
McGill University
School of Computer Science

Sable Research Group

Efficient Web-Based Parallel Sparse Matrix-Vector
Multiplication

Sable Technical Report No. McLAB-2020-11

Prabhjot Sandhu, Clark Verbrugge and Laurie Hendren

April 22, 2021

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

2 Motivation and Related Work 4

3 WebAssembly Parallel SpMV Overview 5

3.1 WebAssembly SpMV Parallel Infrastructure . 6

3.2 Experimental Testbed . 6

3.3 SpMV Performance and Scalability . 7

4 SpMV Optimizations and Sparse Formats 7

4.1 DIA Format . 8

4.2 ELL Format . 10

4.3 COO Format . 11

4.4 CSR Format . 11

5 Sparse Formats and Matrix Structure 14

6 SpMV Performance Comparison 16

6.1 Intel MKL C . 16

6.1.1 DIA Format . 16

6.1.2 ELL Format . 17

6.1.3 CSR Format . 17

6.2 taco C++ . 18

7 Conclusion and Future Work 19

1

List of Figures

1 Parallel SpMV performance speedup over serial SpMV for different numbers of threads.
Each circle represents a matrix, and the x-axis shows the working set size, with dashed
vertical lines marking the size of the L1, L2, and L3 caches. 6

2 Overview of our SpMV parallel implementation infrastructure on WebAssembly and
JavaScript . 7

3 Performance speedup for DIA SpMV with SIMD . 9

4 Performance speedup for ELL SpMV with different optimizations 11

5 Performance speedup for COO SpMV with software gather/scatter vectorization 12

6 Performance speedup for CSR SpMV with different optimizations 14

7 Effect of DIA efficiency ratio and matrix dimension on the choice of storage format using
10%-affinity . 15

8 Unoptimized WebAssembly SpMV CSR performance speedup over MKL inspector-executor 17

9 Performance speedup of optimized WebAssembly SpMV with different formats over MKL
inspector-executor . 18

10 Optimized WebAssembly SpMV CSR performance speedup over taco C++ CSR 19

List of Tables

1 Parallel SpMV DIA performance before and after loop blocking optimization for very
large diagonal matrices . 9

2

Abstract

Sparse Matrix-Vector Multiplication (SpMV) is a computational kernel of a wide range of scientific
computations, including popular targets like machine learning. Web-based implementations simplify
access to such computations, but are limited by the performance of web-based programming languages.
In this work we describe a scalable and highly optimized parallel SpMV implementation based on
WebAssembly. Our design builds on a stack of optimizations, exploiting different sparse storage
formats as well as novel matrix properties and machine-level performance characteristics. We perform
exhaustive experiments with 2000 real-life sparse matrices to evaluate the effect of our optimizations
and performance relative to a static, C baseline. Using our stack of optimizations, we achieve similar
performance to the Intel MKL C library, showing that a web-based design can offer performance
competitive with even highly tuned and well established native implementations.

3

Efficient Web-Based Parallel Sparse Matrix-Vector Multiplication

Prabhjot Sandhu, Clark Verbrugge and Laurie Hendren

April 22, 2021

1 Introduction

Many scientific applications have been ported to web-based implementations, allowing for easier and
more open access to useful, but non-trivial computations; examples can be found in image editing [6],
computer-aided design [5], augmented reality [1, 2], text classification [17, 3, 4] and deep learning [24].
Large and sparse matrices are frequently encountered in this context, with sparse matrix-vector mul-
tiplication (SpMV) being a core operation [35, 32], computing y=Ax, where matrix A is sparse and
vector x is dense. Efficient, client web-based execution, however, requires significant optimization, made
more difficult by limitations of dynamic web languages like JavaScript, and the high-level execution
context provided by web browsers. This potentially affects the choice of sparse matrix storage format,
and limits the ability to exploit shared-memory parallelism and generally optimize for low-level machine
characteristics, all of which are known to strongly affect SpMV performance [28, 29].

In this work we describe and analyze a web-based SpMV implementation. Our system leverages
WebAssembly [12] (abbreviated wasm), a low-level web language designed to augment JavaScript and
intended to offer near-native performance. This allows us to explore use of shared-memory, and enables
multiple, low-level approaches to optimization, including use of vector instructions. We consider the most
common storage formats, specializing our optimization and parallelization strategies accordingly. We show
that most language and execution-context limitations can be overcome, with our implementation achieving
performance similar to a highly optimized C implementation. Specific contributions of our work include:

• We describe a highly optimized and parallel implementations of SpMV in a web context. Our approach
exploits multiple storage formats (COO, CSR, DIA, ELL) [27], thread partitioning, and machine-level
optimization opportunities afforded by the low-level wasm interface.

• We verify performance using data from around 2000 real-life sparse matrices from The SuiteSparse
Matrix Collection [10]. We compare performance with native implementations, the taco C++ li-
brary [18, 9] and the Intel MKL C library [34]. We achieve significant improvement over the former,
and competitive performance with the latter.

2 Motivation and Related Work

Research work on analyzing SpMV dates back to nearly three decades ago, and provides considerable evi-
dence that SpMV performance depends on the structure of the matrix [7] and the memory system [30, 13].

4

A plethora of research work has since been dedicated towards accelerating SpMV performance. Some pro-
posed new sparse storage formats [22, 15, 33, 19, 21], and some applied different optimization techniques
for the basic sparse matrix storage formats, with CSR format being a particular focus [31, 36, 26, 37].
More recently, the growing importance of SpMV in a web-context, fueled by a wide variety of use cases,
including big-data analytics, image processing [35] and machine learning algorithms like Support Vector
Machines (SVM) [25], Sparse Convolutional Neural Networks (CNNs) [8], logistic regression and more,
motivated several studies [14, 28, 29] that analyzed the web-based SpMV performance.

Experiments by Herrera et. al [14] using the Ostrich Numerical Benchmark set, which included SpMVCSR
kernel as one of their “dwarfs” showed the WebAssembly performance within 2x of native C across many
devices, with one device achieving better overall performance than native C. Sandhu et al. [28] presented
serial SpMV performance numbers for JavaScript and Emscripten-generated WebAssembly as compared
to C for both single- and double-precision floating point representations. They introduced the notion of
x%-affinity to identify which, if any, storage format performs at least x% better than all other formats for a
given sparse matrix. They also highlighted the differences in the choice of storage format between native C
and web environments. All of these have inspired our research towards parallel SpMV performance analysis
and optimizations on modern systems and web-based execution environments. The development of such
web-based scientific computing framework which provides optimized and parallel Sparse BLAS (Basic
Linear Algebra Subprograms) routines like SpMV has clear applicability as a high-performance backend
for web-based ML frameworks like TensorFlow.js [24] which train and deploy models in the browser.

Despite the numerous attempts at developing new sparse storage formats, there is no one-size-fits-all
storage format for different sparse matrices. Interesting work, however, has been proposed to predict the
best storage format for SpMV computation based on the matrix structure and hardware features using
machine learning techniques [23, 20]. The features used have an obvious impact on the effectiveness of
these approaches. Sandhu et al. [29] investigated and presented a number of matrix-structure features that
dictate the performance and the choice of storage format on a uniprocessor web-based system, comparing
hand-tuned WebAssembly to C. Our approach instead focuses on analyzing how the matrix structure
affects the choice of storage format in the presence of many optimizations and parallel techniques.

Several specific optimizations have been explored in the past to fully unleash the potential of different
systems. For instance, Williams et al. [37] presented many optimizations especially for emerging multicore
platforms like cache and register blocking, TLB blocking, loop optimizations, software prefetching etc. to
show significant improvements on a set of 14 sparse matrices collected from a variety of actual applications.
The use of different optimizations in different cases continues to inspire work on identifying relevant sparse
matrix features. Elafrou et al. [11], for example, classify SpMV performance bottlenecks in terms of being
memory-bandwidth bound, memory-latency bound, having thread imbalance, or due to computational
bottlenecks within the CSR format, and apply supervised learning to build a feature-guided classifier,
trained on a set of 210 matrices. In relation to that, our work presents the design of specific low-level
code and data optimizations that have a major impact on web-based systems.

3 WebAssembly Parallel SpMV Overview

In this section we present our basic approach to a parallel implementation infrastructure for SpMV using
WebAssembly and JavaScript. This includes initial experiments to examine baseline performance and
scalability.

5

Figure 1: Parallel SpMV performance speedup over serial SpMV for different numbers of threads. Each
circle represents a matrix, and the x-axis shows the working set size, with dashed vertical lines marking
the size of the L1, L2, and L3 caches.

3.1 WebAssembly SpMV Parallel Infrastructure

WebAssembly [12] is a new stack-based virtual ISA binary code format with a corresponding textual
format. It is a low-level, assembly-like execution context that is simpler to optimize and more directly
maps to the instructions of common hardware architectures. It has been designed to complement and
run alongside JavaScript, and aims to overcome the performance limitations of JavaScript by bringing
near-native speeds to the web.

A number of recent research contributions explored the performance of compute-intensive tasks in
WebAssembly. Haas et. al [12] reported the performance within 2x of native C for all benchmarks in the
PolyBenchC suite, with 7 of them within 10% of native C. Jangda et al. [16] analyzed the performance
across the SPEC CPU benchmark suite and reported a mean slowdown factor less than 2x along with
the causes of these performance gaps.

In this work, we have enabled task parallelism for WebAssembly via JavaScript’s web workers, which map
onto OS-level threads and provides a shared memory paradigm, an important consideration for parallel,
data-intensive computations. First, the main JavaScript thread creates a shared WebAssembly memory
which is basically a resizable SharedArrayBuffer object. Memory is managed using the malloc/free
WebAssembly module extracted from Emscripten [38] (a C→ wasm translator) source code to simplify
memory allocation. The main thread then creates WebAssembly threads by spawning web workers, which
in turn instantiate our WebAssembly module containing the SpMV implementation. After allocating
and loading the input and output vectors, along with the input sparse matrix in the desired internal
storage format, these WebAssembly threads perform SpMV in parallel. Note that WebAssembly does
not (yet) provide fine-grain synchronization primitives, and thus threads require independent work.

3.2 Experimental Testbed

We conducted our experiments on an Intel Core i7-3930K with 6 × 3.20GHz cores, 12MB last-level
cache and 16GB memory, running Ubuntu Linux 18.04.5. We translated our hand-tuned SpMV
implementations in the wasm textual format to the corresponding binary format using the WebAssembly
Binary Toolkit (wabt) version 1.0.13. Our WebAssembly execution environment is Chrome 80 browser
(Official build 80.0.3987.149 with V8 JavaScript engine 8.0.426). We run headless Chrome with a flag --

experimental-wasm-simd to enable the use of SIMD (Single Instruction Multiple Data) instructions for
loop vectorizations in our implementations. We also enable two more flags, --wasm-no-bounds-checks
and --wasm-no-stack-checks to avoid memory bounds checks and stack guards for performance testing.

Our set of sparse matrix benchmarks, to evaluate the performance of our SpMV implementations, consists

6

External
Sparse
Storage
Format

Shared WebAssembly Memory

Internal
Sparse
Storage
Format

Input
Vector

Output
Vector

Main
JavaScript

Thread

Initialize Shared WebAssembly Memory

Initialize WebAssembly Threads

Web
Worker

WASM
Instance

WASM
Instance

Web
Worker

WASM
Instance

Web
Worker

WASM
Instance

Figure 2: Overview of our SpMV parallel implementation infrastructure on WebAssembly and JavaScript

of 1,962 real-life square sparse matrices from The SuiteSparse Matrix Collection [10].

3.3 SpMV Performance and Scalability

Our baseline scalability experiments are aimed at the most popular format, CSR, where we tested
single-precision parallel SpMV performance using 1 to 5 threads. Work can be distributed using simple
row-partitioning, giving the same number of rows to each thread. Workload balance, however, depends
on the number of non-zero entries each thread processes, and thus we divide the sparse matrix among
the threads using an nnz-partitioning approach, with each thread given a contiguous blocks of rows
containing an almost equal number of non-zeros.

Figure 1 shows the performance speedup of our parallel CSR SpMV for different number of threads in
comparison to serial WebAssembly CSR SpMV [29] using all our benchmark matrices. The x-axis shows
the working set size of matrices when stored in CSR format (detailed definition in Section 4). We can
clearly observe that SpMV parallel performance scales well with the increase in number of threads, except
for the small matrices, which are likely affected by the parallelism overhead. Even for larger matrices,
however, speedup has significant variance, mostly around 3x–5x with 5 threads (with a few super-linear
outliers). We attribute reduced performance to other kinds of imbalance between the threads: locality
index [29] imbalance, branch mispredictions imbalance and loop overhead imbalance etc. In the next
section we describe several optimization strategies to lessen the effect of these imbalances, and analyze
their effect on the SpMV performance.

4 SpMV Optimizations and Sparse Formats

In this section we describe our set of optimizations for web-based parallel SpMV for four different sparse
storage formats (DIA, ELL, COO, CSR) [27]. We examine the SpMV performance for a number of
optimizations including SIMD, software gather/scatter vectorization, reordering of matrix rows and loop
optimizations like loop blocking, inner loop unrolling and outer loop unroll-peel-jamming. Although many
of these optimizations are known and proven beneficial for SpMV in the native context, their applicability
with WebAssembly is not straightforward. For example, WebAssembly incorporates SIMD instructions,

7

(loop $inner_loop

(local.get $this_y)

(f32x4.mul (v128.load (local.get $this_data)) (v128.load (local.get $this_x)))

(v128.load (local.get $this_y))

(f32x4.add)

(v128.store)

(local.set $this_y (i32.add (local.get $this_y) (i32.const 16)))

(local.set $this_data (i32.add (local.get $this_data) (i32.const 16)))

(local.set $this_x (i32.add (local.get $this_x) (i32.const 16)))

(local.tee $n (i32.add (local.get $n) (i32.const 4)))

(local.get $iend)

(i32.lt_s)

(br_if $inner_loop)

)

Listing 1: SIMD portion of single-precision Parallel SpMV DIA implementation in WebAssembly

but it does so in an incomplete fashion, lacking hardware gather/scatter, which motivated our software-
based gather/scatter approach. Alongside this, it is not known whether making these optimizations
applicable with the available WebAssembly instructions will be as impactful as their native counterparts on
the given architecture. We evaluate the performance speedup after the application of several optimizations
over the baseline SpMV for each storage format. In these evaluations, we use the working set size, the value
of which depends on theN×N size of the sparse matrix, its number of non-zeros (nnz), and storage format.

4.1 DIA Format

The diagonal format (DIA) only stores the diagonals that include non-zeros. The data array stores the
diagonal values, and the offset array stores the distance of each diagonal from the main diagonal, with
positive offsets representing the upper diagonals and vice versa.

Data Partitioning : It is quite straightforward to parallelize the SpMV for DIA format. Similar to
CSR, we have implemented the static distribution of workload among the processing elements by row
decomposition method, in which the data array in DIA format is partitioned into row blocks to avoid
false sharing. We tested both row-partitioning and nnz-partitioning strategies for our benchmark matrices.
In the row-partitioning strategy, the load imbalance can exist among the workers if the padded zeros
around the diagonals (either positive or negative offsets) are significant in comparison to the ideal number
of non-zeros per worker.

SIMDization : The SpMV DIA kernel consists of nested loops, where the outer loop iterates across
all diagonals, and the inner loop iterates across the elements of each diagonal. The contiguous access
to the values of data array, input vector x and output vector y and no data dependencies between
the iterations provide a perfect opportunity to vectorize the SpMV DIA computation. So, we applied
SIMDization using the new WebAssembly 128-bit vector instructions as illustrated in Listing 1. We
observed magnificent performance improvements as shown in Figure 3 with DIA Working Set on the
x-axis, which is (ndiag elems + num diags + 2 * N) * 4, where ndiag elems is the number of elements
in the diagonals and num diags is the number of diagonals.

Loop Blocking : It is known that the inherent diagonal structure of DIA matrices allows access to
the values of input vector x and output vector y contiguously, providing both spatial and temporal
locality. But at the same time, the column-wise access to the data array requires both x-vector and

8

Figure 3: Performance speedup for DIA SpMV with SIMD

y-vector in the cache, repeatedly for up to num diags for each worker. Therefore, for very large diagonal
matrices, where both x-vector and y-vector won’t fit in the L3 cache, it can cause numerous capacity
cache misses. As a result, it can degrade the DIA SpMV performance, likely leading to not choosing
DIA as the optimal storage format for the potential DIA matrix.

Thus, we have applied loop blocking optimization with block size 1K × num diags, especially targeted
at such sparse matrices, and observed up to 2.6x performance gain on very large diagonal matrices as
shown in Table 1. We chose to include all the diagonals in each block because the number of diagonals in
these matrices are quite few in comparison to the number of rows. Also, to carry out this optimization, a
small extra space is required to store the starting and ending row index of each diagonal for each worker.
We note interesting performance differences between two matrices (ecology1 and ecology2) which have
almost equal N and nnz. This is apparently due to the difference in number of diagonals between those
two matrices: ecology2 has more diagonals than ecology1, leading to greater computation time.

Table 1: Parallel SpMV DIA performance before and after loop blocking optimization for very large
diagonal matrices

Name N x N nnz
Before

(GFLOPS)
After

(GFLOPS)

ecology1 1M x 1M 4.9M 8.6 11.4

ecology2 1M x 1M 4.9M 6.5 9.0

atmosmodd 1.3M X 1.3M 8.8M 6.3 12.4

atmosmodl 1.5M X 1.5M 10.3M 5.3 11.9

Transport 1.6M x 1.6M 23.4M 5.1 13.3

9

(i32x4.splat (local.get $x))

(v128.load (i32.add (local.get $indices) (i32.shl (i32.add (local.get $exp) (

local.get $row)) (i32.const 2))))

(i32.const 2)

(i32x4.shl)

(i32x4.add)

(local.set $x_index)

(f32x4.replace_lane 3

(f32x4.replace_lane 2

(f32x4.replace_lane 1

(f32x4.replace_lane 0

(f32x4.splat (f32.const 0.0))

(f32.load (i32x4.extract_lane 0 (local.get $x_index)))

)

(f32.load (i32x4.extract_lane 1 (local.get $x_index)))

)

(f32.load (i32x4.extract_lane 2 (local.get $x_index)))

)

(f32.load (i32x4.extract_lane 3 (local.get $x_index)))

)

Listing 2: Software gather vectorization portion of single-precision SpMV ELL implementation in
WebAssembly

4.2 ELL Format

The ELLPACK format (ELL) stores a fixed (maximum) number of non-zeros per row, max nnz row. The
data array stores the values for each row, with corresponding column indices given by the indices array.

Data Partitioning : Similar to DIA, the data array in ELL format is partitioned into row blocks,
avoiding the y-vector conflicts. Since the data array in ELL is a packed 2D array, in which all the
elements are accessed and processed (even for stored zeros) for SpMV computation, there is essentially
no difference between row-partitioning and nnz-partitioning strategies.

Software Gather Vectorization : The SpMV ELL kernel consists of nested loops, where the outer
loop iterates across all columns of data array, and the inner loop iterates across the elements of each
column, leading to contiguous access to the values of data array (stored in column-wise fashion) and
output vector y. It provides a perfect opportunity for these arrays to apply SIMD vector instructions
similar to DIA, although the access to the values of input vector x (indirect addressing) depends on
the structure of the matrix.

In order to improve the performance of such a computation via vectorization, we need hardware gather
support (enabled in AVX2 for the first time) through which the non-contiguous x-vector values can
be loaded into the SIMD registers. However, these instructions are not available for WebAssembly
environment at the moment. Therefore, we have implemented software gather vectorization functionality
using the new WebAssembly 128-bit vector instructions, to perform the indirectly indexed reads on input
vector x as shown in Listing 2. After applying this optimization, we observed up to 1.6x performance
gain for large sparse matrices as shown in Figure 4a, with ELL Working Set on the x-axis, which is
(2 * nell elems + 2 * N) * 4, where nell elems is (max nnz row * N).

Loop Blocking : Similar to DIA, the column-wise access to the data array requires contiguously
accessed y-vector and indirectly accessed x-vector in the cache, repeatedly up to max nnz row for each

10

(a) Software Gather Vectorization (b) Software Gather Vectorization and Loop Blocking

Figure 4: Performance speedup for ELL SpMV with different optimizations

worker. Therefore, for matrices with very large dimensions, where y-vector and x-vector won’t fit in the
L3 cache, it can cause numerous capacity cache misses. We applied loop blocking optimization with block
size 1K × max nnz row along with the software gather optimization, and observed up to 2.3x combined
performance gain on large sparse matrices as shown in Figure 4b.

4.3 COO Format

The coordinate format (COO) consists of three arrays, row, col and val to store the row and column
indices and corresponding values of each non-zero.

Data Partitioning : We equally distributed the non-zeros among the workers to parallelize SpMV
COO computation. In this there is never a chance of load imbalance, but there could be y-vector
conflicts between the workers. Therefore, we allocated separate copies of y-vector for each worker, and
accumulated the results in parallel at the end.

Software Gather and Scatter Vectorization : The SpMV COO kernel consists of a single loop that
iterates through all the non-zeros, leading to the contiguous access of the values of row, col and val

arrays. However, both input vector x and output vector y are indirectly addressed via these arrays.
Therefore, to vectorize this SpMV computation and perform indirectly indexed reads and writes, we
applied software scatter vectorization for the output vector y as shown in Listing 3, in addition to the
previously described software gather vectorization on the input vector x.

We observed only up to 1.25x performance improvements on large sparse matrices as shown in Figure
5, with COO Working Set on the x-axis which is (3 * nnz + 2 * N) * 4. It is likely that vectorization
performance benefit was discounted by the overhead of software gather/scatter instructions per non-zero.

4.4 CSR Format

In compressed sparse row (CSR) format, row ptr array stores only one entry per row. This array keeps
track of the starting position of each row for col and val arrays.

Software Gather Vectorization : The SpMV CSR kernel consists of nested loops, where the outer
loop iterates across all matrix rows, and the inner loop iterates across the non-zeros of each row. Similar

11

(i32x4.splat (local.get $y))

(v128.load (local.get $coo_row))

(i32.const 2)

(i32x4.shl)

(i32x4.add)

(local.set $y_index)

(i32x4.extract_lane 0 (local.get $y_index))

(f32.load (i32x4.extract_lane 0 (local.get $y_index)))

(f32x4.extract_lane 0 (local.get $temp))

(f32.add)

(f32.store)

...

(i32x4.extract_lane 3 (local.get $y_index))

(f32.load (i32x4.extract_lane 3 (local.get $y_index)))

(f32x4.extract_lane 3 (local.get $temp))

(f32.add)

(f32.store)

Listing 3: Software scatter vectorization portion of single-precision SpMV COO implementation in
WebAssembly

Figure 5: Performance speedup for COO SpMV with software gather/scatter vectorization

to ELL, we have applied software gather vectorization to perform the indirectly indexed reads on input
vector x. Unlike ELL, we have performed sum reduction on the vectorized output for each row as shown
in Listing 4, to finally store the result into the output vector y.

This vectorization can only be applied to the rows which have more than 4 number of non-zeros. In
fact, the rows which have more than 4 number of non-zeros, the performance benefit is mostly observed
when the inner loop runs for a number of iterations. Otherwise, the inner loop overhead and high number
of software gather instructions per non-zero degrade the SpMV performance as shown in Figure 6a, with
avg nnz row, average number of non-zeros per row on the colorbar, which is calculated as (nnz / N) and

12

f32x4.mul

(local.get $temp_v)

f32x4.add

(local.set $temp_v)

...

(local.get $y)

(local.get $temp)

(f32x4.extract_lane 0 (local.get $temp_v))

(f32.add)

(f32x4.extract_lane 1 (local.get $temp_v))

(f32.add)

(f32x4.extract_lane 2 (local.get $temp_v))

(f32.add)

(f32x4.extract_lane 3 (local.get $temp_v))

(f32.add)

(f32.store)

Listing 4: Reduction portion of single-precision SpMV CSR implementation in WebAssembly

CSR Working Set on the x-axis which is ((N + 1) + 2 * nnz + 2 * N) * 4. We observed up to 2x
performance speedup with this optimization for the matrices with high avg nnz row.

Reorder Matrix Rows : We have reordered the matrix rows based on the number of non-zeros per
row, and observed up to 2x performance gain as shown in Figure 6b.

This strategy brings the rows with equal number of non-zeros together, and reduces the branch
mispredictions for the matrices which otherwise have highly unequal number of non-zeros per row. In
order to perform this optimization, some extra space is needed to store the permutation vector for the
rows, which permutes the output vector y at the end of the SpMV computation.

Inner Loop Unroll for Short Rows : We have employed inner loop unrolling for the short rows
which included the rows with number of non-zeros equal to 0, 1, 2 and 3, and observed up to 3x combined
performance gain as shown in Figure 6c.

Following the application of reordering optimization, this strategy fully unrolls the inner loop for short
rows, and processes the set of rows with equal number of non-zeros together with a single loop, while
entirely bypassing the empty rows. In this way, inner loop overhead problems are avoided for the matrices
which have high number of short rows.

Outer Loop Unroll-Peel-Jam : We generalized the popular ”Unroll and Jam” [22] optimization for
SpMV by combining it with loop peeling to observe the benefit of this customized optimization on a
much wider set of matrices with different features. To effectively apply this optimization, we stacked
it on top of the previous short rows strategy.

In this technique, we unroll the outer loop for different unroll factors (2, 3, 4 and 6), replicating the inner
loop accordingly. Next, we peel these inner loops such that the number of iterations of these inner loops
become equal. Finally, we jam these inner loops together to create one big inner loop. The peeled loop itera-
tions are processed separately at the end. In this way, CSR SpMV computation is performed in column-wise
fashion within the row blocks, with each block size equal to the unroll factor. This optimization is expected
to improve the SpMV performance due to increased temporal locality for the input vector x and also due to
reduction in the number of inner loop iterations. It especially seems beneficial for the matrices whose neigh-
bouring rows have similar and wide x-vector access pattern. After applying this optimization using un-
roll factors 2, 3 and 4, we observed up to 3x combined performance gain as shown in Figures 6d, 6e and 6f.

13

(a) Software Gather Vectorization (b) Reorder Matrix Rows

(c) Inner Loop Unroll for Short Rows (d) Outer Loop Unroll-Peel-Jam with unroll factor 2

(e) Outer Loop Unroll-Peel-Jam with unroll factor 3 (f) Outer Loop Unroll-Peel-Jam with unroll factor 4

Figure 6: Performance speedup for CSR SpMV with different optimizations

5 Sparse Formats and Matrix Structure

Previous work has shown that matrix structure affects choice of optimal storage format [29]. Optimiza-
tions, however, change relative performance, and may thus modify the choice of format. In this section
we consider why such changes occur, using Sandhu et al.’s 10%-affinity criteria in selecting the best
format for each matrix [28].

Typically, the specialized sparse storage formats like DIA and ELL, if better suited for the given sparse
matrix, tend to have higher SpMV computational capability than CSR or COO. Given the sparsity
structure of the matrix, the availability of applicable structure-based optimizations for a particular format
can further increase its SpMV computational capability. As a result, a sparse matrix shows affinity
towards a particular format based on the values of its various structure features, whose threshold varies

14

with the relative degree of increase in SpMV computational capability of that format to other candidate
formats in the presence of several optimizations.

In order to understand this better we first define efficiency ratio (ER) as the ratio of the amount of work
done, wd to the amount of work required to be done, wrd. The value of wrd for SpMV computation is
the total number of non-zeros in the matrix, whereas the formula for wd varies with the choice of storage
format, and further depends on the sparsity structure of the matrix.

ER(fi)=
wd(fi)

wrd
=
wd(fi)

nnz

wd(DIA)=ndiag elems (1)

wd(ELL)=max nnz row×N

Both DIA and ELL store less auxiliary information than CSR, and have the potential to be chosen as
an optimal storage format for a large matrix if its ER value is 1 as shown in Figure 7 for DIA format.

On the other hand, an ER value greater than 1 means that the number of floating-point operations
performed are higher than the required ones, if the matrix is stored in that format. This affects the
SpMV performance and the optimal format choice. The application of SIMD vectorization and loop
blocking optimization, for example, results in many of our benchmark matrices with ER(DIA) value up
to 3 showing affinity towards the DIA format. For instance, a very large DIA matrix named Transport
with ER(DIA) value equal to 1.006 (also shown in Table 1 of Section 4) shows affinity towards CSR
format without the application of loop blocking optimization. Relatively small matrices also tend to
suffer from inner loop overhead, and thus due to the distribution of workload for parallel and vectorized
SpMV DIA computation, tend to choose other optimized formats over DIA.

Figure 7: Effect of DIA efficiency ratio and matrix dimension on the choice of storage format using
10%-affinity

Next, we look at the data array width for DIA and ELL which is num diags and max nnz row respec-

15

tively. This width is the count of repeated access of input vector x and output vector y at some regular
interval for the SpMV computation. The high value of this structure feature for DIA or ELL may cause
more capacity misses at lower-level caches, in comparison to CSR which accesses each value of the output
vector y only once. For instance, a matrix named piston with N = 2025, nnz = 100015, ER(DIA) = 1.78
and num diags = 89 shows affinity towards both DIA and CSR format, leading to choose combination-DIA
category based on the 10%-affinity criteria. We found that the application of software gather and outer
loop unrolling significantly improved its performance for CSR SpMV. Hence, it is a complex combination
of these structure features and applicable optimizations which greatly affects the choice of storage format.

Finally, we observed only few small matrices from our benchmark set that show affinity towards the
COO format. We argue that the application of our stack of optimizations has potentially improved the
SpMV computational capability of CSR against COO. Otherwise, owing to the low values of avg nnz row
(leads to inner loop overhead) and uneven number of non-zeros per row (leads to branch mispredictions),
the matrices would usually show affinity towards COO over CSR.

6 SpMV Performance Comparison

In this section, we evaluate the SpMV performance of our benchmark matrices using our WebAssembly
implementations relative to Intel MKL C and taco C++ libraries.

6.1 Intel MKL C

SpMV is one of the Sparse BLAS operations supported by Intel MKL C library. Before the computation,
their inspector-executor two-stage algorithm first analyzes the matrix structure, and then performs
optimizations including the conversion of CSR format into some undisclosed internal representation
if needed. Figure 8 shows the performance speedup of our unoptimized WebAssembly CSR SpMV
implementations over Intel MKL inspector-executor SpMV for all our benchmark matrices. Except for
the small matrices, it is quite evident that there is a range of performance slowdowns of up to 4x for our
WebAssembly SpMV. Next, we perform the format-wise comparison of our optimized SpMV with Intel
MKL. For simplification, we have included the combination-format matrices into one of their corresponding
format sets. The performance evaluation for COO format is not shown, on account of only few and small
matrices in this category, which show high performance gain and are likely not optimized by Intel MKL.

6.1.1 DIA Format

Figure 9a shows that in our implementation the majority of DIA matrices have almost equal or better
performance than Intel MKL inspector-executor. We attribute this mainly to SIMD optimizations and
also the loop blocking optimization for very large matrices.

At the same time, we found performance slowdown for some of the DIA matrices. Hence, we evaluated a
number of structure features that could impact the SpMV performance of these matrices. First of all, we
recognized that the performance decreases with increase in the ER(DIA) value which is due to wasted
computation cycles on stored zeros within the diagonals. Next, we found that the num diags value also
impacts the performance which is likely due to repeated access of the contiguous values of input vector x
and output vector y. The combination of these features is especially impactful, and is found in the matrices
for which our SpMV DIA performance is around 2x slower than Intel MKL inspector-executor SpMV. We

16

Figure 8: Unoptimized WebAssembly SpMV CSR performance speedup over MKL inspector-executor

expect that Intel MKL, if using DIA as their internal format for such matrices, has overcome these potential
computation bottlenecks by using wider (256-bit) SIMD, which is currently not available for WebAssembly.

6.1.2 ELL Format

Figure 9b shows that using our implementations, the performance of some of the ELL matrices is similar
to Intel MKL inspector-executor. We have seen that our software gather vectorization and loop blocking
optimization have significantly improved the performance of ELL marices. However, we still observe
performance slowdown relative to Intel MKL. Similar to DIA, we argue that the high ER(ELL) value
impacts the performance by wasting computation cycles on the stored zeros for padding. Again, wider
SIMD has the potential to further improve the SpMV performance.

We also recognize that despite our highly optimized implementations, several WebAssembly intricacies
still affect the performance in comparison to the native implementations. For instance, the V8 compiler
tends to favour use of registers in generated code instead of the memory addressing modes available in
the x86-64 instruction set architecture. As a result, there are more load and store instructions and high
register pressure. In addition, an extra operation is performed to calculate the effective address using
a fixed offset for every array access from the base of WebAssembly’s linear memory.

6.1.3 CSR Format

Figure 9c shows quite interesting performance comparison results of CSR matrices between our implemen-
tations and Intel MKL inspector-executor, leading to a geometric mean of 1.02. First of all, we observe
very high performance gain for small CSR matrices, which are likely not considered for optimizations by
Intel MKL due to their small size. Next, it can be seen that for a lot of large CSR matrices, we have up

17

(a) DIA (b) ELL

(c) CSR

Figure 9: Performance speedup of optimized WebAssembly SpMV with different formats over MKL
inspector-executor

to 2x performance gain over Intel MKL, which is due to our stack of various optimizations which targeted
inner loop overhead for short row lengths, branch misprediction issues for uneven row lengths, and poor
cache reuse due to highly scattered non-zeros in each row along with vector x’s indirect addressing.

On the other hand, we also find a range of performance slowdowns of up to 2x for a number of CSR
matrices. It is important to note that this set mostly consists of the matrices for which we were able
to improve the performance over our baseline CSR by identifying the potential performance bottlenecks.
Wider SIMD and better instruction selection, however, has a significant impact on performance, especially
for the CSR matrices with high number of non-zeros per row. Few of those matrices chose our baseline
SpMV CSR as their best performance due to the absence of above mentioned shortcomings. Another
potential optimization that may have also improved the SpMV performance for Intel MKL is software
prefetching on the input vector x. This is used to overcome indirect addressing problems, but the current
WebAssembly instruction set doesn’t offer that functionality.

6.2 taco C++

The tensor algebra compiler (taco) C++ library [18, 9] uses compiler-based techniques to generate opti-
mized sparse kernels like SpMV, and showed competitive performance with an earlier version of Intel MKL.
Figure 10 shows the performance speedup of our optimized WebAssembly CSR SpMV implementations
over taco-generated C++ CSR SpMV for all the matrices currently supported by taco (precisely 1333 ma-
trices from our benchmark suite). It is quite impressive to observe up to 2x performance speedup over taco
CSR for the majority of our large matrices. Some of the potential reasons for this are the application of gath-

18

er/scatter vectorization by taco for all the benchmark matrices including the ones with small number of non-
zeros per row and high number of short-length rows, and unequal distribution of work among the threads.

Figure 10: Optimized WebAssembly SpMV CSR performance speedup over taco C++ CSR

7 Conclusion and Future Work

We are witnessing a surge of scientific and compute-intensive applications involving SpMV on the web for its
interactiveness and easy accessibility. It is of utmost importance to understand the effectiveness and design
of the optimization techniques which bring out the best from these web-based systems. Our stack of well-
designed and effective low-level optimizations, targeting several distinct SpMV performance bottlenecks,
provides valuable insights about the factors that have a major impact on the WebAssembly SpMV per-
formance. Our evaluations with scalable and hand-tuned parallel SpMV WebAssembly implementations,
running on a modern web browser, demonstrate the potential to deliver competitive performance in com-
parison to the native and highly-tuned Intel MKL inspector-executor and taco-generated SpMV routines.

In our future work we wish to explore some reordering techniques based on the locality index [29] to
improve the access pattern of input vector x. We recognize that wider SIMD and software prefetching are
among the future optimization opportunities needed to be analyzed for web-based sparse computations.
Along with these enhancements, we want to further explore more sparse storage formats and optimization
strategies to finally build an efficient and user-friendly web-based sparse library, supporting several sparse
matrix operations.

19

References

[1] argon.js - a javascript framework for adding augmented reality content to web applications, 2018.
URL: https://www.argonjs.io.

[2] Ar.js - augmented reality for the web, 2018. URL: https://github.com/jeromeetienne/ar.js.

[3] brain.js - neural networks in javascript, 2018. URL: https://github.com/BrainJS/brain.js.

[4] ml.js - a k-nearest neighbour classifier algorithm, 2018. URL: https://github.com/mljs/knn.

[5] Autocad web app, 2019. URL: https://web.autocad.com/.

[6] Photo editor — online photoshop lightroom, 2019. URL: https://lightroom.adobe.com.

[7] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high performance algorithm using pre-processing
for the sparse matrix-vector multiplication. In Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, Supercomputing ’92, pages 32–41, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press. URL: http://dl.acm.org/citation.cfm?id=147877.147901.

[8] Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M. Penksy. Sparse convolutional neural
networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
806–814, 2015. doi:10.1109/CVPR.2015.7298681.

[9] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format abstraction for sparse tensor
algebra compilers. Proc. ACM Program. Lang., 2(OOPSLA):123:1–123:30, October 2018. URL:
http://doi.acm.org/10.1145/3276493, doi:10.1145/3276493.

[10] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[11] A. Elafrou, G. Goumas, and N. Koziris. Performance analysis and optimization of sparse matrix-vector
multiplication on intel xeon phi. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1389–1398, May 2017. doi:10.1109/IPDPSW.2017.134.

[12] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman,
Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with webassembly.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 185–200. ACM, 2017.

[13] D.B. Heras, J.C. Cabaleiro, and F.F. Rivera. Modeling data locality for the sparse
matrix-vector product using distance measures. Parallel Computing, 27(7):897 – 912,
2001. URL: http://www.sciencedirect.com/science/article/pii/S0167819101000898,
doi:https://doi.org/10.1016/S0167-8191(01)00089-8.

[14] David Herrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. Numerical computing on the
web: Benchmarking for the future. In Proceedings of the 14th ACM SIGPLAN International
Symposium on Dynamic Languages, DLS 2018, pages 88–100, New York, NY, USA, 2018. ACM.
URL: http://doi.acm.org/10.1145/3276945.3276968, doi:10.1145/3276945.3276968.

[15] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for
sparse matrix kernels. The International Journal of High Performance Computing Applications,
18(1):135–158, 2004.

20

https://www.argonjs.io
https://github.com/jeromeetienne/ar.js
https://github.com/BrainJS/brain.js
https://github.com/mljs/knn
https://web.autocad.com/
https://lightroom.adobe.com
http://dl.acm.org/citation.cfm?id=147877.147901
http://dx.doi.org/10.1109/CVPR.2015.7298681
http://doi.acm.org/10.1145/3276493
http://dx.doi.org/10.1145/3276493
http://dx.doi.org/10.1109/IPDPSW.2017.134
http://www.sciencedirect.com/science/article/pii/S0167819101000898
http://dx.doi.org/https://doi.org/10.1016/S0167-8191(01)00089-8
http://doi.acm.org/10.1145/3276945.3276968
http://dx.doi.org/10.1145/3276945.3276968

[16] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. Not so fast: Analyzing the
performance of webassembly vs. native code. In Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC ’19, pages 107–120, Berkeley, CA, USA, 2019.
USENIX Association. URL: http://dl.acm.org/citation.cfm?id=3358807.3358817.

[17] Andrej Karpathy. Convnetjs: Deep learning in your browser (2014). URL http://cs. stanford.
edu/people/karpathy/convnetjs, 2014.

[18] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The
tensor algebra compiler. Proc. ACM Program. Lang., 1(OOPSLA):77:1–77:29, October 2017. URL:
http://doi.acm.org/10.1145/3133901, doi:10.1145/3133901.

[19] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. Csx: An extended
compression format for spmv on shared memory systems. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP ’11, pages 247–256,
New York, NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/1941553.1941587,
doi:10.1145/1941553.1941587.

[20] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. Smat: An input adaptive auto-tuner
for sparse matrix-vector multiplication. In PLDI’13, pages 117–126. ACM, 2013.

[21] Weifeng Liu and Brian Vinter. Csr5: An efficient storage format for cross-platform sparse
matrix-vector multiplication. In ICS’15, pages 339–350. ACM, 2015.

[22] John Mellor-Crummey and John Garvin. Optimizing sparse matrix-vector product computations
using unroll and jam. The International Journal of High Performance Computing Applications,
18(2):225–236, 2004. doi:10.1177/1094342004038951.

[23] B. Neelima, G. Ram Mohana Reddy, and Prakash S. Raghavendra. Predicting an optimal sparse
matrix format for spmv computation on gpu. In IPDPSW’14, pages 1427–1436. IEEE Computer
Society, 2014.

[24] Nikhil Thorat, Daniel Smilkov, and Charles Nicholson. TensorFlow.js - A WebGL accelerated browser
based JavaScript library for training and deploying ML models. URL: https://js.tensorflow.org.

[25] E. Nurvitadhi, A. Mishra, and D. Marr. A sparse matrix vector multiply accelerator for support
vector machine. In 2015 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), pages 109–116, 2015. doi:10.1109/CASES.2015.7324551.

[26] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector multiplication. In
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, SC ’99, New York, NY, USA,
1999. ACM. URL: http://doi.acm.org/10.1145/331532.331562, doi:10.1145/331532.331562.

[27] Yousef Saad. Sparskit: a basic tool kit for sparse matrix computations. https:

//www-users.cs.umn.edu/~saad/software/SPARSKIT/, 1994.

[28] Prabhjot Sandhu, David Herrera, and Laurie Hendren. Sparse matrices on the web: Charac-
terizing the performance and optimal format selection of sparse matrix-vector multiplication in
javascript and webassembly. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes, ManLang ’18, pages 6:1–6:13, New York, NY, USA, 2018. ACM. URL:
http://doi.acm.org/10.1145/3237009.3237020, doi:10.1145/3237009.3237020.

21

http://dl.acm.org/citation.cfm?id=3358807.3358817
http://doi.acm.org/10.1145/3133901
http://dx.doi.org/10.1145/3133901
http://doi.acm.org/10.1145/1941553.1941587
http://dx.doi.org/10.1145/1941553.1941587
http://dx.doi.org/10.1177/1094342004038951
https://js.tensorflow.org
http://dx.doi.org/10.1109/CASES.2015.7324551
http://doi.acm.org/10.1145/331532.331562
http://dx.doi.org/10.1145/331532.331562
https://www-users.cs.umn.edu/~saad/software/SPARSKIT/
https://www-users.cs.umn.edu/~saad/software/SPARSKIT/
http://doi.acm.org/10.1145/3237009.3237020
http://dx.doi.org/10.1145/3237009.3237020

[29] Prabhjot Sandhu, Clark Verbrugge, and Laurie Hendren. A fully structure-driven performance
analysis of sparse matrix-vector multiplication. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering, ICPE ’20, pages 108–119, New York, NY, USA, 2020.
Association for Computing Machinery. URL: https://doi.org/10.1145/3358960.3379131,
doi:10.1145/3358960.3379131.

[30] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on caches.
In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, Supercomputing
’92, pages 578–587, Los Alamitos, CA, USA, 1992. IEEE Computer Society Press. URL:
http://dl.acm.org/citation.cfm?id=147877.148091.

[31] S. Toledo. Improving the memory-system performance of sparse-matrix vector multiplication. IBM
Journal of Research and Development, 41(6):711–725, Nov 1997. doi:10.1147/rd.416.0711.

[32] K. R. Townsend, S. Sun, T. Johnson, O. G. Attia, P. H. Jones, and J. Zambreno. k-nn text
classification using an fpga-based sparse matrix vector multiplication accelerator. In 2015 IEEE
International Conference on Electro/Information Technology (EIT), pages 257–263, May 2015.
doi:10.1109/EIT.2015.7293349.

[33] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically
tuned sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521. IOP
Publishing, 2005.

[34] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang.
Intel math kernel library. In High-Performance Computing on the Intel R© Xeon Phi, pages 167–188.
Springer, 2014.

[35] Y. Wang, H. Yan, C. Pan, and S. Xiang. Image editing based on sparse matrix-vector multiplication.
In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1317–1320, May 2011. doi:10.1109/ICASSP.2011.5946654.

[36] James B. White, III and P. Sadayappan. On improving the performance of sparse matrix-vector
multiplication. In Proceedings of the Fourth International Conference on High-Performance
Computing, HIPC ’97, pages 66–, Washington, DC, USA, 1997. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=523991.938962.

[37] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James
Demmel. Optimization of sparse matrix-vector multiplication on emerging multicore platforms.
In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC ’07, pages 38:1–38:12,
New York, NY, USA, 2007. ACM. URL: http://doi.acm.org/10.1145/1362622.1362674,
doi:10.1145/1362622.1362674.

[38] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages and applications companion,
pages 301–312. ACM, 2011.

22

https://doi.org/10.1145/3358960.3379131
http://dx.doi.org/10.1145/3358960.3379131
http://dl.acm.org/citation.cfm?id=147877.148091
http://dx.doi.org/10.1147/rd.416.0711
http://dx.doi.org/10.1109/EIT.2015.7293349
http://dx.doi.org/10.1109/ICASSP.2011.5946654
http://dl.acm.org/citation.cfm?id=523991.938962
http://doi.acm.org/10.1145/1362622.1362674
http://dx.doi.org/10.1145/1362622.1362674

	Introduction
	Motivation and Related Work
	WebAssembly Parallel SpMV Overview
	WebAssembly SpMV Parallel Infrastructure
	Experimental Testbed
	SpMV Performance and Scalability

	SpMV Optimizations and Sparse Formats
	DIA Format
	ELL Format
	COO Format
	CSR Format

	Sparse Formats and Matrix Structure
	SpMV Performance Comparison
	Intel MKL C
	DIA Format
	ELL Format
	CSR Format

	taco C++

	Conclusion and Future Work

