

McGill University
School of Computer Science

Sable Research Group

2

MiX10: Compiling Matlab to X10 for High Performance

Sable Technical Report No. sable-2014-01

Vineet Kumar and Laurie Hendren

March 25, 2014

w w w . s a b l e . m c g i l l . c a

3

Contents

1 Introduction 4

2 Background 6

3 Introduction to X10 arrays 7

4 Compilation to X10 arrays 8

4.1 Simple Arrays or Region Arrays . 8

4.1.1 Compilation to Simple arrays . 8

4.1.2 Compilation to Region Arays . 9

4.2 Handling the colon expression . 10

4.3 Array growth . 11

5 Safely using integer variables 11

5.1 Need for declaring variables to be of integer type . 12

5.2 An example . 12

5.3 IntegerOkay Analysis . 13

6 Code generation for the Matlab parfor loop 15

7 Evaluation 16

7.1 Benchmarks . 17

7.2 Experimental setup . 18

7.3 X10 Compiler variations . 18

7.4 Overall MiX10 performance . 18

7.5 X10 C++ backend vs. X10 Java backend . 20

7.5.1 When not to use the X10 -O . 22

7.6 Simple vs. Region arrays . 22

7.7 Effect of IntegerOkay analysis . 23

7.8 Matlab parfor vs. MiX10 parallel code . 24

7.9 Conclusion . 25

8 Related Work 26

9 Conclusions and Future Work 26

1

A Overall structure of the MiX10 compiler 29

B Introduction to X10 concurrency controls 30

B.1 Async . 30

B.2 Finish . 30

B.3 Atomic . 30

B.4 At . 31

2

List of Figures

1 Example of parfor, Matlab with parfor on the left, generated X10 on the right. . 15

2 Performance of MiX10 vs other state-of-the-art static compilers, reported as speedups
relative to Mathworks’ Matlab, higher is better. 19

3 Overview of MiX10 structure . 29

3

Abstract

Matlab is a popular dynamic array-based language commonly used by students, scientists
and engineers who appreciate the interactive development style, the rich set of array operators,
the extensive builtin library, and the fact that they do not have to declare static types. Even
though these users like to program in Matlab, their computations are often very compute-
intensive and are better suited for emerging high performance computing systems. This paper
reports on MiX10, a source-to-source compiler that automatically translates Matlab programs
to X10, a language designed for “Performance and Productivity at Scale”; thus, helping scientific
programmers make better use of high performance computing systems.

There is a large semantic gap between the array-based dynamically-typed nature of Matlab
and the object-oriented, statically-typed, and high-level array abstractions of X10. This paper
addresses the major challenges that must be overcome to produce sequential X10 code that is
competitive with state-of-the-art static compilers for Matlab which target more conventional
imperative languages such as C and Fortran. Given that efficient basis, the paper then provides a
translation for the Matlab parfor construct that leverages the powerful concurrency constructs
in X10.

The MiX10 compiler has been implemented using the McLab compiler tools, is open source,
and is available both for compiler researchers and end-user Matlab programmers. We have
used the implementation to perform many empirical measurements on a set of 17 Matlab
benchmarks. We show that our best MiX10-generated code is significantly faster than the de
facto Mathworks’ Matlab system, and that our results are competitive with state-of-the-art
static compilers that target C and Fortran. We also show the importance of finding the correct
approach to representing the arrays in X10, and the necessity of an IntegerOkay analysis that
determines which double variables can be safely represented as integers. Finally, we show that
our X10-based handling of the Matlab parfor greatly outperforms the de facto Matlab
implementation.

1 Introduction

Matlab is a popular numeric programming language, used by millions of scientists, engineers as
well as students worldwide. Matlab programmers appreciate the high-level matrix operators, the
fact that variables and types do not need to be declared, the large number of library and builtin
functions available, and the interactive style of program development available through the IDE and
the interpreter-style read-eval-print loop. However, even though Matlab programmers appreciate
all of the features that enable rapid prototyping, their applications are often quite compute intensive
and time consuming. These applications could perform much more efficiently if they could be easily
ported to a high performance computing system.

One such high performance system is X10, a modern object-oriented and statically-typed language
which uses cilk-style arrays indexed by Point objects and rail-backed multidimensional arrays,
and has been designed with well-defined semantics and high performance computing in mind [7].
The X10 compiler can generate C++ or Java code and supports various communication interfaces
including sockets and MPI for communication between nodes on a parallel computing system.

The goal of our research was to develop a bridge between Matlab and X10, in order to provide
Matlab’s ease of use, to benefit from the advantages of static compilation, and to expose scalable
concurrency. Our solution is MiX10, an open source-to-source compiler that statically translates
Matlab programs to X10. The MiX10 translator allows scientists and engineers to write programs
in Matlab (or use existing programs already written in Matlab), and at the same time enjoy the
benefits of high performance computing via the X10 system without having to learn a new and

4

unfamiliar language. Also, since the X10 compiler has back-ends that can produce both C++ and
Java, MiX10 can also be used by systems that use Matlab for prototyping and C++ or Java for
production.

This work shares some of the same challenges as other static compilers which convert Matlab
to C or Fortran. However, targeting X10 raises some significant new challenges. For example,
X10 is an object-oriented, heap-based, language with varying levels of high-level abstractions for
arrays and iterators of arrays. An open question was whether or not it was possible to generate
X10 code that both maintains the Matlab semantics, but also leads to code that is as efficient as
state-of-the-art translators that target C and Fortran. Finding an effective and efficient translation
from Matlab to X10 was not obvious, and this paper reports on the key problems we encountered
and the solutions that we designed and implemented in our MiX10 system.

By demonstrating that we can generate sequential X10 code that is as efficient as generated C or
Fortran code, we then enabled the possibility of leveraging the high performance nature of X10’s
parallel constructs. To demonstrate this, we examined how to use X10 features to provide a good
implementation for Matlab’s parfor construct.

The major contributions of this paper are as follows:

Identifying key challenges: We have identified the key challenges in compiling Matlab to X10.

Techniques for efficiently compiling Matlab arrays: Arrays are the core of Matlab. All
data, including scalar values are represented as arrays in Matlab. Efficient compilation of
arrays is the key for good performance. We provide techniques to compile Matlab arrays to
two different representations of arrays provided by X10.

Comparison of the two array representations: X10 provides two types of array representa-
tions for multidimensional arrays: (1) Cilk-styled, region-based arrays and (2) rail-backed
simple arrays. We compare and contrast these two array forms for a high performance com-
puting language in context of being used as a target language.

Safe use of integer variables: Even after determining the correct use of X10 arrays, we were
still faced with a performance gap between the code generated by the C/Fortran systems,
and the generated X10 code generated by MiX10. Furthermore, we found that the MiX10
system using the X10 Java backend was often generating better code than with the X10
C++ backend, which was counter-intuitive.

We determined that a key remaining problem was overhead due to casting doubles to integers.
This casting overhead was quite high, and was substantially higher for the C++ back-end
than for the Java back-end (since the casting instructions are handled efficiently by the Java
VM). This casting problem arises because the default data type for Matlab variables is
double - even variables used to iterate through arrays, and to index into arrays typically
have double type, even though they hold integral values. To tackle this issue we developed
an IntegerOkay analysis which determines which double variables can be safely converted to
integer variables in the generated X10 code, hence greatly reducing the number of casting
operations needed.

Code generation strategies for parfor: parfor allows parallel execution of for loop iterations
in Matlab. We provide technique to effectively compile parfor construct to X10.

5

Open implementation: We have implemented the techniques provided in this paper in an open
and extensible framework (www.sable.mcgill.ca/mclab/mix10.html). This allows for oth-
ers to make further improvements to the X10 code generated, or to reuse many of the analyses
to generate code for other object-oriented languages.

Experimental evaluation: We have experimented with our MiX10 implementation on a set of
benchmarks. Our results show that our generated code is almost an order of magnitude
faster than the Mathworks’ standard JIT-based system, and is competitive with other state-
of-the-art tools that generate C/Fortran. Our more detailed results show the importance
of using our customized and optimized X10 array representations, and we demonstrate the
effectiveness of the IntegerOkay analysis. Finally, we show that our X10-based treatment of
parfor significantly outperforms Matlab on our benchmarks.

The remainder of this paper is structured as follows. In Section 2 we describe the background.
Section 3 gives an introduction to arrays in X10. In Section 4 we provide our compilation strategies
for different array representations and a comparison of both the approaches. Section 5 outlines our
new IntegerOkay analysis, and Section 6 describes our strategy for handling parfor. Section 7
provides an empircal evaluation of our approach. Finally, we provide a discussion of related work
in Section 8, and conclude and discuss some planned future work in Section 9.

2 Background

In this section we give the background and context for the MiX10 compiler. Appendix A describes
the overall structure of the MiX10 compiler.

Matlab is actually quite a complicated language to compile, starting with its rather unusual
syntax, which cannot be parsed with standard LALR techniques. There are several issues that
must be dealt with including distinguishing places where white space and new line characters have
syntactic meaning, and filling in missing end keywords, which are sometimes optional. The McLab
front-end handles the parsing of Matlab through a two step process. There is a pre-processing
step which translates Matlab programs to a cleaner subset, called Natlab, which has a grammar
that can be expressed cleanly for a LALR parser. The McLab front-end delivers a high-level AST
based on this cleaner grammar.

After parsing, the next major phase of MiX10 uses the McSaf framework [4, 3] to disambiguate
identifiers using kind analysis [5], which determines if an identifier refers to a variable or a named
function. This is required because the syntax of Matlab does not distinguish between variables
and functions. For example, the expression a(i) could refer to four different computations, a could
be an array or a function, and i could refer to the builtin function for the imaginary value i, or it
could refer to a variable i. The McSaf framework also simplifies the AST, producing a lower-level
AST which is more amenable to subsequent analysis.

The next major phase is the Tamer [6], which is a key component for any tool which statically
compiles Matlab. The Tamer generates an even more defined AST called Tamer IR, as well as
performing key interprocedural analyses to determine both the call graph and an estimate of the
base type and shape of each variable, at each program point. The call graph is needed to determine
which files (functions) need to be compiled, and the type and shape information is very important
for generating reasonable code when the target language is statically typed, as is the case for X10.

6

www.sable.mcgill.ca/mclab/mix10.html

The Tamer also provides an extensible interprocedural value analysis and an interprocedural analysis
framework that extends the intraprocedural framework provided by McSaf. Any static backend
will use the standard results of the Tamer, but is also likely to implement some target-language-
specific analyses which estimate properties useful for generating code in a specific target language.
Currently, we have implemented two analyses : (1) An analysis for determining if a Matlab
variable is real or complex to enable support for complex numbers in MiX10 and other Matlab
compilers based on McLab; and (2) IntegerOkay analysis to identify which variables can be safely
declared to be of an integer type (Int or Long) instead of the default type Double.

For the purposes of MiX10, the output of the Tamer is a low-level, well-structured AST, which
along with key analysis information about the call graph, the types and shapes of variables, and
X10-specific information. These Tamer outputs are provided to the code generator, which generates
X10 code, and which is the main focus of this paper.

The X10 source code generator actually gets inputs from two places. It uses the Tamer IR it
receives from the the Tamer to drive the code generation, but for expressions referring to built-in
Matlab functions it interacts with the Built-in Handler which used the built-in template file we
provide. We have described the functioning of the built-in handler and a very basic code generation
strategy for ordinary sequential constructs at the X10 workshop [11]. In this paper we focus on
the challenges in generating efficient X10 code whose performance is comparable to state-of-the-
art tools that generate more traditional imperative languages like C and Fortran. In this paper
we also discuss our strategy for generating parallel X10 code for Matlab parfor construct, thus
harnessing the high-performance capabilities of X10.

3 Introduction to X10 arrays

In order to understand the challenges of translating Matlab to X10, one must understand the
different flavours and functionality of X10 arrays.

At the lowest level of abstraction, X10 provides an intrinsic one-dimensional fixed-size array called
Rail which is indexed by a Long type value starting at 0. This is the X10 counterpart of built-in
arrays in languages like C or Java. In addition, X10 provides two types of more sophisticated array
abstractions in packages, x10.array and x10.regionarray.

Rail-backed Simple arrays are a high-performance abstraction for multidimensional arrays in X10
that support only rectangular dense arrays with zero-based indexing. Also, they support only up
to three dimensions (specified statically) and row-major ordering. These restrictions allow effective
optimizations on indexing operations on the underlying Rail. Essentially, these multidimensional
arrays map to a Rail of size equal to number of elements in the array, in a row-major order.

Region arrays are much more flexible. A region is a set of points of the same rank, where Points

are the indexing units for arrays. Points are represented as n-dimensional tuples of integer values.
The rank of a point defines the dimensionality of the array it indexes. The rank of a region is the
rank of its underlying points. Regions provide flexibility of shape and indexing. Region arrays are
just a set of elements with each element mapped to a unique point in the underlying region. The
dynamicity of these arrays come at the cost of performance.

Both types of arrays also support distribution across places. A place is one of the central innovations
in X10, which permits the programmer to deal with notions of locality.

7

4 Compilation to X10 arrays

Arrays are the core of the Matlab programming language. Every value in Matlab is a Matrix
and has an associated array shape. Even scalar values are represented as 1 × 1 arrays. Most of
the data read and write operations involve accessing individual or a set of array elements. Given
the central role of arrays in Matlab, it is of utmost importance for our MiX10 compiler to find
effective and efficient translations to X10 arrays.

Given the shape information provided by the shape analysis engine [13] built into the McLab
analysis framework [4, 3, 6], it was not hard to compile Matlab arrays to X10. However, to
generate X10 code whose performance would be competitive to the generated C code (via Matlab
coder) and the generated Fortran code (via the Mc2For compiler), was not straightforward, and
required deeper understanding of the X10 array system and careful handling of several features of
the Matlab arrays.

4.1 Simple Arrays or Region Arrays

As described in Section 3, X10 provides two higher level abstractions for arrays, simple arrays, a
high performance but rigid abstraction, and region arrays, a flexible abstraction but not as efficient
as the simple arrays. In order to achieve more efficiency, our strategy is to use the simple arrays
whenever possible, and to fall back to the region arrays when necessary. Note that it is possible to
force the MiX10 compiler to use region arrays via a switch, for experimentation purposes.

4.1.1 Compilation to Simple arrays

In dealing with the simple rail-backed arrays, there were two important challenges. First, we
needed to determine when it is safe to use the simple rail-backed arrays, and second, we needed
an implementation of simple rail-backed arrays that handles the column-major, 1-indexing, and
linearization operations required by Matlab.

When to use simple rail-backed arrays: After the shape analysis of the source Matlab program,
if shapes of all the arrays in the program: (1) are known statically, (2) are supported by the X10
implementation of simple arrays and (3) the dimensionality of the shapes remain same at all points
in the program; then MiX10 generates X10 code that uses simple arrays.

Column-major indexing: In order to make X10 simple arrays more compatible with Matlab,
we modified the implementation of the Array_2 and Array_3 classes in x10.array package to use
column-major ordering instead of the default row-major ordering when linearizing multidimensional
arrays to the backing Rail storage.1 Since Matlab uses column-major ordering to linearize arrays,
this modification also makes it trivial to support linear indexing operations in Matlab. 2 Matlab
naturally supports linear indexing for individual element access. More precisely, if the number of
subscripts in an array access is less than the number of dimensions of the array, the last subscript
is linearly indexed over the remaining number of dimensions in a column-major fashion. Our

1http://www.sable.mcgill.ca/mclab/mix10/x10_update/
2http://www.mathworks.com/help/matlab/math/matrix-indexing.html

8

http://www.sable.mcgill.ca/mclab/mix10/x10_update/
http://www.mathworks.com/help/matlab/math/matrix-indexing.html

modification to use column-major ordering for the backing Rail make it easier and more efficient
to support linear indexing by allowing direct access to the underlying Rail at the calculated linear
offset.

Given that we can determine when it is safe to use the simple rail-backed arrays, and our improved
X10 implementation of them, we then designed the appropriate translations from Matlab to X10,
for array construction, array accesses for both individual elements and ranges. Given the number
of dimensions and the size of each dimension, it is easy to construct a simple array. For example a
two-dimensional array A of type T and shape m× n can be constructed using a statement like val

A:Array 2[T] = new Array 2[T](m,n);. Additional arguments can be passed to the constructor
to initialize the array. Another important thing to note is that Matlab allows the use of keyword
end or an expression involving end (like end-1) as a subscript. end denotes the highest index in
that dimension. If the highest index is not known the numElems_i property of the simple arrays is
used to get the number of elements in the ith dimension of the array.

4.1.2 Compilation to Region Arays

With Matlab’s dynamic nature and unconventional semantics, it is not always possible to statically
determine the shape of an arrays accurately. Luckily, with some thought to a proper translation,
X10’s region arrays are flexible enough to support Matlab’s “wild” arrays. Also, since Point

objects can be a set of arbitrary integers, there is no restriction on the starting index of the arrays.
Region arrays can easily use one-based indexing.

Array construction: Array construction for region arrays involves creating a region over a set of
points (or index objects) and assigning it to an array. Regions of arbitrary ranks can be created
dynamically. For example, consider the following Matlab code snippet:

function[x] = foo(a)
t = bar(a);
x = t;
...

end

function[y] = bar(a)
if (a == 3)

y = zeros(a,a+1,a+2,a+3);
else

y = zeros(a,a+1,a+2);
end

end

In this code, the number of dimensions of array t and hence array x cannot be determined statically
at compile-time. In such case, it is not possible to generate X10 code that uses simple arrays,
however, it can still be compiled to the following X10 code for function foo().

static def foo(a: Double){
val t: Array[Double] =

new Array[Double](bar(a));
val x: Array[Double] =

new Array[Double](t);
...
return x;
}

static def bar(a:Double){
var y:Array[Double]=null;
if (a == 3) {

y = new Array[Double]
(Mix10.zeros(a,a+1,a+2,a+3));

}
else {

y = new Array[Double]
(Mix10.zeros(a,a+1,a+2));

}
return y;
}

9

In this generated X10 code, t is an array of type Double which can be created by copying from
another array returned by bar(a) without knowing the shape of the returned array.

Array access: Subscripting operations to access individual elements are mapped to X10’s region
array subscripting operation. If the rank of array is 4 or less, it is subscripted directly by integers
corresponding to subscripts in Matlab otherwise we create a Point object from these integer
values and use it to subscript the array. In case an expression involving end is used for indexing
and the complete shape information is not available, method max(Long i), provided by the Region
class is used, allowing to determine the highest index for a particular dimension at runtime.

Rank specialization: Although region arrays can be used with minimal compile-time information,
providing additional static information can improve performance of the resultant code by elim-
inating run-time checks involving provided information. One of the key specializations that we
introduced with use of region arrays is to specify the rank of an array in its declaration, whenever
it is known statically. For example if rank of an array A of type T is known to be two, it can be
declared as val A:Array[T](2);. This specialization provided better performance compared to
unspecialized code as shown in section 7.6.

4.2 Handling the colon expression

Matlab allows the use of an expression such as a:b (or colon(a,b)) to create a vector of integers
[a, a+1, a+2, ... b]. In another form, an expression like a:i:b can be used to specify an
integer interval of size i between the elements of the resulting vector. Use of a colon expression
for array subscripting takes all the elements of the array for which the subscript in a particular
dimension is in the vector created by the colon expression in that dimension.3 Consider the
following Matlab code:

function [x] = crazyArray(a)
y = ones(3,4,5);
x = y(1,2:3,:) ;

end

Here y is a three-dimensional array of shape 3×4×5 and x is a sub-array of y of shape 1×2×5. Such
array accesses can be handled by simply calling the getSubArray[T]() that we have implemented
in a Helper class provided with the generated code. The generated X10 code with simple array for
this example is as follows:

static def crazyArray (a: Double){
val y: Array 3[Double] = new Array 3[Double](Mix10.ones(3, 4, 5));
val mc t0: Array 1[Double] = new Array 1[Double](Mix10.colon(2, 3));
var x: Array 3[Double];
x = new Array 3[Double](Helper.getSubArray(1, 1, mc t0(0), mc t0(1), 1, 5, y)) ;
return x;

}

The colon operator can also be used on the left hand side for an array set operation that updates
multiple values of the array. For example, in the Matlab statement x(:,4) = y;, all the values
of the fourth column of x will be set to y if y is a scalar or to corresponding values of y if y is a

3Use of ’:’ in place of an index without lower and upper bounds indicates the use of all the indices in that
dimension.

10

column vector with length equal to the size of first dimension of x. To handle this kind of operation
we have implemented another helper method, setSubArray(). This method takes as input, the
target array, the bounds on each dimension, and the source array. x(:,4) = y; will be translated
by MiX10 to x = Helper.setSubArray(x, 1, x.numElems 1, 4, 4, y);

We have implemented overloaded versions of the getSubArray() and the setSubArray() methods
for arrays of different dimensions. For region arrays, we provide the same methods that operate on
region arrays in a different version of the Helper class. MiX10 provides the correct version of the
Helper class, based on what kind of arrays are used.

4.3 Array growth

Matlab allows explicit array growth during runtime via the horzcat() and the vertcat() builtin
functions for array concatenation operations. In MiX10 this feature is supported for simple arrays
as long as the array growth does not change the number of dimensions of the array. For region
arrays, this feature is supported in full. For simple arrays, X10 allows a variable declared to be an
array of rank i, to hold any array value of the same rank. For example, consider the following set
of statements:

//...
var x:Array 2[Long];
x = new Array 2(3,4,0);
y = new Array 2(3,5,0);
x=y;
//...

Here, x is defined to be of type Array 2[Long] and can hold arrays of different sizes at different
points in the program.

Region arrays, being more dynamic, also support array growth even if it changes the rank of the
array. For example, the following set of statements are valid in an X10 program that uses region
arrays:

//...
var x:Array[Long];
x = new Array(Region.make(1..3,1..4),0);
y = new Array(Region.make(1..3,1..5,1..6),1);
x=y;
//...

Here x is a 2-dimensional array and y is a 3-dimensional array.

Section 7.6 discusses the performance results obtained by using different kinds of arrays and provides
a comparison of them, thus showing the efficiency of our approach for compiling Matlab arrays
to X10.

5 Safely using integer variables

In this section we present the IntegerOkay analysis to identify which variables in the source Matlab
program can be safely declared to be of an integer type instead of the default double type. In
Matlab all the variables holding a numerical value are by default of type Double, which means
that by default, in the X10 code generated from Matlab, all variables are statically declared to

11

be of Double. However, in languages like X10, Java and C++, certain program operations require
the variables used to be of an integer type. A prominent example of such an operation is an array
access operation. An array access requires the variables used to index into the array to be of an
integer type. For example, in a statement like x = A(i,j), the variables i and j are required to
be of integer type and result in an error otherwise.

5.1 Need for declaring variables to be of integer type

A simple solution to handle this problem in the generated code from Matlab is to explicitly cast
the variable from Double to Long, whenever it is required to be used as an integer. However, our
experiments showed this approach to be very inefficient. With this approach, we observed that the
C++ programs generated by the X10 compiler’s C++ backend were slow, and often even slower
than the Java code generated by the X10 Java backend for the same program (which was somewhat
surprising). The reason for the added slowness in the C++ code was because each typecast from
Double to Long involved an explicit check on the value of the Double type variable to ensure that
it lies in the 64-bit range supported by Long, whereas the cast in Java is handled by a primitive
bytecode cast instruction. However, even in Java, extraneous casts clearly hurt performance.

To solve this problem, we designed and implemented the IntegerOkay analysis that identifies vari-
ables that can be safely declared to be of Long type, thus eliminating the need for costly typecasting
on these variables.

5.2 An example

To understand the effect on performance caused by typecasting consider a simple example of X10
code shown in listing 1 that just loops over a 2-dimensional array and sets each element A(i,j)

to A(i-1,j-1) + A(i+1, j+1). In this example, the index variables i and j are declared to be of
type Double and are typecast to Long when used for indexing into the array. This example reflects
the type of X10 code that we would generate if we do not have the IntegerOkay analysis.

Listing 2 shows the same example, but with i and j declared to be Long, and thus not requiring
an explicit typecast. This example reflects the code that we would be able to generate with a good
IntegerOkay analysis.

Listing 1: Example for using Double variables for array indexing

static def useDoubles(scale:Double, n:Long){
val a: Array 2[Double] =

new Array 2[Double](Mix10.rand(scale, scale));
var i:Double = 0; var j:Double = 0; var v:Long = 0;
for (v=0;v<n;v++){

for (j=1;j<a.numElems 2−1;j++){
for (i=1;i<a.numElems 1−1;i++){

a(i as Long,j as Long) = a(i as Long −1, j as Long −1) +
a(i as Long +1, j as Long +1);
} } } }

Listing 2: Example for using Long variables for indexing

static def useLongs(scale:Double, n:Long){
val a: Array 2[Double] =

new Array 2[Double](Mix10.rand(scale, scale));

12

var i:Long = 0; var j:Long = 0; var v:Long = 0;
for (v=0;v<n;v++){

for (j=1;j<a.numElems 2−1;j++){
for (i=1;i<a.numElems 1−1;i++){

a(i, j) = a(i−1, j−1) + a(i+1, j+1);
} } } }

input args: 100, 200000 input args : 10000, 20

Java C++ Java C++

useDoubles 6.9 33.7 7.6 35.2
useLongs 3.4 1.5 3.7 2.0

Table I: Running times (in seconds) for listings 1 and 2, smaller is better

Table I shows running times (in seconds) for these two examples for different values of input
arguments. For the listing 1, the C++ code generated by the X10 compiler is nearly 5 times slower
as compared to the Java code generated from X10 for the same example. Compared to 2 it is
slower than the C++ code for this example by almost 20 times. On the other hand, Java code for
the listing 1 is nearly 2 times slower compared to the Java code for the listing 2. For the C++
backend, since the C++ compiler does not provide the checks for Double to Long typecast, it is
implemented in the X10 C++ backend. For the Java backend, X10 relies on these checks provided
by the JVM. The more efficient implementation of these checks in the JVM, compared to that in
the X10 C++ backend explains for comparatively lower slowdowns for the Java code. Section 7.7
gives detailed evaluation of the performance benefits obtained by using IntegerOkay analysis on
our benchmark set.

5.3 IntegerOkay Analysis

The basic idea behind the IntegerOkay analysis is that, for each variable x, if for every use and
every definition of x in the program x can be safely assumed to be an integer, i.e. its declaration as
an integer does not change the result of the program, then it can be declared as an integer. Thus,
the problem boils down to answering the question of whether each use or a definition, x can be
safely assumed to be an integer.

There are three possible answers to this question:

1. IntegerOkay : The variable use/def can be safely assumed to be an integer. For example, for
a definition like x = 2.0 or for use as an array index like A(x), it is safe to assume that if x
was declared to be an integer, this definition or use will not affect the result of the program.
In other words, for this definition or use of x, x is IntegerOkay.

2. Not IntegerOkay : The variable cannot be an integer type. For example consider the expression
x/y. Here, since the type of the operands can affect the result of the division operation, it
is unsafe to assume that x and y can be of integer type for this particular use. As another
example, consider the definition x = 3.14. Here, since assuming x to be an integer will result
in an error, x is not IntegerOkay.

3. Conditionally IntegerOkay : The variable x can be an integer if for the use or definition in
question, the variables on which its value depends on, are IntegerOkay everywhere in the

13

program. For example, in a definition like x = a+b, x can be an integer if both a and b are
integers. We say x is conditionally IntegerOkay and depends on a and b. Note that in this
particular use of a and b (as operands of the plus operator), since their type does not affect
the result value of the plus operator, a and b are IntegerOkay.

In our MiX10 compiler we solve the IntegerOkay problem using a simple fixed-point computation.
For each variable use and definition, the algorithm initially associates it with one of the three
abstract values above. We then compute the fixed-point by iteratively refining the dependency lists
of the conditional variables. Consider each variable x, if every use and definition of x has been
determined to be IntegerOkay, then x is removed from the dependency lists of all the variables
that are Conditionally IntegerOkay and depend on x. Once the dependency list for a particular
use or definition of a variable is empty, it is upgraded to be IntegerOkay for that particular use or
definition.

If a variable is not IntegerOkay at some point in the program or its dependency list does not become
empty for some point in the program (say, for circular dependency), it cannot be declared as an
integer. Since, every time we declare a variable to be integer, one or more Conditionally IntegerOkay
variables might be upgraded to IntegerOkay, we iteratively repeat the process of finding variables
that are IntegerOkay at all points in the program, until we reach a fixed point. Note that since
we never downgrade a variable to Not IntegerOkay or Conditionally IntegerOkay, our iterative
algorithm will always terminate.

Consider the following pseudocode for example:

/*1*/ x = 3.0;

/*2*/ y = 3.14;

/*3*/ z = x+y;

/*4*/ for (i = 0; i < 5; i++)

/*5*/ y = y+i;

/*6*/ end

In this example, the initialization step proceeds as follows. On line 1, x is IntegerOkay since 3.0
is a real integer. On line 2, y is Not IntegerOkay. On line 3, z is Conditionally IntegerOkay and
depends on x and y, whereas x and y are IntegerOkay in their use in the expression x+y. On
line 4, i is IntegerOkay in its definition i = 0, in its use in the expression i < 5, and also in the
definition i++. On line 5, y is conditionally IntegerOkay and depends on i in its definition and it
is IntegerOkay in its use in y+i. i is IntegerOkay in its use in y+i. Note that on line 5, we do not
include y in its own dependency list, since if we say, y is conditionally IntegerOkay and depends
on y, it is safe to declare y as integer as long as it does not have any other dependencies and is
IntegerOkay everywhere else in the program.

The fixed-point solver for this example proceeds as follows. We look for variables that are Inte-
gerOkay at every point in the program. x and i are two such variables and we can declare them to
be an integer. We also remove x from the dependency list of definition of z on line 3, and i from
the dependency list of definition of y on line 5. Next, we search again and find that y is IntegerOkay
in its use on line 3 and line 5, and also in its definition on line 5, however it is Not IntegerOkay in
its definition on line 2 and thus it cannot be declared as an integer. z on line 3 is dependent on
y and thus it can also not be declared as an integer. At this point, we have reached a fixed point
since there are no more upgrades. Finally, we declare x and i as integers, and y and z as doubles.

14

6 Code generation for the Matlab parfor loop

The Matlab parfor construct is an important feature in Matlab and is provided by the Math-
works’ parallel computing toolbox [16]. It allows the for loop iterations in the Matlab programs to
be executed in parallel, whenever safely possible, thus greatly enhancing the performance of the for
loop execution. Other static Matlab compilers like Matlab coder and Mc2For do not support
the parfor loop due to the lack of builtin concurrency features in their target languages, C and
Fortran. However, X10, being a parallel programming language, naturally provides concurrency
control features. The MiX10 compiler supports parallel code generation for the Matlab parfor

construct and provides significantly better performance compared to Matlab code with parfor,
and also the sequential version of the X10 code generated for the same program. 4

The parfor (or parallel for loop) is a key parallelization control provided by the Matlab parallel
computing toolbox that can be used to execute each iteration of the for loop in parallel with each
other. The challenge was to implement it with X10’s concurrency controls while maintaining its
complex semantics and aiming for better performance than provided by the parallel computing
toolbox. There are three important semantic characteristics of Matlab’s parfor loop:

1. the scope of variables inside a parfor loop, including the loop index variable, is limited to
each iteration.

2. if a variable defined outside the loop is modified inside the loop such that its value after the
loop is dependent on the sequence of execution of iterations, then its value after the loop is
set to its value before the loop.

3. if a variable defined outside the loop is modified in a reduction assignment i.e., the final value
after the iterations is independent of the order of execution of iterations, the updated value
is retained after the parfor loop. Consider the Matlab code given on the left of Figure 1.

function [] = saneParfor(v)
d = v;
x=0;
A=zeros(1,10);
parfor i = 1:10

x = x+i;
d = i∗2;
A(i) = d;

end
disp(d);
end

static def saneParfor (v: Double)
{ var d: Double = v;

var x: Double = 0;
val A: Array 1[Double] =

new Array 1[Double](Mix10.zeros(1, 10));
var mc t3: Double = 1;
var mc t4: Double = 10;
finish {

for (i in (mc t3 as Long)..(mc t4 as Long))
async {

atomic x = Mix10.plus(x, i as Double);
var mc t2: Double = 2;
var d local: Double =

Mix10.mtimes(i as Double, mc t2);
A(i as Long −1) = d local ;

}
}
}

Figure 1: Example of parfor, Matlab with parfor on the left, generated X10 on the right.

4In Appendix B we provide some background on the X10 concurrency features. Readers not familiar with X10
may find it useful to read that appendix before continuing with this section.

15

Here x = x+i; is a reduction assignment [15] statement. The value of d is local to each
iteration and the initial value before the loop is retained after the loop. Note that the value
of d outside the loop is invisible inside the loop. For statement A(i) = d;, each iteration
modifies a unique element accessible only to it, hence the final value of A is independent of
order of execution; thus its value is updated after the loop.

The MiX10 compiler uses the following strategy to translate parfor loops to X10:

1. Introduce finish and async constructs to control the flow of statements in parallel. This
puts the statement immediately after the for loop in wait, until all the iterations have been
executed.

2. Any variable defined inside the loop and not declared outside the loop previously is declared
inside the async scope to make it local to the iteration.

3. Any variable defined inside the loop that is previously defined outside the loop and is not a
reduction variable is replaced by a local temporary variable defined inside the loop.

4. Statements identified to be reduction statements are made atomic by using the atomic con-
struct in X10.

An example of the X10 code generated for the example Matlab code is given on the right side of
Figure 1. The use of finish and async ensure that each iteration is executed in parallel and the
statement after the for loop is blocked until all the iterations have finished executing. Note that
the for loop is iterated over a LongRange to ensure that the declaration of the loop variable i is
local to each iteration. The statement x = x+i is a reduction statement, since its order of execution
does not affect the value of x at the end of the loop. It is declared to be atomic to ensure that the
two operations of addition and assignment in the statement are executed as a whole, without any
interference from its execution in other iterations. Since the variable d is also defined outside the
loop, it is replaced by a local variable d_local inside the loop. Finally, since each array variable
A(i) is unique, it is executed normally for each iteration.

To conclude, we can translate the parfor in Matlab to semantically equivalent code in X10
and since X10 can handle massive scaling, we can get significantly better performance for X10
compared to Matlab as shown by our experimental results in Section 7.8.

7 Evaluation

In this section we evaluate the performance of our compiler. In this research our main aim was to
generate X10 code for Matlab such that its sequential performance would be comparable to the
performance provided by the state of the art tools which translate Matlab to more traditional
imperative languages such as C and Fortran. To demonstrate our results, we compiled a set of 17
Matlab programs to X10 via the MiX10 compiler and compared their performance results with
those of the original Matlab programs, C programs generated for our benchmarks via the Matlab
coder, and Fortran programs generated by the Mc2For compiler.5 In addition to showing our best

5We also compared our results to Octave, a widely used open source alternative to Matlab. However, since
Octave involves an interpreter, it performed slower than the standard Matlab compiler (with a mean slowdown of
66.67 times slower) over all of our benchmarks, thus in this section we do not concentrate on comparison of our results
with Octave.

16

Benchmark Source Description Key features

bbai Matlab file exchange Implementation of the Babai estimation al-
gorithm

2-D arrays, random number generation

bubl McLab Bubble sort 1-D array, nested loops
capr Chalmers University Computes the capacitance of a transmis-

sion line using finite difference and Gauss-
Seidel method

Array operations on 2-D arrays, nested
loops

clos Otter project Calculates the transitive closure of a di-
rected graph

Matrix multiplication, 2-D arrays

crni Falcon project Crank-Nicholson solution to the heat equa-
tion

read/write operations on a very large 2-D
array

dich Falcon project Dirichlet solution to Laplace’s equation Array operations on 2-D arrays, nested
loops

diff Matlab file exchange Calculates the diffraction pattern of
monochromatic light

2-D arrays, Concatenation operations,
complex numbers

edit Matlab file exchange Calculates the edit distance between two
strings

many 1-D arrays of characters

fiff Falcon project Computes the finite difference solution to
the wave equation

Array operations on 2-D arrays, nested
loops

lgdr Calculates derivatives of Legendre polyno-
mials

Array transpose on row vectors

mbrt McFor project Computes Mandelbrot sets Complex numbers, parfor loop
nb1d Otter project Simulates the 1-dimensional n-body prob-

lem
Column-vectors, nested loops, parfor loop

matmul McLab naive matrix multiplication 2-D arrays, nested loops, parfor loop
mcpi McLab Calculates π by the Monte Carlo method Scalar values, Random number generation,

parfor loop
numprime Burkardt and Cliff Simulates the sieve of Eratosthenes for cal-

culating number of prime numbers less
than a given number

Scalar values, nested loops, parfor loop

optstop Burkardt and Cliff Solution to the optimal stopping problem Row vectors, random number generation,
parfor loop

quadrature Burkardt and Cliff Simulates the quadrature approach for cal-
culating integral of a function

Scalar values, parfor loop

Table II: Benchmarks

overall sequential performance, we also demonstrate the results of compiling the generated X10
code to Java compared to C++, effects on the performance for the various efficiency enhancing
techniques discussed in this paper, and finally the performance of the parallel X10 code generated
for Matlab parfor loops.

7.1 Benchmarks

The set of benchmarks used for our experiments consists of benchmarks from various sources; Most
of them are from related projects like FALCON [19] and OTTER [18], Chalmers university of
Technology6, “Mathworks’ central file excahange”7, and the presentation on parallel programming
in Matlab by Burkardt and Cliff8. This set of benchmarks covers the commonly used Matlab
features like arrays of different dimensions, loops, use of numerical functions like random number
generation, trigonometric operations, and array operations like transpose and matrix multiplication.
Table II gives a description of all the benchmarks we used and shows their special features.

6http://www.elmagn.chalmers.se/courses/CEM/
7http://www.mathworks.com/matlabcentral/fileexchange
8http://people.sc.fsu.edu/~jburkardt/presentations/matlab_parallel.pdf

17

http://www.elmagn.chalmers.se/courses/CEM/
http://www.mathworks.com/matlabcentral/fileexchange
http://people.sc.fsu.edu/~jburkardt/presentations/matlab_parallel.pdf

7.2 Experimental setup

We used Mathworks’ Matlab release R2013a to execute our benchmarks in Matlab and Matlab
coder. We also executed them using the GNU Octave version 3.2.4. We compiled our benchmarks
to Fortran using the Mc2For compiler and compiled the generated Fortran code using the GCC
4.6.3 GFortran compiler with optimization level -O3. To compile the generated X10 code from our
MiX10 compiler, we used X10 version 2.4.0. We used OpenJDK Java 1.7.0 51 to compile and run
Java code generated by the X10 compiler, and GCC 4.6.4 g++ compiler to compile the C++ code
generated by the X10 compiler. All the experiments were run on a machine with Intel(R) Core(TM)
i7-3820 CPU @ 3.60GHz processor and 16 GB memory running GNU/Linux(3.8.0-35-generic #52-
Ubuntu). For each benchmark, we used an input size to make the program run for approximately 20
seconds on the de facto Matlab compiler. We used the same input sizes for compiling and running
benchmarks via other compilers. We collected the execution times (averaged over five runs) for
each benchmark and compared their speedups over Mathworks’ Matlab runtimes (normalized to
one).

7.3 X10 Compiler variations

The MiX10 compiler compiles the source Matlab code to X10 code, which is then compiled
by the X10 compiler. The X10 compiler is also a source to source compiler that provides two
backends, a C++ backend that generates C++ code and a Java backend that generates Java code,
which are then compiled by their respective compilers to executable code. Both these backends
provide a -NO CHECKS switch that generates the C++/Java code that does not include dynamic
array bounds checks, which are otherwise included by default. As we described in section 4.1.1, we
altered the X10 compiler to use column-major array indexing. We always used the -O optimization
flag for the X10 compiler for both the backends, with notable exceptions where the X10 optimizer
generated code which interacted extremely negatively with the Java JIT, as discussed in section
7.5.1. For all of our experiments, we used our IntegerOkay analysis, except for the experiment
which investigates the performance impact of this analysis. Our best results were obtained by
compiling the generated X10 code with the C++ backend with -NO CHECKS enabled, where the
X10 code itself was generated by the MiX10 compiler with simple arrays and our IntegerOkay
analysis enabled.

7.4 Overall MiX10 performance

We compared the performance of the generated X10 code with that of the original Matlab code
run on Mathworks’ implementation of Matlab. To compare against the state of the art static
compilers, we also compared the performance of the MiX10 generated X10 code with the C code
generated by Matlab coder and the Fortran code generated by the Mc2For compiler.

Figure 2 shows the speedups and slowdowns for the code generated for our benchmarks by different
compilers. For MiX10 we have included the results for the X10 code compiled by the X10 C++
backend compiled, once with -NO CHECKS enabled and once with -NO CHEKCS disabled. For Fortran
we included the results for the code generated without bounds checks. C code from Matlab coder
was generated with default settings and includes bounds checks. We also calculated the geometric
mean of speedups(slowdowns) for all the benchmarks for each compiler.

18

Figure 2: Performance of MiX10 vs other state-of-the-art static compilers, reported as speedups
relative to Mathworks’ Matlab, higher is better.

Overall, one can see that the static compilers all provide excellent speedups, often of at least an
order of magnitude faster. Thus, for the kinds of benchmarks in our benchmark set, it would
seem that tools like the Matlab coder, Mc2For, and our MiX10 tools are very useful. MiX10
outperforms Matlab coder in 9 out of 17 benchmarks, when compared with the X10 version
compiled with bounds checks, and 10 out of 17 benchmarks when compared with the version with
no bounds checks. For Fortran, the generated X10 does better in 7 out of 17 benchmarks with no
bounds checks, and 6 out of 17 benchmarks with bounds checks enabled. Note that Matlab coder
was not able to compile 1 of our benchmarks (diff) due to the dynamic array growth involved in
it; MiX10 supports dynamic array growth.

We achieved a mean speedup of 4.8 over Matlab, for the X10 code with bounds checks, and 6.8
for the x10 code with no bounds checks. On the other hand, Matlab coder gave a mean speedup
of 6.3 and Mc2For gave a mean speedup of 10.2. However, we noticed that our mean result was
skewed due to two benchmarks for which the generated X10 performed very poorly compared to
the generated C code. These benchmarks are clos and lgdr. In the following paragraphs we explain
the reason for their poor performance. If we do not consider these two benchmarks, we get a mean

19

speedup of 6.7 for the X10 code with bounds checks compared to 5.2 for the C code. For the X10
code compiled with no bounds checks we get a mean speedup of 9.3 compared to 11.6 for Fortran.

clos involves repeated calls to the builtin matrix multiplication operation for the 2-dimensional
matrices. The generated C code from Matlab coder uses highly optimized matrix multiplication
libraries compared to the naive matrix multiplication implementation used by MiX10. Thus,
MiX10 gets a speedup of 0.02 as compared to 1.05 for C. Note that the generated Fortran code is
also slowed down (speedup of 0.04) due to the same reason. As a future work, We plan to replace
our matrix multiplication implementation with calls to an optimized library function.

lgdr involves repeated transpose of a row vector to a column vector. Matlab and Fortran, both
being array languages are highly optimized for transpose operations. MiX10 currently uses a naive
transpose algorithm which is not optimized. We did achieve a speedup of over 10 times compared
to Matlab but it is not as good as the speedups achieved by C (speedup of 505.0) and Fortran
(speedup of 336.7). For transpose operation also, we plan to replace our current implementation
with an optimized implementation or a call to an optimized library function.

Both of these examples show that in addition to generating good code, another important task is
developing optimized X10 library routines for key array computations.

Other interesting numbers are shown by optstop, fiff, nb1d, and quadrature. optstop gave a speedup
of just 1.5 even without bounds checks. It involves repeated random number generation, which
our experiments showed to be slow for the X10 C++ backend compared to Fortran and even the
Java backend. This problem is worse with C, due to which the C code from Matlab coder gives
a speedup of mere 0.6(slowdown). Fortran performs better with a speedup of 4.3. bbai shows a
similar pattern due to the same reason. fiff is characterized by stencil operations in a loop on a
2-dimensional array. These operations are also optimized by array-based languages like Fortran and
Matlab. For nb1d, Fortran performs better due to the use of column vectors in the benchmark,
which are represented as 2-dimensional arrays in X10 but in Fortran they are represented as 1-
dimensional and are optimized. 2-dimensional arrays are not as fast in X10 as the 1-dimensional
arrays. quadrature involves repeated arithmetic calculations on a range of numbers. We achieve a
speedup of about 200 times compared to Matlab, however it is slow compared to speedups of 3348
and 502 by C and Fortran respectively. We believe that Matlab coder leverages partial evaluation
for optimizing numerical methods’ implementations.

For most of the other benchmarks, we perform better or nearly equal to C and Fortran code.
Despite the facts that: (1) the sequential core of X10 is a high-level object oriented language which
is not specialized for array-based operations; and (2) Generating the executable binaries via MiX10
involves two levels of source-to-source compilations (Matlab → X10 → C++); we have achieved
performance comparable to C, the state of the art in statically compiled languages and Fortran, a
statically compiled language highly specialized for arrays.

7.5 X10 C++ backend vs. X10 Java backend

The X10 compiler provides two backends, a C++ backend that compiles the X10 code to native
binary via C++, and a Java backend that compiles the X10 code to JVM code via Java. We were
interested to see how well these backends perform when used to compile the MiX10 generated
code. Even though we did not expect Java code to perform as well as the C++ code, our aim was
to make sure that we achieved good performance, significantly better than Matlab, for the X10

20

Java backend. This would enable Matlab programmers to use our MiX10 compiler to generate
code that could be integrated into Java applications.

In this subsection we present the performance comparison of the MiX10 generated X10 code com-
piled by the X10 C++ backend with that compiled by the X10 Java backend. Columns 3 and 4
of the Table III show speedups for our benchmarks compiled with the X10 C++ backend without
bounds checks, and with bounds checks respectively. Columns 5 and 6 show these values for com-
pilation with the X10 Java backend without bounds checks, and with bounds checks respectively.
We also show the geometric mean of the speedups for all the 4 cases.

Benchmark Matlab C++ (no checks) C++ (checks) Java (no checks) Java (checks)

bbai 1 4.9 4.9 11.3 10.7
bubl 1 15.8 10.8 7.5 7.5
capr 1 13.5 12.7 11.1 6.3
clos 1 0.03 0.02 0.02 0.002
crni 1 6.5 5.3 5.6 4
dich 1 7.6 7.3 7 1.6
diff 1 4.6 4.4 0.3 0.3
edit 1 29.7 19.4 22.1 20
fiff 1 9.8 3.5 2.1 1.4

lgdr 1 13.5 11.9 10.6 10.6
mbrt 1 6.5 6.5 0.3 0.3
nb1d 1 6.2 4.8 5.5 4.1

matmul 1 14.7 2.5 1.1 0.8
mcpi 1 3.3 2.5 2.9 3

numprime 1 7.6 6.8 6.5 6.4
optstop 1 1.5 1.2 1.8 1.4

quadrature 1 200.9 182.6 167.4 154.5

Geometric mean 1 6.8 4.8 3.4 2.4

Table III: MiX10 performance comparison : X10 C++ backend vs. X10 Java backend, speedups
relative to Mathworks’ Matlab, higher is better

The mean speedups for the C++ backend are 6.8 and 4.8 respectively for the version with bounds
checks switched off, and the version with bounds checks switched on, whereas for Java backend
these values are 3.4 and 2.4 respectively. This is expected, given that C++ is compiled to native
binary while Java is JIT compiled.

bbai and optstop are the two exceptions, where Java performs better than C++. For bbai, both
the Java versions gave a speedup of over 10, whereas for C++, the speedup is under 5 for both the
versions. For optstop, the difference is not large, with C++ speedup at 1.5 (1.2 for the bounds checks
version) compared to 1.8 (1.4 for the bounds checks version) for the Java backend. bbai is slower
with X10 C++ backend because it includes repeated calls to the X10’s Random.nextDouble()

function to generate random numbers. We found it to be significantly slower in the C++ backend
compared to the Java backend. We have reported our findings to the X10 development team and
they have validated our findings. optstop is slower for the same reason : It also involves repeated
random number generation. Note that for these two benchmarks, even the C code generated via
Matlab coder is slower than the C++ code, with speedups of 4.2 and 0.6 respectively for bbai and
optstop.

Other interesting results are for the benchmarks diff, fiff, mbrt and matmul. For these benchmarks,
results from the Java backend are significantly slower compared to the C++ backend. diff and

21

mbrt involve operations on complex numbers. In the X10 C++ backend, complex numbers are
stored as structs and are kept on the stack, whereas in the Java backend, they are stored as objects
and reside in the heap storage. fiff and matmul are characterized by repeated array access and
read/write operations on 2-dimensional arrays. For these benchmarks, the Java backend performs
significantly slower compared to the C++ backend with no bounds checks(2.1 vs. 9.8 for fiff and
1.1 vs. 14.7 for matmul), however compared to the performance by the C++ beckend with bounds
checks, it is not as slow(2.1 vs. 3.5 for fiff and 1.1 vs. 2.5 for matmul). The reason is that even
with bounds checks turned off for the X10 to Java compiler, The Java compiler by default has
bounds checks on. These checks have a significant effect on performance for 2-dimensional array
operations.

7.5.1 When not to use the X10 -O

One of the most surprising results in this set of experiments was the fact that we had to sometimes
disable the X10 -O optimizer switch when using the X10 Java backend.. For the benchmarks
capr and dich, in the case when X10 bounds checks are switched on, we found very pathological
performance, with slowdowns of over 2 orders of magntitude, when the X10 compiler’s optimization
switch(-O) was used.

We recorded running times of 785.3 seconds for capr compared to 3.2 seconds without the opti-
mization, and 1558.9 seconds for dich compared to 12.7 seconds without the optimization. With
the help of the X10 development team we determined that switching on the optimization triggered
code inlining for the array bounds check code, which then caused the resultant Java program to be
too large to be handled by the JIT compiler. In fact, the Java JIT effectively gives up on this code
and reverts to the interpreter.

Thus, it would seem that the X10 optimizer needs to be improved in order to apply aggressive
inlining only when it does not have a negative impact on code size, and that different inlining
strategies are needed for the C++ and Java backends.

7.6 Simple vs. Region arrays

One of the key optimizations used by MiX10 is to use simple arrays, wherever possible, for higher
performance. In this subsection we discuss the performance gains obtained by using simple arrays
over region arrays and the specialized region arrays. A description of these three kinds of arrays
provided by X10 was given in Section 3. Table IV shows the relative speedups and slowdowns for
our benchmarks compiled to use different kinds of X10 arrays for the C++ backend and the Java
backend.

For the C++ backend we obtained a mean speedup of 6.8 for Simple arrays, compared to 2.7 for
region arrays and 2.8 for specialized region arrays. For the Java backend, we obtained speedups of
3.4, 1.3 and 1.9 for the simple arrays, region arrays, and the specialized region arrays respectively.
These results are as expected in Section 4. For the C++ backend, most noticeable performance
differences between simple arrays and region arrays are for edit, fiff, lgdr, nb1d, matmul and optstop.
All of these benchmarks are characterized by large number of array accesses and read/write oper-
ations on 2-dimensional arrays, except optstop and edit, which have multiple large 1-dimensional
arrays. The performance difference is most noticeable for nb1d, where the region arrays are about
20 times slower than the simple arrays. This is because nb1d involves simple operations on a large

22

X10 C++ backend X10 Java backend

Benchmark Matlab Simple arrays Region arrays Special region arrays Simple arrays Region arrays Special region arrays

bbai 1.0 4.9 2.7 2.7 11.3 6.4 6.6
bubl 1.0 15.8 11.4 11.6 7.5 3.6 3.7
capr 1.0 13.5 11.6 12.4 11.1 0.02 10.5
clos 1.0 0.03 0.01 0.01 0.02 0.01 0.01
crni 1.0 6.5 3.6 3.9 5.6 4 4.1
dich 1.0 7.6 6.7 7.0 7.0 0.01 0.02
diff 1.0 4.6 4.2 4.3 0.3 0.3 0.3
edit 1.0 29.7 4.3 3.6 22.1 9.4 9.4
fiff 1.0 9.8 2.0 2.8 2.1 1.4 1.4

lgdr 1.0 13.5 1.6 1.5 10.6 5.4 5.4
mbrt 1.0 6.5 6.3 6.5 0.3 5.1 5.1
nb1d 1.0 6.2 0.3 0.3 5.5 1.4 1.4

matmul 1.0 14.7 1.3 1.4 1.1 0.5 0.5
mcpi 1.0 3.3 2.8 2.7 2.9 3.0 3.0

numprime 1.0 7.6 5.7 5.7 6.5 6.3 6.3
optstop 1.0 1.5 0.4 0.4 1.8 1.2 1.3

quadrature 1.0 200.9 200.9 200.9 167.4 143.5 154.5

Geometric mean 1.0 6.8 2.7 2.8 3.4 1.3 1.9

Table IV: MiX10 performance comparison : Simple arrays vs. Region arrays vs. Specialized region
arrays, speedup relative to Mathworks’ Matlab, higher is better

column vector. With simple arrays, since the compiler knows that it is a column vector, rather than
a 2-dimensional matrix, even though it is declared as a 2-dimensional array, the performance can
be optimized to match that of the underlying Rail. However, this is not possible for region arrays
where the size of each dimension is not known statically. For the C++ backend, we do not observe
significant performance differences between the region arrays and the specialized region arrays.

For the Java backend we observed a higher difference in the mean performance for the simple arrays
and the region arrays. The mean speedup for region arrays is 1.3 whereas for simple arrays it is
nearly 3 times more at 3.4. There is also a significant difference between the performance of spe-
cialized region arrays and region arrays. Speedup for specialized region arrays is 1.9. Like the C++
backend, here also, most noticeable performance gain for simple arrays is for benchmarks involving
a large number of array accesses and read/writes. capr and dich ask for special consideration. For
capr, even with X10 compiler’s bounds checks turned off, the region array version slows down by
more than 500 times compared to the simple array version and even the specialized region array
version. This again, is due to the fact that region arrays, with the dynamic shape checks, generated
more code than the JIT compiler could handle. For dich the slowdown due to region arrays was
about 700 times compared to simple arrays. For dich, even the specialization on region arrays was
not enough to reduce the code size enough to be able to be JIT compiled.

7.7 Effect of IntegerOkay analysis

In this subsection we present an overview of the performance improvements achieved by MiX10
by using the IntegerOkay analysis. Table V shows a comparison of speedups gained by using the
IntegerOkay analysis over those without using it. For this experiment we used results with X10
optimizations turned on and bounds checks turned off.

For the C++ backend, we observed a mean speedup of 6.8 which is two times the speedup gained
by not using the IntegerOkay analysis, which is equal to 3.4. We observed a significant gain in

23

X10 C++ backend X10 Java backend

Benchmark Matlab IntegerOkay All Doubles IntegerOkay All Doubles

bbai 1.0 4.9 3.8 11.3 8.2
bubl 1.0 15.8 2.2 7.5 4.2
capr 1.0 13.5 1.7 11.1 9.7
clos 1.0 0.03 0.02 0.02 0.01
crni 1.0 6.5 2.8 5.6 5.5
dich 1.0 7.6 1.0 7.0 5.8
diff 1.0 4.6 4.5 0.3 0.3
edit 1.0 29.7 13.5 22.1 20.0
fiff 1.0 9.8 1.0 2.1 1.8

lgdr 1.0 13.5 10.1 10.6 11.0
mbrt 1.0 6.5 6.1 0.3 0.3
nb1d 1.0 6.2 5.2 5.5 5.5

matmul 1.0 14.7 14.5 1.1 1.2
mcpi 1.0 3.3 3.3 2.9 2.9

numprime 1.0 7.6 7.6 6.5 7.1
optstop 1.0 1.5 1.0 1.8 1.0

quadrature 1.0 200.9 182.6 167.4 143.5

Geometric mean 1.0 6.8 3.4 3.4 2.9

Table V: Performance evaluation for the IntegerOkay analysis, speedups relative to Mathworks’
Matlab, higher is better

performance by using IntegerOkay analysis for the benchmarks that involve significant number of
array indexing operations. bubl, capr, crni, dich, and fiff show the most significant performance
gains. The reason for this behaviour is that, X10 requires all array indices to be of type Long,
thus if the variables used as array indices are declared to be of type Double (which is the default
in Matlab), they must be typecast to Long type. Double to Long is very time consuming because
every cast involves a check on the value of the Double type variable to ensure that it can safely fit
into Long type.

For the Java backend, with the IntegerOkay analysis, we get a mean speedup of 3.4 as compared
to 2.9 without it. The reason for the lower difference as compared to that for the C++ backend
is that, for Java backend, the X10 compiler does not generate the value checks for Double type
values, instead it relies on the JVM to make these checks, resulting in a better performance. Also
note that, without the IntegerOkay analysis, the C++ backend results are slower than the Java
backend results for 9 out of 17 benchmarks.

To conclude, IntegerOkay analysis is very important for efficient performance of code involving
Arrays, specially for the X10 C++ backend.

7.8 Matlab parfor vs. MiX10 parallel code

Given that we have established that we can generate competitive sequential code, we wanted to also
do a preliminary study to see if we could get additional benefits from the high-perfomance nature of
X10. In this subsection we present the preliminary results for the compilation of Matlab parfor

construct to the parallel X10 code. 7 out of our 17 benchmarks could be safely modified to use
the parfor loop. We compare the performance of the generated parallel X10 programs for these
benchmarks to that of Matlab code using parfor, and to their sequential X10 versions. For this
experiment, we used the sequential versions of the generated X10 programs with optimizations
and no bounds checks. For the parallel versions we used both the variants, with optimizations and

24

bounds checks, and with optimizations and without bounds checks. Table VI shows the results for
both the X10 C++ and the X10 Java backends.

X10 C++ backend X10 Java backend

Sequential Parallel Sequential Parallel

Benchmarks MATLAB MATLAB parfor No checks No checks Checks No checks No checks Checks

mbrt 1.0 1.7 6.5 25.3 25.3 0.3 1.3 1.3
nb1d 1.0 0.4 6.2 7.3 7.3 5.5 19.0 15.1

matmul 1.0 1.3 14.7 137.5 3.9 1.1 1.1 0.8
mcpi 1.0 4.6 3.3 15.7 15.9 2.9 18.1 18.2

numprime 1.0 5.3 7.6 30.0 30.9 6.5 24.8 26.4
optstop 1.0 4.1 1.4 2.0 2.1 1.8 10.7 9.7

quadrature 1.0 3.8 200.9 11.3 11.2 167.4 13.0 13.0

Geometric mean 1.0 2.3 8.9 16.0 9.8 3.7 7.8 7.1

Table VI: Performance evaluation for MiX10 generated parallel X10 code for the Matlab parfor

construct, speedups relative to Mathworks’ Matlab, higher is better

For the X10 C++ backend we achieved a mean speedup of 16.0 for the generated parallel X10 code
without bounds checks, which is over 9 times of the speedup for the Matlab code with parfor, at
a speedup of 2.3. Compared to X10 sequential code which has a mean speedup of 8.9, it is nearly
twice as fast. Even with the parallel X10 code with bounds checks we achieved a speedup of 9.8
which is over 4 times better than the Matlab parfor code. optstop is an interesting exception.
It is actually slower (at a speedup of 2.1) than the Matlab parfor version (at a speedup of
4.1). The sequential version of optstop is just slightly faster than the sequential Matlab version,
with a speedup of just 1.5 (due to the reasons explained earlier) and the total time for the parallel
execution of each iteration, and managing the parallelization of these activities is just slightly faster
than the sequential version. We see a similar trend for the matmul benchmark for the X10 Java
backend. It shows a speedup of just 0.8 (version with bounds checks) as compared to 1.3 for the
Matlab parfor version. Overall, for the Java backend we obtained a mean speedup of 7.8 for
the X10 code with no bounds checks and 7.1 for the code with bounds checks. Compared to the
Matlab parfor version we obtained about 3.5 times better performance. The parallel X10 code
is over 2 times faster than the sequential X10 code (speedup of 3.7).For both, the C++ backend,
and the Java backend, the mean speedup for the sequential X10 code is also substantially faster
than the Matlab parallel code.

To conclude, the parallel X10 code provides much higher performance gains compared to the
Matlab parfor code and even the X10 sequential code, which by itself is most of the times faster
than the Matlab parallel code.

7.9 Conclusion

We showed that the MiX10 compiler with its efficient handling of array operations and optimiza-
tions like IntegerOkay can generate X10 code that provides performance comparable to the native
code generated by the state of the art languages like C, which is fairly low-level, and Fortran, which
itself is an array-based language. As a future work, we plan to use more efficient implementations
of the builtin functions, and believe that it would further improve the performance of the code
generated by MiX10.

25

With MiX10, we also took first steps to compile Matlab to parallel X10 code to take full advantage
of the high performance features of X10. Our preliminary results are very inspiring and we plan
to continue in this direction further, in the future.

In addition to demonstrating that our approach leads to good code, these experiments have also
been quite valuable for the X10 development team. Our generated code has stressed the X10 system
more than the hand-written X10 benchmarks and has exposed places where further improvements
can be made.

8 Related Work

The work presented in this paper provides an alternative to Mathworks’ de facto proprietary imple-
mentation of Matlab. Our approach is open and extensible and leverages the high-performance
computing abilities of X10.

Although our focus is on handling Matlab itself, notable open source alternatives of Matlab like
Scilab[10], Julia[2], NumPy[20] and Octave[1] provide limited concurrency features. They concen-
trate on providing open library support and have not tackled the problems of static compilation.
We are investigating if there is any way of sharing some of their library support with MiX10. The
MEGHA project[17] provides an interesting approach to map Matlab array operations to CPUs
and GPUs, but supports only a very small subset of Matlab.

There have been previous research projects on static compilation of Matlab which focused particu-
larly on the array-based subset of Matlab and developed advanced static analyses for determining
shapes and sizes of arrays. For example, FALCON [19] is a Matlab to Fortran90 translator with
sophisticated type inference algorithms. The McLab group has previously implemented a prototype
Fortran 95 generator [12], and has more recently developed the next generation Fortran generator,
Mc2For [13] in parallel with the MiX10 project. Some of the solutions are shared between the
projects, especially the parts which extend the Tamer.

MATLAB Coder is a commercial compiler by MathWorks[14], which produces C code for a subset
of Matlab.

In terms of source-to-source compilers for X10, we are aware of two other projects. StreamX10
is a stream programming framework based on X10 [22]. StreamX10 includes a compiler which
translates programs in COStream to parallel X10 code. Tetsu discusses the design of a Ruby-based
DSL for parallel programming that is compiled to X10 [21].

9 Conclusions and Future Work

This paper is about providing a bridge between two communities, the scientists/engineers/stu-
dents who like to program in Matlab on one side; and the programming language and compiler
community who have designed elegant languages and powerful compiler techniques on the other
side.

The X10 language has been designed to provide high-level array and concurrency abstractions, and
our main goal was to develop a tool that would allow programmers to automatically convert their
Matlab code to efficient X10 code. In this way programmers can port their existing Matlab

26

code to X10, or continue to develop in Matlab and use our MiX10 compiler as a backend to
generate X10 code. Since X10 is publicly available under the Eclipse Public License (x10-lang.
org/home/x10-license.html), users could have efficient high-performance code that they could
freely distribute. Further, X10 itself can compile the code to either Java or C++, so our tool could
be used in a tool chain to convert Matlab to those languages as well.

Our tool is part of the McLab project, which is entirely open source. Thus, we are providing
an infrastructure for other compiler researchers to build upon this work, or to use some of our
approaches to handle other popular languages such as R.

In this paper we demonstrated the end-to-end organization of the MiX10 tool, and we identified
that the correct handling of arrays, the minimization of casting by safely mapping Matlab double
variables to X10 integer variables via IntegerOkay analysis, and concurrency features were the key
challenges. We developed a custom version of X10’s rail-backed simple arrays, and identified where
and how this could be used for generating efficient X10 code. For cases where precise static array
shape and type information is not available, we showed how we can use the very flexible region-
based arrays in X10, and our experiments demonstrated that it is very important to use the simple
rail-backed arrays, for both the Java and C++ backends for X10.

Our experiments show that our generated X10 code is competitive with other state-of-the art code
generators which target more traditional languages like C and Fortran. The C++ X10 backend
produces faster code than the Java backend, but good performance is achieved in both cases.

One of the main motivations of choosing X10 as the target language is that it supports high-
performance computing, which is often desirable for the computation-intensive applications devel-
oped by the engineers and scientists. To demonstrate how to take advantage of X10’s concurrency,
we presented an effective translation of the Matlab parfor construct to semantically equivalent
X10.

Our experiments showed significant performance gains for our generated parallel X10 code, as
compared to Matlab’s parallel toolbox. This confirms that compiling Matlab to a modern high-
performance language can lead to significant performance improvements.

Based on our positive experiences to date, we plan to continue improving the MiX10 tool. The
code that we generate is already quite clean, but we would like to apply further transformations
on it to aggregate some low-level expressions, and to make the generated code look as “natural”
as possible. We also would like to experiment further to find the best way to tune the generated
code for different sorts of parallel architectures. Our experiments also show that there are some key
library routines such as matrix multiply and transpose for which we need to have better X10 code.
Thus, there is scope for more work on X10 libraries, which could be useful for other source-to-source
compilers targeting X10.

Our tool is open source, and we hope that the other research teams will use our infrastructure, as
well as learn from our experiences of generating effective and efficient X10 code.

References

[1] GNU Octave. http://www.gnu.org/software/octave/index.html.

[2] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A Fast Dynamic Language for
Technical Computing. CoRR, abs/1209.5145, 2012.

27

x10-lang.org/home/x10-license.html
x10-lang.org/home/x10-license.html
http://www.gnu.org/software/octave/index.html

[3] J. Doherty. McSAF: An Extensible Static Analysis Framework for the MATLAB Language.
Master’s thesis, McGill University, December 2011.

[4] J. Doherty and L. Hendren. McSAF: A static analysis framework for MATLAB. In Proceedings
of ECOOP 2012, pages 132–155, 2012.

[5] J. Doherty, L. Hendren, and S. Radpour. Kind analysis for MATLAB. In In Proceedings of
OOPSLA 2011, pages 99–118, 2011.

[6] A. Dubrau and L. Hendren. Taming MATLAB. In Proceedings of OOPSLA 2012, pages
503–522, 2012.

[7] IBM. X10 programming language. http://x10-lang.org, Feb. 2012.

[8] IBM. APGAS programming in X10 2.4, 2013. http://x10-lang.org/documentation/

tutorials/apgas-programming-in-x10-24.html.

[9] IBM. An introduction to X10, 2013. http://x10.sourceforge.net/documentation/intro/
latest/html/node4.html.

[10] INRIA. Scilab, 2009. http://www.scilab.org/platform/.

[11] V. Kumar and L. Hendren. First steps to compiling Matlab to X10. In Proceedings of the third
ACM SIGPLAN X10 Workshop, X10 ’13, pages 2–11, New York, NY, USA, 2013. ACM.

[12] J. Li. McFor: A MATLAB to FORTRAN 95 Compiler. Master’s thesis, McGill University,
August 2009.

[13] X. Li and L. Hendren. Mc2for: A tool for automatically translating matlab to fortran 95. In
In Proceedings of CSMR-WCRE 2014, pages 234–243, 2014.

[14] MathWorks. MATLAB Coder. http://www.mathworks.com/products/matlab-coder/.

[15] Mathworks. Reduction variables. http://www.mathworks.com/help/distcomp/

advanced-topics.html#bq_of7_-3.

[16] MathWorks. Parallel computing toolbox, 2013. http://www.mathworks.com/products/

parallel-computing/.

[17] A. Prasad, J. Anantpur, and R. Govindarajan. Automatic compilation of MATLAB pro-
grams for synergistic execution on heterogeneous processors. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implementation, PLDI ’11, pages
152–163, New York, NY, USA, 2011. ACM.

[18] M. J. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao. Preliminary Results from a Parallel
MATLAB Compiler. In Proceedings of Int. Parallel Processing Symp., IPPS, pages 81–87,
1998.

[19] L. D. Rose and D. Padua. Techniques for the translation of MATLAB programs into Fortran
90. ACM Trans. Program. Lang. Syst., 21(2):286–323, 1999.

[20] Scipy.org. Numpy. http://www.numpy.org/.

28

http://x10-lang.org
http://x10-lang.org/documentation/tutorials/apgas-programming-in-x10-24.html
http://x10-lang.org/documentation/tutorials/apgas-programming-in-x10-24.html
http://x10.sourceforge.net/documentation/intro/latest/html/node4.html
http://x10.sourceforge.net/documentation/intro/latest/html/node4.html
http://www.scilab.org/platform/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/help/distcomp/advanced-topics.html#bq_of7_-3
http://www.mathworks.com/help/distcomp/advanced-topics.html#bq_of7_-3
http://www.mathworks.com/products/parallel-computing/
http://www.mathworks.com/products/parallel-computing/
http://www.numpy.org/

[21] T. Soh. Design and implementation of a DSL based on Ruby for parallel programming. Tech-
nical report, The University of Tokyo, Jan. 2011.

[22] H. Wei, H. Tan, X. Liu, and J. Yu. StreamX10: a stream programming framework on X10. In
Proceedings of the 2012 ACM SIGPLAN X10 Workshop, X10 ’12, pages 1:1–1:6, New York,
NY, USA, 2012. ACM.

A Overall structure of the MiX10 compiler

MiX10 is implemented on top of several existing Matlab compiler tools. The overall structure
is given in Figure 3, where the new parts are indicated by the shaded boxes, and future work is
indicated by dashed boxes.

X10−specific Analyses

McSAF

Kind Analysis

Refactor

Generator

Mix10.x10

X10 Generator

myprog.m

McAST

McLAST + Kinds

[OOPSLA12]

 OOPSLA11]

[ECOOP12,

Tamer

Interprocedural Value Analysis

Built−in template file + X10−specific analysis info
Tame IR + types + call graph

McLAB Front−end

Concurrency Constructs

Built−in Handler
X10 Source Code

.m

.x10

Figure 3: Overview of MiX10 structure

As illustrated at the top of the figure, a Matlab programmer only needs to provide an entry-point
Matlab function (called myprog.m in this example), plus a collection of other Matlab functions
and libraries (directories of functions) which may be called, directly or indirectly, by the entry
point. The programmer may also specify the types and/or shapes of the input parameters to the
entry-point function. As shown at the bottom of the figure, our MiX10 compiler automatically
produces a collection of X10 output files which contain the generated X10 code for all reachable
Matlab functions, plus one X10 file called mix10.x10 which contains generated and specialized
X10 code for the required builtin Matlab functions. Thus, from the Matlab programmer’s point
of view, the MiX10 compiler is quite simple to use.

29

B Introduction to X10 concurrency controls

X10 is a high performance language that aims at providing productivity to the programmer. To
achieve that goal, it provides a simple yet powerful concurrency model that provides four con-
currency constructs that abstract away the low-level details of parallel programming from the
programmer, without compromising on performance. X10’s concurrency model is based on the
Asynchronous Partitioned Global Address Space (APGAS) model [8]. The APGAS model has a
concept of global address space that allows a task in X10 to refer to any object (local or remote).
However, a task may operate only on an object that resides in its partition of the address space
(local memory). Each task, called an activity, runs asynchronously parallel to each other. A logical
processing unit in X10 is called a place. Each place can run multiple activities. The following four
types of concurrency constructs are provided by X10 [9]:

B.1 Async

The fundamental concurrency construct in X10 is async. The statement async S creates a new
activity to execute S and returns immediately. The current activity and the “forked” activity
execute asynchronously parallel to each other and have access to the same heap of objects as the
current activity. They communicate with each other by reading and writing shared variables. There
is no restriction on statement S and can contain any other constructs (including async). S is also
permitted to refer to any immutable variable defined in lexically enclosing scope.

An activity is the fundamental unit of execution in X10. It may be thought of as a very light-weight
thread of execution. Each activity has its own control stack and may invoke recursive method calls.
Unlike Java threads, activities in X10 are unnamed. Activities cannot be aborted or interrupted
once they are in flight. They must proceed to completion, either finishing correctly or by throwing
an exception. An activity created by async S is said to be locally terminated if S has terminated.
It is said to be globally terminated if it has terminated locally and all activities spawned by it
recursively, have themselves globally terminated.

B.2 Finish

Global termination of an activity can be converted to local termination by using the finish con-
struct. This is necessary when the programmer needs to be sure that a statement S and all the
activities spawned transitively by S have terminated before execution of the next statement begins.

B.3 Atomic

atomic S ensures that the statement (or set of statements) S is executed in a single step with respect
to all other activities in the system. When S is being executed in one activity all other activities
containing s are suspended. However, the atomic statement S must be sequential, non-blocking
and local.

Note that, atomic is a syntactic sugar for the construct when (c) . when (c) is the conditional
atomic statement based on binary condition (c). Statement when (c) S executes statement S

atomically only when c evaluates to true; if it is false, the execution blocks waiting for c to be true.
Condition c must be sequential, non-blocking and local.

30

B.4 At

A place in X10 is the fundamental processing unit. It is a collection of data and activities that
operate on that data. A program is run on a fixed number of places. The binding of places to
hardware resources (e.g. nodes in a cluster, accelerators) is provided externally by a configuration
file, independent of the program.

The at construct provides a place-shifting operation, that is used to force execution of a statement
or an expression at a particular place. An activity executing at (p) S suspends execution at the
current place; The object graph G at the current place whose roots are all the variables V used
in S is serialized, and transmitted to place p, deserialized (creating a graph G′ isomorphic to G),
an environment is created with the variables V bound to the corresponding roots in G′, and S

executed at p in this environment. On local termination of S, computation resumes after at (p) S

in the original location. The object graph is not automatically transferred back to the originating
place when S terminates: any updates made to objects copied by an at will not be reflected in the
original object graph.

31

	Introduction
	Background
	Introduction to X10 arrays
	Compilation to X10 arrays
	Simple Arrays or Region Arrays
	Compilation to Simple arrays
	Compilation to Region Arays

	Handling the colon expression
	Array growth

	Safely using integer variables
	Need for declaring variables to be of integer type
	An example
	IntegerOkay Analysis

	Code generation for the Matlab parfor loop
	Evaluation
	Benchmarks
	Experimental setup
	X10 Compiler variations
	Overall MiX10 performance
	X10 C++ backend vs. X10 Java backend
	When not to use the X10-O

	Simple vs. Region arrays
	Effect of IntegerOkay analysis
	Matlab parfor vs. MiX10 parallel code
	Conclusion

	Related Work
	Conclusions and Future Work
	Overall structure of the MiX10 compiler
	Introduction to X10 concurrency controls
	Async
	Finish
	Atomic
	At

