
McGill University
School of Computer Science

Sable Research Group

Using JavaScript and WebCL for Numerical Computations:
A Comparative Study of Native and Web Technologies

Sable Technical Report No. sable-2014-06

Faiz Khan Vincent Foley-Bourgon Sujay Kathrotia Erick Lavoie Laurie Hendren

08-Jun-2014

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

2 Background 5

2.1 JavaScript . 5

2.2 Asm.js . 6

2.3 Emscripten . 6

2.4 OpenCL . 6

2.5 WebCL . 6

3 Ostrich - an extended benchmark suite 7

3.1 Thirteen Dwarfs . 7

3.2 Rodinia and OpenDwarfs . 8

3.3 Ostrich . 8

4 Methodology 10

4.1 Research questions . 11

4.2 Experimental set-up . 12

4.3 Measurements . 13

5 Sequential Results 13

5.1 JavaScript and asm.js vs C . 13

5.2 Arrays vs Typed Arrays . 15

5.3 JavaScript vs asm.js . 17

5.4 Other Observations . 20

5.5 Summary . 20

6 Parallel Results 20

6.1 WebCL Parallel Performance Against Sequential JavaScript 20

6.2 WebCL Specific Performance . 22

6.3 Other Performance Observations . 23

6.4 WebCL Limits and Caveats . 24

6.5 Summary . 24

7 Related Work 25

1

8 Conclusions and future work 26

A Sequential time data 27

A.1 Sequential results . 27

A.2 Parallel results . 28

2

List of Figures

1 JavaScript and asm.js vs C on Desktop . 14

2 JavaScript and asm.js vs C on MacBook Air . 16

3 Typed arrays vs regular arrays . 18

4 Asm.js vs JavaScript . 19

5 Parallel performance of WebCL and OpenCL . 21

List of Tables

I Ostrich benchmarks . 9

II Sequential machines specifications . 12

III Parallel machines specifications . 12

IV WebCL profiling information . 23

V Average times on Desktop. 27

VI Average times on MacBook Air . 27

VII Average times on AMD Thaiti . 28

VIII Average times on Nvidia Tesla . 28

IX Average times on Intel i7 . 28

3

Abstract

From its modest beginnings as a tool to validate forms, JavaScript is now an industrial-
strength language used to power online applications such as spreadsheets, IDEs, image editors
and even 3D games. Since all modern web browsers support JavaScript, it provides a medium
that is both easy to distribute for developers and easy to access for users. This paper provides
empirical data to answer the question: Is JavaScript suitable for numerical computations? By
measuring and comparing the runtime performance of benchmarks representative of a wide
variety of scientific applications, we show that for sequential JavaScript is within a factor of
2 of native code. Parallel code using WebCL shows speed improvements of up to 2.28 over
JavaScript for the majority of the benchmarks.

1 Introduction

JavaScript was developed and released by Netscape Communications in 1995 to allow scripting in
their browser[43]. By enabling embedded computations, simple tasks such as validating forms and
changing the content of HTML elements could be performed in the browser without any interaction
with the server. Since that time web applications have become increasingly more sophisticated and
compute-intensive. To support this trend, JavaScript technology has improved to include sophis-
ticated virtual machines and JIT compilers[18, 29], and associated technologies like WebCL[15],
which provide GPU support.

Web-based JavaScript technologies provide numerous advantages to both application developers
and end-users. Due to the increased standardization and support of JavaScript by all modern web
browsers[7], application developers have a simple and portable mechanism for distributing their
applications. Users can easily run these applications because they are likely to have modern web
browsers installed on their desktops, laptops and mobile devices.

Although one might normally associate web-based computing with e-commerce applications or
social networking, we want to explore if JavaScript technology is ready for a wide variety of compute-
intensive numerical applications. If so, then JavaScript could be a reasonable way to develop and
distribute numerical applications, either through developing JavaScript applications directly, or by
using JavaScript as a target in compilers for languages such as MATLAB or R. End-users would
have easy access to such applications through the wide variety of computers and mobile devices at
their disposal.

In addition to examining sequential performance, we also want to evaluate the performance of
parallel code using WebCL, a JavaScript binding for OpenCL.

Our work has three main contributions: (1) the development of Ostrich, an extended benchmark
suite which covers a wide spectrum of numerical applications; (2) an examination of the sequential
performance of JavaScript on different browsers and platforms; and (3) an examination of parallel
performance using WebCL. We elaborate on each of these contributions below.

Ostrich, an extended benchmark suite: Colella and a subsequent team at Berkeley have iden-
tified important common patterns of numerical computation[16, 24], and suites such as Open-
Dwarfs [27] and Rodinia[22] have been developed to evaluate more conventional sequential
and parallel languages. We have built upon this work to develop a benchmark suite called
Ostrich, which can be used to evaluate these applications on sequential JavaScript and for
most benchmarks we also provide a parallel version using WebCL.

4

Sequential Performance Study: We study three variants of JavaScript code: hand-written us-
ing regular arrays, hand-written using typed arrays, and compiler-generated asm.js. We
compare them among themselves and give an assessment of their respective performance. We
also compare hand-written JavaScript using typed arrays and asm.js with native C code and
show that they are both competitive for numerical computation. Indeed, our results show
that for our benchmark suite, on average, JavaScript’s performance is within a factor of 2 of
C. We also identify the elements of C and JavaScript that can skew the results.

Parallel Performance Study: We study the performance of parallel computation by executing
our benchmarks with the WebCL and OpenCL technologies. We compare the speedups these
technologies offer over their respective sequential version. We show that for a majority of
benchmarks can benefit from parallel code in WebCL. We determine there is an incongruence
between the two frameworks, however the problem is due to technical details in the current
implementation of WebCL. The parallel tests are performed both on multi-core CPUs and on
GPUs.

The rest of this paper is organized as follows: Section 2 gives a brief introduction about differ-
ent technologies, including JavaScript, asm.js, and WebCL. Section 3 introduces Ostrich, our new
extended benchmark suite. Section 4 describes the experimental methodology used for our perfor-
mance studies, and the machine configurations used. Section 5 and Section 6 respectively discuss
the performance results of sequential and parallel versions of the benchmarks. Section 7 cites the
related works in the area of JavaScript performance measurement and Section 8 concludes the
paper.

2 Background

In this section we provide some key background on the technologies we are using for our experiments.
Our study targets the JavaScript language from a sequential perspective and a parallel perspective.
On the sequential side we analyze regular JavaScript as well as an important subset of the language
called asm.js. We employ a compiler that targets this subset called Emscripten. We use native C
and C++ code as a baseline for our measurements. On the parallel side we compare framework for
JavaScript called WebCL to its native counterpart, OpenCL. In the remainder of this section we
elaborate on these technologies.1

2.1 JavaScript

JavaScript[7] is a high-level, multi-paradigm, language that was originally intended for browser
side scripting. Recently, the browser has become a target for non-traditional applications such as
document and spreadsheet editing, graphics, games, and other multimedia. This has been supported
by new technologies such as HTML5[6], CSS3[2], and WebGL[14] that interface through JavaScript.
Browser engines have evolved and moved from interpreters to JIT compilers. The language has
also introduced byte array buffers to provide an interface for dealing with raw binary data. Typed
arrays for integer and floating point numbers have also been built on top of these buffers. Since
JavaScript is the only language available on the browser, many other mainstream languages such

1Readers familiar with these JavaScript technologies may skip this section.

5

as Java[5], Python[12] and Ruby[10] have compilers that target it. However, the high-level nature
of the language, such as dynamic typing or prototype objects, brings the performance of heavy
applications written in or compiled to JavaScript under question. Our goal is to determine the
suitability of JavaScript and browser engines to support numerical applications.

2.2 Asm.js

Mozilla has developed a subset of JavaScript called asm.js[1] as a compilation target for native
applications written in languages such as C and C++. It is composed of type annotations, specific
program structure and low-level instruction like code. The primary advantage of programs written
in this subset is that they can be directly compiled to assembly code thereby bringing near native
performance to the browser. Currently, Firefox is the only browser that has an ahead-of-time
compiler that compiles directly to assembly code. However, since asm.js is a subset of JavaScript,
it can be executed in all browsers that support JavaScript. We are interested in determining the
performance gap between asm.js code and native C and C++ code. We are also interested in
the the gap between asm.js in different browsers as well as the gap between asm.js and regular
JavaScript code.

2.3 Emscripten

Emscripten[45] is a compiler that translates LLVM bytecode to asm.js. Any language that is
compiled to LLVM, such as C and C++ with clang, can then be used by Emscripten to generate
asm.js code. Emscripten has been used successfully to compile large software such as the Unreal 4
game engine, the Bullet physics library and the Qt GUI framework[4]. The success of Emscripten
makes it a suitable compiler for our investigation with asm.js.

2.4 OpenCL

OpenCL[11] is a standard by the Khronos Group describing a framework for heterogeneous parallel
computing. It abstracts GPUs, multi-core CPUs and Digital Signal Processors into a single pro-
gramming model. The code is expressed through a C-like language for a single thread execution,
called a kernel, with added constructs such as barriers for synchronization. The data is transferred
from the host to the device with the required parameters and then executed on the device. Due to
the heterogeneous nature of OpenCL, computations can execute in parallel on multiple devices. As
a result the highly parallel nature of devices like GPUs can be harnessed through a more general
purpose C-like expression. Since it is a general framework for heterogeneous devices we use it as a
native code baseline for our parallel analysis.

2.5 WebCL

WebCL[15] is a proposed standard to bring OpenCL to the web. An implementation is available
from Nokia as an extension for Firefox. WebCL exposes the OpenCL API to JavaScript with
certain restrictions in order to maintain security. The same kernels written for OpenCL may be
used with WebCL. It is the first standard that allows for heterogeneous parallel computing in a

6

browser exposing CPUs, GPUs and DSPs. We use it as our target for parallel code in JavaScript
because it is the web equivalent of OpenCL.

3 Ostrich - an extended benchmark suite

Although many JavaScript benchmark suites have been contributed in the past both by researchers[40]
and web browser vendors[8, 9, 38], they are not necessarily representative of the upcoming classes of
numerical application that could be used by scientists and engineers on the web. Notably, numeri-
cal applications are often very compute-intensive, they should leverage the parallel capabilities of
modern CPUs and GPUs, and achieve as much sequential performance as possible. At the moment,
different proposals for exposing parallelism to web developers [15, 31] and for increasing the speed
of sequential JavaScript [1] are being actively developed. There is now a need for introducing a
new benchmark suite that is tailored to numerical computations. This will enable the wider web
community to assess the current performance state of web technologies and entice web browser
vendors to address the bottlenecks that prevent web technologies from being fully competitive with
native ones.

Selecting benchmarks is an important, yet delicate task; the benchmarks should have certain de-
sirable properties that we list below.

1. The benchmarks should be representative of the core computations found in actual numerical
programs;

2. The benchmarks should have sufficient breadth in the classes of applications that they repre-
sent to ensure that the results are generally applicable;

3. The benchmarks should produce correct results;

4. The results of a given benchmark written in multiple languages should be comparable.

The Thirteen Dwarfs, as described in Section 3.1, is a classification in thirteen groups of numerical
algorithms, and are representative of most numerical tasks. By selecting from as many of these
dwarfs as possible, we ensure that the benchmarks are both representative (1) and cover a wide
range of applications (2). By reusing the benchmarks from existing suites such as Rodinia[22] and
OpenDwarfs[27], we profit from the previous work that went into ensuring they were correct (3).
Finally, we ensure that results are comparable (4) across languages by using common types and
programming techniques across all implementations.

In the remainder of this section we provide the background concerning the computational patterns
that we used, existing benchmark suites, and then we provide details of our new extended Ostrich
benchmark suite.

3.1 Thirteen Dwarfs

Colella identified seven algorithmic patterns that occur in numerical computing that are important
for the coming decade[24]. These patterns are referred to as dwarfs. At a high level, a dwarf can
be thought of as an abstraction that groups together related but different computational models.

7

An example of a dwarf is Dense Linear Algebra that reflects dense matrix and vector computations
and algorithms such as LU decomposition and matrix multiplication. Asanovic et al. expanded the
the concept to algorithms in Parallel Benchmark Suites, Machine Learning, Databases, Computer
Graphics and Games. They identified an additional six dwarfs that cover the majority of common
algorithms in these domains. As a result, a benchmark suite that implements a majority of these
dwarfs can be considered representative of a broad range of numerical computing applications. We
apply this philosophy in our Ostrich benchmark suite.

3.2 Rodinia and OpenDwarfs

Rodinia[22] and OpenDwarfs[27] are two high performance benchmark computing suites for hetero-
geneous architectures. Both suites offer benchmarks that are classified by dwarf categories. Rodinia
offers implementations of benchmarks in CUDA, OpenMP and OpenCL and OpenDwarfs has im-
plementations in OpenCL. Rodinia is the most mature suite, but does not cover all possible dwarfs.
We drew a set of benchmarks from Rodinia and the remainder from the younger OpenDwarfs suite.
The map-reduce dwarf did not have an implementation in either suite, so we provide our own.

3.3 Ostrich

Our benchmark suite, Ostrich, contains 12 sequential benchmarks and 10 parallel benchmarks
covering 12 dwarf categories. All but two benchmarks have five implementations: C, JavaScript,
asm.js, OpenCL and WebCL.

The OpenCL implementations for the majority of benchmarks originate from the Rodinia and Open-
Dwarfs suites. The C and C++ code is extracted from OpenMP code when available, otherwise
we provide our own implementation based on the OpenCL code. The C and OpenCL benchmarks
were adapted to match the constraints of JavaScript running in the browser. When benchmarks
read data from a file, we incorporated data generation into the benchmark since JavaScript running
in the browser cannot access the file system. We tested various input sizes across many configura-
tions to find values that would work in all browsers. We avoided some non-deterministic behaviors
in browsers when programs start to run against the memory limitations of the virtual machines.
We supplied a custom random number generator, an adaptation of the Octane benchmark suite[9]
PRNG, to ensure consistent results across languages. We ensured that all the benchmarks give the
same result across all languages.

In addition, we ported the benchmarks to JavaScript and WebCL by hand. The JavaScript code is
written as a direct translation of the C and C++ source code, using typed arrays wherever possible.
We compile the C and C++ source code to asm.js code using Emscripten. We re-use the OpenCL
kernels for WebCL and mirror the C and C++ wrapper code in JavaScript.

We created an infrastructure to automatically run the experiments in a repeatable manner.

The list below describes the different dwarfs and Table I describes the specific benchmarks we have
selected, and which implementations were used from an existing suite (=), created by the authors
(+) and modified by the authors (∼).

8

Benchmark Dwarf Provenance Description C JS OpenCL WebCL
back-prop Unstructured grid Rodinia a machine-learning algorithm

that trains the weights of con-
necting nodes on a layered neural
network

= + = +

bfs Graph traversal Rodinia a breadth-first search algorithm
that assigns to each node of
a randomly generated graph its
distance from a source node

= + = +

crc Combinatorial logic OpenDwarfs an error-detecting code which is
designed to detect errors caused
by network transmission or any
other accidental error

+ + = +

fft Spectral methods OpenDwarfs the Fast Fourier Transform
(FFT) function is applied to a
random data set

+ + =

hmm Graphical models OpenDwarfs a forward-backward algorithm to
find the unknown parameters of
a hidden Markov model

+ + = +

lavamd N-body methods Rodinia an algorithm to calculate particle
potential and relocation due to
mutual forces between particles
within a large 3D space

= + =

lud Dense linear algebra Rodinia a LU decomposition is performed
on a randomly-generated matrix

∼ + = +

nqueens Branch and bound OpenDwarfs an algorithm to compute the
number of ways to put down n
queens on an n × n chess board
where no queens are attacking
each other

+ + = +

nw Dynamic programming Rodinia an algorithm to compute the op-
timal alignment of two protein
sequences

∼ + = +

page-rank Map reduce Authors the algorithm famously used by
Google Search to measure the
popularity of a web site

+ + + +

spmv Sparse linear algebra OpenDwarfs an algorithm to multiply a
randomly-generated sparse ma-
trix with a randomly generated
vector

+ + = +

srad Structured grid Rodinia a diffusion method for ultra-
sonic and radar imaging applica-
tions based on partial differential
equations

= + = +

Table I: Benchmarks: provenance, description and implementation details. + indicates a new
implementation, = means the algorithm was used without modification, ∼ indicates that some
changes were made to the algorithm.

9

Dense Linear Algebra: Dense matrix and vector operations typically found in BLAS implemen-
tations belong to this dwarf. Examples: matrix multiplication, LU decomposition.

Sparse Linear Algebra: Sparse Matrices have a large number of zeros. These matrices are stored
in special formats in order to improve space and time efficiency. Operations on these special
formats belong to the Sparse Linear Algebra dwarf. Examples: sparse matrix multiplication.

Spectral Methods: Data is often transformed from the time or space domain into to the spectral
domain. Operations involving these transformations describe the Spectral Methods dwarf.
Examples: FFT.

N-body methods: Computations that deal with the interaction between multiple discrete points
fit into the N-body dwarf. Examples: lavamd.

Structured grids: Data is often organized in regular structured multi-dimensional grids. Com-
putations that proceed as a sequence of upgrade steps describe this dwarf. Examples: image
manipulation.

Unstructured grids: Data can also be organized in irregular grids or meshes. In this dwarf
Operations involve a grid element being updated from neighbors within an irregular grid.
Examples: neural networks.

Map Reduce: Computations that run multiple independent trials and aggregate the result at the
end describe this dwarf. Examples: Page Rank, distributed search.

Combinatorial logic: This dwarf covers computations that involve a large number of simple
operations that exploit bit-level parallelism. Examples: hashing, cryptography.

Graph traversal: This dwarf typically involves the traversal of a number of objects and exami-
nation of their characteristics. Examples: depth-first search, breadth-first search.

Dynamic programming: Typical dynamic programming involves solving large problems by using
the solutions of subproblems. Examples: DNA alignment, query optimization.

Backtrack and Branch-and-bound: Certain problems involve large search spaces. In many
cases searching the entire space is infeasible. One technique is to calculate bounds on sub-
regions in the space in order to identify areas that can be ignored. Applications involving
this technique fit in to the Backtrack and Branch-and-bound category. Examples: Integer
programming.

Graphical models: Computations that run on top of a graph that has random variables as nodes
and probabilities as edges fit into this dwarf. Examples: Hidden Markov models.

The source code, scripts, and instructions for repeating our experiments are publicly available in a
GitHub repository at http://github.com/Sable/Ostrich/wiki.

4 Methodology

A web browser adds another layer of virtualization between a program and the machine hardware,
in addition to the operating system. The browser safely executes code from untrusted sources

10

alongside trusted programs on the same machine and provides a programming interface that is
portable across many devices and hardware implementations. That extra layer can potentially
lead to major performance degradations compared to running the same program natively. Much
industrial effort in web browsers goes into ensuring the performance penalty is minimized to provide
a maximum amount of hardware performance to the program.

In this paper, we quantify the overhead of web over native technologies for numerical programs us-
ing our Ostrich benchmark suite and we study the performance impact of some JavaScript language
features. In this section, we identify relevant research questions and group them into sequential
and parallel sets. Answers to the sequential set will provide web developers of numerical appli-
cations and compiler writers for numerical languages that target JavaScript with information on
the performance currently available on the latest versions of major web browsers. Answers to the
parallel set will provide a glimpse of the upcoming performance of general-purpose parallel com-
puting using WebCL, which is still at the prototype phase and currently only supported by the
Firefox browser. They should help its current proponents to focus their efforts on minimizing the
performance overhead of providing additional security guarantees compared to OpenCL.

4.1 Research questions

For the sequential experiments, we study the performance of hand-written JavaScript, hand-written
JavaScript using typed arrays, and machine generated asm.js code and we report how they fare
against C. Typed arrays provide a mechanism for accessing raw binary data much more efficiently
than with JavaScript strings. In addition to using typed arrays, asm.js code introduces specialized
JavaScript operations that helps the JIT compiler to better perform type-inference and it performs
manual memory management. In a sense, it is a C-like subset that provides a bytecode-equivalent
target for compilers. The following sequential questions therefore help both quantify the overhead of
sequential code and quantify the performance impact of some key JavaScript features for numerical
computation:

• SQ1: Is the performance of JavaScript competitive with C?

• SQ2: Do typed arrays improve the performance of JavaScript code?

• SQ3: Does the asm.js subset offer performance improvements over hand-written JavaScript?

WebCL is the first general-purpose and low-level parallel programming language that is proposed
for the web platform and has the potential to provide performance near what can be achieved
with the native OpenCL technology. For the parallel experiments, we are interested in questions
regarding how WebCL compares to sequential JavaScript and if WebCL’s gains compare to the
speedups obtained in OpenCL:

• PQ1: Does WebCL provide performance improvement versus sequential JavaScript?

• PQ2: Does WebCL provide performance improvements for JavaScript which are congruent
with the performance improvements of OpenCL versus C?

In the following sections, we describe the configurations of machines and browsers we used to answer
the research questions and provide details on measurements methods for repeatability.

11

4.2 Experimental set-up

To represent the machine that a typical web user owns, we use two consumer-grade machines, a
desktop and a laptop, to perform the sequential benchmarks; the relevant hardware and software
specs are detailed in Table II. For the parallel benchmarks, we use two desktop machines with
different GPUs that our group uses as compute servers; their specs are detailed in Table III.

Desktop MacBook Air

CPU Intel Core i7, 3.20GHz × 12 Intel Core i7, 1.8GHz × 2
Cache 12 MiB 4 MiB
Memory 16 GiB 4 GiB
OS Ubuntu 12.04 LTS Mac OS X 10.8.5
GCC 4.6.4 llvm-gcc 4.2
Emscripten 1.12.0 1.12.0

Table II: Specifications of the sequential machines.

The benchmarks for the sequential experiments come in four distinct configurations listed below.

• Native code compiled from C with gcc -O3;

• asm.js code compiled from C with emscripten -O2 and executed in Chrome, Firefox, and
Safari;

• Hand-written JavaScript using regular arrays and executed in Chrome, Firefox, and Safari;

• Hand-written JavaScript using typed arrays and executed in Chrome, Firefox, and Safari.

Tiger Lion

CPU Intel Core i7 930, 2.80GHz × 8 Intel Core i7-3820, 3.60GHz × 8
Cache 8 MiB 10 MiB
GPU NVIDIA Tesla C2050 AMD Radeon HD 7970
Memory 6 GiB 16 GiB
OS Ubuntu 12.04 LTS Ubuntu 12.04 LTS
GCC 4.6.3 gcc 4.6.3

Table III: Specifications of the parallel machines.

For the parallel part, the benchmarks come in two configurations:

• Native code with an OpenCL kernel;

• JavaScript code with an OpenCL kernel made available through WebCL.

All our tests are performed against version 1.0.0 of the Ostrich benchmark suite.

12

4.3 Measurements

The sequential, native code version compiled from C serves as the performance baseline for the
sequential and parallel experiments. In the sequential case, we are interested in how JavaScript
fares against typical numerical code which is most often written in languages that compile to native
code. In the parallel case, we are interested in the speed-up that a parallel implementation can
provide against a sequential one.

For the sequential experiments, we test hand-written JavaScript and asm.js code generated by
compiling C code with Emscripten. The code is run on Firefox 29 and Chrome 35 on Linux and
in Firefox 29, Chrome 35, and Safari 6.1.4 on MacOS X. All executions use only a single core on
both machines.

For the parallel experiments, we compare WebCL code running in Firefox against native OpenCL
code. Since Firefox is the only browser that currently has support for WebCL, it is the only
JavaScript engine that we test.

Every benchmark configuration is executed 10 times on each machine and we compute the arith-
metic mean of the execution times. We calculate the execution time ratio against the C version and
report the geometric mean of the ratios. The execution time covers only the core algorithm of the
benchmark, not any initialization or finalization processing. The execution times are measured with
gettimeofday for C, Date.now for asm.js and Safari, and with the high-resolution performance.now
for JavaScript in Firefox and Chrome.

5 Sequential Results

In this section, we compare the performance of different JavaScript variants between themselves
and against C to answer the SQ1, SQ2, and SQ3.

5.1 JavaScript and asm.js vs C

Let us start by tackling SQ1 by comparing the performance of JavaScript and asm.js against C.
This question is of particular interest because in order to extract the maximum performance out of
the hardware, a large number of numerical programs are written in C, C++, and other low-level
languages that compile to efficient native code.

The three contestants in this bout are hand-written JavaScript using typed arrays, asm.js generated
by compiling C code with Emscripten, and C code. We start by looking at the results in Figure 1
obtained on our desktop machine using two popular browsers for Linux, Chrome and Firefox.

In Figure 1(a) for Chrome, we observe that 13 out of 24 results have a slowdown below 2x, and the
slowest JavaScript program (srad) is only 3.36x slower than C. The most interesting benchmark,
however, is definitely lavamd which is three times faster than C with both asm.js and JavaScript!
Comparing the execution profiles of the benchmark reveals that the culprit for JavaScript’s surpris-
ing performance is a call to the exponentiation function in a deeply nested loop body. An article
on Google Developers explains that a faster exp() function was implemented in V8, and that it is
faster than the one in the standard system libraries [13]. On average, the slowdowns with respect
to C for JavaScript and asm.js are 1.6 and 1.4 respectively.

13

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sl
ow

do
w

n
co

m
pa

re
d

to
 C

Chrome-asmjs-Desktop
Chrome-js-Desktop
C

(a) Chrome’s JavaScript and asm.js ratios compared to C

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0

1

2

3

4

5

6

7

8

9

Sl
ow

do
w

n
co

m
pa

re
d

to
 C

Firefox-asmjs-Desktop
Firefox-js-Desktop
C

(b) Firefox’s JavaScript and asm.js ratios compared to C

Figure 1: Slowdown of JavaScript and asm.js to C on Desktop (lower is better)

14

In Figure 1(b) for Firefox, 17 results show a slowdown below 2x and only one asm.js benchmark
shows a slowdown significantly higher than 2. In 4 benchmarks, at least one of the JavaScript
version is faster or nearly equal to C. Firefox’s slowest result, fft is explained in the next section.
On average, the slowdowns with respect to C for JavaScript and asm.js are 1.9 and 1.5 respectively.

With these results in mind, let us now see if the less powerful MacBook Air laptop gives similar
ratios in Chrome and Firefox. We also look at the performance of Safari, the browser included with
OS X.

In Figure 2(a) for Chrome, the slowdown of crc sticks out like a sore thumb. Profiling the results
using Chrome shows that most of the crc benchmark time is spent in the core part of the calcu-
lation of the error correction code, ruling out the occurrence of an external bottleneck. Removing
exception throwing in the verification of the results and removing an extra level of indirection in-
troduced by the use of nested arrays did not lead to noticeable improvements to the running time
on Chrome. The simplicity of the remaining code and the fact that the Firefox JIT is producing
efficient code suggests that there might be a performance optimization opportunity that is being
missed by the Chrome JIT compiler. The results for the other benchmarks are similar to the ones
obtained on the desktop machine. The mean slowdowns for JavaScript and asm.js are just above
2x, 2.25 and 2.01 respectively.

For Firefox in Figure 2(b), the ratios are fairly consistent with the desktop numbers. The JavaScript
fft shows a smaller slowdown on the MacBook Air than on the desktop, but this is because the
JavaScript version takes the same time on both machines and the C version on the desktop is faster
than on the laptop. The mean slowdowns for JavaScript and asm.js are both below 2x, 1.81 and
1.23 respectively.

Finally, Safari in Figure 2(c) shows average slowdowns of 2.99 and 2.35 for JavaScript and asm.js
respectively. Two benchmarks, crc and fft, have a severe penalty in JavaScript, 17x and 10x. This
high overhead of crc suggest a performance optimization that is being missed by the Safari JIT
compiler.

The results in this section show that, in a modern browser, the performance of JavaScript for most
of the numerical benchmarks in our suite is competitive with native code.

5.2 Arrays vs Typed Arrays

Our next experiment addresses SQ2. Recently, browsers have started supporting typed arrays
which can contain only values of a given type, e.g. a Float32Array contains only single-precision
floats. In contrast, JavaScript’s regular arrays can contain values of any type, and the values need
not be of the same type. In our results in the previous section we used typed arrays, and in this
section we investigate if using these specialized arrays is an important factor for the good overall
performance of our benchmarks.

For this experiment, we created JavaScript versions of the benchmarks where we replaced specialized
arrays with regular arrays. 2 In Figure 3, we report the speedups that we observe by using typed
arrays. There is a noticeable improvement for using typed arrays in most of the benchmarks, with
a geometric mean speedup hovering around 2x for all browsers on both machines. In some cases,
the speedup exceeds 4x and in backprop on Firefox on both machines, the speedup is nearly 16x!

2Some typed arrays were kept if they were necessary to obtain correct results, e.g. when doing unsigned 32-bit
integer manipulations.

15

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0

2

4

6

8

10

12

14

Sl
ow

do
w

n
co

m
pa

re
d

to
 C

Chrome-asmjs-Macbook-Air
Chrome-js-Macbook-Air
C

(a) Chrome’s JavaScript and asm.js ratios compared to C

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sl
ow

do
w

n
co

m
pa

re
d

to
 C

Firefox-asmjs-Macbook-Air
Firefox-js-Macbook-Air
C

(b) Firefox’s JavaScript and asm.js ratios compared to C

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0

2

4

6

8

10

12

14

16

18

Sl
ow

do
w

n
co

m
pa

re
d

to
 C

Safari-asmjs-Macbook-Air
Safari-js-Macbook-Air
C

(c) Safari’s JavaScript and asm.js ratios compared to C

Figure 2: Slowdown of JavaScript and asm.js to C on MacBook Air (lower is better)

16

In one benchmark, fft in all browsers, the typed arrays version is slower. This is because multiple
arrays are allocated inside a recursive function and for typed arrays, all the elements are set to
zero, making their initialization slower than a regular array. Note that although the slowdown of
Firefox is less severe than Chrome’s, the execution time reveals that Chrome is faster than Firefox
by a factor of 3.1.

We also notice that, but for a couple of cases (e.g. nw and backprop), the speedups obtained in
Chrome and Firefox are similar. The results are consistent on the laptop both between Chrome
and Firefox, and between Safari and the other two. One noticeable exception is the fft benchmark
which is significantly slower when using typed arrays. We note that when using regular arrays on
Safari, the input size of back-prop and nw had to be reduced to prevent swapping. The memory
allocation pattern for Safari is non-linear and the amount of memory used by the program in these
two cases would go from 1.7GB to 2.7GB for a slight change of input size, exhausting the amount
of memory available in main memory on the laptop. We therefore ensured that all benchmarks ran
using only main memory.

These results show that a good first step in improving the performance of a hand-written numerical
JavaScript program is to replace the declarations of arrays that are manipulated in tight loops to
typed arrays if possible. These results give a clear answer to SQ2: typed arrays improve the
performance of JavaScript programs.

5.3 JavaScript vs asm.js

In this section, we will study whether the compiler-friendly asm.js can offer better performance
than hand-written JavaScript using typed arrays.

On the desktop, the chart in Figure 4(a) shows that 11 out of 12 asm.js benchmarks in Firefox
have an equal or better performance than regular JavaScript with typed arrays. In Chrome, 8 of
the 12 asm.js benchmarks run equally fast or faster than the hand-written JavaScript version, and
none of the slower benchmarks have a penalty as severe as lavamd in Firefox. The mean speedups
are respectable, 1.15 for Chrome and 1.30 for Firefox.

On the MacBook Air, in Figure 4(b), the range of the results is greater. The majority of the asm.js
benchmarks in Firefox are still faster, but now the greatest improvement we have is 5x for fft and
the 2x slowdown of lavamd has transformed into a marginal speedup. The crc and fft benchmarks
in particular obtain an impressive speedup. The mean speedups for Chrome, Firefox and Safari are
1.12, 1.48, and 1.28 respectively.

Since asm.js also uses typed arrays, these results are a strong indication that the one of the most
important factor in improving the performance of numerical JavaScript programs is to use typed
arrays when appropriate. They also provide an answer to SQ3: asm.js offers performance improve-
ments over regular JavaScript.

Let us note that although we compare their performance, JavaScript and asm.js address two dif-
ferent approaches to writing web applications. Asm.js is not a human-friendly format, and should
be generated by a compiler; it is most useful when the developers of an application written in a
language like C want to port it to the web without having to do a complete rewrite. JavaScript
and typed arrays are going to be most interesting to developers who want to directly write their
application for the web and want to interact with other JavaScript libraries and services.

17

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0.5

1.0

2.0

4.0

8.0

16.0

Sp
ee

du
p

co
m

pa
re

d
to

 js
-n

ot
a

(lo
g2

)

Chrome-js-Desktop
Firefox-js-Desktop
js-nota

(a) Desktop

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0.125

0.250

0.500

1.000

2.000

4.000

8.000

16.000

32.000

Sp
ee

du
p

co
m

pa
re

d
to

 js
-n

ot
a

(lo
g2

)

Chrome-js-Macbook-Air
Firefox-js-Macbook-Air
Safari-js-Macbook-Air
js-nota

(b) MacBook Air

Figure 3: Speedup obtained by using typed arrays (js) compared to the same code without typed
arrays (js-nota) (higher is better)

18

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

co
m

pa
re

d
to

 js

Chrome-asmjs-Desktop
Firefox-asmjs-Desktop
js

(a) Desktop

back-prop

bfs
crc fft hmm

lavamd

lud nqueens

nw page-rank

spmv
srad

geo.mean

0

1

2

3

4

5

6

7

Sp
ee

du
p

co
m

pa
re

d
to

 js

Chrome-asmjs-Macbook-Air
Firefox-asmjs-Macbook-Air
Safari-asmjs-Macbook-Air
js

(b) MacBook Air

Figure 4: Speedup of asm.js against JavaScript using typed arrays (higher is better)

19

5.4 Other Observations

Although the results presented in the previous sections show that JavaScript’s execution speed is
competitive with C, there are other considerations that may need to be taken into account when
using it to write numerical code.

The first point to be aware of is that not all instance sizes that can be handled by C can be handled
by JavaScript. Crc and bfs are examples of benchmarks where we had to reduce the size of the
input to accommodate JavaScript. In bfs, we initially had a graph of 4 million nodes, and it could
be traversed by C, in both Chrome and Firefox with asm.js, and in Firefox with JavaScript and
typed arrays. However, the execution never finished in Chrome, the process just stopped. We had
to reduce the number of nodes to 3 million in order to obtain results in Chrome.

The choice of browser can also greatly affect how fast a program executes: the asm.js implementa-
tion of lavamd executes in 0.7 seconds in Chrome thanks to its fast exp() function, while it takes
4.4 seconds in Firefox, a slowdown of 6x.

Another point to consider when creating a numerical application for the web is how the browser
reacts to long computations. In Chrome, with its one process per tab design[39], a long running
computation in one tab does not affect the ability of the user to perform tasks in other tabs. In
Firefox, a long running JavaScript computation will freeze the entire browser until it has finished.

5.5 Summary

In this section, we have shown that the developer writing a numerical JavaScript application directly
and the developer compiling his C application to asm.js will both obtain code that can be easily
distributed to their users and is often reasonably competitive with the performance of native code
(SQ1). We have shown that using typed arrays where applicable is an easy and effective way of
improving the performance of a JavaScript application, especially if there are a lot of array accesses
in the hot loops (SQ2). We have shown that asm.js delivers on its promise of being an efficient
target for compilers; depending on the browser, it offers a speedup between 15% and 30% over
hand-written JavaScript (SQ3).

6 Parallel Results

In this section we study the performance of benchmarks in WebCL. We compare how they perform
against sequential JavaScript using typed arrays to answer PQ1. Then we answer PQ2 by comparing
the congruency of WebCL gains to OpenCL gains.

6.1 WebCL Parallel Performance Against Sequential JavaScript

We start with answering PQ1. In Figure 5(a), we present the speedup of WebCL over JavaScript.
The TeslaC2050 experiments were done on the Tiger machine and the i7-8820 along with the
Radeon-7970 were done on the Lion machine mentioned in Section 4.2. The entire set of benchmarks
shows means of 0.84, 1.01 and 1.25 for i7-3820, Radeon-7970 and Tesla-C2050, respectively. Only
the Tesla platform seems to offer a performance gain on average. It seems that WebCL does not have
an advantage but we note that not all algorithms benefit equally from parallel implementations.

20

back-prop

bfs
crc

hm
m

lud
nqueens

nw page-rank

spm
v

srad
geo.m

ean

0.0

0.1

1.0

10.0

100.0

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t

o
 j
s

(l
o
g
1

0
)

Firefox-WebCL-CPU_I73820

Firefox-WebCL-GPU_Radeon7970

Firefox-WebCL-GPU_TeslaC2050

js

(a) Speedup of WebCL over JavaScript (higher is better)

back-prop

bfs
crc

hm
m

lud
nqueens

nw page-rank

spm
v

srad
geo.m

ean

0

1

10

100

1000

S
p
e
e
d
u
p
 c

o
m

p
a
re

d
 t

o
 C

 (
lo

g
1

0
)

Native-OpenCL-CPU_I73820

Native-OpenCL-GPU_Radeon7970

Native-OpenCL-GPU_TeslaC2050

C

(b) Speedup of OpenCL over C (higher is better)

 1

 10

 100

back-prop

bfs crc hmm
lud nqueens

nw page-rank

spmv
srad

geo.mean

R
at

io
s

of
 s

pe
ed

up
s

(lo
g1

0)

Native-C-CPU_I73820
Native-C-GPU_Radeon7970
Native-C-GPU_TeslaC2050

C

(c) WebCL-JS speedup over OpenCL-C speedup (higher is worse)

Figure 5: Parallel performance results for WebCL and OpenCL

21

With this in mind, we consider the effect of the slowest benchmarks and the performance gains
over the most parallel benchmarks.

The two slowest benchmarks are hmm and nw. We explore the reasons for their slow performance
in Section 6.2. Hmm is slower by a factor of 16.67 and nw is slower by a factor of 4.17 over all
platforms. Removing these two benchmarks from our analysis yields mean speedups of 1.34, 1.74,
2.28 for i7-3820, Radeon-7970 and Tesla-C2050, respectively. With the majority of benchmarks
offering speedups, there is an observable advantage in having a parallel platform such as WebCL.

The benchmarks that are most improved by using WebCL are nqueens, page-rank and back-prop.
The nqueens kernel is highly optimized thus yields significant gains. Page-rank is a map-reduce
problem that is embarrassingly parallel, therefore it performs better on a parallel platform. Sim-
ilarly, Back-prop also falls on a parallel side as weights between the neural network layers can be
calculated independently and is reflected in the speedup. The mean speedup of these three bench-
marks are 2.42, 3.72 and 5.85 for i7-3820, Radeon-7970 and Tesla-C2050, respectively. It is clear
that certain benchmarks are better suited for WebCL over others.

It is not surprising that there is a spectrum of performance gains from parallel code since some
code is more parallel in nature than other. With respect to PQ1 we see that there are significant
gains that can be made with WebCL, albeit they are dependant on the application.

6.2 WebCL Specific Performance

If we observe Figure 5(b), we see the speedups offered by OpenCL over C. The average OpenCL
speedups are 1.79, 1.99 and 3.93 for i7-3820, Radeon-7970 and Tesla-C2050, respectively. If we
remove the two slowest benchmarks, hmm and nw, the speedups are 1.83, 2.56 and 4.40. The best
performers are back-prop, lud, nqueens, and page-rank; the average speedup on i7-3820, Radeon-7970
and Tesla-C2050, for these four benchmarks, are 3.10, 7.36 and 11.03 respectively.

Figure 5(c) presents the ratio of the two speedups: the speedup of OpenCL over C against the
speedup of WebCL over JavaScript. This offers us a perspective on how the gains realized in
OpenCL carry over to WebCL. A higher bar means that OpenCL provided a greater performance
improvement than WebCL. The WebCL gains over JavaScript were 2.50 times lower than the gains
OpenCL realized over C. We find this to be interesting because although WebCL is a binding to
OpenCL there seems to be excessive overhead somewhere in between.

Figure 5(c) shows that half of the benchmarks suffer significant execution penalties in WebCL.
These benchmarks are bfs, hmm, lud, nw and srad. Compared to the OpenCL implementations,
these benchmarks have mean slowdowns of 1.93, 23.42, 36.16, 6.20 and 5.04, respectively. To
find the source of these slowdowns, we profiled the JavaScript code that wraps the kernels. Our
investigation revealed that six functions were taking up most of the execution time in the code for
the worst performing benchmarks.

Table IV shows the name and total run time percentage for the most time consuming functions on
each of the five benchmarks3. The first function, setArg, points the kernel to the address in memory
for a specific parameter to the kernel. The validateKernel function is an internal function that

3The names in Table IV are truncated for readability. The setArg function is part of the WebCLKernel object. the
device and queue getInfo functions are in the WebCLDevice and WebCLCommandQueue object prototyes, respec-
tively. The read and write buffer functions are properly termed enqueueReadBuffer and enqueueWriteBuffer in the
WebCLCommandQueue object prototype validateKernel is also in the WebCLCommandQueue object prototype.

22

ensures that the kernel is a valid object, compiled and associated with the right context. The device
and queue getInfo functions are information query functions for a specific device and the command
queue working on a device. The buffer read and write functions are responsible for reading from
and writing to device memory from the host.

Function bfs hmm lud nw srad

setArg 5.6% 45.7% 34.2% 41.9% 15.0%
validateKernel 16.7% 21.0% 25.6% 22.1% 41.1%

device.getInfo - - 5.4% 3.1% 6.5%
queue.getInfo - - 2.4% 2.8% 6.1%
readBuffer 11.2% 7.6% - - 12.5%
writeBuffer 33.3% 7.6% - - -

Total 66.7% 82.0% 67.7% 69.9% 81.2%

Table IV: Percentage of WebCL execution spent on setup functions (results that are close to zero
are marked as “-”)

Host and device memory transfers are a known bottleneck in parallel applications, and we will
examine them separately, and focus solely on the setArg, validateKernel, and getInfo functions.
The mean of the execution time percentage of these four functions is 56.39% when we include bfs,
a significant outlier, and 68.26% without bfs. Examining the setArg and validateKernel functions
show that in addition to executing the OpenCL routines, they call slow query functions. These
slow functions are mainly used for setting up the kernels and could be improved through caching
or other optimizations.

Now we address the memory transfer operations, readBuffer and writeBuffer. Looking at Table IV
we notice that bfs, hmm and srad are the only benchmarks that took significant time in transferring
data. We profiled the equivalent functions in the OpenCL version of the three benchmarks and
we calculated the ratio of the WebCL memory transfer time against the OpenCL memory transfer
time. The time spent on transferring memory in bfs was close to zero. The hmm time for the
readBuffer function was on average 67.8 times slower in WebCL than in OpenCL for all platforms,
and the writeBuffer operation was 93.45 times slower. Srad only had slowdowns in the readBuffer
operation and we saw that it was 12.41 times slower in WebCL. The WebCL functions are simple
bindings to OpenCL therefore there are significant bottlenecks in the extension or the browser that
are causing these slowdowns. We were not able to determine these values since the Firefox profiler
does not allow for traversal into functions past the JavaScript API for an extension.

With regards to PQ2 we state that currently the gains from WebCL are not congruent with the gains
from OpenCL. The WebCL benchmarks showed an overall loss of 2.50. Half of the benchmarks had
significant slowdowns on the WebCL side and most of this was due to setup code. This, however,
may be addressable through optimizations or a direct implementation in the browser.

6.3 Other Performance Observations

Figure 5(c) shows that three benchmarks have better gains in WebCL than OpenCL: back-prop,
crc and spmv. Looking back at Figure 5(a) and Figure 5(b) we see that back-prop actually executes
faster in WebCL than in OpenCL.

Profiling reveals that the back-prop implementation slowdown occurs in the sequential portion of

23

the code. The original OpenCL implementation of the benchmark uses a two-dimensional represen-
tation of matrices, and has to convert it to a one-dimensional array before passing it to the kernel.
In WebCL, we use a typed array, which are always one-dimensional, to represent the matrix, and
the conversion was not necessary. The actual kernel execution time was similar.

In crc the WebCL execution time is faster than JavaScript, yet OpenCL is slower than C. This is
a case where JavaScript is much slower than C, and using WebCL to compute the answer is faster.
In such cases, it is beneficial to use WebCL even when it isn’t beneficial to use OpenCL.

A similar event occurs in spmv. In Figure 5(a) and Figure 5(b), we see that spmv had worse
performance for the parallel code for both WebCL and OpenCL than their sequential counterparts.
Although Figure 5(c) seems to indicate that the WebCL gains are better, in reality WebCL is
incurring less of a loss than OpenCL. This happens because the gap between JavaScript and C is
wider than between WebCL and OpenCL.

6.4 WebCL Limits and Caveats

In this section, we report some observations that we obtained in our experiences with WebCL.

The WebCL specification does not allow for structs, but the same is not true for OpenCL. This
imposes a limit on the ease of expression of complex data types in kernels for WebCL. Our lavamd
benchmark makes liberal use of nested structs and would require a large number of arrays and
careful indexing to convert to WebCL. This method would change the nature of the memory access
patterns in our data structures and would skew our performance results.

As mentioned in the previous sections, a large portion of the slowdown occurs in the setup code in
the WebCL extensions. The effect of this setup code diminishes for very large data sets. Massive
data set sizes are a common occurrence in numerical computations. Although WebCL itself is
capable of handling large data sets, the same is not true for the browser. The browser memory
limitations forced us to reduce the sizes of inputs that we tested. As an example, even though
OpenCL can handle 200 million non-zero elements on spmv, the browser often crashed on our
machines with the same instance size for WebCL.

OpenCL allows for data to be copied to device memory with an offset. However, no offset can be
specified for the host memory. In C, this is fixed with a simple increment of the pointer that is
being copied. In JavaScript, a new sub-array view object on the typed array or a new typed array
must be created in order to achieve the same result.

6.5 Summary

In this section, we have shown that WebCL can offer performance gains over JavaScript when the
problem is a good parallel candidate (PQ1). We have also shown that currently, the performance
gains of WebCL over JavaScript are 2.5x less than the gains of OpenCL over C (PQ2).

Overall, we find that WebCL does offer advantages as an extension to JavaScript. It shows that
a parallel JavaScript framework can aid in numerical computations, particularly those that are
amenable to parallelization. However, the inefficiencies of the current implementation do not make
the gains over sequential JavaScript as important as OpenCL does with C.

24

7 Related Work

There has been a surge of interest towards numerical computing in the programming language
community recently, with the coming of age of newer languages, such as Julia[19] and the study
and improvement of older alternatives, such as R[37] and MATLAB[21]. The increasing and widely
available parallelism in hardware, plus the establishment of the Web as a major development and
deployment platform, means the ground is fertile for work that helps bring the available performance
and convenience of the platform to users of numerical languages. Our work in this paper focused on
the comparative study of native and web technologies performance for numerical computing using
a benchmark suite inspired by the dwarf categories[16, 27]. In this section we situate our work by
discussing contributions from the larger context of understanding and improving the performance
characteristics of the Web platform for numerical computing.

A number of benchmark suites have been proposed by vendors over the years to measure the per-
formance of browsers, such as Apple’s JetStream[38] (previously SunSpider), Google’s Octane[9]
(previously V8 benchmarks), and Mozilla’s Kraken[8] suites. These benchmark suites are all
compute-intensive and their 2010 versions were shown not to be representative of real interactive
web applications[41]. This has sparked initiatives to build infrastructure to automatically extract
benchmarks from real web applications[42], which has been used to produce a suite of reference
applications called JSBench[40]. To the best of our knowledge, however, there is no comprehensive
web benchmark suite for the upcoming numerical applications typical of engineering and scientific
activities, such as the Rodinia suite[22], which is tailored for multicore CPU and GPU computa-
tion. Our collection of benchmark implementations for both sequential (JavaScript) and parallel
(WebCL) computation aim to answer that need by taking the Rodinia and OpenDwarfs suites and
adding new web implementations.

The advent of multiple numerical computing libraries built entirely in JavaScript, such as math.js[25],
sylvester [23], and numeric.js[34] shows the need for numerical computing abstractions in web ap-
plications. In addition, there have been numerous initiatives to leverage available parallelism in
today’s hardware, by extending JavaScript implementations without breaking the sequential se-
mantics. Sluice provides JavaScript with a library that can dynamically recompile programs to
target multicores for high performance stream processing[28]. ParaScript provides automatic run-
time parallelization that is fully transparent to the programmer by optimistically identifying code
regions for parallelization, generating on-the-fly parallel code, and speculatively executing it[35].
River Trail[31] extends the array datatype with functional operations that automatically leverage
multicores and GPUs for execution. We believe our benchmarks could be adapted in a straight-
forward manner to compare the relative merits of these and similar approaches, and we hope that
they will be useful in that context.

JavaScript is increasingly used as a compilation target and runtime system. Examples include
Racket with the Whalesong compiler[44], Dart with dart2js[3], and SML with SML2JS[26]. Krahn
and al. also introduced JavaScript-specific optimization techniques for dealing with modularization
constructs with ContextJS [32]. When it is used as a target, compilers need to be aware of the un-
derlying implementation to extract maximum performance as shown by Auler et al.[17]. In addition
to performance-oriented contributions, the recent formalization of the semantics of the major parts
of JavaScript standard[20] is paving the way for high-assurance translations of other languages to
JavaScript with machine-checked implementation. One of the aims of our work is to shed light on
the suitability of JavaScript and associated web technologies to serve as a competitive compilation
target for numerical languages. Superconductor[36] has shown the suitability of WebCL, WebGL

25

and web workers for large scale data visualization. In complement, our work provides quantita-
tive measurements for the relative merits of both sequential (JavaScript) and parallel (WebCL)
computation in the context of numerical computation on the web.

Web browsers are complicated pieces of software and multiple factors make performance evaluation
non-trivial. A study of the performance variations in the Mozilla Firefox web browser[33] has shown
that external factors to the browser, in particular memory randomization done by the operating
system, are the dominant factors that explain noise in performance measurements. Grosskurth and
Godfrey[30] introduced a reference architecture for web browsers in 2005, which identify and explain
the major sub-system in web browsers such as Firefox. Chrome, a more recent architecture, was
presented and studied later in a paper by Reis and Gribble[39]. Our work has shown that the current
performance of web technologies is competitive with native technologies on many benchmarks
typical of numerical computation. Pinpointing the bottlenecks with regard to the exact services in
web browsers will be addressed in future work.

8 Conclusions and future work

In this paper, we have presented our benchmark suite, Ostrich, which draws benchmarks from two
reputable sources, Rodinia and OpenDwarfs, and adds JavaScript and WebCL implementations.
Ostrich provides implementations for numerical algorithms in C, JavaScript, asm.js, OpenCL and
WebCL for twelve of the thirteen dwarfs.

Using the benchmarks in this suite, we have shown that the performance of both hand-written
JavaScript (using typed arrays) and asm.js is competitive (within a factor of 2) with C, in a large
number of benchmarks (SQ1). We have shown that to achieve this performance, the use of typed
arrays is important. Compared to regular JavaScript arrays, typed arrays provide nearly double the
performance in all browsers (SQ2). We have also shown that the asm.js subset can give additional
peformance improvements over just using typed arrays. Our experiments showed that the asm.js
versions run 15% to 30% faster than hand-written JavaScript (using typed arrays), depending on
the browser (SQ3). These results should help web developers of numerical applications and compiler
writers for numerical languages that target JavaScript in choosing languages features to use and
target.

We have also shown that there are significant gains from parallel code for a majority of benchmarks.
The fastest three benchmarks were around 5.85 times faster than JavaScript on GPUs (PQ1). We
found that the WebCL code speedup over JavaScript had significant losses when compared to the
OpenCL speedup over C. We attribute this to technical bottlenecks in the current implementation.
Therefore, we find that WebCL gains are incongruent with OpenCL gains but the issue is not
inherent to the WebCL specification (PQ2). These results provide a glimpse of the upcoming
performance of general-purpose parallel computing using WebCL, which is still at the prototype
phase and currently only supported by the Firefox browser. They should help its current proponents
to focus their efforts on minimizing the performance overhead of providing additional security
guarantees compared to OpenCL. Our benchmark suite will help to evaluate the performance
evolution of the technology.

In addition to extending the suite with more benchmarks, one interesting possibility of extension
for our work is to port the benchmarks to other numerical languages, such as MATLAB and R, to
evaluate the performance of the generated JavaScript code produced by JavaScript compilers for

26

these languages.

A Sequential time data

In this appendix, we present the timing results from our experiments. The tables below show the
average times and standard deviation (in seconds) for 10 execution of each benchmark in each
software configuration.4

A.1 Sequential results

Benchmark Cr, asm.js Cr, JS Cr, JS-noTA Fx, asm.js Fx, JS Fx, JS-noTA C
back-prop 0.8200 ± 0.01 1.3575 ± 0.01 9.9587 ± 0.15 0.7988 ± 0.01 1.5443 ± 0.01 23.6966 ± 0.23 0.8953 ± 0.01
bfs 0.7903 ± 0.03 0.6703 ± 0.01 1.0689 ± 0.01 0.3751 ± 0.01 0.5426 ± 0.00 0.8020 ± 0.02 0.3249 ± 0.01
crc 1.4220 ± 0.01 2.0132 ± 0.02 2.0152 ± 0.01 1.0275 ± 0.01 2.1897 ± 0.02 2.1833 ± 0.03 0.6274 ± 0.01
fft 1.7744 ± 0.03 1.6794 ± 0.01 0.8487 ± 0.04 2.7374 ± 0.02 6.7326 ± 0.07 5.1950 ± 0.05 0.7801 ± 0.01
hmm 3.3623 ± 0.04 3.7307 ± 0.35 19.9860 ± 0.75 2.9866 ± 0.03 4.2239 ± 0.04 23.1092 ± 0.20 1.7943 ± 0.03
lavamd 0.6938 ± 0.01 0.7315 ± 0.01 0.7575 ± 0.03 4.5569 ± 0.20 1.9439 ± 0.02 1.9406 ± 0.02 2.4171 ± 0.03
lud 1.9848 ± 0.04 2.0641 ± 0.04 2.1688 ± 0.03 1.9646 ± 0.02 1.9899 ± 0.03 1.9412 ± 0.02 1.9319 ± 0.03
nqueens 4.6285 ± 0.19 4.4565 ± 0.06 5.2315 ± 0.06 4.3920 ± 0.14 5.4017 ± 0.06 6.0873 ± 0.06 2.9202 ± 0.02
nw 0.8442 ± 0.00 1.0823 ± 0.01 2.5831 ± 0.02 0.6893 ± 0.01 0.7828 ± 0.01 4.5624 ± 0.30 0.4509 ± 0.00
page-rank 3.1273 ± 0.03 3.2587 ± 0.04 6.6846 ± 0.03 3.1920 ± 0.03 3.2033 ± 0.05 11.3570 ± 0.16 3.3659 ± 0.03
spmv 1.8655 ± 0.06 1.4522 ± 0.02 2.3894 ± 0.02 1.3953 ± 0.03 1.4212 ± 0.02 1.8970 ± 0.02 0.6666 ± 0.02

Table V: Average times in seconds on Desktop.

Benchmark Cr, asm.js Cr, JS Cr, JS-noTA Fx, asm.js Fx, JS Fx, JS-noTA C
back-prop 1.3973 ± 0.02 2.1145 ± 0.11 1.1245 ± 0.01 1.8846 ± 0.02 1.2450 ± 0.03 1.3846 ± 0.01 2.0876 ± 0.03
bfs 1.5619 ± 0.01 0.8852 ± 0.06 0.5991 ± 0.03 0.8304 ± 0.05 0.5052 ± 0.03 1.2359 ± 0.03 2.3826 ± 0.06
crc 2.5125 ± 0.01 13.5556 ± 0.22 1.3787 ± 0.01 2.8748 ± 0.01 1.0461 ± 0.02 2.7447 ± 0.06 17.6367 ± 0.09
fft 3.5470 ± 0.03 3.3230 ± 0.02 1.3286 ± 0.01 6.7281 ± 0.10 1.5803 ± 0.03 3.7691 ± 0.01 15.7503 ± 0.11
hmm 6.7838 ± 0.03 6.8985 ± 0.03 4.6138 ± 0.14 5.1601 ± 0.02 2.2067 ± 0.01 8.3414 ± 0.01 7.2849 ± 0.02
lavamd 1.4546 ± 0.01 1.4294 ± 0.01 1.2078 ± 0.00 1.4339 ± 0.01 1.5130 ± 0.01 2.1969 ± 0.01 2.5016 ± 0.01
lud 3.8714 ± 0.09 3.5079 ± 0.04 3.5932 ± 0.08 3.1437 ± 0.14 2.7698 ± 0.07 5.5382 ± 0.07 3.3465 ± 0.08
nqueens 8.6880 ± 0.05 7.4113 ± 0.03 5.6962 ± 0.12 7.0104 ± 0.09 3.9163 ± 0.01 10.5524 ± 0.02 8.3635 ± 0.04
nw 1.3191 ± 0.01 1.7191 ± 0.01 0.8454 ± 0.03 1.0114 ± 0.03 0.6958 ± 0.01 1.9286 ± 0.03 1.4817 ± 0.04
page-rank 4.8429 ± 0.01 4.6529 ± 0.01 3.9266 ± 0.11 3.8034 ± 0.01 3.8657 ± 0.14 5.6164 ± 0.01 4.7816 ± 0.02
spmv 3.6317 ± 0.03 1.9281 ± 0.06 1.9482 ± 0.01 1.7706 ± 0.01 0.7782 ± 0.01 4.6554 ± 0.01 2.8205 ± 0.01
srad 9.9713 ± 0.41 19.8897 ± 0.11 6.3674 ± 0.02 12.2547 ± 0.03 4.3593 ± 0.04 11.1628 ± 0.01 14.0219 ± 0.05

Benchmark Safari, asm.js Safari, JS Safari, JS-noTA
back-prop 1.2450 ± 0.03 1.3846 ± 0.01 2.0876 ± 0.03
bfs 0.5052 ± 0.03 1.2359 ± 0.03 2.3826 ± 0.06
crc 1.0461 ± 0.02 2.7447 ± 0.06 17.6367 ± 0.09
fft 1.5803 ± 0.03 3.7691 ± 0.01 15.7503 ± 0.11
hmm 2.2067 ± 0.01 8.3414 ± 0.01 7.2849 ± 0.02
lavamd 1.5130 ± 0.01 2.1969 ± 0.01 2.5016 ± 0.01
lud 2.7698 ± 0.07 5.5382 ± 0.07 3.3465 ± 0.08
nqueens 3.9163 ± 0.01 10.5524 ± 0.02 8.3635 ± 0.04
nw 0.6958 ± 0.01 1.9286 ± 0.03 1.4817 ± 0.04
page-rank 3.8657 ± 0.14 5.6164 ± 0.01 4.7816 ± 0.02
spmv 0.7782 ± 0.01 4.6554 ± 0.01 2.8205 ± 0.01
srad 4.3593 ± 0.04 11.1628 ± 0.01 14.0219 ± 0.05

Table VI: Average times in seconds on MacBook Air

4Cr = Chrome; Fx = Firefox; JS = JavaScript with typed arrays; JS-noTA = JavaScript without typed arrays

27

A.2 Parallel results

Benchmark Firefox, WebCL Firefox, JS C OpenCL
back-prop 0.6291 ± 0.00 1.5101 ± 0.01 0.8960 ± 0.00 0.6836 ± 0.00
bfs 0.4780 ± 0.00 0.5660 ± 0.00 0.3366 ± 0.00 0.1191 ± 0.01
crc 2.0794 ± 0.01 2.2725 ± 0.01 0.6488 ± 0.00 1.3817 ± 0.03
hmm 73.1601 ± 1.11 4.3188 ± 0.02 1.8377 ± 0.01 1.9245 ± 0.03
lud 1.1124 ± 0.02 2.0545 ± 0.02 1.9959 ± 0.01 0.0203 ± 0.01
nqueens 1.2740 ± 0.01 5.6656 ± 0.25 3.0197 ± 0.01 0.8374 ± 0.01
nw 3.5725 ± 0.02 0.8114 ± 0.02 0.4689 ± 0.00 0.8548 ± 0.01
page-rank 0.6734 ± 0.01 3.2443 ± 0.02 3.4556 ± 0.00 0.5468 ± 0.02
spmv 2.1439 ± 0.01 1.4410 ± 0.04 0.6965 ± 0.02 2.2333 ± 0.01
srad 9.2527 ± 0.06 9.3437 ± 0.50 3.9523 ± 0.01 0.4900 ± 0.02

Table VII: Average times in seconds on AMD Thaiti

Benchmark Firefox, WebCL Firefox, JS C OpenCL
back-prop 0.3778 ± 0.00 1.8092 ± 0.01 1.2399 ± 0.00 0.5355 ± 0.01
bfs 0.3891 ± 0.02 0.6880 ± 0.00 0.4517 ± 0.00 0.1218 ± 0.00
crc 2.8803 ± 0.17 3.3968 ± 0.19 0.7003 ± 0.00 1.6178 ± 0.01
hmm 94.8387 ± 0.64 5.3518 ± 0.01 2.4236 ± 0.00 1.3022 ± 0.01
lud 1.1191 ± 0.01 2.6567 ± 0.09 2.5930 ± 0.01 0.0163 ± 0.00
nqueens 0.7489 ± 0.01 8.7431 ± 0.68 4.7604 ± 0.02 0.4453 ± 0.00
nw 4.1874 ± 0.18 0.9583 ± 0.05 0.5634 ± 0.00 0.1658 ± 0.02
page-rank 1.1375 ± 0.01 4.0802 ± 0.01 3.7118 ± 0.00 0.9841 ± 0.02
spmv 3.3228 ± 0.04 1.8842 ± 0.04 1.1153 ± 0.01 2.5034 ± 0.01
srad 10.3852 ± 0.07 13.3040 ± 0.59 4.6794 ± 0.01 0.3567 ± 0.01

Table VIII: Average times in seconds on Nvidia Tesla

Benchmark Firefox, WebCL Firefox, JS C OpenCL
back-prop 1.0896 ± 0.01 1.5059 ± 0.00 0.8960 ± 0.00 1.1451 ± 0.01
bfs 0.6295 ± 0.01 0.5675 ± 0.00 0.3362 ± 0.00 0.2608 ± 0.00
crc 1.4927 ± 0.01 2.2696 ± 0.00 0.6485 ± 0.00 0.4415 ± 0.03
hmm 69.6483 ± 0.45 4.3153 ± 0.02 1.8389 ± 0.02 1.2330 ± 0.02
lud 2.2132 ± 0.02 2.0722 ± 0.06 1.9963 ± 0.01 0.1607 ± 0.00
nqueens 1.0982 ± 0.02 5.5920 ± 0.07 3.0190 ± 0.01 0.7303 ± 0.00
nw 3.0066 ± 0.02 0.8169 ± 0.02 0.4681 ± 0.00 0.2591 ± 0.00
page-rank 1.6185 ± 0.02 3.2474 ± 0.01 3.4555 ± 0.00 1.5042 ± 0.02
spmv 1.9155 ± 0.02 1.4439 ± 0.06 0.6632 ± 0.00 1.1275 ± 0.02
srad 12.2432 ± 0.09 9.5318 ± 0.03 3.9490 ± 0.01 3.2337 ± 0.05

Table IX: Average times in seconds on Intel i7

References

[1] asm.js. URL http://asmjs.org/spec/latest/.

[2] Cascading style sheets (CSS) snapshot 2010. URL http://www.w3.org/TR/css-2010/.

[3] dart2js. URL https://www.dartlang.org/tools/dart2js.

[4] Emscripten. URL http://emscripten.org.

[5] Google web toolkit. URL http://www.gwtproject.org/.

[6] A vocabulary and associated APIs for HTML and XHTML. URL http://www.w3.org/TR/

html5/.

28

[7] Standard ECMA-262 ECMAScript language specification edition 5.1 (june 2011). URL http:

//www.ecma-international.org/publications/standards/Ecma-262.htm.

[8] Kraken Benchmark Suite. URL http://krakenbenchmark.mozilla.org/.

[9] Octane Benchmark Suite. URL https://developers.google.com/octane/.

[10] Opal: Ruby to JavaScript compiler. URL http://opalrb.org/.

[11] OpenCL. URL https://www.khronos.org/opencl/.

[12] Pyjs. URL http://pyjs.org/.

[13] Profile your web application with v8’s internal profiler. URL https://developers.google.

com/v8/profiler_example.

[14] WebGL specifications. URL http://www.khronos.org/registry/webgl/specs/latest/.

[15] WebCL specification. May 2014. URL http://www.khronos.org/registry/webcl/specs/

latest/1.0/.

[16] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,
W. L. Plishker, J. Shalf, S. W. Williams, and Others. The landscape of parallel computing
research: A view from Berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[17] R. Auler, E. Borin, P. de Halleux, Moskal, and N. Tillmann. Addressing JavaScript JIT engines
performance quirks: A crowdsourced adaptive compiler. URL http://research.microsoft.

com/en-us/um/people/moskal/pdf/cc2014.pdf.

[18] L. Bak. Google chrome’s need for speed. URL http://blog.chromium.org/2008/09/

google-chromes-need-for-speed_02.html.

[19] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A Fast Dynamic Language for
Technical Computing, Sept. 2012. URL http://arxiv.org/abs/1209.5145.

[20] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt,
and G. Smith. A Trusted Mechanised JavaSript Specification. In Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
pages 87–100, New York, NY, USA, 2014. ACM. doi: 10.1145/2535838.2535876. URL http:

//dx.doi.org/10.1145/2535838.2535876.

[21] A. Casey, J. Li, J. Doherty, M. C. Boisvert, T. Aslam, A. Dubrau, N. Lameed, A. Aslam,
R. Garg, S. Radpour, O. S. Belanger, L. Hendren, and C. Verbrugge. McLab: An Ex-
tensible Compiler Toolkit for MATLAB and Related Languages. In Proceedings of the
Third C* Conference on Computer Science and Software Engineering, C3S2E ’10, pages
114–117, New York, NY, USA, 2010. ACM. doi: 10.1145/1822327.1822343. URL http:

//dx.doi.org/10.1145/1822327.1822343.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A
benchmark suite for heterogeneous computing. In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, pages 44–54. IEEE, Oct. 2009. doi: 10.1109/iiswc.
2009.5306797. URL http://dx.doi.org/10.1109/iiswc.2009.5306797.

29

[23] J. Coglan. Sylvester: Vector and Matrix math for JavaScript.

[24] P. Colella. Defining software requirements for scientific computing, 2004.

[25] J. de Jong. math.js. URL http://mathjs.org/.

[26] M. Elsman. SMLtoJs: Hosting a standard ML compiler in a web browser. In Proceedings
of the 1st ACM SIGPLAN International Workshop on Programming Language and Systems
Technologies for Internet Clients, PLASTIC ’11, pages 39–48, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-1171-7. doi: 10.1145/2093328.2093336. URL http://dx.doi.org/

10.1145/2093328.2093336.

[27] W. C. Feng, H. Lin, T. Scogland, and J. Zhang. OpenCL and the 13 Dwarfs: A Work in
Progress. In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, ICPE ’12, pages 291–294, New York, NY, USA, 2012. ACM. doi: 10.1145/
2188286.2188341. URL http://dx.doi.org/10.1145/2188286.2188341.

[28] J. Fifield and D. Grunwald. A Methodology for Fine-Grained Parallelism in JavaScript Appli-
cations. In S. Rajopadhye and M. Mills Strout, editors, Languages and Compilers for Parallel
Computing, volume 7146 of Lecture Notes in Computer Science, pages 16–30. Springer Berlin
Heidelberg, 2013. doi: 10.1007/978-3-642-36036-7\ 2. URL http://dx.doi.org/10.1007/

978-3-642-36036-7_2.

[29] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang,
and M. Franz. Trace-based just-in-time type specialization for dynamic languages. SIGPLAN
Not., 44(6):465–478, June 2009. ISSN 0362-1340. doi: 10.1145/1542476.1542528. URL http:

//dx.doi.org/10.1145/1542476.1542528.

[30] A. Grosskurth and M. W. Godfrey. A Reference Architecture for Web Browsers. In Proceedings
of the 21st IEEE International Conference on Software Maintenance, ICSM ’05, pages 661–
664, Washington, DC, USA, 2005. IEEE Computer Society. doi: 10.1109/icsm.2005.13. URL
http://dx.doi.org/10.1109/icsm.2005.13.

[31] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. River Trail: A Path to Parallelism
in JavaScript. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’13, pages 729–744, New
York, NY, USA, 2013. ACM. doi: 10.1145/2509136.2509516. URL http://dx.doi.org/10.

1145/2509136.2509516.

[32] R. Krahn, J. Lincke, and R. Hirschfeld. Efficient Layer Activation in Context JS. In Creating,
Connecting and Collaborating through Computing (C5), 2012 10th International Conference
on, pages 76–83. IEEE, Jan. 2012. doi: 10.1109/c5.2012.20. URL http://dx.doi.org/10.

1109/c5.2012.20.

[33] J. Larres, A. Potanin, and Y. Hirose. A Study of Performance Variations in the Mozilla Firefox
Web Browser. In Proceedings of the Thirty-Sixth Australasian Computer Science Conference
- Volume 135, ACSC ’13, pages 3–12, Darlinghurst, Australia, Australia, 2013. Australian
Computer Society, Inc. URL http://portal.acm.org/citation.cfm?id=2525401.2525402.

[34] S. Loisel. Numeric Javascript. URL http://numericjs.com/.

30

[35] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke. Dynamic parallelization of JavaScript
applications using an ultra-lightweight speculation mechanism. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium on, pages 87–98. IEEE, Feb.
2011. ISBN 978-1-4244-9432-3. doi: 10.1109/hpca.2011.5749719. URL http://dx.doi.org/

10.1109/hpca.2011.5749719.

[36] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodık. Superconductor: A Language for
Big Data Visualization, 2013.

[37] F. Morandat, B. Hill, L. Osvald, and J. Vitek. Evaluating the Design of the R Language:
Objects and Functions for Data Analysis. In Proceedings of the 26th European Confer-
ence on Object-Oriented Programming, ECOOP’12, pages 104–131, Berlin, Heidelberg, 2012.
Springer-Verlag. doi: 10.1007/978-3-642-31057-7\ 6. URL http://dx.doi.org/10.1007/

978-3-642-31057-7_6.

[38] F. Pizlo. JetStream Benchmark Suite. URL https://www.webkit.org/blog/3418/

introducing-the-jetstream-benchmark-suite/.

[39] C. Reis and S. D. Gribble. Isolating Web Programs in Modern Browser Architectures. In
Proceedings of the 4th ACM European Conference on Computer Systems, EuroSys ’09, pages
219–232, New York, NY, USA, 2009. ACM. doi: 10.1145/1519065.1519090. URL http:

//dx.doi.org/10.1145/1519065.1519090.

[40] G. Richards. JSBench Benchmark Suite. URL http://jsbench.cs.purdue.edu/.

[41] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis of the Dynamic Behavior of
JavaScript Programs. SIGPLAN Not., 45(6):1–12, June 2010. doi: 10.1145/1809028.1806598.
URL http://dx.doi.org/10.1145/1809028.1806598.

[42] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated Construction of JavaScript Bench-
marks. In Proceedings of the 2011 ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’11, pages 677–694, New York, NY, USA,
2011. ACM. doi: 10.1145/2048066.2048119. URL http://dx.doi.org/10.1145/2048066.

2048119.

[43] C. Severance. JavaScript: Designing a language in 10 days. Computer, 45(2):7–8, Feb. 2012.
ISSN 0018-9162. doi: 10.1109/mc.2012.57. URL http://dx.doi.org/10.1109/mc.2012.57.

[44] D. Yoo and S. Krishnamurthi. Whalesong: Running Racket in the Browser. SIGPLAN Not.,
49(2):97–108, Oct. 2013. doi: 10.1145/2578856.2508172. URL http://dx.doi.org/10.1145/

2578856.2508172.

[45] A. Zakai. Emscripten: An LLVM-to-JavaScript compiler. In Proceedings of the ACM In-
ternational Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion, SPLASH ’11, pages 301–312, New York, NY, USA, 2011. ACM. doi:
10.1145/2048147.2048224. URL http://doi.acm.org/10.1145/2048147.2048224.

31

