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Abstract

Most modern web applications are written in JavaScript. However, the demand for web
applications that require more numerically-intensive calculations, such as 3D gaming or photo-
editing, has increased. This has also increased the demand for code that runs near native
speeds. PNaCl is a toolchain that allows native C/C++ code to be run in the browser. This
paper provides a comparison of the performance of PNaCl to native code and JavaScript. Using
a benchmark suite that covers a representative set of numerical computations, it is shown on
average, that the performance PNaCl is within 9% of native C code.

1 Introduction

The web browser has become one of the most popular interfaces to interact with software, due to
its ubiquity, ease of access, and updatability. Web applications can easily be used by the millions
of people who already have access to browsers. These web applications have come a long way
from simple scripts to change HTML elements. Today, web browsers must be able to handle
everything from personalizing text on a webpage to computationally-intensive applications such as
video-editors and physics simulators.

There have been many types of web technologies used to support more sophisticated web appli-
cations, such as Java applets [5], Adobe Flash [6], and Microsoft Silverlight. However, these all
require the user to download the supporting technology which can deter many potential users.

Other approaches aim to enhance JavaScript performance, such as development of more complex
virtual machines and the widespread usage of JIT compilers over interpreters [18].

Another approach has been to compile native code to JavaScript that can be run in the browser.
For example, Emscripten [2] is a compiler that translates LLVM bytecode to asm.js [1] a subset of
JavaScript that is better suited to JIT optimization. This allows applications that are written in
C/C++ to be run in the browser.

A study of the performance of the above approaches for computationally-intensive numerical appli-
cations was published by Khan et al. [20] Missing from this study, however, is another approach to
run native code in the browser: Google’s Portable Native Client (PNaCl) [4] PNaCl is a toolchain
that compiles C/C++ code to an intermediate representation that is stored on the server and is
compiled to native code when the application is loaded in the browser.

This paper presents two main contributions: (1) The addition of Halophile, a new set of benchmark
implementations to Ostrich, a benchmark suite that implements a representative set of typical
numerical computing algorithms. (2) An inspection of the performance of PNaCl compared to
native code and JavaScript, showing that PNaCl can run code at speeds close to native C code.

We will continue as follows: Section 2 gives an overview of the main technologies studied and tools
used, including PNaCl and Ostrich. Section 3 describes the methodology and machines used for
this performance study. Section 4 covers the performance results. Section 5 offers related work in
the area of running native code in the browser. Finally, we finish with conclusions and future work
in Section 6.
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2 Background

This section provides the essential background to the technologies and benchmark suite referred to
in this paper. We’ll begin with an overview of PNaCl and move on to the Ostrich benchmark suite.

2.1 PNaCl

Portable Native Client is an extension of Native Client [9], which is a secure sandbox that allows
native code to be run in the browser. Many applications have already been ported to Native Client,
such as the Unity Game Engine [3].

The main difference between NaCl and PNaCl is that NaCl compiles C/C++ code based on the
user’s architecture, whereas PNaCl improves on this by compiling to an intermediate representation
that is architecture independent. This means it only takes one compilation to allow the application
to run on different machines.

This intermediate representation is a portable executable (or pexe) that can be saved on a server
with other common web application file types, such as HTML, CSS, or JavaScript files. At runtime,
when the browser is loading the application, it sees the pexe file and translates it to native code
(called a nexe) on the user’s machine, which can then be used by the application. The nexe is
the same format as what would be generated through the NaCl toolchain and is run in the Native
Client sandbox within the browser.

Since PNaCl aims to be a secure technology, the Native Client sandbox enforces various contraints
on the code that it runs, such as only allowing certain API calls. In addition, some static analysis
is done on the code via the NaCl validator to constrain permitted code to certain safe patterns.

Currently, the pexe to nexe translator and NaCl sandbox are only available in Google Chrome [8].

2.2 Ostrich

Ostrich is a benchmark suite that was created by members of Sable lab to test the performance of
web technologies in the field of numerical computing [20]. It was inspired by a team at Berkeley
working off Colella’s work in identifying common patterns of numerical computation. Colella orig-
inally described seven patterns, and named them dwarfs [10]. Another team of researchers have
subsequently added six more patterns, bringing the total to 13 [12].

An example of a dwarf is the Graph Traversal dwarf, which covers applications that traverse many
objects, sometimes inspecting their contents, but not doing a lot of computation. The benchmark
that implements this is the breadth-first search algorithm, also known as bfs.

Ostrich previously had implementations for 12 of the 13 dwarfs. Each benchmark was implemented
in C, JavaScript, OpenCL, and WebCL. Some of these benchmarks were taken from other bench-
mark suites, namely from Rodinia [15] and OpenDwarfs [16], but the rest were first implemented
in Ostrich.

The Ostrich results showed that JavaScript performance was within a factor of two compared to
native C code.

Table I shows all the dwarfs and their corresponding benchmarks in Ostrich.
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Dwarf Benchmark

Branch and Bound nqueens
Combinational Logic crc
Dense Linear Algebra lud
Dynamic Programming nw
Graph Traversal bfs
Graphical Models hmm
MapReduce page-rank
N-Body Methods lavamd
Sparse Linear Algebra spmv
Spectral Methods fft
Structured Grid srad
Unstructured Grid back-prop

Table I: Dwarfs and their Ostrich implementation.

2.2.1 PNaCl Integration

A major task in Halophile was to adjust the Ostrich benchmarks to properly integrate with the
PNaCl toolchain. The first order of business was to update the mostly C benchmarks to compile
with a C++ compiler, as this is what is used the the PNaCl toolchain. This toolchain also forced us
to fix many warnings due to its stricter build rules. We also took the time to update the benchmarks
so they all interface with PNaCl uniformly.

After adjusting the benchmarks, the next step was to write PNaCl modules, which provided the
connection between the benchmarks and the browser.

Once we were able to get the benchmarks to compile and run, we made sure to check the correctness
of the benchmarks. This was especially important after the necessary code cleanup in the first step
of PNaCl integration. Finally, the infrastructure to automatically run the Ostrich suite was updated
to include PNaCl.

3 Methodology

This section dicusses pertinent research questions, the experimental setup for collecting data, and
finally, how the measurements were taken.

3.1 Research Questions

Halophile focuses on the performance of PNaCl, which is supposed to offer a faster alternative for
developers to write their web applications in, versus writing them in JavaScript. Thus, this brings
us to our first question:

(RQ1 ) Does PNaCl offer a performance improvement over hand-written JavaScript?

PNaCl also claims performance near native code speed, despite its constraints, which leads to the
second question:
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(RQ2 ) Is the performance of PNaCl competitive with C?

3.2 Experimental Setup

The machine used for Halophile was a typical lab desktop, as is described in Table II.

Cheetah

Processor Intel Core i7 @3.2GHz x12
OS 64-bit Ubuntu 12.04
Physical Memory 16 GiB
Browser Chrome 41
PNaCl API Pepper 39
gcc 4.6.4

Table II: Specifications of lab machine.

All the tests were performed using the Ostrich benchmark suite (specifically the C and JavaScript
implementations) that was updated to support PNaCl.

3.3 Measurements

Since Halophile is an investigation of how PNaCl compares to JavaScript and native code for
typical numerical computations, both a JavaScript and a C performance baseline were necessary.
Each benchmark for each technology was executed four times, with a script that collected only the
execution time the core algorithm took to run and averaged them. The geometric mean of PNaCl
against JavaScript or C was calculated from those collected times.

4 Results

This section discusses the results gathered from Halophile, which we use to answer the two research
stated earlier. We begin by presenting a comparison of PNaCl versus JavaScript. This is followed
by the comparison of PNaCl versus C.

4.1 PNaCl vs JavaScript

We compared PNaCl to JavaScript to ensure that using PNaCl really did offer a performance boost
over hand-written JavaScript.

Figure 1 shows that for nine of the twelve benchmarks, PNaCl offers a performance boost over
JavaScript. In some cases, such as for fft and nw, PNaCl offers more than 3x the speedup. Due
to the lack of profiling tools for PNaCl, the reason for this is yet to be determined. lavamd, the
only benchmark that did not offer a speedup, executes faster in JavaScript due to a faster (but less
precise) exponentiation function that is used in Google Chrome [7]. The geometric mean shows
that PNaCl, on average, offers a respectable 1.5x performance boost over JavaScript code. This

5



provides an answer to our first research question, that PNaCl does offer a performance improvement
over hand-written JavaScript.
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Figure 1: PNaCl ratios compared to JavaScript

4.2 PNaCl vs C

The comparison between PNaCl and C is of much greater interest, because the main goal of PNaCl
is to offer near native code performance.

Examining the Figure 2, we can see that for most benchmarks, PNaCl is within 1.2x the speed of
native code, or better. Surprisingly, there are four benchmarks that are faster than native code.
However, like the PNaCl vs JavaScript experiment, the reasons for this are yet to be determined.
The same goes for the three benchmarks that are around 1.5x slower than native code. All in all,
PNaCl is competitive with C, with a geometric mean slowdown of around 9%. This answers our
second research question: Is the performance of PNaCl competitive with C.
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Figure 2: PNaCl ratios compared to C

4.3 Summary

This section has shown that C/C++ code compiled via PNaCl does offer a significant improvement
in performance over JavaScript code. The comparison against C shows that PNaCl application can
also run as fast as promised, around 9% the speed of native code.

5 Related Work

PNaCl is a technology that aims to run C/C++ code securely in the browser, not only offering
alternatives to writing web applications in JavaScript, but also enabling legacy applications to
distributed via the web. Halophile shows that PNaCl performs well for numerical applications.

To show that uses of C++ for numerical applications exist, we can look to the fields of biology [24],
physics [19] [17], and math [11] for a few examples. Machine code emitted by PNaCl is run in a
sandbox to ensure security. Other efforts in this area include MiniBox [21] for x86 Native Code
and Robusta [26] for Java applications.
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An alternate way of compiling native code to be run in the browser is Emscripten [29]. The usage
of Emscripten in the fields of music [13] and games [23] interest in allowing legacy applications
to be run in the browser. Another article [14] explores the differences between native and web
applications, touching on the importance of performance. PNaCl also lines up with Google’s plans
concerning Chrome OS, as dicussed by Wright [28].

As mentioned in the introduction, one of the approaches to allowing computationally-intensive ap-
plications to run in the browser is to enhance JavaScript performance. This approach is used by
Martinsen et al. [22] where they use thread-level speculation to allow JavaScript to make use of
multicore processors. At the programmer-level, Souders [27] encourages best practices for program-
ming in JavaScript with performance in mind. In terms of benchmarking JavaScript, this paper [25]
explores the performance of real-web applications, comparing them to commonly used benchmark
suites.

6 Conclusions and Future Work

This paper has presented Halophile, a PNaCl-friendly addition to Ostrich and confirmed the high
performance of PNaCl for numerical computing benchmarks.

Using the infrastructure of Ostrich, we were able to successfully update the C/C++ implemenations
to compile with PNaCl. With the improved set of benchmarks, we were able to show the average
performance gain of around 50% when using PNaCl over JavaScript (RQ1 ), and that PNaCl is
competitive with native C code (RQ2 ).

One of the next steps for Halophile would be to find a way to profile the PNaCl code. This way,
we could understand where the performance gains and losses occur and analyze the code further.

Since PNaCl and asm.js offer two different ways to run native code in the browser, a more in-depth
comparison of the two could yield interesting results in their strengths and weaknesses. Another
path to be taken would be a look into PNaCl-level optimizations, that would occur before the
native code would be generated. Similar to the paper [20] that inspired this project, we would also
like to explore the ways that PNaCl supports concurrency, to see if gains could be made there.
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