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Abstract

Inter-procedural analyses such as side-effect analysipavide information useful for performing aggressive
optimizations. We present a study of whether side-effeftirination improves performance in just-in-time (JIT)
compilers, and if so, what level of analysis precision isdeek

We used BARK, the inter-procedural analysis component of tlee$ Java analysis and optimization framework,
to compute side-effect information and encode it in clagsfilWe modified Jikes RVM, a research JIT, to make
use of side-effect analysis in local common sub-expressiionination, heap SSA, redundant load elimination and
loop-invariant code motion. On the SpecJVM98 benchmarlksmeasured the static number of memory operations
removed, the dynamic counts of memory reads eliminatedtr@dxecution time.

Our results show that the use of side-effect analysis ise®the number of static opportunities for load elim-
ination by up to 98%, and reduces dynamic field read inswostby up to 27%. Side-effect information enabled
speedups in the range of 1.08x to 1.20x for some benchmaiiksally among the different levels of precision of
side-effect information, a simple side-effect analysissaally sufficient to obtain most of these speedups.

1 Introduction

Over the past several years, just-in-time (JIT) compilegehenabled impressive improvements in the execution
of Java code, mainly through local and intra-procedurahaigitions, speculative inter-procedural optimizaticersd
efficientimplementation techniques. However, JITs do rotgally make use of whole-program analysis information,
such as conservative call graphs, points-to informatiosjde-effect information, because it is too costly to cotepu

it each time a program is executed. However, all non-trilath types in Java are objects always accessed through
indirect references (pointers), so one would expect optitions using side-effect information to enable significan
further improvements in performance of Java programs.

The purpose of the study presented in this paper is to answeekey questions. First, is side-effect information
useful for the optimizations performed in a modern JIT, aa it significantly improve performance? Second, what
level of precision of the side-effect information and thelerlying analyses used to compute it is required to obtain
these performance improvements?

To study these questions, we implemented a system comgistian ahead-of-time inter-procedural side-effect
analysis, whose result is communicated to a modified JITadoimg optimizations that we adapted to take advantage
of the side-effect information.

We implemented the side-effect analyses using therR® [15, 16] points-to analysis framework, a part of the
SooT [27] bytecode analysis, optimization, and annotation fremark. The side-effect analysis makes use of points-
to and call graph information computed byA&RK. The resulting side-effect information is encoded in clies
attributes for use by the JIT using the annotation framey@tkincluded in $0T.

We chose Jikes RVM [2] as the JIT for our study, and made skmavdifications to it. First, we added code to
read in the side-effect information produced in our analy$Ve then modified several analyses and optimizations to
take advantage of the information, including local commalpexpression elimination, heap array SSA construction,
redundant load elimination, and loop-invariant code nmatiBinally, we instrumented Jikes RVM both to count the
static opportunities for performing optimizations, andrisert instrumentation code to measure the dynamic effects
of the improved optimizations.

The contributions of this paper are the following:

e This is the first published presentation of the side-effectlysis that we have implemented i ST using
points-to and call graph information computed BABK.

e To our knowledge, this is the first study of the run-time parfance improvements obtainable by taking advan-
tage of side-effect information in a range of optimizationa Java JIT.

¢ We present empirical evidence that the availability of ssffect information in a Java JIT can enable significant
performance improvements of up to 20%.

e We show that although precise analyses provide significantire optimization opportunities when counted
statically, most of the dynamic improvement is obtainalierewith relatively simple, imprecise analyses. In



particular, a side-effect analysis based on a call grapbktoacted using an inexpensive Class Hierarchy Analysis
(CHA) already provides a very significant improvement ovarhmaving any side-effect information at all.

The remainder of this paper is organized as follows. Se@ios devoted to our side-effect analysis io@r,
the call graph and points-to analyses that it depends omesswith encoding its result in class file attributes, and
the precision variations that we experimented with. In ®ec8, we describe how we modified the optimizations in
Jikes RVM to take advantage of side-effect information. éttn 4, we present the benchmarks that we used, our
experiments, and our empirical results. We discuss relatell in Section 5, and we conclude with Section 6.

2 Side-effect analysis in Soot

We implemented side-effect analysis in@&r [27], a framework for analyzing, optimizing, and annotgtilava byte-
code. The side-effect analysis depends on two other imtareplural analyses, call graph construction and points-to
analysis. We describe how we construct a call graph in Se&ib. An important difference from most other work
on call graph construction is that to obtain a conservaide-sffect analysis, we need to ensure that our call graph
includes all methods invoked, including those invoked iaifyy by the Java VM. In Section 2.2, we briefly explain
the output of $ARK, our points-to analysis framework [15, 16]. Section 2.3lai® how we put the information
from these two analyses together and produce side-effechiation. In Section 2.4, we briefly note some issues with
encoding the side-effect analysis results in class filéatis to communicate them to the JIT. Finally, in Sectidn 2.
we describe how variations in the precision of the call grapth points-to analyses affect the side-effect information

2.1 Call Graph Construction

To perform an inter-procedural analysis on a Java prognaformation about the possible targets of method calls is
required. This information is approximated by a call grawhjch maps each statemesito a setcg(s) containing
every method that may be called franConstructing a call graph for a Java program is complichgethe fact that
most calls in Java are virtual, so the target method of tHedeplends on the run-time type of the receiver object.

In our study, we compared two different methods of computiaggraphs. First, we computed call graphs using
Class Hierarchy Analysis (CHA) [8], an inexpensive methddaol considers only the static type of each receiver
object, and does not require any inter-procedural analySecond, we used a points-to analysis (discussed in the
next section) to compute the run-time types of the objeds tie receiver of each call site could point to, and we
determined the target method that would be invoked for eackime receiver type.

Several important but subtle details of the Java virtualmree(VM) complicate the construction of a conservative
call graph suitable for side-effect analysis. In a Java mmog methods may be invoked not only due to explicit
invoke instructions, but also implicitly due to various et®in the VM. Whenever a new class is first used, the
VM implicitly calls its static initialization method. Thees of events that may cause a static initialization method
to be called is specified in [17, section 2.17.4]. In our asiglywe assume that any of these events could cause
the corresponding static initialization method to be irebk Each static initialization method is executed at most
once in a given run of a Java program. Therefore, we use aa-pmtrcedural flow-sensitive analysis to eliminate
spurious calls to static initialization methods which mhiate already been called on every path from the beginning
of the method. In addition, the standard class library oiiteokes methods using thaoPri vi | eged methods of
java. security. AccessControl | er.Ouranalysis models these with calls of then method of the argument
passed taloPri vi | eged. Methods may also be invoked using reflection. In genera ribt possible to determine
statically which methods will be invoked reflectively, andr@nalysis only issues a warning if it finds a reachable
call to one of the reflection methods. However, calls tortb@d nst ance method ofj ava. | ang. C ass are so
common that they merit special treatment. This method essnhew object and calls its constructor. In our analysis,
we conservatively assume that any object could be createdharefore any constructor with no parameters could be
invoked.

To partially verify the correctness of the computed calldvave instrumented the code to ensure that all methods
that are executed at run time were included in the call gragghraachable from the entry points. To do this, we
computed the set of methods that are not reachable from the moints through the call graph, and modified them



to abort the execution of the benchmark if they do get invakiedin time. Although this does not prove that every
possible run-time call edge is included in the computed galph, it does guarantee that every executed method
is considered in call graph construction. To further chdwlt bur overall optimizations were conservative on the
benchmarks studied, we verified that the benchmarks praddeatical output in all configurations, including with
the optimizations disabled.

2.2 Points-to Analysis

We use the BARK [15, 16] points-to analysis framework to compute pointgformation. For eaclpointer pin the
program, it computes a spt(p) of objectsto which it may point. The most common kindpdinteris a local variable

of reference type in the Jimple representation of the codealvariables appear in field read and write instructions
as pointers to the object whose field is to be read or writted,ia method invocation instructions as the receiver of
the method call, which determines the method to be invokeddtition pointersare introduced to represent method
arguments and return values, static fields, and speciaésaleeded in simulating the effects on pointers of native
methods in the standard class library. Typicallyodjectis an allocation site; we model all run-time objects created
at a given allocation site as a single entity. In addition,nuest include specialbjectsfor run-time objects without

an allocation site, such as objects created by the VM (theraegt array to the main method, the main thread, the
default class loader) and objects created using reflediionsome of these speciajects we may not know the exact
run-time type. Therefore, we conservatively assume thedit thn-time type may be any subtype of their declared type.

SPARK performs a flow-insensitive, context-insensitive, suliiseted points-to analysis by propagatotgjects
from their allocation sites through gibintersthrough which they may flow. BA\RK has many parameters for exper-
imenting with variations of the analysis that affect anayefficiency and precision. In this study, we experimented
with four points-to analysis variations. We explain thei@dons in more detail in Section 2.5.

2.3 Side-Effect Analysis

The side-effect analysis consists of two steps, which aeudsed in this section. First, we compute a read and write
set for each statement. Second, we use the read and write setapute dependencies between all pairs of statements
within each method.

For each statemestwe compute setead(s) andwrite(s) containing every static fielslf read (written) bys, and
a pair(o, f) for every fieldf of object othat may be read (written) by These sets also include fields read (written)
by all code executed during executionfincluding any other methods that may be called, directlyramsitively.
The read and write sets are computed in two steps. In thetistwe compute only the direct read and write sets for
each statement in the program, ignoring any code that maglbEdrom the statement. The result of the points-to
analysis is used to determine the possible objects beimggubio by the pointer in each field read or write instruction.
In the second step, we continually aggregate the read ang setis of each method and propagate them to all call sites
of the method, until a fixed-point is reached. During the jiggtion, the call graph is used to determine the call sites
of each method.

Once the read and write sets for all statements have beenutedhgor each method, we compute an interfer-
ence relation between all the read and write sets in the dethfm) = {(set,seb) | set Nseb # 0}. We map the
interference relation on read and write sets to four depereleclations between statements (read-read dependence,
read-write dependence, write-read dependence, writie-wependence). For example, there is a read-write depen-
dence between statemestsands; if (read(sy),write(s;)) € int(m). It is the dependences between statements that
we encode in class files for the JIT to use in performing oatidns.

2.4 Encoding Side-Effects in Class File Attributes

All of the analyses described in the preceding sectionserfepmed on Jimple, the three-address intermediate repre-
sentation (IR) used in&oT. In order to communicate the analysis results to a JIT, wet cww/ert them to refer to
bytecode instructions during the translation of Jimpleytebode. 0T includes a universal tagging framework [21]
that propagates analysis information through its vari®ss And encodes it in class file attributes. An important com-
plication in this process is that one Jimple statement magooeerted to multiple bytecode instructions. However,



© ® N o o~ W N B

NONNN NN NN N R B R R B R R R R
® N o a0 A ®W N P O © ® N o 0~ W N P O

29

30

31

32

33

Jimple is low-level enough that whenever a Jimple instarchias side-effects, exactly one of the bytecode instmstio
generated for it has those side-effects. Therefore, fdr ggue of Jimple instruction, we identify the relevant bydde
instruction to the tagging framework, and it attaches the-giffect information to that instruction.

Another complication in communicating the side-effecbimhation is that some methods have a large number of
statements with side-effects. Since the dependenceamdatnay have size quadratic in the number of instructions
with side-effects, a naive encoding of the dependenceaakats sometimes unacceptably large. However, we have
observed in those cases, many of the read and write sets metteod are identical. Therefore, we add a level of
indirection. Instead of expressing the dependence raktioterms of statements, we enumerate all distinct read and
write sets, and express the dependence relations betwesngats. For each statement, we indicate which set it reads
and writes. The resulting encoding has s&f@r? + n), wheren is the number of statements, amds the number of
unique sets. In an earlier study [15, Sections 6.2.2 an@6\We observed that this encoding limits the annotatioa siz
to acceptable levels.

2.5 Analysis Variations

Figure 1: Code examples

cl ass Box {
A a;
}
abstract class A { (a)
int f;
abstract void nothing(); ! ‘ ‘
abstract void maybe();
abstract void setF(); ®)
} abstract Aid(); 1 ‘c.nothi ng(); ‘
class B extends A { (©
voi d nothing() {}
void maybe() { this.f = 1; } 1 ‘C-’mybe()? ‘
void setF() { this.f = 2; }
Aid() { return this: } (d)
} 1 |Box bl = new Box();
class C extends A { 2 bl.a = c;
void nothing() {} s |c = bl.a;
voi d maybe() {} 4
void setF() { this.f = 3; } s |Box b2 = new Box();
Aid() { return this; } s |b2.a = b;
} 7 |b = b2, a
class Main { 8
public static void main(String[] args) { o |c.setF()
new Mai n().run(new B(), new C());
} (e
void run(A b, Ac) { )
b.f = 4 1 c:c.!d(),
|/ insert possible side-effect here| 2 |b=b.id()
L — : i i s | c.maybe();
int n=Db.f; // elimnate this |oad
System out . println(n);
}
}

In our empirical study presented in Section 4, we comparecffextiveness of six variations of our analysis.
In this section, we explain the differences between thesati@ns. In Figure 1, we present examples of code that
distinguishes the variations: it may be optimized only & thformation provided by specific variations is available.



In line 28, the code writes a constant to the field . In line 30, the constant read out again. Our goal is to ogémi
away the constant field read. If we substitute each of the sag®pets(a) through(e) on the right of Figure 1 for
line 29, the resulting code will never change the value (4yl&d in line 30. However, analyses of different precision
are required to prove that the code snippets do not haveesidets affecting the value di. f . Figure 2 gives an
overview of the relative precision of the variations, witle@ision increasing from bottom to top. After each variatio
we list the subset of the code snippets that can be optimigied the information provided by the variation.

Figure 2: Relative Precision of Analysis Variations
tf-fs {abcdé

otf-f {abcd aot-fs {abceg
aot-fb {abc
CHA {ab}
none {a}

For the first variationnone, we compute no side-effect information at all, and rely amtythe internal analysis
in the Jikes RVM JIT for optimizations. In this case, JikesNRi6 able to remove the read in line 30 only when the
empty snippet (a) is inserted at line 29. The JIT determinatthe field being loaded is the same as the field to which
the constant was written, and since no statements have keeated since the write, the value could not have been
affected. However, as soon as we insert any method call keettie write and read (in each of the code snippets (b)
through (e)), the JIT cannot optimize the read, becauseivkmothing about the side-effects of the method called.

Our second variationCHA, is to compute side-effects using a call graph, but witharfgrming any points-to
analysis. We construct the call graph using CHA, as deatiibéSection 2.1. In this case, we can optimize code
snippet (b), because the analysis determines that the calbt hi ng() calls the methodhot hi ng() in either
classB or C, and neither of these methods write to fiéld However, for the call taraybe() in snippet (c), CHA
cannot tell which of the tworaybe() methods will be invoked. SincB. maybe() writes to fieldf , the analysis
conservatively assumes thatf may be overwritten, and prevents the optimization.

The remaining variations all take advantage of points-tyasis information to compute side-effects. The differ-
ences between them are whether the points-to analysisdsbiéesedfp) or field-sensitivef§), and whether it uses a
call graph computed ahead-of-tineof), or whether it computes its own call graph on-the-8f). All of the points-
to analysis variations determine thatcan only be of run-time typ8. Therefore, the call ta. maybe() does not
write to fieldf , so the read in line 30 can be optimized when code snippes (o¥eérted into line 29.

The distinction between a field-based and field-sensitiadyais defines how the points-to analysis treats pointer
flow through fields of heap objects. In a field-based analgsish field is treated asointerwith a single points-to
set. It is assumed that amp jectstored into a field of any object may be retrieved from fieldof any object. On
the other hand, a field-sensitive analysis computes a depaoats-to set for each pajobject field). Therefore,
if an objectis written tob1. a and read out ob2. a, and ifb1 andb2 cannot point to the same object, then the
analysis determines that tlob jectwill not be read out ob2. a. This is illustrated by code snippet (d). In the code,
c is stored and subsequently stored into and read obflofa, andb undergoes a similar operation throulgh. a.

A field-based points-to analysis cannot distinguish betwtbe fielda of the two different boxe®1 andb2, and
therefore assumes thatandb could point to the same object, o f could be written to at the end of the code
shippet. A field-sensitive analysis, on the other hand, gsdhat théb andc read out of the two boxes are distinct
objects, so the call to. set F() does not affect the value 6f f .

In order to propagate points-to sets inter-proceduralfypiats-to analysis requires an approximation of the call
graph. However, we use the result of the points-to analysisuild the call graph. One solution to this circular
dependency is to build an imprecise call graph ahead-dd-tiging CHA, only for the use of the points-to analysis.
After the points-to analysis completes, we use the pomisfbrmation to construct a more precise call graph to be
used in the side-effect analysis. The other alternative isuild the call graph on-the-fly as the points-to analysis
proceeds: as points-to sets grow, we add edges to the calh.gResults from our prior work [16] show the latter
approach to be more costly, but to produce more precisetsestihe difference in precision is illustrated by code
shippet (e). In the code, andb are passed through identity methods that return themselveahead-of-time CHA-



based call graph says that eadah( ) method calls may call either of the twal() methods, so both objects end up
in the points-to sets of both andb. Therefore, the analysis cannot determine that the call toaybe() will not
changeb. f . However, if the analysis builds the call graph on-the-fig tall graph only contains the single correct
target method for each of thed() method calls, and the object pointed tolbyloes not flow into the points-to set
of c. The analysis therefore determines that the cali.tomybe() does not write td. f, and the load may be
eliminated.

3 Optimizations enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effefidrimation is the Jikes Research Virtual Machine
(RVM) [2]. Jikes RVM is an open source research platform fegaiting Java bytecode. It includes three levels of
JIT optimizations (0, 1 and 2). We adapted three optimiratio Jikes RVM to make use of side-effect information:
local common sub-expression elimination (CSE), redunttstt elimination (RLE) and loop-invariant code motion
(LICM). Sections 3.1 to 3.3 describe each of these optiriinatand the changes that we made. Because side-effect
information refers to the original bytecode of a methodebgtes that come from an inlined method need to be treated
specially. Section 3.4 describes how we dealt with this.case

3.1 Local common sub-expression elimination

The first optimization in Jikes RVM that we modified to make aside-effect is local CSE. This optimization is only
performed within a basic block. The algorithm for perforgp@SE on fields is described in Figure 3. A cache is used
to store the available field expressions. The algorithrafesrover all instructions in a basic block, and process#s.th
There are two parts in this process. The first is to try to i@pkachyetfieldor getstaticdnstructions encountered by an
available expression. If one is available, it is assignea temporary variable and thygetfieldor getstaticinstruction

is replaced by a copy of the temporary. If none is availabliégld expression is added to the cache for gie¢field

or getstaticinstruction. For everputfieldandputstaticinstruction, an associated field expression is also add#geto
cache. The second part is to update the cache according ¢ whkpressions the current instruction kills. A call or
synchronization instruction kills all expressions in tlaelee. Aputfieldor putstaticof some field X will remove any
expression in the cache associated with field X.

Figure 3: Local common sub-expression algorithm
1: for each basic block btio

2. for each instruction s in bdo
3 if volatileField( s )then
4 continue
5: if isGetField( s ) or isGetStatic( ghen
6: if if cache.availableExpression( $hen
7 replace s by available expression in cache
8 else
9: add expression( s ) to cache
10: elseif isPutField( s ) or isPutStatic( ghen
11: add expression( s ) to cache
12: if sis a store of field Xhen
13: remove all expressions with field X from cache (excludingrespion( s ))
14: elseif sis a call or synchronizatiamen
15: remove all expressions from cache

In this algorithm, we used side-effect information to reelube set of expressions killed (lines 13 and 15 in
Figure 3). When the current instruction is a field store orlg wa only remove from the cache entries that have a
read-write or write-write dependence with the currentringtion in the side-effect analysis.

An example is shown in Figure 4. Without side-effect infotioa, the compiler would conservatively assume that
statemenbbj 2. x = 10 could write to memory locationbj 1. x and that the call tmot hi ng() could write to
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any memory locations. In contrast, the side-effect analy&iuld specify that there is no dependence between these
instructions, and thus enable the replacement of the loathjol. x on line 6 by an available expression (line 3).

Figure 4: Local common sub-expression example

A obj 1
A obj 2
i = objl x;
obj 2. x 10;
not hi ng();

j = obj1l.x;

new A();
new A();

e

3.2 Redundant load elimination

The redundant load elimination algorithm relies on extehleay SSA (also known as Heap Array SSA or Heap
SSA) [10] and Global Value Numbering [3]. We explain the gahédea of the algorithm below. For a detailed
description, please refer to [10].

The algorithm transforms the IR into heap SSA form. A heapyais created for each object field. The object
reference is used as the index into this heap array. For deamphe code of Figure 5, there are two heap arrays,
X and Y. On line 3, "Heap Array X4] = ...” means that a store is performed in heap array X at iradéke object
reference).

Figure 5: Scalar replacement example

a = new A();

b = new A()

a.x = ... -> heap Array X [a] =
a.y =. -> heap Array Y [a] = ...
b.x = . -> heap Array X [b] = ...
n = a.x ->n = heap Array X [a]

After the transformation to heap SSA form is completed, glofalue numbers are computed. The global value
numbering computes definitely-differe@D) and definitely-same)S) relations for object references. Th® rela-
tion distinguishes two object references coming from défe allocation sites, or when one is a method parameter and
the other one is the result of a new statement. DBe&elation returns true when two object references have tmesa
value number (one is a copy of the other). In Figure 5, smaadb are the results of different allocation sites (line 1
and 2),DD(a, b) = true andDS(a, b) = false.

Once global value numbers are computed, index propagatiparformed. The index propagation solution holds
the available indices into heap arrays at each use of a heayp dBcalar replacement is performed using the sets
of available indices. Note that in the algorithm, these setsally contain value numbers of available indices. For
simplicity, we consider sets of available indices.

In Figure 5, aftem. x is assigned on line 3, the set of available indices for heapyAX is {a}. Similarly, {a} is
available for heap Array Y after the assignmenatoy on line 4. For the store di. x on line 5, since global value
numbering tells us thddD(a, b) = true, we have/a, b} available for heap Array X after line 5. DD(a, b) had
returned false, we would have conservatively assumed thitra to heap Array XH] could have overwritten heap
Array X [a], and thus, only{b} would be available after line 5. On line 6, heap Array X is uaethdexa. Sincea is
available, a new temporary is introduced and scalar replaogis performed.

For increasing the number of opportunities for load elirtiorg we used side-effect information during the heap
SSA transformation and in tHeD relation. During the heap SSA construction, without siffeet information, each
call instruction is annotated with a definition and a use @rgwneap array. With side-effect information we annotate



a call with a definition of a heap array, say X, only if there igréte-read or write-write dependence between the call
and the instruction using heap array X. Similarly we anreogatall with a use of a heap array if there is a read-read
or read-write dependence. We also use side-effect infeomathen theDD relation returns false. Two instructions
having no data dependence is equivalenDi®(a, b) = true, wherea andb are the object references used in the
instructions.

In Figure 6(a), without side-effect information, sinaeandb are method paramete®D(a, b) = false. Thus,
only {b} is available after line 3. This allows the loadlofx on line 9 to be eliminated. Since it is conservatively
assumed that calls can write to any memory location, thdablaiindex set aftemot hi ng() on line 10 is the empty
set. Line 12 represents a merge point of the available ineesxaster line 7 and 10. The intersection of these two sets
is the empty set. After the load af x on line 14,{a} is available. Sinc®S(a, b) = false, the load olb. x on line 15
cannot be eliminated.

Figure 6: Redundant load elimination example (a) beforafter
(b)

(a)

1 int fool Aa, Ab, int n) {
1 int fool Aa, Ab, int n) { 2 tl = 2;
2 a.x = 2; 3 a.x =tl;
3 b.x = 3; 4 t2 = 3;
4 5 b.x =1t2;
5 int i; 6
6 if(n>0) { 7 int i;
7 i = a.x; 8 if(n>0) {
8 } else { 9 i =t1;
9 i = b.x; 10 } else {
10 not hi ng(); 1 i =12
1 } 12 not hi ng();
12 /1 Merging point: a phi is 13 }

/1 placed here in heap SSA /1 Merging point: a phi is

-
w
I
IS

14 int j = a.x; 15 /1 placed here in heap SSA
15 int k = b.x; 16 int j =1t1;
16 returni + j + k; 17 int k =1t2;

}

returni +j + k;

i
]
i
©

}

i
©
=
©

=
©
N
o

public static void
main( String[] args ) {
foo( new A(), new A(), 1);
}

public static void
mai n( String[] args ) {
foo( new A(), new A(), 1);

N
o
N
=

N
=
N
N

N
N
N
[N}

}

N
N

Using side-effect analysis, sinee x has no dependence with x (line 2 and 3) the available index set after line 3
is{a, b}. Thus, loads o&. x andb. x on line 7 and 9 can be eliminated. The available index set ka7 is{a, b},
and after line 10, it is als¢a, b}, sincenot hi ng() has no side-effect. The intersection at the merge poirg (i)
results in the sefa, b}. The load ofa. x can then be removed on line 14. The available index set afierl4 is
{a, b}, allowing load elimination ob. x on line 15. The resulting code after performing load elintimrais shown in
Figure 6(b).

3.3 Loop-invariant code motion

The LICM algorithm in Jikes RVM is an implementation of theoBal Code Motion algorithm introduced by Click [7]
and is adapted to handle memory operations. As such, itnegyilie IR to be in heap SSA form. We provide the basic
idea of the algorithm below. For more details, see [7].

The algorithm schedules each intruction early, i.e. findsdhrliest legal basic block that an instruction could
be moved to (all of the instruction’s inputs must dominais thasic block). Similarly, it finds the latest legal basic
block for each instruction (this block must dominate allaisé the instruction’s result). Instructions suchs ,
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br anch orr et ur n cannot be moved due to control dependences. Between tlesearld latest legal basic blocks,
the heuristic to choose which basic block to place the isitra is to pick the one with the smallest loop depth. Global
Code Motion differs from standard loop-invariant code rmptiechniques in that it moves instructions after as well as
before loops.

In Figure 7(a), the compiler first transforms the code intaph&SA form and without side-effect information
assumes that methot hi ng() canread and write any memory location. As a result, the clempill be unable to
move the loads adi. x anda. y outside of the loop. With side-effect information, knowithgit methodhot hi ng()
does not read or write ta. x ora. y, the loads of. x anda. y will be moved before and after the loop respectively,
resulting in the code in Figure 7(b).

Figure 7: Loop-invariant code motion example (a) beforeaftgr

(a) (b)
) do { 1 t = a.x;
2 i =i + a.x; z do.{_. .
3 i =i +avy; : '_!+t{
4 not hi ng() ; 4 not hi ng() ; |
5 } while( i <n): ° b owhile( i <n);
6 j =i +avy;

3.4 Using side-effect information for inlined bytecode

The side-effect attribute provides information about digpendences between instructions and refers to a bytecode
by using its offset. In Figure 8(a), let's assume that call§ ®¢o() andbar () are inlined, resulting in the code

in Figure 8(b). Since an inlined bytecode is associated itstbriginal offset in the IR, it is in general incorrect to
retrieve side-effect information for an inlined bytecodéhie current method. For example, in the side-effect aitieib

of methodmai n() in Figure 8(b), information about offsétis associated with bytecod®, notb1 orb2.

To handle this case, we keep track of inlining sequencesaich @xstruction. When comparing two bytecodes, we
retrieve the least common method ancestor of the two byteitdiding sequences, and use the side-effect information
associated with that method. If a bytecode originally cofna® that common method, we use its offset. Otherwise,
we retrieve thénvokebytecode that it comes from in the common method, and useftbet associated with this
invokebytecode.

For example, in Figure 8(b), the least common method ancastbytecode$0 andbl is mai n() . Sinceb0
originally comes frontrai n() , we use its offset (i.e. 0). Sind&l was not originally part ofrai n() , we retrieve
the invokebytecode that it comes from imai n(), i.e. invokef oo. We then use the offset associated with this
invokebytecode (i.e.1). Thus, when inquiring about data dependences betweendngseb0 andbl, we lookup
information for offset® and1 in the side-effect attribute for methaedi n() . Similarly, for bytecode$®1 andb?2
we lookup offset® and1 in the side-effect attribute of methdao() (same result fobl andb3). For bytecodes
b2 andb3, we lookup offset® and1l in the side-effect attribute dfar () .

4 Experiments

4.1 Environment and benchmarks

We modified Jikes RVM version 2.3.0.1 to use side-effectrimf@tion in the optimizations described in the previous
section. We used the production configuration (namely FdegpliveCopyMS) in Jikes RVM with the JIT-only option

(every method is compiled on first invocation and no recoatigih occurs thereafter). We ran the SpecJVM98 [1]
benchmarks (size 100) with Jikes RVM at optimization levelrid 2 using the six side-effect variations described
in section 2. A description of the benchmarks is given in &abl For each benchmark and at each optimization
level, we show the number of memory reads per second pertbflmed density). This shows how important memory
operations are in each benchmark. We expect the benchmihkkigh load densities, compress, raytrace, mtrt and
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Figure 8: Inlining example (a) before (b) after

(@)
1 |Offset main() {
> |0 bo (b)
j 1 } i nvoke foo 1 | OfFf set
2 mai n() {

Z . fog(l) { s |0 b0

: . |0 bl
; 1 } i nvoke bar s |0 b2
0 bar () { C } v
0 |0 b2 '
11 1 b3
1 }

mpegaudio, to benefit most from side-effect analysis. Wel tise development version ofd®T (revision 1621) to
compute side-effect information.

Load density
1000's
Benchmark|| Description Level 1 | Level 2
compress Lempel-Ziv compressor/uncompressor 207383 | 138570
jess A Java expert shell system based on NASA's CLIPS system 56371 | 68353
raytrace Ray tracer application 106271 | 127806
db Performs several database functions on a memory-residtahase| 7140 | 11776
javac JDK 1.0.2 Java compiler 21645 | 19208
mpegaudio || MPEG-3 audio file compression application 82137 | 179070
mtrt Dual-threaded version of raytrace 92599 | 122821
jack A Java parser generator with lexical analyzers (now Java CC) 14632 | 15240

Table I: Benchmark description and load density property

We ran our benchmarks on two different architectures to destlver we would get similar trends in our results.
The first system that we used runs Linux Debian on an Inteli@dend 1.80GHz CPU with 512Mb of RAM. The
second one also runs Linux Debian on an dual processor AMIbAtKMP 2000+ 1.66GHz CPU with 2Gb of RAM.
For our experiment, Jikes RVM was configured to run on a sipgdeessor machine.

4.2 Results

Our primary goal for this study was to see whether side-effdormation could improve performance in JITs, and
if so, our secondary objective was to determine the levelre€igion of side-effect information required. To obtain
accurate answers to these questions, we measured for enttierstatic number of loads removed in local CSE and
in the redundant load elimination optimization, and théistaumber of instructions moved in the loop-invariant code
motion phase. These numbers provide us details on how mugtowement each optimization achieves statically
using side-effect information. We also measured dynamiaitoof memory load operations eliminated and execution
times (best of four runs, not including compilation timeheTarchitecture-independent dynamic counts help us see
whether a direct correlation exists between a reductiondmory operations performed and speedups.

It should be noted that although we used the JIT-only optiodikes RVM where no method recompilation is
expected, some optimizations such as inlining can causdidiation and recompilation. In this case, for our static
numbers, we only counted the number of static loads elirathén local CSE or load elimination) or instructions
moved (in LICM) in the last method compilation before exéonit

To examine the effect of side-effect analysis in both local global optimizations, we ran our benchmarks using
Jikes RVM at optimization level 1 and 2. For level 1, only IbESE uses side-effect information. For level 2, local
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CSE, redundant load elimination and loop-invariant codéanause side-effect analysis. We present in the next two
sections our results for level 1 and level 2 optimizations.

4.2.1 Optimization level 1

Level 1 optimizations in Jikes RVM include standard optiatians such as local copy propagation, local constant
propagation, local common sub-expression eliminatio, gheck elimination, type propagation, constant folding,
dead code elimination, inlining, etc. Among these, onlald€SE uses our side-effect analysis for eliminatietfield
andgetstaticinstructions.

When running our benchmarks with Jikes RVM at optimizatievel 1 (which also includes all level 0 optimiza-
tions), the use of the five side-effect variatio@HA, aot-fb, aot-fs, otf-fb andotf-fs) produced identical static and
dynamic counts, and similar runtimes. To avoid repeatimpiital results, we grouped these five side-effect varia-
tions under the namemny in the side-effect column of Tables Il and Ill. As expectdxd &xecution times of runs using
these five side-effect variations are almost identical. W talso grouped them undeamy in the second column of
Table IV, and reported the average execution times of ruing tisese five side-effect variations.

. Local CSE performed
Benchmark| | Side-Effect getfield | getstatic [ total
compress none 108 1 109
any 112 (3.70%) 2(100.00 %) 114 (4.59 %)
. none 229 0 229
1ess any 245(6.99%) |1 246 (7.42 %)
raytrace none 166 0 166
any 188 (13.25%) 1 189 (13.86 %)
db none 130 0 130
any 133(2.31%) 3 136 (4.62 %)
. none 415 0 415
javac any 431(386%) |1 432 (4.10 %)
mpegaudio none 340 174 514
any 347 (2.06 %) 176 (1.15%) 523 (1.75%)
mitrt none 166 0 166
any 188 (13.25%) 1 189 (13.86 %)
. none 470 1 471
jack any 663 (41.06%) | 2(100.00%) | 665 (41.19%)

Table II: Level 1 static counts for local CSE

Table Il shows that using side-effect information in loc&8Eincreased the number of static opportunities for load
elimination by 2% to 41%, but only resulted in a decrease dbup87% of dynamigetfieldandgetstaticdnstructions
(Table 111). As a result, most benchmarks have similar etieautimes with or without side-effect analysis. However,
the use of side-effect information produced speedups 8kla@id 1.06x for mpegaudio on our Intel and AMD systems,
and 1.02x for raytrace on both systems (Table IV).

These results show that the simplest side-effect anal@sis), is sufficient for level 1 optimizations in Jikes
RVM. Only local CSE uses side-effect analysis, and sinceadnily performed on basic blocks (typically small in Java
programs), the effect is minimal.

4.2.2 Optimization level 2

The more advanced and expensive analyses and optimizatidikes RVM are level 2 optimizations. They include
redundant branch elimination, heap SSA, redundant loadreition, coalescing after heap SSA, expression folding,
loop-invariant code motion, global CSE, and tranforminglevimto until loops. As described in section 3, we made
use of side-effect information in the heap SSA constructi@dundant load elimination, and loop-invariant code
motion.
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| Benchmark]| Side-Effect]| getfield | getstatic | total
compress none 1871398009 33418641 1904816650
any 1871397929 ( 0.00 %) 33418641 1904816570 ( 0.00 %)
. none 209404162 2326905 211731067
1ess any 209402840 (0.00%) | 2326905 211729745 (0.00 % )
raytrace none 287993152 1359 287994511
any 287979508 ( 0.00 % ) 1359 287980867 (0.00 % )
db none 160088294 96012 160184306
any 160087709 (0.00%) | 96012 160183721 (0.00 % )
. none 149595624 4028976 153624600
javac any 149407295 (0.13%) | 4028946 (0.00%) | 153436241 (0.12%)
mpegaudio none 456136442 52215347 508351789
any 455026631 (0.24 %) | 52215346 (0.00%) | 507241977 (0.22 %)
mirt none 291501667 2063 291503730
any 291474379 (0.01%) | 2063 291476442 (0.01 %)
. none 50029731 1534965 51564696
jack any 49579043 (0.90 % ) 1534977 (0.00 % ) 51114020 (0.87 %)
Table IlI: Level 1 dynamic counts
(a) (b)
| Benchmark]| Side-Effect| Time(s) | Speedup] | Benchmark]| Side-Effect| Time(s) | Speedup]
compress none 9.215 compress none 9.185
any 9.395 0.98x any 9.184 1.00x
jess none 4,583 jess none 3.756
any 4.615 0.99x any 3.77 1.00x
raytrace none 4.276 raytrace none 2.71
any 4.198 1.02x any 2.662 1.02x
db none 22.023 db none 22.434
any 22.054 1.00x any 22.453 1.00x
javac none 11.047 javac none 7.097
any 11.215 0.99x any 7.177 0.99x
mpegaudio none 8.874 mpegaudio none 6.189
any 8.219 1.08x any 5.85 1.06x
mitrt none 4,744 mirt none 3.148
any 4.727 1.00x any 3.087 1.02x
jack none 6.095 jack none 3.524
any 6.108 1.00x any 3.509 1.00x

Table IV: Level 1 running time (a) Intel (b) AMD
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Our benchmarks were run at optimization level 2 in Jikes R@Mlével 0 and 1 optimizations are also performed),
and produced identical counts and similar runtimes for ithe-sffect variationaot-fb, aot-fs, otf-fb andotf-fs (except
for one case in compress, where the static number of load#nelied is 388 forot-fb andaot-fs, and 389 forotf-fb
andotf-fs). Thus, we grouped these four variations of side-effe@sdhne based on points-to analysis under the name

PTA in Tables V to IX. In Table IX, the time und€tTA is the average runtime of these four variations.

. Load Elimination performed
Benchmark ) Side-Effect getfield | getstatic | aload | total
none 359 4 0 363
compress CHA 386 (7.52%) 5(25.00%) 0 391 (7.71%)
PTA 388 (8.08%) 5(25.00 %) 0 393 (8.26 %)
none 722 1 129 852
jess CHA 1050 (45.43% ) | 2(100.00 %) 149 (15.50 %) 1201 (40.96 %)
PTA 1106 (53.19% ) | 3(200.00 %) 196 (51.94 %) 1305 (53.17 %)
none 342 1 32 375
raytrace CHA 613 (79.24 %) 2(100.00 %) 84 (162.50 %) 699 (86.40 %)
PTA 613 (79.24%) 2(100.00 %) 127 (296.88% ) | 742 (97.87 %)
none 243 1 2 246
db CHA 274 (12.76 %) 4 (300.00 %) 2 280 (13.82%)
PTA 274 (12.76 %) 4 (300.00 %) 3(50.00 %) 281 (14.23%)
none 1519 26 90 1635
javac CHA 1842 (21.26 %) | 30(15.38%) 101 (12.22 %) 1973 (20.67 %)
PTA 1847 (21.59% ) | 30(15.38%) 108 (20.00 %) 1985 (21.41 %)
none 706 212 367 1285
mpegaudio CHA 804 (13.88 %) 216 (1.89 %) 370(0.82%) 1390 (8.17 %)
PTA 804 (13.88%) 216 (1.89%) 426 (16.08 %) 1446 (12.53 %)
none 342 1 32 375
mtrt CHA 613 (79.24%) 2(100.00 %) 84 (162.50 %) 699 (86.40 %)
PTA 613 (79.24 %) 2(100.00 %) 127 (296.88 %) | 742 (97.87 %)
none 678 2 69 749
jack CHA 999 (47.35%) 16 (700.00 %) 69 1084 (44.73 %)
PTA 999 (47.35%) 16 (700.00 %) 69 1084 (44.73 %)

Table V: Level 2 static counts for redundant load eliminatio

Table V shows that using side-effect information in RLE eased static opportunities for load removal by 7% to
98%. There were very few improvements for removiyggstaticinstructions, but the increase was large for removing
getfieldandaload (array load) instructions for some benchmarks (jess, aagtrmtrt and jack). Interestingli?,TA
improved ovelCHA for all benchmarks except jack.

In Table VI, we show static counts of instructions moved dgriICM. The last two columns are the total in-
structions moved when LICM is performed on high-level (HER)d low-level (LIR) intermediate representation in
Jikes RVM. Note that memory operations are not moved duri@M.on LIR; interestingly, the use of side-effect in
HIR optimizations enabled some other transformationsdliatved some instructions to be moved during LICM on
LIR. We see in Table VI that side-effect analysis increasediumber of movedetfield(up to 18%), in one case of
a putfield and the total during HIR (up to 14%). For only one benchmgats), using?TA side-effect information
allowed more instructions to be moved th@hlA. There were n@utstati aloador astoreinstructions moved. Note
that since RLE is performed before LICM, improved side-efffi@formation can cause loads that would have been
moved in LICM to be removed in RLE. Therefore, to measure thpaict of side-effect information on LICM, we
disabled RLE when collecting the static LICM counts. We dbsiwmw static counts for local CSE, which are minimal
because redundant load elimination is performed befoed [BSE.

Level 2 optimizations using side-effect information redddotal dynamic load operations in the range of 1%
to 19% (Table VIII). Side-effect analysis enabled a redutin getfieldoperations (up to 27%), but only reduced
getstaticandaload instructions by up to 3% (Table VIII). For most benchmarksing PTA side-effect information
allowed a larger reduction of dynamic loads tf@&HA.

Table IX shows speedups achieved for compress, raytraceantt mpegaudio. The speedups vary from 1.08x to
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| Benchmark]| Side-Effect| getfield | getstatic| putfield | total HIR | total LIR
compress none 87 0 1 118 29
any 90 (3.45 %) 0 1 122 (3.39 %) 29
none 139 0 0 280 250
jess CHA 144 (3.60 %) 0 0 287 (2.50 %) 251 (0.40 %)
PTA 161(15.83%) | 0O 0 309 (10.36%) | 255 (2.00%)
raytrace none 87 0 a7 184 54
any 96 (10.34 %) 0 47 210(14.13%) | 56(3.70%)
db none 61 0 0 88 31
any 64 (4.92%) 0 0 92 (4.55 %) 32(3.23%)
. none 44 0 5 116 479
javac any 48 (9.09 %) 0 6(20.00%) | 121(4.31%) 479
mpegaudio none 128 27 1 299 98
any 152 (18.75%) | 27 1 327 (9.36 %) 102 (4.08 % )
mirt none 87 0 a7 184 55
any 96 (10.34 %) 0 47 210(14.13%) | 57(3.64%)
jack none 23 0 2 39 58
any 23 0 2 39 58
Table VI: Level 2 static counts for LICM
| Benchmark]| Side-Effect| getfield | getstatic | aload
none 836681238 29585886 450569851
compress CHA 713879612 (14.68 %) 29585886 450569851
PTA 694156483 (17.03 %) 29585886 450569851
none 193400124 2326905 74199530
jess CHA 177280681 (8.33%) | 2326905 74197591 ( 0.00 %)
PTA 141340271 (26.92 %) | 2326572 (0.01 %) 74188965 (0.01 %)
none 278990954 1359 70558731
raytrace CHA 217369769 (22.09 %) | 1359 70189162 (0.52 %)
PTA 217369769 (22.09 %) 1359 70125938 (0.61 %)
none 160085986 96012 113165950
db CHA 154814883 (3.29 %) 96012 113165950
PTA 154814883 (3.29 %) 96012 113165950
none 129704466 3728755 3947221
javac CHA 123962720 (4.43%) | 3726381 (0.06 %) 3947158 (0.00 % )
PTA 123962933 (4.43 %) 3726306 ( 0.07 %) 3947133 (0.00 %)
none 258084245 16092989 796126083
mpegaudio||  CHA 254421559 (1.42%) | 16075411 (0.11%) | 794492856 (0.21 %)
PTA 254421559 (1.42 %) 16075411 (0.11 %) 773557981 (2.83%)
none 282145314 2063 71578275
mtrt CHA 220136202 (21.98 %) 2063 71124467 (0.63 %)
PTA 220136202 (21.98%) | 2063 70998019 (0.81 %)
none 46154208 1534965 5727775
jack CHA 42805654 (7.26 %) 1530924 ( 0.26 % ) 5727775
PTA 42805654 (7.26 %) 1530924 (0.26 %) 5727775

Table VII: Level 2 dynamic count for loads instructions
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| Benchmark]| Side-Effect] total |

none 1316836975
compress CHA 1194035349 (9.33 %)
PTA 1174312220 (10.82 %)
none 269926559
jess CHA 253805177 (5.97 %)
PTA 217855808 (19.29 %)
none 349551044
raytrace CHA 287560290 (17.73 %)
PTA 287497066 (17.75 %)
none 273347948
db CHA 268076845 (1.93 %)
PTA 268076845 (1.93 %)
none 137380442
javac CHA 131636259 (4.18 %)
PTA 131636372 (4.18 %)
none 1070303317
mpegaudio CHA 1064989826 ( 0.50 % )
PTA 1044054951 (2.45 %)
none 353725652
mtrt CHA 291262732 (17.66 %)
PTA 291136284 (17.69 %)
none 53416948
jack CHA 50064353 (6.28 %)
PTA 50064353 (6.28 %)

Table VIII: Level 2 dynamic total load count

1.17x on our Intel system, and from 1.02x to 1.20x on AMD. Othbgystems, mpegaudio has the largest speedup.
These benchmarks are the ones with the highest load denditible 1), and the ones that we expected would benefit
the most from side-effect information.

A higher level of precision of side-effect information maaelifference in performance for compress and mpe-
gaudio. UsingPTA side-effect vSCHA increased the speedup of compress from 1.08x to 1.11x ol &migk 1.02x to
1.05x on AMD. For mpegaudio, it went from 1.11x to 1.17x orelrgnd from 1.15x to 1.20x on AMD.

These results show that using side-effect analysis in gtgitanizations improved opportunities for load elimina-
tion and moving instructions, reduced dynamic load openatiand improved performance in runtimes. Benchmarks
with higher load densities benefited most from side-effefdrimation. The results also show that points-to analysis
improves side-effect information compared to only usigA, but that the differences between points-to analysis
variations are negligible.

5 Related Work

Early side-effect analyses for languages with pointers bgi€t. al.[4] and Landiet. al.[14] made use of may-alias
analysis to distinguish reads and writes to locations kntavpe different. These analyses were mainly targeted at
analysis of C, so the call graph was assumed to be mostlg.staktierefore, in comparison with our work, in that
setting, the information about pointers was most importahtle the call graph was much easier to compute.

In contrast, Clausen’s [6] side-effect analysis for Java Wased on a call graph constructed with a CHA-like
analysis, but it did not use any pointer information. Thialgeis computed read and write information for each field,
ignoring which specific object contained the field read otten. In comparison with our work, Clausen’s analysis is
most similar to our CHA-based side-effect analysis. Clawgmlies his analysis results in an ahead-of-time early Jav
bytecode optimizer to a similar set of optimizations as we digad code removal, loop invariant removal, constant
propagation, and common subexpression elimination.
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@) (b)

| Benchmark]| Side-Effect| Time(s) | Speedup] | Benchmark]| Side-Effect| Time(s) | Speedup]
none 10.423 none 9.503
compress CHA 9.635 1.08x compress CHA 9.316 1.02x
PTA 9.386 1.11x PTA 9.03 1.05x
none 4.889 none 3.949
jess CHA 4.945 0.99x jess CHA 3.962 1.00x
PTA 4.872 1.00x PTA 4.002 0.99x
none 4.38 none 2.735
raytrace CHA 3.93 1.11x raytrace CHA 2.607 1.05x
PTA 3.905 1.12x PTA 2.615 1.05x
none 22.625 none 23.212
db CHA 22.605 1.00x db CHA 23.222 1.00x
PTA 22.471 1.01x PTA 23.141 1.00x
none 10.962 none 7.154
javac CHA 11.138 0.98x javac CHA 7.21 0.99x
PTA 11.142 0.98x PTA 7.231 0.99x
none 9.319 none 5.977
mpegaudio CHA 8.41 1.11x mpegaudio CHA 5.175 1.15x
PTA 7.932 1.17x PTA 4.987 1.20x
none 4.681 none 2.88
mtrt CHA 4.201 1.11x mtrt CHA 2.788 1.03x
PTA 4.208 1.11x PTA 2.796 1.03x
none 6.097 none 3.505
jack CHA 6.122 1.00x jack CHA 3.47 1.01x
PTA 6.101 1.00x PTA 351 1.00x

Table IX: Level 2 running time (a) Intel (b) AMD

When evaluating the precision of points-to analyses, ibimmon to report the size of the points-to sets at field
read and write instructions, as in [18, 23]. Rountev and RY2i¢] evaluate their points-to analysis for precompiled
libraries in this way. Other points-to analysis work [13, 28, 26] takes this evaluation one step further, by also
computing read and write sets summarizing the effects afeemtethods, rather than just individual statements, and
propagating this information along the call graph. Thisisilar to the read and write set computation we mention
in Section 2.3. In general, these studies conclude thatrdifices in precision of the underlying analyses do have a
significant effect on the static precision of side-effeédimation.

Chowdhuryet. al.[5] study the effect of alias analysis precision on the nunadf@ptimization opportunities for
a range of scalar optimizations. However, they only meatheestatic number of optimizations performed (rather
than their run-time effect), and their benchmarks are mgstinter-free C programs, some translated directly from
FORTRAN, so they find, unsurprisingly, that alias analysecjsion has little effect.

Studies measuring the actual run-time impact of code opéthusing side-effect information are surprisingly
rare. Ghiyaet. al.[11, 12] measure the effectiveness of side-effect infoimmadn the run-time efficiency of code
produced by an optimizing compiler for C. Like us, they findttiome improvements are possible, and that even
simple, imprecise alias information enables most of therowpments. Diwaret. al.[9] perform a similar study in a
compiler for Modula-3, with type-based alias analyses.ylperform redundant load elimination, loop invariant code
motion, and common subexpression elimination, and alsaifipdovements comparable to ours and Ghayaals.
They also agree that much of the improvement is possible withrsimple type-based analyses. Razafimahefa [22]
performs loop invariant code motion using side-effect infation on Java in an ahead-of-time bytecode optimizer,
and reports run-time speedups comparable with ours on rgameration Java VM.

Pechtchanski and Sarkar [20] present a preliminary studyfaeimework which allows programmers to provide
annotations indicating absence of side-effects. Thesetations are communicated to Jikes RVM and used for opti-
mizations. Only limited, preliminary, empirical resultstbe effect of these annotations are provided, and verifinat
of the correctness of the programmer-provided annotatiass/et to be done.

In summary, existing work on other languages largely agvagsour findings on Java. Some side-effect infor-

18



mation is useful for real run-time improvements from corapiptimizations. Although precision of the underlying
analyses tends to have large effects on static counts ahigatiion opportunities, the effects on dynamic behaviour
are much smaller; even simple analyses provide most of tpeowement. Important distinctions of our work from
previous work are that we provide a study of run-time effe€sde-effect information on Java, and that we show how
to communicate analysis results from an off-line analyaex 3IT.

6 Conclusion

In this study, we showed that side-effect analysis doesdmngperformance in just-in-time (JIT) compilers, and that
relatively simple analyses are sufficient for significanpiovements. On level 1 optimizations, side-effect anayse
had little impact on performance, except for one benchnfarklevel 2 optimizations, however, our results showed an
increase of up to 98% of static opportunities for load renhavaeduction of up to 27% of the dynamic fields reads,
and execution time speedups ranging from 1.08x to 1.20x. &sxpected, using side-effect analysis had the largest
impact on the benchmarks with high load densities.
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