
McGill University

School of Computer Science

Sable Research Group

Oxford University

Computing Laboratory

Programming Tools Group

Measuring the Dynamic Behaviour of AspectJ Programs
(Revised - replaces Sable Technical Report 2003-8)

Sable Technical Report No. 2004-2

Bruno Dufour, Christopher Goard, Laurie Hendren and Clark Verbrugge
McGill University

{bdufou1,cgoard,hendren,clump}@cs.mcgill.ca

Oege de Moor and Ganesh Sittampalam
Oxford University

{oege,ganesh}@comlab.ox.ac.uk

March 22, 2004

w w w . s a b l e . m c g i l l . c a



Contents

1 Introduction 3

2 A brief introduction to AspectJ 4

2.1 Join points, pointcut and advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Intertype declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Measurements and Dynamic Metrics 6

3.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Java-based dynamic metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Dead Code and Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 AspectJ-specific dynamic metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Tag Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.2 Aspect Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.3 AspectJ Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.4 Advice Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.5 Hot Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Tools for collecting Dynamic Metrics 10

4.1 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Static Tagging: annotating class files using a modified AspectJ compiler . . . . . . . . . . . . . . . . 12

4.2.1 Tagging during weaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.2 Pretagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.3 Generating attributed class files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Dynamic metric analysis with tag propagation using *J . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Modifications to the *J analyzer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.2 Collecting the AspectJ-specific metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Benchmarks 15

5.1 Overall Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Benchmarks with low runtime overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.1 DCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.2 ProdLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.3 Tetris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2.4 Bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Benchmarks with high overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 NullCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.2 Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.3 LoD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4 Benchmark for performance improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.1 *J Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Related Work 28

1



7 Conclusions 30

List of Figures

1 Example AspectJ program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of Metric Collection Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Tagged class file for example AspectJ program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Dynamic Propagation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Benchmark Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Nullcheck metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Figure Benchmark Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Law of Demeter Benchmark Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 *J Pool Benchmark Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



Abstract

This paper proposes and implements a rigorous method for studying the dynamic behaviour of AspectJ programs.
As part of this methodology several new metrics specific to AspectJ programs are proposed and tools for collecting
the relevant metrics are presented. The major tools consist of: (1) a modified version of the AspectJ compiler that tags
bytecode instructions with an indication of the cause of their generation, such as a particular feature of AspectJ; and
(2) a modified version of the *J dynamic metrics collection tool which is composed of a JVMPI-based trace generator
and an analyzer which propagates tags and computes the proposed metrics. This dynamic propagation is essential,
and thus this paper contributes not only new metrics, but also non-trivial ways of computing them.

We furthermore present a set of benchmarks that exercise a wide range of AspectJ’s features, and the metrics that
we measured on these benchmarks. The results provide guidance to AspectJ users on how to avoid efficiency pitfalls,
to AspectJ implementors on promising areas for future optimization, and to tool builders on ways to understand
runtime behaviour of AspectJ.

1 Introduction

Aspect-oriented programming [17] is a new technique for modularizing a program. An aspect is a feature that “cross-
cuts” the traditional abstraction boundaries of classes and methods; the most common examples of aspects are ones
used for tracing or logging the execution of an existing program, but aspect-oriented design techniques have also been
used successfully for more closely coupled functionality improvements, such as connection pooling.

The most popular implementation of these ideas is AspectJ [16], an extension of Java. The textbook by Laddad [19]
provides a nice introduction, both to the language and its potential applications. AspectJ started out as a pioneering
research effort, but has quickly reached a level of maturity where it is on the verge of being used for production
programming, and we therefore believe that the time is right for the research community to pay more attention to the
performance of AspectJ programs.

The conceptual model behind AspectJ execution is one in which aspects dynamically “observe” the execution of a
base Java program. At certain points during this execution, known as join points and specified (in aspects) by pointcuts,
an aspect inserts or substitutes its own code, known as advice. Of course, this conceptual model would be extremely
expensive to implement literally; instead, AspectJ is implemented as a compiler which statically weaves advice code
into the base code. In many cases, whether or not advice would apply at runtime (in the conceptual model) is statically
determinable, and so this can be done without introducing runtime overhead. However, it is not always possible to
decide this at compile time, and so a runtime test has to be inserted, particularly when the more complex features of
pointcuts are being used. However, it is a stated goal of the AspectJ compiler to minimize these overheads; indeed,
the AspectJ FAQ [35] states:

“We aim for the performance of our implementation of AspectJ to be on par with the same functionality
hand-coded in Java. Anything significantly less should be considered a bug.”

It appears to be generally believed in the AspectJ community that the compiler does not introduce overheads, and
indeed we have confirmed that in many situations it is the case that equivalent Java and AspectJ programs have
essentially the same performance. However, we have also identified a number of examples in which the AspectJ
compiler does impose a significant overhead, contradicting this belief.

The FAQ goes on to say:

“There is currently no benchmark suite for AOP languages in general or for AspectJ in particular. It is
probably too early to develop such a suite because AspectJ needs more maturation of the language and the
coding styles first. Coding styles really drive the development of the benchmark suites since they suggest
what is important to measure.”

We contend that the development of a benchmark set which shows good as well as bad uses of AspectJ language
features will help to inform the development both of the AspectJ language and compiler, and of coding styles; and
that it is better to view the situation as a two-way process where benchmarking both drives and is driven by such
development. The overheads that we have found using our benchmark set confirm this.

In detail, the contributions of this paper are as follows:
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• We provide a new set of dynamic metrics and tools for measuring the performance of AspectJ programs and
attributing elements of this performance between the original Java code, the introduced aspect code and the
compilation overhead of individual AspectJ language features.

• We have collected the first benchmark set of AspectJ programs, from a variety of public sources. Despite the
growing popularity of AspectJ, it has proved rather difficult to find publicly available programs. We hope that it
will form the basis of a generally accepted suite of benchmarks and we welcome further contributions from the
AspectJ community.

• We explain the “conventional wisdom” that the AspectJ compiler introduces no runtime overhead, by showing
a series of benchmarks in which this overhead is indeed negligible.

• We show that in other benchmarks, there is a significant overhead. We identify the language features and patterns
of usage that lead to this overhead.

• Using the Dava decompiler [25] from the Soot toolkit [32], we investigate the output of the AspectJ compiler
where our tools pinpointed a significant performance impact, and demonstrate various ways in which improve-
ments could be made. This measure-identify-decompile-fix cycle is very economic in the AspectJ situation,
where a new language paradigm calls for novel analyses and optimizations: it would be immensely labour-
intensive to obtain the same results through direct experiments with different versions of the compiler.

These contributions will be of benefit to three groups of people:

• AspectJ users: Our results provide guidance on which AspectJ idioms are cheap to use and which impose a
performance penalty. For example, we found that directions for advice placement (before/after/around) can
have a significant impact on performance, and our experiments explain why.

• AspectJ compiler implementors: We identify areas in which compilers could be improved, for example by using
more sophisticated static analyses to eliminate runtime checks for pointcut matching. Some of these suggestions
are very easy to implement, and indeed we report one such optimization which we applied in a modified version
of the compiler.

• AspectJ tool developers: The power of AspectJ makes it very easy to write a seemingly innocuous piece of ad-
vice that turns out to have dramatic consequences for performance. Our results point the way towards interactive
tools that warn the programmer of such situations, and help to remedy the problem when it arises.

The remainder of this paper is structured as follows. In Section 2 we provide a brief overview of the AspectJ
language, and in Section 3 we provide an overview of the statistics we collect for our set of benchmarks.

In Section 4 we give the full details of our toolset, which consists of a modified version of the AspectJ compiler [3]
that “tags” bytecode instructions according to their provenance (the base Java program, aspect code, or compiler
overhead from particular language features), along with a modified version of the *J metric tool [8] which collects
statistics for each of these tags. The tagging is performed both statically and dynamically to allow some tags to be
context-dependent; this is vital since in some cases code that is compiler overhead may make calls that should also be
attributed to this overhead, but in other cases it may call aspect code that should also be attributed correctly. Developing
this tag “propagation” scheme has been a major part of our work.

The benchmarks themselves are presented in Section 5. We split them into two categories: those that do not
demonstrate significant compiler overhead and those that do. In the case of the latter category, we investigate the
reasons for this overhead in detail and suggest possible improvements.

While we believe this is the first systematic study of the dynamic behaviour of AspectJ, there is naturally a wealth
of related work on collecting dynamic metrics. We discuss these, and also existing efforts to improve the runtime
behaviour of AspectJ programs, in Section 6. Finally we discuss our conclusions in Section 7.

2 A brief introduction to AspectJ

AspectJ is an extension of Java; it provides novel features for modularization, in particular when adding new func-
tionality to an existing ‘base program’. The novel features can be classified into two groups. The first group allows
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one to influence the dynamic behaviour of the base program by injecting new code when certain events occur in its
execution. We discuss these dynamic features in Section 2.1. The second group of features allows one to statically
add new members to classes. These features are reviewed in section 2.2. This introductory section only covers the
very basics, and readers who are new to AspectJ may wish to consult one of the textbooks [10, 18, 19] for a more
comprehensive introduction.

2.1 Join points, pointcut and advice

When adding tracing functionality to an existing program, it is often undesirable to modify the program itself: the
implementation of tracing is scattered over the design, and hence it obscures the existing code, and it is difficult to
maintain itself. It would be preferable if we could describe the execution events that we wish to trace, and the action
to take upon each such event. AspectJ allows us to do this by specifying such execution events. The events are called
join points, the pattern that specifies a set of join points is named a pointcut and the additional code that gets run is
called advice. The join points that can be be selected via pointcuts can be thought of as nodes in the dynamic call tree
of the program. Besides nodes for method calls, this call tree also includes nodes for the execution of a method body,
exception handlers, and so on.

public class Example {
public static void main(String[] args) {

Example e = new Example();
e.bar();
e.foo();

}
public void foo() {

System.out.println(“foo”);
bar();

}
public void bar() {

System.out.println(“bar”);
}

}

aspect ExampleAspect {
before(): call(void Example.bar()) &&

cflow(call(void Example.foo())) {
System.out.println(“foo->bar”);

}
}

Figure 1: Example AspectJ program

To illustrate these abstract definitions, let us examine a tiny example, shown in Figure 1. It consists of a base
program (the class Example) and an aspect (named ExampleAspect). The base program consists of two methods called
foo and bar. The purpose of the aspect is to signal any calls that are made to bar within the dynamic scope of foo. In
terms of the call tree, this means that we are interested in bar nodes that occur below a call to foo. In the aspect, this
is expressed as follows. It says that before entering any join point selected by the pointcut

call(void Example.bar()) && cflow(call(void Example.foo()))

the message “foo -> bar” should be displayed on the standard output. The pointcut itself consists of two parts: it
says we want a call to bar, and furthermore we must be dynamically within the control flow (cflow) of foo.

While the matching of join points to pointcuts is conceptually a dynamic process that happens entirely at runtime,
the AspectJ compiler shifts a lot of the work to compile-time. In the above example, it will identify the calls to bar in
the program text, effectively matching the first part of the pointcut. The second part of the pointcut (involving cflow)
is however matched dynamically, and to this end some extra code is inserted, which checks whether we are in the
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dynamic scope of foo. To make that check, it is in turn necessary to do a little administration at each call to foo. As we
shall discuss in more detail later, the AspectJ compiler mimics the call stack by recording each entry to foo, and each
exit.

There is some terminology to ease discussion of these issues. The place in a program text that gives rise to a
particular join point at runtime is called a shadow. As we have just explained, the compiler matches pointcuts against
such shadows, possibly leaving a dynamic residue for the tests that could not be resolved completely. The process of
producing combined code for the base program and its aspects is called weaving.

Our own understanding of join points and advice was mostly shaped by [33], which gives a definitional interpreter
for join points and advice. Our discussion of the weaving process has been greatly influenced by [23], which explains
it in terms of partial evaluation of the interpreter in [33]. The definitive account of the way the AspectJ compiler works
can be found in [14].

We shall introduce further features relating to join points and advice as we discuss specific benchmarks later on in
this paper. In particular, we shall examine different placements of advice (after and around) in addition to before.

Finally, we should remark that the example in this section does not require the use of cflow. AspectJ has another
kind of pointcut, namely withincode that would be preferable to use for such a simple application, because it is more
efficient. One aim of the present paper is to elucidate such issues.

2.2 Intertype declarations

While advice is a powerful mechanism to modularize designs where the traditional abstractions of Java fail, it is not
always enough on its own. Sometimes it is necessary to make a static change to an existing class, for example to add
a new method. AspectJ allows such intertype declarations. For example, the aspect in Figure 1 could enhance the
Example class with a new method called goo by including the line

public void Example.goo() { System.out.println(“goo”); foo(); }

Client code of Example (introduced by the aspect) can now refer to goo in the same way as it references foo or bar.

Similar ideas can be found in other extensions to Java, in particular MultiJava [5] and RMJ [26]. These designs are
in fact more disciplined than AspectJ, and they allow for modular type checking, which AspectJ does not; furthermore
they include multimethods, a feature that AspectJ lacks at present.

3 Measurements and Dynamic Metrics

In order to study the dynamic behaviour of AspectJ, it was necessary to develop a methodology to collect measure-
ments and dynamic metrics for AspectJ programs. Our approach uses the following three kinds of measurements.

3.1 Execution Time

The most coarse-grained measurement is the execution time of a program, which we use as a first-order measurement
of the overheads incurred by using aspects. In particular, we compare the execution time of an AspectJ version of a
program and an equivalent Java program. All execution times in this paper were collected on a Athlon XP 1.8 GHz
machine with 1 Gbyte of memory running Debian Linux and using Sun’s Java™ 2 Runtime Environment, Standard
Edition (build 1.4.2 02-b03).

3.2 Java-based dynamic metrics

As well as execution time, one would also like more specific measurements of the dynamic behaviour of both the Java
and AspectJ versions of benchmarks. Since both Java and AspectJ programs are compiled to Java bytecode, it was
possible, using *J [8], an existing tool, to measure relevant dynamic metrics. The *J tool collects a wide variety of
metrics, and we have found several metrics to be useful in our evaluation of AspectJ benchmarks.
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For example, the base metrics can be used to measure: (1) the total number of bytecode instructions executed, a
VM-neutral measure of execution time; (2) the total number of distinct bytecodes loaded and executed, which gives a
measurement of total and live program size; and (3) the total number of bytes allocated, which measures how memory
hungry the benchmarks are. We can also use more detailed metrics to measure specific behaviours. For example, we
can look at the density of important (expensive) operations such as virtual method invocations, field read/writes and
object allocations. Specific examples of these metrics are given in the discussion of our benchmarks in Section 5.

It is often useful to differentiate between application code and library code, especially in the case of AspectJ
programs. We define application code as the set of class files that are directly generated by the AspectJ compiler.
In addition to generating “WHOLE PROGRAM” versions of the metrics, *J is also able to generate “APPLICATION

ONLY” versions of them by only taking into consideration the contributions made by the application code.

3.2.1 Dead Code and Code Coverage

In our study of AspectJ benchmarks we found that the AspectJ compiler sometimes includes code that is never exe-
cuted; in particular, methods that are never called. Since the entire class must be loaded, this causes unnecessary time
to be spent in class loading and verification.

Thus, we found that it was useful to add two new metrics to our standard Java metrics. The dead code metric
measures the number of bytecode instructions that are loaded, but never executed. The code coverage metric is
computed as the ratio of live code over loaded code. Thus, a program that loads 10,000 bytecodes and has 2,000 dead
bytecodes, has a code coverage of 0.80, that is (10,000 - 2,000)/10,000. It should be noted that the dead code metric
is also dynamic and is reporting the code dead for a particular execution of the program. It may be the case that a
different execution would touch different parts of the code. Also, in some cases, the dead code may never execute in
any given run, but is a necessary consequence of support for incremental compilation and weaving, since a change to
the base program might cause the code to become required and we would not want to have to recompile the aspect in
that case.

3.3 AspectJ-specific dynamic metrics

Although the previous two kinds (execution time and Java-based dynamic metrics) of measurements give a good
overall idea of overheads incurred by the use of AspectJ, they do not help identify the cause of such overheads, nor do
they expose any behaviours that are specific to AspectJ programs. In order to study these it was necessary to define new
metrics and extend existing tools in non-trivial ways to compute them. These extensions are described in more detail
in Section 4, but mainly consist of associating a tag to every executed bytecode instruction indicating its purpose. In
the following subsections we describe the new metrics that were designed specifically for analyzing AspectJ programs.

3.3.1 Tag Mix

The tag mix metric partitions all executed bytecode instructions into 29 different bins, where each bin corresponds
to a specific purpose. Bins are reported as a percentage of total executed instructions. This breakdown of executed
bytecodes is useful in determining which particular features of AspectJ are used in a given benchmark.

Individual tags can be grouped into categories according to the AspectJ language feature that they relate to. We
define 10 categories of tags, 9 of which correspond to overhead code introduced by the AspectJ compiler. A detailed
list of tags and categories is given in Appendix I, and example measurements of these tags are given in Section 5. A
short description of all categories, along with their most important tags, is presented next.

Readers who are unfamiliar with AspectJ may wish to skim this section first time through, and then return to it
after seeing some example programs in Section 5.

General tags This category contains tags which are associated with user-defined code. For analysis purposes,
we distinguish between regular code and advice code. The BASE CODE bin represents all executed instructions that
correspond to the base program (regular Java), whereas the ASPECT CODE bin corresponds to code that was executed
as part of the aspect. This includes all non-overhead instructions corresponding to the body of an advice and all
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non-overhead instructions in code called from the body. It also includes all non-overhead instructions in methods
introduced by intertype declarations.

In making the distinction between base program and aspect, we err on the side of underestimating the effect of
aspects, for example by making all instructions due to callbacks from native methods contribute to the BASE CODE

bin.

Advice-related tags This category contains tags that are common to before, after and around advice. The
ADVICE EXECUTE tag identifies overhead associated with executing an advice body. The ADVICE ARG SETUP tag
identifies overhead associated with exposing parameters to the advice body. The ADVICE TEST tag is associated with
dynamic guards inserted by the compiler in cases where it could not determine whether a particular advice body should
always be executed for a given join point.

Tags specific to around advice Unlike before and after, around advice replaces existing code with the advice
body. The original code can still be invoked through the special proceed() statement, though implementation of this
feature implies additional overhead. The AROUND PROCEED tag identifies instructions which are inserted to make a
call to proceed() from within an advice body. Under some circumstances, it is possible that the call to proceed() is
not implemented using the inlining strategy, but implemented using a more general technique, a closure. We therefore
define the tag AROUND CALLBACK which serves the same purpose as AROUND PROCEED, but which additionally
identifies the tagged instructions as part of the closure implementation. The CLOSURE INIT tag is used to identify
instructions which initialize the closure objects that are created.

Tags specific to after advice There are two distinct kinds of overhead that are associated with the use of after
advice. As with around advice, exposing the return value of a method to the advice body requires support from
the compiler, leading to the addition of some overhead code. Also, because after advice must execute regardless of
whether the method terminated normally or not, the compiler adds exception handlers to the original code in order to
address this issue. The AFTER RETURNING EXPOSURE and AFTER THROWING HANDLER tags are associated with
these two situations, respectively.

Intertype declaration tags Intertype declarations in AspectJ can lead to several forms of overhead being intro-
duced: additional method invocations, accessor methods for introduced fields, variable initialization, etc. Several tags
are defined to identify each kind of overhead.

perthis and pertarget-specific tags Normally aspects are singletons; however, they can also be defined on a
per-object basis. This category contains instructions which are used to manipulate aspect instances when there are
multiple instantiations rather than a single one.

Cflow-specific tags Because cflow pointcuts and percflow aspects (as with perthis and pertarget, percflow
is defined on a per-object basis) require some knowledge of the dynamic control flow of the application, the com-
piler inserts overhead code in order to create and maintain a representation of this information. There are two tags,
CFLOW ENTRY and CFLOW EXIT, to identify instructions which keep this data structure updated.

Exception softening tags This category contains a single tag, EXCEPTION SOFTENER, which identifies instruc-
tions which are used to wrap instances of checked exceptions into an unchecked org.aspectj.SoftException instance.

Tags specific to privileged aspects Privileged aspects have access to private methods and fields of classes. The
compiler makes it possible by adding public wrappers to the appropriate classes. This category contains tags that
identify instructions which are part of the inserted wrapper methods.
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Miscellaneous aspect tags This category contains two kinds of tags. The first kind of tag, CLINIT, is associated
with instructions which are found in static initializers of aspect classes. The second kind, INLINE ACCESS METHOD,
identifies the overhead involved in calling a method defined on an aspect when there is a static dispatch method.

An important benefit of our tool set is that it is easy to extend the set of bins, thus giving fine-grained information
to language designers and compiler writers about the code emanating from new language features.

3.3.2 Aspect Overhead

Once every executed bytecode has been tagged appropriately, it is possible to compute the percentage of executed
instructions which fall into the “overhead” category. We define overhead as all instructions executions which do not
fall within the “general” tag category (BASE CODE or ASPECT CODE). This closely corresponds to the instruction
executions that would not be found in a hand-woven implementation of the same application.

The aspect overhead metric can also be expressed as the product of two other ratios. The “overhead to advice” ratio
indicates the relative amount of overhead per introduced advice. It is measured as the number of executed overhead
bytecode instructions divided by the number of executed advice instructions. The “advice to total ratio” measures
the proportion of the executed code that belongs to advice bodies, and is computed as the number of executed advice
instructions divided by the total number of executed instructions.

3.3.3 AspectJ Runtime

In order to truly measure the proportion of the code that can be attributed to the use of AspectJ, it is necessary to keep
track of the calling context. The “AspectJ runtime library” metric measures the percentage of the code that is executed
as part of the AspectJ library, or on its behalf.

3.3.4 Advice Execution

In many cases, the AspectJ compiler can statically determine if a piece of advice should be executed at all join points
corresponding to a given join point shadow. In these cases, no dynamic test is required to determine if the advice code
should be executed or not. There are cases for which static analysis cannot determine the applicability of the advice.
For example, the if pointcut contains a boolean expression which is evaluated to determine join point membership; this
expression may contain references to dynamic values, and so it may not be statically determinable whether it evaluates
to true or false. The cflow pointcut also generally results in a dynamic test.

The advice execution metric reports on the outcome of those checks, categorizing them into three bins, those that
always succeed, those that always fail, and those that sometimes succeed and sometimes fail. Clearly those checks
that sometimes succeed and sometimes fail are needed. However, those checks that always succeed or always fail
(in one particular run) are potential places where a stronger static analysis might be able to eliminate the check, thus
eliminating unnecessary overhead and improving performance. Of course it may be the case that some checks that
are measured as always going one way actually could go the other way in a different run of the program, so it is not
necessarily the case that all of those which are identified could really be removed.

3.3.5 Hot Shadows

Recall that a shadow is the static location in a program text that gives rise to a particular join point at runtime. The
hot shadows metric measures the percentage of all shadows that account for 90% of the total advice body invocations.
This gives an indication of whether runtime advice execution is mostly concentrated on a few shadows, or whether it
is thinly spread; this metric thus helps us to understand whether we might obtain a performance gain by concentrating
on just a few locations (and for example inlining advice bodies at those locations). Note that if there are overlapping
pointcuts, it is possible for one shadow to invoke multiple advice bodies.
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4 Tools for collecting Dynamic Metrics

An overview of the tools that we use for collecting the dynamic metrics is given in Figure 2. The darker shaded
boxes correspond to new tools, and the more lightly shaded boxes correspond to components of existing tools that we
modified.

Our main tools implement the two important components of our approach: (1) a static tagger, which tags bytecode
instructions with tags corresponding to their associated purpose; and (2) a dynamic analyzer, which propagates the
bytecode tags across method calls, according to the context of the call, and computes the dynamic metrics.

In addition to these main tools we have also developed two utilities. The Retagger utility allows us to modify the
tags by hand interactively, so that we can experiment with new tagging approaches. The TagReader utility allows us to
print a textual representation of the tagged bytecode so that we can check its correctness and view the details of which
bytecode instructions are tagged.

JVMPI Agent

Metric Analyzer with
   tag propagator

JVMPI Interface

Tagging bytecode
weaver

Front−end

Retagger TagReader

textual

tagged class file
representation of

*J Dynamic Metric Tool

Modified AspectJ Compiler

JVMPI Events

trace file

AspectJ−specific dynamic metricsstandard dynamic metrics

.class files with tags in attributes

AspectJ source programs

class files with AspectJ attributes

Standard JVM

Figure 2: Overview of Metric Collection Tools

In the following subsections we first provide an illustrative example, showing examples of static tagging and tag
propagation (Section 4.1). We then provide more specific details on the implementation of the two main components
of our approach, the static tagger, based on the AspectJ 1.1.1 compiler (Section 4.2), and the dynamic metric analyzer,
based on *J (Section 4.3) .

4.1 An example

To demonstrate our approach to static tagging and dynamic propagation, consider the small AspectJ program in Fig-
ure 1. The advice declared in ExampleAspect should execute before every call to bar() (selected by the first call
pointcut) for which there is a call to foo() somewhere in the call stack (selected by the cflow pointcut).

The listing in Figure 3 shows the bytecode instructions for each of the methods in Example.class, with the added
instruction tags that were produced by our static tagger. Each line of bytecode corresponding to instructions introduced
by the AspectJ compiler is annotated with the tag associated with it. Many bytecodes do not have a tag and these
bytecodes will be assigned a tag during the subsequent dynamic analysis. Let us now examine the static tagging and
dynamic tag propagation for our example.
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Tag Shadow
public Example()
0: aload 0
1: invokespecial Object()
4: return

public static void main(String[] args)
0: new Example
3: dup
4: invokespecial Example()
7: astore 1
8: aload 1

ADVICE TEST 12 9: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
ADVICE TEST 12 12: invokevirtual boolean CFlowStack.isValid()
ADVICE TEST 12 15: ifeq→ 24

ADVICE ARG SETUP 12 18: invokestatic ExampleAspect ExampleAspect.aspectOf()
ADVICE EXECUTE 12 21: invokevirtual void ExampleAspect.ajc$before$ExampleAspect$148()

24: invokevirtual void Example.bar()
27: aload 1

CFLOW ENTER 13 28: bipush 0
CFLOW ENTER 13 30: anewarray Object[]
CFLOW ENTER 13 33: astore 3
CFLOW ENTER 13 34: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW ENTER 13 37: aload 3
CFLOW ENTER 13 38: invokevirtual void CFlowStack.push(Object[])

41: invokevirtual void Example.foo()
CFLOW EXIT 13 44: goto→ 24

CFLOW EXIT 13 47: astore 4
CFLOW EXIT 13 49: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW EXIT 13 52: invokevirtual void CFlowStack.pop()
CFLOW EXIT 13 55: aload 4
CFLOW EXIT 13 57: athrow
CFLOW EXIT 13 58: nop
CFLOW EXIT 13 59: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
CFLOW EXIT 13 62: invokevirtual void CFlowStack.pop()

65: nop
66: return

public void foo()
0: getstatic PrintStream System.out
3: ldc “foo”
5: invokevirtual void PrintStream.println(String)
8: aload 0

ADVICE TEST 17 9: getstatic CFlowStack ExampleAspect.ajc$cflowStack$0
ADVICE TEST 17 12: invokevirtual boolean CFlowStack.isValid()
ADVICE TEST 17 15: ifeq→ 24

ADVICE ARG SETUP 17 18: invokestatic ExampleAspect ExampleAspect.aspectOf()
ADVICE EXECUTE 17 21: invokevirtual void ExampleAspect.ajc$before$ExampleAspect$148()

24: invokevirtual void Example.bar()
27: return

public void bar()
0: getstatic PrintStream System.out
3: ldc “bar”
5: invokevirtual void PrintStream.println(String)
8: return

Figure 3: Tagged class file for example AspectJ program
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Instructions 9–15 in both main(String[]) and foo() are tagged ADVICE TEST; these instructions perform the match-
ing of the cflow pointcut, and test for the presence of a call to foo() in the call stack. If this test succeeds, the advice is
executed.

Instructions 18–21 in both methods are advice execution overhead, tagged ADVICE ARG SETUP and ADVICE EXECUTE.
The distinction is made between these two tags because they propagate differently. Instruction 18 is a call to the
aspectOf () method, which acquires the aspect instance. All of the untagged instructions in aspectOf () will inherit
the tag of instruction 18 (ADVICE ARG SETUP), as they also represent the same kind of overhead. Instruction 21,
however, calls the advice body, which is not overhead, and so its tag is not propagated by the analyzer. Instead, the
ASPECT CODE tag is propagated to the advice body method.

Instructions 28–38 (CFLOW ENTER) and 44–62 (CFLOW EXIT) manage the representation of the call stack, re-
quired by the cflow pointcut. This call stack representation is described in more detail in section 5.3.2. Before each
call to foo(), a value is pushed onto the CFlowStack corresponding to the relevant cflow pointcut. On returning from
that call, either normally or by thrown exception, the CFlowStack is popped. Both of these tags, CFLOW ENTRY and
CFLOW EXIT, propagate to the called methods since the push and pop methods represent the same kinds of overhead.

4.2 Static Tagging: annotating class files using a modified AspectJ compiler

The AspectJ compiler, since version 1.1, operates in two stages. The first is a compilation stage, using the Java com-
piler from the Eclipse project, which produces class files with special attributes. These attributes contain information
for the second stage, where aspects are woven into the bytecode of a base program.

We have modified the bytecode weaver of version 1.1.1 of the AspectJ compiler to annotate the classes it produces.
A first set of annotations assigns tags to certain bytecode instructions. These tags aim at identifying the role of the
instruction in the generated code, such as dynamically guarding a given piece of advice, invoking an advice body, etc.
The tag annotations are focused on studying the use of the different language features that AspectJ supports; 27 out of
the 29 possible tags represent overhead instructions (the other two are for base and aspect code respectively).

A second set of annotations identify the join point shadows into which instructions have been inserted during
weaving. Each added instruction is tagged with a shadow ID corresponding to a single join point shadow. For example,
the single advice declaration listed in Figure 1 results in instructions being added to multiple join point shadows in the
base program. These added instructions have shadow ID tags as shown in Figure 3. The three join point shadows, each
corresponding to a method call, have IDs 12, 13, and 17. The weaver additionally stores a table mapping each shadow
ID to its shadow kind (e.g. method-call) and its signature (e.g. void Example.bar() for shadow 12 in the example.)

4.2.1 Tagging during weaving

In the AspectJ compiler, the major changes made to the classes being woven into are performed by two kinds of
munger. The first is the type munger, which is responsible for changing the type structure of the program and im-
plements intertype declarations. The second is the shadow munger, which is responsible for manipulating join point
shadows, implementing, for example, the weaving in of advice. Consider the simple case of the before advice declared
in the example in Figure 1. During the weaving stage this advice is represented by a shadow munger which operates
on shadows for which a subset of associated join points are selected by the advice’s pointcut. The body of the advice is
compiled as a method on the aspect class during the compilation stage; the shadow munger inserts into the shadow the
instructions necessary for calling this advice body method, and, if necessary, test instructions to determine at runtime
if a join point matches the pointcut.

Our modified AspectJ weaver tags all the instructions according to their purpose. The first set of new instructions
created by the weaver expose arguments to the advice and acquire the aspect instance. We add as attributes to each
generated instruction object the ADVICE ARG SETUP tag. Then the advice execution instruction is created, which
is an invoke to the advice body method. We tag this ADVICE EXECUTE in the same way. Finally, if it hasn’t been
statically determined that this advice should always execute at this shadow, test instructions are generated, which
we tag as ADVICE TEST. This newly generated instruction list is then inserted into the shadow, which is a range of
instructions in a method in the base program.

Our examples so far have demonstrated some of the most common tags. However, the AspectJ weaver introduces
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new instructions into the base program to implement many other features, both as a result of static cross-cutting and
dynamic cross-cutting.

4.2.2 Pretagging

Not all of the instructions we wish to annotate during the weaving stage are generated during the weaving stage. Ex-
isting instructions in aspect classes, generated during the front-end AspectJ compilation, may also represent overhead.
The front-end compiler could be modified to tag these instructions as they are generated, in the same manner that
instructions are tagged during weaving, however, since AspectJ supports the weaving of binary aspects for which the
source may be unavailable, it is desirable to instead perform all tagging during the weaving stage. Therefore, at the
beginning of this stage, we search for existing overhead instructions within aspect classes and tag them. Since the
AspectJ compiler automatically generates names for advice bodies and other methods on the aspect class, this is ac-
complished by searching for bytecode patterns in methods whose names match the naming conventions. An example
case is that of an around advice body. The body of this around advice is implemented as a method on the aspect class.
For this method, we isolate the instructions implementing the proceed() call, and tag them appropriately.

4.2.3 Generating attributed class files

After all tagging and weaving has been performed on all classes, and as classes are being written, our modified AspectJ
compiler converts the tag attributes on the instruction objects into a code attribute for each method which is stored in
the generated class files. For those instructions with explicit tags we use that tag value, and for instructions without
tags a placeholder tag is assigned, namely NO TAG. This will be replaced by a proper tag during the dynamic analysis
phase.

4.3 Dynamic metric analysis with tag propagation using *J

*J is an framework designed to perform dynamic analyses of Java programs. While it was primarily designed for
computing dynamic metrics, it can be easily extended to include various other kinds of analyses. The *J framework
uses a trace collection agent which is based on the Java Virtual Machine Profiler Interface (JVMPI). This agent receives
execution events from a regular Java Virtual Machine (JVM) and encodes the information in the form of an event trace.
This trace can then be processed by the analyzer, which internally consists of a sequence of operations organized as a
pipeline structure. Each analysis in the pipeline receives events from the trace sequentially. *J provides a number of
default analyses in its library, many of which provide services to subsequent analyses in the pipeline. It also includes
a full set of general-purpose dynamic metric computation modules.

4.3.1 Modifications to the *J analyzer:

Static tagging identifies bytecode that is added to support AspectJ constructs. Because only the application classes are
compiled with the modified AspectJ compiler, using only the static instruction tags in an analysis results in a significant
underestimate of the overhead code. For example, it is possible for parts of the Java standard library to be called in
AspectJ overhead code as well as from the original application. It is thus necessary to propagate the statically-assigned
tags dynamically based on the control flow of the application in order to obtain a correct measurement of overhead.

Several additions were made to *J in order to make it recognize and use the bytecode tags. The *J class file
reader was extended to enable reading of the encoded information, and association of tags with each loaded bytecode
instruction. For untagged bytecodes, a default tag value, NO TAG, serves as a placeholder.

The most significant addition to *J consists of the tag propagation analysis. This analysis is responsible for
dynamically assigning tags to executed bytecodes by pushing tags along invocation edges in the dynamic call graph
of the application. For example, in Figure 1, the invokestatic bytecode at offset 18 in main(String[]) has a static
ADVICE ARG SETUP tag. This instruction invokes the aspectOf () method on the ExampleAspect aspect class. At
runtime, the ADVICE ARG SETUP tag will be propagated to all bytecodes in the aspectOf () method, and all bytecodes
in methods that it calls, etc. If an instruction has no static tag, and no tag has been propagated to it, it is assigned the
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default tag, BASE CODE. This guarantees that all bytecodes executed during “normal” control flow receive a dynamic
tag every time they are executed.

The exception to this is when program code is entered from places the *J agent cannot observe. This can happen
in the case of callbacks from JNI code, or the execution of the class loader, for example. In the cases described,
where this task is especially difficult, we always opt for the conservative solution, ensuring that our analysis will never
overestimate the overhead.

The meaning associated with some tags precludes their propagation. For example, the ADVICE EXECUTE tag is
used for calls to methods corresponding to advice code; the call (and subsequent return statement) are overhead, but
the body of the advice is not and should be tagged ASPECT CODE. In this and similar cases, particular tags trigger
propagation of different tags. Therefore, we define a propagation table. This table provides a mapping from each
tag to another tag which is to be used in its stead when propagating. Most tags are propagated as themselves; the
exceptions are listed in Figure 4.

Current Propagated

ADVICE EXECUTE ASPECT CODE

INTERMETHOD ASPECT CODE

INLINE ACCESS METHOD ASPECT CODE

AROUND CALLBACK BASE CODE or ASPECT CODE

AROUND PROCEED BASE CODE or ASPECT CODE

Figure 4: Dynamic Propagation Table

The INTERMETHOD and INLINE ACCESS METHOD tags, like ADVICE EXECUTE, both identify call sites which
invoke user-defined aspect code, and thus have the same propagation behaviour. The AROUND CALLBACK and
AROUND PROCEED tags identify call sites which implement the proceed() construct. The tag to be associated with
the code called by proceed() depends on the calling context. The call sites will therefore propagate either BASE CODE

or ASPECT CODE depending on the context of the advised join point. Keeping track of the depth of nested aspect code
is therefore required.

The propagation algorithm is further complicated by tags which are to be propagated to bytecode instructions
which already possess a tag. In such cases, it is sometimes necessary to allow the new tag to temporarily override the
previous one. While tags identifying overhead code should not be overridden, it must be possible to override the tags
which correspond to base or aspect code.

This is best illustrated by a simple example. An instance of an aspect can be accessed via the static method
aspectOf () on the aspect class. This call can originate from within user-defined code, as well as from within the
code inserted by the weaver to implement advice execution. In order to support the first case, the method is statically
tagged ASPECT CODE. In the second case, the invoke is tagged ADVICE ARG SETUP (as illustrated in Figure 1),
which we wish to propagate to the method. To correctly handle all similar situations, it is necessary that instances of
the ASPECT CODE and BASE CODE tags can temporarily be overridden by other tags during analysis. Note that in
order to support the first case, an instruction tagged BASE CODE must not be allowed to override a statically assigned
ASPECT CODE tag. In cases where it would, an ASPECT CODE tag is propagated instead.

4.3.2 Collecting the AspectJ-specific metrics

The entire tag propagation scheme is implemented as a separate *J analysis, so that subsequent AspectJ-specific
analyses can be implemented independently and easily.

Since each instruction execution now has an associated dynamically computed tag, it is a simple addition to the
*J analyzer to collect the tag mix metric, which counts the number of instructions executed for each tag. We can also
apportion other existing metrics, such as allocation counts, between the different tags.

In addition, the analyzer also tracks all dynamic guards on advice, and for each such guard computes whether the
guard always succeeds, always fails, or sometimes succeeds. A count of the number of times each guard is executed
is also maintained.
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5 Benchmarks

In this section we provide the results and analysis for eight benchmarks which span a wide variety of uses of AspectJ.
Although AspectJ is becoming quite popular there is no existing AspectJ benchmark set, thus our first challenge was
to collect benchmarks that were representative of many different applications of AspectJ. All of our benchmarks were
collected from public sources on the web, and we are currently working on contacting all authors so we can release the
benchmark set in conjunction with the final version of this paper. We believe that providing an interesting and diverse
benchmark set is an important contribution in itself.

Four of our benchmarks have equivalent Java versions, while the other four are too large and/or complex to easily
produce Java equivalents. The benchmarks with Java versions are particularly valuable because we can compare
runtime overheads shown by direct timing comparisons with overheads shown by our dynamic metric analysis; the
timings tell us where there is observable overhead, and the metric analysis helps us understand the reasons for that
overhead.

When analyzing the benchmarks we did not know what to expect a priori. The general belief in the AspectJ
community seems to be that overheads are low. Thus, an important part of our study was to find out if and why this
is true. The first four benchmarks, presented in Section 5.2, are examples where we found low overall overheads.
However, somewhat to our surprise we found three benchmarks which had extremely high overheads, and for those
benchmarks we have made a detailed examination of the source of the overheads, as presented in Section 5.3. Finally,
we investigated one benchmark for which the aspect is intended to improve performance. We discuss it in Section 5.4.

5.1 Overall Data

Figure 5 gives an overview of the key data for all eight benchmarks. Each heading of related rows contains references
to those sections of the paper that discuss the relevant metrics in detail.

At the top of the table we give the metrics that measure program size. Note that six of the benchmarks are quite
large, and are composed of between 24 and 252 application classes (classes that are not part of the standard Java
library). Two benchmarks, Bean and Figure are smaller, but have been selected to illustrate some standard uses of
AspectJ. Also, note that as with all Java programs, the size of the programs, when the Java libraries are included, are
very large, even for the small applications.

The region of the table labelled “EXECUTION TIME MEASUREMENTS” gives measurements for execution time,
including both real execution times and metrics. For real execution times we consider three different configurations
of the Java VM (Java HotSpot™ Client VM (build 1.4.2 02-b03, mixed mode)). In the first configuration we use the
default mode which enables the client VM. For this configuration we also provide the amount of time spent in the JIT
compiler, and total GC time. Since the ajc compiler’s code generation strategy assumes a VM with a JIT that inlines,
we also provide the performance for the client VM when inlining is disabled. Finally, in order to see performance of
the bytecode directly, without the effect of JIT compilation, we provide the time for the interpreter configuration.

Another important aspect of performance is space usage. In the section of the chart labelled “EXECUTION SPACE

MEASUREMENTS”, a key metric is the Object Allocation Density which measures the number of objects allocated per
1000 bytecode instructions executed (kilobytecode or kbc). If the allocation density is high, then it is important to
examine the “ASPECTJ TAG MIX FOR ALLOCATIONS” section at the bottom of the table to determine if significant
space is used for AspectJ overhead.

In the section labelled “ASPECTJ METRICS SUMMARIZING OVERHEAD” we provide those measurements that
summarize overheads. Benchmarks with high AspectJ Overhead are those most likely to have performance problems.

The sections for “ASPECTJ TAG MIX” provide a more detailed breakdown of the overheads, first considering all
instructions, and then the tag mix for allocations only.

Finally, in the section labelled “ASPECTJ METRICS FOR SHADOWS”, we give two metrics. The first one refers
to the hot shadow metric as defined in Section 3.3.5. The second one, called “Shadow Guards Runtime Const.”, is
computed using the advice execution metrics defined in Section 3.3.4, and is simply the percentage of all shadow
guards that always evaluate to true or always evaluate to false (i.e. those guards that are runtime constants and perhaps
could be optimized away using a compiler analysis).

A detailed individual analysis of all benchmarks is given in the next three subsections. For each benchmark we
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DCM ProdLine Tetris Bean NullCheck Figure LoD *J Pool
PROGRAM SIZE (APPLICATION ONLY) (5.1, 3.2.1)
Classes Loaded 55 24 60 5 252 12 60 221
Instructions Loaded 17124 3108 5516 529 13927 607 27809 48220
Instructions Dead 9268 1241 2038 160 6893 241 11829 28621
Code Coverage (%) 46 60 63 70 51 60 57 41
PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM) (5.1)
Classes Loaded 386 320 1016 379 568 296 383 893
Instructions Loaded 108407 80931 328543 98999 103124 72304 118453 180138
EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM) (5.1, 3.1)
# instr. (million bytecodes) 3283 2396 59 145 4841 1461 2722 2314
Total time - client (sec) 7.53 1.46 125.47 1.37 30.64 4.70 90.52 8.39
JIT time - client (sec) 0.21 0.09 0.23 0.06 0.19 0.04 0.55 0.57
GC time - client (sec) 0.46 0.03 0.05 0.04 8.93 0.12 73.52 1.87
Slowdown vs. handcoded(×) 1.00 20.99 23.50 1.04
Time - client noinline (sec) 7.50 1.52 125.46 1.42 31.98 4.94 91.77 8.48
Slowdown vs. handcoded (×) 1.02 20.77 23.52 1.05
Time - interpreter (sec) 51.72 14.55 125.49 4.54 172.57 39.57 151.32 42.60
Slowdown vs. handcoded (×) 1.16 12.32 19.98 1.04
EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM) (5.1, 3.2)
Mem. Alloc. (million bytes) 333 28 10 109 5626 370 975 132
Obj. Allocation Density (per kbc) 2.37 0.30 2.10 23.58 33.57 10.96 12.92 0.66
#Garbage Collections 373 36 9 144 5818 488 1103 38
ASPECTJ METRICS SUMMARIZING OVERHEAD (3.3.2, 3.3.3)
AspectJ Overhead % (whole) 2.94 0.62 0.73 14.11 68.60 92.97 95.95 2.73
#overhead/#advice (whole) 0.03 0.01 0.32 0.18 18.99 113.17 24.24 2.10
#advice/#total (whole) 0.93 0.99 0.02 0.78 0.04 0.008 0.04 0.01
AspectJ Runtime Lib % (whole) 2.53 0.00 0.06 0.00 20.31 84.89 89.34 0.00
Aspect Overhead % (app) 8.91 11.41 10.16 33.17 72.97 83.91 97.86 3.59
#overhead/#advice (app) 0.11 0.13 1.27 0.65 18.99 44.33 47.61 2.10
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROGRAM) (%) (3.3.1, appendix)
BASE CODE 3.79 0.04 96.97 7.46 27.79 6.21 0.09 95.96
ASPECT CODE 93.27 99.34 2.30 78.43 3.61 0.82 3.96 1.31
AspectJ Overhead (total) 2.94 0.62 0.73 14.11 68.60 92.97 95.95 2.73
INTER METHOD 0.21 0.55
INTER FIELD INIT 0.08 1.38
INTER CONSTR PRE 0.06
INTER CONSTR POST 0.21
INTER CONSTR CONV 0.03
ADVICE EXECUTE 0.32 0.001 0.09 0.83 1.81 0.27 0.009 0.12
ADVICE ARG SETUP 1.14 0.01 0.46 5.67 27.73 0.69 0.21 1.12
ADVICE TEST 10.41 0.18 0.87
AROUND CONVERSION 1.15 0.002 6.72
AROUND CALLBACK 0.002 16.10
AROUND PROCEED 0.34 0.005 0.17 2.77 7.22
CLOSURE INIT 0.004 9.03
AFTER RET EXPOSURE 0.003
AFTER THROWING 0.002
CFLOW ENTRY 38.34 45.13
CFLOW EXIT 43.27 50.41
PER OBJECT ENTRY 0.004 0.62
ASPECT CLASS INIT 0.001 0.001
INLINE ACCESS METHOD 2.90
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROGRAM) (%) (3.3.1, appendix)
BASE CODE 54.73 0.43 97.37 3.70 19.25 0.01 0.02 100.00
ASPECT CODE 26.27 57.10 1.80 92.74 0.27
AspectJ Overhead (total) 19.00 42.47 0.83 3.57 80.75 99.99 99.71 0.005
INTER FIELD INIT 3.57
INTER CONSTR PRE 19.98
INTER CONSTR POST 22.48
INTER CONSTR CONV
ADVICE ARG SETUP 0.62 53.85 0.27
AROUND CONVERSION 19.00 0.09
AROUND PROCEED 0.09 26.90
CFLOW ENTRY 99.99 99.43
PER OBJECT ENTRY 0.009 0.005
ASPECT CLASS INIT 0.005 0.002 0.02 0.002
ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%) (3.3.5, 3.3.4)
Hot Shadows (for 90%) 3.12 33.33 4.00 100.00 2.93 33.33 12.94 66.67
Shadow Guards Runtime Const.(%) 75.00 99.64 100.00

Figure 5: Benchmark Measurements
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give the source of the benchmark, a brief description of the aspects involved, and a discussion of our performance
measurements.

5.2 Benchmarks with low runtime overhead

In this section we present four benchmarks which seem to confirm the general opinion that AspectJ programs have
low overhead when compared to equivalent hand-woven Java programs.

As shown in the bold entries in Figure 5, the first four benchmarks either show a low amount of total overhead as
computed by our metrics (DCM, Prodline and Tetris), or show little or no slowdown when compared to an equivalent
Java program (Bean).

The overall conclusion is that total overhead is not a problem when: (1) each advice body represents a large amount
of work, so the overhead per advice application is low; (2) the application spends most of its time in the Java library,
which usually does not have advice applied to it; (3) the application spends very little time in the part of the code which
has advice applied to it (so even if the overhead per advice instruction is high, the overall overhead is low); or (4) there
is some noticeable overhead in the code produced by ajc, but a good inlining JIT compiler removes the overhead. In
the following sections we expand upon these conclusions and examine each of the low-overhead benchmarks in more
detail.

5.2.1 DCM

One important use of AspectJ is to provide a convenient way of instrumenting a base Java program. In this case the
base program doesn’t change, but aspects are used to inject instrumentation code to measure some sort of dynamic
behaviour. Hassoun, Johnson and Counsell have suggested a new dynamic coupling metric (DCM) [12] and a val-
idation of that metric using AspectJ [13]. We have implemented a more efficient version of their aspects (using a
hash table with one entry per class, instead of one entry per object) which computes their proposed dynamic coupling
metric. The aspects use around and after advice. The basic idea is that each constructor call and each method call
is instrumented so as to increment a time step counter and to compute a dynamic coupling metric as a function of the
value of the metric at the previous time step, the number of currently live objects, and the static coupling metric values.
Computing this function is quite expensive as it requires iterating through the entries in a hash table, where there is
one entry for each class in the application.

Since this aspect can be applied to any program, we applied it to a reasonably large Java benchmark, Certrevsim,
which is a discrete event simulator used to simulate the performance of various certificate revocation schemes [1].
This seemed to be a suitable benchmark because it has non-trivial uses of objects and it computes something useful.

The performance measurements for the DCM aspects applied to the Certrevsim program are given in the column
labelled “DCM” in Figure 5. As shown by the bold entry, the AspectJ Overhead is only 2.94%. Furthermore, as
expected, the ASPECTJ TAG MIX metrics shows that over 93% of the instructions executed are in the aspect code.
This is completely reasonable, since the advice bodies are very expensive, and they involve calls to relatively expensive
hash table routines in the Java library.

A more detailed analysis does show that the overhead when looking at just the application code (Aspect Overhead
(app)) is higher, at 8.91%. Furthermore, in the TAG MIX metrics for allocations, 20% of all allocations are due to
AROUND CONVERSION. These overheads do not matter for this particular benchmark, but for a benchmark with
smaller advice bodies, it could be a problem, and may be worth further investigation and possible improvements to the
compiler.

5.2.2 ProdLine

Intertype declarations in AspectJ allow one to define new fields, constructors and methods for existing Java classes.
Lopez-Herrejon and Batory use this idea to experiment with using AspectJ to implement product lines, where a product
line is a family of related software applications [22]. Their application experiments with a product line for related
graph algorithms. This application is interesting because it heavily uses intertype declarations. The base program
is effectively just a collection of empty classes (for example Edge, Vertex and Graph) and various aspects that use

17



intertype declarations to insert fields, constructors and methods into those classes (for example, Directed, Undirected,
DFS), plus some uses of advice to splice in some method calls. The underlying implementations of the graph data
structures and algorithms make heavy use of the LinkedList implementation in the standard Java library. We used the
original benchmark as provided by the authors, but added our own module to generate random graphs, and run larger
tests suitable for timing.

The performance numbers are given in the column labelled “ProdLine” in Figure 5. The overall AspectJ overhead
is very low at 0.62% and almost all of the overhead comes from the intertype tags. However, note that the AspectJ
overhead for the application only is much higher at 11.41%. This indicates the benchmark spends a majority of its
time in the Java library. Also, a potentially important overhead is found in the ASPECTJ TAG MIX for allocations.
It appears that the heavy use of intertype constructors in this benchmark leads to considerable space overhead, with
about 40% of the total space used due to objects allocated in the pre and post processing of constructors that have been
introduced using intertype declarations. This may be another area where a better compilation strategy can avoid some
of that overhead.

5.2.3 Tetris

Graphical, interactive applications pose difficulties for analysis in that they both require human intervention and may
have large variations in execution time thereby. However, they certainly form a large class of applications, and the
performance and overhead of aspects in such a context is quite relevant in terms of program response times, or the cost
of background computations.

We have analyzed an AspectJ version of the arcade game Tetris, available on the web [9]. In order to get repro-
ducible results, we have modified the program to use a seeded random number generator, and to (non-interactively)
replay a previously-recorded interactive session. The code to accomplish this naturally changes the program; however,
the core program logic is unaltered, and the use of aspects remains the same as the original program.

Aspects in this situation were used to augment the base game with new functionality. A number of aspects were
applied, though most of them apply to situations that did not happen or which happened only a few times during
our sample game play. The remaining aspects (NEW BLOCKS and NEXT BLOCK in [9]) are applied to code that is
exercised every few game moves, roughly in (a reduced) proportion to the number of game events, or sequences of
active code execution.

Overall aspect overhead in Tetris is low, accounting for less than 1% of executed bytecodes (see the Tetris column
in figure 5). This is further demonstrated by the limited use of aspects with respect to the overall program—advice
constitutes only 2% of the program.

In fact, the WHOLE PROGRAM metrics are dominated by costs external to the application (startup, GUI library
code). This can be seen in the relative size (INSTRUCTIONS LOADED) of the application versus the whole program,
but is also apparent in the APPLICATION ONLY version of the aspect metrics. Overhead rises to over 10%, and is now
greater than the cost of the aspect code itself (overhead to advice ratio is 1.27).

Program design in this case limits any apparent overhead. Of course variations in Java library/startup design may
change the relative weight of application code, and thus the visibility of this overhead.

5.2.4 Bean

This is example is taken from the AspectJ primer on the website aspectj.org.1 Once again, we modified it slightly
to increase the running time. It starts with a class named Point for representing pairs of x and y coordinates, and it
adds the functionality of Java beans with bound properties to this class.

In order to do so, it injects a new private field into the Point class; this new field has type PropertyChangeSupport;
all the associated methods are added as well, and the Point class is declared to be an implementation of Serializable.
All these additions are accomplished via the static features of AspectJ. Furthermore, it also fires a property changer
whenever either the x or y coordinate is changed. This additional functionality is achieved with a pointcut and around
advice, for each of x and y separately.

1An earlier version on that webpage was flawed; we are using the revision suggested in an early draft of this paper and also on the aspectj-dev
list by Gregor Kiczales on January 14, 2004.
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For comparison, we wove the AspectJ version by hand to obtain a pure Java program. Both the AspectJ and the
pure Java program were compiled with the JIT inliner turned on and off. The results for these versions are shown in
the Bean column of figure 5.

From the tag mix, it is apparent that this benchmark spends most of its time in aspect code, which consists of
library calls introduced via intertype declarations, but there is also some around advice.

The overhead in terms of bytecodes executed is quite significant (14.11%). This is reflected in the execution time
when run through the interpreter. However, it appears that the JIT compiler is able to eliminate most of the overhead.
Without inlining turned on, there is still a discernible price in execution time of about 2%. With inlining, the JIT
compiler completely eliminates the cost of the overhead instructions inserted by the AspectJ compiler.

In the context of this small benchmark, these numbers appear to justify an assumption of the AspectJ implementors,
stated in [14], that the inliner eliminates most overhead of intertype declarations, and also of advice declarations where
there is no dynamic residue of pointcut matching. It is however notoriously difficult to predict the effect of inlining
strategies, so further benchmarking is necessary to justify the assumption in general.

5.3 Benchmarks with high overheads

Contrary to the belief that there are no significant overheads for AspectJ we did find extremely large overheads in three
benchmarks. In this section we present these benchmarks, examine where the overheads come from and suggest some
solutions for both the programmer (what to avoid using in AspectJ) and for compiler writers (what can be improved
and some ideas on how to make those improvements).

5.3.1 NullCheck

Users of AspectJ have found many different kinds of applications for aspects. One potential use, as outlined in a short
online article by Asberry, is to use aspects to enforce coding standards [2]. He suggests several applications, one of
them being an aspect to detect when methods return null. According to Asberry, the justification for this aspect is
that sometimes programmers use the “on error condition, return null from method” anti-pattern. This is considered
to be bad coding style, since throwing a meaningful exception would be much preferable. He suggests the following
pointcut and around advice to detect all occurrences of returning null from a method.

// First primitive pointcut matches all calls,
// second avoids those with void return type.
pointcut methodsThatReturnObjects(): call(* *.*(..)) && !call(void *.*(..));

Object around(): methodsThatReturnObjects()
{ Object lRetVal = proceed();

if (lRetVal == null)
{ System.err.println( “Detected null return value after calling ” +

thisJoinPoint.getSignature().toShortString() + “ in file ” +
thisJoinPoint.getSourceLocation().getFileName() + “ at line ” +
thisJoinPoint.getSourceLocation().getLine());

}
return lRetVal;

}

Since this is another case of an aspect that can be applied to any Java program, we applied it to the same Java
benchmark, Certrevsim, that we used for the DCM example in Section 5.2.1. Our first experiment was to analyze
the dynamic behaviour of the original Certrevsim benchmark and compare it with the same benchmark, but with the
suggested null check aspect applied to it. Results given in Figure 6 in the column labelled “Orig. AspectJ”. The
results were very surprising, as the original Java benchmark runs in 1.37 seconds, but the AspectJ benchmark runs
in 30.64 seconds, a 21-fold slowdown. This was completely unexpected, because according to the description of the
aspect, the only new useful code being inserted is a check of the return value of all non-void methods.2 To verify

2It turns out that the Certrevsim benchmark is well written and does not return null from methods, so the check against null never succeeds.
Thus, the runtime overhead is simply the check against null and a branch.
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that such checks should not account for such a slowdown we hand-wove the checks into the original program, and the
dynamic measurements for this version are given in the last column labelled “Hand-woven Java”. The runtime for this
hand-woven version is 1.46 seconds, which is only 6.6% slower than the benchmark without the checks. Thus, there
is a huge gap between the performance of the AspectJ program (2136% slower) and the hand-woven program (6.6%
slower). The hand-woven version does of course not admit the collection of the AspectJ metrics, and therefore that
part of the table has been omitted in the relevant column.

Our metrics indicate the source of the problem. First, there is a lot of AROUND overhead — this is to be expected.
However, AROUND CONVERSION should be significant only when non-object types have to be boxed (and unboxed)
upon invocation of the around advice body. Here we did not expect that to happen, as we only wish to process
method results that are objects in the first place. However, the around advice was being applied to all method calls
returning values (including methods returning scalar types such as integers) instead of just those that returned values
with some Object type (i.e. any type that is Object or a subclass of Object).3 Of course, looking back to the pointcut
methodsThatReturnObjects, we can see that it does apply to all methods with non-void return type. Thus, we fixed the
pointcut designator to be the following.

pointcut methodsThatReturnObjects(): call(Object+ *.*(..));

This fixed pointcut matches only those method calls which return Object types, as intended, and the dynamic
measurements of applying this fixed pointcut to the simulator benchmark are given in Figure 6, in the column labelled
“Fixed AspectJ”. Note that the runtime is still much larger than expected, 9.86 seconds, or about 7 times slower than
the handwoven Java program.

The WHOLE PROGRAM dynamic metrics give us some insight into this large performance difference. The fixed
AspectJ version executes 1870 million instructions, whereas the hand-woven Java version executes only 907 million
instructions. However, most surprising is that even the fixed AspectJ benchmark allocates 1500 million bytes, whereas
the original Java version only allocated 1.9 million bytes. This is a huge increase in memory consumption, considering
the aspect body itself is very simple, the check against null never succeeds in this benchmark, and thus the aspect body
does not explicitly allocate any objects at all.

When we look at the APPLICATION ONLY dynamic metrics we see that the hand-woven Java benchmark loaded
only 22 application classes (2421 instructions), whereas the fixed AspectJ version loaded 138 classes (8483 instruc-
tions), another source of overhead for the class loader and JIT compiler.

By looking at the ASPECTJ TAG MIX metrics we can see there is a large amount of overhead, mostly attributed
to the tags ADVICE ARG SETUP, AROUND CALLBACK, AROUND PROCEED and CLOSURE INIT. Furthermore, by
concentrating on the ASPECTJ TAG MIX FOR ALLOCATIONS ONLY metrics, it is clear that the around advice tags
ADVICE ARG SETUP and AROUND PROCEED account for almost 100% of the allocations in the program. Given
that all overhead was coming from around advice, we decompiled the class files and studied the code generated by
the AspectJ compiler to implement the around advice. We found that, in this case, closures are created to handle
the around advice. By studying the code produced we estimated that each method call with around advice has an
overhead of 2 invokespecial calls, 5 invokestatic calls, 2 invokevirtual calls, 2 array allocations, 3 object allocations, 3
field read/write instructions, 4 cast/instanceof instructions, plus numerous simple load and store instructions. Clearly
this use of closures is a very heavy-weight solution, using many expensive bytecode instructions and considerable
memory allocation, and it certainly accounts for the increase in runtime.

In order to understand why closures were being used to implement the around advice for such a simple case,
we studied the AspectJ compiler and found that there are two strategies for implementing around advice, one uses
closures and the other uses an inlining strategy. By default the compiler will try to inline; however there are two
situations in which closures will be used: (1) the compiler flag -XnoInline has been set; or (2) the around body has
around advice which applies to it. For our benchmark, the body of the around advice contains several method calls
returning Object types (namely the string operations in the argument of println), so situation (2) applies and thus the
AspectJ compiler selects the closure strategy for all method calls which have this kind of around advice applied.

To study the performance of the inlining strategy, we changed the pointcut designator to eliminate those method
calls that were in our aspect code as follows.

3This could also be observed using the Eclipse plugin for AspectJ.
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Orig. Fixed Pruned Best Hand-woven
AspectJ AspectJ AspectJ AspectJ Java

(all non-void (only Object+ (not within (after (with null
methods) methods) aspect code) returning) checks)

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 252 138 48 48 22
Instructions Loaded 13927 8483 7633 3832 2421
Instructions Dead 6893 4959 4864 2011 1051
Code Coverage (%) 51 42 36 48 57

PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 568 456 366 366 328
Instructions Loaded 103124 97718 96868 93067 89599

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 4841 1870 1256 1032 907
Total time - client (sec) 30.64 9.86 1.70 1.67 1.46
JIT time - client (sec) 0.19 0.08 0.06 0.05 0.04
GC time - client (sec) 8.93 2.42 0.01 0.01 0.02
Slowdown vs. handcoded(×) 20.99 6.75 1.16 1.14 1.00
Time - client noinline (sec) 31.98 10.22 2.01 1.86 1.54
Slowdown vs. handcoded (×) 20.77 6.64 1.31 1.21 1.00
Time - interpreter (sec) 172.57 52.93 21.21 16.70 14.01
Slowdown vs. handcoded (×) 12.32 3.78 1.51 1.19 1.00

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 5626 1500 2 2 2
Obj. Allocation Density (per kbc) 33.57 20.05 0.03 0.04 0.04
#Garbage Collections 5818 1525 2 2 2
ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 68.60 50.66 26.78 14.50
#overhead/#advice (whole) 18.99 18.99 5.40 6.00
#advice/#total (whole) 0.04 0.03 0.05 0.02
AspectJ Runtime Lib % (whole) 20.31 4.03 0.00 0.00
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROGRAM) (%)
BASE CODE 27.79 46.67 68.25 83.08
ASPECT CODE 3.61 2.67 4.96 2.42
AspectJ Overhead (total) 68.60 50.66 26.78 14.50
ADVICE EXECUTE 1.81 1.33 1.98 3.62
ADVICE ARG SETUP 27.73 23.33 16.86 8.46
AROUND CONVERSION 6.72 0.67 0.99
AROUND CALLBACK 16.10 13.32
AROUND PROCEED 7.22 5.34 6.94
CLOSURE INIT 9.03 6.67
AFTER RET EXPOSURE 2.42
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROGRAM) (%)
BASE CODE 19.25 0.10 99.22 99.73
AspectJ Overhead (total) 80.75 99.90 0.78 0.27
ADVICE ARG SETUP 53.85 66.61
AROUND PROCEED 26.90 33.28
ASPECT CLASS INIT 0.001 0.78 0.27

Figure 6: Nullcheck metrics
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pointcut methodsThatReturnObjects():
call(Object+ *.*(..)) &&
!within(lib.aspects.codingstandards.*);

The dynamic measurements of this version are given in Figure 6 in the column labelled “Pruned AspectJ”. Clearly
the inlining strategy for around advice is much more efficient than the closure strategy. However, it is somewhat
alarming that such a minor change to the pointcut specification has such a large impact on the performance of the
program. From the programmer’s point of view, the !within clause should not be necessary, but clearly it does have
a very important impact on the ultimate performance. Furthermore, there is still a significant amount of overhead
when we compare the hand-woven Java version (column labelled “Checked Java”) to the equivalent AspectJ version
(column labelled “Pruned AspectJ”).

In terms of runtime performance, the hand-woven Java version executes in 1.46 seconds whereas the Pruned
AspectJ version executes in 1.70 seconds, which is 16% slower. This overhead is also reflected in the number of
instructions executed, 906 million for the Java version versus 1256 million for the AspectJ version. According to the
ASPECTJ TAG MIX metrics, most of the overhead is due to ADVICE ARG SETUP (16.86%) and AROUND PROCEED

(6.94%).

Furthermore, the Pruned AspectJ program loads more application classes (48 vs. 22), because the AspectJ version
must load many classes from the AspectJ runtime library, and the aspect class itself. The AspectJ version has more
instructions (7633 vs. 2421), which is due to code from the AspectJ runtime library, the inlining of multiple copies of
advice, and the fact that the inlining strategy introduces many overhead instructions, as demonstrated by the ASPECTJ
TAG MIX metrics.

Finally, the Pruned AspectJ version has significantly more dead code (4864 vs 1051). The dead code comes from
three sources: (1) methods in the AspectJ runtime library that are loaded, but never run, (2) the code in the never-
taken branch of the advice which is inlined in many places, and (3) the presence of methods generated by the AspectJ
compiler which are never needed (for example, a method to deal with advice as closures is generated even if closures
are not used). We believe AspectJ generates these dead methods for reasons of incremental compilation.

After studying the null check aspect further, one can notice that the pruned version can be further improved by
using after returning advice instead of around advice, as follows.

after() returning(Object lRetVal): methodsThatReturnObjects()
{ if (lRetVal == null)

{ System.err.println(
“Detected null return value after calling ” +
thisJoinPoint.getSignature().toShortString() +
“ in file ” + thisJoinPoint.getSourceLocation().getFileName() +
“ at line ” + thisJoinPoint.getSourceLocation().getLine());

}
}

The measurements for this final version are given in the column labelled “Best AspectJ”. As indicated by the
ASPECTJ TAG MIX metrics, the overhead due to around in the Pruned version (0.99% for AROUND CONVERSION

and 6.94% for AROUND PROCEED) is replaced by a smaller overhead due to after after returning (2.42 % for AF-
TER RET EXPOSURE).

There are some important observations to be made with this benchmark. First, even though the pointcut in this
example was very simple, it shows that it is very easy for a programmer to define a pointcut that applies to more places
than absolutely necessary. Further, the decision of the AspectJ compiler to use closures or inlining for around advice
can have a huge impact on runtime, due to the general, but heavy-weight, strategy used for closures. Programmers may
unwittingly trigger the use of closures if they forget, or don’t realize, the importance of avoiding pointcuts that apply in
the aspect body. The inlining strategy for around advice is much more efficient than the closure-based strategy, but it
can still lead to significant overheads, particularly if applied to method calls that execute frequently. Thus, we feel that
this example shows that it would be worthwhile to further improve the approach to generating code for around advice.
Finally, programmers should be aware of situations where after advice could be used instead of around advice, since
the overheads for after advice are lower.
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5.3.2 Figure

The Figure benchmark illustrates the use of aspect-oriented programming in a figure editor [15]. Here we have selected
just one aspect from that example, namely to update the display whenever one of the figure elements has been altered.

There is an interface called FigureElement, and all shapes that the editor support implement that interface, for
example the Point and Line classes. To capture any alterations to figure elements, we define a named pointcut:

pointcut move():
call(void FigureElement.moveBy(int, int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

The first use of call captures the moveBy operations on any of the implementations of FigureElement; the other
disjuncts deal with alterations to individual classes.

Now when do we want to update the display? Clearly whenever a move has occurred, but not when the move is
part of a more complex operation that is itself a move. Furthermore we only want to update the display when the
relevant move has been successfully completed, not when it throws an exception. These considerations lead [15] to
declare the following pointcut and advice:

after() returning: move() && !cflowbelow(move()) {
Display.needsRepaint();
}

The primitive cflowbelow checks that there is a move somewhere strictly below the top of the call stack. One
might argue that it is not necessary to use this primitive: it would be possible to explicitly write out all the composite
operations. In that case, however, the pointcut depends on intimate implementation detail, and is not robust to changes
in that detail.

In the present paper, the purpose of the Figure benchmark is to examine the cost of using cflowbelow. We have
thus disabled the other aspects introduced in [15], using only the core figure editor and the above advice. The core
program is only a skeleton, and it does no interesting computation on its own. It is therefore to be expected that there is
a very high overhead as a proportion of the total computation time. This expectation is confirmed by the first column of
Figure 7: the slowdown is about a factor of 23 compared to an equivalent, hand-coded version (where all the necessary
calls to needsRepaint are inserted by hand into the core).

To understand this huge performance penalty, it is worthwhile to examine the numbers in more detail. It appears
that there is a great deal of allocation, as indicated by the EXECUTION SPACE MEASUREMENTS. Furthermore the
tag mix reveals that the relevant overheads lie in the administration of CFLOW ENTRY and CFLOW EXIT, as well as
ADVICE TEST. The dynamic tests for cflowbelow are thus at the root of the problem. However, from the last row in
our table we can conclude that all the dynamic tests are in fact runtime constants — so there is likely to be a significant
saving possible.

As described in [23, 14], the AspectJ compiler generates code to maintain a stack to keep track of each cflow(P)
pointcut. When a join point that matches P is encountered, a new entry is pushed onto the stack; and when such a
join point terminates, the stack is popped. We examined the generated code using the Dava decompiler to gain further
insight.

In this example, the entries of the stack are zero length arrays of Object. In general these arrays are used to store
variable bindings. A pointcut can bind variables through a number of primitives such as args(x), which assigns the
value of a join point parameter to x. If the pointcut P in cflow(P) binds variables, we need to keep track of them in
the stack. In this benchmark program, the arrays have zero length because there are no arguments to bind.

Such a stack of zero length arrays could be more efficiently implemented using a counter; and the only check we
need to make is that the argument of cflow does not have variable binders in it. This optimization was implemented by
modifying the AspectJ compiler, and the results are displayed in the second column of figure 7. The results are a lot
better, but there are still significant overheads. The slowdown compared to the hand-woven version is a factor of 7.6.
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Orig. Counters Opt. Counters Single Thread Hand-woven

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 12 10 10 8 6
Instructions Loaded 607 546 633 347 189
Instructions Dead 241 218 280 89 37
Code Coverage (%) 60 60 56 71 80

PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 296 295 262 259 257
Instructions Loaded 72304 72346 64503 63936 61853

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 1461 491 274 210 95
Total time - client (sec) 4.70 1.52 0.38 0.26 0.20
JIT time - client (sec) 0.04 0.03 0.02 0.02 0.01
GC time - client (sec) 0.12 0.00 0.00 0.00 0.00
Slowdown vs. handcoded(×) 23.50 7.60 1.90 1.30 1.00
Time - client noinline (sec) 4.94 1.64 0.44 0.26 0.21
Slowdown vs. handcoded (×) 23.52 7.81 2.10 1.24 1.00
Time - interpreter (sec) 39.57 14.39 4.89 3.28 1.98
Slowdown vs. handcoded (×) 19.98 7.26 2.47 1.66 1.00

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 370 1 1 1 1
Obj. Allocation Density (per kbc) 10.96 0.01 0.02 0.02 0.05
#Garbage Collections 488 0 0 0 0
ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 92.97 79.08
#overhead/#advice (whole) 113.17 32.33
#advice/#total (whole) 0.008 0.02
AspectJ Runtime Lib % (whole) 84.89 61.55
ASPECTJ TAG MIX FOR ALL INSTRUCTIONS

(WHOLE PROGRAM) (%)
BASE CODE 6.21 18.48
ASPECT CODE 0.82 2.45
AspectJ Overhead (total) 92.97 79.08
ADVICE EXECUTE 0.27 0.81
ADVICE ARG SETUP 0.69 2.04
ADVICE TEST 10.41 24.05
CFLOW ENTRY 38.34 24.46
CFLOW EXIT 43.27 27.72
ASPECTJ TAG MIX FOR ALLOCATIONS ONLY

(WHOLE PROGRAM) (%)
BASE CODE 0.01 99.65
AspectJ Overhead (total) 99.99 0.35
CFLOW ENTRY 99.99 0.15
ASPECT CLASS INIT 0.20
ASPECTJ METRICS FOR SHADOWS

(Whole Program) (%)
Shadow guards runtime const. 100.00 100.00

Figure 7: Figure Benchmark Measurements

24



The overheads of this counter-based implementation are due to the fact that it is necessary to maintain a counter
for each cflow in each thread. To this end the implementation keeps a mapping from threads to counters: upon each
push, pop or is-empty operation, one first needs to retrieve the relevant counter for the current thread.

To improve upon this bookkeeping, note that the thread can be assumed to be the same throughout a method body.
It is therefore possible to retrieve the relevant counter once when the first cflow operation is done, store it in a final
local variable, and then use the same counter throughout the method. To measure the impact of this optimization, we
decompiled the output of our modified compiler, and applied the transformation by hand. The results are displayed in
the third column of Figure 7: the slowdown has now been brought down to a factor of 1.90. From the difference with
the interpreted version, it appears that the change enables the JIT to do a much better job.

Of course for this very simple benchmark, we know that there is only a single thread, and thus the thread-counter
mapping is wholly unnecessary. The result of eliminating it from our code (again by editing the decompiled source)
is shown in the penultimate column of Figure 7. It further reduces the slowdown to a factor of 1.30. It would not
be too difficult to implement this optimization, with a conservative whole-program analysis to determine whether the
application is single-threaded.

In [30], it is argued that by building an accurate call graph that accounts for advice as well as ordinary method calls,
one may often completely eliminate the dynamic tests for cflow. That paper makes a lot of simplifying assumptions,
however, and in fact the language under consideration is a simple aspect-oriented variant of Pascal. We expect,
however, that the same techniques can be applied in the more general setting of Java, and we are working towards an
implementation using the Soot analysis framework [29]. Such an implementation would truly be on a par with the
hand-woven version.

5.3.3 LoD

A very interesting application of AspectJ for checking the Law of Demeter was proposed by Lieberherr, Lorenz and
Wu [20] and the code to accompany the paper is also available [21]. In the paper they suggest two checkers, one for
object form and another for class form. We have used the object form checker as our benchmark. The basic idea is that
a program has correct Law of Demeter object form when an object can only send messages to: itself, its arguments,
its instance variables, a locally-constructed object or a returned object from a message sent to itself. To achieve this
check Lieberherr et. al. have written a concise, but advanced collection of aspects which includes relatively complex
pointcuts, and the use of percflow, pertarget and cflow.

The basic idea behind the checking code is that each calling context is associated with a hash table (through the
use of percflow) and all valid (preferred) objects for that context are inserted into the hash table for that context. Then,
at each method call, the checker verifies that the method call uses only preferred objects, otherwise it is a violation of
the Law of Demeter object form.

In order to generate an interesting application of the checker, we applied it to the same simulator base code as used
in Sections 5.3.1 and 5.2.1. We slightly modified the Law of Demeter code so that each error would be reported
only once (in the original code an error was reported once for each dynamic instance of the error, which led to large,
difficult to read, output files). After applying the Law of Demeter checker code (AspectJ code) to the simulator code
base (Java code), and executing the resulting woven code, the following three object form violations were reported.

!! LoD Object Violation !!
call(double certrevsim.RevocationInfo.

getNextUpdate())
at EndEntity.java:26

!! LoD Object Violation !!
call(double certrevsim.RevocationInfo.

getFirstDeltaUpdate())
at EndEntity.java:29

!! LoD Object Violation !!
call(RevocationInfo certrevsim.Repository.

requestRevocationInfo())
at Simulator.java:248

At first glance one might expect that the AspectJ overhead for this benchmark should be small in relation to the
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amount of work done in each advice body (which includes inserting and testing for membership in hash tables).
However, as shown in Figure 8 this was not the case. As demonstrated by the column labelled “Orig.”, the original
benchmark code has almost 96% overhead, which is entirely unexpected. By examining the ASPECTJ TAG MIX

metrics it is immediately obvious that cflow is the problem, with 95% of the instructions and over 99% of the object
allocations coming from CFLOW ENTRY and CFLOW EXIT. The effect of all these allocations has a huge impact on
execution time, with garbage collection taking 73.52 seconds, out of a total of 90.52 seconds.

In order to examine this problem in more depth, we created a second version of the benchmark using our modified
ajc which implements cflow with counters instead of stacks (“Counter” column in Figure 8). As we saw in the
figure benchmark, the counters do improve performance substantially, reducing total running time to 4.81 seconds
and garbage collection time to 0.20 seconds. However, there remains over 80% overhead due to CFLOW ENTRY and
CFLOW EXIT, which is still higher than expected.

We examined the benchmark and found that cflow is used in two places, first in the definition of a pointcut, and
second in a percflow clause. The pointcut definition is as follows.

public pointcut scope(): !within(lawOfDemeter..*)
&& !cflow(withincode(* lawOfDemeter..*(..))) ;

public pointcut StaticInitialization(): scope() && staticinitialization(*);

public pointcut MethodCallSite(): scope() && call(* *(..));

// ... followed by many other uses of scope()

Note that the definition of the scope() pointcut contains a cflow and then scope() is used within the definition of
many other pointcuts. By examining the decompiled output of ajc we determined that at least 13 cflow stacks are
created for the same cflow, presumably due to the inlining of the scope() pointcut inside the other pointcuts. Since
all 13 stacks are updated on method entry and exit of some key methods, this leads to enormous overheads. Since the
states of all of these stacks are the same, there is clearly room for improvement in the ajc code generation strategy,
and further work will be needed to avoid the creation of unneeded duplicate stacks.

To show that most of the overhead is due to this use of cflow and not the percflow, we created a version of the
benchmark that eliminated the cflow clause in the definition of the scope() pointcut. This is safe for our benchmark
because we know for our case it is not needed. The performance measurements for this version are given in the column
labelled “No cflow”, and it is clear that we have removed the majority of the cflow overheads.

Clearly programmers like to include cflow pointcuts for ease of specification and for safety, so it seems important
to work on efficient implementations for them. By eliminating the multiple copies of stacks, and applying the efficient
counter schemes presented in the previous section, it should be possible to greatly reduce the overheads due to cflow.

Even after dealing with the cflow overheads, there still remains about 14% overhead which is due mostly to the
percflow and pertarget aspects. The pertarget overhead shows up in two ways. First, there are some significant
overheads for ADVICE ARG SETUP (4.93%) and ADVICE TEST (1.99%). These overheads are larger than normal
because the pertarget advice leads to extra code to be generated that checks if the aspect instance corresponding to
the target already exists, and to allocate a new aspect instance if one does not exist. Also, the space requirements for
percflow and pertarget are significant. The BASE CODE only accounts for 2.20% of the total allocations, whereas the
percflow accounts for 44.90% (shown in the bin for CFLOW ENTRY), and the pertarget accounts for 25.83% (shown
in the bin for ADVICE ARG SETUP, since this is where new aspect instances are created in the case of pertarget
aspects). We expect that at least some of these space overheads could be reduced.

5.4 Benchmark for performance improvement

The final benchmark in our set is somewhat different from the others in that the aspects used for this benchmark were
intended to improve upon the performance of an existing Java program.
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Orig. Counters No cflow

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 60 59 59
Instructions Loaded 27809 25871 16570
Instructions Dead 11829 11809 7491
Code Coverage (%) 57 54 55

PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 383 381 381
Instructions Loaded 118453 116412 107111

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 2722 676 113
Total time - client (sec) 90.52 4.81 0.92
JIT time - client (sec) 0.55 1.77 0.16
GC time - client (sec) 73.52 0.20 0.06
Time - client noinline (sec) 91.77 4.31 0.86
Time - interpreter (sec) 151.32 19.27 1.94

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 975 38 38
Obj. Allocation Density (per kbc) 12.92 0.55 3.32
#Garbage Collections 1103 42 42

ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 95.95 84.33 13.97
#overhead/#advice (whole) 24.24 5.51 0.17
#advice/#total (whole) 0.04 0.15 0.84
AspectJ Runtime Lib % (whole) 89.34 68.92 10.59

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 0.09 0.38 2.25
ASPECT CODE 3.96 15.30 83.78
AspectJ Overhead (total) 95.95 84.33 13.97
ADVICE EXECUTE 0.009 0.03 0.21
ADVICE ARG SETUP 0.21 0.83 4.93
ADVICE TEST 0.18 0.62 1.99
AFTER RET EXPOSURE 0.003 0.01 0.07
AFTER THROWING 0.002 0.009 0.06
CFLOW ENTRY 45.13 39.31 3.78
CFLOW EXIT 50.41 43.49 2.84
PER OBJECT ENTRY 0.004 0.02 0.07
ASPECT CLASS INIT 0.001 0.004 0.02

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 0.02 2.20 2.20
ASPECT CODE 0.27 25.95 25.95
AspectJ Overhead (total) 99.71 71.85 71.85
ADVICE ARG SETUP 0.27 25.82 25.83
CFLOW ENTRY 99.43 44.90 44.90
PER OBJECT ENTRY 0.009 0.90 0.90
ASPECT CLASS INIT 0.002 0.23 0.22

Figure 8: Law of Demeter Benchmark Measurements
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5.4.1 *J Pool

This benchmark is drawn from our own tool set, namely the *J tool itself. The *J analyzer reads events one-by-one
from a trace file (as described in Section 4.3). Each time it reads a new event, a new object is allocated to hold this
event; since there are potentially millions of events in a trace file this places significant stress on the memory manager.
However, it is a property of the implementation that for any given trace file, no more than the last two events will ever
be in use at any one time, which makes manual memory management of these objects possible (by reusing previously
allocated ones that are guaranteed to no longer be in use, rather than allocating new ones).

This optimization is implemented by maintaining two pools of events, each pool containing one object of each of
the various possible event type. At any one moment, one pool is “active” and the other is “inactive”; each time a new
event would have been allocated, the appropriate type of event from the active pool is reused instead, and the active
and inactive pools are swapped over. This guarantees that the last two events are always allocated from different pools,
which ensures that events in use can never collide with each other.

We wrote this optimization as a piece of around advice; in the original program a single method (newEvent) is
used to allocate new event objects, so this advice simply replaces calls to newEvent with code to reuse an object from
the appropriate pool as described above. Of course, this could be implemented relatively simply by just replacing the
body of newEvent, but this would make it harder to disable the optimization easily if required. Multiple trace files can
be read simultaneously by creating multiple objects of the appropriate class; therefore the advice is implemented in a
pertarget aspect, to ensure that different pools are used for each trace file (the current implementation actually reads
just one file at a time, so the aspect could be implemented without using pertarget, but this would be rather more
fragile).

The results of this optimization are detailed in Figure 9. The first column, “Aspect” shows it implemented as a
pertarget aspect as described above; the second column (“Hand-woven”) is for a manual implementation. Finally the
third column (“No pooling”) shows the unoptimized version for comparison. In each case, the *J analyzer was run on
a trace generated from a short run of a program to calculate the Fast Fourier Transform.

We have provided comparisons of running time with the unoptimized version; these show that introducing the
aspect provides a speedup of about 3%. In fact, there is some overhead from weaving, since the version that applies
pooling directly shows a speedup of about 8%. The amount of memory allocated drops by nearly a factor of 2, and the
number of garbage collections also goes down significantly (although the total time spent in garbage collection does
not; we do not know why this is). In fact, the improvement in running time is more marked for runs of *J involving
longer traces, but we were not able to collect the tag mix information for this due to time constraints.

6 Related Work

Most work on dynamic metrics has focused on either addressing a specific optimization problem such as memory
use (e.g. [7, 31]), or more generally (and voluminously) on software engineering quality or complexity measures (e.g.
[24, 34, 36]). More related work on analyzing programs through metrics is given in [8], along with a description of
our overall approach.

The performance of AspectJ programs has also been discussed and investigated in the literature, and typically it is
assumed or demonstrated to some degree that aspects do not impose unreasonable overhead. Kiczales et al’s overview
paper of AspectJ [16] for instance makes the pronouncement that (with respect to before/after advice) “...there should
generally be no observable performance overhead from these additional method calls.” Method calls inserted into
code to support advice testing are assumed to be simple and strict enough that the Just-In-Time compiler in most Java
Virtual Machine implementations will be able to inline the method call, and thus reduce any overhead to insignificance.
The AspectJ FAQ reinforces that perception, claiming that most constructions have little overhead, which “could be
optimized away by modern VM’s.” [35] (section 7.3).

There are a few studies that actually measured the performance impact of using aspects. Pace and Campo, for
instance, analyzed regular and aspect-oriented versions of a temperature control benchmark [6]. Although they found
one style of implementation to be over 3 times slower then the original, a different aspect-oriented approach had only
about 1% runtime overhead. They attribute the former to the internal use of reflection, and conclude that the impact
may depend on the problem under consideration. A more recent and larger study was done by Hilsdale and Hugunin
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Aspect Hand-woven No pooling

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 221 218 218
Instructions Loaded 48220 46869 46305
Instructions Dead 28621 27418 27843
Code Coverage (%) 41 42 40

PROGRAM SIZE WITH JAVA LIBRARIES (WHOLE PROGRAM)
Classes Loaded 893 890 890
Instructions Loaded 180138 178787 178326

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 2314 2243 2311
Total time - client (sec) 8.39 8.03 8.68
JIT time - client (sec) 0.57 0.56 0.57
GC time - client (sec) 1.87 1.82 1.83
Speedup vs. no pooling(×) 1.03 1.08 1.00
Time - client noinline (sec) 8.48 8.04 8.40
Speedup vs. no pooling (×) 0.99 1.04 1.00
Time - interpreter (sec) 42.60 41.07 42.51
Speedup vs. no pooling (×) 1.00 1.04 1.00

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 132 138 242
Obj. Allocation Density (per kbc) 0.66 0.69 1.29
#Garbage Collections 38 37 55

ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 2.73
#overhead/#advice (whole) 2.10
#advice/#total (whole) 0.01
AspectJ Runtime Lib % (whole) 0.00

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROGRAM) (%)
BASE CODE 95.96
ASPECT CODE 1.31
AspectJ Overhead (total) 2.73
ADVICE EXECUTE 0.12
ADVICE ARG SETUP 1.12
ADVICE TEST 0.87
PER OBJECT ENTRY 0.62

Figure 9: *J Pool Benchmark Measurements
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[14], examining both runtime and compile-time performance issues. A naive implementation is shown to have quite
poor performance (for a logging implementation they get a 2900% overhead versus a hand-coded implementation),
but they improve that to an “unlikely to be noticeable” 22% runtime overhead for an optimized version. Again they
attribute the former very poor performance largely to the use of reflection.

In the context of middleware, Zhang and Jacobsen [37] demonstrate that an aspect version of a CORBA/ORB
benchmark has negligible runtime overhead. They argue that an AspectJ implementation should have no overhead
since it is just specifying the same code in different ways (in the aspect versus in the program). In their case, however,
an aspect-oriented approach significantly simplified the program design (overall code reduction of 9%, fewer methods
per class on average, etc), so they are actually comparing an optimized design to an unoptimized design. The fact that
the optimized design only achieves the same speed as the unoptimized is an argument that a significant overhead may
well be present.

In their analysis, Zhang and Jacobsen also give data for a number of software engineering complexity metrics,
and use that data to show that the aspect-oriented approach is quantitatively simpler. Complexity is also considered
by Zhao, who proposes a specific complexity metric suite for aspect oriented programming [38]. We are focusing on
performance and execution time costs, rather then complexity.

Clearly particularities of the implementation of aspects have a large impact on the overhead. Sereni and de Moor
describe a better implementation of pointcut designators as well as a compiler flow analysis that can reduce the over-
head by eliminating many instances of runtime matching [30]. That paper is mostly a theoretical study, dealing with
a small toy language, and wholly without performance experiments. The results presented here suggest that such
optimization techniques may be quite important in practice.

Performance analyses have also been done on dynamic weaving approaches where an aspect is applied to a running
program. Dynamic weaving generally aims to enhance capabilities, allowing for instant “hot fixes” to be applied to
running code [27, 28]. Popovici et al show an aspect-aware Java Virtual Machine that imposes relatively little overhead
when aspects are inactive (1.5%–8% slowdown over a regular JVM), though that increases dramatically for active join
points (1.3×–5× slower than a statically-woven version).

Finally, more generic profiling methods have been applied to AspectJ programs. Hall’s CPPROFJ [11] for instance,
does call-path profiling of both pure Java and (limited) AspectJ programs, allowing the runtime cost of various method
execution sequences to be determined. CPPROFJ is sampling-based and is naturally much more coarse-grained than
our approach.

7 Conclusions

We have presented a tool set and a systematic method for analyzing the dynamic behaviour of AspectJ programs.
The main technical contributions are the definition of new metrics, as well as a novel method of computing these
metrics. In particular the idea of compile-time tags that are dynamically propagated allows us to accurately attribute
costs to specific language features. As discussed in Section 4, the overall system for collecting our data is complex—
modifications to *J and ajc were non-trivial, and this system constitutes a contribution by itself. One of the more
interesting and difficult components of the system is the propagation strategy, which has to be carefully designed in
order to attribute data correctly. The general paradigm could be transferred to similar situations, for example when
compiling ML to Java bytecode [4]. The same ideas could be integrated in a compiler that weaves the instrumentation
with the generated code, instead of using a tool like JVMPI, which was the route taken in this paper.

Our benchmark set provides the first collection of programs suitable for discussing performance of AspectJ. The
benchmarks we have chosen provide a good cross section of different uses of the language. We are continuing to
extend the collection, in particular using some of the examples from [19]. One small difficulty consists of programs
that make use of reflection: at present our propagation tools are unable to cope with reflective calls, and wrongly
attribute the cost of such calls to the base program, never to the aspect. This does not invalidate our measurements of
overheads, only the numbers for BASE CODE and ASPECT CODE.

The conventional wisdom that AspectJ does not introduce overheads seems to be explained by typical aspect usage.
First, advice generally applies to user code, yet typical Java programs spend most of their time in library calls. As
a percentage of the total execution time, the cost of advice is therefore insignificant in such applications. The Tetris
benchmark illustrates this phenomenon. Some of our benchmarks (in particular DCM) show the opposite behaviour,
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where the advice is so expensive that the overheads of applying it are dwarfed. Finally, intertype declarations have
very little overheads, except when it concerns the introduction of new constructors. This is demonstrated by Bean and
ProdLine respectively.

Contrary to popular belief, we did however also find significant overheads. This has led to the following guidelines
for AspectJ usage, as well as promising areas for future compiler research:

Loose pointcuts. It is easy to write a pointcut that matches too many join points. Even when some of the dynamic tests
fail, such loose specification can introduce significant overheads. It is particularly important to avoid around
advice that can apply to itself, as this forces the introduction of closures. This was illustrated in the first two
versions of the Nullcheck benchmark. Sometimes it is however not possible to tighten pointcuts to avoid this
situation, so a more careful consideration of the use of closures is a fruitful topic for future research.

Advice that is too generic. When using the very generic form of around, this causes a significant amount of boxing
and unboxing to convert arguments to the right form.

Unwarranted use of around. Because of the above, it is generally preferable to eschew around in favour of after
returning when possible. The most striking example we found of this phenomenon occurred in the final version
of the Nullcheck benchmark. In fact, that improvement was not noticed by a number of seasoned AspectJ users
to whom we showed the original code, so this is an instance where our methods give new insights.

Cflow. It is tempting to write pointcuts using cflow, but often this introduces significant overheads. This was illustrated
by three separate benchmarks, namely Nullcheck, Figure and LoD. Where possible, it is better to use withincode
in lieu of cflow, but this is arguably less robust with respect to refactoring. Because it is not always possible to
eliminate cflow, we investigated various ways of improving its implementation:

• When there is no argument binding, the current use of stacks in ajc can be replaced by counters. We have
in fact implemented this optimization in ajc, and found it to be highly effective.

• The use of such counters is still somewhat expensive due to the fact that we have to maintain one for each
thread. If the application is known to be single-threaded, significant savings are possible, as there is no
need to maintain a mapping between threads and counters.

• A whole-program analysis based on the call graph can eliminate all runtime overheads of cflow. An initial
study in this direction, for a very small toy language, was undertaken in [30].

Pertarget. The use of per clauses to control aspect creation carries a non-negligible overhead, as demonstrated by
the *J Pool benchmark. It might be possible to devise a static analysis which detects that only one instance will
be created in a particular application.

For all programmers with an interest in aspect-orientation, it is important to understand the implications of using
aspects on the behaviour of their programs. The tools we have presented are an important step towards this goal, but
perhaps even more important is the construction of a representative set of benchmarks that is accepted by the whole
community. We hope that the benchmarks presented here provide a starting point, and that others will join us in
extending and improving it.

We will be making a public release of the *J tool so that others can collect our Java-based metrics for their own
programs. To benefit from these tools, one also needs a compiler that assigns static tags; for now we are using a
modified version of the standard AspectJ compiler ajc. Inspired by the results of the present paper, we have begun
the implementation of an optimizing AspectJ compiler based on Soot [29], and this compiler includes that tagging
scheme.
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Appendix I: Tags

General Tags

BASE CODE: This tag represents instructions that are not interpreted as AspectJ overhead or are not part of an advice
body. They represent the base program that exists before weaving.

ASPECT CODE: This tag represents the default for any instruction that is executed from an aspect, regardless of
where it was originally defined. It is propagated, so that, for example, the body of a method call from advice
will receive the ASPECT CODE tag.

NO TAG: This is a special tag inserted by the compiler which is meant to be overwritten by a propagated tag during
analysis. An instruction with this tag is to be interpreted equivalently to an instruction with no tag at all. It is
a necessary consequence of the way tags are encoded in a code attribute. Instructions in library classes, which
have not been explicitly tagged, are also assumed to have NO TAG.

Tags to support intertype declarations

INTERMETHOD: An intertype method declaration results in the body of the new method being compiled into a method
on the aspect class, and a dispatch method being added to the target class. The instructions in this dispatch
method have this tag.

INTERFIELDGET, INTERFIELDSET: Some intertype field declarations result in accessor methods being woven into
the target class. The instructions in these accessor methods have these tags.

INTERFIELD INIT: Intertype field declarations result in initialization code being woven into either the target class’s
constructor, or its static initializer. These instructions invoke initialization methods on the aspect to handle
variable initialization. This initialization code has this tag.

INTERCONSTRUCTOR PRE, INTERCONSTRUCTOR POST: If an aspect has an intertype constructor declaration two
methods are created on the aspect: a preInterConstructor method and a postInterConstructor method. A new
constructor method is added to the class, and it invokes both of these methods. The instructions that load these
methods’ arguments and invoke these methods have these tags.

INTERCONSTRUCTOR CONVERSION: This represents overhead involved in calling methods on org.aspectj.runtime.-
internal.Conversions from within a constructor added by an intertype constructor declaration.

Tags applying to all kinds of advice (before, after and around)

ADVICE EXECUTE: This tag represents the overhead associated with executing the method implementing a piece of
advice. Advice bodies are compiled as methods in the aspect class. When an aspect with advice is woven into a
base class, an invoke instruction for the advice method is added to the relevant join point shadows.

ADVICE ARG SETUP: This tag represents the overhead associated with acquiring an aspect instance at a join point at
which advice is to be executed, and exposing arguments to the advice body. At least one instruction of this kind
will precede an advice execution instruction.

ADVICE TEST: When it cannot be statically determined whether an advice body should be executed at all join points
corresponding to the join point shadow at which the advice invocation instructions have been added, then those
invocation instructions are wrapped in a test. The instructions corresponding to this test have this tag.
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Tags applying to around advice only

AROUND CONVERSION: This represents the conversion of arguments and return values related to a proceed() call
within around advice. This conversion is done by making calls to methods on org.aspectj.runtime.internal.Con-
versions, which convert between primitive types and objects.

AROUND CALLBACK, AROUND PROCEED: Both of these tags represent an overhead involved in making a proceed()
call from within around advice. One of these tags, AROUND CALLBACK, is specific to the run method on
closure classes.

CLOSURE INIT: Around advice may result in the creation of closure classes. When it does,the instructions in the
constructors of these classes have this tag.

Tags applying to after advice only

AFTER RETURNING EXPOSURE: This tag represents the overhead involved in exposing the value returned at a join
point to the body of a piece of after advice.

AFTER THROWING HANDLER: In order to support after and after throwing advice, exception handling code is in-
serted which catches any exception, executes any pertinent advice, and then rethrows the original exception.
The instructions responsible for this have this tag.

Tags to support the cflow pointcuts and percflow aspects

CFLOW ENTRY, CFLOW EXIT: The cflow and flowbelow pointcuts require that a representation of the call stack be
managed during the execution of the program. At every relevant join point shadow, this representation must be
updated. Instructions for doing so receive one of these tags.

An aspect that is declared with percflow or percflowbelow clause will also lead to instructions with this tag.

Tags to support perthis and pertarget aspects

PEROBJECT ENTRY: By default, aspect instances are singletons. They can however be associated on a per-object
basis, either with the execution or target objects at join points selected by a given pointcut. The instructions
inserted at join point shadows matched by the pointcut to manage these instances have this tag.

PEROBJECT GET, PERBOJECT SET: These accessor methods are added to a class to acquire instances of an aspect
that is declared pertarget or perthis.

Tag for exception softening due to declare soft

EXCEPTION SOFTENER: This tag represents the overhead involved in softening exceptions. The declare soft dec-
laration in an aspect results in exceptions of a given type, thrown from within join points selected by a given
pointcut, being wrapped in the unchecked org.aspectj.SoftException, which is then thrown.

Tags to handle privileged aspects

PRIV METHOD, PRIV FIELD GET, PRIV FIELD SET: In order to support privileged aspects, public wrapper methods
for the class’s private methods, and public accessor methods for the class’s private fields, are inserted during
weaving. The instructions in these new methods have these tags.

Miscellaneous aspect tags

CLINIT: The instructions in the static initializer of the aspect class have this tag. The static initializer may setup the
default singleton instance of the aspect or setup the cflow stack, if necessary. Instructions woven into the static
initializer of a base program class, such as for initializing the static join point information, also have this tag.

INLINE ACCESS METHOD: This tag represents the overhead involved in calling a method defined on an aspect when
there is a static dispatch method. The instructions of the static dispatch method have this tag.
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