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Abstract

The rising popularity of data science in recent times has resulted in the diversification of data
processing systems. The current ecosystem of data processing software consists of conventional
database implementations, traditional numerical computational systems, and more recent efforts
that build a hybrid of these two systems. As many organizations are building complex applications
that integrate all the three types of data processing systems, there is a need to look at a holistic
optimization strategy that can work with any of the three, or their combinations. In this paper,
we propose an advanced analytical system HorsePower, based on HorselR, an array-based inter-
mediate representation (IR). The system is designed for the translation of conventional database
queries, statistical languages, as well as the mix of these two into a common IR, allowing to combine
query optimization and compiler optimization techniques at an intermediate level of abstraction.
Our experiments compare HorsePower with the column-based database system MonetDB and
the array programming language MATLAB, and show that we can achieve significant speedups
for standard SQL queries, for analytical functions written in MATLAB and for advanced data
analytics combining queries and UDFs. The results show a promising new direction for integrat-
ing advanced data analytics into database systems by using a holistic compilation approach and
exploiting a wide range of compiler optimization techniques.
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1 Introduction

Complex data analytics has become the cornerstone of our data-driven society. Although the amount
of data stored in traditional relational database systems (DBS) has been growing rapidly, the by far
most common current approach is to take the data first out of the DBS and load it into stand-alone
analytical tools, which are often integrated programming language systems such as Python, MAT-
LAB [1], and R [B]. When needed, the results of such a DBS external analysis can be reintegrated
into the database. However, as the size of the data increases, the expensive data movement between
DBS and analytics tools can become a severe bottleneck.

An alternative that avoids such data movement is to integrate the analytical capabilities into the DBS.
The most well-known approach to do so is to support user-defined functions (UDFs) written using a
conventional, high-level programming language, that are then embedded in SQL queries [29, 24, 36,
33]. For example, MonetDB [29] supports the integration of a Python interpreter into its DBS execu-
tion environment, allowing users to include Python functions inside their SQL queries. These func-
tions are then executed by a language interpreter (Python) that is embedded inside the DBS engine.
AIDA [10] takes this a step further by offering developers a more intuitive interaction between Python
code and SQL statements, but internally leverages the UDF constructs offered by the back-end DBS.

Although UDF implementations integrate SQL queries with high-level programming language func-
tions, they still have separate execution environments: one being the SQL execution engine, and
the other the programming language execution environment. This can quickly lead to costly data
format conversion between the two environments. Furthermore, there is a clear delineation between
the declarative query part, written in SQL, and the UDF, written in a higher-level programming lan-
guage, and both parts are individually optimized by their respective execution environments, without
the consideration of any holistic optimization across the entire task.

In this paper, we address the shortcomings of such separated execution environments. In particular,
we propose HorsePower, an advanced analytical SQL system, which provides a holistic solution for
seamlessly integrating analytical functions into SQL queries. As depicted in Figure E], the system is
based on HorselR [[7], an array-based intermediate representation (IR) language which was developed
to explore the usage of compiler optimizations for query execution. Chen et al. [[] translated the
execution plans of standard SQL queries into HorselR and compiled the generated HorselR code
using various compiler optimization strategies developed for array-based languages. The resulting
low-level target code is then executed on the data. Using arrays to represent database columns,
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Figure 1: HorsePower overview: execution environment for SQL queries, MATLAB functions and
MATLAB UDFs embedded in SQL code using the array-based intermediate representation language
HorselR

HorselR follows conceptually the data model of column-based DBS, which has been proven to be
effective for data analytics tasks [4, [14].

In this paper, we present HorsePower, which extends the idea to a full-fledged execution environment
for data analytics. Additionally to supporting plain SQL queries, HorsePower also supports pure
MATLAB functions as well as their usage as UDFs that can be embedded in SQL queries. MATLAB
is a popular high-level array language widely used in the field of statistics and engineering. Horse-
Power can take analytical functions implemented in MATLAB and translate them to HorselR code,
to be optimized and executed as independent executables. Furthermore, these functions can also be
embedded in SQL in the form of UDFs. In this case, both SQL and MATLAB code are transformed
and merged into a single HorselR code base before being optimized in a holistic manner.

As such HorsePower avoids the overhead of inter-system data movements as it has a single execution
environment, and eliminates the barriers between SQL queries and analytical functions allowing to
optimize across both the declarative and functional parts of the query.

In summary, the contributions of this paper are as follows:

o We present HorsePower, and advanced analytical system, that extends the approach proposed
in [[7] to not only offer a compiler-based execution environment for SQL queries, but also for pro-
grams written in the array-based language MATLAB and for SQL queries with embedded UDFs.

o HorsePower uses a holistic approach of exploiting array-based compiler optimization techniques
for both SQL and MATLAB taking advantage of the conceptual similarities of columns and
arrays.

e The performance of HorsePower is shown through an extensive set of experiments on programs
written in MATLAB, and SQL queries with embedded UDFs.

In the rest of the paper, we first introduce background in Section E; present HorsePower in Section E;



evaluate the performance of benchmarks in Section H; discuss related works in Section E; and conclude
in Section f3.

2 Background

In this section we introduce the research background in database query compilers, HorselR as an
intermediate representation, and traditional UDFs.

2.1 Database Query Compilers

An SQL query can be processed using two different execution models, the Volcano iterator model [[13]
and the data-centric model [25]. The volcano model represents the classical approach which fetches
tuples through a set of chained operations in a pipelined fashion. This avoids large intermediate
results as the tuples are produced as needed. In contrast, the data-centric model aims in merging
chained operations avoiding intermediate results when possible.

The data-centric model has gained recent attention with the development of modern query compilers
that translate an SQL query into an intermediate representation (IR) before target code is generated
from the IR. This approach reduces the engineering difficulty that is associated with generating binary
code directly from the SQL query while also making it possible to leverage any existing code opti-
mizations available within the IR platform. Although a direct comparison is absent, such data-centric
approaches promise to deliver better performance [31].

HyPer [25] is a well-known DBS using the data-centric model. HyPer compiles SQL execution plans to
LLVM, a low-level IR, for imperative programming languagesH, and the code optimizations within the
existing LLVM compiler infrastructure are exploited. HorselR, on which HorsePower is based, is an
array-based IR, making it particularly interesting for column-based query optimizations. MonetDB
translates execution plans to its own intermediate code, called MAL. However, the code is then run
in interpreted mode and as such does not leverage any compiler optimizations that are possible with
binary code.

So far, all these systems are mainly focused on SQL queries without UDFs, not considering a holistic
analysis of both analytical functions and SQL in their optimization pipelines.

2.2 HorselR: an Array-based IR for SQL

HorselR [[7] was developed as a high-level IR specifically for database applications, and its compiler
follows the data-centric model to generate target code [8]. Being an array-based IR, it is relatively
straightforward to generate basic HorselR code following the execution plans developed by column-
based DBS, as the operators executing on entire columns can be translated to functions executing
on vectors in HorselR. In fact, Chen et al. [[7] took HyPer’s execution plans, that incorporate a wide
range of traditional DBS optimizations, as the input for generating HorselR programs.

In this regard, HorselR provides a rich set of array-based built-in functions to which one can map
the standard database operations. Moreover, the HorselR compiler provides vital optimizations
over these array-based operations. For example, loop fusion merges multiple loops into one loop,

"https://en.wikipedia.org/wiki/Imperative_programming



SELECT

SUM(1_extendedprice % 1_discount) AS RevenueChange
FROM

lineitem
WHERE

1 _discount >= 0.05;

) ULk W N =

(=2}

(a) Example query derived from the TPC-H benchmark.

module ExampleQuery{

1

2 def main(): table{

3 // load table

1 t0:table = @load table( lineitem:sym);
5 // load two columns

6

t1:f64 = check_cast(@column_value(
t0, "1_extendedprice:sym), f64);
8 t2:f64 = check_cast(@column_value(
9 to, “1_discount:sym), f64);
10 // compute revenue change
t3

-

11 :bool = @geq(t2, 0.05);

12 t4:f64 = @compress(t3, t1);
13 t5:f64 = @compress(t3, t2);
14 t6:f64 = @mul(t4, t5);

15 t7:f64 = @sum(t6);

16 t8:sym = ‘RevenueChange:sym;
17 t9:1ist<f64> = @list(t7);

18 t10:table = @table(t8, t9);
19 return ti10;

200}

211}

(b) Corresponding HorselR code

Figure 2: Example query and its HorseIR program

allowing for an intuitive merge of chained operations and thus, avoiding intermediate results. Thus,
optimizations developed for array-based programming languages can be exploited to improve query
performance.

HorselR Example Figure @ shows a simplified version of Query 6 of the TPC-H benchmark [35]
computing the change in total revenue given prices and discounts from the table lineitem for all
those items where the discount is at least 0.05. A basic translation of this query into a HorselR
program (prior to performing any optimizations) is shown in Figure Ph. In the HorseIR program, the
function main defines the entry of the program and returns a table as the final result. It first obtains
the reference to the table lineitemt and then uses it to obtain the references to the data sets of the
columns 1_extendedprice and 1_discount (both being vectors) in variables t1 and t2 respectively.
Then, the predicate is evaluated by invoking the built-in function @geq. This function returns a
boolean vector of the same length as t2 with a true value for each row where the corresponding t2
row has a value of at least 0.05, and a false otherwise. Next, the function @compress in lines 12 and
13 takes this boolean vector and t1 resp. t2 as input, and returns all rows from t1 resp. t2 where the
corresponding values in the boolean vector are true. The length of the resulting vectors t4 and t5
is equal to the number of true values in the boolean vector t3. Finally, the multiplication function
in the SELECT clause is executed on the two vectors in lines 14, and the summation in line 15. In the
end, in lines 16 to 19, a new table, with a single column named RevenueChange and a single row for

2HorselR is an in-memory system, where all the tables are primarily memory-resident.



3| for(i = 0; i < numRows; i++){
if(t2[i] >= 0.05)
5 revenue += ti1[i] * t2[i];

[ .

2| revenue = 0;
3

1

Figure 3: Optimized C code for the IR code in Figure @

the total revenue change, is created and returned.

HorseIR Optimizations The execution steps in the above program are conceptually similar to
those executed by MonetDB over its MAL code. As can be seen, such an approach generates a fair
amount of intermediate results. In particular, t3 to t6 are all intermediate vectors that are material-
ized. If lines 11 to 15 are translated to lower-level code independently, each of them generates its own
for loop over the corresponding arrays. However, array-based optimization techniques, including
loop fusion, and some pattern-based optimizations developed specifically for the operator sequences
found in SQL statements, allow the HorseIR compiler to fuse these loops to just one loop to avoid
materializing these intermediate vectors. The resulting sequential C code after such optimizations
is similar to the one _depicted in Figure H The various optimization techniques will be discussed
in-depth in Section @ Although the source code in Figure E does not convey it explicitly, behind
the scenes, HorselR uses OpenMP to compile them into a parallel implementation, as outlined in [[].

2.3 Traditional Database UDFs

A UDF is a high-level language function embedded within an SQL statement. It can simplify a query
by offloading its partial computation in a more concise language other than SQL, or it can provide addi-
tional functionality that cannot be expressed by SQL alone. Some DBS offer their own vendor-specific
SQL language extensions to write UDFs, such as Transact-SQL UDFs in Microsoft SQL Server [30].
Moreover, many DBS provide interfaces for integrating general-purpose programming languages into
SQL queries, such as the embedded Python interpreter in MonetDB [29]. Using well-known program-
ming languages for UDFs has become a popular choice as it simplifies software development.

UDFs are often classified into subcategories depending on their expected interaction with the SQL
query. For the sake of brevity, we will focus only on Scalar UDFsand Table UDFs, as these are the most
commonly employed types of UDFs and also the ones supported presently in HorsePower. An avid
reader can refer to [29] for a detailed discussion on the various UDF categories. To better understand
UDFs and how they are executed in traditional DBS, Figure { shows rewrites of the query of Figure

where part of the calculation is outsourced to a UDF, in (a) to a scalar UDF, and in (b) to a table UDF.

Scalar UDF A scalar UDF returns a single value per row (which could be a vector) and can be
therefore essentially used wherever a regular table column is used, such as the SELECT or the WHERE
clause of SQL queries. Figure fal shows a scalar UDF which performs the multiplication that was
originally part of the SELECT clause in Figure Ra. Although this is a simple example, outsourcing such
computations to a UDF extends its use across several queries, and allows for a simpler change of the
implementation or semantics of the UDF (and therefore, that of the queries using it).



FUNCTION calcRevenueChangeScalar (price,discount)
RETURN price x discount;
END

wW N =

1| SELECT

2 SUM(calcRevenueChangeScalar(1l_extendedprice,1l_discount)) AS RevenueChange
3| FROM

1 lineitem

5| WHERE

6 1_discount >= 0.05;

(a) Example query with a scalar UDF

1| FUNCTION calcRevenueChangeTable(price,discount)
2 revenuechange = price x discount;

3 RETURN TABLE('"revenuechange", revenuechange);
4| END

SELECT
SUM(revenuechange) AS RevenueChange
FROM
calcRevenueChangeTable( (
SELECT 1_extendedprice, 1_discount
FROM lineitem
WHERE 1_discount >= 0.05));

Tk W N~

(b) Example query with a table UDF

Figure 4: Rewriting the example query with UDFs

In a row-based system, this query retrieves one tuple after the other from the lineitem table, and
if the condition in the WHERE clause is true, the values in the 1_discount and 1_extendedprice
attributes are given to the UDF, which performs the multiplication. Thus, the UDF is executed for
each row that fulfills the WHERE clause.

In contrast, in a column-based system, and under the assumption that the programming language
used for the UDF can handle array-based data structures, the execution is quite different. Let’s
look at the execution within MonetDB. As we have already indicated, MonetDB executes similar
in spirit to our unoptimized HorselR program depicted in Figure . First, the WHERE clause is
executed on the 1_discount column of all the rows, returning a boolean vector of the same size as
1_discount with true values in the elements (rows) that fulfill the condition. Then, MonetDB applies
the corresponding boolean selection on columns 1_discount and 1_extendedprice resulting in
“compressed” columns only containing the elements of 1_discount and 1_extendedprice for which
the corresponding entry in the boolean vector was true. These two compressed columns are then
given to the UDF as arrays which perform an elementwise multiplication on these arrays returning
an array of the same size. This is then the input to the SUM operator. Thus, compared to a row-based
system, the UDF is only called a single time and works on arrays instead of individual values.

Table UDF A table UDF returns a table-like data structure, and thus, is typically called within the
FROM clause of an SQL statement, similar to regular database tables. Assuch, it can return one or more
columns at the end of its execution. Figure @ shows a table UDF which is specifically designed for a
column-based system. The input for the table UDF isthe1_extendedprice and 1_discount columns
of the 1ineitem table. Similar to the scalar UDF example, the database performs the selection opera-



tion based on the value of the 1_discount column. It then passes the values of the 1_extendedprice
and 1_discount columns for the selected rows to the table UDF. As such, each input column to
the table UDF is a vector of values for the corresponding columns, equal in length to the number of
selected records from the lineitem table. The table UDF then performs the element-wise multipli-
cation function, and returns a table-like data structure with the result of this multiplication as the
column revenuechange. This resulting table-like data structure is then the input of the surrounding
SQL query, which uses it in its FROM clause and executes the SUM operation on revenuechange.

Discussion The main advantage of UDFs is that the core computation of the query is abstracted
into a function. Whether to use a scalar or a table UDF depends on the expertise of the developer
and task to be performed. For developers, it is often unclear which one is more performant, and
they might simply prefer one style because they find it more intuitive. Furthermore, they have quite
different interfaces. Thus, some problems might be easier expressible as table UDF or as scalar UDF
(or might only be expressed by one of these types). In the case of column-based systems and the
use of programming languages that support operators on arrays, such as R, MATLAB or Python,
column-based data can be exchanged seamlessly between SQL and the embedded UDF interpreter,
and efficient array operations can be exploited within the UDF.

However, introducing UDFs into queries can bring performance issues. Firstly, the overhead of pos-
sible data movement and conversion is non-negligible when data materialization is required for the
input of a UDF and as well when the return value of a UDF is given back to the SQL statement. This
is because often the data types used by the two execution environments are not similar, requiring the
implementation to perform some data conversion from one format to the other. In fact, MonetDB
tries to avoid this by employing a concept called zero-copy [21)], whereby a high-level language UDF
can directly access the DBS buffers of a column if the underlying binary structures of the data types
used in both the UDF and the DBS are very similar.

Apart from the data format issue, the fact that there is a large syntax gap between SQL and the
UDF language results in both parts of the query being executed as black boxes to each other by two
separate execution environments. In other words, there is typically no cross optimization between
the two components of the query. An exception is the approach proposed in Froid [30], where UDF
code is rewritten to SQL code so that the query optimizer of the database system can optimize across
the entire rewritten query. This is possible with the examples that we discussed above, as the tasks
performed by the UDFs can be expressed as SQL operators. However, this is not the case for all the
tasks for which UDFs are currently used, such as those involving non-relational operations on the data.

Hence, we propose a new solution where both the UDF and the SQL components of a query are
translated into a single HorselR program. This allows for a holistic optimization of the entire query
and also avoids any data movement or conversion.

3 HorsePower

In this section we present the design and implementation of HorsePower. As depicted in Figure E],
it is a system which is designed for the code generation and optimization of HorselR generated from
(1) SQL queries, (2) MATLAB programs, and (3) SQL queries with analytical functions written in
MATLAB. We first discuss, how HorsePower translates each of these three program types to HorselR
code. Then we describe how the resulting HorselR programs are optimized and compiled to target C

10



code for execution.

3.1 SQL to HorselR

The translation from SQL to HorselR presented in the prior work [[7] uses HyPer to generate optimized
execution plans which are then translated to HorselR. These execution plans are expressed as JSON
objects, which made for a relatively direct translation to HorselR.

However, the HyPer interface does not support UDFs. Therefore, HorsePower is instead based on
MonetDB’s execution plans as MonetDB supports UDFs and its execution plans contain the relevant
UDF information such as function names, parameters and parameter types. As MonetDB’s plans
follow a traditional tree structure, HorsePower transforms this tree structure to a JSON object, which
can then be translated to HorseIR with the infrastructure presented in [[7] with some extensions to
handle UDF information. For a plan that contains a UDF, we describe additional steps in detail in
Section @ )

Previous work on HorseIR [[7] only supported a subset of SQL and did not properly support multi-join
queries. The current version of HorsePower has been significantly extended and is now able to execute
all queries of the TPC-H benchmark [35]. As these extensions relate to traditional database operators
rather than aspects of compiler optimization, we do not present the details here.

3.2 MATLAB to HorselR

HorselR
MATLAB $ Tamer :
: Generator | :

\Type & Shape \ McLab

Information (HorsePower)

Figure 5: Generating HorselR code from MATLAB using the McLab framework in HorsePower

We choose MATLAB as the source array language to be supported by HorsePower because it is a
very popular language in the fields of statistics and engineering. As such, we have to provide a
MATLAB-to-HorselR translator for transforming MATLAB code into HorselR. Since MATLAB is a
sophisticated dynamic language which provides numerous flexible language features, it is challenging
to build a MATLAB compiler from scratch. Thus, we employ the McLab framework [2] which pro-
vides a complete solution for parsing, analyzing, and optimizing MATLAB programs, and generating
target code. Figure H shows the full workflow for compiling MATLAB to HorselR. The McLab frame-
work translates MATLAB programs to its own internal IR, called TamelR, which was specifically
designed to enable optimization of MATLAB programs. From there, TamelR can be translated into
various other programming languages to build efficient executable code [22, 19]. Thus we extend the
McLab framework to include a HorselR generator that can translate TamelR to HorselR code.

3In principle, HorsePower could have its own "homemade” query compiler to general execution plans. However, as
the traditional relational query optimization techniques are not the focus of our research, we preferred to integrate the
already optimized execution plans generated by existing DBS into our prototype.
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The translation from MATLAB to TamelR, performed by the Tamer module, has to handle MAT-
LAB’s many dynamic features and the lack of strict typing. When analyzing the program, the first
set of type and shape information is derived from the parameters of the entry MATLAB function.
This information is then used to derive the type and shape information for any further variables
computed by the statements in the rest of the program. From there, classic program analysis and
optimizations are performed, including interprocedural value analysis, constant propagation and
common subexpression elimination to produce as output optimized TamelR code [11]. TamelR can
represent MATLAB’s matrix and high-dimension arrays, and currently supports an essential subset
of MATLAB array operations, such as matrix multiplication and inverse.

However, compared to HorselR, TamelR lacks support for advanced types that are needed for query
executions, such as the table data type that is essential for organizing a collection of columns. Fur-
thermore, it does not provide the database-related functions that HorselR supports, and the data-
centric optimizations incorporated into the HorselR framework. To bridge this gap, HorsePower
translates the generated TamelR programs into HorselR.

So far, this translator supports a core subset of MATLAB features and built-in functions as follows.

Functions. When compiling multiple MATLAB files, the first function is considered an entry func-
tion, i.e. the main function. Since both MATLAB and HorselR support the pass-by-value
parameter passing, the code generation is straightforward for parameters. However, HorselR
provides an optimization over the default pass-by-value approach by internally employing a
copy-on-write mechanism. In this approach, if it is determined that the function does not mod-
ify a parameter that is passed to it, then such a parameter is provided through pass-by-reference,
saving any overhead associated with making data copies.

Control structures. The common control structures if-else and while are supported by both
languages. When testing a condition in a control structure, the result must be a single boolean
element which can be a one-element vector. While in MATLAB a condition check is also
considered true when a conditional expression evaluates to a non-empty set of elements, this is
disallowed for the program translation to HorselR as this is currently unsupported in HorselR.

Arrays. Wesupport MATLAB programs in an array programming style without using the for-loop
construct for loop iteration in MATLAB. Instead, programs can use the MATLAB built-in func-
tions which can operate on whole vectors. For example, array indexing is an important operation
for data materialization of selected rows by given row numbers. More precisely, given the MAT-
LAB code for array indexing A(I), if I is an array of boolean values of the same length as A,
then this is called logical indexing and equivalent to the function @compress in HorselR that
we have already discussed. If I = (ig,i1,...) is a vector of integer indices, it can be represented
with the built-in function @index in HorselR, and results in a new vector (A[ig],A[i1],...) whose
length is equal to that of I.

Types. HorselR has support for a rich set of types, some of which can be directly mapped to MAT-
LAB types supported in the McLab framework, including boolean, character, integer, and
floating point. For example, the floating point value double in McLab is translated to £64 in
HorselR.

Shapes. Obviously, we support MATLAB arrays as they are essential components for HorselR to
work on table columns. An array in MATLAB can be either a 1-by-N or N-by-1 matrix where

12



module ExampleQuery{
def calcRevenueChangeScalar(price:f64, discount:f64): f64{
x0:f64 = @mul(price, discount); // S5

=W N

return x0;
503
6 def main(): table{
( P
8 // compute revenue change
9 t3:bool= @geq(t2, 0.05:f64); // S0
10 t4:f64 = @compress(t3, t1); // S1
11 t5:f64 = @compress(t3, t2); // S2
12 t6:f64 = @calcRevenueChangeScalar(t4,t5); // 53
13 t7:f64 = @sum(t6); // S4
14 .
153}

Figure 6: HorselR code for the UDF in Figure @

N is a positive integer greater than 1. We support the 1-by-N vector as its data layout is more
cache-friendly in MATLAB.

3.3 SQL and UDF to HorselR

HorsePower supports SQL queries with embedded UDFs written in MATLAB. As described in Sec-
tion @, HorsePower uses the execution plans generated by MonetDB. While MATLAB is currently
not in the list of languages supported by MonetDB for its UDF implementations, this is irrelevant for
generating the execution plans as only the hooks into the UDFs with their input and output param-
eters are relevant. This is because MonetDB treats all UDF execution environments as a black-box
and generates the same execution plan, independent of the language of the UDF implementation.
Thus, we can directly use MonetDB’s execution plan generator on SQL statements extended with
UDFs. From there, we use the plan-to-HorselR translator introduced in Section @ to first generate
HorselR code from the plan with placeholders for UDF method invocations. That is, in the HorselR
code, the invocation of the UDF is simply translated into a method invocation in HorselR. Next, we
generate a separate piece of HorselR code by translating the UDF written in MATLAB using the
MATLAB-to-HorselR translator introduced in Section B.2. Finally, the two segments of code for
SQL and UDFs are integrated into a single HorselR program.

As discussed in Section @, our current implementation supports two kinds of UDFs, namely scalar
and table UDFs. In order to make the MATLAB functions to conform to the semantic form ex-
pected of these types of UDFs, we enforce the following restrictions on the implementation of such
MATLAB functions. (1) A function must have one return statement with either a single vector (for
scalar UDFs) or a table-like data structure (for table UDFs). (2) Executing the MATLAB function
individually on each scalar element of an array and returning the result set as an array should be
equivalent to executing the function on the full array as input (that is, f({x1,x2,..,2,}) is equivalent

to {£(z1),(z2),....f(zn)}).

Figure E shows the HorselR program for the example query in Figure @ with a scalar UDF. The
HorselR code consists of a module with two methods: the SQL component is translated to the main
method, and the UDF is translated to the method calcRevenueChangeScalar which takes two arrays
of type float as input and returns the resulting product. This method is called by the main method,
which otherwise is the same as we have already seen in Figure P.
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3.4 HorsePower Optimizations

HorsePower performs actual compiler-based optimizations when translating a HorselR program to
target C code. Optimizing HorselR programs is challenging since HorselR provides a large set of
array-based built-in functions and a rich set of data types inherited from database systems. In the
following, we will first look at optimizations within one method, and then see how we facilitate
cross-optimization through method inlining.

3.4.1 Optimizations within Methods

The optimization techniques used in HorselR within a method are loop-fusion and pattern-based
fusion, and have been introduced in [§], and have been extended in the current HorsePower system.
Both are optimization techniques that span multiple statements and built-in functions within a single
method.

Automatic loop fusion. This technique is used to fuse array-based built-in functions and gen-
erate efficient C code. This approach can be employed across functions that perform element-wise
operations on arrays, such as arithmetic operations, boolean selections, reduction, as well as several
database-related operations. For example, the HorselR function @1like, which is akin to the SQL LIKE
operator used for text pattern matching, returns a boolean vector that can be fused with subsequent
HorselR built-in functions. Loop-fusion is often used in complex WHERE clauses that contain several
predicate conditions, but also beyond. For that, HorselR first builds a data dependence graph across
all the statements within a method. Statements which can be fused are then identified by a well-defined
dataflow analysis. These statements are later compiled to efficient parallel C code. In fact, the example
code that we saw in Figure J was generated after generating the data dependence graph that allowed
to determine which operations can be fused. A detailed description of the principles can be found in [§]

Pattern-based fusion. A code patternisa pattern that a compiler can recognize within a code snip-
pet, then rewrite it into efficient code following some templates. Therefore, by adding patterns and
associated templates to translate a pattern in an optimal way, a compiler’s optimization repertoire
can be extended, especially to benefit from any domain-specific application characteristics. While
HorsePower has extended the pattern repertoire of [[7], in the interest of brevity and the fact that their
implementation details are more relevant to the core compiler research community, we have omitted
the pertaining discussion from this paper.

3.4.2 Cross Optimizations By HorsePower

Considering SQL statements with embedded UDFs, as we have seen in Section @, both the SQL
and the UDF part are independently translated into HorselR and the resulting code then merged to
create a main method which calls the method representing the UDF.

For our running example, Figure E shows the merged code with the clear separation of the SQL-based
and the UDF-based parts. If we were to optimize both parts independently using loop fusion and
pattern-based fusion as just discussed, the overall result would be sub-optimal. In fact, if we look
at the dependence graph for this program on the left side of Figure [ (with Sp to Sy depicting the
statements in the code), we can see that the optimization opportunities are now separated into three
snippets: before, after, and in the method being called in the statement Ss3. The snippets have to
be optimized individually because the content of the statement S3 is invisible to the rest of the code.
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Thus, statements S; and Sy of the main method need to be evaluated and intermediate results t4
and t5 cannot be eliminated as the method calcRevenueChangeScalar requires their actual values
to be passed as parameters. Furthermore, the return value of the method needs to be materialized to
be assigned to t6 which is then the input of statement S4. This means the potential scope for fusion
is significantly reduced leading to more intermediate results.

Therefore, we do not optimize the individual parts independently, but aim at a holistic optimization.
The idea to enable this cross-optimization is conceptually simple: inlining. This involves replacing
the method calls within the main method by the corresponding code segments that constitute the
method that is being called. This modified version of the HorselR program will now _have fewer
method calls and is conducive to the fusion optimizations that we discussed in Section .

Fused main Call calcRevenue Fused
L 4
NodeS\_.. o ChangeScalar /Nodes
: ll <
!
1
H
! Single
',' Node
/]

Figure 7: Dependence graphs for the example in Figure B to show that method inlining helps explore
more opportunities for automatic loop fusion

For our example program in Figure B this means the code of calcRevenueChangeScalar can be in-
lined into the main method with the generated HorselR being almost the same as the one in Figure

except for possibly different variable names. As a result, a dependence graph can be built across the
main method, as illustrated on the right side of Figure [1, allowing for loop fusion across all statements
and generating a single loop of all tasks. In particular, the boolean predicate statement (Sp), the
compress statements (57 and S3), the multiplication statement (S5), and the reduction statement
(S4) can be fused together when generating the C code in Figure E The core computational logic of
the program is now consolidated into a single loop which performs the tasks of selecting relevant price
and discount values as well as calculating the net revenue change. This code is efficient compared
to the original version without method inlining, as it avoids the materialization of any intermediate

results introduced by UDF invocations.

In some scenarios method inlining offers additional optimization opportunities, such as the elimina-
tion of unused computations. For example, consider a scenario where a table UDF computes and
returns two columns as part of its invocation, but the enclosing SQL query itself uses only one of those
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two columns. HorsePower will employ the backward slicing technique [34] to avoid the computation
of the unused column in the table UDF.

While performing inlining, to respect the pass-by-value convention for parameter passing, a copy of
the object used as the parameter will be generated if the parameter is found to be modified inside
the original callee method. This ensures that inlining does not result in any unintended data modifi-
cations to the objects inside the method that was making the call. Further, if inlining results in any
variable name conflicts, they are resolved by assigning new but unique variable names. Finally, an
inlined method is removed if it can be inlined in all the code locations where it is called.

4 Evaluation

In this section we present the evaluation result of our framework for SQL queries, MATLAB programs,
and SQL queries with analytical UDFs written in MATLAB.

4.1 OQOverview

Setup for experiments. The experiments are conducted in a multi-socket multi-core server
equipped with 4 Intel Xeon E7-4850 2.00GHz (total 40 cores with 80 threads, and 24 MB of shared
L3 CPU cache) and 128 GB RAM running Ubuntu 18.04.4 LTS. We use GCC v8.1.0 to compile
HorselR source code with optimization options -03 and -march=native; MonetDB version v11.35.9
(Nov2019-SP1) and NumPy v1.13.3 along with Python v2.7.17 interpreter for embedded Python
support in MonetDB; and MATLAB version R2019a. The response time is measured only for the
core computation, and excludes the overhead for parsing SQL, plan generation, compilation, and
serialization for sending the results to the client. Scripts and data used in our experiments can be
found in our GitHub repositoryt.

We only consider execution time once data resides in main memory. For MonetDB we guarantee this
by running each test 15 times but only measure the average execution time over the last 10 times.
After the first 5 runs, response times stabilize showing that all data has been brought from disk to
main memory by then. Additionally, for HorsePower we measure the compilation time for compiling
the generated C code to executable and report the average of 10 runs.

Benchmarks. The performance of the HorselR execution environment and the advantage of loop-
fusion and pattern-based compiler-based optimization techniques for some of the queries of the TPC-H
benchmark have already been analyzed in detail in previous work [[7]. While HorsePower provides now
support for a much larger set of SQL queries and has refined its optimization strategies, the principle
findings were already presented in [[]. Therefore, our evaluation focuses on evaluating MATLAB
programs and SQL queries with UDFs.

MATLAB. In order to understand the performance implications of using HorsePower for executing
non-SQL based data analytics, we use the Black-Scholes algorithm from the PARSEC benchmark
suite v3.0 [5], and the Morgan algorithm [9] from a finance application.

e Black-Scholes is used in finance to compute the price variation of European options over time.
There are two UDFs, BlackScholes and CNDF (standardized Cumulative Normal Distribution

4 https://github.com/Sable/edbt21-analysis
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Function), where BlackScholes is the main function for computing option prices. This algorithm
is fully vectorizable, and can be efficiently written using array programming. As the original
implementationt is in C, we reimplemented this algorithm as a MATLAB function.

e Morgan contains a main function morgan and a function msum. It contains a wide range of
element-wise computations and declares several local variables. Instead of using matrices as
input in its original implementation, we adapt it to using vectors which can represent two
columns from one table. We implement this algorithm as MATLAB functions and have set the
first parameter to 1000 (i.e. N=1000).

SQL with UDF benchmarks. In order to extensively test HorsePower’s performance on database
queries integrating analytical UDFs, we created the following benchmark.

In the first benchmark, we create SQL queries with UDFs based on the TPC-H benchmark as pro-
posed by Froid [30]. TPC-H [B5] contains a suite of 22 SQL queries, from simple to quite complex
covering a wide spectrum of SQL constructs with different performance implications, such as the
types of condition predicates and joins, the sizes of tables, the number of columns, and the number
of records that are returned. However, TPC-H is a pure SQL benchmark and does not include any
UDFs. Froid [30] has rewritten these queries so that some of the semantics, such as checking certain
conditions, are now within UDFs that are then embedded in the modified SQL statement. In most
of these queries, these UDFs are part of the SELECT or the WHERE clause.

In our second benchmark we embed the Black-Scholes algorithm in form of UDFs into SQL queries.
We created both scalar and table UDF variations as well as designed several enclosing SQL statements
that offer the different potential for optimizations.

4.2 MATLAB Benchmarks

In this section we analyze how well HorsePower performs in executing code originally written in MAT-
LAB by taking the Black-Scholes and Morgan algorithms as described in Section @ Recall that
HorsePower first translates MATLAB code into TamelR using the McLab framework, then trans-
lates the TamelR program into HorselR, and finally builds low-level C code. In our experiments, we
compare the following:

o We execute the original MATLAB program using the MATLAB interpreter with default set-
tings.

e We compile the HorselR program generated from the MATLAB code into C code without any
of the optimizations that we mentioned in Section such as loop fusion. We refer to this
version as HorsePower-Naive. As such, it is likely to produce a similar amount of intermediate
results as the MATLAB interpreter.

e We compile the HorselR program into C code with all optimizations enabled. We refer to this
version as HorsePower-Opt.

Table E] shows the execution times for MATLAB and for the two HorsePower versions with different
sizes of the Black-Scholes and Morgan tables, respectively (each from 1 to 8 million rows). We also

®Downloadable PARSEC package: http://parsec.cs.princeton.edu/
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Table 1: Speedup of HorsePower over MATLAB in execution time using Black-Scholes and Morgan
(in milliseconds)

Black-Scholes

. HorsePower

Size || MATLAB Naive Speedup [ Opt. Speedup
1M 61 66 0.92x 7 9.34x

2M 145 137 1.06x 14 10.17x
4M 491 463 1.06x 49 10.12x
8M 1009 1384 0.73x 117 8.60x

Morgan

. HorsePower

Size | MATLAB Naive Speedup | Opt. Speedup
1M 83 80 1.04x 25 3.28%

2M 221 178 1.24x 49 4.48x

4M 563 356 1.58x 110 5.11x

8M 1423 667 2.13x 202 7.05x

indicate the speedup of HorsePower over MATLAB in execution time for both HorsePower versions.
Note that the MATLAB interpreter does not allow to control the number of threads and instead aims
in using all physical threads. For HorsePower the results shown are with 40 threads.

In Black-Scholes, we observe that the execution times for MATLAB and HorsePower-Naive are sim-
ilar, with slightly better performance for MATLAB. We believe this is due to MATLAB having more
efficient library functions that work well even in an interpreter mode. As can be seen in Morgan,
the execution times for HorsePower-Naive are faster than MATLAB. We believe the reason is our
efficient parallel implementation of built-in functions, such as the cumulative sum (cumsum). When
comparing with HorsePower-Opt, MATLARB is significantly slower in both benchmarks. The reason
is that HorsePower-Opt optimizations, in particular loop fusion, are able to avoid many intermediate
results, speeding up the computation by a large margin. For both comparisons, the size of the data
set plays a minor role.

In summary, we can see that HorsePower is a promising approach to execute data analytics tasks in
an efficient manner. This is due to its data-centric IR that makes it possible to exploit data-centric
compiler optimization techniques.

4.3 SQL and UDF Benchmarks: TPC-H

This is the first of two sections to compare the performance of HorsePower and MonetDB in execut-
ing SQL statements with embedded UDFs. As mentioned in Section @, for HorsePower the UDF
is written in MATLAB, for MonetDB in Python using the NumPy library, with an effort to have
similar code within the UDF.

Froid [B0] proposed a whole range of queries derived from the TPC-H benchmark in which part of
the SELECT or WHERE clauses are outsourced into a UDF. In all cases, these are scalar UDFs.
For instance, modified g6 is very similar to our example query of Figure @, it just contains many
more conditions involving more attributes. Some of these UDFs have embedded SQL statements.
However, the McLab framework that we use to translate MATLAB programs currently only supports
pure MATLAB programs. Thus, we excluded those unsupported queries and present results only for
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queries ql, g6, q12, q14, and q19.

Table 2: Speedup (SP) of HorsePower over MonetDB in execution time using the modified TPC-H
benchmarks with UDFs

Thread MonetDB (ms) HorsePower (ms)
ql \ qb \ ql2 \ qld \ ql9 ql SP \ q6 SP \q12 SP \q14 SP \q19 SP
T1 16853 | 48832 | 137195 | 1040 | 69045 || 3799 4.44x | 392  125x | 900 152x |904 1.15x |858 80.5x
T2 11439 | 48930 | 140118 | 989 | 76153 || 2548 4.49x | 220 223x [ 493 284x | 558 1.77x | 512 149x
T4 7304 | 48247 | 144962 | 846 | 75012 || 2897 2.52x | 130 372x | 340 426x | 446 1.90x|346 217x
T8 5724 | 47775143714 | 773 | 72124 || 3316 1.73x | 56  853x | 300 479x | 396 1.95x | 364 198x
T16 3549 | 46996 | 142819 | 764 | 69997 || 2620 1.35x | 42 1124x | 238 600x | 318 2.40x | 245 286x
T32 2502 | 44636 | 140438 | 750 | 64267 || 1883 1.33x | 45 1000x | 170 826x | 216 3.48x|209 307x
T64 2227 | N/A | 138526 | 743 | 65603 || 2256 0.99x | 26  N/A | 141 984x | 197 3.77x | 199 329x
’ HorsePower Compilation Time (ms): I 358 \ 250 | 326 [ 542 | 354

Table E shows the execution times of these queries with a different number of threads using Horse-
Power and MonetDB. For HorsePower the results show the execution times after all optimizations
have been performed (merge with consecutive loop and pattern fusion).

When first looking only at MonetDB we can see that execution times are relatively low for some
queries and improve with an increasing number of threads considerably (ql and q14), but are high
for others with little benefit of parallelization (q6, q12, q19). The reason is that in these queries, the
UDF is in the WHERE clause and MonetDB has to perform costly data conversion when sending the
entire database columns as arrays to the Python interpreter in order to execute the UDF. MonetDB is
able to use zero-copy transfer for data types where the database system uses the same main-memory
representation as Python. But for strings, it needs to convert the data to a different format as the
database internal and the Python formats are incompatible. This data conversion seems to not be
parallelized to multiple threads, making it the predominant factor of the execution. In ql and ql4,
the UDFs are in the SELECT clause (where data sizes are smaller as they got reduced due to the
selection that was already executed), and do not require any string conversions.

HorsePower has overall much better performance for all queries, being under 1 second for all queries
except ql, and can always improve execution times by increasing the number of threads. As no data
conversion is necessary it is orders of magnitude faster than MonetDB for queries g6, q12, and q19.
We can observe here the advantage of having a unified execution environment that has translated
both the UDF part and the SQL part to a single HorselR program with its own data structures. But
we also observe significant improvements for q1 and q14. These are due to the unified optimization
across the HorselR code generated from SQL and UDF.

4.4 SQL and UDF Benchmarks: MATLAB

With the purpose of studying the performance of queries with UDFs derived from MATLAB bench-
marks executed in HorsePower and MonetDB, we set up the benchmarks as follows:

e In the HorsePower version, the MATLAB program and the SQL statement were both indepen-
dently translated to HorselR, the code then merged and optimized.

e In the MonetDB version, we implemented Black-Scholes as Python UDFs that compute the
optionPrice, and wrote SQL queries to invoke these UDFs.
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« For both versions, we created a whole set of enclosing SQL statements for being able to test
variations of the UDFs.

Table 3: Black-Scholes execution time Python vs. HorselR

Python HorsePower
(T1) | Naive(T1) Speedup | Opt(T1) Speedup
(51478 | 5774 080x | 2479  2.08x |

The Python UDF is implemented with the NumPy library using the same array programming style
as the MATLAB UDF. In fact, for the Black-Scholes benchmark, each array operation in MATLAB
has an equivalent array operation in NumPy. In order to understand the implication of having a
Python UDF for MonetDB and a HorselR program for HorsePower, Table E shows the execution
time of the Black-Scholes benchmark for the dataset in this section both using a Python program
and using HorseIR (both naive and optimized). Execution is in one thread because NumPy does
not support multi-threading for operations in the benchmark. Similar to what we have seen with
our analysis with MATLAB, a naive usage of HorselR provides similar execution time as Python;
performing optimizations achieves a speedup of 2.

Table 4: Performance comparison between HorsePower (HP) and MonetDB (MDB) for variations
in Black-Scholes, including the speedup (SP) and the compilation time (COMP) for compiling the
generated C code to the executable in HorsePower

Table UDF (ms) Scalar UDF (ms)

UDF Selec. T1 T64 HP T1 T64 HP

MDB[ HP | SP |[MDB[HP | SP |[COMP |[MDB[ HP | SP |[MDB[HP | SP_|COMP

bs0_base | 100.0% | 927.5 | 249.8 | 3.71x || 774.0 | 7.09| 109x| 351 670.0 | 249.5 | 2.69x || 696.5 | 7.06 | 98.6x || 375

bsl_high| 0.2%|926.4 |256.2|3.62x | 818.0|7.62| 107x| 372 6.10 | 0.32 |19.1x || 6.55 [ 0.13|50.4x || 380
bsl_med | 50.9% | 914.7 | 262.4 | 3.49x || 794.2 | 12.2| 65.0x || 373 308.6 | 86.6 |3.57x||272.2|2.51| 108x| 382
bsl_low | 99.8% |929.7|266.4|3.49x | 832.9 | 14.6 | 57.0x || 375 725.41169.6 | 4.28x || 645.4|4.90 | 132x|| 380

bs2_ high| 0.2%|895.6 | 4.67 | 192x|| 791.5|0.70 | 1131x| 252 4.29 | 4.59 |0.93x || 3.52 [0.63|5.59x || 256
bs2_med | 50.9% |912.5| 8.24 | 111x| 811.6|4.22| 192x| 252 13.4 | 8.20 [1.63x|| 4.16 |4.29|0.97x| 252
bs2_low | 99.8%[916.4 | 11.0 |83.7x | 820.4|6.64 | 124x| 252 15.9 |10.95|1.45x|| 5.11 [5.95]0.86x| 251

bs3_high | 10.0% | 911.8 |259.0 | 3.52x || 824.4 | 10.1 | 81.6x || 379 673.8 |179.3 | 3.76x || 623.2 | 7.69 | 81.0x || 374
bs3_med | 49.5% | 906.5 | 263.7 | 3.44x || 831.6 | 13.3| 62.7x| 377 || 678.9|184.1|3.69x| 631.6 |11.3|56.1x|| 375
bs3_low | 90.0% | 879.1 |262.5 |3.35x || 793.6 | 13.7| 57.8x|| 377 |/ 685.4|182.6|3.75x || 641.7 [12.8|50.1x|| 377

In order to test the two different types of programming approaches that databases support, we created
two variants of the SQL function, implemented as UDFs. In one variant, we created a scalar UDF
that returns just the computed optionPrice to the calling SQL.

|| CREATE SCALAR UDF bScholesUDF(spotPrice, ..., optionType)
2{

3 import blackScholesAlgorithm as bsa

1 return bsa.calcOptionPrice(spotPrice, ..., optionType)
51}

Next, we implemented the solution as a Table UDF, which returns in table form the computed
optionPrice along with the associated spotPrice and optionType which are columns from the
original input table.
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CREATE TABLE UDF bScholesTblUDF(spotPrice, ..., optionType)
{
import blackScholesAlgorithm as bsa

optionPrice = bsa.calcOptionPrice(spotPrice, ..., optionType)
return [spotPrice, optionType, optionPrice]

61}

U W N =

In order to have a broad set of tests and comparisons, we first integrated these two UDF versions into
a straightforward base query. From there we created three significant variations of this base query
that had different columns in the SELECT and WHERE clauses. Further, for each of the variation, we
modified the values associated with the conditional predicates in the selection (WHERE clause), so that
the selectivity varies between high, low, and medium. In a highly selective condition, only a few of
the input records fulfill the condition and thus are in the output result. A query with low selectivity
returns most of the input records. Thus, our entire test case consists of 10 queries. We describe these
queries in more detail in the next subsections.

Table @ shows the selectivity for variations derived from Black-Scholes, covering low, medium, and
high selectivity, and the execution time of MonetDB and HorsePower for the table and scalar UDFs
respectively. Due to the constraint of space limit, we only present the result for 1 thread (T1) and
64 threads (T64). The COMP column indicates the compilation time spent in HorsePower. We can
see that it is between 250 and 380 ms and little impacted by selectivity. In the next subsections, we
discuss the results in detail.

Base query. The base query bs0_base selects all the data from the database table and passes it to
the UDF and returns all the data produced by the UDF.

— Base query, bs0_base, Scalar UDF
SELECT spotPrice, optionType,
bScholesUDF(spotPrice, ..., optionType) AS optionPrice

FROM blackScholesData;

S U W N

— Base query, bs0_base, Table UDF
SELECT spotPrice, optionType, optionPrice
FROM bScholesTblUDF ((SELECT % FROM blackScholesData));

-

oo

We can first observe that for MonetDB multi-threading has little impact on its performance. In con-
trast, HorsePower benefits a lot. Thus, when looking at one thread, HorsePower is around 3x to 4x
speedup compared to MonetDB, while it is around 100x speedup with 64 threads. The main reason
is that a large part of the execution is in the Black-Scholes algorithm due to the large data input in
this query, and Python is not multi-threaded, i.e., this part of the execution in MonetDB always runs
within one thread. In contrast, HorsePower can create optimized parallel code.

However, HorsePower has even significant benefits with a single thread. In fact, with one thread, the
execution time with 249.8 ms is basically equivalent to executing the Black-Scholes algorithm alone,
without the SQL part, which is 247.9ms as shown in Table E For MonetDB, executing the algorithm
within an SQL statement in the form of a Python UDF is with 927.5 ms nearly double as long as
executing the Python function in standalone mode with 577.4 ms. As the SQL part of this query is
straightforward, the reason for this performance penalty in MonetDB must be the communication
between its SQL engine and the Python UDF interpreter.

Variation 1. The first variation bs1_* applies a predicate condition on spotPrice, a column which
is actually part of the input database table. The objective of this test case is to analyze if the systems
can intelligently avoid performing the UDF computation on records that will not be in the result set,
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that is by first discarding records from the input that do not fulfill the predicate condition and only
execute the UDF on the records that qualify. In contrast, a system following an inefficient approach
will first compute the UDF over all the input records before applying the predicate.

— Query, bsl__high, Scalar UDF

SELECT spotPrice, optionType,
bScholesUDF(spotPrice, ...,optionType)
AS optionPrice

FROM blackScholesbData

WHERE spotPrice < 50 OR spotPrice > 100;

DU W N

-3

o]

— Query, bsl__high, Table UDF
SELECT spotPrice, optionType, optionPrice
FROM bScholesTblUDF
((SELECT * FROM blackScholesData))
12| WHERE spotPrice < 50 OR spotPrice > 100;

— =

Looking at the performance numbers, we can see that for one thread, HorsePower’s speedup over
MonetDB is at least 3.5x for both scalar and table UDFs, and for 64 threads at least 50x.

For the SQL using scalar UDF, MonetDB can infer that the conditions are placed on the input col-
umn and then discard the records that do not qualify before processing the UDF. This approach
follows the traditional database optimization technique of applying high selectivity operations first.
As HorsePower relies on MonetDB for database execution plans, it is similarly impacted by the plans
generated by MonetDB for table UDF based queries. This results in HorsePower’s own table UDF
based queries costing more than its scalar versions. However, unlike MonetDB, HorsePower benefits
from being able to avoid data copies and conversions as well as from generating parallelized code for
UDFs, thus expanding this performance gap when the number of threads increases.

Variation 2. In the next variation, bs2_%, the SQL does not include the computed column
optionPrice in the final result. A smart system should be able to analyze the semantics of the
request and avoid processing the UDF all together. As can be seen in the performance numbers,
HorsePower achieves only a speedup of at most 2x with one thread and at most 5.5x with 64 threads
for the scalar UDFs, but has scale-up of at least 83x with table UDFs, going up to over 1000x for one
UDF with 64 threads.

— Query, bs2_ high, Scalar UDF

1

2| SELECT spotPrice, optionType

3| FROM (

1 SELECT spotPrice, optionType, bScholesUDF(spotPrice, ..., optionType) as optionPrice

ot

FROM blackScholesData
) AS tableBS
WHERE spotPrice < 50 OR spotPrice > 100;

© 00

— Query, bs2_ high, Table UDF

SELECT spotPrice, optionType

11| FROM bScholesTblUDF

12 ((SELECT % FROM blackScholesbata))

13| WHERE spotPrice < 50 OR spotPrice > 100;

We can see that MonetDB is able to do the optimization when the SQL query is using the scalar
UDF, avoiding the computation of the optionPrice column that is not included in the final result.
Similarly, HorsePower, being an integrated system, can avoid the computation of optionPrice by
using a backward slice. However, with a table UDF, MonetDB is unable to avoid this computation
as there is no way for it to pass this optimization information to the UDF interpreter. On the other
hand, HorsePower uses method inlining and backward slicing to remove this computation, offering a
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huge advantage.

Variation 3. The last variation, bs3_* applies a predicate condition on optionPrice. Asthisisa
column computed by the UDFs, both the systems have to process the UDFs across all input records
before discarding records that do not qualify, providing limited opportunities for optimization.

1|— Query, bs3 high, Scalar UDF
2| SELECT spotPrice, optionType
3| FROM (

4 SELECT spotPrice, optionType, bScholesUDF(spotPrice, ..., optionType) as optionPrice
5 FROM blackScholesData
6]) AS tableBS

7|WHERE optionPrice > 15;

— Query, bs3_high, Table UDF
SELECT spotPrice, optionType

1| FROM bScholesTblUDF

2 ((SELECT = FROM blackScholesData))
3| WHERE optionPrice > 15;

Looking at the performance numbers, we can see that HorsePower has speedups of around 3.5x for
both scalar and table UDFs with one thread and between around 50x and 80x for 64 threads. In this
scenario, both execute the full UDFs before applying the condition. HorsePower has better perfor-
mance than MonetDB simply because HorsePower can save the data movement between the UDF
and the query while it is mandatory for MonetDB to have data conversion between the database
and the UDF engine (Python). With more threads, the performance becomes worse since the data
movement is sequential and takes most of the time in the whole execution pipeline.

In summary, we observed that while modern RDBMS implementations provide a convenient way to
integrate UDF usage into database queries, their resulting execution plans are often sub-optimal due
to their black-box integration with the UDF language’s execution environment. On the other hand,
our advanced analytical system HorsePower optimizes both SQL and statistical language implemen-
tations using a common IR based environment. This capability also allows HorsePower to optimize
complex analytical tasks that include both SQL and UDF in query in a holistic manner, providing
better performance than popular RDBMS approaches.

5 Related Work

Intermediate representations and compiler techniques have been applied by others to improve the
performance of database queries. Voodoo [27] is a declarative intermediate algebra designed with a set
of vector operators. An SQL query is first compiled to Voodoo code in a database, for example, Mon-
etDB [16]. Then, the Voodoo code is compiled to efficient parallel GPU code. HyPer [25] delegates
code generation to LLVM, a low-level intermediate representation. It employs a push-based query
engine approach [31] in order to generate efficient LLVM code with less data materialization. This
approach also applies to LegoBase [18, B2], whereby LegoBase offers multiple IRs for implementing
an efficient query compiler.

However, there is little research in these systems extending to support UDFs within the database
queries.

When integrating data analytics into a database system, a direct approach is to develop SQL-like
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languages to support data analytics by adding new features, such as SciQL [37] and SciDB [6]. Similar
efforts have been made to introduce new facilities into database systems to support data analytics,
such as for machine learning computations [12, 15, 23, 17]. These solutions are somewhat limited as
new features or facilities have to be tailored for specific domains. In contrast, HorselR supports the
widely adopted languages SQL and MATLAB.

Froid [30] shows a holistic optimization solution by transforming simple UDF to relational code.
Thus, the existing query optimizer can be utilized for optimization of the execution plan. However,
this approach is limited as not all UDFs are translatable to a relational operator.

Weld [26] presents its IR (WeldIR) to support the code generation from various source languages.
WeldIR is able to handle database queries and call UDFs written in C code. However, in contrast
to HorsePower that automatically optimizes across different source languages, such capabilities have
not been implemented by Weld.

Lara [20] is a domain-specific language tailored for relational algebra and UDFs. Its code is first
compiled to an IR which is able to inspect UDFs by collecting necessary information from UDFs.
Thus, Lara can optimize such transparent UDFs together with its IR code. This is different from our
HorsePower which compiles database queries and UDFs to its common IR with holistic optimizations
enabled.

Finally, the most popular approach has been to integrate an execution environment for popular an-
alytical tools and languages inside DBS. This “black-box” approach is what MonetDB provides with
an embedded Python interpreter and UDF constructs [29, 28]. However, as we saw in the evalua-
tions, the data movement from database to Python is expensive due to the data copy and conversion
between two different systems. Further, as also demonstrated in our evaluations, such a black-box im-
plementation results in sub-optimal execution plans, reducing the optimization opportunities across
the DBS engine and the UDF execution environment. Being a unified system that is capable of
translating both SQL and the analytical languages used for UDFs into a common IR, HorselR can
overcome these hurdles, providing a holistic optimization and execution environment.

6 Conclusions

In this paper we presented HorsePower, a system with the capabilities of improving the performance
of database queries, MATLAB programs, and database queries with analytical UDFs. We explored
MATLAB as a prototype language for supporting database UDFs, which can work with database
queries seamlessly via HorseIR. At the core of the system, we introduced a new translator for gen-
erating HorselR code from MATLAB. We then developed an approach that combines HorselR code
from both MATLAB and SQL, and performs sophisticated fusion-based optimizations. Based on the
result of thorough experiments, we demonstrated that our system is able to generate efficient code
for SQL queries, MATLAB programs, and both mixed. With the promising evaluation results, in
the future, we would like to (1) extend McLab, the MATLAB compiler framework, to support more
MATLAB features, (2) explore more optimizations such as efficient multiple joins, and (3) experiment
on parallel accelerators, such as GPUs.
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