
McGill University
School of Computer Science

Sable Research Group

Precise, Partially-Compositional Analysis of the π-Calculus

Sable Technical Report No. 2004-01

Sam B. Sanjabi, Clark Verbrugge
School of Computer Science, Mcgill University

{ssanja,clump}@cs.mcgill.ca

w w w . s a b l e . m c g i l l . c a

Abstract

We present a new algorithm for computing control flow analysis on the π-calculus. Our
approach is strictly more accurate then existing algorithms, while maintaining a polynomial
running time. Our algorithm is also partially compositional, in the sense that the representa-
tional structure that results from analyzing a process can be efficiently reused in an analysis of
the same process in another context.

1 Introduction

Recent work on language-based security has seen the application of static analysis [8] techniques
applied to various formalisms in order to compute information about the possible runtime behaviour
of a program prior to execution. Such analyses can then be used to formulate provable security
policies that can be used as safety criteria in networking applications. Best results are naturally
achieved with the most precise information flow techniques, though complex systems impose feasi-
bility constraints. Accuracy of results, particularly with respect to relative cost of computation is
thus an important quality.

In this paper we present a new algorithm for computing control flow analysis on the π-calculus.
Our approach is strictly more accurate then existing algorithms, while maintaining a polynomial
running time.

Our algorithm is also partially compositional, in the sense that the representational structure that
results from analyzing a process can be efficiently reused in an analysis of the same process in
another context. Compositionality is an important practical consideration when the process or
protocol under analysis is best understood or needs to be verified in various contexts. By reusing
all or some of the information already computed about a subprocess the overall computation effort
can be reduced.

The main contributions of this paper consist of:

• A new polynomial time algorithm for control flow analysis of the π-calculus with strictly
greater accuracy than the current state of the art. Our focus is initially on the calculus
without replication, but a simple extension to include replication is provided.

• A partially compositional approach to control flow analysis. The representation structure we
use during computation of our algorithm is independent of context, and so can be reused
when analyzing the same subprocess in another context. This is a partial step toward an
accurate, efficient and fully compositional analysis.

We also indicate some directions for improving algorithm efficiency by tightening conservative
estimates of limits on process syntactic entities, and reducing redundancy in the constraint solving
process.

1.1 Roadmap

Section 2 describes related approaches, and section 3 gives details on the context of our approach.
Basic definitions for our algorithm are given in section 4, and an initial version of the algorithm is

1

developed in section 5. The algorithm is then refined into a more accurate, incremental approach
in section 6. Sections 7 and 8 discuss the algorithm and possible extensions and conclude.

2 Related Work

Bodei et al [4] present a static analysis of the π-calculus [7] which they later use to establish
a provable information-flow property on processes [3]. The work was extended to cryptographic
protocols in [1] when a static analysis on the spi-calculus [6], a concurrent language with encryption
and decryption primitives, was presented. Similar techniques have been shown to be effective on
Cardelli and Gordon’s ambient calculus [2], where Nielson et al [11] have developed an analysis that
can be used for firewall validation, and more recently presented an abstract interpretation of mobile
ambients [10] used for syntactic checks. An abstract interpretation based on game semantics has
also been developed by Malacaria and Hankin [12] with which they compute a notion of information
flow on a sequential program [13].

Our analysis follows work done in [4], [14], [9], and [5] on the control flow analysis of the π-calculus
for security purposes. In [4], Bodei et al demonstrate a CFA for the π-calculus using flow logic
which computes information about the set of channel names that can be transmitted over each
name in the process, as well as the set of names that a given name can become through input. An
elementary security property regarding the leakage of information from secret to public channels
was also demonstrated. In [14], we demonstrated that the analysis could be conducted via an
Andersen-style points-to analysis on the C programming language without any label extensions to
the calculus.

Previous work in this area was based on quite conservative flow and context insensitive analyses,
typically only the prefixes of the process are considered, so given a process such as x(y) + x̄z, the
analysis would conclude that the name z can be transmitted over the channel x, and that the name
y could become z through the execution of the process. This result ignores the fact that the two
prefixes in question couldn’t possibly communicate because they are on opposite sides of a choice
operator.

A more accurate result could clearly be obtained by considering the structure of the process in
a more sophisticated way. Inroads were made toward such a goal (again by Bodei et al) in [5]
in which they introduced the concept of “addressing” of a π-calculus process. The analysis there
used a slightly modified (but equally expressive) π-calculus whose semantics preserved the process
structure. We will define and use that calculus here.

3 Background

Our investigation of control flow is in the context of the π-calculus [7], a slightly modified syntax
of which is given below:

P ::= 0 | x̄y.P | x(y ∈ Y).P | τ.P | P + P | P |P | (νx)P

We borrow from [5] the idea of using a “filtered input” prefix rather than a match. The semantics
of the filtered input prefix x(y ∈ Y) dictate that – just as in the ordinary calculus – it communicate

2

Tau : τ.P
τ
−→ P

Out : āb.P
āb
−→ P In : a(y ∈ Y).P

ab
−→ P{b/y}, b ∈ Y

Sum0 : P0
µ

−→Q0

P0+P1
µ

−→Q0+0
Sum1 : P1

µ
−→Q1

P0+P1
µ

−→0+Q1

Par0 : P0
µ

−→Q0

P0|P1
µ

−→Q0|P1

Res : P
µ

−→Q

(νa)P
µ

−→(νa)Q
, a /∈ names(µ)

Open : P
āb
−→Q

(νb)P
ā(b)
−→Q

, b 6= a Close0 : P0
ā(b)
−→Q0, P1

ab
−→Q1

P0|P1
τ

−→(νb)(Q0 |Q1)

Com0 : P0
ā(b)
−→Q0, P1

ab
−→Q1

P0|P1
τ

−→Q0|Q1
V ar : P ′≡P

µ
−→Q≡Q′

P ′
µ

−→Q′

Table 1: Operational semantics of the π-calculus taken from [5] (symmetric rules are ommitted).

with an output prefix of the form x̄z (for some z); however, in the filtered case, the communication
occurs only when z is in the set Y . This yields an equally expressive calculus as the ordinary
π-calculus with match, because the set Y could simply contain all names, and the match prefix
[x = y]P is encoded as (νa)(āx | a(y ∈ {x}).P).

The semantics used in [5] (reproduced in figure 1) are also modified from the standard calculus in
that they do not eliminate nil processes, and do not allow associativity and commutativity of the
composition and choice operators in their structural congruence in order to conserve the process’
structure. Note that for the sake of simplicity, and for comparison with [5], we don’t include
replication in our language at this time. An unsophisticated treatment of replication could easily
be added to our results, and we shall briefly discuss this in section 7.

The notion of “process addresses” was formalized through a localization operator @ϑ defined by
induction on processes as follows (ε is the empty address):

1. P@ε = P

2. (P0|P1)@‖iϑ = Pi@ϑ

3. (P0|P1)@ ++iϑ = Pi@ϑ

4. π.P@ϑ = ((νa)P)@ϑ = P@ϑ, for ϑ 6= ε

This definition assigns to every program point an address. We defineAddr(P) = {ϑ | ∃Q : P@ϑ = Q}
as the set of all addresses of a process P . Intuitively, two addresses are compatible (i.e. communica-
tion is possible between them) if they lay on the same side of a choice operator +, and on different
sides of the same parallel composition operator |. This notion is defined in [5] as follows:

3

Definition 3.1. Given a process P and two addresses ϑ, ϑ′ ∈ Addr(P), ϑ and ϑ′ are compatible,
written as compP (ϑ, ϑ′), or symmetrically as compP (ϑ′, ϑ), if and only if

ϑ = ϑ0‖iϑ1 and ϑ
′ = ϑ0‖1−iϑ

′
1, i ∈ {0, 1}

for some ϑ1, ϑ
′
1.

This addressing scheme encodes the ability of various program points in the π-calculus process
to communicate. Therefore this representation will allow false positives computed by the flow
insensitive analyses discussed above to be eliminated. The process representation that we build up
will allow us to further improve the results obtained through this approach.

The work done by Nielson and Seidl [9] demonstrated that certain CFA’s can be computed efficiently
using the logical notion of Horn clauses with sharing, and we will exploit some of their results in
order to maximize the running time of our final analysis. A discussion of the applicability and
compositionality of our analysis will follow our main results.

4 Definitions

Given a π-calculus process P , over a countably infinite set of names N , we list the basic definitions
required for our representation and analysis below. Note that for the remainder of this paper, given
any countable set S, we define S⊥ as the flat domain over the elements of S with bottom element
⊥S, and the supremum of sets as their union unless otherwise indicated.

Definition 4.1. (Prefixes) An output prefix πo is a pair (c, d) (for c, d ∈ N). We say that c is the
channel of πo, and d is the datum of πo. Similarly, we define an input prefix πi as a triple (c, d, F)
with c, d ∈ N and F ∈ ℘(N). The set F is called the filter of πi.

We define OP and IP as the set of output and input prefixes of a process P respectively, and
ΠP = OP ∪ IP as the set of non silent prefixes of P . Furthermore, we’ll use a few auxiliary
definitions to handle our computations. First, we define our notion of the least upper bound of two
functions:

Definition 4.2. (Supremum of Functions) Given functions f : X → Y and g : X → Y (with X,Y
arbitrary sets), we define f t g pointwise:

∀x ∈ X.(f t g)(x) = f(x) t g(x)

We will also use the following definition of substitution on functions:

Definition 4.3. (Substitution on Functions) Given a function f : X → Y , and given x ∈ X, and
y ∈ Y , define f [x 7→ y] to be the same function as f , except that (f [x 7→ y])(x) = y.

Next, we define binary tree forests as a set of nodes, and a pair of functions on each node yielding
its left and right child. We first assume a countably infinite set of node names V.

Definition 4.4. A binary tree forest F is a set of nodes VF ∈ ℘(V) paired with a pair of functions
r, l : V⊥ → V⊥, i.e. F = (VF , (l, r)), where l(v) and r(v) (for v ∈ VF) are called the left child and
right child of v respectively.

4

Now, letting F = (VF , (l, r)) be a binary tree forest, we define the following elements of F :

Definition 4.5. A node v ∈ VF such that l(v) =⊥V and r(v) =⊥V is called a leaf of F . Informally,
a leaf is a node with no children.

Definition 4.6. A node v ∈ VF such that
�
u ∈ VF .(l(u) = v ∨ r(u) = v) is called a root of F .

Informally, a root is a node with no parents.

Definition 4.7. The cardinality of F is defined as the number of roots in F and is denoted
|F | = |{v ∈ VF |v is a root of F}|. A forest of cardinality 1 is called a tree.

Now, we let ⊥l=⊥r=⊥V⊥⇒V⊥
denote the everywhere bottom function (i.e., the function that returns

⊥V on any input) in the domain of functions V⊥ ⇒ V⊥. These elements are used as bottom elements
for the left and right child functions (they indicate that no nodes have children).

Forests can be ordered into a complete lattice using the traditional subset ordering pointwise on
their node sets and child functions:

Definition 4.8. Let F1 = (V1, (l1, r1)) and F2 = (V2, (l2, r2)) be forests,

F1 v F2 ⇔ (V1 ⊆ V2) ∧ (∀v ∈ V1 : (l1(v) = l2(v)) ∧ (r1(v) = r2(v)))

F1 t F2 = (V1 ∪ V2, (l1 t l2, r1 t r2))

This definition simply says that a forest is greater than any of its sub-forests, and that the least
upper bound of two forests is defined as the union of their nodes paired with the least upper bound
of their child functions. Let � denote the lattice of forests defined above, and let ⊥ � = (∅, (⊥l,⊥r)).
Note that, under specific conditions, the supremum of two single-tree forests will yield another single
tree forest, and we will exploit this to generate a single tree representing a π-calculus process:

Proposition 4.1. (Tree Preservation) Given forests F1 = (V1, (l1, r1)) and F2(V2, (l2, r2)) such
|F1| = |F2| = 1 (i.e. F1 and F2 are trees). Then if

1. the root r of F1 is a leaf of F2 (or vice versa), and

2. (V1 ∩ V2) = {r}

then (F1 t F2) is also a tree.

Proof. If the root of one tree is a leaf of the other, then taking the supremum operation merely
grafts the latter tree onto the leaf of the former. We don’t need to worry about the descendents or
ancestors of the root/leaf node overlapping because we have assumed that the node sets are disjoint
outside of this node.

We now present various analyses of the π-calculus by first generating the representation of a process,
and then using that representation to compute some conservative information about the behaviour
of the process.

5

5 Process Representation

We begin by developing a representation that is equivalent to the one in [5] in that it allows us
to determine what subprocesses can communicate with each other. Although the representations
are equivalent, we describe our procedure in detail in order to make it evident how we achieve
compositionality (discussed in section 7), and also how we can achieve more precise flow information.

The first step is to generate a tree that mimics the subprocess structure of the π-calculus process
where each node represents the various subprocesses. We then generate a graph based on this
representation that will denote which subprocesses can potentially communicate. Finally, we use
this graph to compute our conservative estimate.

5.1 The Subprocess Tree

Given a π-calculus process P , we generate a triple (T, σ, ω) where T is a binary tree with sub-
processes of P as nodes, and edges indicating a containment relation between subprocesses. The
second component is a function σ : VT → ℘(Π) indicating the actions (prefixes) that can occur
at a particular subprocess address, and the third component ω : VT → {‖,++} indicating that the
topmost process operator at the given point (with ++ meaning choice, and ‖ meaning composition).
We adopt the convention that these functions take any node names not in their domains to bottom
in their respective target domains in order to ensure that the join operations are well defined. We
also assume that bound names are α-converted to avoid repetition, which we can easily do in a
replication-free calculus.

We define the least upper bound of two such triples in the standard pointwise fashion. We define
bottom elements ⊥σ as the everywhere bottom function in the domain V⊥ ⇒ ℘(Π)⊥ (i.e. the
domain of functions from nodes to sets of prefixes), and similarly ⊥ω as the everywhere bottom
function in the domain V⊥ ⇒ {‖,++}⊥.

We generate the triple (T, σ, ω) using the function T shown in table 2 defined on the π-calculus
syntax. The name v ∈ V is initialized to a fresh node name that will denote the root of the tree,
and a “capped” node name (like v̂) denotes that the name should be fresh. We now show that this
procedure has in fact constructed a single tree representing the π-calculus process:

Proposition 5.1. Given a π-calculus process P , Let T � P � v = (T, σ, ω). Then T is a tree rooted
at v.

Proof. The proof is by induction on the structure of P :

(Case P ≡ 0) The first component of the triple in this case is ({v}, (⊥l,⊥r)). This is a forest with
only one node, and since the child functions are both bottom, the node has neither children
nor parents. Thus it is certainly a tree rooted at v.

(Case P ≡ x(y ∈ Y).Q) By the induction hypothesis, we have that the first component of T � Q � v

is a tree rooted at v. Call this tree T̂ . The first component of the triple T � P � v is T̂t ⊥ � by
the definition of T . Since we are taking the supremum of T̂ and an empty tree, the result is
simply T̂ which is a tree rooted at v.

(Case P ≡ x̄y.Q) This case is exactly analogous to the case for the input prefix.

6

T � 0 � v = (({v}, (⊥l ,⊥r)),⊥σ,⊥ω)

T � x(y ∈ Y).P � v = T � P � v t (⊥ � ,⊥σ [v 7→ (x, y, Y)],⊥ω)

T � xy.P � v = T � P � v t (⊥F,⊥σ [v 7→ (x, y)],⊥ω)

T � τ.P � v = T � P � v

T � (νx)P � v = T � P � v

T � P1 + P2 � v = T � P1 � v̂1 t T � P2 � v̂2t
(({v}, (⊥l [v 7→ v̂1],⊥r [v 7→ v̂2])),
⊥σ,⊥ω [v 7→ ++])

T � P1 | P2 � v = T � P1 � v̂1 t T � P2 � v̂2t
(({v}, (⊥l [v 7→ v̂1],⊥r [v 7→ v̂2])),
⊥σ,⊥ω [v 7→ ‖])

Table 2: Constructing a tree to represent process P

(Case P ≡ τ.Q) The result is immediate from the induction hypothesis on T � Q � v.

(Case P ≡ (νx)Q) The result is immediate from the induction hypothesis on T � Q � v.

(Case P ≡ P1 + P2) We have, by the induction hypothesis, that the first components of T � P1 � v̂1

and T � P2 � v̂2 are trees rooted at v̂1 and v̂2 respectively. Call these trees T̂1 and T̂2. It is trivial
to verify that Tv = ({v}, (⊥l [v 7→ v̂1],⊥r [v 7→ v̂2]) is a tree rooted at v with v̂1 and v̂2 as
leaves. By definition of T , the first component of T � P1 + P2 � v is (Tv t T̂1 t T̂2), and since v̂1

and v̂2 are roots of T̂1 and T̂2, and leaves of Tv, proposition 4.1 yields the result that we are
generating a tree rooted at v.

(Case P ≡ P1 | P2) This case works exactly analogously to the case for non deterministic choice.

The other two components of the generated triple are described as follows:

• The ω function encodes the information about whether each node’s children are on opposite
sides of a choice or a composition

• the σ function stores the set of top-level prefixes at a given node.

Note that a pair of composed (or “choiced”) processes simply generate two new nodes, and two
new edges, as well as adding information to the ω component about which operator is at the top
level. Alternatively, leading prefixes cause no new information to be added to the tree or the ω

7

u������

HHHHHj

w

u

�
�

�
�

@
@

@
@

u

�
�

�
�

@
@

@
@

l(w) = u v = r(w)

TP TQ

Figure 1: Compositional construction of TPQ from TP and TQ

component, however, the prefix in question is added to the range of the current node in the σ
function. In this way, the structure of the π-calculus process is recorded.

Observe that this construction is perfectly compositional in the sense that given trees T � P � u and
T � Q � v for processes P and Q, we can build a tree for the combined processes P | Q and P + Q
without recomputing the trees for P and Q as follows (see figure 1):

1. Generate a new nodew to represent the combined process (and hence, the root of the combined
tree)

2. Set the left child of w to the root of TP , and the right child of w to the root of TQ

3. Generate the combined functions σPQ and ωPQ by computing the suprema of the respective
functions, and then setting ω(w) appropriately.

This result is summarized as a corollary to the above proposition:

Corollary 5.2. Given T � P � u = (TP , σP , ωP) and T � Q � v = (TQ, σQ, ωQ) for π-calculus processes
P and Q, then T � P | Q � w = (TPQ, σPQ, ωPQ) can be computed as follows:

TPQ = ({w}, (⊥l [w 7→ u],⊥r [w 7→ v]))
⊔

(TP t TQ)

σPQ = (σP t σQ)

ωPQ = (ωP t ωQ)[w 7→ ‖]

Proof. Immediate from proposition 5.1 and the definition of T .

Note that all of the operations above can be accomplished in constant time as the node names are
completely distinct between the trees. An analogous result applies for the non-deterministic choice
operator, but as we discuss in section 7, the parallel composition case is much more useful.

5.2 An Example of the Construction

We now give an example of the generation of such a representation for a given process. Consider
the following π-calculus process:

a(x1 ∈ N).(b̄x1 + b̄z) | (āw.b(x2 ∈ N).(ȳw.(āw | āy) | āz.b(x3 ∈ N).(c̄x3 + c̄z)))

8

u���������9

XXXXXXXXXz

v

u������

HHHHHj

u������

HHHHHj

v0 v1

u u

v00 v01
u

�
��	

@
@@R

u

�
��	

@
@@R

v10 v11

u u u u

v100 v101 v110 v111

Node ω σ γ

v ‖ ∅ ε

v0 ++ {(a, x1,N)} ‖0
v1 ‖ {(a,w), (b, x2,N)} ‖1
v00 ⊥ω {(b, x1)} ‖0 ++0

v01 ⊥ω {(b, z)} ‖0 ++1

v10 ‖ {(y, w)} ‖1‖0
v11 ++ {(a, z), (b, x3 ,N)} ‖1‖1
v100 ⊥ω {(a,w)} ‖1‖0‖0
v101 ⊥ω {(a, y)} ‖1‖0‖1
v110 ⊥ω {(c, x3)} ‖1‖1 ++0

v111 ⊥ω {(c, z)} ‖1‖1 ++1

Table 3: Tree generated by T on the example process

The tree generated on this example, as well as the values of the ω and σ functions is shown in
table 3. The values of the l and r functions are indicated by the edges of the tree. Observe that
we have carefully avoided repetition in our bound names as per the assumptions above. This is not
necessary for the construction of the tree per se, but will be required for our analysis. Note that,
as seen in the handling of nodes v1 and v11 (representing the subprocesses āw.b(x2 ∈ N).(. . . | āy)
and āz.b(x4 ∈ N).(. . .) respectively), that sequences of prefixes result in the same tree structures
as do single prefixes (the sequences are stored by the σ function). The γ entry simply shows the
corresponding process address in the representation described in [5]. Each such address corresponds
to a path in our tree.

5.2.1 Complexity of Tree Generation

Let N be the number of symbols in the process P . For every prefix, T only adds a single element
to the set of prefixes associated with a given node (i.e., it adds an element to the image of one
node v under the σ function), however since it is possible that a prefix is inserted into a given set
multiple times (because of multiple occurrences of the same ouput prefix), the insertions may take
linear time. The cases of the composition and choice operators add a single node and two edges
to the tree, and add an element to the image of one node under the ω function. Since no node is
a child of more than one other node (because we are generating a tree), and since each time edges
are added to fresh nodes, we never add a node or an edge to a set more than once, and hence
the insertions can be performed in constant time. Since there can be no more than a total of N
prefixes, compositions and choice operations in a process P , the generation of the whole triple takes

9

at most quadratic time in the number of symbols in P .

5.3 The Communication Graph

We now use the tree created above to generate a graph indicating which subprocesses can com-
municate with one another. This will be achieved by augmenting the tree structure describing the
process with edges indicating potential communications. We take the conservative initial assump-
tion that each prefix could potentially communicate, thereby allowing the subprocesses rooted at
the prefix’s node to potentially communicate as well. Note that although this approach ensures a
conservative result, it also limits precision. A re-examination of this assumption will permit greater
accuracy in results, and is described in section 6. Initially, however, assume that all prefixes could
potentially communicate.

In order to determine the communication ability of subprocesses, we need only observe the following:

1. prefixes at a particular node can never communicate with prefixes at any of that node’s
descendants (because we have not included replication in our syntax)

2. the left child (and all of its descendants) of a composition node (as given by the ω function)
may communicate with the right child and all of its descendants (and vice versa)

3. neither the children of choice nodes (i.e. nodes v such that ω(v) = ++) nor any of their
descendants may communicate with each other

5.3.1 Graph Construction

We now proceed with the construction of the graph G by iterating on the structure of the tree T .
To do so, we first define an auxiliary function δτ : V⊥ → ℘(V)⊥ to compute the set of descendants
of a node v in τ , where τ is a triple (T, σ, ω) as defined above. We define δτ recursively as follows:

δτ (v) =

{v}
⋃

(δτ (l(v)) ∪ δτ (r(v))) if v 6=⊥V

∅ otherwise

Note that the time complexity of δτ is linear in the number of symbols in the original process P .
This is simply because at each step of the recursion, only a single node is added to the list, and since
no node is ever added twice (because there are no back edges in the tree), each union operation
takes only constant time. Since there can only be a maximum of N subprocesses in P , the whole
operation is linear in N .

We can now use this function to define our graph G. First we take the convention that an “edge”
(U, V) where V and U are sets of nodes is defined as the set of edges between all the nodes in U
and V , or more formally (and simply) as U × V .

Again, letting τ = T � P � v = (T, σ, ω), where the tree T has root node v. We now define the function
Eτ as the following function (taking a node v as input, and generating a set of edges):

10

Eτ (v) =

(δτ (l(v)), δτ (r(v)))
⋃

(Eτ (l(v)) ∪ Eτ (r(v))) if (v 6=⊥V) ∧ (ω(v) = ‖)

(Eτ (l(v)) ∪ Eτ (r(v))) if (v 6=⊥V) ∧ (ω(v) = ++)

∅ otherwise

The complete communication graph is computed as G = (VT , Eτ (v)). Observe that if the given node
v is a composition node (i.e. ω(v) = ‖), then edges are added to form a complete bipartite graph
between the left and right subtrees of that node (i.e. δτ (l(v)) and δτ (r(v))) and these edges are
added recursively to the edges resulting from calling the function on each of those subtrees. If the
given node is a choice, then no edges are added between the two subtrees at that level, and only
the union of the edges resulting from calling the functions recursively on the subtrees is returned.

As in the case for the tree generation, the structure of this algorithm allows the graph representation
to also be constructed compositionally:

Proposition 5.3. Given π-calculus processes P and Q with corresponding triples τ1 = T � P � u =
(TP , σP , ωP) and τ2 = T � Q � v = (TQ, σQ, ωQ), and graph representations GP = (VP , Eτ1(u)) and
GQ = (VQ, Eτ2(v)), then we can construct the combined graph GPQ = (VPQ, EPQ) for the process
P | Q as follows:

VPQ = V (TPQ)

EPQ = (δτ1(u), δτ2(v))
⋃

(EP ∪EQ)

with V (TPQ) denoting the vertex set of the tree TPQ computed as in corollary 5.2.

Proof. Follows immediately from the definition of Eτ .

Thus, the only new information in the overall graph that we need to compute are the edges between
the nodes in the given graphs. As in the case for the tree, the analogous result also applies in the
case of the choice operator.

5.3.2 Equivalence of Graph Model

Now, we compare this to the representation defined in [5], which we reproduced in section 3. We
first define a mapping from the nodes in our tree (which represent process points) and addresses in
Bodei et al’s representation. For a given process P it is trivial to see that each address ϑ ∈ Addr(P)
corresponds in a one-to-one way to a path in the tree τ = T � P � v, thus we can generate the requisite
mapping γ : VT → Addr(P) by building it through a simple tree traversal:

γτ (v) =

ε if v is the root node

γτ (p)‖0 if (l(p) = v) ∧ (ω(p) = ‖)
γτ (p)‖1 if (r(p) = v) ∧ (ω(p) = ‖)

γτ (p) ++0 if (l(p) = v) ∧ (ω(p) = ++)
γτ (p) ++1 if (r(p) = v) ∧ (ω(p) = ++)

11

In order to show that the two representations are truly equivalent, we must demonstrate that they
allow the same subprocesses to communicate. The following lemma demonstrates just this property:

Lemma 5.4. For any given π-calculus process P , let G � P � = (VG , EG) be the graph generated by the
procedure outlined above, and let γ : VG → Addr(P) assign each node to its corresponding address.
Then for any pair of nodes u, v ∈ VG, we have

(u, v) ∈ EG if and only if compP (γ(u), γ(v))

Proof. Suppose that (u, v) ∈ EG , then ∃n ∈ VG such that ω(n) = ‖ and, without loss of generality,
u ∈ δτ (l(n)) ∧ v ∈ δτ (r(n)) (for τ the triple generated for P by T) by the definition of Eτ . Since
n is a composition node (ω(n) = ‖), then γ(l(n)) = ϑ0‖0 and γ(r(n)) = ϑ0‖1 for some ϑ0 by the
definition of @ϑ and γ, and subsequently any descendants of these children will share this prefix
in their address. Thus γ(u) = ϑ0‖0ϑ and γ(v) = ϑ0‖1ϑ

′ for some ϑ, ϑ′. Thus, by the definition of
compP , we have compP (γ(u), γ(v)).

Conversely, suppose that compP (γ(u), γ(v)), we then have that γ(u) = ϑ0‖0ϑ and γ(v) = ϑ0‖1ϑ
′

for some ϑ, ϑ′, ϑ0 by the definition of compP . Since γ(u) and γ(v) share a prefix (ϑ0), v and u
must ergo share an ancestor n such that γ(n) = ϑ0. We know from γ(u) and γ(v) that n must
be a composition node (i.e. ω(n) = ‖) because the next components of the addresses are ‖0 and
‖1. Thus u ∈ δτ (l(n)), v ∈ δτ (r(n)) (for τ as above), and ω(n) = ‖, thus (u, v) ∈ EG by line the
definition of E .

5.3.3 Complexity of Graph Generation

We again let N denote the number of symbols in our π-calculus process P . Letting τ = T � P � v =
(T, σ, ω) be the triple generated by the procedure outlined in section 5.1, we proceed to analyze the
complexity of the edge generation function Eτ . Note that in the worst case, every node encountered
will be a composition node requiring edges to be added. At each recursive step, each call to δτ

requires linear time in N as noted above, and at most N 2 edges are added between the two subtrees
(because each subtree can contain at most N nodes). Since no edge is ever added twice (because
each recursive call adds edges within a subtree within which no edges previously existed due to
the bipartite condition above), the union operations take only constant time. Finally, since there
can be at most N recursive calls (because there can be at most N composition operators), the
computation of the edge set can take at most O(N 3) time.

6 An Incremental Approach

Thanks to lemma 5.4, we could trivially modify the flow logic presented in [5] to use the presence
of an edge in our graph rather than the addressing scheme in order to achieve the same analysis.
However, the primary advantage of this representation is that it can be built incrementally in order
to obtain more accurate results. The key to doing so lies in the observation that not all of the
prefixes of a π-calculus process P can initially communicate, even if they lie on opposite sides of a
composition operator. For example, consider the process P ≡ a(x ∈ N).(P1|P2) | b̄y.(P3|P4). The
process representation we have thus far would conservatively compute that the subprocesses P1,

12

(R,K) |= 0 iff true

(R,K) |= τ.P iff (R,K) |= P

(R,K) |= x̄y.P iff (R,K) |= P ∧
∀u ∈ R(x) : R(y) ⊆ K(u)

(R,K) |= x(y ∈ Y).P iff (R,K) |= P ∧
∀u ∈ R(x) :
(K(u) ∩R(Y)) 6= ∅ ⇒ (K(u) ∩R(Y)) ⊆ R(y)

(R,K) |= P1 + P2 iff (R,K) |= P1 ∧ (R,K) |= P2

(R,K) |= P1 | P2 iff (R,K) |= P1 ∧ (R,K) |= P2

(R,K) |= (νx)P iff (R,K) |= P

Table 4: Flow Logic for the π-calculus (modified from [9])

P2, P3, and P4 are in fact compatible with one another. However, this is clearly not the case, as
it is impossible for these subprocesses to communicate until the leading prefixes a(x ∈ N) and b̄y
communicate. The reason for the innaccuracy is that our current representation implicitly assumes
that it is possible for these prefixes to communicate. This can be rectified by paring down the
edge set that we have generated in our graph model to reflect the presence of leading prefixes at a
program point, and proceeding to do an initial analysis on this pruned model. The results of this
analysis will allow us to determine whether it is possible for these prefixes to indeed communicate
during execution, and if so to reintroduce the appropriate edges reflecting the new state in order
to refine our analysis in the next step.

6.1 Horn Clauses and Flow Insensitive Analysis

Our approach uses the flow insensitive analysis discussed in section 3 as a building block for writing
a more accurate analysis. In particular, we’ll use techniques introduced by Nielson and Seidl in
[9] using systems of HCS’s (Horn Clauses with Sharing) in order to maximize the efficiency of our
analysis. In the latter, it was shown that a flow insensitive analysis equivalent to those in [4] and
[14] could be computed in time cubic in the size of the process. We present in table 4 a slight
modification of the flow logic presented in [9] that computes an equivalent analysis for our version
of the calculus (in which match and replication are omitted, but filtered inputs are included).

Let βP represent the set of names of the process P that are bound by input, i.e. they appear as
the datum in an input prefix in P , and let χP represent all of the other names in P . The result of
the analysis is a pair (R,K), where R : βP → ℘(χP) records information about the set of names to
which a given name can be bound (via an input prefix), and K : χP → ℘(χP) records information
about the set of names that can be transmitted over a given name (via an output prefix). We

13

H � 0 � = 1

H � xy.P � = H � P � ∧
∀u : ∀v : (R(u, x) ∧R(v, y))⇒ K(v, u)

H � x(y ∈ Y).P � = H � P � ∧
∀u : ∀v : ∀w :
(R(u, x) ∧ Y (v) ∧K(w, u) ∧R(w, v))⇒ R(w, y)

H � τ.P � = H � P �

H � (νx)P � = H � P �

H � P1 + P2 � = H � P1 � ∧H � P2 �

H � P1 | P2 � = H � P1 � ∧H � P2 �

Table 5: Horn Clauses with Sharing for the π-calculus (modified from [9])

generalize these functions to sets in the obvious way, and (as in [9, 4]) we adopt the convention
that ∀x ∈ χP .R(x) = x1.

The flow logic imposes a set of constraints on these functions which depend on the prefixes en-
countered while decomposing P . For instance, upon encountering an output prefix x̄y, it is asked
that for any name u ∈ R(x) (i.e. any name that x could assume), that R(y) be contained in K(u)
(i.e. that the names to which y could be bound are contained in the set of names that could be
transmitted over each u). This exactly captures the behaviour of the output prefix. The more
complicated case of the filtered input x(y ∈ Y) generates the following constraint:

∀u ∈ R(x) : (K(u) ∩R(Y)) 6= ∅ ⇒ (K(u) ∩R(Y)) ⊆ R(y)

This says that for any name u to which x could be bound, a non-empty intersection of K(u) and
R(Y) (indicating the possibility that whatever is received on x could be a member of Y) implies
that that very intersection should be contained in R(y) (the set of possible bindings for the name
y).

We would like to generate HCS’s corresponding to our flow logic. Following [9], we express set
inclusions of the form X ⊆ Y using set memberships of the form ∀u : u ∈ X ⇒ u ∈ Y , set
memberships of the form u ∈ R(v) using a binary predicate of the formR(u, v), and set memberships
of the form u ∈ Y using a binary predicate of the form Y (u). Using these conventions, it can easily
be checked that our flow logic formulation is logically equivalent to the HCS formulation shown in
table 5 (with the caveat that we conjuct clauses of the form R(x, x) for every x ∈ χP in order to
enforce the added convention on the function R).

1Intuitively, this captures the notion that a name not bound by input cannot be anything other than itself

14

Using the techniques presented in [9], these clauses can be solved in polynomial time in order to
arrive at the final solution (R,K). This efficiency is due to the result from [9] stating that an HCS
system can be solved in polynomial time indexed by the maximum nesting depth of quantification
in any clause, which in our case is 3. We now proceed to use this solver in order to build a more
accurate solution using an incremental algorithm.

6.2 Accuracy in Steps

We observe that the Horn clause system H above only generates new clauses when an input or
output prefix is encountered (excluding the auxiliary clauses generated for names not bound by
input). We can thus define the solver for the system as a function HCS which takes a set of prefixes
to a pair of functions of the form (R,K) by taking the following steps:

1: Input: a set of prefixes S
2: for each prefix π ∈ S generate the clause H(π)
3: for each name x ∈ π not bound by input generate the clause R(x, x)
4: solve the conjunction of the clauses to obtain a solution (R,K)

Next, we modify our graph generation function from section 5.3.1 to only generate the edges required
in a given state. In order to do so, we must know an intermediate solution of our analysis so that
we can determine which prefixes may have communicated.

Given a π-calculus process P , let τ = T � P � v = (T, σ, ω) as defined in section 5.1. In order to
keep track of whether prefixes have communicated, we update a context function C : (VT ×ΠP)→
{tt, ff} (recalling that ΠP is the set of non-silent prefixes of process P). Given a node v and a
prefix, C returns tt if it has been determined that the given prefix is in σ(v) and could communicate
during execution (according to the intermediate solution), and ff otherwise. In other words, we
require the function C to preserve the following property:

Property 1. Given a triple τ = (T, σ, ω) generated from a process P , and an intermediate flow-
insensitive solution (R,K) generated by HCS on some set of prefixes S ⊆ ΠP , then for any prefix
π in S and node v ∈ VT , C(v, π) = tt if and only if:

1. π ∈ σ(v), and

2. ∀n ∈ N : (K(n) 6= ∅)⇒ (n ∈ R(channel(π)))

The property says that prefix π in node v has communicated if some name n over which a value
was transmitted (given by K(n)) is included in the set of things that its channel could be (given by
the R function). Note that if π is an input prefix, then this would imply that it could potentially
receive the value over n. If π is an output prefix, then R(channel(π)) is trivially channel(π), and
the property simply states that this could be a prefix that sent the value.

In order to restrict the edges that are added, we first introduce a binary predicate on the function
C . Given C, and node v ∈ VT (as given by τ), we define the predicate ψτ (v, C) as follows:

ψτ (v, C) = ((σ(v) = ∅) ∨ (∀π ∈ σ(v) : C(v, π) = tt))

15

This predicate is true either when the set of leading prefixes at node v (i.e. σ(v)) is empty, or when
the C function tells us that it has been determined that they can all communicate. This captures
our notion that we only want subprocesses without interfering prefixes to be able to communicate,
and will thus be used extensively in the following.

Using ψτ , we can define a more restrictive version of the δτ function defined in section 5.3. There,
we defined δτ (v) to be the set of descendants of the node v in τ , we will now define a very similar
function δ′τ (v, C) which will return only those descendents that are not behind leading prefixes that
cannot communicate according to the function C. The funciton is defined as follows:

δ′τ (v, C) =

{v}
⋃

(δ′τ (l(v), C) ∪ if v 6=⊥V ∧
δ′τ (r(v), C)) ψτ (v, C)

∅ otherwise

Observe that this algorithm is identical to the δτ function except for the additional condition ψτ in
the recursive step. This requires either that the set of prefixes at the current node (i.e., σ(v)) be
empty in which case nothing is inhibiting the sub-processes from communicating normally, or that
it has been determined that every prefix in the set could possibly communicate (according to the
supplied C function) at some point during execution. It is clear that this function returns a subset
of the nodes returned by the original function δτ .

We similarily define a more restrictive edge generation function E ′τ as follows:

E ′τ (v, C) =

(δ′τ (l(v), C), δ
′
τ (r(v), C))

⋃

if (v 6=⊥V) ∧ (ω(v) = ‖) ∧
(E ′τ (l(v), C) ∪ E

′
τ (r(v), C)) ψτ (v, C)

(E ′τ (l(v), C) ∪ E
′
τ (r(v), C)) if (v 6=⊥V) ∧ (ω(v) = ++) ∧

ψτ (v, C)

∅ otherwise

Note that, just like the modification we made to the δτ function, E ′τ is identical to Eτ except for
the additional restriction on the two recursive possibilities (and the fact that δ ′τ is used to compute
descendents rather than δτ). In fact, we notice that if C were to return true on every pair of inputs,
then the predicate ψτ would trivially evaluate to true and the function E ′τ would be identical to the
function Eτ . It is therefore similarly obvious that this function generates no more edges than the
original function Eτ . We state this result without proof as a lemma:

Lemma 6.1. For any v, τ , and C we have

E ′τ (v, C) ⊆ E
′
τ (v, λxy.tt) = Eτ (v)

Observe that the polynomial complexity of the function has at worst become O(N 4) as the added
condition can be checked in linear time (implying that the δ ′τ function is now quadratic). Note
also that a similar compositionality property to that proved in proposition 5.3 holds here because
combining two given π-calculus processes using a composition or choice operator does not create
leading prefixes in the combined process, thus the added condition of ψτ will trivially succeed at
the top level of the overall process.

16

We can now use this algorithm to define our full incremental CFA for the π-calculus. Given a node
v, define nG(v) = {u ∈ VG|(u, v) ∈ EG} ∪ {v} as the neighborhood of v including v itself. We’ll also
extend the domain of the function σ to sets in the obvious way.

Algorithm 1 Incremental Analysis on π-calculus

1: CFA(P) ≡
2: Initialize: τ = (T, σ, ω) = T � P � v

3: Initialize: C to return ff on all input
4: Initialize: R and K functions to return ∅ on all input
5: repeat
6: Compute G = (VT , E ′

τ (v, C))
7: for all nodes u ∈ EG such that nG(u) 6= ∅ do
8: Compute S = σ(nG(u))
9: Compute (R′,K ′) = HCS(S)

10: Set (R,K)← (R t R′,K tK ′)
11: for all names n such that K ′(n) 6= ∅ do
12: for all π ∈ σ(u) such that n ∈ R′(channel(π)) do
13: C(u, π)← tt

14: end for
15: end for
16: end for
17: until G does not change
18: return (R,K)

Our full algorithm is presented as algorithm 1. The procedure is initialized by generating the triple
τ = (T, σ, ω) for the given process (line 4), and setting the C and initial solution to bottom. Then
the following steps are iterated:

1. Line 6: A graphG is generated based on the communication assumptions given by the function
C (initially, it is assumed that no prefixes in the process can communicate).

2. Lines 7-9: For every node in G, an intermediate solution (R′,K ′) is computed by running the
flow-insensitive solver HCS on the set of prefixes in the node’s neighborhood

3. Line 10: The overall solution (R,K) is updated with the results in the intermediate solution

4. Lines 11-15: The communication function C is updated with the results of the intermediate
solution. For any name that can potentially transmit a value (line 11), all leading prefixes at
the current subprocess that could potentially have n as a channel during execution (line 12),
are marked as potentially able to communicate (line 13).

These steps are iterated until the graph G ceases to change. It is clear that the iterated function
is monotone, as no iteration ever sets any pair in the domain of C to ff, thus no edges are ever
removed from G between iterations. Elementary fixed point theory tells us that this function will
terminate. Since G can have at most O(N 2) edges (with N the number of symbols in P), it can
only be iterated at most this many times. Since the edge generation function E ′τ (time O(N 4)), the
HCS solver (time O(N 4)), and the computation of the suprema of R and K (achievable through
N set merges for a total time of O(N 3)) are all polynomial time functions iterated O(N 2) times
in the inner loop, and another O(N 2) in the outer loop, we can safely conclude that the overall

17

analysis also runs in O(N 8) time, polynomial in the number of symbols in P . However, this is a
very coarse performance analysis, and we discuss the possibility of improving it in section 7.

The correctness of the algorithm in this setting means that no potential communications in P
are left out of the solution (R,K). This follows from from the correctness of HCS (whose solution
includes all of the potential communications between the prefixes in its input set), if we can establish
that the edges computed by the function E ′τ include all the edges that could communicate. But by
lemma 6.1, this is upper bounded by the edges computed by Eτ , any restrictions made by E ′τ are
contingent on the predicate ψτ whose correctness only depends on the fact that the communication
function C adheres to property 1. Thus we can prove the correctness of our algorithm by showing
that this property is invariant in algorithm 1:

Theorem 6.2. Property 1 on the function C is invariant in CFA(P) for any process P .

Proof. Initially (i.e., before the loop of lines 5-17), C(v, π) = ff for all v and π and K(n) = ∅ for
all names, thus the property trivially holds. Inside the loop, C is only updated at line 13. Here
the loop conditions of lines 11 imposes the condition that the name n has K ′(n) 6= ∅ giving us
the antecedent of the second condition of property 1. The loop condition on line 12 requires that
the updated prefix π be contained in σ(u) (where u is the node updated) satisfying condition 1 of
property 1, and that n be contained in R′(channel(π)) yielding condition 2. Hence the update of
C at line 13 does not change the invariant that property 1 is satisfied yielding the correctness of
the algorithm.

Furthermore, we make the observation that the set S of prefixes computed in line 8 is a subset of
the set of prefixes of the entire process, i.e. S ⊆ ΠP in every iteration. By the monotonicity of
the flow-insensitive version of the analysis we have that HCS(S) ⊆ HCS(ΠP) thereby immediately
establishing that our solution is at least as accurate as the flow-insensitive version. Furthermore
lemma 6.1, which establishes an upper bound on the edges in our graph under the conservative
assumption that all prefixes can communicate, and lemma 5.4 yield that our analysis is at least
as accurate as a similar result computed on the (non-incremental) addressing model of [5]. The
results of an analysis on such a model can actually be computed by using the edge set computed
by Eτ rather than E ′τ in our algorithm. Let CFAE ′ denote the incremental algorithm and CFAE
denote the more conservative result, and let P ≡ āb.(x̄y|x(z)). We can easily check that CFAE(P)
computes that K(x) = {y} and R(z) = {y} and the empty set for all other names, whereas CFAE ′(P)
computes that K and R are empty for all names (because the leading prefix āb has no opportunity
to communicate). These observations together imply our main results:

Theorem 6.3. Let v be the standard inclusion ordering taken pointwise on the lattice of all possible
functions from processes P to solutions (R,K) of our analysis, then we have

CFAE ′ � CFAE

Proof. As noted, the result follows from lemmas 6.1 and 5.4 yielding that the incremental result
is at least as accurate. The domain of the function is a lattice because we are using an orderable
graph representation of the processes. The effect of the two algorithms on the above process P
demonstrates that CFAE ′ is actually strictly more accurate.

18

7 Discussion and Future Work

The analysis we have presented improves the accuracy of previous results by considering leading
prefixes of sub-processes in a more sophisticated way. This granularity of analysis can be beneficial
when it is necessary to establish temporal properties of processes to verify a desired security policy.
Specifically in the π-calculus, our analysis establishes that certain preliminary communications
take place before other computations are permitted. Such information can be used to avoid falsely
identifying handshaking operations like password checks and key exchanges as information leakage.
This level of accuracy is the primary advantage of our analysis over previous approaches. However,
there is another property of our analysis that yields a good possibility that it could eventually
be used in practice: and that is its inherent compositionality. We discuss this property of our
representation here, and also touch on the possibility of adding replication to our language.

7.1 Compositionality

Suppose that we have a π-calculus process S that acts as a server, and a family of client processes
{Ci}. In a realistic situation, an information flow analysis on any of these individual processes is
of limited use. It is much more useful if a control flow analysis is done on the composition of the
server with any client process that may request to interact with it at a given time, i.e. the security
policy should in general be checked on the combined process S | C for any client C that wishes to
communicate with S. A static analysis on this process can be used to determine whether it is safe
(with respect to a particular security policy) for the server to interact with the client. Our approach
allows us to pre-compute a process representation (i.e. the communication tree and graph) for each
process and to compose them if an analysis is ever required. Given the pre-computed tree repre-
sentations of the client and server processes, the compositionality properties of our representation
(corollary 5.2 and proposition 5.3) allows us to efficiently compute the corresponding representation
for their interaction. However, it is not clear if a similarly desireable property holds of the actual
results of the analysis of the subprocesses, as each prefix could potentially be able to communicate
with all of the prefixes of the other subprocess, perhaps requiring the recomputation of the data.
A compositionality result would mean that our analysis would be fully compositional, drastically
increasing its practical feasability. We conjecture that full compositionality can be achieved, but
leave its proof for future work.

7.2 A Note on Replication

Thus far, we have not added the standard replication construct in our treatment of the π-calculus.
However, a näıve treatment of the issue is actually quite trivial to include. A simple conservative
approach to replication is to assume that a replicated subprocess can communicate with every
subprocess, including itself and its descendants, but excluding those subprocesses that lie on the
opposite side of a choice operator from itself. The same rule would also need to be applied to the
descendents of the node corresponding to the subprocess. This latter fact can plainly be seen by
example thanks to processes such as P | !(x̄y.(Q | R)) where it can be seen that such a conservative
estimate must account for the fact that Q and R may communicate with P , as well as with the prefix
x̄y itself. We have left this conservative assumption out of our analysis at this time because it would
have complicated the presentation without providing any new insight. A more sophisticated method
for dealing with the replication operator involving techniques such as the careful consideration of

19

leading prefixes that we have introduced here is certainly plausible, but left for future work.

7.3 Efficiency

Finally, we note that the running time of our analysis as given, while polynomial may be quite
high: the most elementary analysis of the running time of the algorithm yields an O(N 8) worst-
case performance. It is expected that an improvement in accuracy over previous results may lead to
a decrease in efficiency, but we also conjecture that careful analysis of the our algorithm can signifi-
cantly reduce this number in the average case. The rationale is that our worst-case assumptions are
based on the presence of O(N) subprocesses and O(N) prefixes per subprocess at the same time,
quantities that are inversely proportional in the average case. Furthermore, we observe that our
algorithm computes a lot of redundant information: for instance, every intermediate result from
the HCS algorithm comes from considering the set of prefixes in the neighborhood of a node, and
this is repreated for each node. This means that the interaction between the nodes at the endpoints
of each edge are actually re-computed (once for each endpoint). It may be possible to pre-compute
edge information in order to further reduce the worst-case complexity of the analysis.

8 Conclusions

We have developed a new control flow analysis for the π-calculus that improves the accuracy of
previous results by considering the behavior of leading prefixes over possible executions of processes.
We have also shown that our approach is at least partially compositional, in the sense that our
representational structure can efficiently be reused when analysis of processes is needed in different
contexts.

While our analysis as a whole has a high polynomial running time, we have indicated ways in
which the analysis could be refined in order to reduce this. Furthermore, we have conjectured a
compositionality result on the results of our analysis that would improve its feasibility in practice
if it were proven to be true.

We have not considered the behaviour of the replication construct in our analysis, but have discussed
how it could be handled conservatively. A more sophisticated approach to replication, as well as
further improvements to the accuracy of the analysis have been left for future work.

References

[1] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for secrecy and non-
interference in networks of processes. Lecture Notes in Computer Science, 2127, 2001.

[2] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science
and Computation Structures: First International Conference, FOSSACS ’98. Springer-Verlag,
Berlin Germany, 1998.

[3] C.Bodei, P.Degano, F.Nielson, and H. Riis Nielson. Static analysis for the π-calculus with
application to security. INFCTRL: Information and Computation (formerly Information and
Control, 168, 2001.

20

[4] C.Bodei, P.Degano, F.Nielson, and H.Riis Nielson. Control flow analysis for the π-calculus.
In Proceedings of CONCUR ’98, volume 1466 of Lecture Notes In Computer Science, pages
84–98. Springer-Verlag, 1998.

[5] C.Bodei, P.Degano, C. Priami, and N. Zannone. An enhanced CFA for security policies. In
Proceedings of the Workshop on Issues on the Theory of Security (WITS ’03), (co-located with
ETAPS ’03), pages 131–145, Warszawa, 2003.

[6] M.Abadi and A.D.Gordon. A calculus for cryptographic protocols - the spi-calculus. Informa-
tion and Computation, 148:1–70, January 1999.

[7] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I and
II. Information and Computation, 100(1):1–77, 1992.

[8] F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag,
1999.

[9] F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. ESOP ’01, number 2028
in Lecture Notes in Computer Science, pages 252–268. Springer-Verlag, 2001.

[10] Flemming Nielson, Rene Rydhof Hansen, and Hanne Riis Nielson. Abstract interpretation of
mobile ambients. Science of Computer Programming, 47:145–175, 2003.

[11] Flemming Nielson, Hanne Riis Nielson, Rene Rydhof Hansen, and Jacob Grydholt Jensen.
Validating firewalls in mobile ambients. In International Conference on Concurrency Theory,
pages 463–477, 1999.

[12] P.Malacaria and C.Hankin. A new approach to control flow analysis. In Computational Com-
plexity, pages 95–108, 1998.

[13] P.Malacaria and C.Hankin. Non-deterministic games and program analysis: An application to
security. In Proceedings of the 14th Annual IEEE Symposium on Logic In Computer Science,
pages 443–452. IEEE Computer Society Press, 1999.

[14] Sam B. Sanjabi and Clark Verbrugge. Points-to inspired static analysis for the π-calculus.
Sable Technical Report 2003-02, McGill University, Department Of Computer Science, Aug
2003. Available from http://www.sable.mcgill.ca.

21

