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Abstract

Developing compilers that allow scientific programmers to use multicores and GPUs is of
increasing interest, however building such compilers requires considerable effort. We present
Velociraptor: a portable compiler toolkit that can be used to easily build compilers for numerical
programs targeting multicores and GPUs.

Velociraptor provides a new high-level IR called VRIR which has been specifically designed
for numeric computations, with rich support for arrays, plus support for high-level parallel and
accelerator constructs. A compiler developer uses Velociraptor by generating VRIR for key parts
of an input program. Velociraptor does the rest of the work by optimizing the VRIR code, and
generating LLVM for CPUs and OpenCL for GPUs. Velociraptor also provides a smart runtime
system to manage GPU resources and task dispatch.

To demonstrate Velociraptor in action, we present two case studies: a proof-of-concept
Python compiler targeting CPUs and GPUs, and a GPU extension for a MATLAB JIT.

1 Introduction

Two trends in scientific computing have become mainstream. First, array-based languages such
as MATLAB [?], Python/NumPy [?] and R [?] have become extremely popular for scientific and
technical computing. The second trend is that accelerators such as general purpose graphics pro-
cessing units (GPGPUs) and many-core processors such as Xeon Phi have become popular, with
thousands of scientific papers published utilizing GPUs.1 However, programming GPUs is still not
accessible to the mainstream scientific programmer.

Making GPUs more accessible to the general MATLAB or Python user has been of increasing
interest to the programming language design and implementation community. However, writing
compilers targeting hybrid CPU+GPU systems is challenging. The compiler writer has to im-
plement new code generation backends, analysis and transformation infrastructure and possibly a
runtime component to manage GPU resources. Currently, every compiler project targeting hybrid
systems is forced to write their infrastructure from scratch, making programming language and
compiler research substantially harder. To address this problem we have implemented a compiler
toolkit called Velociraptor aimed at making it easy to build just-in-time (JIT) compilers tar-
geting hybrid CPU+GPU systems. Velociraptor is a reusable and portable compiler infrastructure
that can be used to build compilers for a variety of array-based languages and that works on a
variety of hardware configurations.

A key ingredient in our design is our intermediate representation called VRIR. VRIR is a new
domain-specific, high-level IR that has been carefully designed to be easy to generate from high-
level languages for numeric computing. One of the defining features of VRIR is the flexible array
datatype and rich array operator semantics to support its goal of being a DSL specialized for numeric
computing where arrays are extremely important. Further, it is not tied to a particular language and
many operators are parameterized with various flags to accommodate variations between languages.
VRIR is flexible enough to be able model a large subset of numerical computing semantics from
MATLAB and Python/NumPy. Finally, VRIR also makes it very easy to target both CPUs and
GPUs by supporting serial constructs, parallel programming constructs and high-level constructs
for GPUs in the same IR.

Velociraptor provides three key components. First, it provides an analysis and transformation

1http://www.hgpu.org lists over 7000 GPU-related publications currently
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infrastructure for VRIR. We have implemented common analyses such as live variable analysis,
and also implemented some transformations such as array-bounds checks elimination and automatic
use of on-chip shared memory for GPUs. Second, we provide code generation backends targeting
CPUs and GPUs. Many compiler writers want to target a wide variety of hardware platforms and
Velociraptor enables them to do so. Velociraptor builds upon portable technologies such as LLVM
for CPUs and OpenCL for GPUs and we have carefully designed our approach to ensure that the
system works on a variety of hardware configurations. Finally, we also provide a smart runtime
system to manage GPU resources and task dispatch to support the compiler.

To demonstrate the reusability of Velociraptor, we have used it in two projects. The first project is
a JIT compiler that takes as input annotated Python code and generates CPU and GPU Python
code using Velociraptor. This demonstrates how a new compiler could leverage Velociraptor to do
both the CPU and GPU code generation. The other is an extension of McVM [?], a just-in-time
compiler and interpreter for MATLAB language. In this project, we use Velociraptor to provide
support for GPUs, while CPU code generation is done by McVM.

Our contributions are as follows:

A reusable and portable compiler toolkit for CPUs and GPUs: We have designed and im-
plemented Velociraptor, a reusable and portable just-in-time compiler toolkit for targeting CPUs
and GPUs for array-based languages. The reusability of our toolkit distinguishes it from previous
compiler efforts for GPUs.

New IR, VRIR: VRIR is a new domain-specific, high-level IR for numeric programs that is easy to
generate from high-level languages like MATLAB while also providing constructs to target modern
hardware like multi-core CPUs and GPUs.

Smart compiler and runtime: We have implemented an optimizing compiler toolkit with various
analysis and optimizations such as array bounds-check elimination and automatic use of on-chip
shared memory for GPUs. The runtime manages GPU resources, performs task dispatch and
performs optimizations such as overlapping communication and computation where possible.

Two case studies of using Velociraptor: We have built two case studies, McVM and Python,
of using Velociraptor. These projects serves both as an illustration of the reusability of Veloci-
raptor in compilers for two different languages and also provide a useful contribution for users of
McVM and Python respectively. We evaluate the performance of Velociraptor and the implemented
optimizations using benchmarks from both McVM and Python on hardware from multiple vendors.

Our project is heavily inspired from the success of toolkits such as LLVM [?]. LLVM has enabled
many exciting developments in the compiler community by providing a shared and highly reusable
infrastructure. Our hope is that Velociraptor will similarly enable other compiler developers to
further the state of compiler research in the domain of using modern hardware from high-level
numeric computing languages. Compiler writers interested in integrating Velociraptor for new
languages or implementations can do so with minimal effort and reuse the infrastructure provided.
On the other hand, compiler writers interested in experimenting with compiler optimizations can
do so by extending Velociraptor, and can benefit any compiler project using Velociraptor.
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The remainder of this paper is structured as follows. In Section 2 we present the overall design
and in Section 3 we present the VRIR. Section 4 provides key background on our building blocks,
LLVM and OpenCL. Section 5 describes our Velociraptor code generation infrastructure, along
with its run-time system. We demonstrate our toolkit with two integration examples in Section 6.
Experimental results are presented in Section 7. We finish with related work in Section 8 followed
by conclusions and future work in Section 9.

2 Using Velociraptor in compilers

A typical just-in-time compiler for a dynamic language targeting CPUs (and not GPUs) takes as
input program source code, converts into its intermediate representation, does analysis (such as
type inference), possibly does code transformations and finally generates CPU code. We call this
type of compiler as a host compiler while Velociraptor is called the embedded compiler.
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Figure 1: Possible design of a host compiler utilizing Velociraptor. The left of the picture has parts
of a conventional host compiler, while the right indicates proposed modifications

We have built Velociraptor toolkit to simplify the building of host compilers that want to compile
numerical computations to CPUs and GPUs. The key idea is that Velociraptor is embedded inside
the host compiler and takes over the duties of generating code for numerical sections of the program.
Numerical sections of the program may include numerical computations that execute on the CPU,
as well as numerical computations that are annotated to be executed on GPUs. Velociraptor can
be used in various ways by different host compilers. Existing JIT compilers with mature CPU
backends may choose Velociraptor for compiling only the GPU sections of the program, while new
projects may choose Velociraptor to generate code for numeric sections for both CPUs and GPUs.
We illustrate two case studies of these two types of uses in Section 6.

Figure 1 demonstrates how our approach cleanly integrates with a host compiler, with the proposed
additions inside the overlay box on the right, and the conventional passes on the left. Our design
goal was to ensure that the host compiler requires minimal work to integrate Velociraptor. The
modified host compiler can be structured as follows. The host compiler first performs its regular
frontend and analysis activities, including analyses such as type inference performed by many JIT
compilers for dynamic languages today. Then the compiler developer introduce a new pass in the
host compiler. This new pass identifies numerical parts of the program, such as floating-point
computations using arrays including parallel-loops and potential GPU sections, that it wants to
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handover to Velociraptor. The identified numeric sections are outlined into functions and the host
compiler compiles the outlined functions to VRIR functions. The host compiler also provides a
small amount of glue code to expose aspects such as representations of arrays and the memory
manager used in the host compiler’s language runtime to Velociraptor.

Velociraptor takes over the major responsibility of compiling VRIR to CPU and GPU code. Porta-
bility is a key concern for us and we chose to build our CPU and GPU backends upon portable
technologies like LLVM and OpenCL for CPUs and GPUs respectively. We provide some back-
ground on these technologies in Section 4. For each VRIR function, Velociraptor compiles it to
LLVM and OpenCL as required and returns a pointer to a function to the host compiler. The
host compiler replaces calls to the outlined function in the original code with calls to the function
pointer returned by Velociraptor. Non-numerical parts of the program, such as dealing with file
IO, string operations and non-array data structures are handled by the host compiler in its normal
fashion.

3 Design of VRIR

A key design decision in our approach is that the numeric computations should be separated from
from the rest of the program, and that our IR should concentrate on those numerical computations.
This decision was motivated by an internal study of thousands of MATLAB programs using an in-
house static analysis tool. We have found that typically the core numeric computations in a program
use a procedural style and mostly use scalar and array datatypes. We have based the design of
VRIR on the study and on our own experiences in dealing with scientific programmers.

VRIR is a high-level, procedural, typed, abstract syntax tree (AST) based program representation.
With VRIR, our objective is to cover the common cases of numeric computations. VRIR is designed
to be easy to generate from languages like MATLAB or Python and the constructs supported
will be familiar to any MATLAB or Python/NumPy programmer. We have defined C++ classes
corresponding to each tree node type. We have also defined an XML-based representation of
VRIR. Host compilers can build the XML representation of VRIR and pass that to Velociraptor,
or alternatively the host can use the C++ API directly to build the VRIR trees. Note that VRIR
is not meant for representing all parts of the program, such as functions dealing with complex data
structures or various I/O devices. The parts of the program that cannot be compiled to VRIR are
compiled by the host compiler normally, using the host compiler’s CPU-based code generator and
do not go through Velociraptor.

In the remainder of this section we presents the important details of VRIR. A detailed specification
and examples are available on our website.2 The basic structure and constructs of VRIR are
introduced in Section 3.1 and supported datatypes are introduced in Section 3.2. VRIR supports
a rich array datatype which is flexible enough to model most common uses of arrays in multiple
languages such as MATLAB or Python. Array indexing and operators are introduced in Section 3.3.
In addition to serial constructs, VRIR supports parallel and GPU constructs in the same IR and
these are discussed in Section 3.4. Finally, error handling is discussed in Section 3.5 and memory
management is discussed in Section 3.6.

2URL submitted as additional material.
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3.1 Structure of VRIR programs and basic constructs in VRIR

Modules The top-level construct in VRIR is a module and each module consists of one or more
functions. Functions in a module can call either the standard library functions provided in VRIR
or other functions in the same module but cannot call functions in other modules.

Modules are self-contained compilation units. This design choice was made because we are tar-
geting OpenCL 1.1, and OpenCL 1.1 requires that the generated OpenCL program should be
self-contained. We will be able to remove this restriction once we start targeting OpenCL 1.2,
which separates compilation of OpenCL kernels from linking. However, important vendors such as
Nvidia currently only provide OpenCL 1.1 implementations.

Functions Functions have a name, type signature, a list of arguments, a symbol table and a
function body. The function body is a statement list.

Statements VRIR supports common statements such as assignments, for-loops, while-loops, con-
ditionals, break and continue statements, return statements, expression statements and statement
lists. One of the main goals of VRIR is to provide constructs for parallel and GPU computing
through high-level constructs and we describe the supported constructs in Section 3.4.

Expressions Expression constructs provided include constants, name expressions, scalar and array
arithmetic operators, comparison and logical operators, function calls (including standard math
library calls), and array indexing operators. All expressions are typed. We have been especially
careful in the design of VRIR for arrays and array indexing, in order to ensure that VRIR can
faithfully represent arrays from a wide variety of source languages.

3.2 Supported datatypes

Knowing the type of variables and expressions is important for efficient code-generation, particularly
for GPUs. Thus, we have made the design decision that all variables and expressions in VRIR
are typed. It is the job of the host compiler to generate the VRIR, and the appropriate types.
Velociraptor is aimed at providing code generation and backend optimizations, and is typically
called after a type checking or inference pass has already occurred. We discuss how our design
decision of typed VRIR can be accommodated in host compilers for dynamically typed languages
in Section 3.2.1. The supported datatypes are presented in Section 3.2.2

3.2.1 Dynamically-typed languages and VRIR

Languages such as MATLAB and Python/NumPy are dynamically typed while we require that the
types of all variables be known in VRIR. A good JIT compiler will often perform type inference
before code generation. For example, McVM dynamically specializes the code of a function at run-
time, based on types of the actual parameters [?]. The McVM project shows that a type-specializing
JIT compiler can infer the types of a large number of variables at runtime. Part of the reason of
the success of McVM is that while MATLAB is dynamically typed, scientific programmers don’t
often use very dynamic techniques in the core numeric functions compared to applications written
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in more general purpose languages like JavaScript where dynamic techniques are more common. If
a compiler is unable to infer types, users are often willing to add a few type hints for performance
critical functions to their program. We can look at examples such as the Julia [?] language, which
is gaining popularity, or the widely used Python compilation tool Cython [?], both of which allow
optional static type declarations. Finally, in cases where the host compiler is unable to infer the
types of variables, it simply will not generate VRIR and instead can use its regular code generation
backend for CPUs as a fallback instead of using Velociraptor.

3.2.2 Datatypes

We have carefully chosen the datatypes in VRIR to be able to represent useful and interesting
numerical computations. The type system includes scalars and arrays, which are the building
blocks for numeric computing. Domains, inspired from languages like X10 [?], are provided to
represent iteration domains and are a superset of the range datatype from Python. Tuples provide
simple heterogeneous containers. Function types allow the passing of other numeric datatypes and
they also support providing functions as inputs to allow expressing optimizers and solvers that take
other functions as inputs. The details are as follows:

Scalar types: VRIR has real datatypes and complex datatypes. Basic types include integer (32-
bit and 64-bit), floating-point (32-bit and 64-bit) and boolean. For every basic scalar type, we also
provide a corresponding complex scalar type. While most languages only provide floating-point
complex variables, MATLAB has the concept of integer complex variables as well, and thus we
provided complex types for each corresponding basic scalar type.

Array types consist of three parts: the scalar element-type, the number of dimensions and a
layout. The layout must be one of the following three: row-major, column-major or strided-view.
For arrays of row- or column-major layouts, indices are converted into addresses using the regular
rules for such layouts. The strided-view layout is inspired from the ndarray datatype in Python’s
NumPy library. To explain the strided-view layout, consider an n-dimensional array A with
base address base(A). Then, the strided-view layout specifies that the n-dimensional index vector
(i1, i2, ..., in) is converted into the following address: addr(A[i1, i2, ..., id]) = base(A) +

∑
d

k=1
sk ∗ ik

(in a 0-based indexing scheme). The values sk are called strides of the array. Languages like
MATLAB do not have strided views. In the case of McVM, all matrices are column-major and the
VRIR generated by McVM simply declares all variables as column-major.

We have made a design decision that the value of array sizes and strides are not part of the type
system. Thus, while the number of dimensions and element type of a variable are fixed throughout
the lifetime of the variable, it may be assigned to arrays of different sizes and shapes at different
points in the program. This allows cases such as assigning a variable to an array of different size in
different iterations of a loop, such as in some successive reduction algorithms. Further, requiring
fixed constant or symbolic array sizes in the type system can also generate complexity. For example,
determining the type of operations such as array slicing or array allocation, where the value of the
operands determines the size of the resulting array, would be difficult if the array sizes are included
in the type system. Thus, we chose to not include array sizes and strides in the type system for
flexibility and simplicity.
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The number of array dimensions were fixed in the type system because it allows efficient code-
generation and optimizations and only sacrifices small amount of flexibility for most practical
cases.

Domain types represent multidimensional strided rectangular domains respectively. An n-dimensional
domain contains n integer triplets specifying the start, stop and stride in each dimension. This
is primarily useful for specifying iteration domains. A one-dimensional specialization of domains
is called a range type, and is provided for convenience. Languages like MATLAB do not have an
explicit domain type but some languages like X10 do.

Tuple type is inspired from Python’s tuple type and can also be used for one-dimensional cell
arrays in MATLAB with some restrictions. A tuple is a composite type, with a fixed number of
components of known types. The components can be obtained using constant integer indexes into
a tuple.

Void type Void type is similar to void type in C. Functions that do not return a value have the
void type as return type.

Function types specify the type signature of a function. VRIR functions have a fixed number of
arguments and outputs. The input arguments can be any type (except void). The return type can
either be void, or one or more values each of any type excluding void.

3.3 Array indexing and operators

3.3.1 Array indexing

Array indexing semantics vary amongst different programming languages, thus VRIR provides a
rich set of array indexing modes to support these various semantics. The indexing behavior depends
upon the number and type of index parameters, as well as several optional attributes defined for
the array indexing nodes. Consider a n-dimensional array A indexed using d indices. VRIR has
the following indexing modes:

All n indices provided: If each index is an integer, then the address selected is calculated using
rules of the layout of the array (row-major, column-major or stride-based). If one or more indices
is a range, then a slice of the array in the corresponding domain is selected instead of an individual
element in that dimension. Similar to NumPy, but unlike MATLAB, array slices in VRIR do
not create copies, but instead create new strided views of the same data. Thus, host compilers
implementing languages like MATLAB must insert explicit copy instructions where necessary.

Less than n indices provided: If d < n, then different languages have different rules and therefore
we have provided an attribute called flattened indexing. When flattened indexing is true, the
behavior is similar to MATLAB where the last n−d+1 dimensions are treated as a single flattened
dimension of size

∏
d

k=m
uk where uk is the size of the array in the k-th dimension. When flattened
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indexing is false, the behavior is similar to NumPy and the remaining d−m indices are implicitly
filled-in as ranges spanning the size of the corresponding dimension.

Negative indexing: This attribute is inspired from Python’s negative indexing and affects both
of the above cases. In languages like Java, if the size of the k-th dimension of the array is uk, then
the index in the dimension must be in the set [0, uk − 1]. However, in NumPy, if an index ik is less
than zero, then the index is converted into the actual index uk + ik. For example, let the index ik
be equal to −1. Then, the index is converted to uk + ik, or uk − 1, which is the last element in the
dimension. We have a boolean attribute in the array index node to distinguish between these two
cases.

Using arrays as indices: Arrays can also be indexed using a single integer array (let it be named
B) as index. B is interpreted as a set of indices into A corresponding to the integer values contained
in B and the operator returns a new array with indexed elements copied into the new array.

Enabling/disabling index bounds checks: Array bounds-checks can be enabled/disabled for each
individual indexing operation. This allows the host compiler to pass information about array
bounds-checks, obtained through compiler analysis, language semantics or programmer annotations,
to Velociraptor.

Row-major, column-major and strided arrays: The layout of the array being indexed determines
the arithmetic used for converting the indices to addresses.

Zero or one-based indexing: A global variable, set by the host compiler, controls whether one-
based or zero-based indexing is used for the language.

Slicing arrays - Data sharing or copying: Consider an array slicing operation such as A[m : n].
Some languages like Python have array slicing operators that return a new view over the same data
while other languages like MATLAB return a copy of the data. We support both possibilities in
VRIR through a boolean attribute of array index nodes.

3.3.2 Array operators

Array-based languages often support high-level operators that work on entire matrices. Thus, VRIR
provides built-in element-wise operation on arrays (such as addition, multiplication, subtraction
and division), matrix multiplication and matrix-vector multiplication operators. Unary functions
provided include operators for sum and product reduction operators as well as transcendental and
trigonometric functions operating element-wise on arrays.

3.4 Support for parallel and GPU programming

Programmers using languages such as MATLAB and Python are usually domain experts rather
than experts in modern hardware architectures and would prefer high-level constructs to expose
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the hardware. VRIR is meant to be close to the source language. Therefore, we have focused on
supporting high-level constructs to take advantage of parallel and hybrid hardware systems. Low-
level, machine-specific details such as the number of CPU cores or the GPU memory hierarchy are
not exposed in VRIR. The task of mapping VRIR to machine specific hardware is done by Veloci-
raptor. Velociraptor transforms VRIR to a lower-level IR that exposes some lower-level details.
Researchers interested in experimenting with compiler optimization algorithms for GPUs can do
so by extending Velociraptor directly with new transformation passes from VRIR to Velociraptor’s
backend IR.

3.4.1 Parallel programming constructs

Targeting multicores and GPUs is one of the main goals of Velociraptor and both require expressing
parallelism in the computation. Our aim is to support high-level constructs that are easily under-
stood and used by scientific programmers. Therefore, we have selected three parallel constructs
that are small variations of existing serial constructs and may be familiar to many programmers
from other parallel programming literature. The supported constructs are:

Parallel-for loops are loops defined over a multi-dimensional domain where each iteration can be
executed in parallel. We also support some atomic constructs, such as compare and swap, inside a
parallel-for loop.

Parallel map takes as input a function f and n arrays or scalars as inputs. The function f must be
a scalar function that takes n scalars as inputs and returns a scalar. At least one of the arguments
to map should be an array, and all the input arrays should have the same size and shape. The
operator applies the function f element-wise to each element in the input arrays in parallel, and
produces an output array of the same shape.

Implicitly parallel operators: VRIR has a number of implicitly parallel built-in operators such as
matrix addition, matrix multiply and reduction sum of an array. Velociraptor takes advantage of
parallel libraries for these operators where possible.

3.4.2 Accelerator sections

Any statement list can be marked as an accelerated section, and it is a hint to Velociraptor that
the code inside the section should be attempted to be executed on a GPU if present. Velociraptor
and VRRuntime manage all the required data transfers between the CPU and GPU automatically
and ensure that the correct data is available to both CPU and GPU at necessary points. At the
end of the section, the values of all the variables are synchronized back to the CPU, though some
optimizations are performed by Velociraptor and VRRuntime to eliminate unneeded transfers.

In VRIR, accelerated sections can contain multiple statements, such as multiple loop-nests or
array operators can be inside a single accelerated section. We made this decision because a larger
accelerated section can enable the compiler to perform more optimizations or to employ more
sophisticated scheduling strategies than those possible for single loop-nest sections.
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3.5 Error reporting

GPU computation APIs such as OpenCL have very limited support for exception handling, thus
the design of VRIR had to find some way of handling errors in a reasonable fashion. In VRIR, we
have chosen to report some errors and the model is similar to throwing an exception. However,
there is no ability to catch or handle such errors within VRIR code, and all exception handling (if
any) must happen outside of VRIR code.

Two types of errors are supported for CPU serial code: array bounds checks and integer division
by zero exceptions. VRIR also provides some error reporting for parallel CPU-loops and GPU
sections. Multiple exceptions can happen in parallel inside such sections, but only one of them will
be reported, and we do not specify which one. Further, if one iteration of a parallel-loop, or one
statement in a GPU section raises an error, then it may prevent the execution of other iterations of
the parallel-for loop or other statements in the GPU section. These guarantees are not as strong as
the serial case, but these will still help the programmer in debugging while lowering the execution
overhead and simplifying the compiler.

If an error occurs, then a cleanup function specified by the host compiler can be invoked. This
cleanup function takes array variables local to the function as input and does not return any output.
This is primarily meant as a way to perform any memory cleanup required by the host and may not
be required by all hosts. After cleanup is finished in the VRIR function that generated the error,
the error is propagated up the call chain until the entire call-chain of VRIR functions return after
performing any cleanup. After that, it is up to the host to decide what to do with the error code.
In languages like Python, it is possible to write a wrapper that raises the appropriate exception
from the errorcode. For accelerator sections and parallel-loops, the cleanup function, if any, will be
inserted after the parallel-for loop or accelerator section.

3.6 Memory management

Different host implementations have different memory management schemes. VRIR and Velocirap-
tor provide automatic cleanup of scalar variables, but for array variables we allow the host to use
the appropriate memory management scheme. Hosts can insert explicit instructions in VRIR for
array allocation, array deallocation as well as reference counting, as required. This scheme allows
for implementation of various scenarios:

1. Host compilers which require explicit memory management can insert explicit allocation and
deallocation instructions.

2. Hosts which require reference counting can insert instructions to increase or decrease reference
counts.

3. Hosts which utilize a garbage collector such as Boehm GC can skip insertion of memory
deallocation instructions altogether.

4 Background

In order to provide a general-purpose tool which could be retargeted for a variety of CPU and
GPU processors, we designed Velociraptor to build upon two excellent infrastructures, LLVM for
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the CPU backend, and OpenCL for the GPU backend. To provide some background for the rest
of this paper, we give a brief overview of these technologies.

We use the OpenCL [?] v1.1 programming model. The OpenCL API is an industry standard
API for parallel computing on heterogeneous systems. Different vendors can provide drivers that
implement the API. Currently, implementations exist for CPUs, GPUs and FPGAs. In OpenCL,
the CPU controls one or more compute devices. The OpenCL API provides functions to manage
various resources associated with the device.

OpenCL programs are written as kernel functions in the OpenCL kernel language. The OpenCL
kernel language is based upon the C99 language. However, some restrictions are imposed. For
example, function pointers and dynamic memory allocation are both disallowed in kernel functions.
Kernel functions are represented as strings in the application, and the application requests the
device driver to compile the kernel to device binary code at runtime.

OpenCL kernel functions describe the computation performed by one thread, called one work-item
in OpenCL terminology. Kernel functions are invoked by the CPU on a 1,2 or 3 dimensional grid
of work items, with each work item executing the same kernel function but each having its own
independent control flow. This model maps naturally to data-parallel computations. Grids of
work items are organized in 1,2 or 3-dimensional work groups. Work items in a work group can
synchronize with each other and can read/write from a shared memory space called local memory,
which is intended as a small programmer managed cache. Work items from different work groups
cannot synchronize and cannot share local memory.

The kernel functions operate upon buffer objects created by the CPU through the OpenCL API.
For devices such as discrete GPUs, buffers are typically allocated in the GPU’s onboard memory.
The application then needs to copy the input data from the system RAM to the allocated memory
objects. Similarly, results from the kernel computations also need to be copied back from buffer
objects to system RAM.

We use LLVM for implementing our CPU backend. LLVM is a compilation toolkit with many parts.
LLVM’s input format is a typed SSA representation called LLVM IR. LLVM can be used either as
an analysis and transformation framework on this IR, and/or as a code generation toolkit for either
static or just-in-time compilation. LLVM has been used in many academic and commercial projects
in a variety of different contexts. For example, LLVM is used by Apple in many different products
including their Xcode toolchain for iOS devices.3 LLVM has also been used for code generation
by many OpenCL implementations, such as those from AMD, Apple, Intel and Nvidia. We chose
LLVM as the CPU backend due to its maturity, clean design and portability.

5 Implementation of Velociraptor

In order to automatically generate high quality code, Velociraptor has two important components:
(1) a compiler framework for analysis, transformation and code generation; and (2) a runtime
library designed to manage GPU resources and task dispatch.

3http://llvm.org/Users.html
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5.1 Compiler framework

The challenge in the design of Velociraptor was to identify and implement the important IR sim-
plifications, and the key analyses and optimizations that need to be performed on this IR. In
this section we first describe the overall design of the compiler framework and then discuss three
important phases: alias analysis, array bounds-checks elimination and load vectorization.

5.1.1 Design

Velociraptor’s compiler operates in multiple passes and the overall picture is shown in Figure 2.
First, we simplify VRIR into a slightly cleaner form, where we convert implicit array allocations
in operators such as matrix multiplication into explicit allocations. This form enables simpler
implementation of some flow analysis, and in the future may permit optimizations such as moving
memory allocations outside of loops. Next, we perform some standard analysis such as live variables
and reaching definitions analysis. We then perform alias analysis. Alias analysis is particularly
important for languages like Python, where NumPy arrays may be aliased and having good aliasing
information can enable the compiler to do better optimizations. Details of the alias analysis are
given in Section 5.1.2. Next, we perform array bounds-check elimination according to algorithm
in Section 5.1.3. Array bounds-checks are particularly expensive on GPUs which are often poor at
control flow and also impedes efficient code generation, particularly on some VLIW-based GPUs.

Next, for GPU sections, we perform load vectorization, an optimization where we attempt to
merge loads into a single packed load. This optimization provides better effective memory load
bandwidth on some GPUs, particularly AMD GPUs, and is detailed in Section 5.1.4. Finally, we
have implemented code generators for CPUs and GPUs and these generate LLVM and OpenCL
respectively. The GPU sections are replaced by a sequence of calls to VRRuntime that calls the
generated OpenCL kernels for user-written loops and our OpenCL library function routines for
standard VRIR library functions.
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Figure 2: Compiler analysis, transformation and code generation infrastructure provided by Ve-
lociraptor
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5.1.2 Memory aliasing and alias analysis

In VRIR, it is possible for two arrays to be views on the same underlying data. It can either simply
be a case of two VRIR array references pointing to the same array, or it may be two different views
(with different strides or number of dimensions) on the same underlying linear buffer. This was
done to accommodate systems like NumPy, where many operations are defined by-reference rather
than by-copy and memory aliasing is common. However, aliasing in VRIR is simpler than aliasing
in languages like C/C++. Unlike C pointers, VRIR array structures carry information about the
size of dimensions of the memory region being pointed to. Further, the VRIR type system does
not contain pointers and arbitrary integers cannot be converted to/from pointers.

We have implemented a flow-insensitive intraprocedural alias analysis that maintains a may-point-
to map from array variables to allocation sites. Our analysis is a forward analysis and propagates
information from function parameters to the body. One of the limitations in Velociraptor is that
as an embedded compiler, it does not have access to the call chain of the entire application and
thus does not know all the call-sites of VRIR functions. Thus, generally Velociraptor makes a
conservation assumption that all array parameters may-point-to the same allocation site. However,
we have provided optional annotations that allow the host compiler to specify a may-point-to
map for function parameters. For example, in MATLAB language arrays are not aliased and a
MATLAB-based host can pass that information to Velociraptor.

5.1.3 Array bounds-check elimination

There are many approaches of performing bounds-check elimination. However, Velociraptor is a
JIT compiler and thus compilation time is an issue, thus we have chosen to implement two fast,
but effective, techniques.

The first approach is based on elimination of redundant checks. Consider an array A and consider
two references A[expr0, expr1] and A[expr0, expr2] which occur in the stated order inside the loop
where expr0, expr1 and expr2 are scalar expressions. If the value of expr0 is the same in both array
references, then the bounds-check on the second instance of expr0 can be eliminated.

The second approach is based upon moving some checks outside the loop. Consider a nested loop
L. The basic approach is that we identify a subset S of simple analyzable subscript expressions
inside the loop. We attempt to move the tests out of the loop and generate a test T outside the
loop to test if all of the subscripts in S are within bounds. We generate a new version L′ of the
loop with the bounds-check for subscripts in S disabled. If the generated test T determines that
all subscripts in S are within bounds, then L′ is executed otherwise the original loop L is executed.

The second approach belongs to the class of techniques called loop versioning and we have chosen
an implementation where we generate two versions: L and L′. . Theoretically, given the set S,
we can have 2|S| cases at runtime where each bounds is determined to be either safe or potentially
out-of-bounds. Thus, theoretically, we could have generated 2|S| versions of the loop corresponding
to each case. However, Velociraptor is a JIT compiler and compilation time is an issue. Therefore,
we have chosen the two-version approach because each generated loop adds to the compilation cost
for backend phases, and would have been particularly expensive for the OpenCL backend. Secondly,
most programs in production are not expected to hit array-bounds violations and thus all the tests
are expected to pass. Thus, a finer grained approach will not likely yield any benefit in production
code.
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Now we describe how we identify the set S and how we generate the test T . We implemented this
approach in Velociraptor for nested loops where the loop-bounds of inner loops are affine expressions
of loop indices of outer loops. Array accesses in VRIR can be multidimensional with a subscript
expression in each dimension. Without optimizations, we need to generate a bounds-check for each
subscript expression. Consider an array reference A[..., c0 ∗i+c1, ...]. Let i be one of the loop indices
and c0 and c1 be constants. The lower bound and upper bound of the subscript expression can be
computed outside the loop as an integer maximization problem using an integer linear programming
(ILP) solver. If the size of the array A does not change within L, then the bounds-check can be
performed outside the loop. Velociraptor collects all affine subscript expressions for which the
bounds-check can be performed outside the loop into the set S. Velociraptor then generates code
to compute the lower and upper bound of all subscripts in S using calls to an ILP solver. The
test T is simply a conjunction of the success of bounds checks of all the subscripts in S.

Our solution requires solution of an ILP, which can be an expensive operation if not controlled.
The cost of solving ILPs increases with the number of variables and number of constraints. The
variables in our ILP problems are loop variables in the original program. We control the cost of the
ILP by limiting the number of variables in the problem. Currently, we have limited the number to
five variables, which allows five-level loop nests, which is sufficient for most programs. If a deeper
loop-nest is encountered, then the optimization is still applicable to an innermost five loops. For
example, if a seven-level loop-nest is encountered, then the tests in the innermost loop can still be
moved five levels up. With our implemented approach, the cost of solving the ILP added negligible
runtime overhead.

5.1.4 Load vectorization

On some GPUs, effective memory read bandwidth for 128-bit loads is better than 64-bit or 32-
bit loads. Load vectorization attempts to identify the scalar 32-bit or 64-bit loads that can be
combined into wider loads. Consider an array A with 64-bit floating-point elements and two array
read operations inside a loop: A[i] and A[i+1]. For contiguous arrays, we attempt to merge the two
loads into a single 128-bit load and we call the transformation load vectorization. For vectorized
loads, Velociraptor generates the OpenCL builtin function vload, which can be used for unaligned
loads, and thus Velociraptor does not need to verify that the generated 128-bit accesses happen on
128-bit boundaries.

Load vectorization is performed as follows. First, we identify all row-major or column-major arrays
A such that A is read inside the loop, but A or any array potentially aliased with A is not written
inside the loop. Next, the compiler collects all references with affine index expressions inside the
loop for which bounds checks have been eliminated. We compute the distance for all possible pairs
of collected array references and identify pairs with a distance of one (i.e. consecutive accesses).
We merge and replace identified consecutive accesses with a single load.

5.2 VRRuntime

In addition to the optimizations, for good performance Velociraptor requires a well-designed runtime
system that exposes the correct OpenCL abstractions and implements the required services in an
effective and efficient manner.

VRRuntime offers a number of services. First, VRRuntime presents a simplified API to Veloci-
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raptor. OpenCL is a very verbose API, and the full functionality of the API does not need to be
exposed to Velociraptor. VRRuntime offers a simplified wrapper, such as simplifying the task of
compiling OpenCL code to device binary code through the driver.

Second, VRRuntime presents a single task-queue abstraction to Velociraptor. Tasks that can be
queued in the queue include predefined library routines, OpenCL kernels generated from user-code
and data synchronization tasks. VRRuntime runs a task dispatcher in a background thread that
continuously dispatches tasks from the queue to the GPU.

Finally, VRRuntime takes care of all the data transfers required between the CPU and GPU.
Velociraptor and VRRuntime operate on a concept of ownership of variables. The idea is that a
variable can be owned by the CPU code, or by VRRuntime, but not both at the same time. At
the program point where a task is enqueued, Velociraptor inserts code to hand over the ownership
of operand variables to VRRuntime. While VRRuntime has ownership of a variable, it is free to
perform data transfers to/from the GPU required for completing any enqueued tasks. When the
CPU needs to regain the ownership of a variable, it issues a call to VRRuntime to release the
ownership of the variable. VRRuntime then ensures that any pending tasks related to the variable
are completed, performs any necessary data transfers, and then releases ownership of the variable.

Thus, VRRuntime offers a number of services designed to hide the complexity of GPU book-keeping
from the code generator.

VRRuntime has several important optimizations that allow for good performance:

Asynchronous implementation: VRRuntime has been been architected to allow CPU and GPU
to work in parallel at the same time, with as little synchronization as possible. Enqueuing a
task in VRRuntime is a non-blocking operation. When a task is enqueued in VRRuntime, a
future token is returned. The thread that enqueued the operation can then continue to do
other useful work till the program point where it requires the enqueued task to be finished. At
that point, the enqueuing thread can wait upon the future token. The task queue is processed
by a separate thread.

Copy-on-write optimizations: Consider the case where variable A is explicitly cloned and as-
signed to variable B. VRRuntime does not perform the cloning operation until required.
For each computation submitted to VRRuntime after the copy, VRRuntime examines the
operands read and potentially written in the task using meta-information submitted to VR-
Runtime by the compiler. If VRRuntime does not encounter any computation that may
potentially write A or B after the deep copy, then the deep copy operation is not performed.
This is a standard copy-on-write optimization and has been implemented in VRRuntime.

Data transfers in parallel with GPU computation: VRRuntime can do some data transfers
at the same time as a computation may be executing on the GPU. VRRuntime dispatches
calls to the GPU in a non-blocking fashion by using OpenCL’s robust event facility. When
a kernel call is dispatched, instead of waiting upon the completion of the call, VRRuntime
examines the next task and initiates the data transfers if possible. Thus, the data transfer
overheads can be somewhat mitigated by overlapping them with computation.
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6 Two case studies of using Velociraptor: Python and McVM

To aid in the design of Velociraptor, and to demonstrate two different uses of the framework, we
used Velociraptor with two very diverse projects. The first was building a proof-of-concept Python
compiler for core array-based computations, and the second was extending an existing VM/JIT
for MATLAB to handle GPU computations. We summarize these two projects in the next two
subsections.

6.1 Proof-of-concept Python compiler

We have written a proof-of-concept compiler for a numeric subset of Python, including the NumPy
library, that integrates with the standard Python [?] interpreter. We handle scalars and NumPy
arrays but do not handle data structures like dictionaries, tuples or user-defined classes. The idea
is that only a few functions in a Python program will be compiled, while the rest of the program
will be interpreted by the Python interpreter. We currently require the programmer to define the
type signature of the function through a decorator we have defined, and then infer the type of the
local variables. We require that the type of a variable not change within a function. Some of these
limitations can be removed if a just-in-time type specializing compiler is implemented. However,
this is out of scope of this paper.

We have provided several extensions to the language to enable use of multi-cores and GPUs. First,
we have defined a parallel-for loop by defining a special function prange, and have defined that any
for-loop that iterates over a prange will run in parallel. Second, we have defined prange to return a
multi-dimensional domain object rather than a single-dimensional range. Finally, we also provided
a construct to annotate blocks of code to be executed on the GPU. Such blocks are indicated by
delimiting them through a pair of “magic” function calls called gpu begin() and gpu end(). The
compiler removes such calls and instead converts them into a statement list and marks the list as
GPU-executable.

In this compiler, all the code generation is handled by Velociraptor. The frontend of the compiler is
written in Python itself. Python has a standard library module called ast which provides function-
ality to construct an AST from Python source code. Our frontend uses this module to construct
untyped ASTs, then performs type inference on this AST by propagating the types of the function
parameters provided by the user into the body of the function. The function is then compiled
to VRIR in a separate pass. We wrote a little glue code in C++ to wrap the function pointers
returned by Velociraptor into Python functions. We have also provided glue code in C++ using
the Python/C API for exposing NumPy arrays to Velociraptor, for exposing reference counting
mechanism of Python interpreter to Velociraptor, and for reporting the out-of-bounds exceptions
generated in code compiled by Velociraptor back to the user.

We were able to develop this compiler quickly by using Velociraptor. The frontend of the compiler is
about about one-tenth the size of the combined size of Velociraptor and RaijinCL, which shows that
Velociraptor allows compiler writers to quickly build compilers by providing considerable inbuilt
functionality. In this case study, our compiler was implemented in about 4000 lines of C++ andd
300 lines of Python code.
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6.2 Extending McVM

McVM is a virtual machine for the MATLAB language. McVM is part of the McLAB project,
which is a modular toolkit for analysis and transformation of MATLAB and extensions. McVM
includes a type specializing just-in-time compiler and performs many analysis such as live variable
analysis, reaching definitions analysis and type inference. Prior to this work, McVM generated
LLVM code for CPUs only, and did not have any support for parallel loops or GPU computations.

We added two language constructs to McVM. First, we added a parallel-for (parfor) loop. We have
also provided gpu begin() and gpu end() section markers that indicate to the compiler that the
section should be offloaded to the GPU if possible.

For both of these constructs, we utilized Velociraptor to generate the code while using McVM’s
existing code generation facilities for rest of the program. Our extensions require new passes in
McVM and these passes are run after McVM has performed type inference. Our implementation
looks for parfor loops and GPU sections and first verifies that the code can be compiled to VRIR.
For example, if some of the types were unknown, then they cannot be compiled to VRIR. If the code
cannot be compiled to VRIR, then code is converted to serial CPU code and handled by McVM’s
usual code generator. If the code passes verification, then compiler outlines these new constructs
into special functions, compiles them into XML representation of VRIR, then asks Velociraptor to
compile and return the function pointers to the outlined code. The original code is then replaced by
a call to the outlined function. In MATLAB, values are passed into functions by value. However,
we have implemented calls to outlined functions as call-by-reference because the side effects in the
outlined code need to propagate back to the calling code for correctness.

We found that building the outlining infrastructure was the most challenging aspect of the project.
McVM maintains various internal data-structures holding information from various analysis such
as live variable analysis. After outlining, all such analysis data-structures need to be updated and
doing this correctly required some effort. However, once outlining was done, generating VRIR was
straightforward. Overall, integrating Velociraptor required only about 5000 lines of C++ code.

7 Experimental results

Our experiments were performed on two different machines containing GPUs from two different
families. Descriptions of the machines are as follows:

1. Machine M1: Core i7 3820, 2x Radeon 7970, 8GB DDR3, Ubuntu 12.04, Catalyst 13.4

2. Machine M2: Core i7 920, Tesla C2050, GTX 480, 6GB DDR3, Ubuntu 12.04, Nvidia driver
version 280.13.

Machine M1 and M2 contain two GPUs each. We used one Radeon 7970 and Tesla C2050 respec-
tively for computation, and reserve the other GPU in each machine for handling display duties.
We used CPython v3.2, PyPy 2.1 and MATLAB R2013a 64-bit in tests. Each test was performed
ten times and we report the mean.
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7.1 Python performance

Although the main point of this paper is the design and implementation of the toolkit, we also
wanted to see what the potential performance benefits could be. To get a first idea of the perfor-
mance possibilities, we evaluated the performance of code generated by Velociraptor for both CPUs
and GPUs on four Python benchmarks. These benchmarks come from a set of Python benchmarks
proposed by members of NumPy community. We added type, parallelization and GPU section
annotations in these benchmarks.

We tested our compiler on three different versions of each benchmark: a serial CPU version, a
parallel CPU version and a GPU version. For the CPU versions, we we tested the code generation
in two cases: with Velociraptor optimizations enabled and disabled. For the GPU version, we
tested under four settings: Velociraptor compiler and runtime optimizations enabled, compiler
optimizations disabled but runtime optimizations enabled, compiler optimizations disabled but
runtime optimizations disabled and finally both compiler and runtime optimizations disabled. Thus,
we tested a total of 8 variations (4 CPU versions and 4 accelerated versions). Finally, we measured
the the performance of the PyPy 2.1 implementation of Python. PyPy has its own JIT compiler
and we found that PyPy was significantly faster than CPython on these benchmarks and thus we
use PyPy as a realistic baseline. The results are presented in Table I as speedups over PyPy.

Benchmark Machine CPU Serial CPU Parallel GPU accelerated

Compiler opts No Yes No Yes No Yes No Yes

Runtime opts N/A N/A N/A N/A No No Yes Yes

arc-distance
M1 3.3 4.1 9.76 11.5 8.3 9.6 8.3 9.6
M2 3.1 3.5 11.0 11.9 8.7 9.9 8.7 9.9

julia
M1 35.7 36.3 213.8 215.1 1518 1497 1498 1522
M2 36.9 37.8 170.6 172 740.3 764.5 735.0 773.1

growcut
M1 13.2 17.8 42.8 58.6 114.7 168.6 116.7 170.1
M2 11.6 15.3 37.3 49.9 91.3 138.8 90.9 137.4

rosen-der
M1 15.3 18.4 31.9 39.2 32.5 34.2 32.9 34.3
M2 12.9 16.0 25.0 29.7 25.8 27.4 25.9 27.3

Table I: Speedup of CPython + Velociraptor generated code over PyPy JIT

Some of our observations are as follows:

1. Serial unoptimized CPU code generated by Velociraptor is between 3 to 37 times faster than
PyPy depending upon the benchmark.

2. Bounds-check optimization provides between 1% to 35% performance improvement on CPUs
depending upon the benchmark. We observed that the compiler eliminated between 50 and
100 percent of array bounds-checks in the innermost loop in these benchmarks.

3. Parallel CPU code generated by Velociraptor was generally two to six times faster than serial
CPU code generated by Velociraptor. Thus, Velociraptor easily allows the addition of multi-
core backends. We used quad-core processors and more than four times speedup can be
explained by the fact the CPUs are hyperthreaded and run eight threads.

4. Optimized GPU code generated by Velociraptor can be up to seven times faster than generated
optimized parallel CPU code on some benchmarks. However, data transfer overheads in
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benchmarks such as rosen-der and arc-distance can also lead to slowdowns. Thus, GPU-
offload may not be suitable for all problems.

5. Our compiler optimizations yielded between 1% and 52% performance improvement over
baseline GPU code generated by Velociraptor.

7.2 McVM performance

For McVM, we looked at benchmarks used by previous projects such as McVM and MEGHA [?]
and chose four parallelizable benchmarks and added GPU annotations. The benchmarks in this
section are longer and more complex, and make heavy use of implicitly parallel vectorized operators
such as vector arithmetic operators. We distinguish three cases here: McVM performance without
Velociraptor, multi-core performance with Velociraptor and GPU-accelerated performance with
Velociraptor. For multi-core performance with Velociraptor, we test two variations: Velociraptor
optimizations enabled and disabled. For accelerated performance, we tested four versions as detailed
in the previous section.

Benchmark Machine McVM Velociraptor CPU GPU accelerated

Compiler opts N/A No Yes No Yes No Yes

Runtime opts N/A N/A N/A No No Yes Yes

clos
M1 0.99 0.99 0.98 3.23 3.23 3.23 3.23
M2 1.0 0.99 0.99 2.37 2.35 2.52 2.50

nb1d
M1 1.58 1.51 1.51 2.92 2.93 3.01 3.01
M2 1.30 1.32 1.32 3.36 3.38 3.62 3.61

nb3d
M1 0.2 0.52 0.52 1.64 1.64 1.72 1.72
M2 0.22 0.71 0.71 2.42 2.40 2.63 2.63

fdtd
M1 0.15 0.58 0.58 1.92 1.92 1.97 1.97
M2 0.13 0.56 0.56 2.05 2.06 2.17 2.20

Table II: Speedup of McVM + Velociraptor generated code over MATLAB JIT

We used Mathworks MATLAB R2013a 64-bit, which is a commercial JIT compiled implementation,
as the baseline and report performance in Table II as speedups over MATLAB.Some observations
are as follows:

1. For the GPU version, Velociraptor runtime optimizations provide up to 15% increase in
performance. This is primarily due to asynchronous dispatch implemented in the runtime.
Asynchronous dispatch allows the CPU to enqueue a large number of tasks without waiting
for the GPU to finish. Synchronous dispatch adds overhead for waiting upon completion of
kernel calls and this overhead can be significant for small kernels such as vector addition.

2. Compiler optimizations do not play a role in these benchmarks because the benchmark use
vector-style array operators instead of explicit loops, whereas our compiler optimizations are
targeted at explicit for-loops.
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8 Related Work

There has been considerable interest in using GPUs from dynamic array-based languages. The
earliest attempts have been to create wrappers around CUDA and OpenCL API that still require
the programmer to write the kernel code by hand and exposing a few vendor specific libraries. Such
attempts include PyCUDA [?] and PyOpenCL [?]. The current version of MATLAB’s proprietary
parallel computing toolbox also falls in this category at the time of writing. Our approach does
not require writing any GPU code by hand.

There has also been interest in compiling array-based languages to GPUs. Copperhead [?] is a
compiler that generates CUDA from annotated Python code. Copperhead does not handle loops,
but instead focuses on higher-order functions like map. jit4GPU [?] was a dynamic compiler that
compiled annotated Python loops to AMD’s deprecated CAL API. Theano [?] is a Python library
that compiles expression trees to CUDA. In addition to GPU code generation, it also includes
features like symbolic differentiation. Parakeet [?] is a compiler that takes as input annotated
Python code and generates CUDA for GPUs and LLVM for CPUs. MEGHA[?] is a static com-
piler for compiling MATLAB to mixed CPU/GPU system. Their system required no annotations,
and discovered sections of code suitable for execution on GPUs through profile-directed feedback.
Jacket [?] is a proprietary add-on for MATLAB that exposes a large library of GPU functions, and
also has a compiler for generating GPU code for limited cases. Numba [?] is a NumPy-aware JIT
compiler for compiling Python to LLVM. The work has some similarities to our work on the CPU
side, including support for various array layouts, but it is tied to Python and therefore does not
support the indexing schemes not supported by Python. Numba also provides an initial prototype
of generating CUDA kernels, given the body of the kernel (equivalent to the body of a parallel
loop) in Python. However, it assumes the programmer has some knowledge of CUDA, and exposes
some CUDA specific variables (such as thread-block index) to the programmer. Further, unlike our
work, it is not a general facility for annotating entire regions of code as GPU-executable and will
mostly be useful for converting individual loop-nests to CUDA.

One possible approach to building a multi-language compiler for accelerators is to compile bytecode
of high-level VMs to accelerators. This is complementary to our approach and there are two recent
examples of this approach. AMD’s Aparapi [?] provides a compiler that compiles Java bytecode of
a method to an OpenCL kernel body, and the generated kernel can then be applied over a domain.
Unlike VRIR, which contains multi-dimensional arrays and high-level array operators, Aparapi
is a low-level model where only one-dimensional arrays are allowed with Java’s simple indexing
operators. Dandelion [?] is a LINQ style extension to .net that cross-compiles .net bytecode to
CUDA. The programming style for LINQ is quite different than the loop and array-operator based
approach we provide in our work.

To our knowledge, there has not been prior work on embeddable or reusable compilers for accel-
erators. The only work in this area that we are aware of is NOVA [?]. NOVA is a static compiler
for a domain-specific compiler for a new functional language and it generates CUDA code. Ve-
lociraptor and NOVA provide different programming styles (imperative loop and array-based vs
functional respectively) and different compilation models (dynamic vs static respectively). Collins
et al. claim that NOVA can be used as an embedded domain-specific language but did not show
any such embedded uses whereas we integrated our system in two systems.

To summarize, in contrast to previous research, our system is an embeddable and reusable compiler
targeting both CPUs and GPUs that is not limited to one programming language or runtime. We
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have carefully considered the variations of array indexing schemes, array layout semantics and
array operators of the programming languages and offer a complete solution for popular scientific
computing languages.

However, while we described the differences from previous research, our system is meant to comple-
ment and enable, not compete, with other compiler researchers. Had our tools (Velociraptor code
generator, runtime and RaijinCL library) existed earlier, most of the previously mentioned systems
could have used it while focusing their time elsewhere. For example, MEGHA’s automatic identi-
fication of accelerator sections, the type inference work of Parakeet or Theano’s work on symbolic
facilities are all complementary to our work. We believe availability of our toolkit will free other
researchers to spend their time on many other open problems in programming language design and
implementation rather than spend time writing backends or design accelerator runtimes.

9 Conclusions and Future Work

In this paper we have presented a toolkit for enabling compiler writers to effectively generate
CPU/GPU code for a variety of array-based languages. Our first key design decision was to
provide a clean and high-level intermediate representation, VRIR, which can be used to express a
wide variety of core array-based computations and many different array accessing modes.

The second key component is the Velociraptor code generation tool and it association runtime
library. Compiler writers can simply generate VRIR for key parts of their input programs, and
then use Velociraptor to automatically generate CPU/GPU code for their target architecture. The
generated code and associated runtime library takes care of many issues, including the communica-
tion between the CPU and GPU, capturing errors, reducing communication costs, and overlapping
CPU and GPU computations.

To demonstrate the toolkit, we used it in two very different projects. The first is a proof-of-
concept compiler for Python, where we used both the CPU and GPU code generation capabilities
of Velociraptor. This showed that the toolkit could handle array-based computations from Python,
and that very significant performance improvements were possible. The second project was using
the toolkit to extend a MATLAB JIT, from McVM, to handle GPU computations. This showed
that the toolkit was useful in extending the functionality of a pre-existing compiler, and that the
VRIR also captures appropriate MATLAB array operations and indexing modes.

Now that the toolkit is established and we have two prototype applications of the toolkit, we plan
to continue working on refining those prototypes, and adding further optimizations and transforma-
tions to the generated code with appropriate performance studies with a broad range of CPU-GPU
hybrid systems and on a much larger benchmark set.

The toolkit will be made publicly available, and it is our hope that other compiler groups will use
the toolkit and that we can further refine and add to its functionality based on those experiences.
Such applications could include adding functionality to existing projects, such as compiling R[?],
or for implementing solutions for other domain-specific languages which have an array-based core.
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