
McGill University

School of Computer Science

Sable Research Group

A Study of Type Analysis for Speculative Method Inlining in a
JIT Environment

Sable Technical Report No. 2004-4

Feng Qian and Laurie Hendren
{fqian, hendren}@sable.mcgill.ca

October 17, 2004

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

2 Background and Related Work 4

2.1 Background . 4

2.2 Related work . 5

3 A Type Analysis Framework Supporting Speculative Inlining 6

3.1 Framework structure . 6

3.2 A limit study of method inlining using dynamic type analyses 8

3.2.1 An ideal type analysis . 8

3.2.2 Experimental approach . 8

3.2.3 Benchmarks . 8

3.2.4 Limit study results . 9

3.2.5 Discussion . 9

4 Dynamic Interprocedural Type Analysis 11

4.1 Dynamic variable type analysis (VTA) . 12

4.1.1 Design . 12

4.1.2 Propagations . 12

4.1.3 Effectiveness of dynamic VTA . 13

4.1.4 Memory overhead of whole-program VTA . 13

4.2 Demand-driven analysis . 13

5 Conclusions, Observations and Future Work 15

5.0.1 Observation 1 . 15

5.0.2 Observation 2 . 16

5.0.3 Future work . 16

5.0.4 Acknowledgments . 16

1

List of Figures

1 TypeAnalaysis interface . 7

2 Type analysis framework diagram . 7

3 Model of VTA events . 12

4 (213 javac) GC behaviors affected by VTA . 14

5 An example where inlining can reduce optimization opportunities 15

List of Tables

I Coverage of the hottest call sites . 8

II Limit study of method inlining using type analyses . 10

III Comparison of VTA and IdealTypeAnalysis for inlining interface calls 13

2

Abstract

Method inlining is one of the most important optimizations for JIT compilers in Java virtual ma-
chines. In order to increase the number of inlining opportunities, a type analysis can be used to identify
monomorphic virtual calls. In a JIT environment, the compiler and type analysis must also handle
dynamic class loading properly because class loading can invalidate previous analysis results and inval-
idate some speculative inlining decisions. To date, a very simple type analysis, class hierarchy analysis
(CHA), has been used successfully in JIT compilers for speculative inlining with invalidation techniques
as backup.

This paper seeks to determine if more powerful dynamic type analyses could further improve inlining
opportunities in a JIT compiler. To achieve this goal we developed a general dynamic type analysis
framework which we have used for designing and implementing dynamic versions of several well-known
static type analyses, including CHA, RTA, XTA and VTA.

Surprisingly, the simple dynamic CHA is nearly as good as an ideal type analysis for inlining virtual

method calls. There is little room for further improvement. On the other hand, only a reachability-
based interprocedural type analysis (VTA) is able to capture the majority of monomorphic interface

calls.
We also found that memory overhead is the biggest issue with dynamic whole-program analyses. To

address this problem, we outline the design of a demand-driven interprocedural type analysis for inlining
hot interface calls.

1 Introduction

Object-oriented programming languages encourage programmers to write small methods and compact classes
so that the code is easy to read, modify, and maintain. Java programs exemplify this design idea: many
tiny methods have only one line of code to access a field, return a hash value, or invoke another method.
Design patterns [12] use class inheritance and virtual calls extensively to obtain great engineering benefits.
Code instrumentation tools, such as AspectJ compilers [4, 5], insert many small methods into instrumented
programs. The downside of using small methods is that a program has to make frequent method calls.
Object-oriented programs heavily rely on compilers to reduce calling overhead.

Efficient implementation of polymorphic calls has been studied extensively in the context of C++ [11].
The Java programming language only allows single inheritance on normal classes, but allows multiple inher-
itance on interfaces. Virtual calls in Java can be categorized into two kinds: virtual calls on normal class
types and interface calls on interfaces. Virtual calls can be implemented very efficiently by modern JIT
compilers. Various techniques reduce the overhead of interface calls as well.

Even though the direct overhead of virtual calls is low, further performance improvement is often ob-
tained from method inlining and optimizations on inlined code. Inlining creates larger code blocks for
program analyses and improves the accuracy of intraprocedural analyses which must often handle method
calls conservatively. Thus, method inlining is a very important part of a Java optimizer because it further
reduces method call overhead and also increases other opportunities for optimizations.

A key step of method inlining is to decide which method(s) can be inlined at a call site. This can
be achieved by using information conveyed via language constructs such as final and private declarations
(which provide restrictions on which methods could be called), or the information can be gathered using a
type analysis which determines which runtime types may be associated with a receiver, and hence which
methods may be called. Another alternative is to profile targets of call sites. Inlining based on language
constructs and type analyses results is conservative at analysis time and it supports direct inlining that
maximizes optimization opportunities. In this paper, we study method inlining using type analysis results.

Static type analyses for Java programs [6, 9, 21, 22] are not directly applicable to JIT compilers because
of dynamic features of Java virtual machines. The type set of a variable might have new members as new
classes are loaded and thus optimizations based on old results could be invalidated. Various techniques have
been devised to use dynamic class hierarchy analysis for directly inlining in the presence of dynamic class
loading and JIT compilation.

In this paper we evaluate the effectiveness of several dynamic type analyses for method inlining in a Java
virtual machine (Jikes RVM [1]). We built a common type analysis framework for expressing dynamic type

3

analyses and used the results of these analyses for speculative inlining with invalidations. We then used this
framework to perform a study of how many method calls can be inlined for the different varieties of type
analyses.

We were also interested in finding the upper bound on how many calls that can be inlined, to determine if
more accurate type analyses are required. To gather this information we used an efficient call graph profiling
mechanism [18] to log call targets of each virtual call site. The logged information is used as an ideal type
analysis for re-executing the benchmark. We compare the inlining results of other type analyses to the ideal
one. In order to measure the maximum inlining potential of a type analysis, we also relaxed the size limit
on inlining targets.

Our results were quite surprising. The simple CHA is nearly as good as the ideal type analysis for inlining
virtual method calls and leaves little room for improvement. On the other hand, CHA is less effective for
inlining interface calls. Further, we found that the majority of interface invocations are from a small number
of hot call sites which are used in a very simple pattern.

In order to capture the monomorphic interface calls we developed dynamic VTA, which is a whole-
program analysis. We analyzed the effectiveness and costs of this whole-program approach. We found
that the main difficulty of such a dynamic whole-program analysis is that it requires large heap space for
maintaining analysis data which must co-exist with application data in the heap. From our experience, we
believe a demand-driven approach would make a dynamic interprocedural analysis practical in Java virtual
machines and we suggest such an approach.

Our objective is to understand how well a dynamic type analysis can perform with respect to method
inlining in a JIT compiler, and what opportunities there are for improvement. In this study, we made
following contributions:

• A limit study of method inlining using dynamic type analyses on a set of standard Java benchmarks;

• Development and experience of an interprocedural reachability-based type analysis in a JIT environ-
ment;

• Outline of a demand-driven type analysis for inlining interface calls.

We introduce necessary background and related work in Section 2. In Section 3, we describe the design
of a common type analysis framework for speculative inlining. The limit study results are also presented
in this section. The whole-program VTA type analysis is described in Section 4 with experimental results.
Finally, in Section 5, we conclude with some observations and plans for future work.

2 Background and Related Work

Methods are important semantic abstraction boundaries for object-oriented programs. A method call requires
setting up a stack frame, passing parameters and returning the result. A virtual call has the extra cost of
looking up the call target at runtime. Compiler writers work hard to remove these boundaries to improve
performance. Method inlining is an important optimization of object-oriented programs. Inlining both
reduces the direct cost of calls and also creates new opportunities for further optimizations on inlined code.

2.1 Background

Java methods can be categorized into two types: non-virtual and virtual. Static and instance initialization1

methods are non-virtual, and the rest of the methods are virtual. A JIT compiler can bind a non-virtual
call and its target at compile time, if the callee method has been resolved. Static binding enables efficient
implementation of non-virtual calls. For example, a resolved non-virtual call takes two instructions in Jikes
RVM.

1Methods with a special name <init>.

4

The beauty of object-oriented programming languages comes from supporting virtual methods. In the
Java programming language, a virtual call has the form of <x, A.m()> where x is a variable pointing to
objects of type A or its subtypes, and m() is the method signature. The real target of each invocation
depends on the type of object pointed to by the variable x at runtime. The object pointed to by x is called
the receiver of the call, and m() is a callee method signature.

In the Java virtual machine specification, virtual methods are invoked by invokevirtual or invokeinterface
instructions, depending on whether the declaring class of the callee method is a class or interface. A virtual
call is slightly more expensive than a non-virtual one since it requires method lookup. By taking advantage
of single inheritance, the invokevirtual bytecode is implemented by three instructions in Jikes RVM. The
implementation of invokeinterface is much more expensive than invokevirtual due to multiple inheritance.
Alpern et. al. [2] give an excellent introduction and provide an efficient solution to the problem.

Our focus in this study is on the inlining of virtual method calls. Due to polymorphism, a virtual call
may invoke several different methods in the course of program execution. Compilers can use a static type
analysis or profiling information to devirtualize the call to a set of possible target methods and inline one or
several of them into the caller. The Java execution model allows dynamic class loading which loads classes
only on first use, and lazy compilation which compiles methods only on first use. A new challenge of type
analyses in a JIT environment is to handle these dynamic features properly. We discuss existing work on
this topic in the rest of this section.

2.2 Related work

An easy solution to dynamic class loading is to guard inlined code with runtime checks. Detlefs and Age-
sen [10] pioneered this technique in Sun’s JVM. Given a virtual call site <x, A.m()>, a type analysis (e.g.
CHA) might be able to prove the call site is monomorphic at compile time and the target is A.m(). If a
JIT compiler chooses to inline the call site, it generates a class test instruction comparing x’s type to A. The
inlined A.m() is executed only if the runtime check succeeds, otherwise a normal virtual call is made.

The drawback of the class test is that it only covers the case when an object type is A. If the object
type is a subclass B which does not override A.m(), the control falls to the normal virtual call, even though
the target is still A.m(). Method tests fix the problem by testing the target method address instead of the
receiver’s type. After instructions loading x’s type information (A or B), the compiler generates one more
instruction to obtain the target address of m() from the type information (A.m() even if the type is B). The
inlined code is protected by a test of the target address to the address of A.m(). A single method test can
cover more classes than a class test with the cost of one load instruction in the fast path.

Method and class tests have direct runtime overhead and optimizations on inlined code are limited by
conditional test instructions. Detlefs and Agesen [10] pointed out that, in a Java virtual machine, a compiler
can directly inline currently monomorphic call sites induced by CHA. When dynamic class loading makes an
inlined monomorphic call site be polymorphic, the class loader must invalidate the compiled method which
directly inlined the call site. The next invocation of an invalidated method triggers recompilation using
the new, correct CHA results. To ensure the approach is safe for compiled methods running on threads,
it requires a static analysis (e.g. invariant argument analysis [10]) to prove the preexistence of receiver
variables of inlined calls.

The invariant argument analysis may not always succeed in removing method and class tests for inlined
monomorphic calls. Ishizaki et. al. [16] presented a code patching technique to remove the direct overhead
of all method and class tests for monomorphic call sites in the presence of dynamic class loading. Code
patching uses CHA to identify monomorphic calls at compile time. Each inlined call site has a backup path
which does normal virtual invocation. The compiler records the addresses at the beginning of inlined code
and the start of backup path. It also registers a dependency of the inlined site on the assumption that the
call is monomorphic. When dynamic class loading happens and invalidates the assumption, the compiler
patches the code at the beginning of inlined code by a direct jump instruction to the address of the backup
path. The virtual machine can optionally reset the invalidated method’s entry in the virtual method table.

Ishizaki et. al. [16] also conducted an extensive study of dynamic devirtualization techniques for Java
programs. In their experiments, size limits were put on inlined targets, and techniques using dynamic CHA

5

were shown to inline about 46% of virtual calls (execution counts). Our study answers the question of what
is the limit of method inlining using different type analyses. By lifting the size limit on hottest call sites, we
were able to understand the maximum inlining potential using a type analysis. Our limit study shows that
CHA is nearly as perfect as an ideal type analysis.

A static type analysis calculates conservative type sets for variables in object-oriented programs. Class
hierarchy analysis (CHA) [9] assumes all subtypes of a variable’s declaring type are in the runtime type set
of the variable. Rapid type analysis (RTA) [6] performs a one pass scan of the program and prunes the
CHA results by removing types that do not have an allocation site in the program. XTA [22] is a simple
interprocedural type analysis. It uses one set to represent all variables in a method, and propagates type sets
along call edges. Variable type analysis (VTA) [21] is a fast reachability-based interprocedural type analysis.
Each variable has a type set and the analysis uses intraprocedural data-flow. More advanced analyses have
higher costs. The second focus in our study is to show how to adopt these static type analyses to a JIT
environment and to study their effectiveness on speculative method inlining. We also measure the cost of
whole-program dynamic VTA and outline a practical demand-driven approach.

3 A Type Analysis Framework Supporting Speculative Inlining

A static analysis is performed at compile-time and must make conservative assumptions that include all
possible runtime executions. A static type analysis answers a basic question: what is the set of all possible
runtime types of variable v at program point P . A dynamic type analysis is performed in a JIT environment,
and therefore it is time-sensitive. It answers a query similar to a static one, except the answer is not for all
executions, but for execution prior the time of answering the query. The results may change over program’s
execution. In order to use type analysis results for optimizations in a JIT environment, there are a few
requirements we set for the analysis:

dynamic: it has to handle Java’s dynamic features seamlessly, such as dynamic class loading, reference
resolution, and JIT compilation;

conservative: analysis results must be correct at analysis time with respect to the executed part of the
program;

just-in-time: the analysis should be able to notify clients when previous analysis results are about to
change during execution.

A dynamic type analysis fits into a Java virtual machine without changing the lazy strategy of handling
class loading and compilation. The conservativeness ensures optimizations based on analysis results are
correct at the analysis time (it might be invalidated in the future). If the analysis can update its results
just-in-time, it can be used for speculative optimizations with some invalidation mechanisms. Our objective
is to design a type analysis framework supporting speculative inlining in a JIT compiler.

3.1 Framework structure

We designed a type analysis interface shown in Figure 1. In a Java method, a call site is uniquely identified
by the method and a bytecode index. Given the method and bytecode index, the getNodeId method returns
a node ID for further queries. The node ID allocation decides the granularity of different type analyses. For
example, CHA and RTA use a single ID for all call sites, XTA allocates a node ID for all call sites in the
same method, and VTA assigns different IDs to different call sites. The lookupTargets method returns
an array of targets resolved by using reaching types of the node with a given callee method signature. The
detailed lookup procedure is the same as virtual method lookup, defined by the JVM specification [17]. An
inline oracle makes inline decisions according to the lookup results.

If the type analysis finds a monomorphic call site (with only one target), then the oracle decides to
perform speculative inlining (using preexistence or code patching). It must register a dependency via the

6

checkAndRegisterDependency method. A dependency says that, given a node and a callee method signa-
ture, a compiled method (cm) is valid only when the lookup results have one target that is the same as the
parameter target.

After registering the dependency successfully, any change in the type set of the node causes verification
of dependencies on this node. The verifyDependency method is called by the type analysis when the node
has a new reaching type. For each dependency of the node, the verification procedure performs method
lookup using the new reaching type and the callee method signature. If the lookup result is different from
the target method of the dependency, the compiled method must be invalidated immediately.

public interface TypeAnalysis {

public int getNodeId(VM_Method caller, int bcindex);

public VM_Method[] lookupTargets(int nodeid, VM_Method callee);

public boolean checkAndRegisterDependency(int nodeid,

VM_Method callee,

VM_CompiledMethod cm,

VM_Method target);

protected void verifyDependency(int nodeid, VM_Class newKls);

}

Figure 1: TypeAnalaysis interface

A TypeAnalysis implementation has to monitor system events such as class loading, method compilation,
etc. We have implemented several type analyses as depicted in Figure 2. CHA and RTA only differentiate
classes that participate in the reaching type sets. We made a new variation of CHA, called ITA, to only allow
classes with instances to participate in reaching types. XTA and VTA share many components. A special
class, IdealTypeAnalysis, uses profiled results for the purpose of our limit study. All implementations
satisfy the requirements defined at the beginning of this section. A client, StaticInlineOracle, uses the
analysis results for speculative inlining.

StaticInlineOracle

DependencyDatabase

XTA VTA

CHA RTA ITA

InlineOracle

<<interface>>

<<interface>>

TypeAnalysis

AbstractTypeAnalysis

OneSetTypeAnalysis

IdealTypeAnalysis

Figure 2: Type analysis framework diagram

7

3.2 A limit study of method inlining using dynamic type analyses

3.2.1 An ideal type analysis

To measure how precise a type analysis could be, we need an ideal type analysis for comparison. If a
benchmark runs deterministically, we can profile targets in the first run, and then use the profiled targets
as faked analysis results for the second run. We use an inexpensive call graph profiling mechanism [18] to
gather call targets. An IdealTypeAnalysis parses the profiled targets for call sites, and the lookupTargets
method returns profiled target(s) for a call site. The IdealTypeAnalysis uses CHA for call sites from the
RVM boot image.

3.2.2 Experimental approach

An inline oracle has to balance the benefits and costs of inlining. Excessive inlining may blow up code size
and slow down the execution. Therefore, a JIT compiler usually sets a size limit on inlined targets using
some heuristics. Arnold et. al. provide a detailed study of different heuristics in Jikes RVM [3]. For the
purpose of our study, we would like to measure the maximum potential of a type analysis for method inlining
without a size limit. However, inlining all call sites is not feasible. Instead, we only inline the hottest call
sites, without a size limit.

3.2.3 Benchmarks

Our benchmark set includes the SpecJVM98 suite [20], SpecJBB2000 [19], a CFS subset evaluator from
a data mining package Weka [24], a simulator of certificate revocation schemes [7], and a variation of the
simulator interwoven with AspectJ code for detecting calls that return null on error conditions.

Table I summarizes dynamic characteristics of benchmark executions. We ignored call sites in the RVM
code and Java libraries compiled into the boot image. Virtual and interface calls are measured separately.
Columns labeled total report the total counts of invocations in each category. Columns labeled #hottest are
numbers of hottest call sites, ranked in the top 100, whose invocations are more than 1% of total in Columns
2 and 5. Columns labeled coverage are percentages of invocations contributed by these hottest call sites.

benchmark invokevirtual invokeinterface
total #hottest coverage total #hottest coverage

201 compress 2,191M 7 89% 0 N/A N/A
202 jess 964M 25 71% 0 N/A N/A

205 raytrace 2,837M 16 29% 0 N/A N/A
209 db 762M 8 99% 149M 5 99%

213 javac 688M 10 20% 34M 5 92%
222 mpegaudio 846M 25 80% 2M 11 98%

228 jack 264M 22 74% 46M 11 93%
SpecJBB2000 8,162M 9 34% 146M 7 99%

CFS 639M 15 92% 0 N/A N/A
simulator(orig) 44M 5 71% 0 N/A N/A

simulator(aspects) 162M 13 72% 0 N/A N/A

Table I: Coverage of the hottest call sites

It is interesting to point out that, for most of the benchmarks, the majority of invocations are from a
small number of hot call sites. Less than 25 call sites exceed the 1% threshold. Only about half of the
benchmarks have more than 1M interface invocations. These benchmarks have fewer than 10 hot interface
call sites that contribute to more than 92% of invocations.

The 213 javac benchmark includes a large amount of auto-generated code. Invocation counts are

8

spread over many call sites. SpecJBB2000 has a large code base as well, and it runs much longer than other
benchmarks. Hot call sites selected by our 1% threshold contribute only about 34% of total invocations.

A list of hottest call sites are provided to the inline oracle. The size limit is removed for call sites in the
list. Thus, the inline oracle can exploit the potential of a type analysis as much as possible.

As we discussed in Section 2, a virtual call site can be inlined using different techniques:

• direct: direct inlining if the callee method is private or final;

• preex: direct inlining with invalidation checks if the receiver can be proved to be preexistent prior
method calls;

• cp: guarded inlining with code patching;

• mt or ct: guarded inlining with method or class tests.

If a call site is currently monomorphic according to the analysis results, guards are chosen as a command
line option. It can be code patching or method/class tests. For our experiment we used code patching since
it has less runtime overhead.

Monomorphic interface calls can be directly inlined if the receiver is preexistent, or inlined with guards.
We found that, in our benchmark set, receivers of nearly all hot interface calls cannot be proved to be
preexistent by an invariant argument analysis. In our results, we omit the preex category for interface calls.
We also performed another experiment where the inline oracle inlined polymorphic call sites (guarded by
method or class tests) that had 1 or 2 targets resolved using type analysis results. However, this did not lead
to significantly more inlined calls (only 213 javac has a 2% increase). Thus, we do not inline polymorphic
calls in our experiment reported here.

3.2.4 Limit study results

Table II compares the results of dynamic CHA and IdealTypeAnalysis. Each benchmark has two rows: ideal
and cha, showing dynamic counts of inlined calls using different type analyses. Virtual and interface calls
are presented separately. Column total is the count of invocations in each category. In the virtual category,
dynamic CHA did nearly as perfect a job as the ideal type analysis in most benchmarks, except 213 javac

and simulator(aspects). On these benchmarks, the majority of dynamic invocations are contributed by
monomorphic call sites. The sum of direct, preex and cp is close to the coverage in Table I. 213 javac

leaves a small gap between cha and ideal. In the interface category, column 8 shows that a large portion
of interface invocations are from monomorphic call sites as well. Dynamic CHA is ineffective on inlining
interface calls. Furthermore, the other two simple type analyses, RTA and ITA, did not improve the results
of inlining interface calls because common interfaces are implemented by different classes that are likely to
be instantiated.

3.2.5 Discussion

Simulator(aspects) is an interesting benchmark. Injecting AspectJ advice code increases the number of
invocations and changes inlining behaviors dramatically. In the original benchmark, nearly all virtual calls
are monomorphic and can be directly inlined. With aspects, dynamic CHA misses all monomorphic calls in
the preex category. After looking at the benchmark closely, we found this is due to the generic implementation
of pointcuts.

The pointcut implementation boxes primitive values in objects and passes them to AspectJ libraries. The
value is then unboxed after the library call. The original code for unboxing looks like

int intValue(Object v) {

if (v instanceof Number)

return ((Number)v).intValue();

......

}

9

virtual interface
total direct preex cp total cp mt

201 compress ideal 2,191M 99% 0 0 0 0 0
cha 2,191M 99% 0 0 0 0 0

202 jess ideal 994M 58% 6% 21% 7M 0 0
cha 994M 58% 6% 21% 7M 0 0

205 raytrace ideal 2,837M 0 50% 41% 0 0 0
cha 2,837M 0 50% 41% 0 0 0

209 db ideal 762M 31% 0 67% 150M 99% 0
cha 762M 31% 0 67% 150M 0 0

213 javac ideal 701M 28% 7% 15% 35M 95% 0
cha 701M 27% 7% 10% 35M 0 0

222 mpegaudio ideal 846M 73% 3% 0 2M 57% 0
cha 846M 73% 3% 0 2M 57% 0

228 jack ideal 258M 13% 16% 39% 46M 86% 0
cha 258M 12% 15% 39% 46M 25% 8%

SpecJBB2000 ideal 8,250M 32% 29% 11% 148M 99% 0
cha 8,119M 32% 29% 12% 146M 0 0

CFS ideal 639M 38% 6% 52% 0 0 0
cha 639M 38% 6% 52% 0 0 0

simulator ideal 44M 99% 0 0 0 0 0
(original) cha 44M 99% 0 0 0 0 0
simulator ideal 162M 11% 19% 53% 0 0 0
(aspects) cha 162M 11% 0 53% 0 0 0

Table II: Limit study of method inlining using type analyses

10

The single call site of ((Number)v).intValue() contributes 19% preex invocations. Dynamic CHA failed
to inline this call site because the Number class has several subclasses, Integer, Double, and Long, and the
call site is identified as polymorphic.

This particular problem can be solved in two ways: 1) use a context-sensitive reachability-based type
analysis, or 2) change the implementation of unboxing to facilitate the type analysis. We changed the method
to use a tighter type, Integer, in the type cast expression, then the call site becomes directly inlineable.

Since the number of hot interface call sites is small, we investigated them one by one. It turns out these
hot interface calls are used in a similar pattern:

// <TYPE> is java.util.Vector, java.util.Hashtable, etc.

Enumeration e = <TYPE>.elements();

......

while (e.hasMoreElements())

index[i++] = (Entry)e.nextElement();

Enumeration is an interface in java.util package. The while loop makes two or more interface calls for
enumerating elements of underlying data structures. Dynamic CHA assumes all implementations of the
interface are in the runtime type set of e, although each <TYPE> class returns a specific implementation.
Without interprocedural information or inlining the <TYPE>.elements() method, a type analysis cannot
produce precise type information of e. Therefore, these interface call sites cannot be inlined by using
dynamic CHA.

From this limit study, we conclude that:

• most virtual calls in standard Java benchmarks are monomorphic;

• dynamic CHA is nearly perfect for inlining virtual calls;

• dynamic CHA is ineffective on inlining interface calls;

• to assist compiler optimizations, a programmer should use precise types when it does not sacrifice other
engineering benefits;

• a large percentage of interface calls are monomorphic and used in a simple pattern, but it requires an
interprocedural analysis to discover the precise type of the receiver.

4 Dynamic Interprocedural Type Analysis

In Section 3, we presented a type analysis framework for supporting speculative inlining. We also presented
the results of our limit study of method inlining which showed that dynamic CHA is not strong enough for
inlining interface calls. In this section, we present an interprocedural, reachability-based, type analysis that
is suitable for inlining interface calls.

There are two different approaches to performing a dynamic interprocedural analysis in a Java virtual
machine. A whole-program analysis analyzes all classes and methods that can participate the program
execution. A demand-driven analysis only analyzes the part of code related to a request. We start with the
whole-program approach.

We designed and implemented a dynamic version XTA in our previous work [18] as an example of how to
deal with dynamic class loading and reference resolution. However, due to lack of intraprocedural data-flow
information, XTA results are very coarse. Although the computed type sets are smaller than ones from CHA,
it still could not recognize important monomorphic interface call sites. From the method inlining study, we
found XTA results were no better than dynamic CHA.

11

4.1 Dynamic variable type analysis (VTA)

4.1.1 Design

VTA [21] uses intraprocedural data flow information to propagate type sets. Given a Java program (all
application and library classes), static VTA constructs a directed type flow graph G = (V, E, τ) where:

• V is a set of nodes, representing local variables, method formals and returns, static and instance fields,
and array elements;

• E is a set of directed edges between nodes, an edge a → b represents an assignment of a’s value to b;

• τ : V → T is a map from a node to a set of types (classes).

We use the same approach outlined in [18] to adopt the static VTA to a JIT compiler. In the whole-
program approach, the constraint collector monitors method compilation events at runtime. Before a method
is compiled, the constraint collector parses the bytecode and creates VTA edges. The collector uses the
front-end of the optimizing compiler in Jikes RVM, which converts bytecode to a three address intermediate
representation, HIR. Several optimizations are performed during translation. An HIR operand has a declaring
type.

Dynamic VTA analysis is driven by events from JIT compilers and class loaders. Figure 3 shows the
flow of events. In the dotted box are the three modules of dynamic VTA analysis: VTA graphs, the analysis
(include constraint collector), and dependency databases.

dependency
databases

3

6

compilers

profiling
callgraph 2

1

4

classloaders
5

analysis

dependencies
inlining

inline
oracle

VTA graphs

Figure 3: Model of VTA events

Many system events can change the VTA graph. Whenever the graph is changed (either the graph has
an new edge, or a node has a new reaching type), a propagator propagates type sets of nodes (related to
changes) until no further change occurs. Whenever the reaching type set of a node has a new member, the
analysis verifies dependencies on this node registered by inlining oracles (see Section 3). The oracle has a
chance to perform invalidation if inlining assumptions are violated.

4.1.2 Propagations

To support speculative optimizations, the analysis must keep the results up-to-date whenever a client makes
queries. An eager approach propagates new types whenever the VTA graph is changed. The second approach
is to cache graph changes when collecting constraints of a method, and batch propagations at the end of
constraint collection. The third approach, as suggested in [15], propagates types only when a client makes
queries. A major drawback of on-demand propagation is that the analysis results might be outdated and it
cannot invalidate wrongly speculated optimizations in time. In our study, we found both eager and batch
propagations are efficient, with respect to the total execution time of each benchmark. Javac takes up to 1.7
seconds and other benchmarks take less than 1 second.

12

4.1.3 Effectiveness of dynamic VTA

Not surprisingly, VTA is able to handle the simple pattern of interface calls in our benchmarks set. Table III
compares dynamic counts of inlined interface calls. We omitted benchmarks with few interface calls. Dynamic
VTA is able to catch all monomorphic interface calls and allows them to be inlined by using code patching.

benchmark Ideal(cp) VTA(cp)
209 db 99% 99%

213 javac 95% 95%
228 jack 86% 86%

SpecJBB2000 99% 99%

Table III: Comparison of VTA and IdealTypeAnalysis for inlining interface calls

Our preliminary performance measurement shows Ideal type analysis yields a small performance improve-
ment over CHA. VTA speeds up 209 db and 228 jack slightly. 213 javac and SpecJBB2000 slowed down
due to heavier GC workload introduced by VTA graphs.

4.1.4 Memory overhead of whole-program VTA

Although dynamic VTA allows the JIT compiler to utilize maximum inlining opportunities, the cost of
whole-program VTA is also high in terms of memory overhead. Figure 4(a) compares sizes of live data for
IdealTypeAnalysis, CHA, and VTA, using 213 javac as the example. Heap occupation has been increased
by one-third for VTA graphs. Figure 4(b) depicts time spent on each GC using a copying collector. It is
clear that the whole-program interprocedural analysis has a very high memory overhead.

4.2 Demand-driven analysis

The whole-program interprocedural analysis analyzes all compiled methods. Although the analysis itself is
reasonably fast, the VTA graph representation takes a lot of memory space. Because Jikes RVM shares the
same heap with applications, more live data triggers more frequent garbage collections and increases GC
time in each collection. Section 3 shows that only a few call sites are hot in each benchmark. If the analysis
only analyzes code related to these hot call sites, the time and space overhead could be reduced.

Demand-driven analysis [14,23] itself is an interesting research topic. It has been explored in the context
of static points-to analysis. It is attractive to perform incremental, demand-driven IPA at runtime in a JIT
environment.

We are developing a demand-driven VTA type analysis. We outline the requirement and design of the
demand-driven analysis to support speculative inlining of interface calls. Given a receiver variable e, the
compiler would decide if it is interesting to perform the type analysis on e. A simple heuristic is that e’s
declaring type is a common interface, such as Enumeration and Iterator, and there are interface invocations
in loops made on the variable. Once the compiler decides to analyze e, the demand-driven analysis would
look at the source of e. If there is a single definition of e in the method, it continues looking at where the
value of e comes from. There are several possible cases, we describe each case and solution:

• e is passed in as a parameter. In this case, the analysis gives up since it is too expensive to analyze all
callers of the method;

• e gets its value from a field or an array element. It requires a whole-program analysis in order to know
all writes to the field or array element. Field analysis [13] could be used if it is available, otherwise,
the analysis gives up in this case;

• e’s value is returned from a method call. This is the case the analysis tries to analyze further, and it
performs the following steps:

13

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10 20 30 40 50 60

K
B

gc counts

gc live data comparison

ideal
cha
vta

(a) live data after each GC

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

m
s

gc counts

gc time comparison

ideal
cha
vta

(b) time spent on each GC

Figure 4: (213 javac) GC behaviors affected by VTA

14

– is there only one target of the call site? if so, then

– can the type analysis get a precise type of return objects in the target method?

If the analysis successfully finds the precise type of e, it then registers a dependency that assumes the
analyzed method is the only target of the call site.

The above approach could successfully inline the common interface call patterns we found in our bench-
marks. However, it is fairly restricted to these patterns. We believe the right approach should look at more
patterns used in the real applications and analyze important ones case by case.

5 Conclusions, Observations and Future Work

In this paper we have presented a study on the limits of speculative inlining. Somewhat to our surprise
we found that using dynamic CHA for speculative inlining is almost as good as using an “ideal” analysis,
for inlining virtual method calls. However, for even simple uses of interface calls, none of dynamic CHA,
RTA, XTA or ITA gives enough information for determining that interface calls are monomorphic. Rather,
to detect these opportunities, one requires a stronger type analysis and we presented a dynamic version of
VTA for this purpose.

Our experiments with our dynamic VTA do show that it provides detailed enough type information
to identify inlining opportunities for interface calls in our benchmark set. However, we also note that
the memory overhead of our whole program approach to dynamic VTA is quite large, and we suggest an
alternative demand-driven approach.

In addition to these main contributions of the paper, we also made several other general observations
about speculative method inlining.

5.0.1 Observation 1

The conventional wisdom is that inlining increases optimization opportunities. However, in the presence of
speculative optimizations, inlining may reduce optimization opportunities as well. Figure 5 shows such an
example. In Figure 5(a), the method Foo.m() is declared as virtual, but not overridden. Thus the call site
in the child method is a candidate of direct inlining based on the receiver’s preexistence prior method call
(Figure 5(b)). However, if a compiler inlines child() into parent(), and the receiver of foo.m() is not
preexistent prior the parent(). The call site can only be inlined with a guard as in Figure 5(c). Since the
frequency of calling foo.m() is much more than calling child(), the performance of parent() might not
be maximized. This pattern did happen in the 213 javac benchmark.

parent() {

Foo f = getfield

this.child(f);

}

child(Foo foo) {

while(cond)

foo.m()

}

(a) source

parent() {

Foo f = getfield

this.child(f);

}

child(Foo foo) {

while (cond)

inlined Foo.m(foo)

}

(b) inline ‘Foo.m’
only

parent(){

Foo f = getfield

while(cond)

if (Foo.m is currently final)

inlined Foo.m(f)

else

Foo.m(f)

}

(c) inline ‘child‘, then
‘Foo.m’

Figure 5: An example where inlining can reduce optimization opportunities

15

5.0.2 Observation 2

Our second observation is that inlining decisions may be affected by library implementations. A Java virtual
machine is bundled with a specific implementation of Java class library. For example, the GNU classpath [8]
is an open-source implementation of Java libraries and used by many open source Java virtual machines,
including Jikes RVM. The implementation of Hashtable.elements() in the GNU classpath (version 0.07)
returns objects of a single type Hashtable$Enumerator. The implementation in Sun’s JDK 1.4.2 04, how-
ever, may return objects of Hashtable$EmptyEnumerator and Hashtable$Enumerator. Several hot interface
call sites in our benchmark set would not be directly inlined if using Sun’s JDK.

5.0.3 Future work

Based on this study we have concluded that a type analysis for invokeinterfaces is an important area of
research, and we are currently working on the demand-driven type analysis outlined in Section 4. We are
also looking at more applications of dynamic interprocedural analysis in JIT compilers. A new research topic
is to investigate the effectiveness of compiler optimizations on different design patterns.

5.0.4 Acknowledgments

We would like to thank Navindra Umanee for his proofreading of this paper.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeño Virtual Machine. IBM Systems Journal, 39(1):211–238, February 2000.

[2] B. Alpern, A. Cocchi, S. J. Fink, D. Grove, and D. Lieber. Efficient Implementation of Java Interfaces:
Invokeinterface Considered Harmless. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’01), pages 108–124, 2001.

[3] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney. A Comparative Study of Static and Profile-Based
Heuristics for Inlining. In ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation and
Optimization (DYNAMO’00), pages 52 – 64, 2000.

[4] AspectBench compiler for AspectJ. http://aspectbench.org/.

[5] AspectJ. http://eclipse.org/aspectj/.

[6] D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++ Virtual Function Calls. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’96),
pages 324 – 341, Oct. 1996.

[7] Certrevsim. http://www.pvv.ntnu.no/ andrearn/certrev/sim.html.

[8] Gnu classpath. http://www.gnu.org/classpath.

[9] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In 9th European Conference on Object-Oriented Programming (ECOOP’95), pages
77 – 101, Aug. 1995.

[10] D. Detlefs and O. Agesen. Inlining of Virtual Methods. In 13th European Conference on Object-Oriented
Programming (ECOOP’99), pages 258 – 278, June 1999.

16

[11] K. Driesen. Efficient Polymorphic Calls. The Kluwer International Series in Engineering and Computer
Science, 2001.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1995.

[13] S. Ghemawat, K. Randall, and D. Scales. Field Analysis: Getting Useful and Low-Cost Interprocedural
Information. In Proceedings of the Conference on Programming Language Design and Implementation,
pages 334–344, June 2000.

[14] N. Heintze and O. Tardieu. Demand-Driven Pointer Analysis. In Proceedings of the ACM SIGPLAN
2001 Conference on Programming Language Design and Implementation, pages 24 – 34, 2001.

[15] M. Hirzel, A. Diwan, and M. Hind. Pointer Analysis in the Presence of Dynamic Class Loading. In 18th
European Conference for Object-Oriented Programming (ECOOP’04), pages 96–122, June 2004.

[16] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A Study of Devirtualization
Techniques for a Java Just-In-Time Compiler. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’00), pages 294–310, 2000.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.

[18] F. Qian and L. Hendren. Towards Dynamic Interprocedural Analysis in JVMs. In 3rd Virtual Machine
Research and Technology Symposium (VM’04), pages 139 – 150, May 2004.

[19] Spec JBB2000 benchmark. http://www.spec.org/jbb2000/.

[20] Spec JVM98 benchmarks. http://www.spec.org/osg/jvm98/index.html.

[21] V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical Virtual Method Call Resolution for Java. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’00), pages 264–280, 2000.

[22] F. Tip and J. Palsberg. Scalable Propagation-based Call Graph Construction Algorithms. In Proceed-
ings of the Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’00), pages 281–293, Oct. 2000.

[23] F. Vivien and M. C. Rinard. Incrementalized Pointer and Escape Analysis. In Proceedings of the
Conference on Programming Language Design and Implementation, pages 35 – 46, 2001.

[24] Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.nz/ml/weka/.

17

