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Abstract

In this paper we present Jedd, a language extension to Java that supports a convenient way of programming with
Binary Decision Diagrams (BDDs). The Jedd language abstracts BDDs as database-style relations and operations on
relations, and provides static type rules to ensure that relational operations are used correctly.

The paper provides a description of the Jedd language and reports on the design and implementation of the Jedd
translator and associated runtime system. Of particular interest is the approach to assigning attributes from the high-
level relations to physical domains in the underlying BDDs, which is done by expressing the constraints as a SAT
problem and using a modern SAT solver to compute the solution. Further, a runtime system is defined that handles
memory management issues and supports a browsable profiling tool for tuning the key BDD operations.

The motivation for designing Jedd was to support the development of whole program analyses based on BDDs,
and we have used Jedd to express five key interrelated whole program analyses in our Soot compiler framework. We
provide some examples of this application and discuss our experiences using Jedd.

1 Introduction

Binary Decision Diagrams (BDDs) [6] have been widely used for efficiently solving problems in model checking,
and more recently we demonstrated that BDDs are very useful for defining compact and efficient solvers for whole
program analyses like points-to analysis [4]. As BDDs have been in use for some time, there exist several excellent
libraries providing efficient representations, algorithms and memory management techniques for BDDs, including two
C-based libraries we have been using, BuDDy [9] and CUDD [17].

Based on our very positive experience with using BDDs for program analysis, we embarked on a project to express
a number of key, interrelated whole program analyses for Java using BDDs inside our Java compiler framework,
Soot [19]. We still wanted to use existing efficient C-based libraries, but now we required a clean and efficient
interface between the Java code of our compiler and our BDD-based algorithms.

In developing our approach, it soon became apparent that a simple strategy of providing a Java wrapper to inter-
face with a BDD library was not a good solution, for many reasons. First, we found that the interface provided by the
existing BDD libraries is very low level, and as we attempted to express several complex interrelated analyses, un-
derstanding and maintaining our code became difficult. Moreover, programming at such a low level was error prone,
and errors in our code led to either the BDD library aborting, or worse, to incorrect results. The implicit nature of the
BDD representation made these errors difficult to track down. Furthermore, we found that it is quite difficult to match
the memory management in Java with the reference counter based schemes employed in the BDD packages. Finally,
we found that tuning a BDD-based algorithm requires profiling information about the size and shape of the underlying
BDDs at each program step. We had previously developed some ad-hoc methods for visualizing this information, but
a more automated approach was really needed.

Our solution, and the topic of this paper, was the development of: (1) Jedd, a language extension to Java, which
provides a high-level way of programming BDD-based algorithms based on relations and operations on relations;
(2) an associated translator which automatically translates Jedd to Java code that efficiently interacts with back-end
solvers; and (3) run-time support for memory management, debugging and profiling of BDD operations. The key
aspects of our approach, and the main contributions of this paper, are:

BDDs abstracted as relations: Rather than expose BDDs and their low-level operations directly, our Jedd language
provides a more abstract data type based on database-style relations, and operations on those relations. In
developing program analyses using BDDs, we have found that this is a more appropriate level of abstraction.

Static and dynamic type checking: When using a BDD library directly, there is very little type information to help
the programmer determine if BDD operations are used in a consistent and correct fashion. In the Jedd approach,
all operations on relations have static type rules which help to eliminate many programmer errors. Properties
that cannot be checked statically are enforced by runtime checks.

Code generation strategy: We provide a strategy to convert the high-level relational operations into low-level BDD
operations, and a mechanism for interfacing to several different BDD back-ends.

Algorithm for physical domain assignment: An important issue in programming with BDDs is how to assign phys-
ical domains of BDD variables to the problem being solved. When programming directly with BDDs, the
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programmer must explicitly make all of the assignments and ensure that BDD operations are applied to the cor-
rect physical domains, which can be quite a tedious process. Furthermore, a small change in physical domain
mappings may require many changes in the program. When specifying a program using the Jedd language, the
user specifies only the important mappings, and the translator completes a consistent mapping for the remain-
der of the program. The problem of assigning physical domains turns out to be NP-complete. We provide an
algorithm to express it as an instance of the SAT problem, and we show that, using modern SAT solvers, the
time to find a solution is very acceptable. In cases where no solution exists, we provide information back to the
programmer to help them modify their program to make the problem solvable.

Run-time support for memory management: BDD solvers make use of reference counter memory management
techniques to efficiently reclaim the BDD data structures. These require the programmer to explicitly manipulate
the reference counts, which is error-prone and does not fit with the Java memory management model. Jedd frees
the programmer from this task by automatically managing all reference counts, and freeing BDDs as soon as it
is safe to do so.

BDD profiler: In our previous and current work with BDDs, we found that tuning the BDD-based algorithms required
profiling the size and shape of the BDD data structures at each program point. Our Jedd system allows the
user to automatically generate profiling information that can be browsed using any HTML browser, and which
provides both counts of the number of operations applied, and graphical figures showing the size and shape of
the underlying BDD data structures at each program point.

Proof of concept applications: In order to verify that our approach works, we have implemented several interrelated
whole program analyses using the Jedd system. We found that the algorithms were quite easy to specify, com-
pact, and that the resulting BDD solvers were efficient. We also found that the physical domain assignment
algorithm worked well, ran in acceptable times, and provided good mappings of attributes to physical domains.

A high-level overview of the complete Jedd system is given in Figure 1. Jedd programs are written in our extension
to Java, and are translated to Java programs using the jeddc compiler. The jeddc compiler is composed of a front-
end (parser and semantic analysis) and a back-end (physical domain assignment and code generation). The physical
domain assignment module calls an external SAT solver tool. The Java files produced by jeddc and other ordinary
Java files are compiled using a Java compiler, producing class files with calls to the Jedd runtime library, which
interfaces using JNI to a BDD package. A JVM is used to execute the classes along with the Jedd runtime. The
runtime also includes a profiler, which writes profile information into a SQL database. When combined with CGI
scripts accessing the database, an HTML browser can be used to navigate profiler views of BDD operations.

.java

.class

.java

.jedd

HTML browser

BDD package

code generation

semantic analysis
parser

physical domain assignment

javac

jeddc

SAT solver

solution

JVM

Jedd runtime

profiler

SQL database

CGI scripts

profiler views

BDD library interface

Figure 1: Overview of Jedd system

The remainder of this paper is structured as follows. In Section 2, we give an introduction to the Jedd language,
along with some illustrative examples from our application of Jedd to program analysis. In Section 3, we explain
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the key aspects of the jeddc compiler, with a particular emphasis on how we handle code generation and physical
domain assignment. In Section 4, we describe the important elements of the design of our runtime system and profiler,
and in Section 5, we briefly report on our experiences with using Jedd to implement five interrelated whole program
analyses in the Soot compiler framework. Finally, in Section 6, we discuss related work, and in Section 7, we conclude
and suggest future work.

2 Jedd Language

In this section, we describe the Jedd language, and illustrate key concepts with examples. These examples are taken
from extensions to the Soot framework that we have written in Jedd. These extensions perform interrelated whole-
program analyses such as points-to analysis, call graph construction, and side-effect analysis in BDDs, and together
they form a significant application of Jedd. Figure 2 shows an overview of the five main modules that have been
implemented in Jedd and how they communicate with each other. In Figure 4, we show a simplified version of the
core of the Virtual Call Resolution module to give an idea of what Jedd code looks like.

Hierarchy
Virtual Call
Resolution

Call Graph

Points-to
Analysis

Side-effect
Analysis

Figure 2: BDD-based analyses in Soot

The remainder of this section is structured as follows. In Section 2.1, we introduce a new data type, relations,
and in Section 2.2, we describe the new operations provided for relations. The grammar for the extensions is given in
Figure 5 and the type rules in Figure 7. In Section 2.3, we describe how objects can be extracted from relations back
to Java.

2.1 Relations

Jedd extends the Java language with a new data type, database-style relations. Informally, a relation is just a set of
tuples. For example, the top part of Figure 3 shows a relation that contains two tuples, each tuple contains values for
the attributes type, signature and method. An attribute is just a named domain, where a domain is a set of Java objects
such as the set of all types in a program being analyzed, or the set of all methods. All tuples in a relation must have the
same set of attributes, and we call the set of attributes for a relation its schema. The relations in Jedd are high-level
abstractions for BDDs, and there must exist some way of mapping the attributes of the higher-level Jedd relation to
the underlying BDDs. A physical domain is a set of BDD variables used to represent an attribute of a relation.

type signature method
A foo() A.foo()
B bar() B.bar()

// declaring a relation with three attributes
<type, signature, method> implementsMethod;

// declaring a relation with explicit mappings
// to physical domains
<type:T1, signature:S1, method:M1>

implementsMethodMapped;

Figure 3: Relations
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1 <rectype, signature, tgttype, method> answer = 0B;
2 public void resolve( <rectype, signature> receiverTypes, <subtype, supertype> extend ) {
3 <rectype, signature, tgttype> toResolve = (rectype=>rectype tgtttype) receiverTypes;
4

5 do {
6 <rectype:T1, signature:S1, tgttype:T2, method:M1> resolved =
7 toResolve{tgttype, signature} >< declaresMethod{type, signature};
8 answer |= resolved;
9 toResolve -= (method=>) resolved;

10 toResolve = (supertype=>tgttype) (toResolve {tgttype} <> extend {subtype});
11 } while( toResolve != 0B );
12 }

(a)
type signature

B foo()
B bar()

(b)
rectype signature tgttype

B foo() B
B bar() B

(c)
rectype signature tgttype method

B bar() B B.bar()

(d)
subtype supertype

B A

(e)
rectype signature tgttype

B foo() B

(f)
rectype signature supertype

B foo() A
(g)

rectype signature tgttype method
B foo() A A.foo()

Figure 4: Example of resolving virtual method calls (a) receiverTypes (b) toResolve in line 3 (c) resolved
in first iteration (d) extend (e) toResolve in line 10 (f) result of composition in line 10 (g) resolved in second
iteration

The bottom part of Figure 3 shows two different ways of declaring a relation in Jedd. The first example declares
the implementsMethod relation which has three attributes. In this case no physical domain mapping was given for
the attributes and it is left to the Jedd compiler to find a mapping. However, sometimes the programmer does want
to expose the mapping of attributes to physical domains, and the declaration of ImplementsMethodMapped declares
another relation, with the same schema as before, but with explicit mappings to the physical domains T1, S1 and
M1. The details of physical domains and the algorithm to perform the mapping of attributes to physical domains are
described in Section 3.

Note that in our example, we have just used names for attributes (i.e. type, signature and method). These
names must be defined by the Jedd programmer by defining Java classes that implement the interface jedd.Attri-
bute which specifies the domain and the name. Similarly, each domain is defined by implementing the jedd.Domain
interface, and each physical domain is defined by implementing the jedd.PhysicalDomain interface. Each domain
specifies the maximum number of objects in it, and provides a mapping from Java objects to integers and vice versa.
The integer is used to represent the object in BDDs. Jedd’s type checker ensures that any use of an interface, domain
or physical domain is a subclass of the correct interface.

Only relations with the same schema are assignable and comparable. Like other primitive Java types, relations
are passed by value, not by reference. Jedd defines two constants, 0B and 1B, the empty relation and the full relation
(containing all possible tuples), respectively. These constants have a special type that makes them comparable and
assignable to any relation type, much like Java’s null constant. Jedd also provides an easy way to create new tuples
from Java objects. For example, in Soot, we use the following code to add a tuple to the implementsMethod relation:

void addMethod( Type newType, Signature newSig,
SootMethod newMethod ) {

implementsMethod |= new { newType=>type,
newSignature=>signature, newMethod=>method };

}

The new expression constructs a relation of a single tuple with the Java objects newType, newSignature, and
newMethod in attributes type, signature, and method, respectively. This relation of a single tuple is then added into
the implementsMethod relation.

6



2.2 Operations on Relations

2.2.1 Set Operations and Comparison

The set union, intersection, and difference operations on relations viewed as sets of tuples are written in Jedd using the
operators |, &, and -, respectively. These operations make sense only when their arguments have the same schema,
and this is enforced by the static type checking. Jedd also defines the expected shorthand assignment operators |=, &=,
and -=. In the example above, the |= operator is used to add the new tuple to the implementsMethod relation. The
== and != operators are used to compare relations for equality, an operation that takes only constant time in BDDs.

2.2.2 Projection and Attribute Operations

Jedd provides three operations on the attributes of a relation. A projection removes an attribute from the relation, along
with the objects associated with the attribute in each tuple. Recall that relations are sets of tuples with no duplicates.
Since removing an attribute from two tuples that differ only in that attribute makes the tuples equal, a projection may
reduce the number of tuples in a relation. Attribute renaming substitutes one attribute for another, without changing
the objects stored in tuples. Attribute copying adds a new attribute to a relation. In each tuple, the new attribute is
mapped to the same object as the attribute being copied.

To illustrate how these operations are used, we will walk through the problem of resolving virtual method calls
given the actual types of the receivers. Given a receiver type and a method signature, the algorithm must search for a
class implementing a method with the signature, starting from the receiver type and moving up the class hierarchy. In
Jedd, this is done for a relation of signatures and receiver types at once, rather than one signature and receiver type at
a time.

The Jedd code for this algorithm is shown in Figure 4. It starts with the relation receiverTypes, with each
tuple specifying a receiver type and a method signature at some call site. An example of such a relation is shown in
Figure 4(a), specifying the receiver type B at two call sites with signatures foo() and bar(). Before starting to walk up
the hierarchy starting from the receiver type, the algorithm first saves a copy of the original receiver type in each tuple
using the attribute copying operation in line 3. In the resulting toResolve relation, each tuple contains the method
signature and two copies of the receiver type (see Figure 4(b)). The next step will be to determine whether the current
class implements a method with the required signature. Before explaining how to do this, we must pause to introduce
the join and composition operations.

2.2.3 Join and Composition

The join and composition operations combine the information from two relations into a single relation. In addition to
a pair of relations, they require a list of zero or more attributes from the left relation to compare with a corresponding
list of attributes from the right relation. The new relation is constructed from all pairs of tuples from the two relations
which match in the attributes being compared. Each such pair of tuples is merged into a single tuple in the final
relation. The difference between a composition and join is in the attributes which are included in the final relation. A
composition (denoted <>) projects away all of the attributes being compared. A join (denoted ><) keeps the attributes
being compared, but only those from the left relation, since their values are equal to those from the right relation.
Although a composition is equivalent to a join followed by a projection, Jedd includes both operations because both
are common, and a composition is implemented more efficiently than a join followed by a projection.

To see how these operations are used, let us return to our example. Recall that the toResolve relation contains,
in each tuple, a method signature, and two copies of the receiver type, as shown in Figure 4(b). The next step is
to determine whether the class of the receiver type implements a method with the signature. This is done using
the join on line 7, which joins this relation with the implementsMethod relation in Figure 3, matching the current
class (tgttype attribute) with the class implementing the method (type attribute of implementsMethod), and the
method signature (signature attribute) with the method signature of the implemented method (signature attribute of
implementsMethod). For each class and method signature being resolved, if the class implements a method with a
matching signature, then the resulting relation resolved contains a tuple with the method signature, two copies of
the receiver type, and the target method. In our example, the only match is type B and signature bar(), resulting in the
resolved relation relation in Figure 4(c). In general, these are the method calls that we have just resolved by finding
a method with the desired signature, so in line 8, we add them to our answer.
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The T1, S2, T2, and M1 on line 6 are physical domains, indicating how the attributes are to be assigned to
BDD variables. In this example, the programmer supplies them for the resolved relation, and the physical domain
assignment algorithm discussed in Section 3.4 determines a reasonable assignment for all other expressions.

The next step is to remove the resolved call sites from the set of sites left to resolve. However, the resolved
relation has the method attribute which toResolve lacks, so it must be projected away in line 9 before the resolved
call sites can be subtracted. After doing this to our example, we are left with the toResolve relation in Figure 4(e).

The final step is to move up the class hierarchy by replacing each class in the tgttype attribute with its immediate
superclass. This is done with a composition (in line 10) of the toResolve relation with the extend relation which
has been passed in from the hierarchy, and encodes the immediate superclass (extends) relationship. In our example,
as Figure 4(d) shows, B is a subtype of A. The tgttype attribute is matched with the subtype attribute in the extends re-
lation, and a composition is used rather than a join because the attributes being compared (the subtype) are not needed;
only the supertype attribute coming from the extends relationship is needed. The resulting relation has replaced each
object in the tgttype attribute of toResolve with its immediate superclass, as shown in Figure 4(f). Before it can
be assigned to toResolve, the supertype attribute must be renamed to tgttype to match the schema of toResolve.
Finally, if the set of call sites to be resolved is not yet empty, the algorithm starts another iteration of the loop to resolve
them. Figure 4(g) shows the call resolved in the second iteration. Together, the relations in Figures 4(c) and (g) show
the final result: the targets of calling foo() and bar() with a receiver of type B are A.foo() and B.bar(), respectively.

2.2.4 Selection

We have not yet mentioned the common relational operation selection, which returns the subset of the tuples having
specified objects in certain attributes. This is most easily implemented by constructing a relation containing the desired
objects, and joining it with the relation of interest. Therefore, Jedd does not have a separate selection operation.

Added productions:

〈Type〉 ::= ‘<’ 〈AttributePhys〉 ( ‘,’ 〈AttributePhys〉 )* ‘>’

〈AttributePhys〉 ::= 〈Attribute〉 | 〈Attribute〉 ‘:’ 〈Attribute〉

〈Attribute〉 ::= 〈ClassOrInterfaceType〉

〈UnaryExpressionNotPlusMinus〉 ::= 〈RelExprJoin〉

〈RelExprJoin〉 ::= 〈RelExpr〉 | 〈Join〉

〈Join〉 ::= 〈RelExprJoin〉 〈AttrList〉 〈JoinSym〉 〈RelExpr〉 〈AttrList〉

〈AttrList〉 ::= ‘{’ 〈Attribute〉 ( ‘,’ 〈Attribute〉)* ‘}’

〈JoinSym〉 ::= ‘>’ ‘<’ | ‘<’ ‘>’

〈RelExpr〉 ::= 〈Replace〉 | 〈PostfixExpression〉

〈Replace〉 ::= ‘(’ 〈Replacement〉 (‘,’ 〈Replacement〉)* ‘)’ 〈RelationExpr〉

〈Replacement〉 ::= 〈Attribute〉 ‘=>’ | 〈Attribute〉 ‘=>’ 〈Attribute〉 | 〈Attribute〉 ‘=>’ 〈Attribute〉 〈Attribute〉

〈Literal〉 ::= ‘new’ ‘{’ 〈LiteralPiece〉 (‘,’ 〈LiteralPiece〉)* ‘}’ | ‘0B’ | ‘1B’

〈LiteralPiece〉 ::= 〈Expression〉 ‘=>’ 〈AttributePhys〉

Removed production:

〈UnaryExpressionNotPlusMinus〉 ::= 〈PostfixExpression〉

Figure 5: Jedd grammar productions
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Added productions:

〈ArrayAccess〉 ::= 〈ClassInstanceCreationExpression〉 ‘[’ 〈Expression〉 ‘]’

〈ExplicitConstructorInvocation〉 ::= 〈ClassInstanceCreationExpression〉 ‘.’ ‘this’ ‘(’ 〈ArgumentListOpt〉 ‘)’ ‘;’
| 〈ClassInstanceCreationExpression〉 ‘.’ ‘super’ ‘(’ 〈ArgumentListOpt〉 ‘)’ ‘;’

〈ClassInstanceCreationExpression〉 ::= 〈ClassInstanceCreationExpression〉 ‘.’ ‘new’ 〈SimpleName〉 ‘(’
〈ArgumentListOpt〉 ‘)’

| 〈ClassInstanceCreationExpression〉 ‘.’ ‘new’ 〈SimpleName〉 ‘(’ 〈ArgumentlistOpt〉 ‘)’ 〈ClassBody〉

〈FieldAccess〉 ::= 〈ClassInstanceCreationExpression〉 ‘.’ IDENTIFIER

〈MethodInvocation〉 ::= 〈ClassInstanceCreationExpression〉 ‘.’ IDENTIFIER ‘(’ 〈ArgumentListOpt〉 ‘)’

〈UnaryExpressionNotPlusMinus〉 ::= 〈ClassInstanceCreationExpression〉

Removed production:

〈PrimaryNoNewArray〉 ::= 〈ClassInstanceCreationExpression〉

Figure 6: Grammar transformations to keep Jedd grammar LALR(1)

2.3 Extracting Information from Relations

An important part of a language extension integrating relations into Java are facilities for extracting information from
relations back to Java. Jedd provides two implementations of java.util.Iterator for iterating over the tuples of
a relation. The first works on relations with a single attribute, and in each iteration returns the single object in each
tuple. The second iterator works on relations of any size, and iterates over the tuples, returning each tuple as an array of
objects. These iterators are used to implement a toString() method on relations, which is very useful for debugging
Jedd programs. Without such a method, it would be very difficult to interpret the structure of a BDD to determine the
relation it represents.

Jedd also provides a size() method, which returns the number of tuples in a relation. Jedd provides additional
statistics about the BDD representations of relations as part of its profiling framework, which is described in Sec-
tion 4.3.

3 Jedd Translator

We have implemented a translator which converts Jedd programs to Java programs. In Section 3.1, we discuss the
key front-end issues, and in Section 3.2, we describe how the high-level relational operations are represented using
lower-level BDD operations. A key part of the code generation algorithm is the physical domain assignment problem
which is introduced in Section 3.3, and an algorithm based on SAT is provided in Section 3.4. In some cases, there
exists no valid physical domain assignment, and in Section 3.5, we discuss how unsatisfiable core extraction is used to
extract meaningful error messages.

3.1 Front-end

We implemented the Jedd to Java translator using Polyglot [15], a Java front-end intended for writing language exten-
sions.

We used the Java grammar [8, ch. 19] as a starting point for a Jedd grammar. The productions that we added and
removed to produce a grammar for Jedd are given in Figure 5. Non-terminals from the original Java grammar appear in
italics. Unfortunately, Java’s C roots make it difficult to write a clean LALR(1) grammar for it; some of the necessary
workarounds are discussed in the introduction to the grammar itself. We found keeping an extension of the grammar
LALR(1) to be difficult as well. Specifically, the grammar obtained by adding the productions in Figure 5 to the Java
grammar is no longer LALR(1). The subexpressions in a join can be primaries, which in Java include class instance
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ai = a j ⇒ i = j ai <: jedd.Attribute
new {o1=>a1, . . . ,on=>an} : {a1, . . . ,an}

[Literal]

x : T a ∈ T a <: jedd.Attribute
(a=>)x : T \{a}

[Project]

x : T a ∈ T b /∈ T a,b <: jedd.Attribute
(a=>b)x : T \{a}∪{b}

[Rename]

x : T a ∈ T b,c /∈ T \{a}
b 6= c a,b,c <: jedd.Attribute

(a=>b c)x : T \{a}∪{b,c}
[Copy]

x : T y : T
x� y : T where � ∈ {&,|,-}

[SetOp]

x : T y : T ∨ y ∈ {0B,1B}

x� y : T where � ∈ {=,&=,|=,-=}
[Assign]

x : T ∨ x ∈ {0B,1B} y : T ∨ y ∈ {0B,1B}

x� y : boolean where � ∈ {==,!=}
[Compare]

x : T y : U U ′ = U \{b1, . . . bn} T ∩U ′ = /0
{a1, . . . ,an} ⊆ T {b1, . . . ,bn} ⊆U
ai = a j ⇒ i = j bi = b j ⇒ i = j

ai,bi <: jedd.Attribute

x{a1, . . . ,an}><y{b1, . . . ,bn} : T ∪U ′
[Join]

x : T y : U T ′∩U ′ = /0
T ′ = (T \{a1, . . . ,an}) U ′ = (U \{b1, . . . bn})

{a1, . . . ,an} ⊆ T {b1, . . . ,bn} ⊆U
ai = a j ⇒ i = j bi = b j ⇒ i = j

ai,bi <: jedd.Attribute

x{a1, . . . ,an}<>y{b1, . . . ,bn} : T ′∪U ′
[Compose]

Figure 7: Typing rules

creation expressions, which have an optional trailing class body enclosed in curly braces. A LALR(1) parser cannot
distinguish this body from the attribute list following the subexpression in the join. Class instance creation expressions
never have a relation type (which the join requires), so we can exclude them in this case. Therefore, prior to extending
the Java grammar, we performed a series of language preserving transformations, removing class instance creation
expressions from primaries, and adding them in all places where primaries can occur (except the join production that
we added). These modifications are listed in Figure 6. The result is a LALR(1) grammar which extends Java in a
natural way. The syntax and symbols for all operations are intuitive and easy to remember (the symbols for join and
composition, >< and <>, were inspired by ./ and ◦, respectively, often used in relational database literature). Attribute
manipulation operations (which change the type of expressions) use a cast-like syntax. No keywords and few new
symbols were added.

Polyglot includes a complete semantic checker for Java. We extended this checker to infer the schemas of relational
expressions from their subexpressions, and statically enforce the properties shown in Figure 7. The most important
general properties are that no relation may have more than one instance of the same attribute, that operands of set
and equality operations have compatible schemas, and that attributes mentioned in attribute manipulation, join, and
composition expressions exist in the corresponding subexpressions.

3.2 Implementing Relational Operations in BDDs

In this section, we describe how relations are represented in BDDs, and how the relational operations are performed.
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3.2.1 Representing Relations as BDDs

A BDD is a compact representation of a set of binary strings of a fixed length (or, equivalently, a function from
{0,1}n to {0,1}). Jedd groups bit positions of these strings into physical domains. When a relation is represented in a
BDD, each attribute is stored in a separate physical domain. The physical domains are defined and named by the user
by implementing an interface included in the Jedd runtime library. The relative bit ordering of the various physical
domains is also specified by the user. The assignment of the attributes of each relation to specific physical domains
is subject to many constraints, and we leave the discussion of this important problem to Section 3.3. Once a physical
domain assignment has been determined, Jedd ensures that each physical domain consists of enough bits to store the
maximum number of objects that can be stored in each attribute assigned to it.

Each domain can convert objects in the domain to integers and vice versa. We use the binary representation of
the integer to encode the object. To encode a tuple, we construct the BDD containing all strings such that for each
attribute, the bits in the physical domain assigned to that attribute match the binary representation of the object stored
in that attribute. Note that we have no requirement of the bits in physical domains not used by any attribute; these
bits can be viewed to have a wildcard value. For example, suppose we want to encode the tuple {o1=>A, o2=>B},
where the binary representation of o1 is 01, and the binary representation of o2 is 10, A is assigned to the physical
domain consisting of the first two bits, B is assigned to the physical domain consisting of the next two bits, and a third,
unused physical domain exists, consisting of the last two bits. This tuple would be encoded by the BDD for the set
of binary strings {0110??}= {011000,011001,011010,011011}. Although this means that the BDD encoding of a
single tuple can be a set of many strings, this does not affect the size of the BDD because BDDs represent such regular
sets compactly. More specifically, the number of nodes in a BDD for a single tuple always equals the total number of
bits in the physical domains used to encode the attributes.

The BDD for a relation of multiple tuples is simply the BDD for the union of the binary strings representing all the
tuples. This means that the set operations on relations are implemented as the same operations on the sets of binary
strings in the BDD, which are standard in BDD libraries. Similarly, relation equality is just BDD equality. However,
for all these operations, the physical domain assignment must be the same for both their arguments.

3.2.2 Operations at the BDD level

Projection is implemented in BDDs using the universal quantification BDD operation on the physical domains as-
signed to the removed attributes. Conceptually, this operation takes all strings in the BDD, and creates new strings by
replacing each bit of the physical domain with both 0 and 1. Therefore, each tuple in the original BDD will appear in
the new BDD, but with a wildcard value for the physical domains projected away, indicating that they are not in use
by the relation.

Attribute renaming requires no change to the underlying BDD. Only the mapping from attribute to physical
domain needs to be updated, with the new attribute replacing the old.

To implement a join in BDDs, we must first carefully set up the physical domain assignment. The attributes being
compared must be assigned to the same physical domains in the left and right relations. The remaining attributes
must be assigned to physical domains not used by the other relation, or else their values will overwrite each other.
Assuming we have such a physical domain assignment, the join itself is performed with an intersection operation on
the sets of binary strings in the BDD. Since the attributes being compared are mapped to the same physical domain, the
set intersection will find exactly those pairs from the two sets where these attributes match. The remaining attributes
are stored in physical domains that are unused by the other relation, so they are represented there with a wildcard
value. The set intersection of each object with the wildcard value just gives back the original object.

A composition is implemented in the same way as a join followed by a projection (set intersection followed by
universal quantification), except that a special function of the BDD library is used that performs these two operations
more efficiently in one step.

Due to the requirements of each operation on the physical domain assignment, it is sometimes necessary to change
the physical domain assignment of a relation (that is, construct a different BDD representing the same relation, but
under a different physical domain assignment). This is implemented using an operation called replace in BuDDy,
and SwapVariables in CUDD, which constructs a BDD containing the same strings as the original BDD, but with
the bits of each string permuted with a specified permutation. Jedd constructs the permutation required to move the
bits of the old physical domain to the new physical domain, resulting in a BDD representing the same tuples, but in
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different physical domains.

3.3 Assigning Physical Domains to Attributes

One important problem when implementing algorithms using BDDs is deciding how to assign the attributes of each
expression to physical domains of BDD variables. A programmer using a BDD library directly must perform this
assignment by hand, and write the program directly in terms of the physical domains, rather than the attributes.
For simple programs of several BDD expressions with two or three attributes, this is acceptable; however, for more
complicated programs,1 assigning a valid physical domain to each attribute of every subexpression is both tedious and
error-prone. Furthermore, the physical domain assignment is closely related to the BDD variable ordering, and has
significant effects on performance. Therefore, a tool like Jedd should relieve the programmer from having to specify
physical domains for every expression, ensure that the physical domain assignment is a valid one, and provide a way
to easily experiment with variations in the physical domain assignment without requiring all the code to be rewritten
(as it would have to be if a BDD library were being used directly).

Jedd addresses these requirements in four ways. First, if the programmer does specify the physical domain as-
signment, Jedd checks that it is valid, and automatically inserts the required replace operations to implement the
assignment. Although this is only a first step, it already makes programming less tedious and error-prone than when
using a BDD library directly. Second, given a partial physical domain assignment for a small subset of expressions,
Jedd contains an algorithm for automatically producing a reasonable assignment for the remaining expressions in the
program. Should the programmer not be satisfied with specific parts of the automatically generated assignment, he
can specify physical domains for those expressions explicitly, and re-run the automatic algorithm to find a reasonable
assignment for the rest of the program. The physical domain assignment algorithm is discussed in detail in Section 3.4.
Third, when the automated algorithm discovers that the programmer-specified partial physical domain assignment is
inconsistent and no reasonable assignment exists, it reports the specific expression and attributes to which physical
domains cannot be assigned. This makes it easy to locate the problem in a large project. Typically, the problem can be
fixed by simply assigning the relevant attribute to a physical domain not already in use in the expression. Section 3.5
describes how Jedd determines the expression causing the problem. Fourth, Jedd provides a BDD profiler for visualiz-
ing the runtime costs of all BDD operations in terms of processing time and size and shape of the BDDs involved. This
is particularly helpful in tuning the physical domain assignment and variable ordering for performance. The profiler is
described in Section 4.3.

3.4 Physical Domain Assignment Algorithm

We call a physical domain assignment for a Jedd program valid if a BDD implementation using the assignment
correctly computes the relational algebra expressions in the program. In order for a physical domain assignment to be
valid, it is necessary and sufficient for it to satisfy the following constraints between attributes of expressions:

1. [conflict] All attributes of each expression must be assigned to distinct physical domains.
2. [equality] Each operation requires certain attributes of its operands to be assigned to the same physical domain,

as described in Section 3.2.

A valid physical domain assignment can be found very easily. First, introduce a fresh physical domain for each
attribute of each expression, satisfying the first requirement. Then, wrap each subexpression of a complex expression
with a replace operation changing the physical domains to satisfy the second requirement. The resulting physical
domain assignment is valid, but it requires many replace operations, slowing down program execution considerably.

We would like to minimize or at least reduce the number of replace operations, as well as give the programmer
some control over where these operations take place. A convenient way to do this is to allow the programmer to specify
physical domains for some small subset of expressions, and constrain the physical domain assignment not to contain
any “unnecessary” replaces. This makes it possible for Jedd to construct a reasonable assignment with few replaces
with very little input from the programmer, while giving the programmer the option to more completely specify a
domain assignment for specific sections of the code.

1Our whole-program analyses contain 613 BDD subexpressions with a total of 1586 attributes.
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Figure 8: Example of physical domain assignment constraints

We need to formalize what we mean by “unnecessary” replaces. To do this, we first wrap all subexpressions with
dummy replace operations as described above, so that the equality constraints can be satisfied. Then, for each attribute
of each replace operation, we add an assignment edge from the attribute in the original subexpression to the attribute
in the result of the replace. Intuitively, these assignment edges connect attributes which should be assigned to the
same physical domain; if they are, the replace operation is unnecessary and can be removed. Because different replace
operations have unpredictably different costs, we do not try to find an assignment having the minimum number of as-
signment edges with different physical domains; instead, we are satisfied with removing computation paths in which
an attribute is replaced multiple times without reason. More precisely, we partition the graph formed by equality and
assignment edges into connected components by potentially breaking some assignment edges, such that each compo-
nent contains one attribute with a programmer-specified physical domain, and no conflict edge has both its endpoints
in components with the same physical domain (or in the same component). Every attribute in a component is then
assigned the same physical domain. This ensures that every replace operation has a reason, since replace operations
only occur between attributes at the boundaries of components with different programmer-specified physical domains.
Furthermore, this is consistent with the kind of behaviour the programmer likely expects: if an attribute is involved in
a computation with other attributes for which physical domains have been specified, one expects it to be assigned to
one of those domains.

The constraints produced from lines 6-7 of the example in Figure 4 are shown in Figure 8. Equality constraints are
shown as solid lines and assignment constraints as dashed lines. Conflict constraints, which are not shown, are placed
between all pairs of attributes within each expression. Replace operations have been wrapped around the subexpres-
sions toResolve and declaresMethod, and around the entire join. In the absence of any other constraints, the
graph would be split into four connected components (the first consisting of all rectype attributes, the second of all
signature attributes, the third of all tgttype and type attributes, and the fourth of all method attributes), which would be
assigned the physical domains T1, S2, T2, and M1, respectively. Since the input and output of each replace operation
would then have the same physical domain assignment, no replacement would be necessary, so Jedd would remove
them prior to generating Java code.

Proposition: The problem of partitioning the graph formed by equality and assignment edges into connected com-
ponents by breaking assignment edges, such that each component contains one attribute with a programmer-specified
physical domain, and no conflict edge has both its endpoints in components with the same physical domain (or the
same component), is NP-complete.

Proof: The proof proceeds by a polynomial reduction of the NP-complete graph vertex k-colouring problem to the
physical domain assignment problem. Given a graph to be k-coloured, we construct a Jedd program for which a
physical domain assignment can be found if and only if the graph has a k-colouring.

Let G = (V,E) be a graph for which a k-colouring is to be found. Construct a Jedd program from it as follows:

1. Declare attributes a, b, and c.

2. Declare k +1 physical domains d0 . . .dk.
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3. For each vertex vi ∈ V , declare a Jedd relation variable xi with schema <a, b>, and no physical domains
specified.

4. For each j with 1 ≤ j ≤ k and for each vi ∈V , add an assignment of a relation literal:
xi = new { o1 => a:d j, o2 => b:d0 }.

5. For each edge (vi,v j) ∈ E, add a statement computing xi {b} <> ((a=>c) x j) {b}.

Now, if G has a k-colouring assigning colour C(i) to vi, then the following partitioning satisfies the requirements:
for each vi ∈V , create a connected component containing attribute a of xi, attribute a of the literal with a assigned to
dC(i), and attribute a or c of each composition having xi as its left or right argument, respectively. For each composition
with arguments xi and x j, an edge in the original graph ensures that xi and x j are assigned to distinct physical domains,
so no conflict edges are violated.

Conversely, suppose the graph of equality and assignment edges formed from the Jedd program can be partitioned
to satisfy the proposition. Then each attribute in the result of a composition must be in the same connected component
as the corresponding argument of the composition (since this is the only equality/assignment path originating from it).
This connected component must, in turn, contain an attribute with one of the physical domains d1 . . .dk assigned to it.
Whenever an edge (vi,v j) exists in E, the conflict edge between the result attributes of the composition with xi and x j

as arguments ensures that xi and x j are assigned to distinct physical domains. Therefore, the assignment of physical
domains to attribute a of each xi corresponds to a k-colouring of the vi of G.

Therefore, G is k-colourable if and only if a partitioning satisfying the proposition exists for the constructed Jedd
program, so the physical domain assignment problem is NP-hard.

Given a subset of the equality and assignment edges, it can be checked in polynomial time that:

1. all attributes (vertices) and equality edges are included in the subset,

2. each connected component of the graph formed by the subset of edges contains one attribute with a programmer-
specified physical domain, and

3. no conflict edge has both its endpoints in components with the same physical domain (or the same component).

Therefore, the problem is in NP. Since it is also NP-hard, it is NP-complete. 2

Several heuristics that we implemented to solve this NP-complete problem failed on common example programs.
More importantly, an incomplete heuristic (which may fail to find a solution even when one exists) is undesirable for
this problem. The case when Jedd fails to find a solution is precisely when the programmer very much wants to know
whether a solution exists (and he should tediously look for it by hand) or does not exist (and he should modify the code
so that a solution exists). Therefore, the potentially very high cost of an exhaustive search is justified, and our intuition
told us that although the problem in general is NP-complete, typical instances would be relatively “easy” in some
sense. However, we realized that implementing a smart exhaustive solver that would handle the easy cases efficiently
would be difficult, and we would be duplicating much of the work that has been done on the boolean satisfiability
(SAT) problem. We therefore encode the physical domain assignment problem as a SAT problem, and call a SAT
solver to solve it for us.

Given a boolean formula over a set of variables, a SAT solver finds a truth assignment to those variables that makes
the formula evaluate to true. We therefore encode the physical domain assignment problem into a boolean formula in
such a way that we can recover a physical domain assignment from a truth assignment of its variables, and such that
the formula evaluates to true exactly when the physical domain assignment satisfies our constraints. We construct the
formula in conjunctive normal form because most SAT solvers require it, and it is easier to specify it directly in CNF
than to construct an arbitrary formula and convert it to CNF later. A formula in CNF is a conjunction of disjunctions
of literals, where each literal is a variable or a negated variable.

Let E be the set of all expressions of BDD type in the program. For each expression e, we use the notation ea for
attribute a of expression e. Let A be the set of all pairs ea of expressions and attributes in the program. Let P be the set
of all physical domains in the program.

The SAT formulation consists of two types of variables: attribute – physical domain variables, and flow path
variables. A variable of the form ea:p indicates that attribute a of expression e is assigned physical domain p. To
represent the notion of connected components in the SAT formula, we introduce flow paths, sequences of attributes of
expressions with the following properties:
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• the first attribute in the sequence is the only one with a programmer-specified physical domain,
• each consecutive pair of attributes on the flow path is connected by an equality or assignment edge,
• no attribute of an expression appears more than once on the flow path, and
• no other flow path ending with the same attribute exists whose attributes form a proper subset of the attributes

of the flow path.

Intuitively, the flow paths represent, for each attribute of each expression, the shortest paths following equality and
assignment edges to an attribute with a programmer-specified physical domain. We will require that at least one flow
path ending at each attribute be active, indicating that the attribute, as well as all the attributes on the flow path, are
in the same connected component. A variable of the form π(e0

a0:p0 ,e1
a1 , . . . ,en

an) indicates that the given flow path
from attribute a0 of e0 to an of en is active; that is, all attributes along it are assigned physical domain p0. We use Π to
denote the set of all flow paths. The constraints are encoded in terms of these literals as follows.

1. Each attribute is assigned to some physical domain.

∧

ea∈A

∨

p∈P

ea:p

2. No attribute is assigned to multiple physical domains.

∧

ea∈A

∧

p,p′∈P,p6=p′
¬ea:p ∨¬ea:p′

3. Any attribute with an explicitly specified physical domain is assigned that domain.

∧

(ea,p)∈SPECIFIED

ea:p

4. For each conflict edge between ea and e′a
′

, a and a′ must not be assigned to the same physical domain.

∧

(ea,e′a
′
)∈CONFLICT

∧

p∈P

¬ea:p ∨¬e′a
′:p

5. For each equality edge between ea and e′a
′
, a and a′ are assigned the same physical domain.

∧

(ea,e′a
′
)∈EQUALITY

∧

p∈P

(ea:p∨¬e′a
′:p

)∧ (¬ea:p∨ e′a
′:p

)

6. For each ea, at least one flow path leading to it must be active.

∧

ea∈A

∨

π(e0
a0:p0 ,e1

a1 ,...,ea)∈Π
π(e0

a0:p0 ,e1
a1 , . . . ,ea)

7. When a flow path is active, all attributes on it are assigned the physical domain of the flow path.

∧

π(e0
a0:p0 ,e1

a1 ,...,enan )∈Π

∧

0≤i≤n

¬π(e0
a0:p0 ,e1

a1 , . . . ,en
an)∨ ei

ai:p0

3.5 Error Reporting

One challenge with using a black box such as a SAT solver in a compiler is in reporting errors to the user. When
the SAT solver determines that no physical domain assignment exists, it only reports that the boolean formula is
unsatisfiable. While this fact is useful for the programmer to know, it is not very helpful in determining the cause of
the error.
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To improve the error reporting, we took advantage of a new feature recently implemented in the zchaff SAT solver,
unsatisfiable core extraction [21]. When the SAT solver determines that the boolean formula is unsatisfiable, it also
outputs a small subset of the clauses (disjunctions) such that their conjunction is also unsatisfiable. Although the
minimality of this core is not guaranteed, our experience has been that all the unsatisfiable cores found for the physical
domain assignment problem were indeed minimal.

The physical domain assignment may not have a solution for one of two reasons. First, there may be an attribute
of an expression with no path to any attribute for which a physical domain has been specified; that is, a component of
the graph formed by equality and assignment edges may not have a physical domain specified for it. Jedd detects this
case while constructing the input to the SAT solver, since it makes it impossible to construct the clause requiring at
least one flow path leading to the attribute to be active (clause 6). Second, it may not be possible to partition the graph
formed by equality and assignment edges in a way that respects all the conflict constraints. In this case, the following
proposition gives us a way to report the source of the problem to the programmer.

Proposition: When the boolean formula produced for the physical domain assignment problem is unsatisfiable, every
unsatisfiable core contains at least one clause of type 4 (conflict clause).

Proof: The key idea is that if clauses of type 4 are removed, the SAT formula ignores the requirement that conflict
edges be respected by the partitioning of the graph. The proof then consists of two steps: showing that a partitioning
can be found respecting all equality edges, and the technical steps to show that such a partitioning corresponds to a
satisfying assignment for the remaining clauses of the SAT formula (which were explicitly designed to be satisfied
exactly by such a partitioning).

That there exists a partitioning respecting all equality follows directly from the way in which equality edges are
constructed. By construction, at least one of the endpoints of each equality edge is an attribute of a replace expression
wrapping the argument of a relational operation, and has no other equality edges originating at it. These replace
expressions are generated by Jedd and therefore have no programmer-specified physical domains. Each connected
component of equality edges can therefore have no more than one vertex with a programmer-specified physical domain.

Let GE = (V = A,E = EQUALITY ) be the graph with all attributes of expressions as vertices, and equality edges
as edges. Let G′ be the graph formed from GE by adding assignment edges in the following way: as long as there is
an assignment edge such that the connected components in G′ of its endpoints do not contain attributes with different
programmer-specified physical domains, add the edge to G′, until no such edges are left.

Adding each edge preserves the property that no connected component of G′ has more than one programmer-
specified physical domain. In addition, every connected component of G′ has at least one programmer-specified
physical domain, because of the greedy construction of G′. For suppose to the contrary that G′ contains a connected
component c with no programmer-specified physical domain. In the original graph GEA = (V = A,E = EQUALITY ∪
ASSIGNMENT ) of all equality and assignment edges, there is a path from every attribute to some attribute with a
programmer-specified physical domain. Therefore, there is such a path from an attribute of c. All edges of this path
being in G′ contradicts the definition of c, while an edge of this path missing from G′ contradicts the definition of G′.

Having constructed a partitioning of the graph, we convert it to satisfying assignment of clauses 1, 2, 3, 5, 6, and
7 of the boolean formula. Let ea:p = true if and only if the connected component of ea in G′ has the physical domain
p, and let π(e0

a0:p0 ,e1
a1 , . . . ,ea) = true if and only if all the ei

ai are in the same connected component of G′. This
assignment trivially satisfies all clauses of types 1, 2, 3 and 7. Since G′ contains all equality edges, it also satisfies all
clauses of type 5.

To satisfy clauses of type 6, we must show that there is an active flow path from an attribute with programmer-
specified physical domain to each attribute in the same connected component of G′. Let p be any such path in G′, not
necessarily an active flow path. If p violates the first requirement of being a flow path (that its first vertex is the only
attribute with a programmer-specified physical domain), we can just take p to be the subpath of p starting at the last
programmer-specified physical domain on p. p satisfies the second requirement, since all edges of G′ are equality or
assignment edges. If p violates the third requirement of being a flow path (that no vertex appears on it more than once),
the section(s) between repeated vertices can be removed from it, yielding a p satisfying the requirement. Finally, the
fourth requirement can only be violated by the existence of a flow path that is a subpath of p. Therefore, for each
attribute in G′, there is a flow path to it in G′ from the attribute with programmer-specified physical domain of the
same component. By construction of the assignment of active flow paths, this path is active. Therefore, all clauses of
type 6 are satisfied.

We have constructed an assignment simultaneously satisfying all clauses of types 1, 2, 3, 5, 6, and 7. Therefore,
every unsatisfiable core must contain a clause of type 4. 2
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It follows from the proposition that the small unsatisfiable core returned by the SAT solver will include at least one
clause of type 4. From this clause, Jedd extracts the expression and the attributes to which physical domains could not
be assigned, and even the physical domain(s) that were considered for assignment to the attributes. This information
is reported to the programmer along with the position of the expression in the source file. The problem can be fixed by
explicitly assigning a new physical domain to one of the attributes in the conflict constraint that cannot be satisfied.

4 Jedd Runtime

4.1 Backends

One of the benefits of expressing BDD algorithms in a language like Jedd is that we can execute these algorithms,
without modification, using various BDD libraries as backends. This allows us to compare the performance of different
backends on the same problem. In Jedd, we have already implemented interfaces to the BuDDy [9] and CUDD [17]
libraries using JNI to call C code from Java, and we are experimenting with our own library written entirely in Java.
Several researchers have suggested using zero-suppressed binary decision diagrams (ZDDs) [12] for our points-to
analysis algorithms. We are therefore working on a backend for Jedd based on ZDDs, which will allow us to run all
our algorithms using ZDDs without modification.

4.2 Memory Management Issues

All BDD libraries that we are aware of use a reference counting garbage collector to reclaim unused BDD nodes, since
BDDs have a DAG structure. A disadvantage of this approach is that a programmer using the library in a C program
is required to explicitly increment and decrement the reference count whenever BDDs are assigned or a reference to
a BDD goes out of scope. In C++, it is possible to use overloaded assignment operators and destructors to relieve the
programmer of much of this burden. Because this is not possible in Java, if we had implemented Jedd as a library
rather than a language extension, we would have to require the programmer to explicitly manipulate reference counts
like the C libraries do. This is yet another tedious and error-prone aspect of working with BDDs.

Since Jedd is an extension to the language, we can design it to update reference counts automatically, without any
help from the programmer. For performance reasons, it is particularly important that the reference count be decre-
mented as soon as possible after a reference becomes dead. When dead nodes are not freed in a garbage collection,
fewer nodes remain for future computation, so garbage collection is required more frequently. In addition, BDD li-
braries use a cache to speed up the basic operations on nodes. Large numbers of unfreed obsolete nodes may pollute
this cache. In general, we cannot rely solely on the Java garbage collector to determine when relations are unreachable,
particularly short-lived temporary relations. This is because unlike allocations of Java objects, an allocation of a BDD
node will not trigger a Java garbage collection when no more memory is available. It is very possible to allocate many
large temporary BDDs in several iterations of a loop and have the BDD library run out of memory without a Java
garbage collection ever being triggered.

A BDD can become dead in four ways. First, it may be the result of a subexpression of an expression becoming
unreachable after the outer expression is evaluated. Second, it may be stored in a local variable or field, and it may be
overwritten by another BDD. Third, the BDD may be stored in a local variable which goes out of scope. Fourth, the
BDD may be stored in a field, and the object containing the field may become unreachable. For temporary values, the
first two cases are the most common and therefore the most important.

To handle the first case, we implement the convention that each BDD operation decrements the reference count of
its arguments and increments the reference count of its result before returning it. This convention is partly imposed by
the requirement of the BDD libraries that any BDDs passed to library functions have non-zero reference counts.

For a clean implementation of the remaining cases, we create a relation container object for each local variable
and field. In the generated Java code, the variable/field points to its relation container throughout its lifetime; this is
enforced by making the variable/field final. The BDD itself is stored as a private field in the relation container, and can
be updated only through an assignment method which also updates the reference counts. This guarantees that in the
second case, a BDD being overwritten has its reference count decremented immediately. To handle the third and fourth
cases, the relation container object also decrements the reference count of any BDD stored in it in its finalizer, which
is called when the relation container is garbage collected. In the fourth case (a field becoming dead), this happens in
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Analysis Relation Phys. Number of Constraints SAT Problem Solving
Component Exprs. Attrs. Doms. Conflict Equality Assign. Variables Clauses Literals Time (s)
Virtual Calls 46 127 5 184 173 70 1298 5600 11627 0.016
Hierarchy 172 344 5 242 442 143 3711 18140 37764 0.062
Points-to Analysis 247 561 8 637 802 259 7997 44405 93052 0.161
Side-effect Analysis 68 237 9 484 282 108 4441 41772 86482 0.165
Call Graph 89 340 8 929 442 187 7043 96514 197865 0.284
All 5 combined 613 1586 10 4902 2141 767 31083 273986 568597 4.607

Table I: Size of physical domain assignment problem

the same garbage collection 2 as the one in which the object containing the field becomes unreachable, which is the
earliest time that it is safe to decrement the reference count. For the third case (a variable going out of scope), this
ensures that the reference count will eventually be decremented, but this may be a significant amount of time after
the variable goes out of scope. To improve on this, we perform a static liveness analysis on all relation variables,
and at each point where a variable may become dead, we decrement the reference count of any BDD it may contain
and remove the BDD from the container. In the face of exceptional interprocedural control flow, this is not always
possible. We assume such control flow to be unusual, and fall back on the finalizer to decrement the reference count
in such cases.

To summarize, Jedd manages BDD reference counts automatically without any help from the programmer. In all
four cases, it frees BDDs as soon as it becomes safe to do so, so its performance should be no worse than that of a
hand-coded reference counting solution.

Figure 9: Overall profile view

4.3 Profiler

A common problem when tuning any algorithm using BDDs is choosing an efficient variable ordering, the relative
order of the individual bits of the physical domains. In complicated programs with many relations and attributes, a
related problem is tuning the physical domain assignment, and the replace operations which it dictates. Specifically, we

2Here, we assume that the garbage collector collects all unreachable objects in each collection. However, even when this is not true in general,
such as in a generational collector, it is very likely that the object containing the field and the relation container will be reclaimed in the same
collection, since they are allocated close together: the latter is allocated in the constructor of the former.
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Figure 10: Graphical represenation of BDD in replace operation

are interested in removing those replace operations which are particularly expensive by modifying the physical domain
assignment to make them unnecessary. For these tuning tasks, we need some insight into the runtime behaviour of our
program. In particular, we want to know which operations are expensive in terms of time and BDD size (and therefore
space), in order to either remove them, or make them cheaper by modifying the variable ordering. For tuning the
variable ordering, knowing the shape of the BDDs involved in the operation is also useful. The shape of a BDD is the
number of nodes at each level (testing each variable) of the BDD.

In the code generated by Jedd, relational operations are implemented as calls into the Jedd runtime library. The
runtime library optionally makes calls to a profiler which records, for each operation, the time taken and the number
of nodes and shape of the operand and result BDDs. This information is written out as an SQL file to be loaded
into a database, which provides a flexible data store on which arbitrary queries can be performed to present the data
to the user. Jedd also includes CGI scripts to provide access to the profiling data through a web browser. We use
SQLite for the database and thttpd for the web server because of their ease of installation, but in principle, any SQL
database and CGI-capable web server should work. The overall profile view shows, for each relational operation in the
program, the number of times it was executed, the total time taken, and the maximum size of the BDDs involved (see
Figure 9). Clicking on an operation brings up a detailed view with a line of information for each time the operation
was executed. Clicking on a specific execution of the operation generates a graphical representation of the shape of
the BDDs involved in the operation. Figure 10 shows an example of this graphical representation for a typical replace
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operation. In this case, the relation consists of two attributes, the first mapped to the physical domain ranging from
levels 20 to 39 of the BDD, and the second being moved from the physical domain at levels 80 to 99 of the BDD to a
different physical domain at levels 60 to 79.

5 Experience with Jedd

We have implemented in Jedd several test examples, our BDD points-to analysis algorithm [4], and a collection of
interrelated whole-program analyses. Without Jedd, the latter would not have been feasible, since it would require
us to assign physical domains by hand to the attributes of 613 subexpressions, with no automated way to verify that
we had not made mistakes; in fact, we initially tried such an approach, and quickly gave up. Even the relatively
short points-to analysis algorithm becomes much clearer when expressed using attributes rather than physical domains
directly, and without the clutter of low-level replace operations. In general, we wrote the whole-program analyses
without specifying any physical domains at all, and when it came time to compile, we assigned just enough attributes
to physical domains to allow the physical domain assignment algorithm to assign the rest. In this process, Jedd’s
error reporting pointed us directly to the expressions that needed to have physical domains assigned by hand. The
analyses themselves were easy to implement compared to pure Java implementations, mainly thanks to the compact
representation provided by BDDs. For instance, the Java version of the side-effect analysis consists of 803 non-
comment lines of code, mostly implementing data structures to compactly represent the large, highly redundant sets of
side effects. In contrast, the Jedd version is only 124 lines. For now, this is just preliminary experience, but we hope
that Jedd will enable the development of many other BDD-based program analyses.

We have found the zchaff SAT solver [13] to be more than fast enough for solving the domain assignment problem,
even for significant programs such as the combination of all five program analyses, as shown in Table I. The first
section of the table shows the number of relational expressions, attributes in these expressions, and physical domains.
The second section lists the number of each type of constraint in the physical domain assignment problem. The third
section gives the number of distinct variables, clauses, and literals in the resulting SAT formula. Finally, the fourth
section shows the time taken by zchaff to parse and solve the formula on a 1833 MHz Athlon with 512 MB of RAM.
To put the times into perspective, a complete build of Soot takes 5 minutes on the same machine, so 4.6 seconds
to assign physical domains is very acceptable. The SAT encoding of the physical domain assignment problem was
designed to be easy to understand rather than compact; it could easily be made smaller if the SAT solver ever became
a bottleneck.

To measure the runtime overhead of Jedd compared to using a BDD library directly in C++ [4], we timed the C++
and Jedd versions of our points-to analysis algorithm on five benchmarks. Both versions used the BuDDy library as
the backend. The timings are shown in Table II. The overhead varied from 0.5% to 4%, which we attribute to having
to have the Java VM in memory, and to the internal Java threads that run even when not executing Java code.

Benchmark Std. lib. C++ Jedd
version

javac 1.1.8 3.4 s 3.5 s
compress 1.3.1 21.7 s 22.4 s
javac 1.3.1 25.3 s 26.3 s
sablecc 1.3.1 25.4 s 26.1 s
jedit 1.3.1 41.1 s 41.3 s

Table II: Running time comparison of hand-coded C++ [4] and Jedd points-to analysis

6 Related Work

The relational data model based on relational algebra was proposed by Codd [7], and has since been used for many
applications, particularly as the basis of relational databases.

Jedd is built on top of the BuDDy [9] and CUDD [17] BDD libraries, which provide a low-level interface to a
BDD implementation. On top of its lowest-level interface, BuDDy implements finite domain blocks, a convenient way
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to group together BDD variables, much like the physical domains in Jedd. GBDD [14] is a C++ library providing an
even higher-level relation-based abstraction.

Several small interactive languages have been developed for experimenting with BDDs. One example is BEM-
II [11], designed for manipulating Arithmetic BDDs and solving 0-1 integer programming problems. Another is
IBEN [2], which provides a direct user interface to BuDDy, as well as BDD visualization facilities.

The JNI interface allows Java code to use BDD libraries written in C through specially written wrappers. We
have found it very convenient to use the wrapper generator Swig [1] to automatically generate these wrappers for us.
However, others have chosen to write such wrappers by hand, resulting in JBDD [18], a Java interface to both BuDDy
and CUDD, later extended and renamed JavaBDD [20]. Unlike Jedd, these JNI wrappers provide no abstraction over
the underlying BDD libraries. They simply allow the library functions to be called from Java.

The RELVIEW system is an interactive manipulator of binary relations (each having exactly two attributes). One
of its backends stores relations in BDDs [3].

Languages with support for binary relations have been around since the days of SETL [16] and are too numerous
to list. Codd-style relations have also appeared in many languages, particularly those designed for interfacing with
relational databases. Examples include the <bigwig> project [5] and recent work on extensions to C# [10]. In
contrast to these languages whose primary goal is to provide access to relations, the primary focus of Jedd is to
enable program analysis developers to exploit the compact data representation provided by BDDs, using relations as
an abstraction to make programming with BDDs manageable.

7 Conclusions and Future Work

We have introduced Jedd, a high-level language extension to Java for expressing set-based algorithms so that they
can be implemented using BDDs. The motivation for designing the language was to provide a convenient way of
specifying program analyses so that they could be efficiently solved using existing BDD packages.

The approach presented is one of designing an appropriate language abstraction which: (1) provides the program-
mer with the correct abstraction of the problem, in this case a form of relations; (2) provides as much static type
support as possible; (3) exposes only as much low-level detail as required (the programmer need only provide some
of the key physical domain assignments); and (4) fits naturally as an extension of a general purpose programming
language, Java.

Based on this language, we have defined and implemented a translator to generate Java code and an associated
runtime system. Key parts of the translator are: (1) the high-level relational operations are translated into low-level
BDD operations which can be provided by a variety of backend solvers; (2) the translator leverages the power of
existing SAT solvers to automatically provide a complete assignment of attributes to physical domains (or provides a
meaningful error message if no such assignment exists); (3) automatically supports a reference-count-based approach
to memory management at the Java level, compatible with the approaches taken in the C-based solvers; and (4)
provides support for debugging and profiling of the BDD-based operations.

We have used our system to program five key program analysis modules in the Soot compiler framework [19] and
have found that it allows us to write compact programs which can be compiled in reasonable time, and that generated
BDD-based code is about as efficient as the BDD solvers we coded by hand.

Our next steps are to experiment with more analyses written in Jedd and to integrate the Jedd-based analyses into
the main Soot development trunk.3 Another challenge will be to make Jedd compatible with generics when Java 1.5
is released.
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