figure) of Mc2for. Note
that the user provides the Matlab file which is the entry point of the user’s program, as well as
any other Matlab files that may be used by the program. If the entry point function has one or
more input parameters, then the user should also provide the type and shape information for each
of the parameter(s). The Mc2for tool then finds all functions reachable directly or indirectly from
the entry point, loads the necessary files, and translates all the reachable Matlab functions to
equivalent Fortran. The output of the tool is a collection of Fortran functions, which can be
compiled with any Fortran95-compliant compiler. Thus, from the user’s point of view, it is very
simple to use Mc2for.

Now let us concentrate on the actual structural organization of Mc2for. The central component
driving the compilation process is the Tamer module [4]. It starts with the entry point function
and iteratively discovers all the functions that are directly and indirectly called. For each processed
Matlab function file, the McLab Front End is used to scan and parse the file, generating a high-
level IR, McAST. The analysis and transformation engine, McSAF [2] is then used to transform
to a lower-level AST; and to perform initial analyses such as kind analysis [3], which determines

5

main.m

Front End

McAST

McSAF + Tamer
Shape Analysis

Range Value Analysis

Tamer+
McAST

Fortran IR Generator

Pretty Printer

main.f95

user-defined functions

.m

user-defined functions

.f95

libmc2for.a

(section 3)

(section 4)

(section 5)

type and shape of
input parameter(s)

with

TamerIR

Figure 1: The Overview of Mc2for. We highlight the boxes which are the contributions of this
paper. Note the size of the boxes does not correspond to either the complexity or the importance
of the component.

which identifiers refer to arrays, and which refer to functions.2 The Tamer then processes the IR
into an even lower-level TamerIR which is more suitable for interprocedural static analysis.

For the purposes of the Mc2for project, our main new analyses have been implemented in the
Tamer framework. The Tamer framework, besides providing a low-level IR with well-defined se-
mantic meanings, also provides an extensible interprocedural abstract value analysis framework.
In the framework, Tamer already provides some basic Matlab type characteristics analyses, like
constant analysis and Matlab class (mclass) analysis. In order to generate Fortran, Mc2for
provides two more important analysis components to the framework, which are the shape analysis

and the range value analysis. The shape analysis computes shape information of all the variables
for all program points in a given Matlab program. The range value analysis extends the basic
constant analysis and is used to estimate the range of a scalar variable at each point of the program.
The range value analysis can assist the shape analysis in the situation of the array bounds checking.

The transformed IR from Tamer, TamerIR, is in the form of three address code, which is very
suitable for static analysis but introduces a lot of temporary variables making the code unreadable.
In order to generate readable Fortran and other target languages code, there is a restructuring
component, Tamer+, which aggregates the low-level three address code of TamerIR back to the
high-level IR of McAST. The obtained type characteristics and the new transformed McAST are
then given as inputs to the Fortran code generation back end. By traversing the McAST, the back
end generates an equivalent Fortran IR. In this traversing process, Mc2for solves the problems of
mapping built-in functions in Matlab to Fortran, transforming difference between Matlab and

2In Matlab the syntactic construct a(i) can either be an array reference or a function call. In fact, even the
reference to the identifier i can either be a reference to a variable i, or a call to the predefined function i which gives
the complex value i.

6

Fortran in array indexing and so on. There is also a standalone Fortran library, libmc2for,
shipped together with Mc2for, which is used to map those built-in functions which have no direct
Fortran equivalents. Finally, after building the Fortran IR, Mc2for pretty prints the IR into
files with corresponding names. Each of them maps the entry point function file or the user-defined
function file(s). The resulting Fortran programs should be easy to redistribute, since they can be
compiled with any Fortran95-compliant compiler (including the open source GFortran). Further,
as we show in Section 6, the resulting Fortran code is often significantly more efficient than the
original Matlab code.

3 Shape Analysis

We use the term shape to refer to the number of dimensions and the size of each dimension of
a Matlab variable. The shape information of variables in a given Matlab program is essential
for transforming Matlab to Fortran. In order to propagate the shape information through an
entire given program, we have developed a shape analysis which is implemented using the Tamer’s
extensible forward interprocedural abstract value analysis framework. The Tamer framework han-
dles propagating the abstract values and computing the fixed points. We only need to provide
the following: (1) an implementation of the abstract representation of shapes, (2) a mechanism
for processing shapes for built-in Matlab functions, and (3) a merging operator that merges two
abstract shapes.

In our shape analysis, we abstract shapes by a list of numbers or lowercase letters3 enclosed by a
pair of square brackets to represent the shape information of a matrix, and each element in the list
represents the size of the corresponding dimension of the matrix. For example, if arr is a 3-by-5
matrix, we will represent its shape as [3,5] in which 3 represents the size of the first dimension of
arr and 5 represents the size of the second dimension.

3.1 Handling Built-ins

Recall the Babai algorithm implementation in Listing 1. At line 9, if we know the shape of y is
15-by-1, what is the shape of variable n after evaluating this line, in other words, how does the
shape information propagate through the Matlab built-in function length? The same problem
pops up again at line 10 for the built-in function zeros and at lines 11 and 16 for the built-in
function round.

In this section, we design a concise domain specific language, shape propagation equation language,
to describe the behavior of how the shape information propagates through Matlab built-in func-
tions. With this concise language, we can propagate the shape information through the built-in
function call statements.

3.2 Typical Behaviors of Matlab Built-ins on Shapes

Before formally introducing the shape propagation equation language and how to use this lan-
guage to describe the behavior of how the shape information propagates through Matlab built-in

3In our analysis, the size of a certain dimension can be represented as a symbol.

7

functions, we need to summarize some most typical behaviors. By studying a a large number of
Matlab built-in functions, we summarized the key possible behaviors into four major categories.

Based on the shape of input argument(s): The most common behaviour is that the shape of
the output argument(s) only depends on the shape of the input argument(s). For example, the
return shape of some commonly-used arithmetic built-ins, like +, -, .* and ./, only depends
on the shape of the input arguments.4

Based on the numeric value of input argument(s): The shape of the output argument(s) of
some built-in functions depends on the numeric value of the input argument(s). For example,
the return shape of the built-in zeros at line 10 in Listing 1 depends on the value of its input
argument. In this example, the shape of z hat after evaluating this statement will be [n,1].

Based on optional numbers or strings: Some Matlab built-ins allow optional numbers or
character strings to control the shape of the output argument(s). For example, the return
shape of the built-in function svd, which is used to compute singular value decomposition of
a matrix, depends on an optional input number argument, 0, and an optional input string
argument, ’econ’. In the case of [U,S,V] = svd(X), assuming the shape of X is [3,2],
the shape of U, S and V will be [3,3], [3,2] and [2,2], respectively; while, in the case of
[U,S,V] = svd(X,0) or [U,S,V] = svd(X,’econ’), the shape of U, S and V will be [3,2],
[2,2] and [2,2], respectively.

Other cases: The three previous categories already cover most behaviours. However, there are
still a few special cases inMatlab. For example, the built-in function cross, which computes
the cross product of two vectors or matrices. Besides the requirement that both the inputs
must have the same shape, it also requires that the vectors must be 3-element vectors or the
matrices must have at least one dimension of size 3.

3.3 Shape Analysis through Matlab Built-ins

In this subsection, we introduce a concise domain-specific language, the shape propagation equation

language (SPEL). Using this language, we can write a shape propagation equation (SPE) for each
Matlab built-in function to describe the behavior of how the shape information propagates through
the function. In order to make the language as concise as possible, we focus on supporting features
needed to describe all the typical behaviors. By supporting all the typical behaviors, no matter
how many new built-ins are introduced into Matlab in the future, we still can describe how these
new built-in functions work on shapes by writing SPEs in this language.

Besides the language and the SPEs, we also present the shape matching algorithm. This algorithm
takes as input: (1) the abstract value information of the input arguments to the call of the built-in,
and (2) the SPE for the built-in; and produces, as output, the shape information of the output
argument(s) of the built-in call. For example, for a built-in function call a = ones(m,n), the shape
matching algorithm would take as input the abstract values of m and n and the SPE rule for ones,
and would produce an estimate of the shape for a. For this case, the algorithm will use the constant
value information in the abstract value information of m and n to return the shape of [m,n].

In the remainder of this subsection, we introduce the general structures and the semantics of
constructs in SPEL and at the same time we explain how the shape matching algorithm infers the
output shape, starting with the top-level constructs of the SPEL.

4.* is element-wise multiplication, and ./ is element-wise division

8

CASELIST Since almost all the Matlab built-in functions are overloaded and can take several
combinations of input arguments, a SPE of a built-in function is represented as a caselist of at least
one case, and the cases are separated by OROR (||) symbols.

case1 || case2 || case3

The separated cases are evaluated from left to right by the shape matching algorithm. If any of
them are matched successfully with the shape of input argument(s), the matching process will
terminate and return the corresponding shape result.

CASE Each case in the caselist can be divided into two parts, a pattern list side and a shape
output list side, separated by an ARROW (->) symbol. All the pattern list expressions will be on
the left-hand side of the ARROW symbol, and all the shape output list expressions will be on the
right-hand side.

pattern list side -> shape output list side

The pattern list side is evaluated prior to the shape output list side by the shape matching algorithm.

PATTERN LIST SIDE The pattern list side is composed of a list of pattern expressions which
are separated by COMMA (,) symbols.

PExp_1, PExp_2, ...PExp_n -> shape output list side

The pattern expressions are evaluated from left to right. If any expression on the pattern list side
fails in the matching process, the matching process for the enclosing case will be terminated and if
there are still remaining case(s) in the caselist, the matching process will start from that next case,
repeating the matching process again until one case is matched successfully or there isn’t any case
left in the caselist. If none of the cases in the caselist matches the input argument(s) successfully,
it means that there must be some misuse of the built-in function by the Matlab programmer.
Mc2for will throw a warning to the user.

PATTERN EXPRESSION Pattern expressions can be categorized into three different groups:
shape matching expressions, helper function calls, and assignment expressions. Among these, only
the shape matching expressions are used to match the shape of the input argument(s) and if the
matching is successful, the current input argument is consumed, which means the matching process
will point to the next input argument if there are any left, or go to the shape output list side. The
other two, helper function calls and assignment expressions, are used for special checks and storing
information during the shape propagation process.

Shape matching expression (SME) : There are four kinds of symbols which are used to rep-
resent shape matching expressions: the DOLLAR ($) symbol, upper-case letters, dimension
expressions and the ANY (#) symbol.
• The $ symbol is used to match scalars, which in Matlab are stored at 1-by-1 arrays;
• Upper-case letters match input arguments of matrices which are not in the shape of 1-by-1.

Since it’s almost impossible to need more than 26 different upper-case letters in one shape
equation, to make the language concise, it only allows using one letter to represent a matrix
shape, not combination of letters; and

• Dimension expressions are defined as a list of lower-case letters or numbers enclosed by
a pair of square brackets, like [1,k] or [m,2,n]. Dimension expressions are also used to
match input arguments of matrices, while it may impose more restrictions on the number
of dimensions or/and the size of certain dimension;

9

• The # symbol: In some cases, we may not care about the shape of current input argument.
We use this symbol as a wildcard to consume the current input argument, no matter what
the shape it has.

Helper function calls: There are a set of pre-defined functions which provide some extra compu-
tation to assist the shape propagation process. For instance, the helper function previousScalar
retrieves the value of previous matched scalar input argument. Some of the helper functions
are also used as assert expressions, which have the functionality to control whether the match-
ing process should continue on based on certain conditions. For example, the assert expression
atLeastOneDimEqls(arg) checks whether there is at least one dimension’s size of matched
matrix equals arg, if not, the current matching process will terminate and start over from
next case again if there is any case left.
Since MathWorks may introduce new Matlab built-in functions with some new restrictions
in the future, we made this language extensible by allowing users to add new pre-defined
functions into the language, which could then be supported in matching algorithm.

Assignment expression: lvalue = rvalue, where lvalue can be lower-case letters, upper-case
letters, # symbol, and indexed upper-case letters. The rvalue can be numbers, lower-case
letters, other shape matching expressions and helper function calls. Assignment expressions
are used during the matching process to store extra needed information to assist the shape
analysis. The assignment expression n=previousScalar() will be explained in a SPE for the
built-in function zeros after a few lines.

SHAPE OUTPUT LIST SIDE The shape output list side contains a list of only shape expressions,
specifying the shapes of the output parameters.

pattern list side -> OExp_1, OExp_2, ... OExp_n

Note that the matching of the input arguments and binding of values are done by the pattern list
side, and the building and returning of the the shape of the output is done by the shape output
list side.

OPERATORS We have also defined a set of operators.

The () operator: The parentheses operator will produce a compound expression which is com-
posed of at least one shape matching expression at the first place. It is mostly used to work
together with other operators to achieve advanced matching logic;

The ? operator: Putting a question mark operator after a shape matching expression or a com-
pound expression in the pattern list side means that during the matching process, the pre-
ceding expression is optional, and if there is no input argument for this expression to match,
it won’t be an error;

The + operator: Putting a plus operator after a shape matching expression or a compound
expression in the pattern list side means that during the matching process, the preceding
expression will be evaluated at least one or more times depends on the number of input
argument(s);

The * operator: Putting a star operator after shape matching expression or a compound expres-
sion in the pattern list side means that during the matching process, the preceding expression
may be evaluated one or more times depends on the number of input argument(s);

The | operator: The choice operator let the shape of input argument(s) matches either the ex-
pression before or after the operator;

10

The ‘ ’ pair: The single quotation pair encloses some string literals and is only used to match an
input string literal argument.

Now let us consider some SPEs for the built-in functions for our example Babai algorithm in
Listing 1: length, zeros and round. For length, it doesn’t care about the shape of the input
argument, no matter whether the input is a scalar ($) or a matrix (M), length will always return
a scalar as a result, which means that the return shape is $.

$|M -> $

For the built-in zeros, if the input argument list is empty ([]), the built-in zeros will return a
scalar 0 ($); if not, each element in the list represents the size of corresponding dimension of the
returned shape.

[] -> $ ||

($,n=previousScalar(),add(n))+ -> M

The second line of this equation is interpreted as: repeat matching process with the pattern ex-
pressions in the parentheses before + until there is no input argument to match. The expression
inside the parentheses specifies that using $ to match an input scalar argument, consume this input
and associate the value of this scalar with $, the expression n=previousScalar() will try to fetch
the value of previous matched scalar and store the value into n, the expression add(n) will add the
value of n into a default vector preparing for final result emission, when there is no input arguments
to match, go to the shape output list side. On the output side, M is used to represent the default
vector if it’s not used in pattern list side, the values in the default vector will be the returned shape
information.

The round function returns the same shape as the shape of its input, so the SPE for round is:

$ -> $ || M -> M

3.4 Merging Shapes for Flow Control Statements

After solving the problem of estimating the shape information through Matlab built-in functions,
we may have the shape information of all the variables at each point of the program if the program
only has sequential statements. What if at the program point of the end of flow control statements,
like if-else, for loop and while loop statements, the shape information for the same variable from
different branches or different iterations is different and needs to be merged?

The overview merging strategy of the shape is given in Table I.

Table I: Shape merging relation table
⊲⊳ not_matched unmergeable ordinary

not_matched not_matched not_matched not_matched

unmergeable not_matched unmergeable unmergeable

ordinary not_matched unmergeable ordinary

There are three categories of abstract shapes. The ordinary shape is the shape with a dimension
list where some dimensions in the list may be unknown, but at least the number of dimensions
is known. The strategy for merging two ordinary shapes is straightforward: if the length of the
dimension lists of two shapes are not equal, add 1(s) to the end of the shorter one to make them
have the same length. Now, given two dimension lists of the same length, for each dimension: (1)

11

if the values are equal, keep it as the value for the corresponding dimension in the merged shape;
or (2) if the values are not equal, mark the value of that dimension as unknown.

The not_matched shape arises when the built-in matcher cannot find a shape match, which corre-
sponds to cases where a programmer misuses a built-in function. Merging not_matched with any
shape produces not_matched.

The unmergeable shape arises from our treatment of the fixed-point for for and while statements.
If the shapes from different iterations do not reach a fixed-point after 55 iterations, we push the
shape to unmergeable.

3.5 Summary

In summary, in order to estimate the shape information of all the variables in a given Matlab

program, we implemented a forward interprocedural flow analysis which uses the Tamer’s extensible
interprocedural abstract value analysis framework. To propagate shape information through the
numerous Matlab built-in functions, we designed a concise domain-specific language, the shape
propagation equation language. By writing shape propagation equations in this language and
applying our shape matching algorithm, we provided a concise and extensible method to propagate
shape information through built-in functions. To handle flow control constructs, we provided a
merging strategy which handles ordinary shapes, as well handling the not_matched shape used for
cases when a built-in is used incorrectly and the unmergeable shape used to ensure termination of
the fixed-point computation.

4 Range Value Analysis

In translating to Fortran, we must ensure that we retain Matlab’s semantics for reading and
writing elements of an array. For reading from an array (i.e. an expression of the form lhs = a(i)),
we must ensure that i is within the array bounds, and raise an exception otherwise. For writing
to an array (i.e. an expression of the form a(i) = rhs), the Matlab semantics are somewhat
unusual. In this case, if i is not in bounds, the array should be automatically enlarged so that i
is in bounds, and the extra columns/rows added should be initialized to 0.

In both the read and write case we need to estimate the value of the index value i using range
analysis, so as to avoid generating unnecessary dynamic bounds checks in the generated Fortran

code. In the write case, we also need the range information to eliminate unnecessary checks and
reallocation statements, for the case when an array could grow. Furthermore, the range analysis is
needed to perform more precise shape analysis, since writing to the array could change its shape.

In order to get a better static array bounds check result, we extended Tamer’s constant value
analysis to a range value analysis, which statically estimates the minimum and maximum values
each scalar variable 6 could take at each point of a given program. Similar to shape analysis, the
range value analysis uses Tamer’s extensible interprocedural abstract value analysis framework.
The range value of a variable is a pair of values in the domain of the range values: the first element
represents the minimum possible value, which we call the lower bound; and the second represents

5Any k will work with our approach, empirically we found 5 to be a good setting.
6We also support range values for some vector variables, which mostly come from the range expressions in for

loops or the array constructions by using colon built-in function.

12

the maximum possible value, which we call the upper bound. The domain of the range values is
a closed numeric value interval, ordered by including a smallest element, -inf, the range value
decreasing to the negative infinity; all the real number elements; and a largest element, +inf, the
range value increasing to the positive infinity. Moreover, to support range value analysis through
relational Matlab built-ins, we add two special superscript symbols, + and -, for instance, 5+ and
5−. You can interpret these two superscripted real numbers as 5+ǫ and 5-ǫ, where ǫ is positive and
close to 0. For example, < 10,+inf> means that variable can be any value greater than or equal
to 10 to +inf, and <10+,+inf> means that the variable can be any value greater than but not
equal to 10 to +inf. Moreover, the lower bound in a range value can only be one of -inf, any
real number and any real number with +; and the upper bound in a range value can only be one
of +inf, any real number and any real number with -.

4.1 Range Value Analysis through Matlab Built-ins

We implemented our range value analysis to support the most importantMatlab built-in functions,
listed in Table II.

Table II: Range Value Analysis Supported Operators
unary plus (+) binary plus (+)

unary minus (-) binary minus (-)

element-wise multiplication (.*) matrix multiplication (*)

element-wise rdivision (./) matrix rdivision (/)

natural logarithm (log(x)) exponential (exp(x))

absolute value (abs(x)) colon (:)

Since the domain of range values involves both symbolic and real number values, the challenge here
is how to infer the range value result from computing the symbolic and real numbers together.
In this paper, we propose the range value propagation functions, which can infer the range value
result for the above built-ins based on the range values of their input arguments. The range value
propagation functions are based on the order of and some operations defined for the values in the
range value domain. The order of the values in the domain is defined when we introduce the domain.
To support the range value propagation functions, we have defined a set of arithmetic functions
that operate on range values including: min, max, ==, unary +, unary -, binary +, binary -, ×,
÷, log and exp. As an example, consider the binary + operation on the values in the domain and
the range value propagation function for the Matlab built-in binary plus.

binary +: if any operand is -inf (+inf), the result will be -inf (+inf); if neither of the operands
is -inf nor +inf, the + operator follows the rule as:7

x− + y−, x− + y or x + y− ⇒ (x+ y)−;
x+ + y+, x+ + y or x + y+ ⇒ (x+ y)+;
x + y ⇒ (x+ y);
when + applies on real numbers, the result will be the same as in the algebra.

function r ange va lu e b in a r y p lu s (op a , op b)
i f both op a and op b have known range va lu e s
<a , b> = get range value pa i r from op a

7Assuming all the following x and y are real numbers.

13

<c , d> = get range value pa i r from op b
return <a+c , b+d>

else
return unknown

end i f
end function

Listing 2: binary plus operator (+)

Besides the twelve built-in operators in Table II, the range value analysis also supports fiveMatlab

built-in relational operators: less than (<), less than or equal to (<=), greater than (>), greater
than or equal to (>=) and equal to (==). For example, if the conditional expression in an if clause
is var < 5, we can infer that in the if branch, the upper bound of the variable var is smaller than
5, which can be represented as <something, 5−>. Note that for the range value analysis, we only
consider the cases where one of the operand is a variable and the other operand is a constant.

4.2 Merging Range Values for Flow Control Statements

The merging result of two range values <a,b> and <c,d> is then the range which covers them
both: <min(a,c),max(b,d)>, where the min and max are defined operations on the values in the
range value domain. Similar to the shape analysis, if range values from different iterations of loop
statements cannot be merged to a fixed point for 5 times, the range value analysis will push the
corresponding bounds of the range value to -inf or +inf respectively.

4.3 Shape Analysis for Matrix Indexing Gets and Sets

The static array bounds check can succeed only when the lower and upper bounds of the range
values of all the indices are in real numbers and the shape of accessed matrix is constant at the
same time. Otherwise, we have to leave the array bounds check to the runtime by the inlined
checking code. The only difference of the static array bounds check and shape analysis of two
statements is that the matrix can only be grew by an out-of-bound index in the set statements,
not get statements. For the set statements, the Matlab will always first try to grow the matrix
based on the out-of-bound index (or indices) and current shape of the matrix before throwing an
exception.8

4.3.1 for Get Statements

The static array bounds check in the shape analysis will first extract the range values of each index,
then compare the lower bound and upper bound of that index respectively with the lower bound,
which is always 1 in Matlab, and upper bound of the corresponding dimension of the accessed
matrix. If an out-of-bound matrix indexing occurs, the shape analysis will inform the abstract
value analysis framework to mark the current flow set as nonviable9.

8Because of the limitation of the space, the rule of whether Matlab can succeed in growing the matrix is given
on the Mc2for web page.

9In the Tamer abstract value analysis framework, the nonviable flow sets represent the non-reachable code (for
statements after errors, or non-viable branches).

14

4.3.2 for Set Statements

Besides the similar work as for the get statements, when an out-of-bound matrix indexing occurs,
the shape analysis will first try to enlarge the accessed matrix based on the rule in the Matlab. If
the endeavour succeeds, the shape information of the accessed matrix will be updated to the new
shape, if not, the shape analysis should also inform the abstract value analysis framework to mark
the current flow set as nonviable.

5 Transformation from Matlab to Fortran

After obtaining the shape and range information from analyzing the input Matlab program, we
finally get to the extensible Fortran code generation framework of our Mc2for. The framework
consists of two components: the Fortran IR generator and the IR pretty printer. By traversing
the input IR of McAST, the framework transforms the Matlab constructs to equivalent Fortran
constructs. During the transformation, the framework builds up the IR of the generated Fortran

program. Finally, the IR pretty printer will print out the IR of Fortran into corresponding
Fortran files.

First, let’s examine the generated code for our example Babai program, given in Listing 3 (au-
tomatically produced by Mc2for from the Matlab code given in Listing 1). Note that for this
example we use the the no-check mode mode of Mc2for, which tells the tool not to inline any
run-time array bounds checking code. This mode is useful when the user has verified (by hand or
using some checking aspects) that there are no out-of-bounds problems.

1 MODULE mod babai
2 CONTAINS
3 SUBROUTINE babai (R, y , z hat)
4 USE mod zeros
5 IMPLICIT NONE
6 DOUBLE PRECISION, DIMENSION(: , :) , ALLOCATABLE: : z hat
7 DOUBLE PRECISION, DIMENSION(: , :) : : R, y
8 DOUBLE PRECISION : : par , n , ck
9 INTEGER(KIND=4) : : k

10 ! compute the Babai e s t imat i on

11 ! f i n d a sub−opt imal s o l u t i o n f o r min z | |R∗z−y | | 2

12 ! R − an upper t r i an g u l a r r e a l matrix o f n−by−n
13 ! y − a r e a l v ec tor o f n−by−1
14 ! z ha t − r e s u l t i n g i n t e g e r vec tor

15 n = SIZE(y) ;
16 ! i n l i n e runtime a l l o c a t e

17 IF (ALLOCATED(z hat)) THEN
18 DEALLOCATE(z hat)
19 END IF
20 ALLOCATE(z hat (INT(n) , 1))
21 !

22 z hat = ze r o s (n , 1 . 0 d+0);
23 z hat (INT(n) , 1) = NINT((y (INT(n) , 1)

15

24 / R(INT(n) , INT(n)))) ;
25 DO k = INT((n − 1)) , 1 , −(1)
26 par = DOTPRODUCT(R(k , (k + 1) : INT(n)) ,
27 z hat ((k + 1) : INT(n) , 1)) ;
28 ck = ((y (k , 1) − par) / R(k , k)) ;
29 z hat (k , 1) = NINT(ck) ;
30 ENDDO
31 END SUBROUTINE
32 ENDMODULE

Listing 3: Fortran generated for the Babai example with no-check-mode

Overall, we believe that the generated code is quite readable, and it works for input arrays of any
size. Note we retain the original comments from the Matlab program, as well as introducing new
comments to explain some of the generated code. All variables have been given types according
to Matlab semantics, so some of the types may look surprising. For example, the type of z hat

is a DOUBLE array, even though the original Matlab comments said it was an integer vector. The
generated code is correct, because the Matlab round function does indeed return type double.

If we run Mc2for on this example without the no-check flag, then the generated code will include
dynamic checks for the array reads and writes in the body of the for loop. For example, the
following lines would be inserted at the beginning of the for loop body.

1 ! i n l i n e runtime ABC and error handle

2 IF (k < 1 .OR. k > SIZE(R, 1) .OR.
3 (k + 1) < 1 .OR. INT(n) > SIZE(R, 2)) THEN
4 STOP ”INDEX OUT OF BOUND” ;
5 END IF
6 IF ((k + 1) < 1 .OR. INT(n) > SIZE(z hat , 1)) THEN
7 STOP ”INDEX OUT OF BOUND” ;
8 END IF

Note that it is difficult to remove these array bounds checks without more powerful range analyses,
and some further information from the user about the symbolic sizes of the input parameters.

However, even tighter code can be generated if theMc2for user is willing to specialize the generated
code to specific sized input parameters. For example, if the user was using Babai to solve a problem
in telecommunications, the shape of R and y is double the number of antennas in a multiple-in
multiple-out system. Thus, the user may wish to generate code for a specific sized problem, and
then run the algorithm with different values for that size. If we specify that R is a 10-by-10 array
and y is a 10-by-1 vector, then Mc2for generates the code found in Listing 4. Note that in this
case the range analysis can precisely estimate all array indices and thus can safely eliminate all
dynamic checks from the generated code. Furthermore, the generated Fortran can include more
specific type declarations, which includes the sizes of the dimensions.

1 MODULE mod babai
2 CONTAINS
3 SUBROUTINE babai (R, y , z hat)
4 USE mod zeros
5 IMPLICIT NONE
6 DOUBLE PRECISION, DIMENSION(10 ,1) : : z hat

16

7 DOUBLE PRECISION , DIMENSION(10 ,10) : : R
8 DOUBLE PRECISION , DIMENSION(10 ,1) : : y
9 DOUBLE PRECISION : : par , n , ck

10 INTEGER(KIND=4) : : k
11 ! compute the Babai e s t imat i on

12 ! f i n d a sub−opt imal s o l u t i o n f o r min z | |R∗z−y | | 2

13 ! R − an upper t r i an g u l a r r e a l matrix o f n−by−n
14 ! y − a r e a l v ec tor o f n−by−1
15 ! z ha t − r e s u l t i n g i n t e g e r vec tor

16 n = SIZE(y) ;
17 z hat = ze r o s (n , 1 . 0 d+0);
18 z hat (INT(n) , 1) = NINT((y (INT(n) , 1)
19 / R(INT(n) , INT(n)))) ;
20 DO k = INT((n − 1)) , 1 , −(1)
21 par = DOTPRODUCT(R(k , (k + 1) : INT(n)) ,
22 z hat ((k + 1) : INT(n) , 1)) ;
23 ck = ((y (k , 1) − par) / R(k , k)) ;
24 z hat (k , 1) = NINT(ck) ;
25 ENDDO
26 END SUBROUTINE
27 ENDMODULE

Listing 4: Fortran generated for the Babai example with specific dimensions given for input pa-
rametersr

As we have seen by the generated code examples, the translations for program constructs like for
loops are quite standard, so in the remainder of this section we concentrate discussing the most
interesting and challenging issues for mapping Matlab to Fortran.

5.1 Mapping Types

In general, the mappings of types from Matlab to Fortran is listed in Table III. Besides these
primitive data types, Mc2for also supports cell arrays in Matlab. We use derived data types10

in Fortran to map Matlab cell arrays.

5.1.1 Variables with more than one dynamic type

Due to its dynamic nature, a variable in Matlab may hold different types at different program
points (for example, variable x may be an integer at one place in a function, and a double at another
place). Whereas in static languages, like Fortran, a variable must contain only the declared type.
In Mc2for, we have a two-phase strategy to solve this problem. The first phase is the variable
renaming phase achieved by analyzing the webs of definitions and uses of a variable, which is
provided by the restructuring component Tamer+. If different webs for the same variable hold
different types, then Mc2for creates renamed copies of the variable, one copy for each different
type. The second phase is for the situation where a variable still may hold different types in the

10Also unknown as union types and similar to the structs in C/C++.

17

Table III: Mapping Matlab types to Fortran

Primitive Data Types in Matlab Types in Fortran

double DOUBLE PRECISION
single REAL
int8 INTEGER(KIND=1)
int16 INTEGER(KIND=2)
int32 INTEGER(KIND=4)
int64 INTEGER(KIND=8)
char CHARACTER
logical LOGICAL
complex COMPLEX

same web of definitions and uses. In this case, Mc2for transforms this variable to a derived data
type variable in Fortran. In the transformed derived data type, each field represents a different
type of this variable in the original Matlab program.

5.1.2 Implicit type conversion in Matlab

Due to its weakly-typed language nature, the type of a variable can be implicitly converted in
Matlab. For example, although Matlab requires that subscript indices must either be real
positive integers or logicals, programmers are allowed to use indices in the type of double. While
in Fortran, which is a strongly-typed language, the type of a variable cannot be automatically
converted. To map this difference, Mc2for uses some Fortran intrinsic functions to force the type
conversion, like INT and DBLE, in the situations where the type of the variable may be implicitly
converted in Matlab. For example, Mc2for will add INT around the variables used as matrix
indices and variables or values used as start, end or increment in a range expression of a for loop
statement.

5.2 Built-in Mapping Framework

To map Matlab built-in functions to Fortran, we implemented a built-in mapping framework.
In the framework, built-ins in Matlab are mapped to Fortran in three different ways.

5.2.1 Directly-mapped

There are some Matlab built-ins which can be mapped directly to equivalent intrinsic functions in
Fortran, or we can also say, replaced directly by the equivalent intrinsic functions. The complete
lists of these built-ins is given on the Mc2for web page.

5.2.2 Transform-then-inlined

For some built-ins, although they cannot be directly replaced with certain Fortran intrinsic
functions, they can be transformed easily and inlined in the generated code, i.e., the colon and left

18

division functions.

5.2.3 Not-directly-mapped

For most Matlab built-ins, they cannot be directly mapped or easily transformed to equivalent
intrinsic functions in Fortran. In order not to update Mc2for every time when there is a new
Matlab built-in introduced, we decided to use the following strategy to handle this mapping prob-
lem. The strategy is that we keep the function signature11 in the generated Fortran code the same
as in the original Matlab program, then write an equivalent-functionality user-defined function in
Fortran and add it into the standalone libmc2for library. 12 In other words, Mc2for leaves a
“hole” for that not-directly-mapped Matlab built-in inside the generated Fortran program and
requires that there is a corresponding Fortran function in libmc2for to fill up the “hole” during
compilation.

Almost all the Matlab built-in functions are overloaded. In Fortran, intrinsic functions are
also overloaded. Recall that the built-in mapping framework leaves the “hole” for those built-
ins without directly-mappings in the transformed program and requires that there are Fortran

functions with the same function signatures in libmc2for to fill up the “hole”, so besides providing
those Fortran functions, we should also make sure those functions are overloaded. Fortunately,
we can overload user-defined functions with an interface since Fortran 90. Recall the built-in
function zeros at line 10 in Listing 1. This function is always overloaded in Matlab program
as a storage preallocation for variables. A code snippet of the equivalent Fortran function in
libmc2for for zeros is given in Listing 5. With this interface, the Matlab built-in zeros can
not only be supported, but also be supported with overloading features in the generated Fortran

program.

1 MODULE mod zeros
2

3 INTERFACE z e r o s
4 MODULE PROCEDURE zeros 1 , z e r o s 2 ! may be more

5 END INTERFACE z e r o s
6

7 CONTAINS
8

9 FUNCTION z e r o s 1 (x)
10 IMPLICIT NONE
11 DOUBLE PRECISION, INTENT(IN) : : x
12 DOUBLE PRECISION, DIMENSION(INT(x) , INT(x)) : : z e r o s 1
13 ! d e f a u l t i s 0 , no need assignment .

14 END FUNCTION z e r o s 1
15

16 FUNCTION z e r o s 2 (x , y)
17 IMPLICIT NONE
18 DOUBLE PRECISION, INTENT(IN) : : x , y
19 DOUBLE PRECISION, DIMENSION(INT(x) , INT(y)) : : z e r o s 2

11The function name and the names of the input arguments.
12In the library shipped with Mc2for, we have already implemented some user-defined functions in Fortran to

map some commonly-used but not-directly-mapped Matlab built-ins, like ones and zeros.

19

20 ! d e f a u l t i s 0 , no need assignment .

21 END FUNCTION z e r o s 2
22

23 ENDMODULE mod zeros

Listing 5: libmc2for library function to map Matlab zeros

5.3 Linear Indexing Transformation

In Matlab, the programmer may leave out some of the trailing indices when accessing an element
of a matrix. In this case, the missing dimensions will be linearized, while in Fortran, the number
of the indices must be the same as the number of dimensions of the accessed array, which we call
rigorous array indexing. Mc2for has a built-in component to transform linear indexing in Matlab

to rigorous array indexing in Fortran. For example, assuming that arr is a 3-by-3 matrix in
Matlab, matrix indexing in Matlab arr(5) will be transformed to arr(2,2) in the generated
Fortran program. Note that the prerequisite of this direct transformation is that both the indices
and the shape of the accessed matrix are constants when Mc2for performs this transformation, if
this prerequisite cannot be satisfied, Mc2for will call certain functions in libmc2for to map the
indexing.13

6 Experiments and Result Analysis

In this section, we demonstrate some experiments to evaluate the performance of Mc2for. The set
of benchmarks for the experiments was acquired from a variety of sources, most of them come from
related projects, like FALCON [10] and OTTER projects [9], Chalmers University of Technology14

and “The MathWorks’ Central File Exchange”15. A brief description of the benchmarks is given
here.

• adpt finds the adaptive quadrature using Simpson’s rule. This benchmark features an array
whose size cannot be predicted before compilation.

• bubl is the standard bubble sort algorithm. This benchmark contains nested loops and consists
of many array read and write operations.

• capr computes the capacitance of a transmission line using finite difference and Gauss-Seidel
method. It’s a loop-based program that involves basic scalar operations on two small-sized
arrays.

• clos calculates the transitive closure of a directed graph. It contains matrix multiplication oper-
ations between two 450-by-450 arrays.

• crni computes the Crank-Nicholson solution to the heat equation. This benchmark involves some
elementary scalar operations on a 2300-by-2300 array.

• dich computes the Dirichlet solution to Laplace’s Equation. It’s also a loop-based program which
involves basic scalar operation on a small-sized array.

• diff calculates the diffraction pattern of monochromatic light through a transmission grating for
two slits. This benchmark also features an array whose size is increased dynamically like the

13The naming convention of these functions and some function examples are given on Mc2for web page.
14http://www.elmagn.chalmers.se/courses/CEM/
15http://www.mathworks.com/matlabcentral/fileexchange

20

benchmark adpt.
• fiff computes the finite-difference solution to the wave equation. It’s a loop-based program which

involves basic scalar operation on a 2-dimensional array.
• mbrt computes a mandelbrot set with specified number elements and number of iterations. This

benchmark contains elementary scalar operations on complex type data.
• nb1d simulates the gravitational movement of a set of objects. It involves computations on

vectors inside nested loops.

All the programs were executed on a machine with Intel(R) Core(TM) i7-3930k CPU @ 3.20GHz x
12 processor and 16 GB memory running GNU/Linux(3.2.0-26-generic #41-Ubuntu). TheMatlab

version is R2013a and the generated Fortran code is compiled with the GFortran compiler of GCC
version 4.6.3 using optimization level -O3.

In order to get a measurable execution time, we used a scale number16 for each benchmark to adjust
the problem size, including the number of iterations and the size of arrays, to make the program to
run approximately 20 seconds under Matlab. In Table IV, we list the execution time of different
benchmarks underMatlab and Fortran and we illustrate the speedup of the generated Fortran

code over Matlab for all the benchmarks in Figure 2.

The speedup of Fortran over Matlab ranges from 3 to 26 times, except for the benchmark
clos. The generated Fortran code for clos ran almost 28 times slower than the clos benchmark
running in Matlab. After examining the generated code, we discovered that the GFortran intrinsic
function for matrix multiplication, MATMUL, is not very efficient. In order to validate that this
was the problem, we replaced the call to MATMUL with a call to the DGEMM from the Fortran
BLAS (Basic Linear Algebra Subprograms) library to make a new benchmark named clos2. The
result is impressive, the compiled17 program runs over 7 times faster than the clos benchmark
running in Matlab.

Table IV: Benchmarks’ Execution Times in Seconds
Benchmarks Matlab Fortran

adpt 20.08 3.4

bubl 20.48 1.3

capr 20.20 1.7

clos 20.62 569.7

clos2 20.62 2.9

crni 20.56 2.0

dich 20.10 6.8

diff 20.61 4.7

fiff 20.76 1.1

mbrt 20.85 3.3

nb1d 20.60 0.8

In Table V, we list the physical lines18 of code (LOC) of both Matlab benchmarks and the
generated Fortran code from Mc2for. At the fourth column in the table, which is named

16The scale number for each benchmark is listed on Mc2for web page.
17In order to get the best performance, we statically link the subroutine from BLAS library when we compile the

transformed program.
18Including whitespace and comment lines.

21

adpt bubl capr clos clos2 crni dich diff fiff mbrt nb1d
0

5

10

15

20

25

30

S
pe

ed
up

Figure 2: Speedup of Generated Fortran over Matlab

“F/M”, we also list the ratio of the LOC of Fortran to Matlab.

In order to give a more intuitive feeling, in Figure 3, we put the benchmarks in the increasing order
of their LOC along the x axis, and link their ratio of the LOC of Fortran to Matlab. From this
figure, we feel that with the size of the code growing bigger, the ratio of the LOC of Fortran to
Matlab goes to smaller and close to 1. This is reasonable, since our LOC also include the lines of
variable declarations in the generated Fortran code, when the size of the Matlab code is small,
the lines of variable declarations take a lot of space in the generated Fortran code, while the
program grows bigger and bigger, the number of variables keeps in a relatively stable number, so
the lines of the statements will take the major numbers of the LOC, and the ratio of the LOC of
generated Fortran to Matlab goes down and gets closer and closer to 1. However, there are
two exceptions, diff and adpt, in Figure 3. According to the description at the beginning of this
section, we know that there are arrays whose sizes are increased or grew dynamically during the
execution in those two benchmarks, which means, the generated Fortran code is inlined with a
lot of run-time array bounds check and reallocation code.

Table V: LOC of Benchmarks
Benchmarks Matlab Fortran F / M

adpt 182 344 1.9

bubl 23 62 2.7

capr 217 360 1.7

clos 90 117 1.3

crni 198 281 1.4

dich 143 213 1.5

diff 127 204 1.6

fiff 116 158 1.4

mbrt 60 105 1.8

nb1d 179 311 1.7

In summary, the overall performance of the generated Fortran code from Mc2for for these
benchmarks is better than the performance of these benchmarks running inMatlab, and according
to the comparison of the LOCs, the size of the generated Fortran code is in an acceptable range.

22

bubl mbrt clos fiff diff dich nb1d adpt crni capr

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

F
or

tr
an

 /
M

A
T

LA
B

Figure 3: Code Size of Generated Fortran over Matlab

7 Related Work

Before MathWorks put a just-in-time (JIT) accelerator under the hood of Matlab, its inefficient
performance had already drawn some attention from researchers and engineers. FALCON [10] is a
Matlab to Fortran 90 translator with a sophisticated type inference mechanism. Although the
FALCON project provided us with a lot of interesting ideas about how to proceed, with type infer-
ence in Matlab and how to translate Matlab to Fortran, Mc2for has quite a few important
differences. For example, the inference mechanism in FALCON is based on a forward/backward
propagation strategy, while our analysis only involves a forward propagation. FALCON distinguish
scalar, vector and matrix, while we treat all the variables as a matrix. Scalar is a 1-by-1 matrix
and vector is a 1-by-n or n-by-1 matrix. FALCON uses static single assignment (SSA) form to
make sure all the variables have only one definition, this may simplify the code generation, but
may also introduce some extra overhead to the transformed program. Instead, we only split the
variables with different types in different webs of definitions and uses. The two projects also have
totally different approaches to shape analyses for Matlab built-in functions, with our approach
being flexible and extensible, and capable of handling many features of modern Matlab. Further,
the type system of Matlab had been extended since FALCON, and our approach thus handles
more Matlab types. Our system is also available for other researchers.

There are many approaches to range analysis. The Mc2for approach is closest to a generalized
constant propagation in C [11] which proposed a similar analysis to estimate the range of a variable
may reach at each program point. The range value analysis through Matlab built-in functions
has its roots in the interval arithmetic.

Mc2for builds upon previous work in the McLab group. In early work, Jun Li developed a
prototype which demonstrated the feasibility of translating Matlab to Fortran 95 [7]. This
early prototype focused on a limited subset of Matlab and made simplifying assumptions. To
provide a more solid analysis basis, the McSaf analysis framework [1, 2] and Tamer’s extensible
interprocedural abstract value analysis framework [4] were developed. Both of them have a different
intermediate representations which are suitable for their own specific transformation and analysis.
These two frameworks working together form the major transformation and analysis engine in the
McLab toolkit. Concurrent to our development of Mc2for, our lab is also working on another
project to statically compile Matlab to X10 [6], which also uses the shape analysis in Mc2for.

Matlab CoderTM [8] is a commercial translator to generate standalone C and C++ code from

23

Matlab. Matlab Coder supports a subset of core Matlab language features, including program
control constructs, functions, and matrix operations. This is a closed source system, with no
research papers on its design. Part of the objective of our work is to provide an open source
framework, which other researchers can easily use. For example, the McLab toolkit, plus the shape
and range analysis presented in this paper would be a suitable starting point for developing a
C/C++ back end.

8 Conclusion and Future Work

In this paper, we have presented a tool which can automatically transform Matlab programs
to equivalent Fortran programs. Since Matlab is a dynamic and weakly-typed programming
language, while Fortran is a static and strongly-typed language, there are quite a number of chal-
lenges, such as how to collect type information for variable declaration, how to map the numerous
Matlab built-in functions to Fortran, how to make Fortran support the features of the matrix
growth and matrix linear indexing in Matlab, and how to eliminate unnecessary run-time array
bounds checking.

In our Mc2for, we introduced a shape analysis, which is used to estimate the number and extent of
dimensions of all the variables in a given Matlab program. In the shape analysis, we also proposed
a domain-specific language, the shape propagation equation language, to write equations used for
propagating shape information through Matlab built-in functions. In order to remove unnecessary
run-time array bounds checking code in the transformed Fortran program, we designed and
implemented a range value analysis, which is an extension of constant analysis in our framework,
to estimate the possible range of value a scalar variable may reach at each program point. Both
the shape and range value analysis are implemented using the Tamer’s extensible interprocedural
abstract value analysis framework. In the code generation framework of Mc2for, we started
with our approach to assigning declared types and introducing explicit type conversions, then we
introduced the built-in mapping framework used to map numerous Matlab built-in functions to
Fortran, and we also presented the linear indexing transformation from Matlab to Fortran.

Finally, in Section 6, we evaluated Mc2for on a collection of Matlab benchmarks, examining
both the speedup and physical lines of code of the transformed code. From the results, we show
that the code generated by Mc2for is usually more efficient than the original Matlab code and
the code size is quite acceptable.

In order to improve the performance of Mc2for, we plan to make the range value analysis support
symbolic values. In this way, we may remove more run-time array bounds checking code in the
transformed program. Moreover, adding a Matlab storage analysis, which can determine when
the default double type can be safely stored in integers, may further improve the code readability
and save quite a lot storage. In the future, we may also want to translate Matlab code into parallel
Fortran code, in order to achieve this, we need a valid dependency analysis to determine which
Matlab code block is free from dependency and safe to be transformed to parallel code. We also
hope that others will build upon our tool, which has been implemented in an extensible manner,
and is freely available at www.sable.mcgill.ca/mc2for.html.

24

Acknowledgments

We would like to thank all the members of the McLab team, in particular Jun Li who developed
the first prototype, Anton Dubrau who developed Tamer and helped start this project, and Amine
Sahibi who developed Tamer+. This work is supported, in part, by NSERC.

References

[1] Jesse Doherty. McSAF: An Extensible Static Analysis Framework for the MATLAB Language.
Master’s thesis, McGill University, December 2011.

[2] Jesse Doherty and Laurie Hendren. McSAF: A Static Analysis Framework for MATLAB. In
Proceedings of ECOOP 2012, pages 132–155, 2012.

[3] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind Analysis for MATLAB. In In

Proceedings of OOPSLA 2011, pages 99–118, 2011.

[4] Anton Dubrau and Laurie Hendren. Taming MATLAB. In Proceedings of OOPSLA 2012,
pages 503–522, 2012.

[5] GNU. GNU Fortran Home Page, 2013. http://gcc.gnu.org/fortran/.

[6] Vineet Kumar and Laurie Hendren. First Steps to Compile MATLAB to X10. In Proceedings

of the third ACM SIGPLAN X10 Workshop, pages 2–11, Seattle, USA, 2013.

[7] Jun Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill University,
August 2009.

[8] MathWorks. MATLAB Coder. http://www.mathworks.com/products/matlab-coder/.

[9] Michael J. Quinn, Alexey Malishevsky, Nagajagadeswar Seelam, and Yan Zhao. Preliminary
Results from a Parallel MATLAB Compiler. In Proceedings of Int. Parallel Processing Symp.,
IPPS, pages 81–87, 1998.

[10] Luiz De Rose and David Padua. Techniques for the Translation of MATLAB Programs into
Fortran 90. ACM Trans. Program. Lang. Syst., 21(2):286–323, 1999.

[11] Clark Verbrugge, Phong Co, and Laurie Hendren. Generalized Constant Propagation A Study
in C. In Proceedings of the 1996 International Conference on Compiler Construction, CC ’96,
Linkoping, Sweden, 1996.

25

