
McGill University
School of Computer Science

Sable Research Group

Sparse matrices on the web -- Characterizing the
performance and optimal format selection of sparse

matrix-vector multiplication in JavaScript

Sable Technical Report No. McLAB-2018-04

Prabhjot Sandhu, David Herrera and Laurie Hendren

March 20, 2018

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

2 Background 5

2.1 Sparse Matrix Formats . 5

2.2 JavaScript . 6

3 Experimental Design 7

3.1 Target Languages and Runtime . 7

3.2 Input Matrices . 7

3.3 Measurement Setup . 8

3.4 Reference C Implementation . 8

3.5 Reference JavaScript Implementation . 10

4 Results and Analysis 11

4.1 RQ1: Performance Comparison between C and JavaScript 11

4.2 RQ2 : Performance Comparison and Format Difference between Single- and Double-
precision for both C and JavaScript . 12

4.2.1 Performance of Single-precision versus Double-precision 14

4.2.2 Storage Formats . 15

4.3 RQ3 : Format Difference betweeen C and JavaScript 16

5 Related Work 16

6 Conclusion and Future Work 18

1

List of Figures

1 A Simple Example for Sparse Matrix Formats . 6

2 Reference C Implementation for SpMV . 9

3 Slowdown of JavaScript relative to C using the 10%-affinity 13

4 Format distribution for C using different x%-affinity for both single- and double-precision 15

5 Affinity of matrices towards different format(s) for JavaScript relative to C using the
10%-affinity . 17

List of Tables

1 Performance comparison of reference C implementation versus Intel MKL and Python SciPy 10

2 Performance comparison between single- and double-precision SpMV for both C and
JavaScript using the 10%-affinity . 14

2

Abstract

JavaScript is the most widely used language for web programming, and now increasingly becoming
popular for high performance computing, data-intensive applications, and deep learning. Sparse
matrix-vector multiplication (SpMV) is an important kernel that is considered critical for the perfor-
mance of those applications. In SpMV, the optimal selection of storage format is one of the key aspects
of developing effective applications. This paper describes the distinctive nature of the performance
and choice of optimal sparse matrix storage format for sequential SpMV in JavaScript as compared
to native languages like C. Based on exhaustive experiments with 2000 real-life sparse matrices, we
explored three main research questions. First, we examined the difference in performance between
native C and JavaScript for the two major browsers, Firefox and Chrome. We observed that the best
performing browser demonstrated a slowdown of only 1.2x to 3.9x, depending on the choice of sparse
storage format. Second, we explored the performance of single-precision versus double-precision SpMV.
In contrast to C, in JavaScript, we found that double-precision is more efficient than single-precision.
Finally, we examined the choice of optimal storage format. To do this in a rigorous manner we
introduced the notion of x%-affinity which allows us to identify those formats that are at least x%
better than all other formats. Somewhat surprisingly, the best format choices are very different for
C as compared to JavaScript, and even quite different between the two browsers.

3

Sparse matrices on the web -- Characterizing the performance and opti-

mal format selection of sparse matrix-vector multiplication in JavaScript

Prabhjot Sandhu, David Herrera and Laurie Hendren

March 20, 2018

1 Introduction

The rapid proliferation of web-enabled devices, and the recent advances in JavaScript engines in web
browsers provides new opportunities for sophisticated and compute-intensive applications [21, 12, 13, 19, 7,
15]. Among those compute-intensive applications, sparse matrices arise frequently, and the operations used
for their manipulations are considered important for the performance of those applications. Sparse matrix-
vector multiplication (SpMV) is one such critical operation used in many iterative methods for solving linear
systems and partial differential equations. It plays an essential role in the performance of those applications
as it dominates the overall application runtime through its recurring nature. In its simplest form, SpMV
computes y=Ax, where matrix A is sparse and vector x is dense. For its fundamental significance, SpMV
has become a good candidate for optimization to improve the overall performance of the applications.

In different domains including structural mechanics, fluid dynamics, social network analysis, data mining
and deep learning, the matrices are large and sparse with different sparsity characteristics. So, the choice
of sparse storage format can make a significant difference for SpMV performance. One single format is
not appropriate for all the given input matrices. One way to optimize SpMV is to store the input matrix
in the optimal format based on its structure, and then use a specialized SpMV kernel implementation for
that format, which reduces the complexity of both space and computation. A number of storage formats
have been proposed [9, 14, 17, 23], but the well-known four basic formats that have been extensively
used are: COO, CSR, DIA and ELL, from which others formats can be derived.

In this paper we study three main research questions which examine web-based SpMV performance and the
choice of best storage format for JavaScript. We aim to provide results which will help guide both the cur-
rent practices for web-based SpMV, as well as showing opportunities for future improvements. The results
are based on a set of rigorous experiments making use of over almost 2000 real-life sparse matrices [6], four
different matrix formats (COO, CSR, DIA and ELL), and two major web browsers (Firefox and Chrome).

Our first research question, RQ1, examines the relative performance of SpMV in C and JavaScript. The
main question is to determine if SpMV on the web is reasonably performant or not. How much slower
is SpMV in JavaScript when compared to highly-optimized sequential C code? In performing these
experiments we systematically chose the best format for each input matrix, and we examined both single-
and double-precision versions of SpMV. The results from RQ1 showed that JavaScript is reasonably
performant, and led to two further important research questions.

Our second research question, RQ2, examines the performance differences and format choices for C and
JavaScript between single- and double-precision. These results clearly demonstrate that the conventional

4

wisdom that single precision is more efficient than double precision does not always hold in the JavaScript
context. Furthermore, the choice of language (C or JavaScript) and the choice of precision (single or
double) both contribute to determining the best choice of format.

Our final research question, RQ3, examines the choice of best format in more detail. There are two
important aspects of this question. The first is to examine the affinity of the input matrices for a specific
format. To do this we introduce a new notion of x%-affinity. We say that an input matrix A has an
x%-affinity for storage format F, if the performance for F is at least x% better than all other formats
(and the performance difference is greater than the measurement error). For example, if input array A

in format CSR, is more than 10% faster than input A in all other formats, and 10% is more than the
measurement error, then we say that A has a 10%-affinity for CSR. Given this definition we examine
the 10%-, 25%- and 50%- affinities for both C and JavaScript, and examine the resulting trends. How
is the choice of format impacted by the performance improvement expected? How does this differ for
C and JavaScript? The second aspect of the question is to demonstrate the similarities and differences
in affinities between C and JavaScript. When is it reasonable to use the same format for both C and
JavaScript, and when should a different format be chosen for JavaScript?

The rest of the paper is organized as follows. In Section 2 we provide more detailed background about
both sparse matrix storage formats and modern JavaScript engines ,and Section 3 details our experimental
design. The three research questions are addressed in Section 4. Finally, Section 5 discusses related work
and Section 6 discusses conclusions and future work.

2 Background

In this section we provide background on the four sparse matrix formats that we study in this paper,
and we give some historical context and background about JavaScript.

2.1 Sparse Matrix Formats

In this paper we have chosen to study four key sparse matrix representations as shown in Figure 1 with
a simple example discussed below. Our reference C implementation for computing SpMV on each format
is given in Section 3.4.

Coordinate Format (COO): This is the simplest storage format that consists of three arrays : row,
column and val to store the row indices, column indices and values of the non-zero entries respectively.
We also assume here that the entries are sorted by row index.

Compressed Sparse Row Format (CSR): This is the most popular and widely used format. It is
the compressed version of COO format, where the row array is compressed to include only one entry
per row. Each row entry points to the location of the first element of that row.

Diagonal Format (DIA): This format only stores the diagonals that include non-zero elements. It
consists of two arrays : data and offset to store the non-zero values and offset of each diagonal from
the main diagonal respectively.

ELLPACK Format (ELL): This format consists of two arrays: data and indices to store the fixed
number of non-zeros per row in a 2-dimensional array and corresponding column index for each non-zero
entry respectively. The rows with fewer non-zero entries are padded with zero values.

5

A=


1 0 6 0
0 2 0 7
0 0 3 0
5 0 0 4



COO

row=
[
0 0 1 1 2 3 3

]
col=

[
0 2 1 3 2 0 3

]
val=

[
1 6 2 7 3 5 4

]

CSR

row ptr=
[
0 2 4 5 7

]
col=

[
0 2 1 3 2 0 3

]
val=

[
1 6 2 7 3 5 4

]

DIA data=


∗ 1 6
∗ 2 7
∗ 3 ∗
5 4 ∗

 offset=
[
−3 0 2

]

ELL data=


1 6
2 7
3 ∗
5 4

 indices=


0 2
1 3
2 ∗
0 3



Figure 1: A Simple Example for Sparse Matrix Formats

2.2 JavaScript

The web started as a simple network to exchange static documents. By historical accident, JavaScript
resulted in the only natively supported language. Initially, JavaScript was targeted to be a companion
scripting language meant for non-professional programmers [25]. The language was made to be simple,
with features such as a single supported type for numbers, in the shape of double-precision floating
points, a simple concurrency model with only one main thread, and a dynamically-typed nature. In the
beginning, JavaScript was mostly used to do simple tasks such as scrolling.

In 2004, the AJAX technology came along introducing dynamic content to the web and thus placing
JavaScript in the spotlight, increasing the demand for performance in the web. In 2008, seeking this perfor-
mance, the major browser vendors introduced their JavaScript engines and sophisticated JIT compilers [8],
the compilers would bring many optimizations and evolve into complex applications, each with their own

6

optimization strategies and criteria. Since then the web has evolved to become a ubiquitous platform for
sharing information and the demand for performant applications on the web has increased. As such the en-
gines have continued to improve their performance coming to within 1.5 to 2 factors from native C code [13].

In 2017, bothMozilla and Google introduced significant changes to their browsers. First, similar to Chrome,
Firefox was changed to start a separated process for each browser tab. Moreover, Mozilla introduced their
brand new Firefox Quantum Browser, which increased the performance of its engine significantly [18, 27].
Chrome has recently revamped their compiler architecture to make it easier to scale, and to add new
optimizations. In this paper we use the most recent versions of both Chrome and Firefox, so that the
JavaScript versions of SpMV can benefit from the most recent execution engines and optimizations.

3 Experimental Design

In this section we outline our experimental setup, including details about our target languages and
architecture, the input matrices we used, our reference implementations in C and JavaScript, important
aspects of how the matrices were input, and our data collection strategy.

3.1 Target Languages and Runtime

We conducted our experiments on Intel Core i7-3930K with 12 3.20GHz cores, 12MB last-level cache
and 16GB memory, running Ubuntu Linux 16.04.2. We have compiled our C implementations with gcc
version 7.2.0 at optimization level -O3. For JavaScript, we used the latest browsers – Chrome 63 (Official
build 63.0.3239.84 with V8 JavaScript engine 6.3.292.46) and Firefox Quantum (version 57.0.4).

3.2 Input Matrices

We used 1,981 real-life square sparse matrices from The SuiteSparse Matrix Collection (formerly the
University of Florida Sparse Matrix Collection) which served as the set of sparse matrix benchmarks
for our experiments [6].1 This collection provides matrices in three external storage formats : MATLAB,
Rutherford Boeing and Matrix Market. We chose Matrix Market format as an input to our programs,
and used [5] library for Matrix Market I/O.

There are some important details when using the input data set. First, for some of the input files, there
are more row, col, val entries than the number of non-zeros in the matrices. In this case the explicit
zero values from the input file must be filtered out before storing the array in a specific sparse format.
Second, for some symmetric matrices, one entry for (i,j) or (j,i) is included in the file, and the other entry
is implicit. This must also be dealt with when reading in the inputs. Finally, some input files have just
row and col values for the non-zero entries, and do not contain any input for values, so we initialized
the values to 1 for those kind of inputs.

We have implemented SpMV for both float and double, but the val 2, of every matrix is read as a
double and later cast to float. This is because if we read it as a float, some values which underflow will
appear to be 0, and we need to distinguish these values from explicitly stored zeros.

1This is the complete set of square matrices, with a few exceptions where a matrix would not fit into available browser
memory, and thus was excluded from our study.

2The array containing the actual non-zero values.

7

3.3 Measurement Setup

We ran SpMV for each matrix and each format 100 times, measured the time for each execution, and then
used the mean to calculate the final GFLOPS, which is the ratio of number of floating-point operations to
execution time. In JavaScript, we removed the effect of JIT compile time by warming up the computation
with 10 runs, and then taking the measurement for the next 100 runs.

For C, we used the clock() method from time.h, while for JavaScript, we used the performance.now()

method to measure the execution time.

3.4 Reference C Implementation

We developed reference set of sequential C implementations of SpMV, one for each of the four formats
that we studied. Our implementations3 follow closely to conventional implementations of SpMV that
target cache-based superscalar uniprocessor machines. We have focused on uniprocessor sequential SpMV
to have a fair comparison with JavaScript which is single threaded. Figure 2 shows our SpMV reference
implementations for all four formats. We have used a macro called MYTYPE which is assigned to either
float or double to compile the implementation for single- or double-precision respectively.

SpMV COO: Figure 2a shows our implementation for SpMV COO which is as simple as this format
representation. Since the row, col and val arrays are accessed sequentially, the access is predictable
which provides the benefit of spatial locality. The x array is used repeatedly, but may not provide useful
temporal locality because of the irregular access due to indirect addressing.

SpMV CSR: Our implementation for CSR, shown in Figure 2c, has two loops, where outer loop
iterates through the rows, and the inner loop iterates through all the columns in a particular row. Due
to the fact that CSR is inherently sorted by row, the values of y can be stored in a register after being
fetched once. Also, similar to COO, the predictable access to row ptr, col and val arrays presents
the advantage of spatial locality. It is important to note that if there are only a few elements in each
row, then the overhead of inner loop increases, and it can hurt the performance. Also, if the number
of non-zeros are less than the dimension of the sparse matrix, then CSR will have more iterations for
outer loop as compared to SpMV COO, where the number of iterations will be equal to the number
of non-zeros. The access pattern for the x array remains the same as SpMV COO.

SpMV DIA: Figure 2d has two loops, where the outer loop iterates through each diagonal, and the
inner loop iterates through the elements of a specific diagonal. For every diagonal, the elements of arrays
x and y are accessed contiguously, and may be used repeatedly, hence it is possible to harness the
advantage of both spatial and temporal locality in this case. The accesses to the data and offset

arrays are also predictable, and can benefit from spatial locality.

SpMV ELL: The implementation of ELL in Figure 2b utilizes the idea of storing the data and indices
2-D arrays in a column- major order. This format is preferred for those matrices where the number of
non-zero elements in all the rows is almost equal. It is assumed here that the number of rows will be
more than the number of non-zero elements per row. To reduce the loop overhead, the inner loop iterates
over the number of rows in each column of the data array, and the outer loop iterates over the number
of columns in the data array. In order to keep the benefit of spatial locality in this kind of setup, it

3Implemenation can be found in Github repository – link removed for double blind review

8

void spmv coo (int ∗ rowind
, int ∗ co l ind , MYTYPE ∗val , int
nz , int N, MYTYPE ∗x , MYTYPE ∗y)

{ int i ;
for (i = 0 ; i < nz ; i++)

y [rowind
[i]] += val [i] ∗ x [co l i nd [i]] ;

}

(a) SpMV COO

void spmv e l l
(int ∗ i nd i c e s , MYTYPE ∗data , int
N, int nc , MYTYPE ∗x , MYTYPE ∗y)

{ int i , j ;
for (j = 0 ; j < nc ; j++){

for (i = 0 ; i < N; i++)
y [i] += data [j ∗ N

+ i] ∗ x [i n d i c e s [j ∗ N + i]] ;
}

}

(b) SpMV ELL

void spmv csr
(int ∗ row ptr , int ∗ co l ind , MYTYPE
∗val , int N, MYTYPE ∗x , MYTYPE ∗y)

{ int i , j ;
MYTYPE temp ;
for (i = 0 ; i < N ; i++){

temp = y [i] ;
for (j = row ptr

[i] ; j < row ptr [i +1] ; j++)
temp += val [j] ∗ x [co l i nd [j]] ;

y [i] = temp ;
}

}

(c) SpMV CSR

void spmv dia (int ∗
o f f s e t , MYTYPE ∗data , int N, int nd
, int s t r i d e , MYTYPE ∗x , MYTYPE ∗y)

{ int i , k , n , i s t a r t , iend , index ;
for (i = 0 ; i < nd ; i++){

k = o f f s e t [i] ;
index = 0 ;
i s t a r t = (0 <
−k) ? index = N−s t r i d e , −k : 0 ;

iend = (N−1 < N−1−k) ? N−1 : N−1−k ;
for (n = i s t a r t ; n <= iend ; n++)

y [n] += (data [(s i z e t
) i ∗ s t r i d e+n−index] ∗ x [n+k]) ;

}
}

(d) SpMV DIA

Figure 2: Reference C Implementation for SpMV

makes perfect sense to store the arrays in that order. Due to indirect addressing, the access to the x

array is not predictable like in cases of CSR and COO.

In order to demonstrate that our reference C implementation is reasonable, we compared it to two popular
libraries, Intel MKL [30] and Python SciPy [11], both of which provide the SpMV routines for three of
our formats : COO, CSR and DIA. Also, to check the correctness of the output of our implementations,
we have computed the fletcher sum of the output y array to verify that we compute the same results
as the existing libraries.

Intel MKL provides multithreading support, but we explicitly set the number of threads to one by calling
mkl set num threads(1) before utilizing their routines to execute SpMV. We use the same I/O library
with Intel MKL as our implementation to read the input matrices from the files. The conversion routines
that are used to convert the format from COO to CSR, and CSR to DIA are those provided by the Intel
MKL library.

On the other hand, Python SciPy has its own routines to read the matrices from Matrix Market

9

format input files, and also for the conversion between the two storage formats. 4. We have used the
time.clock() routine in Python to measure the execution time.

Table 1 presents the comparison between our reference C implementation and both Intel MKL and
SciPy. Each n column in this table indicates the size of the working set of matrices. Each ratio column
in this table shows the relative performance of our reference C implementation and the other library.
If the ratio is less than 1, then the other implementation is faster than our reference C implementation.
If the ratio is greater than 1, then the other implementation is slower than our reference implementation.

The detailed computation we performed is as follows. Consider that we are computing the slowdown of a
libraryL versus our implementationC for a specific format F . We first determined the set of input matrices
that have 10%-affinity for format F for both the L and C implementations. Let us call these matrices A1

throughAm. We then compute, for eachAi, the slowdown of L(Ai) versusC(Ai), call this slowdown si. To
summarize the slowdown over the set of input matrices, we then compute the geometric mean of all the si.

It is quite evident from the table that the performance of our implementation is close to both Intel
MKL and Python SciPy, in most cases. In fact, for COO matrices, the performance number is almost
the same among all the libraries for both single- and double-precision. The routines in Intel MKL are
hand-optimized specifically for intel processors, which explains the better performance of Intel MKL in
case of CSR and DIA formats. We also observe that there is a significant slowdown in case of DIA in
Python SciPy as compared to our implementation.

COO CSR DIA

n ratio n ratio n ratio

MKL
single 97 1.04 221 0.76 103 0.97
double 49 1.09 174 1.078 22 0.92

Scipy
single 122 0.95 399 1.03 32 2.28
double 53 0.96 790 1.09 23 1.90

Table 1: Performance comparison of reference C implementation versus Intel MKL and Python SciPy

3.5 Reference JavaScript Implementation

Our JavaScript implementations algorithmically follow the C versions, but of course must follow the
JavaScript-specific notions for arrays and types. In particular, as illustrated in Listing 1, we use
JavaScript typed arrays: Int32Array for the auxiliary arrays, Float32Array for single-precision and
Float64Array for double-precision. The use of typed arrays provides some optimization opportunities
for the JavaScript engines. Another key point is that in JavaScript the numbers returned by an arithmetic
operation are by default double-precision, so the single-precision versions of SpMV must cast those
double-precision values back to single-precision. We found that the most efficient way of doing this was
by the careful use of Math.fround, as illustrated in the loop body of spmv coo in Listing 1.

4We should note that the Python routings for reading matrices do not eliminate extraneous zero entries from the input files,
and so may store and compute extra values, as compared to the standard approach of filtering out extraneous input zero entries.

10

\\ e f f i c i e n t r ep re s enta t i on , us ing typed arrays
var coo row = new Int32Array (nz)
var coo co l = new Int32Array (nz)
var coo va l = new Float32Array (nz)
var x = new Float32Array (c o l s)
var y = new Float32Array (rows) ;

\\ note the use o f Math.fround in the loop body
function spmv coo (coo row , coo co l , coo val , N, nz , x , y)
{

f o r (var i = 0 ; i < nz ; i++)
y [coo row [i]] += Math.fround (coo va l [i] ∗ x [c oo co l [i]]) ;

}

Listing 1: Single-precision SpMV COO implementation in JavaScript

4 Results and Analysis

SpMV is usually evaluated in the traditional context of native implementations (often in C or C++) on
server machines. However, the point of our experiments is to evaluate SpMV in the context of web-based
computation and JavaScript. We hope that these results will shed light onto best practices for SpMV
using modern web technologies, which will help enable web-based scientific, big data and deep learning
applications using SpMV. We also hope that our observations and our methodology will be useful to
develop and evaluate future optimizations and web-based technologies.

Each execution environment has its own idiosyncrasies coming from the language, compiler and target
architecture. Optimizations that benefit programs in one specific setup may not benefit another setup.
This phenomenon similarly affects other aspects which make the study and comparison of performance
across different environments interesting and ultimately useful for application developers. In this case,
we study the performance of the SpMV operation for both the Firefox and Chrome environments. In
this analysis, we have focused on the effect of floating point precision in SpMV, and the choice of optimal
format in each environment. RQ1 motivates the study by reporting a relative performance comparison
of C and JavaScript using the native, Firefox and Chrome environments. We highlight some of the
main features of these environments and introduce our next two research questions which explore those
highlighted remarks in more detail. In RQ2, we explore the effect of a given floating point precision
on the performance and the choice of optimal format within the same environment. Lastly, in RQ3,
we study the difference between optimal format for the C native environment and the two web browsers.

4.1 RQ1: Performance Comparison between C and JavaScript

To begin, we compare the performance of the JavaScript environments versus the native C environment
for both single- and double-precision.

The plots in Figure 3 present the slowdown in performance of JavaScript relative to C for both Firefox and
Chrome, single- and double-precision. A performance higher than the C baseline means the JavaScript
SpMV implementation for a given web environment is slower than the C implementation for the native
environment by the factor shown on the y-axis.

To obtain Figure 3 plots, we first determine the set of matrices in C that fulfill the 10%-affinity criteria.

11

Using these matrices, we make two comparisons between native C and the two JavaScript environments.
i.e. best-vs-best and best-vs-same. The computation for best-vs-best is done as follows. Let the matrices
in the set be numbered m1,...,.mk. Let bestc(mi) be the performance of the best format for matrix mi

using the native C environment. Similarly, let bestfirefox(mi), bestchrome(mi), represent the performance
of the best performing format for matrix mi in Firefox and Chrome respectively. For each of the mi, we
compute the ratios Fi=

bestc(mi)
bestfirefox(mi)

and Ci=
bestc(mi)

bestchrome(mi)
, representing the slowdowns for best formats

of Firefox and Chrome relative to the best native C format of matrix mi. To summarize the results, we
compute the geometric mean of sets F1,...,Fk and C1,...,Ck, which represent the overall slowdown across all
matrices for Firefox and Chrome relative to C, resulting in our best-vs-best comparison. The best-vs-same
comparison follows a similar procedure, in this case, however, the sets Fi and Ci are computed by
taking the performance of the best format in C, say COO for matrix mi and using the same COO
format performance for matrix mi in Firefox and Chrome, thus the name best-vs-same. The intention of
best-vs-same is to compare the performance of JavaScript and C if we were to assume that the optimal
format in C for a given matrix is also the optimal format for that matrix in the JavaScript environments.

Figure 3a and Figure 3b present the comparison of the single-precision and double-precision implementa-
tions in Firefox and Chrome versus the C implementation using the native environment, here we have used
our best-vs-best and best-vs-same comparisons. The x label contains the different formats. For each format
Fi, the value for the bars is based only on the matrices that showed 10%-affinity to that format in C. The
numbers below the x-labels correspond to the number of matrices for each format Fi in C. Note that the
numbers are different in Figure 3a and Figure 3b due to having different matrix sets for both single-precision
and double-precision that met the 10%-affinity criteria. Therefore comparison of performance between the
different precisions should not be made here, we give a more rigorous comparison for RQ2 in Section 4.2.

From the plots we make the following observations. First, Firefox outperforms Chrome when compar-
ing best-vs-best and best-vs-same, this difference is partly due to the fact that Firefox optimizes their
Math.fround function to perform single-precision floating point arithmetic, which is less computationally
expensive than the equivalent double-precision arithmetic [4, 3]. On the other hand, the Chrome V8 team
seems to have left the optimizations of single-precision floating point arithmetic to WebAssembly [28, 2].
Second, the values for best-vs-best and best-vs-same differ when it comes to the DIA and ELL formats, this
highlights and inspires the need to explore the difference between optimal formats in C and JavaScript,
which we explore in RQ3. Third, the DIA format performs very poorly in JavaScript for both Firefox
and Chrome, single- and double-precision. This is due to the optimization difference that benefits the
DIA format in C which are missing in both the Firefox and Chrome engines. All these phenomenon will
be studied in more depth when we explore the difference in formats and precisions within an environment
in RQ2, and across environments in RQ3.

4.2 RQ2 : Performance Comparison and Format Difference between Single- and Double-
precision for both C and JavaScript

In the previous section we observed that JavaScript is slower than C, but one intriguing question is
the relative slowdowns for single- and double-precision. The usual expectation is that single-precision
computations are more efficient than double-precision, but is this the case for SpMV in the C and
JavaScript contexts? Secondly, we know that the efficiency of SpMV depends on a good format choice. So
another interesting question is to examine if the format choice is the same for single- and double-precision?

Thus, in this section we analyze single- and double-precision SpMV within each environment looking
at both performance and format distribution. The order of the section is as follows, first we discuss the

12

(a) Single-precision

(b) Double-precision

Figure 3: Slowdown of JavaScript relative to C using the 10%-affinity

difference in performance between double- and single-precision in each environment starting from the
native C environment, second, we study the format distribution in C, and discuss the performance of
each format, using our x%-affinity notion.

13

4.2.1 Performance of Single-precision versus Double-precision

COO CSR DIA ELL

n GFLOPS ratio n GFLOPS ratio n GFLOPS ratio n GFLOPS ratio

C
single

184
1.045

1.094 366
1.88

1.08 81
3.67

2.0 14
1.46

1.24
double 0.95 1.74 1.83 1.17

Chrome
single

274
0.37

0.75 748
0.52

0.65 21
0.05

0.83 56
0.34

0.80
double 0.49 0.80 0.06 0.42

Firefox
single

932
0.77

0.96 217
0.90

0.92 -
-

- 1
0.73

0.97
double 0.82 0.85 - 0.75

Table 2: Performance comparison between single- and double-precision SpMV for both C and JavaScript
using the 10%-affinity

Table 2 compares the different formats between single- and double-precision implementations. For this
experiment, we selected the matrices for each format based on our 10%-affinity criteria for both single-
and double-precision, and then took the intersection of those sets of matrices to generate a working set of
benchmarks. This ensures that we compare the performance for the same set of matrices in both the single-
and double-precision contexts. We calculated the arithmetic mean of GFLOPS for the chosen matrices
among the different formats for each precision. We also computed the ratio of single- versus double-
precision which represents the performance difference between single- and double-precision for SpMV.

For the native C environment, we observe that single-precision is more efficient than double-precision
SpMV for all formats. In single-precision, a 32-bit number takes half the space compared to a 64-bit
number in double-precision, which decreases the total memory used by the application, and increases the
speed of memory-bound operations like SpMV. In addition, doubling the memory requirement for each
floating-point number increases the load on cache and memory bandwidth to fill and spill those cache lines.
For the DIA format, in particular, single-precision is almost twice as fast as double-precision. We have
identified one important source of this difference, the relative effectiveness of SIMD (Single Instruction,
Multiple Data) optimizations. Consider Figure 2d, which displays the implementation of SpMV DIA.
In the inner loop the elements of the arrays are accessed contiguously as n goes from istart to iend.
This situation provides a clear opportunity for the compiler to perform the SIMD optimization. In GCC,
the optimization flag --ftree-loop-vectorize included within -O3 optimization level, triggers the
loop vectorization for SpMV DIA in C, which happens for both single- and double-precision. However,
single-precision gains more from this optimization since a a register can pack double the number of
single-precision floating-point numbers, thus halving the number of SIMD instructions required.

For the web environments, we conducted a similar evaluation between single- and double-precision in both
Chrome and Firefox browsers. Contrary to the behavior in C, we observed that double-precision SpMV
has better performance than single-precision SpMV in JavaScript for Chrome, and Firefox. In our single-
precision implementation for JavaScript, we have used Float32Array typed array to allocate space for
x, y and val arrays. JavaScript natively only supports double-precision which means every arithmetic
operation on numbers is a double precision operation. Therefore, for the multiplication operation between
val and x, we use float64 arithmetic, but the operands are float32. The float32 operands are first cast
to float64, and then multiplied together using float64 arithmetic. To store back in the Float32Array

array, we include a call to Math.fround() which returns the nearest 32-bit single-precision floating point
representation. This results in overheads for both Firefox and Chrome. In case of Firefox, however, the
casting penalty is lower since the Math.fround() function has been optimized by the Firefox engine
to perform float32 arithmetic instead of casting the values back and forth between single and double [4].

14

4.2.2 Storage Formats

Single-Precision Double-Precision

10%

25%

50%

Figure 4: Format distribution for C using different x%-affinity for both single- and double-precision

Along with the performance difference, we also observed the difference in choice of storage format between
single-and double-precision implementations. Figure 4 shows the format distribution in C for both single-
and double-precision again based on 3 levels of affinity, at 10%, 25% and 50%.

First consider the upper left part of Figure 4, which shows the distribution for 10%-affinity, single-
precision. We see that there are four single-format categories (COO, CSR, DIA and ELL), with 23.2% of
the matrices showing 10%-affinity COO, 20.7% for CSR, 9.2% for DIA and 2.7% for ELL. However, often
there is no clear 10% winner because several different formats may show significantly better performance
than the others. In these cases we create combination-formats, such as COO-CSR, which accounts for
19.3% of the input matrices in this example. An input matrix is counted in the 10%-affinity COO-CSR
category if COO and CSR are the two best performing formats and both of them are at least 10% better
than all the other formats. We identified three important combination-formats, COO-CSR, CSR-ELL,
and COO-CSR-ELL. The “Others” category represents all other combinations.

Considering all thresholds in Figure 4, we can see some interesting trends. Firstly, as the threshold
increases, the single-format slices shrink, meaning that there is less likely to be a clear winner when a
larger performance improvement is expected. Indeed, for the 25% and 50% thresholds, the COO-CSR slice
increases dramatically. In these cases if the input matrix is already in COO or CSR format, then the input
format should probably just be used. In contrast, if an input matrix has high-affinity to a single-format,
say CSR, and the input matrix is not already in CSR format, then it may be beneficial to convert to CSR.

15

Comparing the single-precision column to the double-precision column, we observe that COO is more
prevalent for single-precision, and CSR is more prevalent for double-precision. We also note that DIA
appears to be more important for single-precision than for double-precision, likely due to the greater
benefit of SIMD optimizations for DIA single-precision.

A final interesting observation is that if one looks at the total of the slices for CSR plus all combination-
formats containing CSR, we can see that CSR is the most useful format overall. Thus, if one wanted to pro-
vide just one format, then CSR would be a good format to choose. This corresponds to common practice.

4.3 RQ3 : Format Difference betweeen C and JavaScript

The fact that best-vs-best was better than best-vs-same as presented in RQ1 provides us with a hint that
the choice of best performing storage format for SpMV for a particular matrix is not always the same for
C and JavaScript environments. To investigate this behavior we studied the similarities and differences
in storage format between C and JavaScript for both browsers – Chrome and Firefox for both single-
and double-precision using our 10%-affinity criteria, as summarized in Figure 5. The whole stacked
bar for an x-label format category represents the total number of matrices having 10%-affinity for this
format category in C, while each segment of this stacked bar represents the number of matrices having
10%-affinity for a specific format category in JavaScript. For example, in Figure 5a, the first stacked bar
shows that there are 460 matrices which have 10%-affinity for COO format in C, and the three segments
of this bar represent that out of these 460 matrices, 217, 75 and 162 matrices have 10%-affinity for COO,
CSR and COO-CSR format categories respectively in JavaScript.

There are some similarities in affinity in C and in JavaScript, most notably CSR for Chrome (Figures
5a and 5c), and COO for Firefox (Figures 5b and 5d). However, probably the most interesting point
is that overall there are a lot of differences in the affinities between C and JavaScript, and even where
we see similarities, they are different for the two browsers.

One most striking example of differences is for DIA. For the matrices whose optimal format is DIA in
C, it is clearly evident from the plot that the choice of format in JavaScript is radically different from
C. As discussed in RQ2, SIMD optimization in C plays an important role in SpMV DIA performance,
leading DIA to become the optimal format for these matrices. However, JavaScript currently doesn’t
have support for SIMD optimization. Jibaja et al. [10] proposed the design and implementation of
SIMD language extensions and compiler support to add vector parallelism in JavaScript, but it is not
being pursued by web browsers for implementation anymore, however, SIMD operations are under active
development within WebAssembly [1].

5 Related Work

To the best of our knowledge, we are the first to examine SpMV in the context of JavaScript. In this section
we examine previous work in the SpMV and JavaScript fields, and relate it to the work in this paper.

Several new SpMV storage formats have been proposed. For example, Eun-Jin Im et al. [9] proposed
BCSR (Blocked CSR) format to take the advantage of performance of dense blocks in a sparse matrix.
Kourtis et al. [14] developed CSX (Compressed Sparse eXtended) to compress metadata by exploiting
dense structures like dense blocks, 1-D bars and dense diagonals. Liu et al. [17] proposed CSR5 format
that has been claimed to be insensitive to the sparsity structure of the input matrix and needs some
extra space to store two more groups of data than classic CSR. In this paper we have examined four

16

(a) Single-precision Chrome (b) Single-precision Firefox

(c) Double-precision Chrome (d) Double-precision Firefox

Figure 5: Affinity of matrices towards different format(s) for JavaScript relative to C using the 10%-affinity

common formats, and found that in JavaScript, the classic CSR and COO formats are the best overall,
and that DIA performs very poorly in JavaScript.

Many SpMV optimizations have also been proposed, targeting either application- or architecture-specific
domains. For example, Tang et al. [26] implemented and tuned SpMV for Intel Xeon Phi coprocessor
and optimized its performance by employing 2D jagged partitioning, tiling and vectorized prefix sum
computations. Vuduc et al. [29] improved BCSR to VBR (Variable Block Row) to take advantage of
dense blocks with different sizes and built OSKI library to tune block size for a matrix in VBR format.
Further, when the input matrix for SpMV operation is only available during the execution time, choosing
the right format to store the matrix becomes a non-trivial task as it depends on a number of factors.
In this paper we have shown that different factors are important for tuning SpMV for the web, and that
both the choice of single-precision versus double-precision, and the optimal choice of format, is different
in JavaScript than in C. Indeed, the performance even varies significantly between different web browsers.

Interesting work has also been proposed to predict the best sparse matrix storage format for SpMV com-
putation [20, 16]. SMAT [16] focused on providing SpMV kernels based on a machine learning approach
by automatically determining the best storage format and implementation on a given architecture for
diverse matrices. For those matrices where more than one format achieve similar SpMV performance,
it is hard to claim one of them as the best format. We think that our concept of x%-affinity to classify
the matrices into single-format and combination-format categories could be useful for both evaluating
new formats and classifying formats for machine-learning.

17

Research in analyzing and improving the behavior and performance of JavaScript programs has also
been on the upswing for more than a decade now. Richards et al. [22] conducted an empirical study
to understand the dynamic behavior of JavaScript programs. Our work focuses on understanding the
behavior of a specific JavaScript program that performs computations on sparse matrices. Khan et
al. [13] developed Ostrich, an extended benchmark suite to provide empirical data that evaluated the
effectiveness of JavaScript for numerical computations including SpMV for CSR format. The results
in our paper help confirm the overall performance improvements shown in Ostrich, and we provide a
more detailed examination of different sparse formats. Selakovic et al. [24] presented an empirical study
of fixed performance issues from JavaScript projects and identified their causes. In addition to general
performance analysis, we found a specific performance issue with storing the sparse matrix in DIA format
for SpMV computation, and identified SIMD as the potential reason.

There have been significant efforts to provide machine learning frameworks in JavaScript, in which SpMV
forms an important core computation. For example, Meeds et al. [19] introduced a prototype machine
learning framework called MLitB (Machine Learning in the Browser), written entirely in JavaScript which
is capable of performing large-scale distributed computing. Thorat et al. [21] developed a JavaScript
library called deeplearn.js at Google Brain that allows training of neural networks in a JavaScript
environment. We hope that our work in analyzing the performance of SpMV can help to optimize these
and similar JavaScript projects in machine learning domains.

6 Conclusion and Future Work

In this paper we have provided a detailed analysis of SpMV for web-based JavaScript, examining both
the performance as compared to C, the relative performance of single- versus double-precision in both
C and JavaScript, and a detailed examination of the best choice of sparse matrix format.

In doing this work we found that it was very important to identify which format is the best in a rigorous
manner. To that end, we defined the notion of x%-affinity, to identify when a particular format is a
winner by at least x%. We also found that it was useful to look at both: (1) single-format cases, where
a matrix has affinity to one specific format, and (2) common combination-format cases, where a matrix
has affinity to a group of formats, all of which perform well. We hope that these ideas will be useful
for others in future studies of new and existing formats.

Our experiments, using almost 2000 real-life sparse matrices, showed some very interesting results. First,
in terms of raw performance, the best performing browser showed a geometric mean slowdown of only
1.2 to 3.9 over C. This shows that SpMV on the web is becoming very practical, and thus it has become
realistic to utilize web-connected devices for compute-intensive applications using SpMV.

Second, unlike in C, where single-precision SpMV is faster than double-precision, the opposite is true
for web-based JavaScript. This was particularly the case for Chrome, where single-precision SpMV was
only 0.65 (CSR) to 0.83 (DIA) times the speed of double-precision SpMV.

Finally, we saw several interesting behaviours regarding the best choice of format. We first examined the
best choice of format for C, for both single- and double-precision, and for 10%-, 25%- and 50%-affinities.
These results showed that there are some significant differences between the best format choice for
single- and double-precision. Most notably, single-precision shows greater affinity for COO and and
double-precision shows greater affinity for CSR. As we increased the affinity thresholds, we noted that
several combination-formats become more signficant. In particular, COO-CSR and COO-CSR-ELL
become the dominant categories. Indeed, the 50%-affinity experiment shows that CSR covers the vast

18

majority of single-format and combination-format groups. This demonstrates that the conventional
wisdom that CSR is a good overall choice for SpMV is very valid.

We also examined the differences in best choice of format for C versus JavaScript. These results show
that the best format choice is very different in the two contexts, and even show different behaviours for
the two browsers. The only case which showed similar affinities between C and JavaScript were for CSR
for Chrome. All other cases showed significant differences. In particular, the DIA format seems to work
very poorly in JavaScript compared to C. This appears to be due to the lack of SIMD optimizations in
JavaScript. This means that techniques for choosing the best formats must be tailored for the web-based
SpMV, one cannot use the same predictions as for C. For current implementations of JavaScript, CSR
seems to be a reasonable choice, and the benefit of DIA and ELL seems to be very minimal.

In our future work we wish to examine how the web-based sparse matrix computations can be further
improved. Upcoming browser-based technologies, like WebAssembly, and new support for SIMD and
multi-threading, will provide new opportunities for more optimized and parallelized versions of SpMV.
We intend to use the methodologies developed in this paper to examine these new technologies as they
become available. We also plan to explore SpMV optimization opportunities that will be particularly
beneficial for the SpMV implementation in Javascript because of its dynamic nature. These SpMV
optimizations should typically improve the temporal data locality in access to the source vector x and
output vector y. Some traditional examples of such optimizations are cache blocking, register blocking
and reordering of rows or columns. It has been observed in some applications like Hypre AMG solver
that the structure of sparse matrix changes a number of times during the execution, and it requires
frequent conversions between different formats for the optimal performance. So, we also want to improve
upon the overhead cost of conversion among the storage formats.

References

[1] Features to add after the MVP.

[2] Alon Zakai. Chrome Perf Issues. https://github.com/kripken/emscripten/wiki/

Chrome-Perf-Issues. [Accessed: 2018-01-19].

[3] R. N. Alon Zakai. Gap between asm.js and native performance gets even narrower with float32
optimizations.

[4] Benjamin Bouvier . Efficient float32 arithmetic in JavaScript. https://blog.mozilla.

org/javascript/2013/11/07/efficient-float32-arithmetic-in-javascript/. Accessed:
2018-01-19.

[5] R. F. Boisvert, R. Pozo, K. Remington, R. F. Barrett, and J. J. Dongarra. Matrix market: a web
resource for test matrix collections. In Quality of Numerical Software, pages 125–137. Springer, 1997.

[6] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions
on Mathematical Software (TOMS), 38(1):1, 2011.

[7] J. Duda and W. Dlubacz. Distributed Evolutionary Computing System Based on Web Browsers
with Javascript. In PARA’12, pages 183–191, 2013.

[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and

19

https://github.com/kripken/emscripten/wiki/Chrome-Perf-Issues
https://github.com/kripken/emscripten/wiki/Chrome-Perf-Issues
https://blog.mozilla.org/javascript/2013/11/07/efficient-float32-arithmetic-in-javascript/
https://blog.mozilla.org/javascript/2013/11/07/efficient-float32-arithmetic-in-javascript/

M. Franz. Trace-based just-in-time type specialization for dynamic languages. In PLDI’09, pages
465–478. ACM, 2009.

[9] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework for sparse matrix kernels.
The International Journal of High Performance Computing Applications, 18(1):135–158, 2004.

[10] I. Jibaja, P. Jensen, N. Hu, M. R. Haghighat, J. McCutchan, D. Gohman, S. M. Blackburn, and
K. S. McKinley. Vector parallelism in javascript: Language and compiler support for simd. In
PACT’15, pages 407–418. IEEE Computer Society, 2015.

[11] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python, 2001–.
[Online; accessed ¡today¿].

[12] A. Karpathy. Convnetjs: Deep learning in your browser (2014). URL http://cs. stanford.
edu/people/karpathy/convnetjs, 2014.

[13] F. Khan, V. Foley-Bourgon, S. Kathrotia, E. Lavoie, and L. J. Hendren. Using JavaScript and
WebCL for numerical computations: a comparative study of native and web technologies. In
DLS’14, pages 91–102, 2014.

[14] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris. Csx: An extended compression format for
spmv on shared memory systems. In PPoPP’2011, pages 247–256. ACM, 2011.

[15] P. Langhans, C. Wieser, and F. Bry. Crowdsourcing MapReduce: JSMapReduce. In WWW ’13
Companion, pages 253–256, 2013.

[16] J. Li, G. Tan, M. Chen, and N. Sun. Smat: An input adaptive auto-tuner for sparse matrix-vector
multiplication. In PLDI’13, pages 117–126. ACM, 2013.

[17] W. Liu and B. Vinter. Csr5: An efficient storage format for cross-platform sparse matrix-vector
multiplication. In ICS’15, pages 339–350. ACM, 2015.

[18] M. Mayo. Introducing the New Firefox: Firefox Quantum.

[19] E. Meeds, R. Hendriks, S. al Faraby, M. Bruntink, and M. Welling. Mlitb: machine learning in
the browser. PeerJ Computer Science, 1:e11, 2015.

[20] B. Neelima, G. R. M. Reddy, and P. S. Raghavendra. Predicting an optimal sparse matrix format
for spmv computation on gpu. In IPDPSW’14, pages 1427–1436. IEEE Computer Society, 2014.

[21] Nikhil Thorat, Daniel Smilkov, and Charles Nicholson. deeplearn.js – a hardware-accelerated
machine intelligence library for the web. [Online; accessed ¡today¿].

[22] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic behavior of javascript
programs. In PLDI’10, pages 1–12. ACM, 2010.

[23] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations, 1994.

[24] M. Selakovic and M. Pradel. Performance issues and optimizations in javascript: An empirical
study. In ICSE’16, pages 61–72. ACM, 2016.

[25] C. Severance. JavaScript: Designing a Language in 10 Days. Computer, 45(2):7–8, Feb. 2012.

20

[26] W. T. Tang, R. Zhao, M. Lu, Y. Liang, H. P. Huynh, X. Li, and R. S. M. Goh. Optimizing and
auto-tuning scale-free sparse matrix-vector multiplication on intel xeon phi. In CGO’15, pages
136–145, 2015.

[27] M. F. Team. Firefox Quantum is super fast, while still conserving memory.

[28] V8 group. Add support for float32 to TurboFan. https://bugs.chromium.org/p/v8/issues/

detail?id=3589. Accessed: 2018-01-19.

[29] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically tuned sparse matrix
kernels. In Journal of Physics: Conference Series, volume 16, page 521. IOP Publishing, 2005.

[30] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. Intel math kernel library.
In High-Performance Computing on the Intel R© Xeon Phi, pages 167–188. Springer, 2014.

21

https://bugs.chromium.org/p/v8/issues/detail?id=3589
https://bugs.chromium.org/p/v8/issues/detail?id=3589

	Introduction
	Background
	Sparse Matrix Formats
	JavaScript

	Experimental Design
	Target Languages and Runtime
	Input Matrices
	Measurement Setup
	Reference C Implementation
	Reference JavaScript Implementation

	Results and Analysis
	RQ1: Performance Comparison between C and JavaScript
	RQ2 : Performance Comparison and Format Difference between Single- and Double-precision for both C and JavaScript
	Performance of Single-precision versus Double-precision
	Storage Formats

	RQ3 : Format Difference betweeen C and JavaScript

	Related Work
	Conclusion and Future Work

