McGill University
School of Computer Science
Sable Research Group

Towards Dynamic Interprocedural Analysis in JVMs

Sable Technical Report No. 2003-5

Feng Qian and Laurie Hendren
[fqian, hendren]@cs.mcgill.ca
Sable Research Group, School of Computer Science, McGill University

October 21, 2003

WWW.sable. mcgill.ca



Abstract

This paper presents a new, inexpensive, mechanism for constructing a complete call graph for Java
programs at runtime, and provides an example of using the mechanism for implementing a dynamic
reachability-based interprocedural analysis (IPA), namely dynamic XTA.

Reachability-based IPAs, such as points-to analysis, type analysis, and escape analysis, require a
context-insensitive call graph of the analyzed program. Computing a call graph at runtime presents
several challenges. First, the overhead must be low. Second, when implementing the mechanism for
languages such as Java, both polymorphism and lazy class loading must be dealt with correctly and
efficiently. We propose a new mechanism with low costs for constructing runtime call graphs in a JIT
environment. The mechanism uses a profiling code stub to capture the fist-time execution of a call edge,
and adds at most one more instruction to the repeated call edge invocations. Polymorphism and lazy
class loading are handled transparently. The call graph is constructed incrementally, and it supports
optimistic analysis and speculative optimizations with invalidations.

We also developed a dynamic, reachability-based type analysis, dynamic XTA, as an application of
runtime call graphs. It also serves as an example of handling lazy class loading in dynamic IPAs.

The dynamic call graph construction algorithm and dynamic version of XTA have been implemented
in Jikes RVM, and we present empirical measurements of the overhead of call graph construction and
the characteristics of dynamic XTA.

1 Introduction

Interprocedural analyses (IPAs) derive more precise program information than intraprocedural ones. Static
IPAs provide a conservative approximation of runtime information to clients for optimizations. A foundation
of TPA is the call graph of the analyzed program. IPAs for object-orient (OO) programs share some common
challenges. Virtual calls (polymorphism) make call graph construction difficult. Further, since the code base
tends to be large, the complexity and the precision of the analysis must be carefully balanced.

One difficulty of call graph construction for OO languages lies in how to approximate the targets of
polymorphic calls. In addition to polymorphism, Java has its own language-specific feature, dynamic class
loading. Static IPAs assume that the whole program is available at analysis time. However, this may not be
the case for Java. A Java program can download a class file from the network or other unknown resources.
Even when all programs exist on local disks, a VM may choose to load classes lazily, on demand, to reduce the
resource usage and improve responsiveness [16]. When a JIT compiler encounters an unresolved symbolic
reference, it may choose to delay the resolution until the instruction is executed at runtime. A dynamic
analysis has to deal with these unresolved references. A more subtle problem, usually ignored by static IPAs
for Java, is that a runtime type is defined by both the class name and its initial class loader. Therefore, a
correct dynamic IPA has to be incremental (dealing with dynamic class loading), efficient, and type safe.

Although Java’s dynamic features pose difficulties for program analyses, there are many opportunities
at runtime that can only be enjoyed by dynamic analyses. For example, a dynamic analysis only needs to
analyze loaded classes and invoked methods. Therefore, the analyzed code base can be much smaller than
in a conservative static analysis. Further, dynamic class loading can improve the precision of type analyses.
The set of runtime types can be limited to loaded classes. Thus, a dynamic analysis has more precise type
information than its static counterpart. Further, in contrast to the conservative nature (pessimistic) of
static analysis, a dynamic one can be optimistic about future execution, if used in conjunction with runtime
invalidation mechanisms [9,13,20,25].

Over the last 10 years, VM technology has advanced to a new stage. JIT compilers already implement
most intraprocedural data-flow analyses that can be found in static compilers [1,19]. Further performance
improvements have been achieved using adaptive and feedback-directed compilation [3,18].

Dynamic interprocedural analysis, however, has not yet been widely adopted. Some type-based IPAs [13,
20] have gained ground in JIT compilation environments. However, more complicated, reachability-based
IPAs, such as points-to analysis and escape analysis, have not been successfully applied in JIT compilers.

In this paper, we present an online call graph construction mechanism for reachability-based interpro-
cedural analyses at runtime. Instead of approximating a call graph, our mechanism uses a profiling code



stub to capture invoked call edges. The mechanism overcomes difficulties caused by dynamic class loading
and polymorphism. Most overhead happens at JIT compilation and class loading time. It has only negli-
gible effect on the performance of applications in an adaptive environment. A very desirable feature of the
mechanism is that call graphs can be built incrementally while execution proceeds. This enables speculative
optimizations using runtime invalidations for safety.

Dynamic IPAs seem more suitable for long-running applications in adaptive recompilation systems.
Pechtchanski and Sarkar [20] described a general approach of using dynamic IPAs. A virtual machine
gathers information about compiled methods and loaded classes in the initial state, and performs recom-
pilation and optimizations only on selected hot methods. When the application reaches a “stable state”,
information changes should be rare.

Based on our new runtime call graph mechanism, we describe the design and implementation of an online
version of an example IPA, XTA type analysis [27]. Dynamic XTA uses dependency databases to handle
unresolved types and field references. The analysis is driven by VM events such as compilation, class loading,
or the discovery of new call edges.

The rest of paper is organized as follows. Section 2 introduces our new call graph construction mechanism
which serves as the basis for dynamic IPA. In the following section, Section 3, we describe the design of a
specific dynamic IPA, dynamic XTA analysis, in the presence of lazy class loading. The call graph mechanism
and dynamic XTA have been implemented in Jikes RVM, and the cost of call graph construction and runtime
characteristics of dynamic XTA analysis is presented in Section 4. Section 5 discusses related work, and
conclusions are presented in Section 6.

2  Online Call Graph Construction

Context-insensitive call graphs are commonly used by IPAs, where a method is represented as one node in
the call graph. There exists a directed edge from a method A to a method B if A calls B.

We propose a new mechanism for profiling and constructing context-insensitive call graphs at runtime.
The mechanism initializes call edges using a profiling code stub. When the code stub gets executed, it
generates a new call edge event, then it triggers method compilation if the method is not compiled yet, and
finally patches back the address of the real target. The mechanism captures the first execution event of each
call edge, and only the first execution has some profiling overheads. Clients, such as call graph builders, can
register callback routines called by a profiling code stub when new call edges are discovered. Callbacks can
perform necessary actions before the callee is invoked.

The remainder of this section is structured as follows. In Section 2.1 we give the necessary background,
describing the existing implementation of virtual method tables in Jikes RVM. In Section 2.2 we describe
the basic mechanism we propose for building call graphs at runtime, and in Section 2.3 we show how this
basic mechanism can be optimized to reduce overheads.

2.1 Background: virtual method table

To understand how the mechanism works, we first revisit the virtual method dispatching table in Jikes
RVM [1], which is a standard implementation in modern Java virtual machines. Figure 1(a) depicts the
object layout in Jikes RVM. Each object has a pointer, in its header, to the Type Information Block (TIB)
of its type (class). A TIB is an array of objects that encodes the type information of a class. At a fixed offset
from the TIB header is the Virtual Method Table (VMT) which is embedded in the TIB array. A resolved
method has an entry in the VMT of its declaring class, and the entry offset to the TIB header is a constant, say
method_offset, assigned during class resolution. A VMT entry records the instruction address of its owner
method. Figure 1(b) shows that, if a class, say A, inherits a method from its superclass, java.lang.0bject,
the entry at the method offset in the subclass’ TIB has the inherited method’s instruction address. If a
method in the subclass, say D, overrides a method from the superclass, the two methods still have the same
offset, but the entries in two TIBs point to different method instructions.

Given an object pointer at runtime, an invokevirtual bytecode is implemented by three basic operations:



TIB = * (ptr + TIB_OFFSET);
INSTR = TIB[method_offset];
JMP INSTR

The first instruction obtains the TIB address from the object header. The address of the real target is
loaded at the method_offset offset in the TIB. Finally the execution is transferred to the target address.

Lazy method compilation works by first initializing TIB entries with the address of a lazy compilation
code stub. When a method is invoked for the first time, the code stub gets executed. The code stub triggers
the compilation of the target method and patches back the address of the compiled method into the TIB
entry (where the code stub resided before).

2.2 Call graph construction at runtime

In the normal lazy method compilation, the code stub captures the first invocation of a method without
distinguishing callers. However, in order to capture call edges we need to store information per caller. In
order to achieve this, an array of instruction addresses can be put in the TIB entry of the callee method.
We call the array a Caller-Target Block (CTB). The callers of the method have different indices into the
method’s CTB array. Now all of the CTB entries have the address of a profiling code stub and the code
stub itself is modified so that in addition to triggering the lazy compilation of the callee, it generates a new
edge event. Clients monitoring new edge events get notified. Finally the code stub patches back the callee’s
instruction address into the entry of the CTB array.

Figure 1(c) shows the concept of extended arrays. Note that now an invokevirtual bytecode takes one
extra load to get the target address.

TIB = * (ptr + TIB_OFFSET) ;

/* load method’s CTB array from TIB */
CTB = TIB[method_offset];

/* load method’s code address */

INSTR = CTB[caller_index];

JMP INSTR

There remain three problems to address. First, one needs a convenient way of indexing into the TIBs
which works even in the presence of lazy class loading. Second, object initializers must be handled specially.
Third, we must handle the case where an adaptive system inlines one method into another. Our solution to
these three problems is given below.

2.2.1 Allocating slots in the TIB

To index callers of a callee, our modified JIT compiler maintains a table of (callee, caller) pairs. In Java
bytecodes, the target of invokevirtual is only a symbolic reference to the name and descriptor of the method
as well as a symbolic reference to the class where the method can be found. Resolving the method reference
requires the class to be loaded first. A VM can delay method resolution until the call instruction is executed
at runtime. Therefore, the real target may not be known at JIT compilation time.

To deal with lazy class resolution and polymorphism, our approach uses the callee’s method name and
descriptor in the table. For example, if both methods X.x() and Y.y () have virtual calls of a symbolic
reference A.m(), and another method Z.z () has a virtual call of B.m(), our approach assumes that all three
methods are possible callers of any method with the signature m(), and allocates slots in the TIB for all
of them. At runtime, only two CTB entries of A.m() may be filled, and only one entry of B.m() may get
filled. This conservative solution uses some superfluous space, but does not sacrifice accuracy. Further, it
simplifies the task of handling symbolic references and polymorphism. In real applications we observed that
only a few common method signatures, such as equals(java.lang.0Object), and hashCode(), have large
caller sets where space is unused.
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2.2.2 Handling object initializers

Because there are many object initializers that share a common name <init>, their CTB arrays may grow
too large. Since calls of static methods and object initializers are monomorphic, we use a conservative
approach to avoid CTB arrays and profiling code stubs. The only problem to overcome is how to handle
unresolved method references (for lazy class loading). If the target method reference of an invokespecial
instruction denotes an object initializer and the reference can be resolved at JIT compilation time, our
approach conservatively assumes there is a call edge from the compiled method to the resolved initializer
method. For unresolved <init> method references, a dependency on the reference from the caller is
registered in a database. When the method reference gets resolved (this happens due to a class loading
event), the dependency is converted to a call edge.

2.2.3 Dealing with Inlining

In an adaptive system, inlining might be applied on a few hot methods. We capture these events as follows.
When a callee is inlined into a caller by an optimizing JIT compiler, the call edge from the caller to callee
is added to the call graph unconditionally. This is a conservative solution without runtime overheads.

2.3 Optimizations

Since Jikes RVM is written in Java, our runtime call graph construction mechanism may incur two kinds of
overheads. First, adding one instruction per call can potentially consume many CPU cycles because Jikes
RVM inserts many system calls into applications for runtime checks, locks and object allocations. Second,
a CTB array is a normal Java array with a three-word header; thus CTB arrays can increase memory usage
and create extra work for garbage collectors.

#callers | Java Libraries | SpecJVM App
0 2214  69.08% | 507  19.32%
1 291 78.16% | 815  50.38%
2-3 172 83.53% | 608  73.55%
4-7 170 88.83% | 283  84.34%
8- 358 411
TOTAL 3205 2624

Table 1: Distribution of CTB sizes

Table 1 shows the distributions of the CTB sizes for the SpecJVM98 benchmarks [23] in a FastAdaptive-
SemiSpace boot image. The boot image contains mostly RVM classes and a few Java utility classes. We only
profiled methods from Java libraries and benchmarks. A small number of methods of classes in the boot image
may have CTB arrays allocated at runtime because there is no clear cut mechanism for distinguishing between
Jikes RVM code and application code. The first column shows the range of the number of callers. The second
and third columns list the distributions of methods belonging to Java libraries and SpecJVM application
code.! To demonstrate that most methods have few callers, we calculated the cumulative percentages of
methods that have no caller, < 1, < 3 and < 7 callers in the first to fourth rows. We found that, 89% of
methods from (loaded classes in) Java libraries, and 84% of methods from SpecJVM98, have no more than
7 callers. In these cases, it is not wise to create CTB arrays with a short length because each array header
takes 3 words. The last data row labelled ” TOTAL” gives total number of methods of all classes and numbers
of methods in the two sub-categories.

To avoid the overhead of array headers for TIBs, and to eliminate the extra instruction to load the CTB
array from a TIB in the code for invokevirtual instructions, a local optimization is to inline the first few
elements of the CTB into the TIB. Since caller indices are assigned at compile time, a compiler knows which

1We used package names to distinguish classes.



part of the CTB will be accessed in the generated code. To accommodate the inlined part of the CTB, a
class’ TIB entry is expanded to allow a method to have several entries. Figure 1(d) shows the layout of TIBs
with one inlined CTB element. When generating instructions for a virtual call, the value of the caller’s CTB
index, caller_index, is examined: if the index falls into the inlined part of the CTB, then invocation is
done by three instructions:

TIB = * (ptr + TIB_OFFSET);
INSTR = TIB[method_offset + caller_index];
JMP INSTR

Whenever a CTB index is greater than or equal to the inlined CTB size, CTB_INLINED_SIZFE, then four
instructions must be used for the call:

TIB = * (ptr + TIB_OFFSET);

CTB = TIB[method_offset + CTB_ARRAY_OFFSET];
INSTR = CTB[caller_index - CTB_INLINED_SIZE];
JMP INSTR

Note that in addition to saving the extra instruction for inlined CTB entries, the space overhead of the
CTB header is eliminated in the common cases where all CTB entries are inlined.

Another source of optimization is to avoid the overhead of handling system code, such as runtime checks
and locks, inserted by compilers, because this code is frequently called and ignoring them does not affect the
semantics of applications. To achieve this, the first CTB entry is reserved for the purpose of system inserted
calls. Instead of being initialized with the address of a call graph profiling stub, the first entry has the
address of a lazy method compilation code stub or method instructions. When the compiler generates code
for a system call, it always assigns the zero caller_index to the caller. To avoid the extra load instruction,
the first entry of a CTB array is always inlined into the TIB.

3 Dynamic XTA Type Analysis

Tip and Palsberg [27] proposed a set of propagation-based call graph construction algorithms for Java with
different granularities between RTA and 0-CFA. XTA analysis uses separate sets for methods and fields. A
type reaching a caller can reach a callee if it is a subclass of the callee’s parameter types. Types can be
passed between methods by field accesses as well. To approximate the targets of a virtual call, XTA uses
reachable types of the caller to perform method lookups statically. When new targets are discovered, new
edges are added into the graph. The analysis performs propagation until reaching the fixed point. XTA has
the same complexity as subset-based points-to analysis, O(n®), but with fewer nodes in the graph.

XTA analysis is a good candidate as a dynamic IPA because it requires reasonably small resources to
represent the graph since it ignores the dataflow inside a method. The results might be less precise than
an analysis using a full dataflow approach [20,26]. On the other hand, rich runtime type information may
improve the precision of dynamic XTA. The results of the analysis can be used for method inlining and
elimination of type checks.

Like other static IPAs for Java, static XTA assumes whole programs are available at analysis time.
Dynamically-loaded classes must be supplied to the analysis manually. The burden on static XTA is to
approximate targets of polymorphic calls while propagating types along the call graph. However, dynamic
XTA does not have this difficulty because it uses the dynamic call graph constructed at runtime. The call
graph used by dynamic XTA is significantly smaller than the one constructed by the static XTA. However, a
new challenge of dynamic XTA comes from lazy class loading. In a Java class file, a call instruction has only
the name and descriptor of a callee as well as a symbolic reference to a class where the callee can be found.
Similarly, field access instructions have symbolic references only. At runtime, a type reference is resolved to
a class type and a method/field reference is resolved to a method/field before any use. 2

21n following presentation, we use type(s) as a short name for resolved class type(s), and use references for symbolic references,
e.g., type references, method/field references.



class A { Object £f; }

class B extends A {

(a) Java source
putfield A.f Ljava/lang/Object;

(b) compiled bytecode
getfield B.f Ljava/lang/Object;

Figure 2: Field reference example

Figure 2 shows a simple example to help understand the problem caused by symbolic references. Class B
extends class A, which declares a field f. Field accesses of a.f and b.f were compiled to putfield and getfield
instructions with different symbolic field references A.f and B.f. At runtime, before the getfield instruction
gets executed, the reference B.f is resolved to field f of class A. However, a dynamic analysis or compiler
cannot determine that B.f will be resolved to f of A without loading both classes B and A.

Resolution of method/field references requires the classes to be loaded and resolved first. However, a
JVM may choose to delay such resolution as late as possible to reduce resource usage and improve respon-
siveness [16]. To port a static IPA for Java to a dynamic IPA, the analysis must be modified to handle
unresolved references. In this section, we demonstrate a solution for the problem for dynamic XTA, which
is also applicable to general TPAs for Java.

Our Dynamic XTA analysis constructs a XTA graph G = {V, E, TypeF'ilters, ReachableTypes}:

e VC MUPFU{a}, where M is a set of resolved methods, F is a set of resolved fields, and « is an
abstract name representing array elements;

e F CV xV,is the set of edges;

TypeFilters C E — S, is a map from an edge to a set of types, S;

e ReachableTypes CV — T, is a map from a node to a set of resolved types T'.

The XTA graph combines call graphs and field/array accesses together. A call from a method A to a
method B is modelled by an edge from node A to node B. The filter set includes parameter types of method
B. If B’s return type is a reference type, it is added in the filter set of the edge from B to A. Field reads and
writes are modelled by proper edges between methods and fields, with fields’ declaring classes in the filter.
Each node has a set of reachable (resolved) types.

Basic graph operations include adding new edges, new reachable types, and propagations:

e addEdge(a, b, T), creates an edge from a node a to a b if it does not exist yet; then adds types in set
T to the filter set associated with the edge;

e addType(a, t), adds a type ¢ to the reachable type set of a node g;

e propagate(t, a), propagates a type t to successors of a node a. If ¢ is not in a successor’s reachable type
set, it is recursively propagated to all descendants until no changes.

Since the call graph is constructed at runtime using code stubs, there are no new edges created during
propagation. The complexity of propagation operation is linear.

Dynamic XTA analysis is driven by events from JIT compilers and class loaders. Figure 3 shows event
flows. In the dotted box are the three modules of dynamic XTA analysis: XTA graphs, the analysis, and



dependency databases. The JIT compilers notify the analysis by channel 1 that a method is about to be
compiled. The analysis scans bytecode. When seeing a new instruction with a resolved type, the analysis
adds the type into the reachable type set of the method via channel 3; otherwise it registers a dependency on
the unresolved type reference for the method via channel 4. Similarly for field accesses, if the field reference
can be resolved without triggering class loading, the analysis adds a directed edge into the graph via channel
3; otherwise, it registers a dependency on unresolved field reference for the method. Since we use call graph
profiling code stubs to discover new call edges, the code stubs can add new edges to the graph by channel 2.
Whenever a type reference or field reference gets resolved, the dependency databases is notified (by channel
5), and registered dependencies on resolved references are resolved to new reachable types or new edges of
the graph. Whenever the graph is changed (either an edge is changed, or a new reachable type is added), a
propagator propagates type sets of related nodes until no change occurs.

7‘4
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callgr_ap h 3 > | XTA graphs
profiling :
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classloaders —»| dependency
© | databases

Figure 3: Models of XTA events

Compared to static IPAs such as points-to analysis, the problem set of dynamic XTA analysis is much
smaller because the graph contains only compiled methods and resolved fields at runtime. Although
optimizations such as off-line variable substitution [21] and online cycle elimination [8] can help reduce the
graph size further, the complexity and runtime overhead of the algorithms may prevent them from being
useful in a dynamic analysis. Efficient representations for sets and graphs, such as hybrid integer sets [11,15]
and BDDs [5], are more important since the dynamic analysis has bounded resources. In our implementation,
graphs, sets, and dependency databases were implemented using hybrid integer sets and integer hash maps.

Graph changes are driven by runtime events such as newly compiled methods, newly discovered call
edges, or dynamically loaded classes. Similar to the DOIT framework [20], clients using XTA analysis for
optimizations should register properties to be verified when the graph changes. Since the analysis can notify
the client when a change occurs, the clients can perform an invalidation of compiled code or recover execution
states to a safe point. The exact design and implementation details for verifying properties and performing
invalidations are beyond the scope of this paper. Readers can find more about dependency management and
invalidation techniques in [9,12,13].

4 Evaluation

We have implemented proposed call graph construction mechanism in Jikes RVM [14] v2.2.1. The SpecJVM98
suite [23] was chosen as our benchmark set. In our experiments, classes in the boot image are not represented
in the dynamic call graphs because (1) the number of RVM classes is much larger than the number of classes
of applications and libraries, (2) the classes in the boot image were statically compiled and optimized. Static
IPAs such as extant analysis [30] may be applied on the boot image classes. We report the experimental
results for application classes and Java library classes.

We have measured space overhead for CTB arrays at runtime with inlined size 1, 2, 4, and 8. For our ex-
periment the virtual machine was started once without restarting between different benchmarks. The bench-
marks are run in the order of 201 _compress, 202_jess _205_raytrace, 209_db, 213 _javac, 222_jess,
227 mtrt, and _228_jack, and each benchmark runs 10 times with input size 100. This concatenation of all
benchmarks simulates a long running application.



Inlined bootimage size CTB space | #methods with

CTB sizes (bytes) (bytes) non-null CTB
default 34,284,100 N/A N/A

1 37,741,640 10.08% 783,392 3,108 53.32%

2 37,977,940 10.77% 754,756 2,003  34.36%

4 38,227,708 11.50% 725,104 1,223  20.98%

8 38,721,688 12.94% 691,992 769  13.19%

Table 2: Memory overhead

The first column of Table 2 gives four configurations of different inlined CTB sizes and the default
configuration without the dynamic call graph builder. The boot image size was increased about 10%, as
shown in column 2, when including all compiled code for call graph construction and online XTA analysis.
Inlining CTB elements increases the size of TIBs. However, changes are relatively small (the difference
between inlined CTB sizes 1 and 2 is about 236 kilo bytes), as shown in the second column. The third
column shows the memory overhead, in bytes, of allocated CTB arrays for methods of classes in Java
libraries and benchmarks. The last column gives the number of methods with non-null CTB arrays and its
percentage in total methods of loaded library and benchmark classes. As more CTB elements get inlined,
fewer methods need CTB arrays. The time for creating, expanding and updating CTB array are negligible.
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Figure 4: GC time when running SpecJVM98

Now we look at the performance impact after introducing CTB arrays. Since CTB arrays are likely
living for a long time, garbage collection is likely to be directly affected. Using the same experimental
setting mentioned before, GC time was profiled and plotted in Figure 4 for the default system and the
configurations with different inlined CTB sizes. The x-axis is the garbage collection number during the
benchmark run, and the y-axis is the time spent on each collection. We found that, with these CTB arrays,
the collection is slightly slower than the default system, but not significantly.

The call graph building code stub itself has very little performance overhead. It is only executed when a
call edge is invoked for the first time. Some invocation bytecodes may have one more extra load instruction,



if their CTB entry was not inlined, as described in Section 2.3. For benchmarks in the SpecJVM98 suite, we
found the performance changes are negligible. Further, ror benchmarks from the SpecJVM98 suite, it seems
that inlining more CTB array elements does not result in performance improvement.

An interesting side note concerns the impact of adding new analyses to baseline compiled code when
using the Jikes RVM adaptive compilation decision system. Our first experiments showed an unexpected
slowdown when we enabled the dynamic XTA. After detailed investigations we discovered that this was
due to perturbing the adaptive decision system, as follows. An IPA client may register callbacks when
a new edge is discovered. Dynamic XTA callback adds new edges into the graph and may perform type
propagation if necessary. The callback may incur overheads during the initial phase of applications. This
has an implicit impact on Jikes RVM’s adaptive recompilation decision system [3] because the baseline
compiled code is slower than the adaptive system expects. This results in fewer methods being promoted
to higher optimization levels, and thus slower code. To compensate for the effect of the additional work in
code stubs, we re-trained the adaptive compilation system to optimize about the same number of methods
as the default system. We found that usually the first run has small performance degradation (up to 7.62%)
when performing dynamic XTA, but it is not significant when reaching a stable state.

A dynamic XTA only analyzes compiled methods, and as a result the XTA graph is very small. Table 3
shows the size of final XTA graphs. The second column gives the number of nodes including methods and
fields, and the number of method nodes is given in braces. The third column shows the number of graph
edges, and the number of call edges is in braces. Tip and Palsberg [27] reported that the call graph of javac
benchmark constructed by static XTA analysis (not including Java libraries) has 1,366 methods and 13,113
call edges. The dynamic XTA graph has 1,115 methods and 4,500 call edges for both Java libraries and
benchmarks. We can see that the size of graph is reasonably small, which allows efficient type propagation
at runtime.

benchmark #nodes #edges

compress 404  (315) | 802  (577)
jess 932  (778) | 2347 (1826)
db 439 (349) | 963  (699)
javac 1396 (1115) | 6140  (4500)
mpegaudio || 638  (484) | 1406  (893)
mtrt 568 (454) | 1469 (1141)
jack 720 (574) | 1925 (1433)

Table 3: Characteristics of dynamic XTA graphs

5 Related Work

Static call graph construction for OO programming languages focuses on approximating a set of types that
a receiver of a polymorphic call site may have at runtime. Static class hierarchy analysis (CHA) [7] treats
all subclasses of a receiver’s declaring class as possible types at runtime. Rapid type analysis (RTA) [4]
prunes the type set of CHA by eliminating types that do not have an allocation site in whole program.
Static CHA and RTA examine the entire set of classes. Propagation-based algorithms propagate types from
allocation sites to receivers of polymorphic call sites along program’s control flow. Assignments, method calls,
field and array accesses may pass types from one variable to another. Context-insensitive algorithms can be
modelled as unification-based [24] or subset-based [2] propagation as points-to analysis. The complexity varies
from O(Na(N,N)) for unification-based analysis to O(N?3) for subset-based analysis. Context-sensitive
algorithms [17] might yield more precise results but are difficult to scale to large programs. Since CHA
and RTA do not use control flow information, both are considered as fast algorithms when comparing with
propagation-based algorithms. Both VTA [26] and XTA analysis [27] are simple propagation-based type
analyses for Java. The analyses can either use a call graph built by CHA/RTA, then refine it, or build the
call graph on the fly [22].

10



Ishizaki et.al. [13] published a new method of utilizing class hierarchy analysis for devirtulization at run-
time. If the target of a virtual call is not overridden in the current class hierarchy, the compiler may choose
to inline the target directly with a backup code of normal virtual call. To cope with dynamic class loading,
the runtime system monitors class loading events. If a newly loaded class overrides a method that has been
directly inlined in some callers, the code of callers has to be patched with the backup path before class load-
ing proceeds. Igor and Sarkar [20] presented a framework for performing dynamic optimistic interprocedural
analysis in a Java virtual machine. Similar to dynamic CHA, their framework builds detailed dependencies
between optimistic assumptions for optimizations and runtime events such as method compilation. Invalida-
tion is a necessary technique for correctness when the assumption is invalidated. Neither of these approaches
explored reachability-based analysis which requires a call graph as the base. Our work inherits the merits
of their work, supporting optimistic optimizations and invalidations. Bogda and Singh [6] experimented an
online interprocedural shape analysis, which uses an inlining cache to construct the call graph at runtime.
However, their implementation was based on bytecode instrumentation which incurs a large overhead. Our
work aims to build an accurate call graph with little overhead to enable reachability-based IPAs at runtime.

Code-patching [13] and stack-rewriting [9, 28] are necessary invalidation techniques for optimistic op-
timizations. Those operations might be expensive at runtime. An optimization client should use these
techniques wisely. For example, if an optimistic optimization has rare invalidations, these techniques can be
applied. In situations of frequent invalidations or incomplete IPA information, an optimization may choose
runtime checks to guard optimized code.

Static IPAs for Java programs assume whole classes are available at analysis time. Dynamically loaded
classes should be supplied to the analysis manually. Sreedhar et.al. [30] proposed an extant analysis frame-
work which performs unconditional static optimizations on references that can only have types in the closed
world (known classes by analysis), and guided optimizations on references with possible dynamically loaded
types. However, the effectiveness of online eztant analysis may be compromised by the laziness of class load-
ing at runtime. Java poses access restrictions on fields by modifiers. Field analysis [10] uses access modifiers
to derive useful properties of fields for optimizations.

A new wave of VM technology is adaptive feedback-directed optimizations [3,12,19]. Sampling is a tech-
nique for collecting runtime information with cheap cost. Profiling information provides advice to compilers
to allocate resources for optimizing important code areas. Compared with feedback-directed optimizations,
optimizations based on dynamic IPAs can be optimistic using invalidation techniques instead of using run-
time checks. Dynamic IPAs also provide a complete picture of an executing program. The new proposed
mechanism is capable of finding all invoked call edges in executed code. In many cases, profiling information
can be aggregated with IPAs. For example, a runtime call graph could be annotated with weights of samples
on edges and clients could perform analysis using probabilities.

6 Conclusions

In this paper we have proposed a new runtime call graph construction mechanism for dynamic IPAs in a
JIT environment. Our approach uses code stubs to capture the first-time execution of a call edge. The new
mechanism avoids iterative propagation which is costly at runtime. We also addressed another important
problem faced by dynamic IPAs: lazy class loading. Our approach handles the problem transparently. An
important characteristic of our mechanism is that it supports speculative optimizations with invalidation
backups. Our preliminary results showed that the overhead of online call graph construction is negligible.

Based on runtime call graphs, we outlined the design of a dynamic XTA type analysis and we demon-
strated that the size of graphs built by dynamic XTA were quite small. Further, the model of handling
unresolved references is applicable to other dynamic TPAs.

Based on the encouraging results so far, we are working on extending the current implementation of
dynamic XTA to deal with boot images and JNI calls. We also plan to use the results of dynamic XTA to
expose more opportunities for method inlining. We are also planning to use the runtime call graphs, and
the fundamental approach already used for dynamic XTA, for developing other dynamic reachability-based
IPAs, e.g. escape analysis [29].
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