
McGill University

School of Computer Science

Sable Research Group

Dynamic Metrics for Java

Sable Technical Report No. 2003-1

Bruno Dufour, Karel Driesen, Laurie Hendren and Clark Verbrugge

April 11, 2003

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 4

2 Requirements for Dynamic Metrics 5

3 Kinds of Dynamic Metrics 6

3.1 Value Metrics . 7

3.2 Percentiles . 7

3.3 Bins . 7

3.4 Continuous Metrics . 7

4 Benchmarks 8

5 Dynamic Metrics 8

5.1 Program Size and Structure . 8

5.1.1 Size . 8

5.1.2 Structure . 10

5.2 Data Structures . 11

5.2.1 Array Intensive . 11

5.2.2 Floating-Point Intensive . 12

5.2.3 Pointer Intensive . 13

5.3 Polymorphism . 14

5.3.1 Receiver Polymorphism . 15

5.3.2 Target Polymorphism . 16

5.4 Memory Use . 16

5.4.1 Allocation Density . 16

5.4.2 Object Size Distribution . 17

5.5 Concurrency and Synchronization . 18

5.5.1 Concurrent . 18

5.5.2 Lock Intensive . 19

6 Analyzing Benchmarks 20

7 Optimization Effects 22

7.1 Effect of Transformations on Dynamic Metrics . 22

7.2 Effect of Optimizations on Runtime Performance . 23

8 System for Collecting Dynamic Metrics 24

8.1 Design Objectives . 24

8.2 Design . 25

8.2.1 The JVMPI Agent . 26

8.2.2 The Analysis Back-End . 26

8.3 The Web Interface . 27

9 Related Work 27

1

10 Future Work 28

11 Conclusions 29

2

List of Figures

1 System for collecting metrics (dashed boxes represent components that are not part of the system, but
are displayed for completeness) . 25

List of Tables

I Description of the benchmarks . 9

II Size metrics. 10

III Array metrics. 11

IV Floating point density. 12

V Pointer density measurements. 13

VI Polymorphism metrics. 15

VII Dynamic Memory Metrics . 17

VIII Locking metrics. 19

IX Metrics used for analysis in section 6. 21

X Dynamic Metrics and Runtime Measurements for the Voronoi Benchmark 23

XI All metrics. 32

XII All metrics. 33

3

Abstract

In order to perform meaningful experiments in optimizing compilation and run-time system design, researchers
usually rely on a suite of benchmark programs of interest to the optimization technique under consideration. Programs
are described as numeric, memory-intensive, concurrent, or object-oriented, based on a qualitative appraisal, in some
cases with little justification. We believe it is beneficial to quantify the behaviour of programs with a concise and
precisely defined set of metrics, in order to make these intuitive notions of program behaviour more concrete and
subject to experimental validation. We therefore define and measure a set of unambiguous, dynamic, robust and
architecture-independent metrics that can be used to categorize programs according to their dynamic behaviour in
five areas: size, data structure, memory use, concurrency, and polymorphism. A framework computing some of these
metrics for Java programs is presented along with specific results demonstrating how to use metric data to understand
a program’s behaviour, and both guide and evaluate compiler optimizations.

1 Introduction

Understanding the dynamic behaviour of programs is one important aspect in developing effective new strategies for
optimizing compilers and runtime systems. Research papers in these areas often say that a particular technique is
aimed at programs that are numeric, loop-intensive, pointer-intensive, memory-intensive, object-oriented, concurrent,
and so on. However, there appears to be no well-established standard way of determining if a program fits into any
of these categories. The goal of the work presented in this paper was to develop dynamic metrics that can be used
to measure relevant runtime properties of programs, with the ultimate goal of establishing some standard metrics that
could be used for quantitative analysis of benchmark programs in compiler research.

To be useful, dynamic metrics should provide a concise, yet informative, summary of different aspects of the
dynamic behaviour of programs. By concise, we mean that a small number of numeric values should be enough to
summarize the behaviour. For example, a complete profile of a program would not be a concise metric, whereas
the fact that 90% of program execution is accounted for by 5% of the methods is a concise metric. By informative,
we mean that the metric must measure some program characteristic of relevance to compiler or runtime developers,
and the metric should differentiate between programs with different behaviours. For example, computing the ratio of
number of lines of code to number of lines of comments does not capture anything about program behaviour, and is
not an informative metric, for our purposes.

In order to get a good overview of program characteristics of interest to compiler and runtime systems developers,
we first studied the typical dynamic characteristics reported in papers presented over the last several years in the key
conferences in the area. Although we did find many interesting experiments that suggest potential dynamic metrics,
we also found that many summaries of benchmarks and results focused on static program measurements (#lines of
code, # of methods, # loops transformed, # methods that are inlinable, # number of locations pointed to at dereference
sites, and so on). Based on our own experiences, we suspect that this focus on static, rather than dynamic, metrics
is at least partly because the static metrics are much easier to compute. Thus, one important goal of this paper is to
provide both a methodology to compute the dynamic metrics and a database of dynamic metrics for commonly used
benchmarks.

In our development of dynamic metrics we also discovered that different program behaviours need to be summa-
rized in different ways. For example, if one is measuring the behaviour of virtual method calls in an object-oriented
language like Java, one summary might be the average number of target methods per virtual call site. However,
compiler developers are usually most interested in the special cases where the virtual call is monomorphic (good for
inlining) or perhaps corresponds to a very small number of target methods (good for specialization). Thus, a much
more relevant metric might be what percentage of virtual calls correspond to 1, 2, or more than 2, targets. Thus, in this
paper we define three basic ways of reporting dynamic metrics, values, bins, and percentiles, and we suggest which
type is most appropriate for each situation.

Based on our overview of the literature, and our own experiences and requirements, we have developed many
dynamic metrics, grouped under five categories: (1) size and structure of programs, (2) data structures, (3) polymor-
phism, (4) memory and (5) concurrency. In this paper we provide definitions for metrics in each category, and we
provide specific examples of computing some of these metrics on well known benchmarks.

It is of course rather critical that the metrics we define do capture in a quantitative sense the qualitative aspects of a
program. To demonstrate utility and relevance of the metrics we define, we show how one might analyze and compare

4

several benchmarks and relate the numerical results back to their qualitative and relative behaviour. The result is a
quantitatively justifiable description and understanding of a benchmark, one that often provides insights that would
not be apparent without a very detailed understanding of the benchmark (and runtime library) activity.

Further evidence of the value and potential use of our metrics is given by describing how one can use metric
values to both guide and evaluate actual compiler optimizations. Results in this area are very encouraging; metric data
not only corresponds well to the expected optimization, but can also reveal interesting and surprising optimization
behaviour and interactions. Use of metrics thus simplifies and validates investigations and evaluation of compiler
optimizations.

Computing the dynamic metrics turned out to be more difficult than we first anticipated. For this paper we have
developed a framework for computing the metrics for Java programs. Our framework consists of two major pieces,
a front-end JVMPI-based agent which produces relevant events, and a back-end which consumes the events and
computes the metrics.

The major contributions of this paper include:

• We have identified the need to have dynamic metrics for compiler and run-time system developers and discussed
why having such metrics would be of benefit.

• We provide an analysis of the different ways of presenting metrics and a discussion the general requirements for
good dynamic metrics.

• We provide a detailed discussion of five groups of specific metrics that should be of interest to compiler writers
and runtime developers along with specific examples of the metrics on benchmark programs.

• We provide a detailed discussion of three representative benchmarks in different categories, illustrating how
the metrics relate to qualitative program behaviour, and how they can reveal behaviour that would normally be
difficult to ascertain without a lengthy benchmark investigation.

• We illustrate the utility and relevance of our metrics in the context of compiler optimization, showing how to
use our metrics to both guide and evaluate compiler optimizations through real examples.

• We present our framework for computing the metrics for Java programs, and a user-friendly web-based environ-
ment for presenting the metric data.

The rest of this paper is organized as follows. Section 2 discusses the requirements of good dynamic metrics
and Section 3 presents three different ways of presenting the metrics. Section 4 describes our benchmark suite. In
Section 5 we introduce five groups of dynamic metrics, with specific examples of metrics for each group, and we
describe how the metric data relates to benchmark behaviour. Sections 6 and 7 demonstrate how to use the metrics
to examine and compare benchmarks, and how the metric data can be related to the effects of common compiler
optimizations. Section 8 summarizes the framework we used for collecting dynamic metrics and how results are
presented. In Section 9 we provide an overview of related work and in Section 10 we address limitations and further
improvements to our current framework. Finally, Section 11 gives conclusions.

2 Requirements for Dynamic Metrics

Dynamic metrics need to exhibit a number of characteristics in order to render clear and comparable numbers for any
kind of program. The following is a non-exhaustive list of desirable qualities.

• Unambiguous: one lesson learned from static metric literature is that ambiguous definitions lead to unusable
metrics. For instance, the most widely used metric for program size is ’lines of code’ (LOC). LOC is sufficient
to give a ball park measure of program size. However, without further specification it is virtually useless to
compare two programs. Are comments and blank lines counted? What is the effect of pretty-printing? How
do you compare two programs from different languages? Within a given language, the LOC of a pretty-printed
version of a program with comments and blank lines removed would give an unambiguous measurement that
can be used to compare two programs.

5

• Dynamic: obviously a dynamic metric needs to be dynamic. In other words, the metric should measure an
aspect of a program that can only be obtained by actually running the program. In compiler optimization papers,
static metrics are often given because they are easier to obtain. They tend to relate to the cost of a particular
optimization technique (e.g. the number of virtual call sites for a de-virtualization technique), whereas dynamic
metrics relate to the relevance of a technique (e.g. the proportion of dynamically executed monomorphic call
sites) While dynamic metrics usually require more work than static measurements, the resulting numbers will be
more meaningful since they will not change by adding unexecuted code to the program. Dead code should not
influence the measurement. We will refer to instructions that are executed at least once as instructions touched,
or live code.

• Robust: the other side of the coin of using dynamic measurements is the possibility that those numbers are
heavily influenced by program behaviour. Where static numbers may have reduced relevance because non-
executed code influences the numbers, dynamic metrics may have reduced relevance because the measured
program execution may not reflect common behaviour. Unfortunately, one simply cannot guarantee that a
program’s input is representative. However, one can take care to define metrics that are robust with respect
to program behaviour. In other words, a small change in behaviour should cause a correspondingly small
change in the resulting metric.

In particular, a robust metric should not be overly sensitive to the size of a program’s input. Total number of
instructions executed is not a robust metric, since a bubble sort, for example, will execute four times as many
instructions if the input size is increased by a factor of two. Number of different instructions executed is more
robust since the size of the input will not drastically change the size of the part of the program that is executed.

To categorize aspects of program behaviour, absolute numbers are usually misleading and non-robust. For
example, the total amount of allocated bytes, a metric often reported in the literature, says little about the
memory-hungriness of a program. Instead one should use a relative metric such as bytes allocated per executed
byte code. Merely running a program twice as long will have less effect on a relative metric.

• Discriminating: a large change in behaviour should cause a correspondingly large change in the resulting
metric. Dynamic metrics should reflect changes in program behaviour. In this study we collected a large
number of metrics for each aspect of program behaviour, many of which do not appear in this paper, because
they were not the most discriminating of the tested set. For example, the number of loaded classes would seem
a fairly good indication of program size, until one observes that any Java program loads at least 282 classes.
Small applications (about half of our benchmark suite) load between 282 and 292 classes. Therefore this metric
cannot be meaningfully used to compare the size of small programs.

• Machine-independent: since the metrics pertain to program behaviour, they should not change if the measure-
ment takes place on a different platform (including virtual machine implementation). For example, number of
objects allocated per second is a platform-dependent metric which disallows comparisons between measure-
ments from different studies, because it is virtually impossible to guarantee that they all use identical platforms.
On the other hand, number of objects allocated per 1000 executed bytecode instructions (kbc), is a platform-
independent metric. In general, metrics defined around the byte code as a unit of measurement are machine-
independent for Java programs.

3 Kinds of Dynamic Metrics

While there are many possible metrics one could gather, we have found that the most commonly described metrics,
and the ones which seem most useful compiler optimization, tend to be belong to just a few basic categories. This
includes the ubiquitous single value metrics such as average, hot spot detection metrics, and metrics based on discrete
categorization; we also mention the possibility of more detailed continuous “expansions” of these metrics. It is of
course possible to design and use a metric that does not fit into these categories; these initial metric kinds, however,
enable us to at least begin to explore the various potential metrics by considering whether an appropriate metric exists
in each of our categories.

6

3.1 Value Metrics

The first kind of metric we present is a standard, usually one value answer. Many data gatherers, for instance, will
present a statistic like average or maximum as a rough indicator of some quantity; the idea being that a single value
is sufficiently accurate. Typically this is intended to allow one to observe differences in behaviour before and after
some optimization, smoothing out unimportant variations. For example, a value such as running time is perhaps best
presented as an average over several executions. Value metrics appear in almost every compiler research article that
presents dynamic measurements.

3.2 Percentiles

Frequently in compiler optimization it is important to know whether the relative contributions of aspects of a program
to a metric are evenly or unevenly distributed among the program elements. If a few elements dominate, then those
can be considered “hot,” and therefore worthy of further examination or optimization. Knowing, for example, that
2% of allocation sites are responsible for 90% of allocated bytes indicates that those top 2% of allocation sites are
of particular interest. For comparison, a program where 50% of allocation sites contribute 90% of allocated bytes
indicates a program that has a more even use of allocation, and so intensive optimization of a few areas will be less
fruitful.

Similar metrics can be found in compiler optimization literature; e.g., the top x% of most frequently-executed
methods [23].

3.3 Bins

Compiler optimization is often based on identifying specific categories of measurements, with the goal of applying
different optimization strategies to different cases. A call-site optimization, for instance, may use one approach for
monomorphic sites, a more complex system for polymorphic sites of degree 2, and may be unable to handle sites with
a higher degree of polymorphism. In such a situation single value metrics do not measure the situation well, e.g.,
computing an average number of types per call site may not give a good impression of the optimization opportunities.
An appropriate metric for this example would be to give a relative or absolute value for each of the categories of
interest, 1, 2, or ≥3 target types. We refer to these kinds of metrics as “bins,” since the measurement task is to
appropriately divide elements of the sample space into a few categories or bins.

There are many examples of bins in the literature; e.g., categorizing runtime safety checks according to type (null,
array, type) [19], the % of loops requiring less than x registers [32].

3.4 Continuous Metrics

Most of our metrics have continuous analogues, where the value, bin or percentile calculations are calculated at various
(or all) partial stages of execution, and plotted as a graph. Motivation for continuous metrics arises from the inherent
inaccuracy of a single, summary metric value in many situations: a horizontal line in a graph can have the same overall
average as a diagonal line, but clearly indicates very different behaviour.

Additional descriptive values like standard deviation can be included in order to allow further refinement to a single
metric datum; unfortunately, secondary metrics are themselves often inadequate to really describe the difference in
behaviour, requiring further tertiary metrics, and so on. Specific knowledge of other aspects of the metric space may
also be required; correct use of standard deviation, for example, requires understanding the underlying distribution
space of result values. Analysis situations in compiler optimization design may or may not result in simple normal
distributions; certainly few if any compiler researchers verify or even argue that property.

In order to present a better, less error-prone metric for situations where a single number or set of numbers is
potentially inaccurate, a straightforward solution is to present a graph of the metric over a continuous domain (like
time, or bytecode instructions executed). Biased interpretations based on a single value are thus avoided, and an
astute reader can judge the relative accuracy or appropriateness of the single summary metric themselves. Continuous
metrics can then be seen as an extension to metrics, giving a more refined view of the genesis of a particular value.

7

Our focus is on establishing general characterizations of benchmarks that one could use as a basis or justification for
further investigation, so we do not explicitly present any actual continuous metrics here.

4 Benchmarks

Table I lists the benchmarks that were used in this study, along with a short description of each of them. Each
benchmark is also assigned an abbreviated name.

5 Dynamic Metrics

In sections 2 and 3 we have outlined three different kinds of dynamic metrics (value, percentile and bin), and some
general requirements for good dynamic metrics. In this section we present some concrete dynamic metrics that we
feel are suitable for summarizing the dynamic behaviour of Java programs (although many of the metrics would also
apply to other languages).

In developing our dynamic metrics we found that they fit naturally into five groups: (1) program size and structure,
(2) measurements of data structures, (3) polymorphism, (4) dynamic memory use and (5) concurrency. In the following
subsections we suggest specific metrics for each category, and discuss appropriate benchmark data.

5.1 Program Size and Structure

Dynamic metrics for program size and structure try to answer the question: how large is a program and how complex
is its control structure?

5.1.1 Size

Before dynamic loading became commonplace, an approximation of this metric was commonly provided by the size
of the executable file. With dynamic loading in place, the program must be run to obtain a useful measurement of its
size. Table II shows several metrics related to a program’s size for four distinctive benchmarks: the empty program
(EMPTY), a small computational benchmark (COEF) and the well-known Compress and Javac benchmarks. We define
these metrics below and discuss their robustness, discriminating power and machine-independence. The metrics are
also shown in the comprehensive tables in the appendix for all benchmarks.

size.appLoadedClasses.value The number of application-specific classes loaded. This metric gives a rough,
intuitive idea of the size of a program, as shown in Table II. However, due to a large variability in the code size of
loaded classes, it is ambiguous. For example, the LPACK benchmark, loads only one application class but touches
more bytecode instructions than the Omst benchmark, which loads six classes. The standard libraries are excluded
from this measurement, since they distort the numbers (java.*, javax.*, sun.*, com.sun.*,... etc.). For the sake of
interest, Table II shows all metrics discussed in this section for application code (size.app* metrics, top of Table II)
and for all code includings standard libraries (size.* metrics, bottom of Table II). It is clear that measurements that
include libraries are not discriminating enough. size.loadedClasses.value starts at 275 for the EMPTY benchmark,
rises to 286 for COEFF and to 310 for COMP. Only JAVAC and SOOT really stand out with 471 and 819 total loaded
classes. Moreover, size.loadedClasses.value is not robust, since it is influenced by the platform on which the code
is executed. In preliminary experiments we used a different virtual machine, which loaded 286 classes for EMPTY.
Changes in platform therefore influence this measurement more than changes in benchmark program. size.app-
LoadedClasses.value is robust and gives the same measurement regardless of platform.

8

Benchmark Abbr. Description Configuration

Cellular Automaton CA One-dimensional, two-state cellular automaton 100 cells, 20 steps
Coefficients COEFF Computes the coefficients of the least square polynomial

curves of order 0 to n for the set of points using a pseudoin-
verse.

Max order 20, 114 points

Empty EMPTY Only returns from its main method N/A
Hello World HELLO Only prints a greeting message before returning N/A
JLex JLEX Lexical analyzer generator Syntax describing the commands

of a simple media server
Linpack LPACK Numerically intensive program; commonly used to measure

floating point performance
N/A

Roller Coaster RC Classical Roller Coaster concurrency problem. A cart waits
for passengers and goes for a ride, and repeats the process.

7 passengers, 50 rides, 4 passen-
gers per cart

SableCC SBLCC Compiler generator Jimple grammar (3-address repre-
sentation of Java bytecode)

Soot SOOT Java optimization framework. Converts java class files to a
3-address intermediate representation.

Jimple subpackage (a subset of it-
self)

Telecom TCOM Simulates users placing calls and being charged according to
their duration.

15 users, 5 threads making calls

Volano Client VOLCL Client side of a chat room simulation 3 chat rooms, depth 4, 2 iterations.
Volano Server VOLS Server side of a chat room simulation 3 chat rooms, depth 4, 2 iterations.

JOlden Suite
Barnes-Hut Obh Solves the N-body problem, where the movement of the bod-

ies has to be simulated based on the gravitational forces that
they exert on each other.

4K bodies

BiSort Obsrt Performs two bitonic sorts, one forward and one backward. 128K integers
Em3d Oem3d Simulates the propagation electro-magnetic waves in a 3D

object using nodes in an irregular bipartite graph to represent
electric and magnetic field values.

2000 nodes of out-degree 100

Health Ohth Simulates the Columbian health care system, where villages
generate a stream of patients, who are treated at the local
health care center or referred to a parent center. Nodes in a
4-way tree are used to represent hospitals.

5 levels, 500 time steps

MST Omst Computes the minimum spanning tree of a graph 1K nodes
Perimeter Operm Computes the total perimeter of a region in a binary image

represented by a quadtree. The benchmark creates an image,
counts the number of leaves in the quadtree and then com-
putes the perimeter of the image using Samet’s algorithm.

64K image

Power Opow Solves the Power System Optimization Problem, where the
price of each customer’s power consumption is set so that the
economic efficiency of the whole community is maximized.

10000 customers

TSP Otsp Computes an estimate of the best Hamiltonian circuit for the
Travelling Salesman Problem.

10000 cities

Voronoi Ovor Computes the Voronoi Diagram of a set of points. 20000 points
SPECjvm98 Suite (all size 100, run outside the SPEC harness)

_201_compress COMP A high-performance application to compress/uncompress
large files; based on the Lempel-Ziv method(LZW)

_202_jess JESS A Java expert shell system based on NASA ’s CLIPS expert
shell system

_205_raytrace RAY Ray tracer application
_209_db DB Performs several database functions on a memory-resident

database
_213_javac JAVAC JDK 1.0.2 Java compiler Compiles JavaLex
_222_mpegaudio MPEG MPEG-3 audio file compression application
_227_mtrt MTRT Dual-threaded version of _205_raytrace
_228_jack JACK A Java parser generator with lexical analyzers (now JavaCC) Generates itself 16 times

Table I: Description of the benchmarks

9

Metric EMPTY HELLO Omst LPACK Operm COEFF COMP SOOT JAVAC

size.appLoadedClasses.value 1 1 6 1 10 6 22 532 175
size.appLoad.value 4 7 727 1056 855 2374 6555 45446 44664
size.appRun.value 0 4 600 749 777 975 5084 26239 26267
size.appHot.value 0 4 175 59 393 57 396 2759 2759

size.appHot.percentile n/a 100% 29% 8% 51% 6% 8% 11% 11%

size.loadedClasses.value 275 275 281 278 285 286 310 819 471
size.load.value 71818 71821 76302 77932 76430 80292 90762 126901 133172
size.run.value 7343 7793 10112 10700 10274 12880 14507 38404 37823
size.hot.value 1006 1027 186 117 398 116 396 3323 2258

size.hot.percentile 14% 13% 2% 1% 4% 1% 3% 9% 6%

Table II: Size metrics.

size.appLoad.value The number of bytecode instructions loaded in application-specific classes. Whenever a
class is loaded, its size in bytecode instructions is added to a running total. Including the standard libraries in
size.load.value again distorts this metric, rendering it insufficiently discriminative. size.appLoad.value is the clos-
est equivalent to the static size of an executable. It is less ambiguous than size.appLoadedClasses.value, which is
illustrated by the difference between JAVAC (175 loaded classes, 44664 loaded instructions) and SOOT (532 classes,
45446 loaded instructions). size.appLoad.value is less sensitive to the different programming styles in these bench-
marks.

size.appRun.value The number of bytecode instructions touched. This metric sums the total number of bytecode
instructions which are executed at least once in the entire duration of the program’s execution. Run size is smaller
than load size, since dead code is not counted. We believe that this metric combines the right amount of robustness
and discriminative power. Table II is sorted left-to-right in ascending order with respect to this metric. Separate
experiments showed that size.appRun.value is robust with respect to program input: different executions did not
result in substantial differences, and did not upset the ordering. It is also robust with respect to various optimizations
we performed (see Section 7). Although byte-code-level optimizations changed the number of touched instructions,
they did not change the ordering between benchmarks. size.appRun.value clearly discriminates benchmarks accord-
ing to size, and can be used to provide a classification in five categories: XS,S,M,L,XL. Less than 100 bytecodes
touched, for example HELLO or EMPTY, fall in the XS category. Between 100 and 2000 constitutes the S category
(Omst,LPACK,Operm,COEFF). Between 2000 and 10K is the M category (COMP), and between 10K and 50K is
the L category (SOOT,JAVAC). The XL category with more than 50K bytecodes touched is reserved for very larger
programs, such as Forte.

size.appHot.value The number of bytecode instructions responsible for 90% of execution. This metric is obtained
by counting the number of times each bytecode instruction is executed, sorting the instructions by frequency, and
reporting the number of (most frequent) bytecodes which represent 90% of all executed bytecodes. While this metric
is discriminating and classifies the benchmarks in different sizes, it lacks robustness. We found that changing a
program’s input had a large effect on size.appHot.value. For example, SOOT’s 2756 hot bytecodes drop to 1191
with different input.

A separate, derived metric, size.appHot.percentile measures the proportion of code responsible for 90% of
execution, i.e. the size of the program hot spot relative to its whole size, or size.appHot.value / size.appRun.value.
As with size.appHot.value, this metric is sensitive to program input.

5.1.2 Structure

We also propose metrics to characterize the complexity of program structure. Unfortunately, limitations of JVMPI
do not allow us to provide actual measurements at this time. These metrics are obtained by measuring instructions
that change control flow (if, switch, invokeVirtual) and therefore need to be measured within an instrumented virtual
machine. A program with a single large loop is considered simple, as opposed to a program with multiple loops and/or

10

many control flow changes within a singe loop.

structure.controlDensity.value The total number of control bytecodes touched divided by the total number of
bytecodes touched.

structure.changingControlDensity.value The total number of control bytecodes that change direction at least
once divided by the total number of bytecodes touched. This measurement is smaller than the previous one, since
many control bytecodes never change direction.

structure.changingControlRate.value The number of changes in direction divided by the number of control
instruction executions. This is the most dynamic measurement. It is the equivalent of the miss rate of the simplest
dynamic hardware branch predictor which predicts that a branch will follow the same direction as the last time it was
executed. The metric assumes that the branch history table, as this prediction scheme is known [21], is free from
interference or capacity misses.

Of these metrics, we expect structure.ControlDensity.value to best characterize the complexity of program struc-
ture. It is the reciprocal of average basic block size.

5.2 Data Structures

The data structures and types used in a program of of frequent interest. Optimization techniques change significantly
for programs that rely heavily on particular classes of data structures; techniques useful for array-based programs, for
instance are different from those that may be applied to programs building dynamic data structures.

5.2.1 Array Intensive

Many “scientific” benchmarks are deemed so at least partially because the dominant data structures are arrays. The
looping and access patterns used for array operations are then expected to provide opportunities for optimization.
This is not entirely accurate since array intensity can certainly exist without necessarily computing arithmetic values
based on arrays; it is however, an important indicator. Moreover, array access in Java has other opportunities for
optimization, e.g., array bounds check removal [25].

Determining if a program is array intensive will then be a problem of determining if there are a relatively significant
number of array accesses. This is tracked by examining traces for specific array operation bytecodes.

There are complications to such a simple approach in the context of Java. Not only is the separation between
application code and runtime libraries important, but in Java multi-dimensional arrays are stored as arrays of arrays,
and so the number of array operations required for each multi-dimensional array access is magnified. This skewing
factor can be eliminated by ignoring array accesses where the array element is an array itself (this is planned for future
work). Evidence of such skewing is given later, in section 6.

Metric COEFF LPACK CA Obh Opow SBLCC EMPTY

data.appArrayDensity.value 160.404 157.775 139.890 105.947 97.433 38.860 n/a
data.appCharArrayDensity.value 0.0 0.0 15.494 0.0 0.0 0.0 n/a
data.appNumArrayDensity.value 79.486 148.385 124.334 97.577 96.487 11.209 n/a

data.appRefArrayDensity.value 80.713 9.389 0.015 4.383 0.162 13.274 n/a
data.arrayDensity.value 150.899 152.085 31.008 105.891 93.418 43.552 73.413

data.charArrayDensity.value 1.550 2.123 10.333 0.012 0.017 6.547 32.771
data.numArrayDensity.value 75.000 140.802 14.604 97.513 92.491 9.416 34.697

data.refArrayDensity.value 73.726 8.881 0.398 4.380 0.156 15.636 1.844

Table III: Array metrics.

11

data.[app]arrayDensity.value This is a metric describing the relative importance of array access operations.
For uniformity, we express it as the average number of array access operations per kbc of executed code. Further
refinement of the metric can be done according to the type of the array being accessed: data.[app]charArrayDen-
sity.value (for character arrays), data.[app]numArrayDensity.value (for arrays of primitive numerical types), and
data.[app]refArrayDensity.value for arrays of non-primitive numerical types.

Example metric calculations for array densities are given in table III. As expected, programs based on arrays
(determined by inspection) rank high: Coefficients, Linpack, etc. The application versus whole program variations
of this metric also show the relative impact of startup and library code; the Cellular Automaton (CA) program ranks
very high in application only array density, but below the empty program when considered as a whole program. This
indicates that while the CA code itself makes extensive use of arrays, and even startup has a significant use of arrays,
that the library methods the CA program calls during runtime have a limited use of arrays. In fact, while the CA code
does consist almost entirely of array operations, it also emits an output description of its current state at each iteration,
and the amount of code involved in doing this I/O significantly dilutes the relative number of array operations. An
optimization that reduces the cost of array operations (such as removing bounds checks) may thus not realize as much
overall benefit as a naive understanding of the algorithm/design of the benchmark may indicate.

In Java, string operations usually reduce to operations on character arrays, and so one would expect string usage
would skew results here (the data.[app]charArrayDensity.value metric shows the number of character array opera-
tions per kbc). This turns out not to be the case—intense usage of character arrays is largely confined to startup and
library code. Since the actual character array for a string is a private field in the String class, almost all such operations
are necessarily contained1 in the library code. Interestingly, the startup code is by far the most intense user of char
arrays; none of our benchmarks of any significant duration/size actually have a char array density larger than the empty
program (even the benchmarks that do parsing, such as javac and SableCC).

The threshold for considering a program array intensive is not as clear as with some other metrics; our benchmarks,
application or whole, tend to be fairly evenly distributed over the range of reasonable density values. In our estima-
tion, an application density in the high 90’s identifies the majority of what one would intuitively call array intensive
programs.

5.2.2 Floating-Point Intensive

Programs that do numerous floating point calculations also tend to be considered “scientific.” Different optimizations
apply though; including the choice of appropriate math libraries optimized for speed or compatibility, opportunities
for more aggressive floating point transformations and so on. Fortunately, floating-point operations are quite rarely
used in most applications that do not actually focus on floating-point data, and so identifying floating-point intensive
benchmarks is relatively straightforward.

Benchmark data.floatDensity.value

Opow 474.917
Otsp 471.634

LPACK 285.886
Obh 245.668

Ovor 226.361
COEFF 202.857
Oem3d 13.512

EMPTY 2.041
SOOT 1.110

JAVAC 0.072

Table IV: Floating point density.

1Copies of the char array can of course be created and used outside the library, but in the benchmarks we have analyzed this does not occur
often.

12

data.[app]floatDensity.value This single value describes the relative importance of floating-point operations. It
is computed as the number of floating point operations (including all bytecode instructions that operate on either float
or double types) per kbc of executed code.

As can be seen from table IV, high float density values correlate well with benchmarks or algorithms that have
been traditionally considered to rely on numeric, floating point data (JOlden-Power, JOlden-TSP, Coefficients, Linpack
etc), and low values generally correspond to non-numeric benchmarks (javac, Soot, etc). Some apparently-numeric
benchmarks are pruned out by this metric; the JOlden-Em3d benchmark, for example. While this program does use
floating point data in an iterative calculation, by default it only computes one iteration of the algorithm—a relatively
significant proportion of the program is devoted to constructing and traversing the (irregular) graph structure that
supports that computation, and this is very non-numeric.

We have not given the application only version of this metric here (the website, discussed in section 11, has a more
complete set of metrics). Note that the empty program has a very low float density value of 2.041, which necessarily
dilutes the relative float density of very small floating point benchmarks considered in their startup and library context.
Even in the whole program metric, though, the division between float intensive and not is quite sharp: the 226.361
value for JOlden-Voronoi drops to 13.512 for JOlden-Em3d, and then rapidly reaches small single digits for less float
intensive programs. From this we conclude that a data.floatDensity.value of at least 100 is a good indicator of
floating-point intensive program.

With respect to identifying “scientific” benchmarks, it is useful to know which benchmarks combine floating point
intensity with array usage. In our benchmark list this includes Coefficients, JOlden-BH, JOlden-Power, and Linpack
(see tables III and IV. Note that while these combine intensive floating point usage with intensive array usage, they
do not necessarily contain perfect loops over arrays. JOlden-BH, for instance, uses numerous arrays and vectors, but
computationally is largely based on traversing and modifying a tree structure. Structural metrics that would aid in
identifying loop intensity are described in section 5.1.2.

5.2.3 Pointer Intensive

Dynamic data structures are manipulated and traversed through pointers or object references. Programs that use
dynamic data structures are thus expected to perform a greater number of object dereferences leading to further objects
then a program which uses local data or arrays as primary data structures; a basic metric can be developed from
this observation. Of course a language such as Java which encourages object usage can easily skew this sort of
measurement: an array-intensive program that stores array elements as objects (e.g., Complex objects) will result in as
many object references as array references. A further complication is due to arrays themselves; arrays are considered
objects in Java, and so an array access will appear as an object access unless special care is taken to differentiate them.

Below we define a few metrics that would measure pointer intensity. The first few are based on a naive, but easily
computable method for assessing pointer usage. They do not different between objects and arrays.

Metric CA COMP JAVAC SBLCC LPACK EMPTY

pointer.appNonrefFieldAccessDensity.value 218.661 145.913 132.827 58.648 0.001 n/a
pointer.appRefFieldAccessDensity.value 0.309 43.662 75.522 106.247 0.0 n/a
pointer.nonrefFieldAccessDensity.value 123.373 145.900 114.120 84.887 3.266 47.165

pointer.refFieldAccessDensity.value 25.287 43.658 49.778 72.381 0.428 6.245

Table V: Pointer density measurements.

pointer.[app]RefFieldAccessdensity.value and pointer.[app]NonrefFieldAccessDensity.value. These met-
rics give a coarse indication of the importance of pointer references in a program. The former is computed as the av-
erage number of field access operations that reach an object field, and the latter as field accesses that reach a primitive
field, all per kbc of executed code. In a pointer intensive program, one expects that the effect of following pointers
references to object fields (as opposed to references to primitive fields) will result in a relatively high pointer.[app]-
RefFieldAccessDensity.value.

Examples of this metric are shown in table V. From this, the CA program is clearly very not pointer intensive—it

13

has a very high application primitive field access density (218.661), but an extremely low reference field access density
(0.309). Inversely, SableCC has an extremely higher reference density (106.247), and a moderate primitive field access
density (58.648). Linpack has almost no field accesses of either kind; it is a very non-object-oriented benchmark that
creates just one object with only one field (a primitive type).

The nature of javac and compress is less clear. In the case of compress, which one would expect not to be pointer
intensive, the high reference field access density is (we strongly suspect) largely due to accessing buffers and arrays of
constants. The coarseness of this metric thus seems adequate to identify applications that are unambiguously pointer
or non-pointer intensive, but is not accurate enough to identify pointer-intensity in all cases, particularly in the face of
arrays as objects.

We define potentially more accurate metrics below, but limitations of JVMPI make these difficult to compute with
our current system—these are intended for future investigation with an instrumented virtual machine, and we have not
yet measured all these values.

Pointer polymorphism is typically measured as an average or maximum number of target addresses per pointer,
and symmetrically number of pointers per target address (Cheng and Hwu argue that both are required for a more
accurate measurement [9]). This can be computed as a value metric; a bin version can also be appropriate, and is
defined following.

pointer.pointsToCount.value This metric along with the symmetric pointer.pointsFromCount.value metric
measures the average number of distinct objects referenced by each object references and the average number of
object references directed at each object respectively.

pointer.pointsTo.bin A pointer analysis system is most interested in identifying pointers that can be directed at
one address, possibly two, but further divisions are often unnecessary. A bin metric can provide a more appropriate
view in this case. Each bin gives the percentage of object references that referenced 1 object, 2 objects, and≥3 objects.
The symmetric companion bin, pointer.pointsFrom.bin, has bins for the percentage of objects that had 1, 2 or ≥3
references.

5.3 Polymorphism

Polymorphism is a salient feature of object-oriented languages like Java. A polymorphic call in Java takes the form of
an invokeVirtual or invokeInterface byte code. The target method of a polymorphic call depends on the run time type of
the object receiving the call. In programs that do not employ inheritance, this target never changes and no call is truly
polymorphic. The amount of polymorphism can therefore serve as a measurement of a program’s object-orientedness.

Table VI presents polymorphism metrics for eight distinctive benchmarks. The first three metrics measure the
number of potentially polymorphic instructions, but say nothing about whether this polymorphism is realized (i.e.
whether the target method or the receiver type of an invokeVirtual actually changes at run time):

polymorphism.[app]CallSites.value The total number of different call sites executed. This measurement does
not include static invoke instructions, but does count virtual method calls with a single receiver. Since in Java all
methods are by default virtual, even if they only have a single implementation, this metric does not reflect true poly-
morphism. Instead, it provides a measurement of program size. From a compiler optimization point of view, this
metric gives an indication of the amount of effort required to optimize polymorphic calls, but not of their relevance.
polymorphism.appCallSites.value, which counts only application-specific call sites, is more discriminating than
polymorphism.callSites.value, which counts library calls as well. In the remainder we will only look at application-
specific metrics.

polymorphism.appInvokeDensity.value The number of invokeVirtual and invokeInterface calls per kbc exe-
cuted. This metric estimates the importance of invoke bytecodes relative to other instructions in the program, indicating
the relevance of optimizing invokes. In COMP, only 16 out of 1000 bytecodes are invokes, indicating that non-static
invokes are not importance to a program’s performance. In contrast, VOLS executes 120 invokes per 1000 bytecodes,

14

Metric COEFF COMP JESS Obh VOLS SOOT JAVAC Operm

polymorphism.appCallSites.value 84 54 737 128 524 3229 2617 48
polymorphism.callSites.value 676 606 1309 638 2589 3845 3234 558

polymorphism.appInvokeDensity.value 66.0 16.5 59.2 18.7 120.1 70.8 72.3 45.9

polymorphism.appReceiverArity.bin (1) 100.0% 98.1% 98.4% 96.9% 98.1% 93.2% 78.4% 68.8%
polymorphism.appReceiverArity.bin (2) 0.0% 1.9% 0.8% 3.1% 0.8% 3.0% 9.7% 0.0%

polymorphism.appReceiverArity.bin (3+) 0.0% 0.0% 0.8% 0.0% 1.1% 3.8% 12.0% 31.2%

polymorphism.appReceiverArityCalls.bin (1) 100.0% 100.0% 99.2% 86.7% 85.5% 78.6% 72.6% 36.9%
polymorphism.appReceiverArityCalls.bin (2) 0.0% 0.0% 0.1% 13.3% 4.3% 15.3% 15.1% 0.0%

polymorphism.appReceiverArityCalls.bin (3+) 0.0% 0.0% 0.8% 0.0% 10.2% 6.1% 12.3% 63.1%

polymorphism.appReceiverCacheMissRate.value 0.0% 0.0% 0.4% 3.0% 6.1% 4.4% 7.2% 41.1%

polymorphism.appTargetArity.bin (1) 100.0% 98.1% 98.9% 96.9% 99.2% 95.2% 89.7% 77.1%
polymorphism.appTargetArity.bin (2) 0.0% 1.9% 0.4% 3.1% 0.2% 2.1% 3.8% 0.0%

polymorphism.appTargetArity.bin (3+) 0.0% 0.0% 0.7% 0.0% 0.6% 2.8% 6.5% 22.9%

polymorphism.appTargetArityCalls.bin (1) 100.0% 100.0% 99.2% 86.7% 94.5% 83.7% 92.0% 42.8%
polymorphism.appTargetArityCalls.bin (2) 0.0% 0.0% 0.0% 13.3% 0.7% 13.7% 1.9% 0.0%

polymorphism.appTargetArityCalls.bin (3+) 0.0% 0.0% 0.8% 0.0% 4.8% 2.6% 6.1% 57.2%

polymorphism.appTargetCacheMissRate.value 0.0% 0.0% 0.4% 3.0% 3.7% 2.7% 3.1% 37.5%

Table VI: Polymorphism metrics.

indicating small method sizes and greater relevance of virtual call optimizations. However, these metric say nothing
about how polymorphic the invoke instructions are.

The following metrics measure true polymorphism. There are two variants. In the first variant, we take into
consideration the number of receiver types, in the second we use the number of different target methods. There are
more receiver types than targets, since two different object types may inherit the same method from a common super
class. Some optimization techniques, such as class hierarchy analysis [13], optimize call sites with a restricted number
of targets. Others, such as inline caching [14], optimize call sites with a restricted number of receiver types.

5.3.1 Receiver Polymorphism

Receiver polymorphism can be measured in at least three different ways, which are progressively more dynamic:

polymorphism.appReceiverArity.bin This is a bin metric, showing the percentage of all call sites that have one,
two and more than two different receiver types. The metric is dynamic, since we measure the number of different types
that actually occur in the execution of the program (thus representing an ideal case for comparison with type inference
techniques which conservatively estimate the number of receiver types without running the program). However, by
counting call sites, the metric does not reflect the importance of those sites.

polymorphism.appReceiverArityCalls.bin This is a bin metric, showing the percentage of all calls that occur
from a call site with one, two and more than two different receiver types. This metric measures the importance of
polymorphic calls. It is more dynamic than the previous metric. For example, COMP has 1.9% call sites with two
receiver types, but these are almost never called (polymorphism.appReceiverArityCalls.bin(2) = 0.0%). Typically,
monomorphic call sites are executed less frequently than polymorphic call sites. See polymorphism.appReceiver-
Arity[Calls].bin(1): the percentage of monomorphic calls is lower than the percentage of monomorphic call sites for
Obh, VOLS, SOOT, JAVAC and Operm. Operm is the most extreme case, with 31.2% heavily polymorphic call sites,
which are executed 63.1% of the time. We consider this metric to be best for an appraisal of polymorphism, since
it highlights polymorphism that actually occurs, weighted by the frequency of its occurrence. Table VI is therefore
sorted in descending order from left to right, using polymorphism.appReceiverArityCalls.bin.

15

polymorphism.appReceiverCacheMissRate.value This metric shows as a percentage how often a call site
switches between receiver types. This is the most dynamic measurement of receiver polymorphism, and it represent
the miss rate of a true inline cache. It is potentially non-robust, since the miss rate of an inline cache can be heavily
influenced by the ordering of the receiver types: a call site with two different receiver types can have a cache miss
rate varying between 0% (objects of one type precede all objects of the other type) and 100% (two types occur in
an alternating sequence). SOOT, for example, executes 27.4% non-monomorphic calls (1 - polymorphism.app-
ReceiverArityCalls.bin(1)), but has a receiver cache miss rate of only 4.4%. Operm, on the other hand, has 63.1%
non-polymorphic calls, and a receiver cache miss rate of 41.1%, indicating that the polymorphic call sites actually
switch often between receiver types.

5.3.2 Target Polymorphism

Target polymorphism can be measured in a similar manner as receiver polymorphism, but now we count the number
of different targets instead of the number of different receiver types:

polymorphism.appTargetArity.bin This is a bin metric, showing the percentage of all call sites that have one,
two and more than two different target methods. Like polymorphism.appReceiverArity.bin, this metric is dynamic,
but does not reflect the run time importance of call sites. This metric is useful for compiler optimizations aimed
at devirtualization: whenever a compiler can prove that a call site only has a single possible target, the call can be
replaced by a static call or inlined [28]. The number of target-monomorphic call sites is always larger than that of
receiver-monomorphic call sites.

polymorphism.appTargetArityCalls.bin This is a bin metric, showing the percentage of all calls that occur
from a call site with one, two and more than two different target methods. The same observations hold as for receiver
polymorphism, but the number of monomorphic calls is larger.

polymorphism.appTargetCacheMissRate.value This metric shows as a percentage how often a call site switches
between target methods. It represents the miss rate of an idealized branch target buffer [17]. It is always lower than
the corresponding inline cache miss rate (polymorphism.appReceiverCacheMissRate.value), since targets can be
equal for different receiver types. Accordingly, this metric can also be heavily influenced by the order in which target
methods occur.

5.4 Memory Use

For considering the memory use of programs, we concentrate on the amount and properties of dynamically-allocated
memory (memory use for the stack is related to the call graph metrics, and memory for globals is not usually a
dynamically varying value).

5.4.1 Allocation Density

The first metric required is just a simple value metric to measure how much dynamic memory is allocated by the
program, per 1000 bytecode instructions (kbc) executed, and there are two variations.

memory.byte[App]AlloctionDensity.value Measures the number of bytes allocated per kbc executed. It is
computed as the total number of bytes allocated by the program, divided by the (number of instructions executed/1000).

memory.object[App]AllocationDensity.value Similar to the previous metric, but reports the number of objects
allocated per kbc executed.

For the memory metrics, the App version of the metric counts only those objects (and arrays) that have a type that
is a user-defined class, whereas the ordinary version counts all memory allocated.

16

Metric EMPTY Obsrt Oem3d JACK JESS JAVAC SOOT SBLCC

memory.byteAllocationDensity.value 1747 11 36 314 295 132 290 345
memory.byteAppAllocationDensity.value N/A 6 15 19 175 78 159 71

memory.averageObjectSize.value 191 43 445 54 67 41 35 62
memory.averageAppObjectSize.value N/A 24 291 31 42 29 21 24

memory.AppObjectSize.bin (8) 0% 0% 0% 0% 0% 0% 0% 0%
memory.AppObjectSize.bin (16) 0% 0% 0.1% 8.4% 0% 23.2% 59.6% 48.9%
memory.AppObjectSize.bin (24) 0% 100% 0% 1.6% 20.0% 22.1% 30.2% 22.2%
memory.AppObjectSize.bin (32) 0% 0% 0% 81.0% 30.3% 39.3% 0.9% 18.8%
memory.AppObjectSize.bin (40) 0% 0% 33.3% 8.9% 1.1% 9.9% 8.5% 9.4%

memory.AppObjectSize.bin (48-72) 0% 0% 0% 0% 48.3% 5.4% 0.8% 0.5%
memory.AppObjectSize.bin (80-136) 0% 0% 0% 0% 0.2% 0% 0.1% 0.1%

memory.AppObjectSize.bin (144-392) 0% 0% 10.9% 0% 0% 0% 0% 0.1%
memory.AppObjectSize.bin (400+) 0% 0% 55.7% 0% 0% 0% 0% 0%

Table VII: Dynamic Memory Metrics

In Table VII we see the memory allocation density varies quite widely. The EMPTY program shows a surprisingly
high allocation density, 1747 bytes per kbc. This shows that system startup and class loading of library methods
is quite memory hungry. Of the remaining benchmarks, Obsrt and Oem3d have fairly low densities, while the rest
are quite high, with SBLCC having the highest at 345 bytes per kbc. One would expect that benchmarks with low
allocation densities would not be as suitable for use in examining different memory management schemes.

Although these metrics give a simple summary of how memory-hungry the program is overall, they do not distin-
guish between a program that allocates smoothly over its entire execution and a program that allocates only in some
phases of the execution. To show this kind of behaviour, there are obvious continuous analogs, where the number
of bytes/objects allocated per kbc is computed per execution time interval, and not just once for the entire execution
(memory.byteAllocationDensity.continuous and memory.objectAllocationDensity.continuous).

5.4.2 Object Size Distribution

memory.averageObjectSize.value The average size of objects allocated can be computed using the ratio of
memory.byteAllocationDensity.value to memory.objectAllocationDensity.value. This metric is somewhat imple-
mentation dependent, as the size of the object header may be different in different JVM implementations.

In Table VII we see that the EMPTY program allocates relatively large objects, meaning that large objects are
created on VM startup and class loading. The Oem3d benchmarks also allocates large objects (arrays of type Node),
although one should keep in mind that overall it has a low allocation density, so perhaps these allocations are not so
important. All other benchmarks allocate fairly small objects.

Rather than just a simple average object size, one might be more interested in the distribution of the sizes the objects
allocated. For example, programs that allocate many small objects may be more suitable for some optimizations such
as object inlining, or special memory allocators which optimize for small objects.

memory.[App]objectSize.bin Object size distributions can be represented using this bin metric, where each bin
contains the percentage of all objects allocated corresponding to the sizes associated with each bin. In order to factor
out implementation-specific details of the object header size we use bin 0 to represent all objects which have no fields
(i.e. all objects which are represented only by the header). In order to capture commonly allocated sizes in some
detail, bins 1, 2, 3, and 4 correspond to objects using h + 1 words (h + 4 bytes), h + 2 words, h + 3 words and h + 4
words respectively, where h represents the size of the object header. Then, increasingly coarser bins are used to capture
all remaining sizes, where bin 4 corresponds to objects with size h+5 . . .h+8, bin 5 corresponds to objects with size
h + 9 . . .h + 16, bin 6 corresponds to objects with size h + 17 . . .h + 48 and bin 7 corresponds to all objects with size
greater than h+48. Note that the sum of all bins should be 100%.

In Table VII we give the bins for the application objects (i.e. allocations of user-defined type). Each bin corre-
sponds to objects with a size, or range of sizes, in bytes. With the exception of Oem3d, all benchmarks seem to allocate

17

relatively small objects, indicating that the most frequently used user objects contain relatively few fields. The Obsrt
benchmarks stands out because all its allocated objects are in 1 bin, objects of size 24 bytes.

5.5 Concurrency and Synchronization

Optimizations that focus on multithreaded programs need to identify the appropriate opportunities. A basic require-
ment is to know whether a program does or can actually exhibit concurrent behaviour, or is it effectively single-thread-
ed, executing one thread at a time. This affects the application of various optimization techniques, most obviously
synchronization removal and lock design, but also the utility of other analyses that may be constrained by conservative
assumptions in the presence of multithreaded execution (e.g., escape analysis).

Since the use of locks can have a large impact on performance in both single and multithreaded code, it is also
useful to consider metrics that give more specific information on how locks are being used. A program, even a
multithreaded one that does relatively little locking will obviously have a correspondingly reduced benefit from opti-
mizations designed to reduce the cost of locking or number of locks acquired. Lock design and placement is also often
predicated on knowing the amount of contention a lock experiences; this can also be exposed by appropriate metrics.

5.5.1 Concurrent

Identifying concurrent benchmarks involves determining whether more than one thread2 can be executing at the same
time. This is not a simple quality to determine; certainly the number of threads started by an application is an upper
bound on the amount of execution that can overlap or be concurrent, but the mere existence of multiple threads does
not imply they can or will execute concurrently.

For an ideal measurement of thread concurrency, one needs to measure the application running on the same number
of processors that would be available at runtime, and also the same scheduling model. Unfortunately, these properties,
as well as timing variations at runtime that would also affect scheduling, are highly architecture (and virtual machine)
dependent, and so truly robust and accurate dynamic metrics for thread concurrency are difficult, perhaps impossible
to define. The metrics we describe below are therefore necessarily approximate; note that limitations in JVMPI have
not allowed us to compute these metrics yet. Future work based on a modified virtual machine will be used to calculate
and validate these metrics.

concurrency.threadDensity.value An approximate, but at least computable dynamic metric for thread concur-
rency is to consider the maximum number of threads simultaneously in the ACTIVE or RUNNABLE states. These are
threads that are either running, or at least capable of being run (but which are not currently scheduled). In this way we
do not require as many processors as runnable threads to show concurrent execution. Unfortunately, this will certainly
perturb results: two short-lived threads started serially by one thread may never overlap execution on a 3-processor;
on a uniprocessor, however, scheduling may result in all three threads being runnable at the same time. Given the con-
siderable potential variation in thread activity already permitted by Java’s thread scheduling model (which provides
almost no scheduling guarantees) we do not feel that this amount of extra imprecision will overly obscure the actual
concurrency of an application.

concurrency.threadDensity.bin The amount of code executed while another thread is executing is also of in-
terest; it gives an indication of how “much” concurrent execution exists. As with the previous metric, number of
processors and scheduling discipline will make this a difficult concept to measure accurately; again we resort to
coarser approximations based on active and runnable threads. This quantity is then calculated as % of kbc executed
while there are specified levels of concurrency: 1, 2, ≥3 threads active or runnable.

2Note that the JVM will start several threads for even the simplest of programs (e.g. one or more garbage collector threads, a finalizer thread,
etc). When identifying concurrency by the number of existing threads it is necessary to discount these if every benchmark is not to be considered
trivially concurrent.

18

Metric CA CA-NO DB JACK RC SBLCC TCOM VOLCL VOLS EMPTY

concurrency.lockDensity.value 4.811 0.130 2.137 2.126 2.068 1.291 1.164 0.734 0.582 0.160
concurrency.lock.percentile 31.6% 66.7% 3.2% 21.2% 36.0% 5.8% 25.7% 14.3% 21.0% 66.7%

concurrency.lockContendedDensity.value 0.0 0.0 0.0 0.0 0.105 0.000 0.078 0.007 0.005 0.0
concurrency.lockContended.percentile n/a n/a 100.0% 100.0% 50.0% 88.7% 19.4% 55.6% 86.0% n/a

Table VIII: Locking metrics.

5.5.2 Lock Intensive

An important criterion in optimizing synchronization usage is to know whether a program does a significant number
of lock operations (entering of synchronized blocks or methods). This is quickly seen from the single value metric of
an average number of lock operations per execution unit (kbc). Continuous versions of the same would enable one to
see if the locking behaviour is concentrated in one section of the program, or is specific to particular program phases.

concurrency.lockDensity.value This single value metric gives average number of lock (monitorenter) op-
erations per kbc. low. Programs which frequently pass through locks will have a relatively high density—note that
since synchronized blocks are defined without knowing whether more than one thread will be running, this metric is
irrespective of any actual concurrency.

Table VIII shows metrics for benchmarks with the highest lock density of our benchmark suite. This includes Cel-
lular Automaton, db, jack, RollerCoaster, SableCC, telecom, and Volano (client and server), spanning a lock density
range from 4.811 for CA to 0.582 for Volano server. RollerCoaster, Volano, and telecom are explicitly multithreaded
benchmarks that contain significant amounts of synchronization and relatively little actual computation, so one would
expect them to have a high lock density. Inclusion of the others, CA in particular, is less intuitive, and merits further
investigation.

The actual CA code itself consists of iteratively applying arithmetic operations on arrays. However, as mentioned
in section 5.2.1, each iteration within CA requires generating output on System.out. The Java library calls for
streamed output naturally incorporate synchronization, and this turns out to be the source of the relatively high syn-
chronization count. This is further supported by the metrics for the same benchmark with the output methods disabled
(shown as “CA-NO” in table VIII); in this case the lock intensity drops to 0.130, below that of the empty program.

SableCC does not do any locking itself, but does through frequent invocation of library methods (I/O and strings).
In the case of jack and db, we note that jack has been previously reported to have the highest absolute number of
synchronized objects of any of the Spec JVM98 benchmarks [1], while DB has the highest absolute number of total
synchronizations. [22].

concurrency.lock.percentile Locks may be amenable to hot spot optimization—specific locks can be optimized
for use by a certain number of threads, or code can be specialized to avoid locking. Whether high-use locks exist or
not can be identified through a percentile metric, showing that a large percentage of lock operations are performed
by a small percentage of locks; for our metric we define this as the percentage of locks responsible for 90% of lock
operations.

From table VIII, the empty benchmark has 66.7% of locks responsible for 90% of locking. Lock usage in the
startup code is thus not perfectly evenly distributed, but does not indicate significant hot spots. SableCC and db have
the smallest number of hot locks, just 3.2% and 5.8% respectively. Hot spots here exist, but at least for SableCC they
are contained in the library code.

concurrency.lockContendedDensity.value Adaptive locks can make use of knowing whether a lock will expe-
rience contention. This allows them to optimize behaviour for single-threaded access, but also to adapt to an optimized
contended access behaviour if necessary [6]. Similarly, lock removal or relocation strategies will be better if they have
information on which locks are (perhaps just likely) high, low or no-contention locks. A simple metric relevant to
these efforts is to try and measure the importance of contention; this can be a value giving the average number of
contended lock entry operations per kbc.

19

For most benchmarks, contention is relatively rare, and the contended density is less than one in a million. Volano,
RollerCoaster and telecom, the benchmarks designed to test multithreading and synchronization, have the highest
density. Note that even for these, the actual density value is small; this suggests that techniques based on presumed
low contention will be (and indeed are) effective [1, 22].

The concurrency.lockContended.percentile metric shows the existence of hot spots of contention. In our suite
only highly multithreaded programs, telecom, Volano, and RollerCoaster, have percentiles significantly less than 90%.
RollerCoaster has a somewhat mild contended percentile of 36%; this actually corresponds with the algorithm design
of this particular implementation, which uses multiple locks to avoid contention bottlenecks. The cause for the distri-
bution of Volano’s hot spots is not entirely clear (Volano is closed source, which impedes investigation), but we note
that it has a relatively high number of locks [1], and so contention hot spots are less likely.

The telecom benchmark has the smallest percentile, 19.4%. Although the benchmark tries to reduce lock con-
tention through the use of separate locks for each of 15 resources, the resources themselves are all accessed through
a single java.util.Vector. High contention on the single lock associated with that object results in an overall
high contended percentile.

concurrency.lockContended.bin Knowing the relative number of contended and uncontended lock operations
can give a more precise idea of how contention is being experienced—as in telecom, the amount of contention may
not be evenly distributed among contended locks. A locking algorithm that adapts to contention level may then be
appropriate. A bin metric, can be used to classify locks and the relative amount of contention; this metric will describe
the relative percentage of lock requested while already held by 0, 1, or ≥2 threads. We hope to compute this metric as
part of our future work.

6 Analyzing Benchmarks

In this section we describe four different benchmarks in terms of our various metrics. This analysis is meant to
demonstrate not only the information available through such metrics, but also how combined metric information can
lead to a more complete picture of benchmark behaviour. The benchmarks we consider are Coefficients, compress,
javac, and for startup cost comparison, the empty benchmark. A table of metrics for each is shown in table IX (this
table includes a version of Coefficients that has had loop invariant removal applied (COEFF-LI)).

Program Size and Structure

As discussed in section 5.1, these benchmarks form a progression from small to large. What is surprising is the relative
impact of startup code. Considering the size.run.value metric which includes startup and libraries, the relative sizes
of these programs is far less apparent; e.g., compress is only 1.12 times larger than Coefficients, whereas in the size.-
appRun.value metric the ratio is more than 5.2. Startup code, in fact, accounts for the bulk of touched bytecode
instructions in all but javac; in our parlance startup already constitutes a large program. When assessing a small
benchmark it is thus fairly critical to separate out the potentially large effects that may be due startup.

Data Structures

Array usage of the applications is reflected in the data.appArrayDensity.value metric; the empty program has no
arrays, javac has some array accesses (15.471), compress a significant but not large number (52.15), and Coefficients
has the highest (191.89). These numbers correspond to a reasonable perception of the relative importance of array
usage in these benchmarks. Again, the non-application versions of this metric indicates the strong influence of start-
up code; in the data.arrayDensity.value metric, the empty program has a density of 73.413, diluting the value of
Coefficient’s density (150.899), and more than doubling the density of javac. Although javac is a large benchmark in
terms of bytecodes touched, it is not a particularly long-running one, and so startup is more evident in the metrics.
Compress is however largely unaffected; in this case there are enough application bytecode instructions executed to
almost eliminate the relative effect of startup.

20

Metric COEFF COEFF-LI COMP JAVAC EMPTY

size.appRun.value 975 989 5084 26267 0
size.run.value 12880 12894 14507 37823 7343

data.appArrayDensity.value 160.404 129.877 52.150 15.471 n/a
data.appNumArrayDensity.value 79.486 90.443 52.150 0.359 n/a

data.appRefArrayDensity.value 80.713 39.200 0.0 3.543 n/a
data.arrayDensity.value 150.899 122.150 52.152 37.919 73.413
data.floatDensity.value 202.857 228.624 0.0 0.072 2.041

polymorphism.appReceiveArityCalls.bin (1) 100.0% 100.0% 100.0% 72.6% n/a
polymorphism.appReceiveArityCalls.bin (2) 0.0% 0.0% 0.0% 15.1% n/a

polymorphism.appReceiveArityCalls.bin (3+) 0.0% 0.0% 0.0% 12.3% n/a
polymorphism.appInvokeDensity.value 65.973 75.390 16.532 72.305 n/a

polymorphism.appReceiverCacheMissRate.value 0.0 0.0 0.0 0.072 n/a
polymorphism.receiverCacheMissRate.value 0.001 0.001 0.0 0.088 0.087

memory.averageObjectSize.value 144.708 144.736 13077.444 41.446 190.837
memory.objectAllocationDensity.value 0.751 0.847 0.001 3.181 9.154

memory.objectSize.bin (8) 0.1% 0.1% 0.3% 0.0% 0.6%
memory.objectSize.bin (16) 14.4% 14.4% 10.3% 14.6% 14.4%
memory.objectSize.bin (24) 38.8% 38.8% 37.3% 41.9% 32.9%
memory.objectSize.bin (32) 3.7% 3.7% 6.2% 20.7% 8.5%
memory.objectSize.bin (40) 4.1% 4.1% 5.4% 6.2% 9.3%

memory.objectSize.bin (400+) 7.6% 7.6% 3.2% 0.2% 0.9%

concurrency.lockDensity.value 0.216 0.244 0.0 0.230 0.160

Table IX: Metrics used for analysis in section 6.

A further breakdown of the array density metric can also show the importance of understanding exactly how a
metric is computed, and how potential skewing factors even within the application itself may influence it. Coefficients
has an almost equal density of accesses to numerical (primitive types) arrays as reference arrays (all object types),
whereas the array density of compress comes entirely from numerical arrays; this is shown through the data.app-
NumArrayDensity.value and data.appRefArrayDensity.value metrics. In fact, from an inspection of the source
both benchmarks actually use almost exclusively numerical arrays. This can be explained by the way arrays are
represented in Java; in the case of compress, arrays are primarily one-dimensional, mostly byte arrays, and so each
array element access corresponds to an access to an array of numerical type. For Coefficients, however, arrays are
almost all two-dimensional, and so each element access requires first an access to the outermost dimension (elements
are of array and hence reference type), followed by a numerical array access to the actual primitive value. This can
be demonstrated through an optimization such as loop invariant removal (the COEFF-LI column); in this case outer
array index calculations are found to be invariant in the inner loops, and moved outside the inner loop reducing the
number of reference array operations. The difference is evident in a comparison of the same metrics for both versions
of Coefficients—application numerical and reference array densities of 79.486 and 80.713 respectively drop to 90.443
and 39.200 when loop invariant removal is applied.

Use of floating point is relatively uncomplicated. The empty program uses a small amount of floating point in
startup, and javac and compress use none (small values for the data.floatDensity.value metric are due to startup).
Coefficients, the only benchmark that does use floating point data is clearly identified as float-intensive through its
relatively high score of 202.857. Float density of the loop invariant removal version of Coefficients is higher still
(228.624)—the reduction in number of array operations increases the relative density of floating point operations.

Polymorphism

The benchmarks also illustrate essential differences with respect to “object-orientedness”, as measured through method
polymorphism. By examining the application code, one would expect javac to be reasonably polymorphic and com-
press to be very non polymorphic (one large method dominates computation). Coefficients is composed of several
classes, and superficially appears to have potential for polymorphism; closer inspection reveals that there is no signif-

21

icant application class inheritance, and there should be no polymorphism.

These perceptions are validated by the various polymorphism metrics. The polymorphism.appReceiver.Arity-
Calls.bin metric, for instance shows that 100% of both Coefficient’s and compress’ invokevirtual or invokeinterface
call sites reach exactly one class type; in other words, they are completely monomorphic. The lack of inheritance
in Coefficients is thus evident in the metric. Javac does have a significantly smaller percentage of monomorphic call
sites, and even has some sites associated with 3 or more types. It’s non-0 polymorphism.appReceiverCacheMiss-
Rate.value also supports the perception that javac is qualitatively more polymorphic than the other two.

Memory Use

Memory use between the benchmarks is also quite different. This can be seen simply through the memory.average-
ObjectSize.value metric: javac has an average object allocation size of 41.446 bytes, Coefficients 144.708 bytes, and
compress over 13,077 bytes. These programs are of course not all allocating objects at the same rate; the memor-
y.objectAllocationDensity.value metric shows that while compress allocates large objects, it does not allocate very
many (density of 0.001), and so despite its large average size, it is not a memory intensive program. Coefficients
allocates more often (0.751), and javac allocates relatively frequently (3.181).

These numbers and judgements are quite reasonable given the algorithms the benchmarks implement. Javac’s data
structures for parsing and representing its input would naturally be reasonably small and numerous. There is further
evidence for this in the memory.objectSize.bin metric, where javac allocate proportionally more small objects (24-32
bytes) than the other benchmarks. Compress allocates a few large arrays to use as buffers and tables, but otherwise
does little allocation. Coefficients iteratively allocates two-dimensional arrays of increasing size, and this aggregate
effect also shows up in a larger proportion of larger objects (≥ 400 bytes).

Concurrency and Locking

None of the benchmarks being compared here are explicitly concurrent; any actual concurrency is entirely due to
library and/or internal virtual machine threads. Locking is also very low in all cases; Javac and Coefficients have the
highest lock density (0.230 and 0.216 respectively), and this rises only slightly for the loop invariant version (due to
the decreased number of (invariant) calculations). Compress unsurprisingly has a very low lock density (below 0.001),
owing to its long internal calculations. For these three programs, none have a density dramatically higher than the
empty program (0.160); they are all minimally lock intensive.

7 Optimization Effects

Dynamic metrics can be used for both suggesting opportunities for program optimizations/transformations and for
evaluating the effect of such transformations. In order to demonstrate this we have studied the effect of several
transformations on the voronoi benchmark.

In Table X we give both the relevant dynamic metrics (top part) and the runtime performance (bottom part) of four
variations of the voronoi benchmark. In the following subsections we first discuss the top part of the table, and then
the bottom part.

7.1 Effect of Transformations on Dynamic Metrics

We started our study by first examining the dynamic metrics for the original benchmark (column labelled orig.). Note
that the benchmark executes about 445 million bytecode instructions (base.executedInstructions.value), but has a
relatively small size of application code, only 1008 different bytecode instructions are run (size.appRun.value). Of
these 1008 instructions, 330 instructions represent 90% of the execution (size.appHot.value).

The most interesting metrics for this benchmark have to do with the density and polymorphism of the virtual
method calls. The benchmark has a very high density of calls to virtual methods, as the polymorphism.appInvoke-
Density.value is 116.17. This means that this benchmark executes a virtual invocation about 1 out of every 10

22

Metric Orig. Inline -O PT+CSE

base.executedInstructions.value 445.15 M 287.86 M 280.40 M 282.08 M
size.appRun.value 1008 1449 1417 1425
size.appHot.value 330 683 662 663

polymorphism.appInvokeDensity.value 116.17 10.84 11.13 11.06
polymorphism.appReceiverPolyDensityCalls.value 0 0 0 0

polymorphism.appTargetArity.bin(1) 1 1 1 1
pointer.appFieldAcessDensity.value 126.7 196.1 200.9 177.8

Interpreter (runtime) 51.40 33.38 32.42 32.17
JIT-noinlining (runtime) 11.06 8.61 8.67 8.64

(compile-time) 0.070 0.059 0.062 0.060
(compiled-bytes) 3588 4004 3952 3924

JIT (runtime) 8.81 8.21 8.25 8.23
(compile-time) 0.105 0.073 0.073 0.072

(compiled-bytes) 6591 4803 4751 4723

Table X: Dynamic Metrics and Runtime Measurements for the Voronoi Benchmark

bytecode instructions. Furthermore, none of these invokes are polymorphic at runtime (polymorphism.appReceiver-
PolyDensityCalls.value is 0 and polymorphism.appTargetArity.bin(1) is 1). The high invoke density indicates that
inlining is probably a good idea, and the low polymorphism suggests that compiler techniques could likely resolve
each call site to exactly one method (thus enabling the inlining).

The column labelled Inline gives the dynamic metrics for the same benchmark after we applied inlining using the
Soot framework. Note that this had a dramatic effect on the benchmark as the transformed benchmark executes about
288 million instructions (down from 445M), and the invocation density has reduced from 116.17 to 10.84. However,
we also note potentially negative effects, the size of the running application has increased from 1008 to 1449, and the
size of the hot part of the application has increased from 330 to 683.

The column labelled -O gives the dynamic metrics for the inlined version of the benchmark after we applied
intra-method scalar optimizations enabled by the -O option of Soot. Note that this does make a small impact on the
benchmark, reducing the number of executed instructions to 280M, and the size of the application to 1417 instructions.

After applying inlining and scalar optimizations, we looked for further opportunities for optimization, and by
examining the dynamic metrics we found the the density of field accesses was very high in our transformed program
(pointer.appFieldAccessDensity.value = 200.9, in column -O). About 1 in 5 bytecode instructions is an access
(either a get or a put) to a field. In order to reduce the density of field accesses we applied a whole program points-to
analysis, followed by common-sub-expression removal of field accesses, as shown in the column labelled PT + CSE.
In this transformation a segment of code with a repeated use of some field, say ... a=p.x; ... b=p.x;
... is transformed to put the field in in a scalar variable, and then reuse the scalar, for example ... temp =
p.x; a=temp; ... b=temp; Note that in this transformation we reduce the number of field accesses,
but increase the number of total instructions, since we have to insert the assignment to the temporary. This extra
assignment may eventually get eliminated via copy propagation, but it may not. Indeed, our metrics show that after
applying the transformation the number of executed instructions increased from 280M to 282M and the size of the
application goes up from 1417 instructions to 1425 instructions. However, it does have the desired effect on the field
accesses, where the field access density has been reduced from 200.0 to 177.8.

7.2 Effect of Optimizations on Runtime Performance

As we have seen in the previous subsection, the dynamic metrics help us identify opportunities for optimizations/trans-
formations and they can also help us understand the effect, both positive and negative, of the optimization. In the
bottom part of Table X we give some runtime measurements to see if the behaviour predicted by the metrics has
any correlation with the real runtime behaviour observed when running the program on a real VM. The runtime
experiments were done using Sun’s Hotspot(TM) Client VM (build 1.4.1_01-b01,mixed mode), running under Debian
Linux. In order to get reliable and repeatable results, for the runtime experiments we used a slightly larger problem
size than when collecting the metrics (we used 20000 nodes for collecting the metrics and 100000 nodes for the

23

runtime experiments). The runtime numbers are the average of five runs, reporting the total time as reported by the
benchmark. The JIT compile time and compiled size are the average of five runs, as reported by Sun’s VM using the
-XX:+CITime option.

On the bottom part of Table X we give runtime measurements for three configurations of the VM. The first con-
figuration, labelled Interpreter, runs only in interpretive mode (java -Xint). The second configuration, labelled
JIT-noinlining, uses the ordinary mixed-mode VM, but the JIT has inlining disabled (java -client -XX:Max-
InlineSize=0 -XX:FreqInlineSize=0). The third configuration, labelled JIT, is the normal mixed mode
VM using its defaults (java -client).

The results from the interpreter are easiest to analyze since the interpreter does not perform any optimizations of its
own and there is no overhead due to JIT compilation. These results follow the dynamic metrics very closely. The Orig.
version takes 51.40 seconds, whereas the Inline version is much faster, executing in 33.38 seconds. The -O version
shows a small improvement, with an execution time of 32.4 seconds, which corresponds quite well with the small
improvement in executed instructions that we saw in our metrics. The PTR+CSE shows a very slight improvement,
executing in 32.17 seconds. This shows that there is a benefit to removing the field instructions, even though it executes
more instructions overall.

The result from the JIT-noninlining configuration again show that the statically-inlined version of our benchmark
(column Inline) executes much faster, 8.61 versus 11.06 seconds. However, the -O and PT+CSE versions have no
significant impact (even a slight negative impact) on runtime. This is probably because the JIT optimizations and
the static optimizations negatively affect each other. However, note that the amount of compiled code does go down
slightly.

When run with the ordinary JIT configuration, we note that the JIT inliner is quite effective, giving an execution
time of 8.81 versus 11.06 when the JIT inliner is turned off. This indicates that two different inliners (our static inliner
and the JIT dynamic inliner) work very well for this benchmark (as predicted by looking at our dynamic metrics).
However, note that the JIT inliner does pay a price in compiling more code (6591 bytes vs 3588 bytes for when the
inliner is off). Recall that we also saw this effect in our metrics, where size.appHot.value doubled after applying our
static inlining. It is also interesting to note that the JIT inliner (row JIT (runtime)) and the static inliner (column Inline)
actually combine to give the overall best result. The runtime is the best (8.21 seconds), the JIT compile time is very
reasonable (0.072 seconds), and the amount of compiled code is quite small (4803 bytes).

8 System for Collecting Dynamic Metrics

An essential part of any metric development process being empirical validation of the data, we required a way of easily
computing metrics for a variety of Java benchmark programs. This led to the development of a new tool, AdaptJ, which
is designed to allow us to quickly implement and test dynamic metrics for Java applications. This section describes
the design objectives, the implementation and the future work of our new framework in detail.

8.1 Design Objectives

Computing dynamic metrics appears to be a deceptively simple task. In fact, the huge amount of data that has to be
processed constitutes a problem by itself. Because we were aiming at developing an offline analysis tool, performance
was not a critical issue, but ensuring the tool works in reasonable and practical time was nevertheless not a trivial
endeavor. The main design objective that influenced the development of AdaptJ was however flexibility—we needed
a tool which would let us investigate dynamic metrics with a high level of freedom.

We also needed a way to easily visualize and manipulate the collected data in order to study the dynamic metrics.
We needed a system which would make it easy for us to share, organize, query and compare the results obtained from
AdaptJ.

Figure 1 presents an overview of the entire system. We describe all of the components next.

24

Java Program AdaptJ JVMPI
Agent

Java VM

AdaptJ Event
Trace

AdaptJ Trace
Analyzer

AdaptJ XML
Metrics File

AdaptJ DB
Interface

Metrics
Database

Client HTTP
Browser

AdaptJ Event
Specification

AdaptJ
Specification

Compiler

PHP-Enabled
Web Server

Compiled AdaptJ
Event Spec File

Figure 1: System for collecting metrics (dashed boxes represent components that are not part of the system, but are
displayed for completeness)

8.2 Design

The AdaptJ tool itself consists of two major parts: a Java Virtual Machine Profiler Interface (JVMPI) agent which
generates event traces for the programs to be analyzed, and a Java back-end which processes the event traces and com-
putes the values for the various metrics. This design allows the two ends of the framework to be used independently.
A third component is the web interface that allows users to view the results in a friendly interface, allowing them to
manipulate the data in various ways in order to make the most out of the computed results.

The JVMPI was selected as a source of trace data primarily because of the ease with which it is possible to obtain
specific information about the run-time behaviour of a program, and also because it is compatible with a number of
commercial virtual machine implementations. Unfortunately, there are a number of limitations that are imposed by
using the JVMPI for collecting data, the most serious of which being the fact that it is currently not possible to obtain
information about the state of the execution stack using this approach. Within JVMPI the only solution to this problem
is to simulate the entire execution, which imposes far too much overhead for our purposes. JVMPI also has a complex
specification, including a variety of restrictions on agent behaviour in certain circumstances: producing a correct agent
is not necessarily trivial.

25

8.2.1 The JVMPI Agent

The main responsibility of the AdaptJ JVMPI agent is to gather the actual profile data; a secondary goal is to ensure the
trace size is manageable. We note that although the JVMPI interface is well-defined, it is not always well-implemented,
and some amount of programming effort is required to ensure the data gathered is complete. For instance, the agent
keeps track of all entity identifiers, and explicitly requests events from the JVMPI interface when it encounters an
event containing an unknown ID (these can occur for events that happen prior to JVMPI initialization). To reduce the
size of the trace file, the agent will collapse several instruction events together when they correspond to a contiguous
sequence in the method’s code; this is then further reduced by using a binary trace output format. Using these combined
strategies complete traces for the SPEC benchmarks (using size 100) can easily be stored on a regular hard disk, as
they only require several gigabytes of memory.

The agent also allows the user to specify which events and which of their fields are to be recorded in the trace file
using a simple domain-specific language, which is then compiled to a compact binary representation and included in
the header of the trace. This ensures that any consumer of the trace file will be able to tell exactly what information is
contained in the trace, and determine if all of its requirements are fulfilled before proceeding to the analysis.

8.2.2 The Analysis Back-End

AdaptJ’s back-end is implemented in Java, and thus benefits from an object-oriented design. Event objects are created
from the event trace file and passed to a sequence of operations. Operations in the sequence receive the event objects
in a well-defined and fixed order, and are free to modify them without restrictions, or even to stop the processing
of an event and restart with the next one at the beginning of the processing chain. This allows a great level of
flexibility because specific operations can provide services for the subsequent ones in the processing chain, essentially
“preparing” the event for further processing. This allows for a very modular design. In order for this to work properly,
operations can specify dependencies between each other, so that disabling a particular operation will also disable all
of the other operations for which it provides a service. The standard operation library that is part of AdaptJ includes
built-in services that will manage JVMPI identifiers, modify the events corresponding to an instruction to include the
bytecode information and filter an event based on the name of its associated class, to only name a few.

In order to make it easy to group operations together, AdaptJ provides packs, which are essentially containers. A
pack can contain any number of other packs or operations. This allows the creation of a hierarchical organization of
the operations, which is very convenient when working with the tool from the command line. For example, the pack
which contains all of the operations that compute the various metrics can be enabled or disabled using one simple
command. The order in which operations are added to the pack uniquely determines the order in which they appear
in the processing chain. Conceptually, there exits a “super-pack” which contains all other packs and sends each event
in the trace to each of the elements that it contains. These elements can, in turn, dispatch the event if they are packs
themselves or proceed with the computation if they are not. However, for efficiency concerns, the hierarchy is first
flattened into a processing chain. Also, each operation is required to specify ahead of time which kinds of events it
wants to receive. These dependencies can be of two kind: required or optional. An operation which has unmet required
dependencies will be automatically disabled, which is not the case for unmet optional dependencies. The way in which
the operations specify their event dependencies is in practice is more versatile, but the technical details are beyond the
scope of this paper. For example, AdaptJ allows specifying alternate events in the case where a dependency is not met,
or even allows specifying the dependencies at the level of the fields of particular events.

AdaptJ provides a MetricAnalysis class that every metric-computing module should extend. MetricAna-
lysis is a specialized version of the generic operation class, and takes care of most of the work that is common to all
metric computations, such as outputting the results in XML form. This allows us to quickly implement new metrics,
and allows the programmer to only focus on the code that is specific to the particular metric computations.

Every operation has a unique, fully-qualified name that is built from the name of the operation, along with the
names of all packs to which it belongs. This is identical to fully-qualified class names in Java. So, an operation
op which is a member of a pack subpack, itself a member of the pack mainpack will be identified by the string
mainpack.subpack.op. This is necessary in order to control individual operations using the command line
interface. AdaptJ was designed so that it would be easy to automate the process of gathering metrics using scripts, and
thus allows each pack or operation to specify a list of options that it accepts from the command line.

26

A significant effort has also been put into making the analysis back-end require no more than a single pass on the
trace file, making it usable using FIFO special files (or pipes) when the size of the trace is too large to be stored on
disk.

8.3 The Web Interface

In order to allow multiple users to be able to use and share metrics data, a web interface has been set up. It allows us to
look at metrics or benchmarks individually, but has a lot of more advanced features such as benchmark comparisons,
complex search using custom queries. It can be used to easily build tables which summarize the results, and supports
sorting features on almost every page.

This website is almost completely generated dynamically by PHP scripts, which allows the distribution of metrics
results within seconds. Using AdaptJ’s database interface, the metrics results files can be automatically parsed and
inserted into the database automatically, making the sharing of metrics data very quick and easy.

Using a web interface to view the metrics data has to inherent advantage of being accessible by a large number
of users and can constitute the basis of a benchmark knowledge base. In fact, the required facilities are in place
to allow users to browse through the metrics, selecting benchmarks as they find interesting ones using a “shopping
cart” approach. The benchmarks can then be automatically packaged and downloaded in various compressed archive
formats.

9 Related Work

In developing our dynamic metrics we first studied a large body of literature for static metrics, many of which are
covered in Fenton and Pfleeger’s book [18]. Although some static metrics have a use for compiler developers (for
example, a normalized measure of static code size measures the size of the input to an optimizer), we found that many
static metrics were somewhat ill-defined, and that static metrics did not capture program behaviour that may be of
interest to compiler developers.

We then searched the recent compiler publications to get a feel for the types of dynamic metrics that would be
useful, and also the sorts of dynamic measurements already in common use in the field. Thus, our work is both a
formalization of many familiar concepts and a development of some new concepts and metrics.

In our literature overview we found that dominant data structures and data types are usually identified by hand.
Although most researchers will give relevant qualitative descriptions of the benchmarks in their test suite (floating
point, array-based etc), terminology is not standard and categorization is rarely justified quantitatively. Pointer-based
programs, however, receive more direct attention. Average size of points-to sets are computed by several researchers
in order to show efficacy of pointer-analysis algorithms [10, 12, 20]; the symmetric requirements of showing points-to
and points-from are argued in [9].

Dynamic memory allocation is actually a very well studied area, and researchers in the garbage collection com-
munity have made many studies about the dynamic behaviour of allocations. In this paper we have tried to distill out
some of the most common measurements and report them as meaningful metrics (as opposed to profiles).

Size metrics in the literature are typically based on a static measurement of program size, often lines of code or
size of the executable. We did not come across size metrics which are based on the number of instructions touched
during execution. Program structure and complexity in terms of control instructions are often reported as a side-effect
of hardware branch prediction studies [4, 31, 8, 30, 16]. Unfortunately, the missrates are usually incomparable, since
the predictors use limited tables and therefore include capacity misses, distorting the metric.

Polymorphism metrics can be found in three areas: studies using static compiler analysis to de-virtualize object-
oriented programs [13, 28, 3], virtual machine implementation papers reporting inline cache miss rates [14, 29], and
indirect branch prediction studies reporting branch target buffer miss rates for object-oriented programs [30, 16]. The
latter are also usually distorted by limited branch target buffer sizes.

Concurrency is rarely measured dynamically, though some researchers do measure number of threads started [5].
Other metrics we present for measuring concurrency are unique. Measurement of synchronizations is considerably
more common, if generally consisting of absolute counts of synchronization operations [7, 19, 26]. More detailed

27

breakdowns are sometimes given; e.g., in [6].

Since the SPECjvm98 benchmarks appear to drive a lot of the development and evaluation of new compiler tech-
niques, several groups have made specific studies of these benchmarks. For example, Dieckmann and Hölzle have
presented a detailed study of the allocation behaviour of SPECjvm98 benchmarks [15]. In this paper they studied heap
size, object lifetimes, and various ways of looking at the heap composition. The work by Shuf et. al also looked at
characterizing the memory behaviour of Java Workloads, concentrating, on the actual memory performance of a par-
ticular JVM implementation and evaluating the potential for various compiler optimizations like field reordering [27].
Li et. al. presented a complete system simulation to characterize the SPECjvm98 benchmarks in terms of low-level
execution profiles such as how much time is spent in the kernel and the behaviour of the TLB [24].

All of these studies are very interesting and provide more detailed and low-level information than our high-level
dynamic metrics. Our intent in designing the high-level dynamic metrics was to provide a relatively few number of
data points to help researchers find those programs with interesting dynamic behaviour. Once found, more detailed
studies are most certainly useful. We also hope that by providing standardized dynamic metrics for programs outside
of the SPECjvm98 suite of programs, we can help to expand the number of programs used to evaluate compiler
optimizations for Java.

Daly et. al. performed a bytecode level analysis of the Java Grande benchmarks which is somewhat in the
same spirit as our work, in the sense that they were interested in platform independent analysis of benchmarks [11].
Their analysis concentrated mostly on finding different distributions of instructions. For example, how many method
calls/bytecodes executed in the the application, and how many in the Java API library, and what is the frequency of
executions of various Java bytecodes. Our focus is also on platform independent analysis, but we are concentrating on
developing a wide-variety of metrics that can be used to find different high-level behaviours of programs.

A recent article by Aggarwal et al [2] presents a system for computing dynamic metrics related to finding the most
frequently executed modules, applied to C programs. Our metrics are intended to be more comprehensive, and include
metrics specific to object-oriented programs. Nevertheless, they also emphasize the importance of dynamic metrics
when examining programs.

10 Future Work

We plan to continue to extend our work in several ways. First, we need to find an alternate source of profiling
information which would allow us to overcome the limitations of JVMPI. In particular, we plan to implement a
general-purpose profiling framework within SableVM, a free, open-source and portable Java virtual machine. This
profiling framework is intended to be more versatile than what JVMPI currently provides. It will also allow for a
greater flexibility in terms of the information that can be recorded. For instance, all of the memory-related metrics
that we cannot compute yet would be easy to compute using such a framework because they are very difficult (if
not impossible) to compute within the context of a closed-source virtual machine. We also feel that such a profiling
framework may be useful to other researchers who also often need to instrument a Java virtual machine in order to
obtain dynamic information.

Also, we want to continue to extend our set of metrics. Although it already contains more metrics that what we
are able to cover in this paper (more details available from our webpage), it does not yet fulfill all of our needs. We
have concentrated so far on developing metrics that allow to characterize benchmark programs and identify the ones
which are most likely to benefit from certain program transformations or optimizations. However, we found it is not
always easy to measure the difference in executions between two benchmarks that have different characteristics. In
particular, if an transformation modifies the number of executed instructions significantly, then all of the densities
will also change for the transformed version of the benchmark, even though they might not be directly related to the
transformation. We will therefore develop a set of metrics which will allow us to perform such comparisons. Two
main avenues can be considered at this time: one possibility is to design dynamic metrics which are more absolute in
nature, or that are relative to more stable quantities. Another possibility would be to define dynamic metrics that are
relative to another program execution.

28

11 Conclusions

Static metrics are quite common in the compiler research literature, and provide important, and relatively easily-
computed information. In this paper we have focused on the more difficult problem of computing dynamic metrics as
a means of assessing the actual runtime behaviour of a program. This dynamic information can result in a much more
relevant view of the program to compiler and runtime optimization developers.

We have defined five families of dynamic metrics which characterize a program’s runtime behaviour in terms
of size and control structure, data structures, polymorphism, memory use, and concurrency and synchronization.
These metrics were designed with the goals of being unambiguous, dynamic, robust, discriminative, and machine-
independent, and are meant to quantitatively characterize a benchmark in ways relevant to compiler and runtime
developers.

We have built a metrics collection system around JVMPI that allows us to measure most of the defined metrics,
and to distill a concise subset that characterizes a program. We have demonstrated that the metrics we do compute
can be easily used to evaluate and compare benchmarks; a compiler researcher should be able to tell at a glance if
a particular program exhibits the kind of behaviour he/she is interested in. We have also shown that our metrics
do indeed capture qualities that are appropriate for compiler optimization developers; by inspecting metrics one can
find out whether a particular benchmark will respond to a specific optimization, and also show the variety of effects
(positive and negative) of a transformation.

Researchers are invited to visit the website http://www.sable.mcgill.ca/metrics to inspect and con-
tribute to the full range of benchmarks and metrics, which is being continuously updated. We especially welcome new
metric or benchmark suggestions.

Our experience in defining and producing these metrics has resulted in a number of insights:

• Collecting dynamic metrics takes significant effort. It usually fairly easy to verify the correctness of a static
metric by inspection of the program source. For a dynamic metric, code inspection does not suffice, and veri-
fication can be a difficult process. We hope that the numbers contained in this report will help others to verify
their own collection of program behaviour statistics.

• In order to be discriminative, dynamic metrics should ignore the effects produced by standard libraries and focus
on application code. The Java standard libraries form such a large part of execution that it is as if one always
runs a separate application, distorting the numbers; for small benchmarks, startup code can easily account for
a majority of code executed. Understanding and controlling the impact of startup code is clearly an important
aspect of optimization design.

• Robust metrics are difficult to define. Startup and library code have a significant impact, and of course different
program inputs can easily exercise different parts of the program code. Given this, many of our metrics are
surprisingly robust, and stable across a variety of inputs. Even when applying compiler optimizations, only the
metrics directly measuring optimization-related behaviour exhibited large changes.

We believe there is a tremendous need for rigorously defined program metrics. Many studies we examined reported
various numbers that were either not well-defined or could easily be skewed by small changes in program input or
measurement style. We intend our work here to be foundational, giving specific and unambiguous metrics to the
compiler community. It is our hope that this will inspire other researchers to describe their benchmarks with more
rigour, and will also provide validity for the qualitative judgements researchers employ when collecting a benchmark
suite

Acknowledgments

This work was supported, in part, by NSERC, FCAR and McGill FGSR. Special thanks to Tobias Simon for the web
pages and Marc-André Dufour for designing the icons for the metrics.

29

References

[1] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y.S. Ramakrishna, and Derek White. An efficient
meta-lock for implementing ubiquitous synchronization. Technical Report TR-99-76, Sun Microsystems, 1999.

[2] K.K. Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra. A dynamic software metric and debugging tool.
ACM SIGSOFT Software Engineering Notes, 28(2):1–4, March 2003.

[3] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in C++ programs. In Pierre Cointe, edi-
tor, ECOOP’96—Object-Oriented Programming, 10th European Conference, volume 1098 of Lecture Notes in
Computer Science, pages 142–166, Linz, Austria, July 1996. Springer.

[4] A.N.Eden and T.Mudge. The YAGS branch prediction scheme. In Proceedings of the International Symposium
on Microarchitecture, pages 69–77, November 1998.

[5] David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and Stephen Smith. Java without the coffee
breaks: a nonintrusive multiprocessor garbage collector. In Proceedings of the ACM SIGPLAN’01 conference on
Programming language design and implementation, pages 92–103. ACM Press, 2001.

[6] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks: featherweight synchronization
for Java. In Proceedings of the ACM SIGPLAN ’98 conference on Programming language design and implemen-
tation, pages 258–268. ACM Press, 1998.

[7] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In Proceedings of the 1999 ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages 35–46.
ACM Press, 1999.

[8] P. Chang, E. Hao, and Y. Patt. Target prediction for indirect jumps. In Proceedings of the International Sympo-
sium on Computer Architecture, pages 274–283, June 1997.

[9] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer analysis using access paths: design,
implementation, and evaluation. In Proceedings of the ACM SIGPLAN ’00 conference on Programming language
design and implementation, pages 57–69. ACM Press, 2000.

[10] Trishul M. Chilimbi. Efficient representations and abstractions for quantifying and exploiting data reference
locality. In Proceedings of the ACM SIGPLAN’01 conference on Programming language design and implemen-
tation, pages 191–202. ACM Press, 2001.

[11] Charles Daly, Jane Horgan, James Power, and John Waldron. Platform independent dynamic Java virtual machine
analysis: the Java Grande Forum benchmark suite. In Proceedings of the 2001 Joint ACM-ISCOPE Conference
on Java Grande, pages 106–115. ACM Press, 2001.

[12] Manuvir Das. Unification-based pointer analysis with directional assignments. In Proceedings of the ACM
SIGPLAN ’00 conference on Programming language design and implementation, pages 35–46. ACM Press,
2000.

[13] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs using static class
hierarchy analysis. In Walter G. Olthoff, editor, ECOOP’95—Object-Oriented Programming, 9th European
Conference, volume 952 of Lecture Notes in Computer Science, pages 77–101, Åarhus, Denmark, Aug 1995.
Springer.

[14] L. P. Deutsch. Efficient implementation of the Smalltalk-80 system. In Conference record of the 11th ACM
Symposium on Principles of Programming Languages (POPL), pages 297–302, 1984.

[15] Sylvia Dieckmann and Urs Hölzle. A study of the allocation behavior of the SPECjvm98 Java benchmarks. In
Proceedings of ECOOP 1999, LNCS 1628, pages 92–115, 1999.

[16] K. Driesen and U. Hölzle. Multi-stage cascaded prediction. In EuroPar ’99 Conference Proceedings, LNCS
1685, pages 1312–1321, September 1999.

30

[17] Karel Driesen. Efficient Polymorphic Calls. The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston/Dordrecht/London, 2001.

[18] Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics : a rigorous and practical approach. PWS
Publishing Company, 1997.

[19] Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field analysis: getting useful and low-cost interpro-
cedural information. In Proceedings of the ACM SIGPLAN ’00 conference on Programming language design
and implementation, pages 334–344. ACM Press, 2000.

[20] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of points-to analysis and other memory
disambiguation methods for c programs. In Proceedings of the ACM SIGPLAN’01 conference on Programming
language design and implementation, pages 47–58. ACM Press, 2001.

[21] John L. Hennessy and David A.Patterson. Computer Architecture: A Quantitative Approach (Third Edition).
Morgan Kaufmann, San Francisco, 2002.

[22] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock reservation: Java locks can mostly do without
atomic operations. In Proceedings of the 2002 ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 142–160, November 2002.

[23] Chandra Krintz and Brad Calder. Using annotations to reduce dynamic optimization time. In Proceedings of
the ACM SIGPLAN’01 conference on Programming language design and implementation, pages 156–167. ACM
Press, 2001.

[24] Tao Li, Lizy Kurian John, Vijaykrishnan Narayanan, Anand Sivasubramaniam, Jyotsna Sabarinathan, and Anu-
pama Murthy. Using complete system simulation to characterize SPECjvm98 benchmarks. In Proceedings of
the 14th International Conference on Supercomputing, pages 22–33. ACM Press, 2000.

[25] Feng Qian, Laurie Hendren, and Clark Verbrugge. A comprehensive approach to array bounds check elimination
for Java. In CC’02: International Conference on Compiler Construction, number 2304 in LNCS, pages 325–341,
2002.

[26] Erik Ruf. Effective synchronization removal for Java. In Proceedings of the ACM SIGPLAN ’00 conference on
Programming language design and implementation, pages 208–218. ACM Press, 2000.

[27] Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and Jaswinder Pal Singh. Characterizing the memory behavior
of Java workloads: a structured view and opportunities for optimizations. In Proceedings of the 2001 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pages 194–205.
ACM Press, 2001.

[28] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam, Etienne Gagnon, and
Charles Godin. Practical virtual method call resolution for Java. In Proceedings of the conference on Object-
oriented programming, systems, languages, and applications, pages 264–280. ACM Press, 2000.

[29] David Ungar. The Design and evaluation of a high-performance Smalltalk System. MIT Press, Cambridge, 1987.

[30] N. Vijaykrishnan and N.Ranganathan. Tuning branch predictors to support virtual method invocation in Java. In
Proceedings of the 5th USENIX Conference on Object-Oriented Technologies ans Systems, May 1999.

[31] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adaptive branch prediction. In Proceed-
ings of the 19th International Symposium on Computer Architecture, May 1992.

[32] Javier Zalamea, Josep Llosa, Eduard Ayguadé, and Mateo Valero. Improved spill code generation for software
pipelined loops. In Proceedings of the ACM SIGPLAN ’00 conference on Programming language design and
implementation, pages 134–144. ACM Press, 2000.

31

Metric CA COEFF EMPTY HELLO JLEX LPACK RC SBLCC SOOT TCOM VOLCL VOLS

size.appLoadedClasses.value 1 6 1 1 24 1 4 304 532 13 19 38
size.appLoad.value 344 2374 4 7 14243 1056 386 42606 45446 914 4149 9861
size.appRun.value 293 975 0 4 10465 749 310 30705 26239 671 2389 4843
size.appHot.value 59 57 0 4 758 59 36 1099 2759 360 561 1272

size.appHot.percentile 20% 6% 100% 7% 8% 12% 4% 11% 54% 24% 26%
size.loadedClasses.value 275 286 275 275 310 278 282 663 819 322 395 547

size.load.value 72158 80292 71818 71821 87405 77932 72451 146253 126901 91228 88494 149940
size.run.value 8225 12880 7343 7793 21326 10700 8527 49488 38404 22063 19644 52022
size.hot.value 920 116 1006 1027 420 117 1275 1758 3323 713 1278 2441

size.hot.percentile 11% 1% 14% 13% 2% 1% 15% 4% 9% 3% 7% 5%

data.appArrayDensity.value 139.9 160.4 0.0 53.7 157.8 30.2 38.9 35.6 0.0 16.5 25.5
data.appCharArrayDensity.value 15.5 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.4
data.appNumArrayDensity.value 124.3 79.5 0.0 47.0 148.4 0.0 11.2 16.2 0.0 0.0 0.0

data.appRefArrayDensity.value 0.0 80.7 0.0 0.6 9.4 30.2 13.3 9.7 0.0 6.6 10.8
data.arrayDensity.value 31.0 150.9 73.4 73.2 24.5 152.1 44.0 43.6 42.8 53.0 60.8 63.2

data.charArrayDensity.value 10.3 1.6 32.8 32.8 1.2 2.1 17.4 6.5 7.3 10.8 21.8 25.0
data.floatDensity.value 0.4 202.9 2.0 2.0 0.0 285.9 0.6 0.0 1.1 0.0 0.3 0.4

data.numArrayDensity.value 14.6 75.0 34.7 34.4 9.5 140.8 13.7 9.4 10.9 5.06 22.2 21.1
data.refArrayDensity.value 0.4 73.7 1.8 1.8 12.5 8.9 9.2 15.6 13.6 34.851 0.6 2.5

concurrency.lock.percentile 32% 10% 67% 65% 28% 70% 36% 6% 11% 25.7% 14% 21%
concurrency.lockContended.percentile 50% 89% 84% 19.4% 56% 86%

concurrency.lockContendedDensity.value 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.078 0.01 0.01
concurrency.lockDensity.value 4.81 0.22 0.16 0.18 0.11 0.02 2.07 1.29 0.39 1.16 0.73 0.58

pointer.appFieldAccessDensity.value 219.0 99.6 250.0 129.2 0.0 170.9 164.9 190.8 136.1 169.4 158.3
pointer.appNonrefFieldAccessDensity.value 218.7 66.7 0.0 95.5 0.0 100.7 58.6 100.3 59.5 86.6 79.7

pointer.appRefFieldAccessDensity.value 0.3 32.9 250.0 33.7 0.0 70.2 106.2 90.4 76.6 82.8 78.7
pointer.fieldAccessDensity.value 148.7 97.7 53.4 53.9 167.9 3.7 107.3 157.3 159.8 111.1 108.4 103.3

pointer.nonrefFieldAccessDensity.value 123.4 66.7 47.2 47.6 127.1 3.3 86.9 84.9 93.4 103.6 95.4 88.4
pointer.refFieldAccessDensity.value 25.3 31.0 6.2 6.3 40.8 0.4 20.4 72.4 66.4 7.5 13.1 14.9

memory.averageAppObjectSize.value 44.0 20.1 56.0 56.0 25.5 36.0 52.6 23.7 21.2 26.7 34.6 31.9
memory.appobjectSize.bin (8) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

memory.appobjectSize.bin (16) 0% 66% 0% 0% 13% 50% 29% 49% 60% 0% 0% 6%
memory.appobjectSize.bin (24) 0% 33% 0% 0% 72% 0% 0% 22% 30% 67% 10% 23%
memory.appobjectSize.bin (32) 50% 0% 0% 0% 0% 0% 7% 19% 1% 33% 76% 61%
memory.appobjectSize.bin (40) 0% 0% 0% 0% 15% 0% 0% 9% 9% 0% 3% 3%

memory.appobjectSize.bin (48-72) 50% 0% 100% 100% 0% 50% 57% 1% 1% 0% 10% 7%
memory.appobjectSize.bin (80-136) 0% 0% 0% 0% 0% 0% 7% 0% 0% 0% 2% 1%

memory.appobjectSize.bin (144-392) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
memory.appobjectSize.bin (400+) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

memory.byteAllocationDensity.value 445.7 108.7 1746.9 1730.3 304.9 150.1 573.9 344.8 289.8 118.6 247.7 229.8
memory.byteAppAllocationDensity.value 0.7 0.3 14000.0 6.4 0.0 3.0 71.0 158.8 155.3 226.5 168.0

memory.objectAllocationDensity.value 4.3 0.8 9.2 9.1 6.1 0.6 4.1 5.5 8.2 1.6 3.6 3.4
memory.objectAppAllocationDensity.value 0.0 0.0 250.0 0.3 0.0 0.1 3.0 7.5 5.8 6.6 5.3

polymorphism.appCallSites.value 8 84 0 0 635 38 29 2617 3229 81 286 524
polymorphism.callSites.value 482 676 437 471 1266 529 535 3976 3845 966 1577 2589

polymorphism.appInvokeDensity.value 16.0 66.0 27.6 1.3 138.6 69.2 70.8 134.2 121.5 120.1
polymorphism.appReceiverArity.bin (1) 100% 100% 100% 100% 100% 92% 93% 94% 99% 98%
polymorphism.appReceiverArity.bin (2) 0% 0% 0% 0% 0% 3% 3% 6% 0% 1%

polymorphism.appReceiverArity.bin (3+) 0% 0% 0% 0% 0% 5% 4% 0% 1% 1%
polymorphism.appReceiverArityCalls.bin (1) 100% 100% 100% 100% 100% 94% 79% 93% 90% 86%
polymorphism.appReceiverArityCalls.bin (2) 0% 0% 0% 0% 0% 0% 15% 7% 0% 4%

polymorphism.appReceiverArityCalls.bin (3+) 0% 0% 0% 0% 0% 5% 6% 0% 11% 10%
polymorphism.appReceiverCacheMissRate.value 0% 0% 0% 0% 0% 0% 4% 3% 6% 6%

polymorphism.appTargetArity.bin (1) 100% 100% 100% 100% 100% 97% 95% 99% 99% 99%
polymorphism.appTargetArity.bin (2) 0% 0% 0% 0% 0% 3% 2% 1% 0% 0%

polymorphism.appTargetArity.bin (3+) 0% 0% 0% 0% 0% 1% 3% 0% 1% 1%
polymorphism.appTargetArityCalls.bin (1) 100% 100% 100% 100% 100% 95% 84% 99% 95% 95%
polymorphism.appTargetArityCalls.bin (2) 0% 0% 0% 0% 0% 0% 14% 1% 0% 1%

polymorphism.appTargetArityCalls.bin (3+) 0% 0% 0% 0% 0% 5% 3% 0% 5% 5%
polymorphism.appTargetCacheMissRate.value 0% 0% 0% 0% 0% 0% 3% 6% 3% 4%

Table XI: All metrics.

32

Metric Obh Obsrt Oem3d Ohth Omst Operm Opow Otsp Ovor COMP JESS DB JAVAC JACK

size.appLoadedClasses.value 9 2 4 8 6 10 6 2 6 22 158 14 175 66
size.appLoad.value 2023 565 713 1004 727 855 1949 955 1783 6555 22370 6436 44664 23424
size.appRun.value 1631 484 563 920 600 777 1854 868 1063 5084 11634 4546 26267 18721
size.appHot.value 160 137 42 65 175 393 402 54 351 396 476 67 2759 802

size.appHot.percentile 10% 28% 8% 7% 29% 51% 22% 6% 33% 8% 4% 2% 11% 4%
size.loadedClasses.value 285 277 280 283 281 285 281 278 281 310 458 304 471 356

size.load.value 77605 76140 76518 76579 76302 76430 77524 76760 77358 90762 111661 91730 133172 107697
size.run.value 11141 9724 9859 10552 10112 10274 10948 10139 10547 14507 22621 14564 37823 28876
size.hot.value 160 137 76 66 186 398 409 110 354 396 564 152 2258 1475

size.hot.percentile 1% 1% 1% 1% 2% 4% 4% 1% 3% 3% 3% 1% 6% 5%

data.appArrayDensity.value 105.9 0.0 101.2 4.4 20.5 0.0 97.4 0.0 28.3 52.2 58.1 86.2 15.5 22.5
data.appCharArrayDensity.value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 1.3
data.appNumArrayDensity.value 97.6 0.0 3.4 0.0 0.0 0.0 96.5 0.0 0.0 52.2 0.8 2.5 0.4 11.5

data.appRefArrayDensity.value 4.4 0.0 92.6 4.0 20.5 0.0 0.2 0.0 27.7 0.0 53.1 83.7 3.5 2.0
data.arrayDensity.value 105.9 0.1 89.3 4.6 19.6 0.3 93.4 0.8 28.3 52.2 55.2 73.5 37.9 32.8

data.charArrayDensity.value 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.4 0.0 0.0 0.2 33.8 17.6 6.3
data.floatDensity.value 245.7 0.0 13.5 6.0 0.0 0.0 474.9 471.6 226.4 0.0 12.1 0.0 0.1 0.2

data.numArrayDensity.value 97.5 0.0 3.1 0.1 0.1 0.1 92.5 0.4 0.0 52.1 0.8 1.0 6.8 4.7
data.refArrayDensity.value 4.4 0.0 81.5 4.0 19.4 0.0 0.2 0.0 27.7 0.0 48.6 38.6 5.6 13.0
concurrency.lock.percentile 69% 65% 70% 62% 73% 69% 70% 70% 73% 57% 42% 3% 6% 21%

concurrency.lockContended.percentile 100% 100% 100%
concurrency.lockContendedDensity.value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

concurrency.lockDensity.value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 2.14 0.23 2.13

pointer.appFieldAccessDensity.value 103.0 189.6 156.0 129.7 208.3 161.3
pointer.appNonrefFieldAccessDensity.value 100.4 47.5 111.5 81.2 35.7 21.7 32.0 191.1 78.3 145.9 148.1 84.0 132.8 101.9

pointer.appRefFieldAccessDensity.value 10.8 73.4 3.8 168.5 40.9 81.3 0.9 29.5 42.4 43.7 7.8 45.7 75.5 59.5
pointer.fieldAccessDensity.value 102.9 189.6 151.2 123.3 163.9 156.6

pointer.nonrefFieldAccessDensity.value 100.3 47.5 107.3 81.1 41.5 21.9 30.6 184.5 78.2 145.9 141.4 101.0 114.1 124.5
pointer.refFieldAccessDensity.value 10.8 73.3 3.4 168.2 38.6 81.0 0.9 27.8 42.3 43.7 9.8 22.2 49.8 32.1

memory.averageAppObjectSize.value 16.2 24.0 291.1 19.4 25.0 32.0 30.4 48.0 25.6 29.1 41.9 1334.2 29.0 31.3
memory.appobjectSize.bin (8) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

memory.appobjectSize.bin (16) 99% 0% 0% 71% 0% 0% 0% 0% 3% 42% 0% 98% 23% 8%
memory.appobjectSize.bin (24) 0% 100% 0% 14% 100% 0% 48% 0% 75% 42% 20% 0% 22% 2%
memory.appobjectSize.bin (32) 1% 0% 0% 14% 0% 100% 43% 0% 19% 0% 30% 0% 39% 81%
memory.appobjectSize.bin (40) 0% 0% 33% 0% 0% 0% 0% 0% 2% 0% 1% 0% 10% 9%

memory.appobjectSize.bin (48-72) 0% 0% 0% 0% 0% 0% 9% 100% 0% 8% 48% 0% 5% 0%
memory.appobjectSize.bin (80-136) 0% 0% 0% 0% 0% 0% 0% 0% 0% 8% 0% 0% 0% 0%

memory.appobjectSize.bin (144-392) 0% 0% 11% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
memory.appobjectSize.bin (400+) 0% 0% 56% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0%

memory.byteAllocationDensity.value 248.7 11.0 35.6 67.5 225.4 107.6 21.5 84.8 84.4 11.1 294.9 24.8 131.8 313.8
memory.byteAppAllocationDensity.value 65.2 5.9 14.9 60.4 137.2 85.9 0.6 15.5 78.6 0.0 174.8 19.1 77.7 19.1

memory.objectAllocationDensity.value 8.0 0.3 0.1 3.1 10.4 2.7 0.6 1.0 3.1 0.0 4.4 0.8 3.2 5.8
memory.objectAppAllocationDensity.value 4.0 0.2 0.1 3.1 5.5 2.7 0.0 0.3 3.1 0.0 4.2 0.0 2.7 0.6

polymorphism.appCallSites.value 128 35 62 73 59 48 33 55 174 54 737 128 2617 1124
polymorphism.callSites.value 638 536 567 578 569 558 530 559 684 606 1309 695 3234 1699

polymorphism.appInvokeDensity.value 18.7 11.5 3.6 57.1 49.2 45.9 0.5 24.7 110.7 16.5 59.2 80.6 72.3 86.7
polymorphism.appReceiverArity.bin (1) 97% 100% 100% 100% 100% 69% 100% 100% 100% 98% 98% 100% 78% 99%
polymorphism.appReceiverArity.bin (2) 3% 0% 0% 0% 0% 0% 0% 0% 0% 2% 1% 0% 10% 1%

polymorphism.appReceiverArity.bin (3+) 0% 0% 0% 0% 0% 31% 0% 0% 0% 0% 1% 0% 12% 1%
polymorphism.appReceiverArityCalls.bin (1) 87% 100% 100% 100% 100% 37% 100% 100% 100% 100% 99% 100% 73% 90%
polymorphism.appReceiverArityCalls.bin (2) 13% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15% 10%

polymorphism.appReceiverArityCalls.bin (3+) 0% 0% 0% 0% 0% 63% 0% 0% 0% 0% 1% 0% 12% 0%
polymorphism.appReceiverCacheMissRate.value 3% 0% 0% 0% 0% 41% 0% 0% 0% 0% 0% 0% 7% 3%

polymorphism.appTargetArity.bin (1) 97% 100% 100% 100% 100% 77% 100% 100% 100% 98% 99% 100% 90% 99%
polymorphism.appTargetArity.bin (2) 3% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 4% 0%

polymorphism.appTargetArity.bin (3+) 0% 0% 0% 0% 0% 23% 0% 0% 0% 0% 1% 0% 7% 1%
polymorphism.appTargetArityCalls.bin (1) 87% 100% 100% 100% 100% 43% 100% 100% 100% 100% 99% 100% 92% 90%
polymorphism.appTargetArityCalls.bin (2) 13% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 10%

polymorphism.appTargetArityCalls.bin (3+) 0% 0% 0% 0% 0% 57% 0% 0% 0% 0% 1% 0% 6% 0%
polymorphism.appTargetCacheMissRate.value 3% 0% 0% 0% 0% 38% 0% 0% 0% 0% 0% 0% 3% 3%

Table XII: All metrics.

33

