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Abstract

Software-based Thread-Level Speculation (TLS) requires speculative threads executing ahead
of normal execution be isolated from main memory until validation. The resulting read/write
buffering requirements, however, mean speculative execution proceeds slower than unbuffered,
non-speculative execution, resulting in poor parallel coverage of loops as the non-speculative
threads catches up to and prematurely joins with its speculative children. In this work we inves-
tigate an “asymmetric partitioning” strategy, modifying speculative code generation to better
partition loops, balancing the load assuming a range of constant factor slowdowns on speculative
threads. An implementation within the LLVM-based MUTLS system shows a significant ben-
efit to memory intensive benchmarks is possible, although it is dependent on relatively precise
estimates of the memory access rate that induces buffering slowdown for individual benchmarks.

1 Introduction

Thread-Level Speculation (TLS) is a safe technique to automatically parallelize sequential pro-
grams; employing otherwise idle cores to speculatively execute sections of a program ahead of time.
This execution is not without cost. The main sequential execution is responsible for starting and
stopping speculative execution, while speculation must run in an isolated container from the main
program and therefore results in slower memory access.

In the context of loops, Loop-Level Speculation (LLS) distributes loop iterations over available
CPUs thus running multiple iterations of a loop at the same time. Due to speculation costs of
repeatedly starting and stopping speculative execution, it is not always practical to run each it-
eration on a separate thread. The technique of loop partitioning attempts to reduce this cost by
running multiple iterations on each thread. This does not factor in the cost of running in an isolated
state, so standard loop partitioning results in less parallelization than optimal. Asymmetric par-
titioning attempts to optimally distribute loop iterations over the non-speculative and speculative
threads therefore achieving better parallel coverage. This in turn can lead to improved program
performance.

An existing software TLS implementation, MUTLS, allows implementation of this technique at
compile time [1]. This is accomplished through splitting non-speculatuve iterations from speculative
iterations, then symmetrically partitioning the speculative iterations to run on multiple speculative
threads. Results indicate that speculative execution that experiences slowdown due to memory
access can benefit from asymmetric partitioning, while CPU intensive benchmarks which do not
experience these slowdowns show no improvement.

2 Background

Thread-Level Speculation (TLS) is a safe technique to automatically parallelize sequential pro-
grams; employing otherwise idle cores to speculatively execute sections of a program ahead of time.
This is achieved through successive pairs of fork, join and optionally barrier points that indicate lo-
cations to begin and commit speculative work. When a program encounters a fork point, sequential
execution continues on a non-speculative parent thread, while a speculative child thread is launched
at the paired join point. To guarantee safety of speculative execution, all reads and writes on a
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speculative thread are buffered. Upon reaching the join point, the non-speculative parent thread
joins with its speculative child threads by halting and validating their execution. Validation ensures
that the necessary parts of the environment used for speculative execution are the same as what
would have been used in a normal sequential execution. Successful validation commits the execution
of the speculative threads to memory and continues execution from the termination point of the
speculative thread. Unsuccessful validation discards the speculative execution and re-executes the
speculative work on the parent thread. In addition to a parent thread signaling it wishes to join, a
child speculative thread may also stop executing when it encounters a barrier point. Barriers are
indications that it may not be safe or beneficial to speculatively execute past this point. The end
result of successful speculation is a safety guaranteed parallel execution of an intially sequential
program.

To achieve greater speedup and maximize the use of cores on a multi-core machine, multiple spec-
ulative threads can be launched at various points in a program. There are 3 main models for
multiple-speculation that define the speculative thread tree: in-order nesting, out-of-order nesting,
and mixed nesting as shown in Figures 1a, 1b and 1c respectively.

(a) in-order : Only the most
speculative thread may fork

(b) out-of-order : Only the
least speculative thread (non-
speculative) may fork

(c) mixed : Both in-order and
out-of-order, any thread may
fork

Figure 1: Forking models

While mixed speculation provides the best overall solution since it includes all combinations of
in-order and out-of-order thread hierarchies, both in-order and out-of-order speculation provide
optimal solutions to some problems [6]. Thus, by using the effective multiple speculation model
and forkpoints, greater speedup and more parallelism can be obtained.

While speculative execution may improve performance through parallelism, there are runtime costs
which affect optimal performance. Both forking and joining speculative threads must perform
several housekeeping operations to maintain an accurate representation of the speculative system.
In addition, joining a speculative thread requires validating the execution by comparing the ex-
pected inputs versus the actual inputs. There is also a speculative execution penalty. During
non-speculative execution, threads read and write directly to and from memory. In order to guar-
antee safety, speculative threads must read and write to a buffer that models the environment of
the expected non-speculative execution. This buffering comes at a cost:
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Non-speculative execution time: sequential non-spec execution time + fork cost + join cost

Speculative execution time: γ(non-spec execution time)

where γ denotes the slowdown function due to speculation. Therefore, the costs associated with
speculation affect the end performance of the program.

In addition to flexible TLS implementations that handle arbitrary forking and joining, there exist
more limited models which target specific program sections. Loop-Level Speculation (LLS) applies
the principles of TLS in-order speculation to speculate on the loop body for future iterations. The
parent, non-speculative thread executes the first iteration, and effectively spawns an additional k
speculative child threads to execute the following k iterations of the loop. In this model, 1 thread
executes 1 iteration. Upon joining with its child threads (assuming successful validation), the
parent thread then executes the (k+2)-th iteration and can optionally spawn more child threads to
continue speculative execution. As a limiting case, for a loop of size n, a total of n− 1 speculative
threads could be launched in-order to execute all n iterations of the loop in parallel. Therefore we
can apply the principles of TLS to a specific programming construct to obtain effective speedup.

Due to speculation costs, a straightforward LLS implementation is not effective. With small loop
bodies, the cost of repetitive forks and joins outweights the benefit of using multiple threads.
Instead, a technique called loop partitioning can be used. This technique divides a loop of size n
into N blocks, each of which execute n

N iterations. The result is a non-speculative thread which
executes n

N iterations, and N − 1 speculative threads which each execute n
N iterations. The initial

value and end value of each block is determined by the following relationship

sj =
n

N
· j

tj =
n

N
· (j + 1) − 1

The code transformation is shown in Figure 2, where each iteration of the outer loop executes a
single block - the nested loop. Since forking and joining is only once per block, this is less costly
than a standard LLS implementation. Thus loop partitioning is an effective method to parallelize
loops and minimize speculation costs.

Figure 2: Symmetric partitioning
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2.1 MUTLS

The MUTLS (Mixed Model Universal Software Thread-Level Speculation) project is a software
TLS implementation in LLVM (Low Level Virtual Machine) that uses automatic or user defined
fork/joinpoints to choose speculation locations [2]. LLVM is a compiler framework which allows
compiler writers to write compilers that accept a variety of input languages, apply a set of op-
timizations and output to a supported machine language. To do this code generation, an SSA
Intermediary Representation (IR) is used. MUTLS uses the mixed model of speculation to achieve
maximum levels of parallelism. In addition to automatically marking fork and join points, users of
the project can also mark their own forkpoints, joinpoints, barrierpoints, partitioned loops for use
in the speculative system by using the pragmas illustrated in Figure 3.

#pragma t l s f o r k p o i n t [ id <id>]
#pragma t l s j o i n p o i n t [ id <id>]
#pragma t l s b a r r i e r p o i n t [ id <id>]
#pragma t l s f o r k p o i n t loopb lock [ id <id>]

Figure 3: MUTLS forkpoint marking

3 Method

While loop partitioning addresses the overhead of forking and joining for each iteration, it does
not efficiently distribute the workload over the CPU resources. Traditionally, symmetric loop
partitioning consists of dividing a loop of n iterations into N blocks, each with an equal number
of iterations. The advantage of this approach is the reduced speculation cost over repeatedly
forking and joining for each iteration. This addresses the overhead of forking and joining, however
it does not take into account the cost of buffered reads and writes that are included in the γ
slowdown function. The result of this approach is speculative threads which want to run for longer
than their non-speculative parent thread. In an ideal distribution, to minimize the runtime of the
program, speculative threads should terminate at the same time as their parent threads. This
ensures maximum parallelization as no thread is waiting for another thread to terminate, and there
are no early joins that result in sequential execution.

In order to achieve higher levels of parallel execution, the workload between speculative blocks and
the non-speculative parent block is split in an asymmetric fashion. Since non-speculative blocks
execute faster than their speculative child blocks, more iterations can be allocated to non-speculative
execution to balance the runtime of different threads. This bias factor, the ratio of work done by
a non-speculative block and work done by a speculative block, is closely tied to the slowdown
introduced by the read and write buffering. A higher bias indicates a larger amount of work
being executed non-speculatively while speculative blocks execute less. The optimal asymmetric
distribution of loop iterations allows for maximum parallelization and can therefore increase the
performance of the program.

Asymmetric partitioning is done in 3 main steps. Firstly, in order to allow for an asymmetric
distribution of iterations between speculative and non-speculative threads, the initial loop is split
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into two identical copies. The two copies are then rewired to start and stop according to a calculated
split iteration which indicates the split between non-speculative and speculative iterations. In
the second phase, the speculative loop is symmetrically partitioned according to the remaining
blocks to distribute the speculative work over multiple speculative threads. Finally, to control
the multithreaded execution fork, join and barrier points are inserted into the asymmetrically
partitioned loops.

3.1 Loop Splitting

In order for non-speculative and speculative threads to run a different number of iterations and
for multiple speculative threads to be allowed, the initial loop must first be split into two identical
copies. The end result of loop splitting is to split the loop into two copies, one which executes the
non-speculative iterations and one which executes the speculative iterations. Since the asymmetric
block counts towards the total blocks count, it must obey the same threshold as a symmetric block.
The threshold check is calculated as follows for a bias factor k, N blocks and n iterations:

n · k
N + k − 1

≥ minimum block size

If the threshold check is passed, then the loop splitting can continue. Since not all loop counts are
known during the compilation phase, the threshold check is only used when a constant number of
iterations is available.

Another important consequence of a non-constant loop count is when the bias allocates zero itera-
tions to the non-speculative thread. During development this caused the creation of infinite loops,
since the exit condition was built with the assumption of some iterations occuring. To fix this issue,
a skip check is inserted before the non-speculative loop. Should the skip check conclude there are
no iterations in the non-speculative loop, it will jump to the speculative loop. In this case, the
number of blocks is decreased by one, and the first iteration of the symmetric partition becomes
the non-speculative execution. Should loop splitting proceed, the result can be seen in Figure 4.
The following section explains the bounds.

Figure 4: Loop splitting
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3.2 Asymmetric Bias

The goal of assymmetric partitioning is for the non-speculative thread to execute a factor k times the
amount of work of a speculative thread. For asymmetric bias factor k, N blocks, and n iterations,
the allocation of loop iterations is as follows:

• Fraction of blocks allocated to non-speculative loop: 1
N

• Fraction of blocks allocated to speculative loop: N−1
N

• Fraction of iterations allocated to non-speculative loop: k
N+k−1

• Fraction of iterations allocated to speculative loop: (N−1)·1
N+k−1

where each block receives 1
N+k−1 .

• Iterations allocated to non-speculative loop: k
N+k−1 · n

• Iterations allocated to speculative loop: N−1
N+k−1 · n

where each block receives n
N+k−1 iterations.

As an example, take k = 2, N = 5, n = 90

• Fraction of blocks allocated to non-speculative loop: 1
5

• Fraction of blocks allocated to speculative loop: 4
5

• Fraction of iterations allocated to non-speculative loop: 2
5+2−1 = 1

3

• Fraction of iterations allocated to speculative loop: (5−1)·1
5+2−1 = 2

3

where each block receives 1
6 .

• Iterations allocated to non-speculative loop: 1
3 · 90 = 30

• Iterations allocated to speculative loop: 2
3 · 90 = 60

where each block receives 15 iterations.

In addition to supporting integers, this division of iterations also holds for decimal quantities. To
avoid premature rounding with the LLVM Scalar Evolution classes which perform integer division,
the following approximation is used to allow an arbitrary but finite precision. Let kf = kn

kd
be a

fractional approximation of bias factor k.

n · k
N + k − 1

≈
n · kf

N + kf − 1

=
n · kn

kd

N + kn
kd

− 1

=
n · kn

N · kd + kn − kd
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We can then define kf to be a fraction representing bias k with arbitrary precision. In this particular
implementation, 2 decimal places of precision were allowed, so

k ≈ kf =

⌊
k · 100

100

⌋
In general, for precision p

kf =

⌊
k · 10p

10p

⌋

3.3 Partitioning

In order to have multiple speculative threads, the cloned loop is partitioned. A symmetric partioning
is used, since all threads running the cloned iterations are designed to run speculatively and thus
run at the same speed. The number of blocks for the symmetric partitioning depends on the
compile-time success of loop splitting. If the loop is successfully split, then the partitioning number
will be N − 1. Should the loop fail to split at compile-time, due to threshold conditions or a skip
check, then the full N blocks will be allocated to the symmetric partitioning. The full asymmetric
partitioning result can be seen in Figure 5.

Figure 5: Asymmetric partitioning
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3.4 Fork Points

In contrast to a symmetric partitioning, in an asymmetric partitioning there are multiple fork
and join points inserted into the code. The final goal is to have a single non-speculative thread
executing the non-speculative loop, and N − 1 threads executing the N − 1 speculative blocks
from the symmetric partitioning (assuming successful split). To do so, a fork must be performed
before the start of the non-speculative loop, but after the skip check is performed. This placement
allows the non-speculative loop to be run on a non-speculative thread if possible. If not, then the
non-speculative thread will execute the first block of the symmetric loop. The paired join point is
placed after the termination of the loop so the speculative thread start executing the speculative
loop. Note that in order to prevent waiting for a thread which was never forked, the join point must
only be run if the skip check returned false. We thus have 2 basic blocks which are predecessors to
the speculative loop.

The symmetric fork and join points are inserted as per a normal symmetric partitioning. That is,
fork before the inner loop, and join directly after. This effectively spawns one speculative thread
per outer loop iteration, and thus one speculative thread per block. In order to stop execution once
the inner loop is complete and prevent unnecessary rollbacks, a barrier point is inserted directly
after the join point. We then have the final picture shown in Figure 6.
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Figure 6: Asymmetric partitioning with fork and join points

4 Results

Results were collected on a 4 x Intel(R) Xeon(R) CPU E7-4850 @ 2.00GHz server, 10 cores hyper-
threaded, 24MB L2 cache, and 64 GB memory.

Name Description Problem Size Intensive

synthetic simulated buffering on speculative threads with 500 loop iterations, W = 108 CPU
2x slowdown

md 3D molecular dynamics 256 particles, 400 step CPU

3x+1 3x+1 number theory problem N = 1280000 CPU

barneshut N-body simulation N = 12800 bodies Memory

loopmatmult block based matrix multiplier 1024 × 1024 matrices Memory

mandelbrot factal generation 512 × 512 image CPU
80000 iterations maximum

The legend shown in Figure 7 is used for the results graphs. Note that due to consistency in
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results, the standard deviation is not always visible. Blocknum indicates the number of threads
and thus the number of blocks used for the benchmark.

Figure 7: Results legend

Figure 8: Synthetic buffering benchmark, run at 2, 4, 8, and 10 blocks, optimal at 2.5

As a method of exploring the relationship between the slowdown and the asymmetric bias factor,
a synthetic test was designed to simulate speculative slowdown. Before executing its work, a loop
iteration checks to see if it is being executed speculatively or non-speculatively. In the cast of
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non-speculative execution, W units of work are performed. If the check determined the work was
executing speculatively, 2 ·W units of work are performed, simulating a slowdown factor of 2x.
As shown in Figure 8, a local optimal bias of 2.4-2.6 is present in all cases, suggesting a tight
relationship between speculative slowdown and the optimal bias factor. This observation is also
supported by the benchmark set, with CPU intensive benchmarks having lower optimal bias factors
than memory intensive ones.

Figure 9: moldyn 3D molecular dynamics, run at 2, 4, 8, and 10 blocks, optimal at 1
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Figure 10: 3x+1 number theory benchmark, run at 2, 4, 8, and 10 blocks, optimal at 1

In general, CPU intensive benchmarks do not have the same slowdown as memory intensive bench-
marks during speculative execution. This is largely due to the minimal effect buffering has on
CPU operations. Thus the non-speculative and speculative threads of a CPU intensive benchmark
will run at approximately the same speed, an optimal iteration distribution will allocate the same
number of iterations to speculative and non-speculative blocks. As seen in Figures 9 and 10, a
symmetric partitioning performs consistently better than any asymmetric bias. Note that a bias of
around 1.0 will produce a similar result to a symmetric partitioning. This is due to the work being
evenly distributed to both non-speculative and speculative threads, so at runtime this emulates a
symmetric partitioning with the same number of blocks.

Load balance plays an important part in the results, especially at higher block numbers. Bench-
marks start exibiting a saw tooth type behaviour, with local optimal biases followed by a loss in
performance. This behaviour is extremely evident with CPU intensive benchmarks such as moldyn
and 3x+1 as seen in Figures 9 and 10 with 8 and 10 threads. Around the jump locations, there
is also a higher degree of variance, with both optimal and low performance results obtained. An
analysis of the individual results showed that at the jump points either a local minimum or a local
maximum was obtained, but never in between. This type of behaviour is believed to be from a load
imbalance when the non-speculative thread signals to join. In some cases the threads complete at
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the same time, and in others additional work is required once the join is complete or one thread
waits for the completion of another.

Figure 11: barneshut N-body simulation, run at 2, 4, 8, and 10 blocks, optimal at 4.5

Memory intensive benchmarks however can have significant improvement at the optimal bias factor.
Due to slowdowns of speculative threads, a symmetric partitioning does not provide optimal paral-
lelization. This results in the non-speculative thread accumulating work from speculative threads
and thus taking longer to execute. By providing the optimal bias factor, we optimize parallel
coverage, and thus the non-speculative thread completes at the same time as its speculative child
threads.
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Figure 12: loop matrix multiplier, run at 2, 4, 8, and 10 blocks, optimal at 15

As shown in Figure 12, the loop matrix multiplier benchmark showed no improvement at all with
any bias factor, so loop peeling was performed with 1 iteration to improve caching performance.
This resulted in an optimal bias that improved performance over both sequential and symmetric
partitioning. The symmetric partitioning performance was also observed to be constant no matter
which block number was chosen. This could be due to a limiting performance improvement that
is inherent to the benchmark. Asymmetric partitioning also showed the same behaviour with little
to no improvement from increasing the number of threads.

16



Figure 13: mandelbrot fractal generation, run at 2, 4, 8, and 10 blocks, optimal ¿ 1

Asymmetric performance was also limited in some cases by the sequential execution. In the man-
delbrot benchmark, when a high enough bias factor was chosen, therefore allocating a very high
percentage of work to non-speculative execution, the result was limited by the sequential execution
as shown in Figure 13. At these high biases, no work is executed speculatively, so the end result
is a non-speculative thread performing all iterations. In general, after passing the optimal bias,
asymmetric performance levels off around sequential execution. The exception to this case is bar-
neshut, which experiences some slowdown over sequential execution. This could be due to caching
effects, fork and join costs, or a load imbalance.

5 Related Work

There have been several attempts to improve performance and parallel coverage of Loop-Level
Speculation. Wang et al. [7] build a DAG loop graph of the program to model loop nesting
relationships. Using coverage and speculation speedup estimates, their algorithm chooses a set of
loops for Loop-Level Speculation to optimize performance.

Llanos et al. [3] proposed the use of Just-In-Time scheduling for dynamically computing the block
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size for block-based Loop-Level Speculation. Their scheduling algorithm improves performance of
LLS in loops with dependencies by 10-26% and loops without dependencies by 9-39%. In addition,
by including dependency violation information in the block size calculation, the number of violations
is reduced. For loops with frequent inter-iteration depencencies this reduces the misspeculation cost
incurred by using a fixed block size.

Samadi et al. [5] explored load balancing LLS between CPUs and GPUs. The system introduced,
Paragon, executes loops speculatively on GPUs and uses a lightweight management system to
monitor and solve dependencies. Since GPUs and CPUs run concurrently, the rollback cost is
minimized. On average, Paragon achieves a 12x speedup compared to an unsafe 4 thread CPU
code.

Oplinger et al. [4] examined performance of Loop-Level Speculation with value prediction in the
context of realistic programs. When only the best loop in a nesting relationship was chosen, per-
formance increased by a harmonic mean of 1.6. With multi-level loop speculation, performance
increased to 2.6. However, their study found that speedup was improved by also performing pro-
cedural speculation.

6 Conclusion

Asymmetric partitioning provides a foundation for load balancing loop iterations between non-
speculative and speculative threads. While CPU intensive benchmarks do not show any significant
improvement due to limited buffering, memory intensive programs can benefit immensely from the
optimal asymmetric bias. This points to a direct relationship between speculative slowdown and
the optimal bias factor. The more buffering that needs to be done, the higher the bias factor
required in order to maximize parallel coverage.

As future work, heuristics could be used to determine the optimal bias factor, depending on how
much buffering would be done by the speculative system. In addition, choosing the right block
number for the system could provide maximum program performance. This could be done at
compile time with knowledge of the machine, but dynamic recompilation or runtime checks could
be used to choose the appropriate bias and block numbers.
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