
McGill University
School of Computer Science

Sable Research Group

A Formalization for Specifying and Implementing Correct
Pull-Stream Modules

Sable Technical Report No. sable-2018-01

Erick Lavoie, Laurie Hendren

12-Jan-2018

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

1.1 Contributions . 5

2 Background 6

2.1 Example Module Implementations . 6

2.2 Pull-Stream Design Pattern Properties . 9

3 Insights and Approach 9

4 Event-Based Protocol Language 11

4.1 Syntax . 11

4.2 Semantics . 13

4.2.1 Normalization . 14

4.2.2 History . 15

4.2.3 History Progression . 16

4.2.4 Step-by-Step Ping Pong Example . 17

5 Pull-Stream Protocol 18

5.1 Overview . 18

5.2 Pull-Stream Events . 19

5.3 Normal Sequence . 19

5.4 Early-Terminated Sequence . 20

5.5 Correctness . 21

6 Reference Modules 22

6.1 Completeness and Correctness . 26

7 Evaluation of Community Modules 26

8 Related Work 27

9 Conclusion and Future Work 28

A Normalization Rules 30

B Concurrent Variations of the Pull-Stream Protocol 30

1

B.1 Normal Sequence . 30

B.2 Early-Terminated Sequence . 31

2

List of Figures

1 Pull-stream design pattern. 7

2 Source and Sink Examples. 7

3 Transformer and Pull Examples. 8

4 Callback events. 10

5 Syntactic sugar. 13

6 Rewriting rules for normalization. 15

7 Ping-pong partial order. 18

8 Pull-stream protocol events. 19

9 Normal Sequence. 20

10 Early-Termination Sequence . 22

11 Abstract representation of modules. 23

12 Rules for a reference source. 23

13 Rules for a reference sink. 24

14 Rules for a reference transformer. 25

List of Tables

1 Syntax of basic elements. 12

2 Conventions. 12

3 Syntax of events. 12

4 Syntax of partial orders. 13

5 Syntax of rules. 14

3

Abstract

Pull-stream is a JavaScript demand-driven functional design pattern based on callback
functions that enables the creation and easy composition of independent modules that are used
to create streaming applications. It is used in popular open source projects and the community
around it has created over a hundred compatible modules. While the description of the pull-
stream design pattern may seem simple, it does exhibit complicated termination cases. Despite
the popularity and large uptake of the pull-stream design pattern, there was no existing formal
specification that could help programmers reason about the correctness of their implementations.

Thus, the main contribution of this paper is to provide a formalization for specifying and
implementing correct pull-stream modules based on the following: (1) we show the pull-stream
design pattern is a form of declarative concurrent programming; (2) we present an event-based
protocol language that supports our formalization, independently of JavaScript; (3) we provide
the first precise and explicit definition of the expected sequences of events that happen at the
interface of two modules, which we call the pull-stream protocol; (4) we specify reference modules
that exhibit the full range of behaviors of the pull-stream protocol; (5) we validate our definitions
against the community expectations by testing the existing core pull-stream modules against
them and identify unspecified behaviors in existing modules.

Our approach helps to better understand the pull-stream protocol, to ensure interoperability
of community modules, and to concisely and precisely specify new pull-stream abstractions in
papers and documentation.

1 Introduction

Pull-stream [13] is a JavaScript demand-driven functional design pattern based on callback functions
that enables the creation and easy composition of independent modules that are used to create
streaming applications, initially proposed by Dominic Tarr [11]. It is simple, because it does
not require language support other than higher-order functions, yet it is rich enough to provide
flow-control and correct termination behavior in case of errors. It also simplifies factoring complex
applications into simpler reusable modules. It has already shown its worth by being used in the
implementation of a data dissemination protocol for new social applications (ssb [14]), in the
JavaScript implementation of a peer-to-peer networking stack (js-libp2p [9]), in a JavaScript im-
plementation of a peer-to-peer hypermedia protocol (js-ipfs [10]), and by being widely downloaded
on the npmjs website1. Furthermore, an open-source community has grown around it and produced
more than a hundred compatible pull-stream modules [2].

While the description of the pull-stream design pattern may seem simple, it does exhibit complicated
termination cases. For example, we examined and tested the core pull-stream library [13] that has
been under development for 5 years now and found two cases of unspecified behaviors [19]. While
both are not major issues, and seem to not have created interoperability problems so far, their
existence in a well-used library does show that even a seemingly simple callback protocol can have
unexpected corner cases.

Despite the popularity and large uptake of the pull-stream design pattern, there was no existing formal
specification that could help programmers reason about the correctness of their implementations.
Thus, the main contribution of this paper is to provide a formalization for specifying and implementing
correct pull-stream modules.

1At the time of writing, the library had been downloaded over 90,000 times in the previous month. We believe
most of these downloads are from small personal or custom in-house tools.

4

We arrived at our current results in multiple steps. We first experimented by reimplementing some
pull-stream modules in Oz [22, 34], a language with native stream support, to see if modules would
be easier to implement and reason about in it. While it gave us insights about the nature of the
pull-stream design pattern, the language is not well known and it was hard to explain the insights
to a more general audience. We therefore decided to provide a notation with a small number of
rules that could capture those insights yet would be independent of both JavaScript and Oz. We
then asked questions to the pull-stream community about the expected sequences of events that
happen at the interface of two pull-stream modules, which we call the pull-stream protocol. This way
we identified all valid sequences of events and concisely captured the constraints in our notation.
We then used the same notation to specify reference modules that use the full capabilities of the
pull-stream protocol. They give a concise, precise, and complete reference of expected behavior,
and can be used to test other module implementations. We finally validated our understanding
on community contributed modules by implementing our reference modules in JavaScript. Using
these modules allowed us to automatically discover unspecified behaviors in well-used modules. This
formalization effort therefore helped clarify the expected behavior of pull-stream modules, should
help module maintainers to ensure all community modules are inter-operable in the future, and
provides a notation for concisely presenting new pull-stream abstractions in modules’ documentation
and future papers.

1.1 Contributions

In this paper we therefore make the following contributions:

• we show how the pull-stream protocol implements an implicit stream of single-assignment
dataflow variables using callbacks and how the benefits of a declarative concurrent programming
model also apply to the pull-stream design pattern (Section 3);

• we present an event-based protocol language that is used both to describe the pull-stream
protocol and specify the behavior of pull-stream modules, independently of JavaScript (Sec-
tion 4);

• we provide the first precise and explicit definition of the expected sequences of events that
follow the pull-stream protocol at the interface of modules (Section 5);

• we specify parameterized modules that exhibit the full range of behaviors of the pull-stream
protocol and can be used as references for implementations and for testing other modules
(Section 6);

• we evaluate the conformity of community-contributed modules against our definitions to ensure
the definitions adequately describe community expectations and can be used to find modules
that do not correctly implement the protocol in all cases (Section 7).

To provide the necessary context, we first introduce the pull-stream design pattern using its JavaScript
implementation (Section 2). We then present the previous contributions in the aforementioned
sequence. We then compare our work to the existing literature (Section 8). We finally conclude
with a brief recapitulation of our contributions and some future research directions (Section 9).

5

2 Background

The pull-stream design pattern is illustrated in Figure 1. It consists of both a composition mechanism
to assemble individual modules in a pipeline and a callback protocol for enabling adjacent modules
to communicate.

A pipeline is composed of three types of modules: a single source that produces values, a series of
zero or more transformers2 that modify those values, and a single sink that consumes the values.
The composition of multiple transformers is itself a valid transformer. Likewise, the composition of
a transformer with a source or a sink is itself a valid source or sink. The stream values flow from
left to right, from the source to the sink.

Adjacent modules communicate with a two-parameters callback protocol. The downstream module
first makes a request by invoking the output function of the upstream module with a callback.
Then, the upstream module replies with an answer by invoking the callback. The first parameter of
either function determines the type of operation: the type of a request is determined by the abort

parameter and the type of an answer is determined by the done parameter. There are therefore
multiple cases to consider.

In the normal and common case, a request asks for a value by invoking the output function with
abort set to false and a callback for the expected answer as a second parameter. An answer
then returns a value by invoking the callback with the done parameter set to false and the value
provided as a second parameter.

In addition to the normal case, a request may abort processing normally by invoking the output func-
tion with abort set to true, or abort abnormally with an error with abort set to new Error(...)

(which is also truthy3).

An answer may also terminate the stream normally by setting the first parameter done to true, or
abnormally with an error by setting the first parameter done to new Error(...).

2.1 Example Module Implementations

The following modules illustrate the key features of the pull-stream protocol. An example source of
values, that counts from 1 to n, is implemented in Figure 2a. Instantiating the module returns a
function named output. A request is performed by invoking the output function with an abort flag
and a callback function x. If the source is aborted from downstream (abort is true or an error),
done will be set to the abort value and x, if defined, is called with the same value. This case is used
by the module downstream to abort early, before all values have been output. Otherwise, if there
are still values to output, x is called with the current value (done=false). This is the normal case
where a value flows from the output of an upstream module to the input of a downstream module.
Finally, in the last case, no more values are available and x is called with done (done=true). This is
the normal termination case, where a source is allowed to output all its values and complete. This
source example does not raise errors and therefore the third answer case is not illustrated.

An example of a sink, the complement of a source, is implemented in Figure 2b. The sink takes an r

2The existing documentation uses the name through for transformers. The original designer later mentioned that
he would have preferred transformer but stuck with the original name because the community adopted it. We break
community conventions here to favor clarity.

3In JavaScript, thruthy values can be used as a true value in conditional statements or expressions.

6

Primitive
Source Trans.* Primitive

Sink

Source Transformer* Sink

Flow of values

… …

Upstream
Output

Downstream
Input

ask/abort/err

value/done/err

1

2

Pipeline

Callback Protocol

Trans. Trans.* Trans.*

Figure 1: Pull-stream design pattern: pipeline of composable modules on top and callback protocol
at the bottom.

function source (n) {
 var done = false
 var i = 1
 return function output (abort, x) {
 if (abort)
 return x(done=abort)
 else if (i<=n)
 return x(false, i++)
 else
 return x(done=true)
 }
}

(a) Source example.

function sink (r) {
 var i = 1
 var abort = false
 function empty() {}
 return function input (request) {
 request(i>r, function x (done, v) {
 if (done) {
 if (done === true) console.log('done')
 else console.error(done)
 return
 }
 console.log(v)
 if ((++i)>r) return request(abort=true, empty)
 else return request(abort=false, x)
 })
 }
}

(b) Sink example with aborting support after r requests.

Figure 2: Source and Sink: the request parameter of the sink function is the output function of the
module upstream (source or transformer). The abort flag is made explicit so the inverted logic of
the protocol is easier to read.

7

parameter to define the number of non-abort requests to perform. Instantiating the module returns
an input function. Invoking the input function with an output function as argument connects both.
The sink then requests values from the upstream module by calling its output function4, hence
the parameter is named request. Once the input function is invoked, it starts making requests
immediately. If 0 requests are demanded, then the output function is aborted. Otherwise, a new
value is asked (abort=false). In both cases, the callback x is passed to obtain an answer. The
module then waits for an answer to be provided and therefore for x to be invoked. If the source has
completed or has failed, ’done’ or an error is printed on the console. If a new value is returned
then it is printed on the console and a new request is made if some are left. Since requests are
initiated from the sink, the protocol is demand-driven and lazy: a new value is not produced until
one has been explicitly requested.

An example of a transformer, which takes input values from upstream, applies a function f on them,
and outputs the results downstream, is implemented in Figure 3a. It combines both an input and
an output function. The module is instantiated with a single-parameter function f which outputs a
result when given an input value. It returns an input function, that expects an output function as a
parameter, similar to a sink. Once invoked, the input function returns a new output which may
be used as a source. Passing a source to the input function of a transformer therefore returns a
new source. The output function of the transformer, directly forwards its requests to the upstream
module, including the abort cases but with a different callback x rather than xp, to process the
incoming value. It then waits for an answer until x is invoked. If the upstream module is done or
has failed, it forwards the answer downstream. Otherwise, it applies f on the value v and pass the
result downstream by invoking xp.

function transformer (f) {
 return function input (request) {
 return function output (abort, xp) {
 request(abort, function x (done, v) {
 // Also handles the error case
 if (done) return xp(done)
 xp(false, f(v))
 })
 }
 }
}

(a) Transformer example.

// Example: pull(source(10),
// transformer(function (x) {
// return x*2
// }),
// sink(Infinity))
function pull () {
 var pipeline = [].slice.call(arguments)
 var output = pipeline.shift() // Dequeue
 while (pipeline.length > 0) {
 input = pipeline.shift()
 output = input(output)
 }
}

(b) Pull helper function to create the stream pipeline.

Figure 3: Transformer and Pull: in JavaScript, arguments contains all the call-site arguments
regardless of the function definition. Moreover, it behaves like an array but does not have all its
methods therefore it is converted to an array using the reflection API (call on the slice method of
an array that produces the pipeline value).

Other modules, such as bi-directional network sockets may also have both an input and an output.

4Functions are both objects (nouns) and represent actions (verbs) that are initiated from outside the module. The
existing documentation on pull-streams sometimes name the output function source and sometimes read. When we
refer to the object that returns values from inside a module, we call it an output function. When we refer to the action
of obtaining values from that object from outside the module, we write requesting a value and name the function a
request function.

8

On one side of the communication channel they can be used as a transformer and on the other as
both a source and a sink. In either case, their behavior is similar to the three previous cases shown.

An entire pipeline may be connected by passing the output function of a module upstream to the
input function of the next module downstream. The process is illustrated in Figure 3b. The actual
implementation5 is a bit more complicated. It allows any possible combination of modules that is
not a full pipeline to return a source, a transformer, or a sink module than can be reused later.
It also allows modules to be defined in object form, in which the input and output functions are
methods6.

2.2 Pull-Stream Design Pattern Properties

The pull-stream design pattern provides a combination of many interesting properties:

• An upstream module (producer) and a downstream module (consumer) may both regulate
the flow of values by respectively delaying the current answer and the next request;

• The consumer may abort the stream early even though the producer may still have more
values to provide;

• Errors are handled within the protocol;

• Any module may propagate an error and has an opportunity for cleaning up after an error or
the termination of the stream;

• The values are generated lazily therefore a source may produce infinitely many values;

• Modules may be composed before the construction of the complete pipeline which favors reuse
of code when building libraries;

• Both the composition of modules and the construction of a pipeline is declarative: it does not
require an understanding of the callback protocol by the users of modules;

• The implementation of modules may use concurrency to improve the overall throughput (ex: it
may request multiple values and process them in parallel before returning its results). Outputs
may or may not be in order.

3 Insights and Approach

To better understand the pull-stream design pattern, we implemented some pull-stream modules
in the Oz language. We explain here the insights we obtained from the experience which in turn
informed our formalization approach.

Our key insight is that the sequence of callbacks at the interface of two modules creates an implicit
stream. We may view this stream as a stream of single-assignment dataflow variables, as illustrated
in Figure 4a. Invoking the output function extends the stream with a new variable and invoking a

5https://github.com/pull-stream/pull-stream/blob/master/pull.js
6Respectively named source and sink. We prefer input and output because the first letter of each is different and

makes it easier to identify the ports later in the formalism.

9

https://github.com/pull-stream/pull-stream/blob/master/pull.js

callback binds the value of that variable. As each callback is invoked only once, the variables are
assigned only once. Since the behavior of modules is triggered by callback events, the assignment of
variables can be used for synchronization as in dataflow programming.

Complete

Failed

Partial req
ues

t(f
als

e,x
0)

x0(
fal

se,
 1)

req
ues

t(f
als

e,
x1)

x1(
fal

se,
 2)

Time

x2(
tru

e)
req

ues
t(f

als
e,x

2)

x2(
err

)
req

ues
t(f

als
e,x

2)

Status Callback EventsStream

1, 2

1, 2, done

1, 2, err

x0 x1 x2

Aborted req
ues

t(t
rue

,x2
)

x2(
tru

e)

Aborted-
Failed

req
ues

t(e
rr,

x2)

x2(
err

)
1, 2, done

1, 2, err

(a) Implicit callback streams.

Syntax JavaScript Events
ask[x̄i] request(false, xi)

abort[x̄i] request(true, xi)

error[err, x̄i] request(err, xi)

xi := vi xi(false, vi)

xi := done xi(true)

xi := err xi(err)

(b) Formal equivalent.

Figure 4: Callback events that form implicit streams and introduction to their equivalent formal
representation.

Programming with concurrent streams of single-assignment dataflow variables is a form of declarative
concurrency7, with Unix pipes probably being the best-known example of the programming model.
This model makes reasoning about concurrent applications easier than other concurrent models
because the non-determinism in the concurrent events is not observable: regardless of the concrete
execution order, the result is always the same. In other words, a declarative concurrent streaming
program produces the same stream output, regardless of the exact order in which the individual
values have been computed. Abstractions built within that model bring the benefits of parallel
processing without the complexity of reasoning about multiple orders of executions. Moreover,
similar to the composition of functions which is itself a function, the composition of declarative
concurrent streaming modules is itself declarative concurrent. It allows complex programs to be
easily built from simpler modules.

Some of the most complex pull-stream modules involve managing multiple streams concurrently,
pull-many [12] and pull-lend-stream [18] being two examples. Nonetheless, they are still easy to
use because they are declarative concurrent. While their usage is simple, their implementation is
not. Unless all possible execution cases are correctly handled, the implementation may break the
declarative concurrency model in some cases. Moreover, because there are multiple termination
cases in the pull-stream protocol, the correct termination of the implementation is non-trivial to
establish for all of them. Both concurrency and termination need to be accounted for to provide
correct implementations, therefore the notation we introduce later supports specifying concurrent
events and behaviors.

The JavaScript execution model is single-threaded. However, the asynchronous execution of some

7Chapter 4 of Concepts, Models, and Techniques of Computer Programming by Van Roy and Haridi [34] provides
an exhaustive discussion of declarative concurrency.

10

of the libraries available in the execution environment, such as the Document Object Model (DOM)
functions in a browser or the input-output functions in Node.js, may happen in parallel. This means
that the results, usually obtained in callbacks, may arrive in any order. This is precisely what the
inter-leaving semantics8 for concurrent programs models captures and therefore fits nicely with the
actual programming model programmer use when programming JavaScript applications.

Figure 4b provides a preview of the equivalence between the events that happen in the JavaScript
implementation we presented in Section 2 and the syntax we use in the rest of the paper. The next
section introduce it more formally.

4 Event-Based Protocol Language

In this section we present the notation we use in the rest of the paper. The main goal of our
notation was to provide a precise and concise notation to specify the pull-stream protocol and new
pull-stream modules in papers that would be independent of JavaScript. Surprisingly to us, the
notation we obtained allowed us to avoid the description of the internal state of modules, which
makes it usable with many languages, by a more general audience than the original JavaScript
community that currently use it.

4.1 Syntax

The syntax of our notation is described using the Extended Backus-Naur Form [1]. We organize the
rules in groups and explain them in sequence. In addition to the usual symbols, we sometimes use
mathematical syntax elements such as overline (ex: x), underline (ex: x), and subscripts (ex: x2).

Table 1 shows the syntax of basic elements of the notation. boolean, number, letter, alphanumeric,
name, and variable have common syntaxes. In addition, we use a particular syntax for stream
related concepts. The stream-index represents the position of a variable or a value in a stream. It
may either be a number that represents a concrete single position in a stream (ex: 1 represents
the first position), or a variable that can represent any position in a stream. A stream variable
represents a single-assignment dataflow variable, which in JavaScript is implemented with a callback
function that should be called only once. A stream value represents a value the variable takes once
it is bound. The stream complete symbol is a special variable value that signifies the stream has
completed and has no more values. The stream failed symbol is another special variable value that
signifies that the stream has failed with an error.

We use some conventions to make the notation easier to read, as listed in Table 2. We use i and j
to represent stream indexes, quotes on variables and values (ex: x̄′1, v

′
i) to represent respectively the

variables and values in a stream that have gone through a single stage of transformation. Any other
letters are used to represent function parameters.

The basic elements and syntactic conventions are used to represent events, themselves listed in
Table 3. This is useful to present the semantics rules later. An empty-event is a special symbol used
to express ordering rules without knowing what the target event is going to be already, whereas
arguments are used in the syntax of other events and may either be a stream value, a stream variable,
or a stream failed. A method call is an event that represents calls to a method of a pull-stream

8Idem, Section 4.1.1

11

Syntax Examples
boolean = ”>” | ”⊥”; > (true), ⊥ (false)
number = digit, {digit}; 0 1337
letter = character; a b z
alphanumeric = digit | letter; 0 a
name = letter, {alphanumeric}; ask abort
variable = letter, {letter}; n r te
stream-index = variable | number; i 1 23

stream-variable = letterstream-index ; x̄i x̄1
stream-value = ”v”stream-index ; vi
stream-complete = ”d”, ”o”, ”n”, ”e”; done
stream-failed = ”e”, ”r”, ”r”[number]; err err1

Table 1: Syntax of basic elements in EBNF (also using overline, underline, and subscript syntax).

Kind Convention Example
Stream index var. ”i” | ”j” x̄i, vj
Transformation stage variable{”

′”} x̄i → x̄′i, vi → v′i
Function parameter other letter(s) n, r, te

Table 2: Conventions used for variables and values.

module that is not part of the base protocol. For example, some parameters of modules may be
dynamically changed during execution and the method call represents when that happened and
with which arguments. request and answer events are the basic events of the pull-stream protocol.
As explained in Section 2 and Table 4b, a request corresponds to the request function call, and an
answer corresponds to the invocation of the callback provided in the request. A port represents
where an event is initiated, such as a downstream module in the case of a request. Ports enable the
description of complex modules which interact with multiple streams at a time. An event is a port
and one of the other event types mentioned. A history is a sequence of events separated by commas
and represent all the concrete events that happened during an execution.

Syntax Examples
empty-event = ”e”, ”m”, ”p”, ”t”, ”y”; empty
argument = stream-value | stream-variable | stream-failed ; vi x̄i err
arguments = argument, {”, ”argument}; vi err, x̄i
method-call-event = namestream-index , [”(”, arguments, ”)”]; lendStream1

request-event = name, [”[”, arguments, ”]”]; abort ask[x̄i]
answer-value = stream-value | stream-failed | stream-complete; vi err done
answer-event = stream-variable, ” : ”, ” = ”, answer-value; x̄i := vi
port-index = [number | variable]; s
port = (uppercase-letter , {uppercase-letter})port-index ; SSU1 DI
event = [port, ” : ”], (method-call-event | request-event | answer-event

| empty-event);
I: abort

history = event, {”, ”, event}; ask[x̄1], x̄1 := v1

Table 3: Syntax of events in EBNF (also using overline, underline, and subscript syntax).

12

Sometimes multiple histories may be possible for a given protocol or module execution. We capture
the underlying structure with a partial order on events, as illustrated in Table 4. The temporal
dependency between events is represented with the → operator. Concurrent events are represented
with the ∧ operator. A choice among multiple mutually-exclusive choices is represented with the
| operator. We use partial orders to describe a protocol as a sequence of events that captures all
possible inter-leavings and possibilities concisely.

Syntax Examples
partial-order = event

| partial-order , ”→ ”, partial-order , {”→ ”, partial-order}
| partial-order , ” ∧ ”, partial-order

| partial-order , ” | ”, partial-order

| ”(”, partial-order , ”)”;

abort

ask[x̄1]→ x̄1 := v1

x̄1 := v1 ∧ x̄1 := v2

abort[x̄1] | error[err, x̄1]

(abort)

Table 4: Syntax of partial orders in Extended Backus-Naur form with examples. Operators in order
of priority: →, ∧, |. →, ∧, | are all associative.

Pull-stream modules react to external events by initiating new events. The syntax for describing
the rules that describe their behavior is given in Table 5. It is built around an antecedent that is
itself a partial order augmented with additional operations. Relations are used to reason about
stream variables and values and decide whether a rule applies for a given history. The rest of
the antecedent operators are essentially a first-order logic with conjunction ∧ (which also has the
meaning of concurrent), disjunction | (which also has the meaning of mutual exclusion), negation ¬,
and quantifiers, to reason about all possible events of a certain type, or finding events in a history
that satisfy some conditions. A rule ⇒ is a combination of an antecedent and the event it generates
if the antecedent is true.

To conclude the syntax, when multiple choices are possible for events in a partial order or an
antecedent, it may be hard to read and parse them. We therefore sometimes use a vertical choice
operator as syntactic sugar, shown in Figure 5.

expr1

expr2

...

exprn

= ”(”, expr1, ” | ”, expr2, ” | ”, ..., ” | ”, exprn, ”)”

Figure 5: Syntactic sugar for a disjunction of antecedents or partial orders.

4.2 Semantics

We explain the semantics for the syntax described previously in this section. We simplify its
description by first normalizing antecedents and partial orders with rewrite rules. We then describe
what a history is and provide operations on it and how it is extended. We finish the section with a
simple ping-pong protocol to illustrate how the semantics work.

13

Syntax Examples
quantifier = ”∃”{variable} | ”∀”{variable}; ∃i
relation-operator = ” = ” | ” 6= ” | ” < ” | ” ≤ ” | ” > ” | ” ≥ ”; < ≥
relation-operand = stream-index-variable | variable | number; i n 1
relation = relation-operand , relation-operator , relation-operand ,

{relation-operator , relation-operand};
r < i < n

antecedent = boolean | event | relation
| antecedent, ”→ ”, antecedent, {”→ ”, antecedent}
| antecedent, ” ∧ ”, antecedent

| antecedent, ” | ”, antecedent
| ”(”, antecedent, ”)”

| ”¬”, antecedent

| quantifier, antecedent;

i < n ∧ I : ask[x̄i]

rule = antecedent, ”⇒ ”, event

| event, ”⇐ ”, antecedent;
C : ping[x̄i]⇒ S : x̄i := vi

Table 5: Syntax of rules in Extended Backus-Naur form (also using overline, underline, subscript,
and superscript syntax) with examples. Operators in order of priority: relational-operator, →, ¬,
quantifier, ∧, |. →, ∧, | are all associative.

In the next sections, we do not describe the meaning of a partial order because it is the same as an
antecedent. Any rules for antecedent that use the same syntax therefore also apply to partial orders.
For conciseness, we use the following aliases for booleans, relations, antecedents, and events:

b ::= boolean, r ::= relation, a ::= antecedent, e ::= event except empty

4.2.1 Normalization

We normalize partial orders and antecedents to make it easier to reason about them. The process
consists in rewriting the expressions such that there are only sequences of events separated by
conjunctions (∧) and disjunctions (|). A sequence is an arbitrarily large but finite list of events that
happen before one another defined as:

seq ::=

{
e

seq → e

The rewriting rules are shown in Figure 6. The first rule says that a sequence seq1 followed by two
concurrent sequences seq2 and seq3 is the same as the conjunction of seq1 followed by each of the
sequences. The second rule is similar with two concurrent sequences followed by a single sequence.
The third rule says that a sequence seq1 followed by a choice of either two sequences seq2 or seq3 is
the same as a choice between the sequence seq1 immediately followed by seq2 or seq1 immediately
followed by seq3. All the other rewriting rules show how to remove an empty event from a sequence
or an antecedent.

14

seq1 → (seq2 ∧ seq3) (seq1 → seq2) ∧ (seq1 → seq3)

(seq2 ∧ seq3)→ seq1 (seq2 → seq1) ∧ (seq3 → seq1)

seq1 →

[
seq2

seq3
 seq1 → (seq2 | seq3) (seq1 → seq2) | (seq1 → seq3)

seq1

seq2

]
→ seq3 (seq1 | seq2)→ seq3 (seq1 → seq3) | (seq2 → seq3)

seq → empty seq empty ∧ a a

empty → seq seq a ∧ empty a

seq1 → empty → seq2 seq1 → seq2 a | empty a

empty | a a

Figure 6: Rewriting rules for normalization. The left-hand side of the operator is rewritten to its
right-hand side.

We have verified that the normalization terminates by using the Aprove method [20], by testing the
rules listed in Appendix A with an automated assistant [3]. This ensures that all possible antecedent
or partial order can be rewritten in a finite number of steps.

4.2.2 History

The following definitions define what a history is and various operations on it.

A history H is a stream of past events that is either empty or has an event following a shorter
history:

H ::=

{
〈〉
H, e

The definition of a history is similar to a sequence of events seq. A history may contain additional
events that are not part of a defined sequence while still correctly following that sequence.

Similar to the syntax definition in Figure 3, an event is either a function call, a request, or an answer
(there are no empty event in a history).

Every event of a history H is syntactically unique. There is no variable in the syntax of events in a
history, every stream-index and port-index is a number and not a variable. Therefore we define two
events as equal if they are written with exactly the same symbols in the same positions.

Consequently, an event e is part of a history H, written e ∈ H, if an event that appears in H is
equal to e. The opposite relation is the negation of the previous:

e ∈ H ::=

H = 〈〉 false

H = (H ′, e′)

{
e = e′ true e /∈ H ::= ¬(e ∈ H)

e 6= e′ e ∈ H ′

15

The depth of an event, written depth(e,H), represents how far it appeared in the past. It is
determined by counting the number of events that happened after until now. The operation is only
defined if e ∈ H:

depth(e,H) ::= H = H ′, e′;

{
e = e′ 0

e 6= e′ 1 + depth(e,H ′)

An event e2 therefore follows an event e1 if they are both part of the same history and e1 is further
in the past (i.e. its depth is greater). The beforeH relationship is not defined if one or both of the
operands are not in the history:

e1 beforeH e2 ::= e1 ∈ H ∧ e2 ∈ H ∧ (depth(e1, H) > depth(e2, H))

An event e2 always follows an event e1 if the relationship is true for all possible histories.

History H entails (�) an expression a (antecedent), which can be a complex expression that
represents events, boolean values, relation operations between integers, or logic operations on
expressions, if the following inference rules are true9:

e ∈ H

H � e

seq = e e beforeH e′

H � seq → e′
seq = seq′ → e H � seq′ e beforeH e′

H � seq → e′
b = >
H � b

r is true
r

H � r

a = r H � r

H � a

a = e H � e

H � a

a = seq H � seq

H � a

a = b H � b

H � a

¬H � a

H � ¬a
H � a1 ¬H � a2

H � a1 | a2
¬H � a1 H � a2

H � a1 | a2
H � a1 H � a2
H � a1 ∧ a2

∃varsH � a

H � ∃varsa
∀varsH � a

H � ∀varsa

By convention, indexes for stream variables and stream values start at 1 and increase by one for each
immediately following item. If an antecedent has free variables in it, i.e. variables not mentioned in
a quantifier, it is assumed that the quantifier ∃i∈N for each free variable i. For example, suppose
a history H = ask[x̄1], abort. Then H � ask[x̄i] because i is a free variable in ask[x̄i], which is
equivalent to writing H � ∃i∈Nask[x̄i]. For i = 1, H � ask[x̄1], because ask[x̄1] ∈ H (it is the first
element by definition). The use of stream index variables therefore enables matching series of events
in a history.

4.2.3 History Progression

The specification for modules uses a single rule that defines the behavior of the implication a⇒ e.
Intuitively, if the antecedent expression a is entailed by the the current history H � a and the event
e has not already happened10, then e should eventually happen and the new history H ′ will be
the old history H extended by e. During the execution, it is possible that multiple implication
rules may match at the same time, which enables concurrency. In this case, an implementation is
free to execute them in any order. To be correct, an implementation needs to correctly follow the
pull-stream protocol regardless of which rule was executed first.

9The bottom of an inference rule is true if all the conditions on top are true.
10Remember that each event is syntactically unique.

16

Formally, we therefore define the behavior of the implication (⇒) as:

H.(a⇒ e) � H ′
H � a e /∈ H

H.(a⇒ e) � H, e

¬H � a

H.(a⇒ e) � H

e ∈ H

H.(a⇒ e) � H

Finally, note that by definition, a ⇒ e implies that for any event e′ in a, H � e′ → e. As a final
remark, it is interesting to note that a history is itself a stream of events and can therefore be
represented and processed using pull-streams!

4.2.4 Step-by-Step Ping Pong Example

We illustrate the syntax and semantics with a simple ping-pong protocol based on a single request
event ping[x̄i] and a single answer event x̄i := pong11. Let’s assume a client C initiates a ping and
a server S answers with a pong. The client and the server are respectively ports on which events
happen.

The client sends a first ping, waits for an answer from the server and then sends the next ping,
infinitely often. The behavior of the client can be described with the following rules:

C : ping[x̄1]⇐ ¬C : ping[x̄1]

C : ping[x̄i]⇐ S : x̄i−1 := pong

The server answers each ping with a pong infinitely often. Its behavior can be described with the
following rule:

S : x̄i := pong ⇐ C : ping[x̄i]

As you have seen, by convention we write the event initiated by the port on the left and the events
on which it depends on the right. An execution of that protocol according to the semantics would
follow those steps. Initially, the history is empty (H = 〈〉). The only rule that can extend the history
is the first client rule and since there are no event in the history, it is true that C : ping[x̄1] /∈ H. All
other rules are missing a past event on which they depend and therefore cannot extend the history.

The first rule therefore applies, and now H = 〈〉, C : ping[x̄1]. The first rule of C no longer applies
(and will never again). The second rule of C still needs an answer. The only rule that applies is
that of S. H is again extended and is now H = 〈〉, C : ping[x̄1], S : x̄1 := pong. The rule of S no
longer applies. But the second rule of C now does, because ∃i∈N when i = 2. In such a case, the
rule is equivalent to:

C : ping[x̄2]⇐ S : x̄1 := pong

It applies because S : x̄1 := pong ∈ H. Then H is extended with the new ping, and so on and so forth
forever. The invariant of the ping-pong protocol may be abstracted as the following partial-order:

C : ping[x̄i]→ S : x̄i := pong

And a corresponding generator function that creates sequences of events according to the protocol
for a finite number of steps can be written:

We now use a similar exposition to present the pull-stream protocol, first by introducing the protocol
and then reference modules that generate valid sequences of events.

11In this protocol, ∀ivi = pong.

17

Signature: ping pong sequence(n,C, S)
Parameters:
n is the number of ping requests.
Implementation:

events(i) ::=

{
i ≤ n C : ping[x̄i]→ S : x̄i := pong → events(i + 1))

i > n empty

returns events(1)

Figure 7: Procedure to generate a partial order of events for the ping-pong protocol.

5 Pull-Stream Protocol

In this section, we define what sequences of events follow the pull-stream protocol at a given
interface between two modules. There was no previous formal specification that described it, we
obtained them by asking questions to the community about the usual expectations on the behavior
of pull-stream modules12 and by testing existing modules. We reformulated them to be concise,
precise, and complete.

5.1 Overview

The protocol covers two possible sequences, a normal sequence in which the upstream module
produces all its values and then stops, and an early termination sequence in which the upstream
module is terminated by the downstream module before all values have been produced. We cover
both in turn. Note that the protocol only specifies the sequence of events between two modules on
a single interface: it does not specify constraints between two interfaces, such as between the input
and output of a transformer. These constraints are instead part of the specification of a module and
therefore allow module designers a maximum amount of flexibility.

To present both the normal sequence and the early termination sequence, we start with concrete
sequences of events. Since many sequences are similar to one another apart from the specific ordering
of events, we then capture the regularity in a partial order using the happens before (e1 → e2)
relation between events. Finally, we generalize the partial orders to functions that generates them
for specific cases given some parameters that are specific to each of the two cases. These functions
are described in Figure 9 and 10.

Note that the current protocol mostly forbids concurrent requests13 or out-of-order answers. These
additional cases are not supported to simplify the implementation of modules in JavaScript. We
discuss the additional possibilities that could be offered by the protocol in Appendix B, which may
be easier to use in languages with dataflow variables such as Oz. These additional cases illustrate
the expressiveness of our notation for concurrency. Readers solely interested in the pull-stream
protocol implementation for JavaScript may safely skip these explanations.

12The entire discussion is in this issue on the main pull-stream repository on GitHub: https://github.com/

pull-stream/pull-stream/issues/100.
13The early termination is an exception to the rule to allow aborting before an answer has been provided.

18

https://github.com/pull-stream/pull-stream/issues/100
https://github.com/pull-stream/pull-stream/issues/100

5.2 Pull-Stream Events

Table 4b showed examples of the events of the pull-stream protocol. Figure 8 present them again
regrouped in different categories to ease the presentation of the protocol and later specifications.

terminate(x̄i) ::=

[
abort[x̄i]

error[err, x̄i]

request(x̄i) ::=

[
ask[x̄i]

terminate(x̄i)

(a) Requests.

terminated(x̄i) ::=

[
x̄i := done

x̄i := err

answer(x̄i) ::=

[
x̄i := vi

terminated(x̄i)

(b) Answers.

Figure 8: All possible pull-stream events regrouped by category under the request, terminate, answer,
and terminated functions.

All the requests are initiated downstream. All requests expect an answer in x̄i (request(x̄i)).
Terminate requests are used to terminate the stream early before all values have been produced.
A normal termination, such as when no more values are needed, is performed with abort[x̄i]. An
abnormal termination, such as when an internal error prevents a module from receiving more values,
is performed with error[err, x̄i]. All answers are initiated upstream and provide either a value vi or
signal that the stream has terminated either normally with done or abnormally with err.

5.3 Normal Sequence

The normal sequence represents sequences of events in which the number of ask requests (r) from
the module downstream is strictly greater than the number of values produced (n). Therefore
the upstream module produces all its values and then terminates the stream. After receiving a
terminated answer, the module downstream must never make additional requests, therefore r = n+1.

We describe the interaction between the input I of a downstream module and the output O of
the module immediately upstream. For example, in the case where two requests are made in
sequence (I : ask[x̄1] and I : ask[x̄2]), and one value (O : x̄1 := v1) and a terminated event
(O : terminated(x̄1)) are produced, there are all six possible sequences of events.

The first two cases correspond to co-routining between the downstream module and the upstream
module: the downstream module asks for a value, waits for an answer, then asks the next value.

I : ask[x̄1],

I : ask[x̄1],

O : x̄1 := v1,

O : x̄1 := v1,

I : ask[x̄2],

I : ask[x̄2],

O : x̄2 := done

O : x̄2 := err

We abstract the two termination cases (x̄2 := done and x̄2 := err) in a single abstract event
terminated(x̄2) and express the ordering constraint as a sequence14:

I : ask[x̄1]→ O : x̄1 := v1 → I : ask[x̄2]→ O : terminated(x̄2)

14As explained in Section 4.2.1 using a sequence rather than a concrete history allows multiple concurrent streams
to generate their events in a single global history of interleaved events.

19

The four other cases correspond to having two concurrent asks made before the answers have
arrived, two cases in which the answers arrive in order and two out-of-order. These last four cases
could possibly improve performance in some cases but implementations of pull-stream modules do
not use them because the added implementation complexity is not worth the gain. They are not
necessary to understand the protocol as it is currently used in practice but the interested reader
may still find a complete description in Appendix B.1.

We generalize the co-routining sequence to an arbitrary number of values n and any pair of input and
output ports I and O with the normal sequence function of Figure 9. The function should only be
used if r = n + 1, otherwise the other function of Figure 10 should be used15. The normal sequence
function generates a sequence one request and answer at a time starting from the first (events(1)).
There are two different cases for generating a new request and answer. If i ≤ n than a request
should be answered by a value before the next request is initiated. If i = n + 1 then there are no
more values and the request will be answered by a terminated event.

Signature: normal sequence(n, I,O)
Parameters:
n is the number of values in the stream (n ≥ 0)
Implementation:

events(i) ::=

{
i ≤ n I : ask[x̄i]→ O : x̄i := vi → events(i + 1))

i = n + 1 I : ask[x̄i]→ O : terminated(x̄i)

returns events(1)

Figure 9: Procedure to generate a partial order of events for the normal sequence (in this case, the
partial order is a sequence).

The function can be used to generate all possible sequences of events. For example, for n = 1 the
partial order of events for the normal sequence generated by the function is:

I : ask[x̄1]→ O : x̄1 := v1 → I : ask[x̄2]→ O : terminated(x̄2)→ empty

Making both terminated(x̄i) cases explicit:

I : ask[x̄1]→ O : x̄1 := v1 → I : ask[x̄2]→

[
O : x̄2 := done

O : x̄2 := err

Using the rewriting rules of Section 4.2.1 we obtain the two possibilities that correspond to the two
examples given at the beginning of the section:

(I : ask[x̄1]→ O : x̄1 := v1 → I : ask[x̄2]→ O : x̄2 := done) |
(I : ask[x̄1]→ O : x̄1 := v1 → I : ask[x̄2]→ O : x̄2 := err)

5.4 Early-Terminated Sequence

The early terminated sequence represents sequences of events in which the number of ask requests
is less or equal to the number of values that could be produced by the upstream module (r ≤ n) .

15r > n + 1 is incorrect.

20

The last ask request is always followed by a terminate request. The upstream module is therefore
terminated earlier than in the normal sequence and the stream is potentially shorter than it would
have been otherwise16.

For example, in the case of a stream of two values (n = 2), terminated early on the second request
(r = 1), the following sequences of events are possible. In these sequences, we do not list the normal
and abnormal termination requests and terminated answers explicitly, we use I : terminate(x̄i) and
O : terminated(x̄i) instead.

The co-routining case is analogous to the normal sequence: an answer is expected before the next
request is initiated, but the last request is a termination request instead of an ask request and the
second value is ignored:

I : ask[x̄1], O : x̄1 := v1, I : terminate(x̄2), O : terminated(x̄2)

At first glance, it may seem that it is sufficient to support early termination. However, because an
answer is expected for each request before issuing the next, it is not possible to abort the upstream
module if an answer takes too long to arrive. Because of that limitation, a limited form of in-order
concurrency is supported: a terminate request may be concurrently initiated if the last answer takes
too long to arrive. The previous answer is terminated as soon as possible, and the answer for the
termination request comes right after:

I : ask[x̄1], I : terminate(x̄2), O : terminated(x̄1) O : terminated(x̄2)

As for the normal sequence, there are other possible concurrent cases that are not used. The
interested reader may still find a complete description in Appendix B.2.

As for the normal sequence, we generalize the sequence to an arbitrary number of values n, number
of ask requests r, with an additional parameter w is used to distinguish between the case where the
last answer was waited for or not. The generalization for the early terminated sequence function
is shown in Figure 10. This function applies in cases where r ≤ n, otherwise the normal sequence
applies.

The function generates a partial order, one request and answer at a time starting from the first
(events(1, empty)). Note that it uses T as a parameter to save the terminated answer in case w = >
to place it correctly later in the sequence. There are four different cases in the generation of events.
If i ≤ r − 1 then a value matching the ask is produced. If i = r and the answer is waited for
(w = >), it is similar to the first case. If i = r but the answer is not waited for (w = >), then an
ask with a terminated answer is produced and saved for later in T . In the last case where i = r + 1,
the terminate request is generated and an additional terminated answer T , empty or not depending
on whether w was > or ⊥, and finally the answer for the terminate request.

5.5 Correctness

The sequence of events (history H) observed at the interface of two modules with input (I) and
output (O) is correct if it follows either case of the pull-stream protocol and does not generate more
events than those. In practice, we check the conformity of actual executions with the following
invariants implemented in a transformer module [28] placed between two other modules:

16For the case where r = n the upstream module actually terminate on the same request index it would have in the
normal sequence. However, it terminates on a terminate request rather than an ask request.

21

Signature: early terminated sequence(n, r, w, I,O)
Parameters:
n is the number of values in the stream (n ≥ 0)
r is the number of ask requests performed from downstream before terminating (0 ≤ r ≤ n)
w is whether the last value had been waited for before terminating (w = >) or not (w = ⊥)
Implementation:

events(i, T) ::=

i ≤ r − 1 I : ask[x̄i]→ O : x̄i := vi → events(i + 1, T)

i = r ∧ w I : ask[x̄i]→ O : x̄i := vi → events(i + 1, T)

i = r ∧ ¬w I : ask[x̄i]→ events(i + 1, O : terminated(x̄i))

i = r + 1 I : terminate(x̄i)→ T → O : terminated(x̄i)

returns events(1, empty)

Figure 10: Procedure to generate a partial order of events for early terminated sequences.

1. No additional request after a terminate request or a terminated answer;

2. Every expected answer (x̄i) eventually happens;

3. Every expected answer (x̄i) happens only once;

4. Expected answers happen in the creation order of their stream variable (x̄i);

5. No concurrent ask requests;

6. (If the stream is finite), the stream is eventually terminated.

6 Reference Modules

In this section, we provide reference modules that can guide a correct and complete implementation.
They are useful both as an illustration of our notation for specifying the behavior of modules as
well as for testing other modules. For the latter case, we implemented them in JavaScript [29]17

and we report on our experiments in testing community modules with them in Section 7.

To present the next modules, we use some conventions to make each interface between pairs of
modules unique and provide some intuitions about how values flow through them. Figure 11 shows
the interfaces between a transformer module and the output of the module immediately upstream
(UO) and the input of the module immediately downstream (DI). The module upstream may be
a source or a transformer and the module downstream may be a sink or a transformer also. The
interface upstream (UO-TI) receives requests which create an implicit stream of x̄i variables and
produces answers of values vi. To show the progression of values through the modules, we write
v′i the value in a downstream interface with the same index, after some processing has occurred.
Correspondingly, the variable in the request for that answer is noted x̄′i.

17The specifications given in this section follow the pull-stream protocol presented in the last section. The JavaScript
implementations might have additional parameters compared to the specifications to change the order of event
execution and intentionally generate incorrect behaviors to see how other modules react to them. They may also
use different conventions that are more idiomatic to JavaScript or that follow the existing naming conventions of the
pull-stream community.

22

DITI TOUO

xi xi'

vi vi'

Figure 11: Abstract representation of the interfaces between a transformer and the output of
the module upstream (UO-TI), which could be a source or another transformer, and the input of
the module downstream (TO-DI), which could be a sink or another transformer. Each interface
generates a variable stream with a unique name (ex: x̄i). Each new variable is implicitly added by
a request coming from the interface’s downstream port (ex: TI). The answers to those requests
produce corresponding values that flow in the opposite direction (ex: vi and v′i).

A port is used to specify the particular side of an interface where an event is initiated. When
the events are implemented with function calls as in JavaScript, it represents the caller side. The
destination of a request or an answer is implicit and not ambiguous because it is always the
complementary port of the same interface (ex: UO for a request initiated on TI). The rules that
define the behavior of the modules are given according to the ports of the abstract representation
given in Figure 11. In the rest of this section, the upstream module is a source with an output
UO, the middle module is a transformer with an input TI and an output TO, and the downstream
module is a sink with an input DI. The three are connected in a single pipeline one immediately
after the other (UO − TI and TO −DI). We present all three modules in sequence and conclude
with a discussion about completeness and correctness of specifications.

The reference source presented in Figure 12 answers requests with either a stream value (vi), a
termination marker (done), or an error (err). The rules are parameterized by the number of stream
values to produce (n) and a boolean flag (err) to simulate the behavior of modules that may fail to
correctly produce a value instead of normally terminating.

Parameters:
n (n ≥ 0): number of values to produce;
err (boolean): terminate with a done (err = ⊥) or an error (err = >).

UO : x̄i := vi ⇐ TI : ask[x̄i] ∧ i ≤ n

UO : x̄i := done ⇐

[
TI : ask[x̄i] ∧ ¬err ∧ i = n + 1

TI : terminate(x̄i)

UO : x̄i := err ⇐ TI : ask[x̄i] ∧ err ∧ i = n + 1

Figure 12: Rules for a reference source.

The behavior of the module is defined as implication rules (e⇐ a) that are reversed to emphasize

23

on the left side all the possible events initiated by the module. The antecedent a is a conjunction
of posssibly multiple things: (1) events initiated downstream from the transformer input (TI);
(2) boolean relations between the stream index of a particular request (i) and one of the source
parameters (n); (3) boolean flags (err). In the rules, i in a TI : request(x̄i) is a free variable that
matches any event in the history regardless of its concrete index (1, 2, ...). If the antecedent is
true according to the semantics (Section 4.2) and the event e in the consequent of the implication
has not happened yet (e /∈ H), then the implementation of the source should eventually initiate
e. As an example for the first rule, if the transformer input has asked for a value in the past
(TI : ask[x̄i] ∈ H), there are still values to produce (i ≤ n), and vi has not been produced yet
(UO : x̄i := vi /∈ H), then a value vi should eventually be produced and assigned to x̄i. The other
rules are straight-forward to derive from the pull-stream protocol. The rules for the source have
been designed to be mutually exclusive, therefore only one rule applies at a time18.

The organization of the rules in the figure makes it easy to visually inspect that all possible answers
have rules associated with them. The same rules may also be rewritten in the other direction to
verify that all cases of requests from the module immediately downstream are covered. Knowing that
all requests and answers are both covered, we can be confident that the behavior of the module is
fully specified according to the pull-stream protocol. The rules may be easily adapted to a different
configuration. For example, if the source was connected directly to the sink, all rules with the prefix
TI could be replaced with the prefix DI and would apply in the same way.

Parameters:
r (r ≥ 0): number of ask requests to perform;
err (boolean): terminate with an abort (err = ⊥) or with an error (err = >);
w (boolean): wait for the previous value before terminating (w = >) or not (w = ⊥).

wait(j) ::=

[
w ∧ TO : x̄′j := vj

¬w ∧DI : ask[x̄′j]

DI : ask[x̄′1]⇐ r > 0

DI : ask[x̄′i]⇐ i ≤ r ∧ TO : x̄′i−1 := v′i−1

DI : abort[x̄′1]⇐ r = 0 ∧ ¬err
DI : abort[x̄′i]⇐ i = r + 1 ∧ ¬err ∧ wait(i− 1)

DI : error[err, x̄′1]⇐ r = 0 ∧ err

DI : error[err, x̄′i]⇐ i = r + 1 ∧ err ∧ wait(i− 1)

Figure 13: Rules for a reference sink.

The reference sink in Figure 13 makes at most r ask requests for values and an extra terminate
request if the source has not terminated yet. The sink may make fewer requests than there are
values available. If fewer values are requested than are available (r < n), the sink terminates early.
Two other parameters control the termination behavior: (1) it may terminate normally (err = ⊥) or
abnormally (err = >); (2) it may terminate after having received an answer (w = >) or immediately
after having issued an ask request (w = ⊥). If the upstream module returns a terminated answer in

18This is not true in general: some modules may coordinate multiple concurrent streams and therefore have many
rules that apply at the same time.

24

response to an ask request rather than a value, the sink stops emitting events, as expected by the
pull-stream protocol.

The rules are organized similarly as for the reference source. Since the event initiated by the sink
are requests, they are put on the left side of the implication rules. The stream of requests is defined
inductively. The initial request depends only on the module parameters. For example, the first
request will be DI : ask[x̄′1] if there is at least one ask request to perform. Subsequent requests,
such as DI : ask[x̄′i], happen after an answer has been initiated from the transformer output (ex:
TO : x̄′i−1 := v′i−1). In case the transformer module initiated a terminated answer, none of the rules
apply and therefore the sink stops. Note that the rules use ’′’ to indicate the stream variables (x̄′i)
and stream values (v′i) follow one stage of processing that happens before the sink. If the sink was
connected directly to the source with no transformer in-between, all ’′’ should be removed from the
rules.

Parameters:
r (r ≥ 0): number of ask requests to perform;
err (boolean): terminate with an abort (err = ⊥) or with an error (err = >).

TI : ask[x̄i]⇐ DI : ask[x̄′i] ∧ i ≤ r

TI : abort[x̄i]⇐

[
DI : ask[x̄′i] ∧ i = r + 1 ∧ ¬err
DI : abort[x̄′i] ∧ ¬TI : terminate(x̄i−1)

TI : error[err, x̄i]⇐

[
DI : ask[x̄′i] ∧ i = r + 1 ∧ err

DI : error[err, x̄′i] ∧ ¬TI : terminate(x̄i−1)

TO : x̄′i := v′i ⇐ UO : x̄i := vi

TO : x̄′i := done⇐

[
UO : x̄i := done

DI : terminate(x̄′i) ∧ TI : terminate(x̄i−1) ∧ UO : x̄i−1 := done

TO : x̄′i := err ⇐

[
UO : x̄i := err

DI : terminate(x̄′i) ∧ TI : terminate(x̄i−1) ∧ UO : x̄i−1 := err

Figure 14: Rules for a reference transformer.

The reference transformer in Figure 14 propagates requests from its output to its input and similarly
transforms the values received on its input and send them on its output. The parameters are similar
to those of the sink: r for the number of ask requests and err to control whether the termination is
done normally or abnormally. It does not need a wait (w) parameter because its waiting behavior
actually is the same as that of the sink downstream.

The rules presented are similar to the rules for the reference source and sink. They syntactically
capture the transformation behavior by relating the non-transformed upstream stage (x̄i, vi) and
the transformed downstream stage (x̄′i, v

′
i). The rules are similar to those of the sink with a subtle

addition to avoid terminating upstream more than once. The second case of TI : abort[x̄i] and
TI : error[err, x̄i] ensure that if the transformer aborted early a second abort will not be issued.
The second case of TO : x̄′i := done and TO : x̄′i := err ensure that the termination request from
downstream will receive an answer after the answer upstream has been received, even if a request
had not been issued to avoid terminating twice.

25

Our specification assumes the downstream module behaves correctly (ex: no additional ask[x̄′i] after
an abort). If the downstream module were incorrect, it is possible that the incorrect behavior could
be propagated upstream. In practice a protocol checker [28] may be used to catch those incorrect
behaviors without having to complicate the transformer specification to defensively handle incorrect
behavior.

6.1 Completeness and Correctness

The specification of a module is complete if it defines rules for all possible events that may happen
externally. The specification is correct (follows the pull-stream protocol) if when combined with
one of the reference modules on all its interfaces, any possible history generated by their combined
specification at each of these interfaces follows the pull-stream protocol. To test implementations,
we use a JavaScript implementation of the reference modules [29] to generate all possible sequences
of events on streams of a finite size and check that the events on all interfaces follow the pull-stream
protocol with a protocol checker [28]. We provide more details in the next section.

7 Evaluation of Community Modules

We tested our understanding of the protocol using the modules of the core library [13] and checked
them for conformity at the same time. To do so, we generated all possible sequences of events
using our references modules [29] and checked that the events generated at the interface of any two
modules followed the pull-stream protocol with a checker module [28]. Our experiments are available
in a GitHub repository [27]. We have found that in almost all cases the implementations correctly
follow the pull-stream protocol as described in this paper, which is a testament to the quality of the
core library. However, we did find one inconsistency and one incorrect behavior according to our
specification.

The inconsistency was found in the way some source modules can be terminated without a callback
but not others19. That behavior was part of our initial specification of the protocol but we since
removed it after finding that many sources do not actually support it.

The incorrect behavior was found in a corner case for the take transformer module in which an early
termination downstream triggers two abort events upstream20. The erroneous behavior correspond
to the behavior our reference transformer in Section 6 would have if the abort condition did not
check for an existing termination request upstream (i.e. if the second case of TI : abort[x̄i] were
simply DI : abort[x̄′i]). The expected behavior was not documented but following a discussion
with Dominic Tarr21, it was confirmed it was incorrect. In practice, it seems most sources and
transformers handle multiple termination requests just fine so that was not a major problem for
interoperability. However, it did illustrate that even seemingly simple protocols can have surprising
corner cases and that an effort at formalizing is beneficial to identify them.

19Reported here https://github.com/pull-stream/pull-stream/issues/101 and applicable to version 3.6.1.
20Reported here https://github.com/pull-stream/pull-stream/issues/104, same version.
21Idem.

26

https://github.com/pull-stream/pull-stream/issues/101
https://github.com/pull-stream/pull-stream/issues/104

8 Related Work

Pull-stream documentation. The community that created and maintains pull-stream modules has
also produced informal documentation about their expected behavior [4, 11, 33]. Our description of
expected sequences of events in the pull-stream protocol and our reference modules are consistent
with that documentation and fill some gaps. To the best of our knowledge this paper is the
first academic paper that describes the pattern formally and suggests a specification language for
pull-stream modules.

Streaming design patterns as libraries. The pull-stream design pattern itself is similar to at
least another open source JavaScript compositional library called Reducers written by Irakli
Gozalishvili [21], which was independently conceived around the same time. There are some other
examples in academic publications of streaming libraries for other languages. Spark Streaming
exists for Scala and was used for large-scale stream processing [38]. Biboudis et al. [5] have proposed
a domain-specific streaming language for Java as a library that was faster in some cases than
the native Java streaming API. More generally though there seems to be little recent published
work on streaming design patterns. We therefore provide a larger historical context on streaming
or streaming-related languages by providing some older papers from the programming language
community that are representative of ideas that are related.

Stream processing in programming languages and dataflow programming. A good overview of the
earliest developments of stream processing from the 60s to the 90s has been written by Stephens [32].
It covers among others representative papers from the dataflow, functional, and logic approaches
to stream programming, as well as reactive approaches and hardware design and verifications
applications. From these different approaches we think the dataflow approach is closest to the
pull-stream programming model. The first dataflow language is Lucid [36]. In Lucid, variables are
infinite streams and variable transformations, called filters, are expressed as equations between
variables. Filters therefore continuously compute new values based on the latest available values,
similar to the pull-stream transformers. Lucid as a notation is more expressive than using pipelines
of pull-stream modules: for example, it is easier in Lucid to express a complex dataflow network
where let’s say the output of a filter becomes in own input and is combined with multiple other
input streams.

Our own experience with stream processing with dedicated language support, which led to the
insights we mentioned in Section 3, came from our experience with Oz [22, 34], a multi-paradigm
language built around a core language of orthogonal language features which together provide
support for all the major programming paradigms. In Oz, stream programming is done with explicit
streams of single-assignment dataflow variables. This makes the additional concurrency possibilities
of the pull-stream protocol much easier to use in practice since the stream data structure takes care
of the synchronization issues, which is not the case in JavaScript.

Another more recent survey from Johnston et al. details later development in the 90s and early
2000s on dataflow approaches, languages, visual dataflow programming [23]. Recently, the dataflow
programming paradigm was revived around distributed programming with languages such as
Agapia [30].

Functional reactive programming. From another perspective, functional reactive programming [37]
also integrated similar streaming notions as a library rather than as programming language primitives,
with the Functional Reactive Animation library and its an associated denotational semantics, as
a prime example [16, 15]. One key difference compared to the dataflow approaches we mentioned

27

previously is in the treatment of time as a continuous quantity and the associated problem of
sampling to realize animations with a discrete number of frames.

Formal specifications. Our own expertise does not lie in formal specification and our knowledge of the
existing literature is limited. It is therefore likely that our event-based protocol language is similar
to prior existing work. Accordingly, we do not make any claim of originality on it and recognize that
better alternatives to specify pull-stream modules may exist. Nonetheless, our language definition
has shown to be sufficient to describe both the pull-stream protocol and specify reference modules
and concise enough to make the paper self-contained. We believe its main contribution will be to
make it easier for experts in the respective fields to use this paper as a case study for their own
work on formal methods and suggest better notation alternatives that could be used to specify
pull-stream modules.

That being said, our event-based protocol language uses predicate calculus [17] and models time
implicitly by extending a history in a discrete step for each new event added. We were inspired
to formalize pull-streams around events after reading existing work on formalizing distributed
systems [6, 24]. A state machine-based formalism could have been another valid alternative.
Lamport’s Temporal Logic of Action [25] and its associated language TLA+ [26] are a foundation
to reason about concurrent programs with a strong mathematical foundation which could have been
another alternative. We do not have experience in using either but the introduction of TLA+ [26]
claims that it is well suited to specify discrete asynchronous systems. This suggests they would be a
good formal basis for our semantics. Another possible option would be temporal logic [31, 8].

Automated testing. Our testing strategy, is similar to the property-based testing approach of
Claessens and Hughes [7] in which a large number of test cases are automatically generated and
some properties are checked at run-time to hold over all test cases. However, in contrast to their
approach, we systematically test all cases for small finite streams rather than performing random
testing. This is especially effective in our case as the behavior of pull-stream modules can often be
defined inductively: testing for the base cases and a few inductive ones is usually enough to uncover
most bugs. Another difference is that we do not test the module for functional correctness (i.e. that
their output is correct given their input), we test them to ensure that whatever event they generate,
their sequence correctly follow the pull-stream protocol. Our testing approach therefore focuses on
interoperability between modules.

Others. Recent work in the programming language community has focused on stream processing.
Vaziri et al. have shown an approach based on extending spreadsheets with stream support and
formalized the core of their language extension [35].

9 Conclusion and Future Work

In this paper, we provided a formal treatment of the pull-stream design pattern that originated within
the JavaScript developer community. We provided a new insight that the effectiveness of this design
pattern comes from the declarative concurrent programming model that it uses. We then presented
an event-based protocol language that is independent of the original JavaScript implementation,
which we then used to formally and concisely specify the pull-stream callback protocol and reference
modules that generate all possible events. This formalization ultimately led to new pull-stream
module implementations in JavaScript that in turn helped automatically identify some corner-cases
and possible inconsistencies in actual implementations of the most widely used modules. Our

28

approach therefore helps to better understand the pull-stream protocol, ensure interoperability of
community modules, and concisely and precisely specify new pull-stream abstractions in papers.

We envision many direct applications to our work: (1) test more community modules for conformity;
(2) implement the event-based protocol language in JavaScript and compare the execution of the
specification to the implementation for consistency; (3) extend the run-time checking approach
to test all possible inter-leavings of concurrent executions; (4) provide an ascii-based equivalent
notation to document the behavior of community modules; (5) document other stream protocols
using a similar approach.

In addition, the pull-stream protocol itself is relatively simple and could serve as a great case study
for ensuring that the latest verification techniques based on type checking are expressive enough to
be applicable to protocol compliance.

Acknowledgements. We would like to thank Francisco Ferreira for his tremendous help in clarifying
the presentation of our event-based protocol language and providing comments on drafts of this
paper.

29

A Normalization Rules

Input for the proof of termination with Aprove:

(VAR x y e e1 e2 a)

(RULES

before(e,and(x,y)) -> and(before(e,x),before(e,y))

before(and(x,y),e) -> and(before(x,e),before(y,e))

before(e,or(x,y)) -> or(before(e,x),before(e,y))

before(or(x,y),e) -> or(before(x,e),before(y,e))

before(e,empty) -> e

before(empty,e) -> e

before(before(e1, empty), e2) -> before(e1, e2)

before(e1, before(empty, e2)) -> before(e1, e2)

and(a, empty) -> a

and(empty, a) -> a

or(a, empty) -> a

or(empty, a) -> a

)

B Concurrent Variations of the Pull-Stream Protocol

The pull-stream protocol could have used additional concurrency while keeping the same function
signature for modules. We detail here the two additional cases that would have been possible but
were ultimately ruled out because they incurred additional complexity in the implementation of
modules to handle the concurrency while the benefits were not worth it. We present the two cases
both for the normal sequence and the early-termination sequence.

B.1 Normal Sequence

There are two additional cases. The first case correspond to concurrent asks with in-order answers.
The downstream module asks for multiple values, and the upstream module answers in the same
order as the asks:

I : ask[x̄1], I : ask[x̄2], O : x̄1 := v1, O : terminated(x̄2)

The second case corresponds to concurrent asks with out-of-order answers. The downstream module
asks for values concurrently and the upstream module answers in any order. This can be used to
ensure minimum latency as answers are made as fast as they are available:

I : ask[x̄1], I : ask[x̄2], O : terminated(x̄2), O : x̄1 := v1

In these two additional cases, the ordering of the stream values is still captured by the order in which
the asks were made and the downstream module can remember in which order the stream variables
(x̄1 and x̄2) were created. While the additional implementation complexity is usually not worth it

30

in JavaScript, these possibilities are actually quite natural to use in a dataflow language such as
Oz because the stream of variables is explicitly represented in memory and all the synchronization
happens implicitly as the values are bound to the variables.

B.2 Early-Terminated Sequence

Similar to the normal sequence analysis, there are two additional cases to consider: the concurrent
in-order and the concurrent out-of-order cases.

The early-termination sequence can already issue a terminate request concurrently with a single ask
request, so it can be considered as a limited of in-order concurrency. In the full concurrent in-order
case, more than one ask are initiated concurrently before the terminate request and therefore the
terminated answers are also received in-order. For example:

I : ask[x̄1], I : ask[x̄2], I : terminate(x̄3), O : terminated(x̄1), O : terminated(x̄2),

O : terminated(x̄3)

The concurrent out-of-order case is similar to the in-order case except that answers may be received
out-of-order which also applies to the termination answers. For example:

I : ask[x̄1], I : ask[x̄2], I : terminate(x̄3), O : terminated(x̄3), O : terminated(x̄1),

O : terminated(x̄2)

31

References

[1] Information technology - Syntactic metalanguage - Extended BNF. http://standards.iso.

org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip, 1996.

[2] Pull-stream community modules, 2017. URL: https://pull-stream.github.io/.

[3] Automated Program Verification Environment., 2018. URL: http://aprove.informatik.
rwth-aachen.de/.

[4] Pull-Stream Specification., 2018. URL: https://github.com/pull-stream/pull-stream/
blob/master/docs/spec.md.

[5] Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis. Streams à la
carte: Extensible pipelines with object algebras. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 37. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[6] Manfred Broy and Max Fuchs. The Design of Distributed Systems - An Introduction to FOCUS.
Technical report, 1992.

[7] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of Haskell
programs. Acm sigplan notices, 46(4):53–64, 2011.

[8] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[9] David Dias. The JavaScript Implementation of libp2p networking stack., 2017. URL: https:
//github.com/libp2p/js-libp2p.

[10] David Dias, Friedel Ziegelmayer, Juan Benet. IPFS implementation in JavaScript., 2017. URL:
https://github.com/ipfs/js-ipfs.

[11] Dominic Tarr. Pull-stream. http://dominictarr.com/post/149248845122/

pull-streams-pull-streams-are-a-very-simple, 2016.

[12] Dominic Tarr. Pull-Many: Combine many streams into one stream, as they come, while
respecting back pressure., 2017. URL: https://github.com/pull-stream/pull-many.

[13] Dominic Tarr. Pull-stream repository, 2017. URL: https://github.com/pull-stream/

pull-stream.

[14] Dominic Tarr. Secure-Scuttlebutt: A database of unforgeable append-only feeds, optimized
for efficient replication for peer to peer protocols., 2017. URL: https://github.com/ssbc/
secure-scuttlebutt.

[15] Conal Elliott. Functional implementations of continuous modeled animation. Principles of
Declarative Programming, pages 284–299, 1998.

[16] Conal Elliott and Paul Hudak. Functional reactive animation. In ACM SIGPLAN Notices,
volume 32, pages 263–273. ACM, 1997.

32

http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
https://pull-stream.github.io/
http://aprove.informatik.rwth-aachen.de/
http://aprove.informatik.rwth-aachen.de/
https://github.com/pull-stream/pull-stream/blob/master/docs/spec.md
https://github.com/pull-stream/pull-stream/blob/master/docs/spec.md
https://github.com/libp2p/js-libp2p
https://github.com/libp2p/js-libp2p
https://github.com/ipfs/js-ipfs
http://dominictarr.com/post/149248845122/pull-streams-pull-streams-are-a-very-simple
http://dominictarr.com/post/149248845122/pull-streams-pull-streams-are-a-very-simple
https://github.com/pull-stream/pull-many
https://github.com/pull-stream/pull-stream
https://github.com/pull-stream/pull-stream
https://github.com/ssbc/secure-scuttlebutt
https://github.com/ssbc/secure-scuttlebutt

[17] Herbert Enderton and Herbert B Enderton. A mathematical introduction to logic. Academic
press, 2001.

[18] Erick Lavoie. Pull-lend-stream: A refinement of the parallel map module for dynamic, un-
bounded, and fault-tolerant parallel processing., 2017. URL: https://github.com/elavoie/
pull-lend-stream.

[19] Erick Lavoie. Pull-stream unspecified behaviors. https://github.com/pull-stream/

pull-stream/issues/104 and https://github.com/pull-stream/pull-stream/issues/

101, 2018.

[20] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, et al.
Analyzing program termination and complexity automatically with AProVE. Journal of
Automated Reasoning, 58(1):3–31, 2017.

[21] Irakli Gozalishvili. Reducers: Library for higher-order manipulation of collections., 2018. URL:
https://github.com/Gozala/reducers.

[22] Martin Henz, Gert Smolka, and Jörg Würtz. Oz-a programming language for multi-agent
systems. In IJCAI, pages 404–409, 1993.

[23] Wesley M Johnston, JR Hanna, and Richard J Millar. Advances in dataflow programming
languages. ACM Computing Surveys (CSUR), 36(1):1–34, 2004.

[24] C. Klein, B. Rumpe, and M. Broy. A stream-based mathematical model for distributed
information processing systems - SysLab system model. ArXiv e-prints, September 2014.
arXiv:1409.7236.

[25] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems (TOPLAS), 16(3):872–923, 1994.

[26] Leslie Lamport. Specifying concurrent systems with tlaˆ+. NATO ASI SERIES F COMPUTER
AND SYSTEMS SCIENCES, 173:183–250, 1999.

[27] Erick Lavoie. ECOOP18 Pull-Stream Experiments., 2018. URL: https://github.com/

elavoie/ecoop18-pull-stream-experiments.

[28] Erick Lavoie. Pull-stream protocol checker., 2018. URL: https://github.com/elavoie/

pull-stream-protocol-checker.

[29] Erick Lavoie. Pull-stream reference modules., 2018. URL: https://github.com/elavoie/
pull-stream-reference-modules.

[30] Ciprian I Paduraru. Dataflow Programming Using AGAPIA. In Parallel and Distributed
Computing (ISPDC), 2014 IEEE 13th International Symposium on, pages 87–94. IEEE, 2014.

[31] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977.,
18th Annual Symposium on, pages 46–57. IEEE, 1977.

[32] Robert Stephens. A survey of stream processing. Acta Informatica, 34(7):491–541, 1997.

33

https://github.com/elavoie/pull-lend-stream
https://github.com/elavoie/pull-lend-stream
https://github.com/pull-stream/pull-stream/issues/104
https://github.com/pull-stream/pull-stream/issues/104
https://github.com/pull-stream/pull-stream/issues/101
https://github.com/pull-stream/pull-stream/issues/101
https://github.com/Gozala/reducers
http://arxiv.org/abs/1409.7236
https://github.com/elavoie/ecoop18-pull-stream-experiments
https://github.com/elavoie/ecoop18-pull-stream-experiments
https://github.com/elavoie/pull-stream-protocol-checker
https://github.com/elavoie/pull-stream-protocol-checker
https://github.com/elavoie/pull-stream-reference-modules
https://github.com/elavoie/pull-stream-reference-modules

[33] Dominic Tarr. Pull-stream-examples., 2018. URL: https://github.com/dominictarr/

pull-stream-examples.

[34] Peter Van-Roy and Seif Haridi. Concepts, techniques, and models of computer programming.
MIT press, 2004.

[35] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel. Stream
processing with a spreadsheet. In European Conference on Object-Oriented Programming, pages
360–384. Springer, 2014.

[36] William W Wadge and Edward A Ashcroft. LUCID, the dataflow programming language,
volume 303. Academic Press London, 1985.

[37] Zhanyong Wan and Paul Hudak. Functional reactive programming from first principles. In
Acm sigplan notices, volume 35, pages 242–252. ACM, 2000.

[38] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica.
Discretized streams: Fault-tolerant streaming computation at scale. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 423–438. ACM, 2013.

34

https://github.com/dominictarr/pull-stream-examples
https://github.com/dominictarr/pull-stream-examples

	Introduction
	Contributions

	Background
	Example Module Implementations
	Pull-Stream Design Pattern Properties

	Insights and Approach
	Event-Based Protocol Language
	Syntax
	Semantics
	Normalization
	History
	History Progression
	Step-by-Step Ping Pong Example

	Pull-Stream Protocol
	Overview
	Pull-Stream Events
	Normal Sequence
	Early-Terminated Sequence
	Correctness

	Reference Modules
	Completeness and Correctness

	Evaluation of Community Modules
	Related Work
	Conclusion and Future Work
	Normalization Rules
	Concurrent Variations of the Pull-Stream Protocol
	Normal Sequence
	Early-Terminated Sequence

