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Abstract

We present the results of an empirical study evaluating tbeigion of subset-based points-to analysis with several
variations of context sensitivity on Java benchmarks dfificant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-blasantext-sensitive algorithm proposed by Zhu and Calman,
and by Whaley and Lam. Our study includes analyses that xiesémsitively specialize only pointer variables, as
well as ones that also specialize the heap abstraction. \&sureboth characteristics of the points-to sets thenselve
as well as effects on the precision of client analyses. Tdegdevelopment of efficient analysis implementations, we
measure the number of contexts, the number of distinct gtsmtand the number of distinct points-to sets that arise
with each context sensitivity variation. To evaluate ps&si, we measure the size of the call graph in terms of
methods and edges, the number of devirtualizable call, sitesthe number of casts statically provable to be safe.

The results of our study indicate that object-sensitivdyaimimplementations are likely to scale better and more
predictably than the other approaches; that object-gemsihalyses are more precise than comparable variations of
the other approaches; that specializing the heap absinaictiproves precision more than extending the length of
context strings; and that the profusion of cycles in Javiegtaphs severely reduces precision of analyses that fersak
context sensitivity in cyclic regions.

1 Introduction

Does context sensitivity significantly improve precisidnirgerprocedural analysis of object-oriented programs® |
often suggested that it could, but lack of scalable implesaténs has hindered thorough empirical verification of thi
intuition.

Of the many variations of context sensitive points-to asialyhat have been proposed (e.g. [3, 6, 9, 14-16, 22,
25-27]), which ones improve precision the most? Which onesrest effective for specific client analyses, and for
specific code patterns? For which variations are we likefintbscalable implementations? Before devoting resources
to finding efficient implementations of specific analysessheuld have empirical answers to these questions.

This study aims to provide these answers. Recent advandhks use of Binary Decision Diagrams (BDDs) in
program analysis [2, 25, 27] have made context sensitivsinaefficient enough to perform an empirical study on
benchmarks of significant size. Using ttepb system [11], we have implemented three different familiesomtext-
sensitive points-to analysis, and we have measured theigion in terms of several client analyses. Specifically, w
compared the use of call site strings as the context abistnactject sensitivity [14, 15], and the algorithm propase
by Zhu and Calman [27] and Whaley and Lam [25] (hereafterabbted ZCWL). Within each family, we evaluated
the effect of different lengths of context strings, and ofitext-sensitively specializing the heap abstraction. un o
study, we compared the relative precision of analyses bagintifatively, by computing summary statistics about the
analysis results, and qualitatively, by examining specifide patterns for which a given analysis variation produces
better results than other variations.

Context-sensitive analyses have been associated withargeg/numbers of contexts. We wanted to also determine
how many contexts each variation of context sensitivityially generates, how the number of contexts relates to the
precision of the analysis results, and how likely it is trelable context-sensitive representations are feasiblese
measurements can be done directly on the BDD representation

The remainder of this paper is organized as follows. In $a@j we provide background about the variations of
context sensitivity that we have studied. In Section 3, wethe benchmarks included in our study. We discuss the
number of contexts and its implications on precision antbfdity in Section 4. In Section 5, we examine the effects
of context sensitivity on the precision of the call graph. &aluate opportunities for static resolution of virtualsa
in Section 6. In Section 7, we measure the effect of contaxsiseity on cast safety analysis. We briefly survey
related work in Section 8. Finally, we draw conclusions froan experimental results in Section 9.

2 Background

Like any static analysis, a points-to analysis models ttssibte run-time features of the program using some chosen
static abstraction. A context-sensitive points-to arialsexjuires an abstraction of pointer targets, pointeis nagthod
invocations. We will denote these three abstractiOn®, andZ, respectively. Whenever it is possible for a run-time



pointerp to point to the run-time target, the may-point-to relation computed by the analysis mustaia the fact
O(o) € pt(P(p)). The specific choice of static abstraction is a key detemgiféctor of the precision of the analysis,
and this paper compares several different abstractions.

Pointer Target Abstraction:

In Java, the target of a pointer is always a dynamically aled object. A popular abstraction for a pointer target is
the program statement at which the object was allocated. Wevsite this abstraction a®“*.

Pointer Abstraction:

Each run-time pointer corresponds to either some locahlsdgior some object field in the program. Pointers corre-
sponding to local variables are often statically abstibiethe local variable; we will write this abstractiona8°".

For pointers corresponding to fields, we will consider otlg field-sensitive abstraction in this paper, because it is
more precise than other alternatives (described, for el@rimp[10, 20]). The field-sensitive abstracti®*(o. f) of

the field f of run-time objecb is the paiffO(o), f], whereO(o) is our chosen static abstraction of the run-time object
0.

Method Invocation (Context) Abstraction:

Because different invocations of a method may have diftebehaviours, it may be useful to distinguish some of
them. A context is a static abstraction of a method invocatan analysis distinguishes two invocations if their
abstract contexts are different. In this paper, we compaoefamilies of invocation abstraction (also called context
abstraction), call sites [21,22] and receiver objects]54, In call site context sensitivity, the context of an ination

is the program statement (call site) from which the method imaoked. That is, for an invocatian Z<¢(4) is the
statement from which was invoked. In receiver object context sensitivity, thateat of an invocation is the static
abstraction of the object on which the method is invoked.t Thdor an invocation, Z°(i) = O(o), whereo is the
run-time receiver object on which the method was invoked.

In either case, the context abstraction can be made everbfjngsing a string of contexts corresponding to the
invocation frames on the run-time invocation stack. Thah#ving chosen a base abstracti@i*¢, we can define
Z5tring () to be [Zbe¢(i), Z°**¢(ig), Z°*%¢(i3), . . .], wherei; is thej'th top-most invocation on the stack during the
invocation: (soi = i1). Since the maximum height of the stack is unbounded, thiysisanust somehow ensure
that the static abstraction is finite. A simple, popular téghe is to limit the length of each context string to at most
a fixed numbel. A different technique is used by the ZCWL algorithm. It doex limit the length of a context
string, but it excludes from the context string all contestsresponding to call edges that are part of a cycle in the
context-insensitive call graph. Thus, the number of castexbounded by the number of acyclic paths in the call
graph, which is finite.

Orthogonal to the choice of context abstraction is the ahoitwhich pointers and objects to model context-
sensitively. That is, having chosen a basic context-irifeagointer abstractio®<’ and a context abstractidh we
can model a run-time pointgr context-sensitively by definin@(p) to be [Z(i,), P*(p)], wherei, is the method
invocation in whichp occurs, or context-insensitively by definifit(p) to be P<i(p). Similarly, if we have chosen
the allocation site abstracti@®® as the basic abstraction for objects, we can model eachtabpentext-sensitively
by definingO(o) to be[Z(i,), O*¢(0)], wherei, is the method invocation during whichwas allocated, or context-
insensitively by defining (o) to beO**(o).

In the tables in the rest of this paper, we report resultstierfollowing variations of points-to analyses. The
“insens.” column of each table is a context-insensitivenmio analysis that does not distinguish different invioces
of any method. The “object-sensitive” columns are analyssi#sg receiver objects as the context abstraction, while
the “call site” columns are analyses using call sites asdinéext abstraction. Within each of these two sections,én th
1, 2, and 3 columns, pointers are modelled with contextgs$rof maximum length 1, 2, and 3, and pointer targets are
modelled context-insensitively. In the 1H column, bothriieis and pointer targets are modelled with context strings
of maximum length 1. The “ZCWL” column is the ZCWL algorithmvhich uses call sites as the context abstraction,



and allows context strings of arbitrary length. The ZCWLaalthm models pointers with context but pointer targets
without context.

In an analysis of an object-oriented language such as Jea is a cyclic dependency between call graph con-
struction and points-to analysis. In all variations exdbptZCWL algorithm, we constructed the call graph on-the-fly
during the points-to analysis, since this maintains maxmprecision. The ZCWL algorithm requires a context-
insensitive call graph to be constructed before it startichvit then makes context-sensitive, and uses to perform
the points-to analysis. For this purpose, we used the cafilgconstructed by the context-insensitive analysis in the
“insens.” column.

3 Benchmarks

Total number of | Executed methods
Benchmark | classes methods app. +lib.
compress 41 476 56 463
db 32 440 51 483
jack 86 812 291 739
javac 209 2499| 778 1283
jess 180 1482| 395 846
mpegaudio 88 872| 222 637
mtrt 55 574| 182 616
soot-c 731 3962| 1055 1549
sablecc-j 342 2309| 1034 1856
polyglot 502 5785| 2037 3093
antlr 203 3154| 1099 1783
bloat 434 6125 138 1010
chart 1077 14966 854 2790
jython 270 4915| 1004 1858
pmd 1546 14086( 1817 2581
ps 202 1147| 285 945

Table I: Benchmarks

We performed our study on programs from the SpecJVM 98 beadhsuite [23], the DaCapo benchmark suite,
version beta050224 [4], and the Ashes benchmark suite §84jell as on the Polyglot extensible Java front-end [17],
as listed in Table I. Most of these benchmarks have been useariier evaluations of interprocedural analyses for
Java. The middle section of the table shows the total numbelasses and methods comprising each benchmark.
These numbers exclude the Java standard library (whichqgigiresl to run the benchmark), but include all other
libraries that must accompany the benchmark for it to rurcsssfully. All of the measurements in this paper were
done with version 1.3.101 of the Sun standard library. The right-most section oftéide shows the number of
distinct methods that are executed in a run of the benchmrmaglagured using the *J tool [5]), both excluding and
including methods of the Java standard library, in the colsitabelled “app.” and “+lib.”, respectively. About 400
methods of the standard library are executed even for thdeshaenchmarks for purposes such as class loading;
some of the larger benchmarks make heavier use of the library

4 Number of Contexts

Context-sensitive analysis is often considered intrdetadainly because, if contexts are propagated from evety cal
site to every called method, the number of resulting corgiitgs grows exponentially in the length of the call chains
The purpose of this section is to shed some light on two issBist, of the large numbers of contexts, how many
are actually useful in improving analysis results? Securiy, can BDDs represent such seemingly large numbers of
contexts, and how much hope is there that they can be repeelseith more traditional techniques?



4.1 Total number of contexts

We begin by comparing the number of contexts that appeaeindhtext-sensitive points-to relation when the analysis
is performed with the different context abstractions. fis theasurement, we treat the method invoked as part of the
context. For example, suppose we are using abstract recgijects as the context abstraction; if two different
methods are called on the same receiver, we count them asefparade contexts, since they correspond to two
necessarily distinct invocations. In other words, we atnting method-context pairs, rather than just contexts.

The measurements of the total numbers of contexts are simoVatble 11. Each column lists the number of contexts
produced by one of the variations of context-sensitiveyaisidescribed in Section 2. The column labelled “insens.”
shows the absolute number of contexts (which is also the euoftimethods, since in a context-insensitive analysis,
every method has exactly one context). All the other colymatber than showing the absolute number of contexts,
which would be very large, instead show the number of coatagia multiple of the “insens.” columné they show
the average number of contexts per method). For examplthdaompress benchmark, the total number of 1-object-
sensitive contexts i8596 x 13.7 = 3.56 x 10*. The empty spots in the table (and other tables through@uptper)
indicate configurations in which the analysis did not cortgpla the available memory, despite being implemented
using BDDs. We allowed the BDD library to allocate a maximuidd million BDD nodes (820 million bytes).

object-sensitive call site

Benchmark | insens. 1 2 3 1H| 1 2 1H ZCWL
compress 2596| 13.7 113 1517 13465 237 6.5 2.9x 107
db 2613| 13.7 115 1555 1346.5 236 6.5 7.9 x 10*
jack 2869 | 13.8 156 1872 13.26.8 220 6.8] 2.7 x 107
javac 3780| 15.8 297 13289 15.684 244 8.4

jess 3216| 19.0 305 5394 18.6 6.7 207 6.7 6.1 x 106
mpegaudio 2793| 13.0 107 1419 12.716.3 221 6.3] 4.4x10°
mtrt 2738| 13.3 108 1447 13.16.6 226 6.6 1.2x10°
soot-c 4837 | 11.1 168 4010 10.98.2 198 8.2

sablecc-j 5608| 10.8 116 1792 10.555 126 55

polyglot 5616| 11.7 149 2011 11.27.1 144 7.1 10130
antlr 3897| 15.0 309 8110 14.79.6 191 9.6/ 4.8 x 10°
bloat 5237| 143 291 14.00 8.9 159 8.9| 3.0 x 108
chart 7069 | 22.3 500 21.9 7.0 335

jython 4401 | 18.8 384 18.3 6.7 162 6.7| 2.1 x 10%°
pmd 7219| 13.4 283 5607 12.96.6 239 6.6

ps 3874 | 13.3 271 24967 13.19.0 224 9.0/ 2.0x 108

Table II: Total number of abstract contexts

The large numbers of contexts explain why an analysis thmesents each context explicitly cannot scale to the
programs that we analyze here. While a 1-call-site-semséthalysis must store and process 6 to 9 times more data
than a context-insensitive analysis, the ratio grows td1bfes for a 3-object-sensitive analysis.

When context strings are limited to a length of 1, the 1-obgmnsitive analysis produces about twice as many
contexts as the 1-call-site-sensitive analysis. Howegethe context strings grow longer, the number of contexts in
the object-sensitive analyses grows much more slowly thahe call site string analyses. This is because it is very
common in Java programs to invoke a method ontthies pointer; in this common case, the receiver object of the
called method is the same as at the call site, so in many dmsitegs, the same abstract receiver objects are repeated.

The ZCWL algorithm effectively performs/aCFA analysis in which is the maximum call depth in the original
call graph after merging strongly connected componentsCE63C Becausé: is different for each benchmark, the
number of contexts is much more variable than in the othdatians of context sensitivity. On thiavac, soot-c,
sablecc-j, chart, andpmd benchmarks, the algorithm failed to complete in the avéglatemory.



4.2 Equivalent contexts

Next, we consider that many of the large numbers of abst@uiests are equivalent in the sense that the points-to
relations computed in many of the abstract contexts arestime sMore precisely, we define two method-context pairs,
(m1, c1) and(mea, co) to beequivalent if m; = ms, and for every local pointer variabjein the method, the points-to
set ofp is the same in both contexts andcs.

When two contexts are equivalent, there is no point in distishing them, because the resulting points-to relation
is independent of the context. In this sense, the numberuifagnce classes of method-context pairs reflects how
worthwhile context sensitivity is in improving the preasiof points-to sets.

The measurements of the number of equivalence classes @ixt®are shown in Table Ill. Again, the “insens.”
column shows the actual number of equivalence classes ¢éxxsnwhile the other columns give a multiple of the
“insens.” numberi(e. the average number of equivalence classes per method).

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H| zZCWL
compress 2597 84 99 113 12124 39 49 3.3
db 2614 85 99 114 12124 39 5.0 3.3
jack 2870 86 10.2 116 11924 39 5.0 3.4
javac 3781| 104 17.7 338 14327 53 54

jess 3217| 89 106 120 13926 42 5.0 3.9
mpegaudio 2794 8.1 94 108 11524 38 4.8 3.3
mtrt 2739 83 9.7 111 11825 40 49 3.4
soot-c 4838| 7.1 13.7 184 9826 42 48
sablecc-j 5609| 6.9 84 96 9523 36 39
polyglot 5617| 7.9 94 108 10224 3.7 4.7 3.3
antlr 3898| 94 121 138 13225 41 52 4.3
bloat 5238 | 10.2 44.6 129 28 49 5.2 6.7
chart 7070| 10.0 174 18.2 2.7 438

jython 4402| 9.9 55.9 15.6/ 25 4.3 4.6 4.0
pmd 7220 76 146 17.0 11024 42 4.2

ps 3875| 87 9.9 110 12026 4.0 52 4.4

Table Ill: Number of equivalence classes of abstract cdatex

The relatively small size of these numbers compared to ttaé tumbers of contexts in Table Il explains why
a BDD can effectively represent the analysis informatidanges it automatically merges the representation of equal
points-to relations, so each distinct relation is only esgnted once. If we had some idea before designing an analysi
which abstract contexts are likely to be equivalent, we ddeffine a new context abstraction in which these equivalent
contexts are merged. That is, each equivalence class obstdaat contexts would be represented by a single new
abstract context. With such a new context abstraction, tinéext-sensitive analysis could be implemented without
BDDs.

Itis interesting that in the 1-, 2-, and 1H-object-sensitinalysis, the number of equivalence classes of contexts
is generally about 3 times as high as in the corresponding-land 1H-call site string analysis. This indicates that
receiver objects better partition the space of concretmgatontexts that give rise to distinct points-to relagoihat
is, if at run time, the run-time points-to relation is diféert in two concrete calls to a method, it is more likely that th
two calls will correspond to distinct abstract contextsei€eiver objects rather than call sites are used as the ¢ontex
abstraction. This observation leads us to hypothesizeothjatt-sensitive analysis should be more precise than the
call site string analysis; we will see more direct measurgsief precision in upcoming sections.

In both object-sensitive and call site string analyses, intathe context string longer increases the nhumber of
equivalence classes of contexts by only a small amountgiithitcreases the absolute number of contexts much more
significantly. Therefore, increasing the length of the eahstring is unlikely to result in a large improvement in
precision, but will significantly increase analysis cost.

It was initially rather surprising that in the analysis upsthe ZCWL algorithm, the number of equivalence classes



of abstract contexts is so small, often even smaller thahdr2tcall-site-sensitive analysis. The algorithm effesyi
performs a-CFA analysis, wherg is the maximum call depth in the original call graghis likely to be much higher
than 2. The number of equivalence classes of contexts whieg the ZCWL algorithm is small because the algorithm
merges SCCs in the call graph, and models all call edges im ®ath component in a context-insensitive way. In
contrast, the 2-call-site-sensitive analysis modelsallledges context-sensitively, including those in SCCslebd,

a very large number of methods are part of some SCC. Thelioéibgraph for each of our benchmarks contains a
large SCC of 1386 to 2926 methods, representing 36% to 53%rak#hods in the call graph. In particular, this SCC
always includes many methods for which context-sensitngdyesis would be particularly useful, such as the methods
of theSt ri ng class and the standard collections classes. These metteagsea extensively within the Java standard
library, and contain many calls to each other. We examinsdahge SCC and found many distinct cycles; there was
no single method that, if removed, would break the companensummary, the reason for the surprisingly small
number of equivalence classes of abstract contexts whag tle ZCWL algorithm is that it models a large portion
of the call graph context-insensitively.

4.3 Distinct points-to sets

Finally, we measure the number of distinct points-to sed$ #ppear in the points-to analysis result. This number
is an indication of how difficult it would be to efficiently regsent the context-sensitive points-to sets in a non-
BDD-based analysis implementation, assuming there waadyjra way to represent the contexts themselves. An
increase in the number of distinct points-to sets also sstggen increase in precision, but the connection is very
indirect [8, Section 3.2]. We therefore present the numbeistinct points-to sets primarily as a measure of analysis
cost, and provide more direct measurements of the preaificients of the analysis later in this paper. In traditibna
context-insensitive, subset-based points-to analybes,epresentation of the points-to sets often makes up nfiost o
the memory requirements of the analysis. If the traditiaradlysis stores points-to sets using shared bit-vectors as
suggested by Heintze [7], each distinct points-to set nedyl lme stored once. Therefore, the number of distinct
points-to sets approximates the space requirements ofsstratitional representation.

The measurements of the number of distinct points-to sédsmgrwith each context abstraction are shown in
Table IV. In this table, all numbers are the absolute courdistinct points-to sets, not multiples of the “insens.”
column.

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 3178| 3150 3240 3261 343553227 3125 38242 3139
db 3197| 3170 3261 3283 346373239 3133 38373 3173
jack 3441| 3411 3507 3527 374323497 3377 40953 3541
javac 4346 | 4367 4579 4712 551964424 4303 54864

jess 3834 | 4433 4498 4514 5145R 4589 4426 42614 4644
mpegaudio 4228 | 4179 4272 4293 365684264 4157 67563 4175
mtrt 3349| 3287 3377 3396 351543387 3263 38754 3282
soot-c 4683 | 4565 4670 4657 459744722 4550 52937
sablecc-j 5753 | 5777 5895 5907 529935875 5694 59744
polyglot 5591 | 5556 5829 5925 505875682 5516 598371 5575
antlr 4520 | 5259 5388 5448 549424624 4535 54174 4901
bloat 5337| 5480 5815 55309 5452 5342 49230 6658
chart 9608 | 9914 10168 233723 9755 9520

jython 4669 | 5111 5720 74297 4968 4857  4628Q 8587
pmd 7368| 7679 7832 7930 944037671 7502 10399(

ps 4610 | 4504 4639 4672 472444656 4521 58513 4802

Table IV: Total number of distinct points-to sets in poittsanalysis results

The numbers of distinct points-to sets are fairly constanmbst of the analysis variations, including object-
sensitive analyses, call site string analyses, and thegsinalsing the ZCWL algorithm. Therefore, in a traditional



points-to analysis implemented using shared bit-vect@siesenting the individual points-to sets should not be a
source of major difficulty even in a context-sensitive asaly Future research in traditional implementations of
context-sensitive analyses should therefore be directa® @t the problem of efficiently representing the contexts,
rather than representing the points-to sets.

However, when abstract heap objects are modelled contesitarely, the elements of each points-to set are pairs
of abstract object and context, rather than simply abstiajeicts, and the number of distinct points-to sets inciease
about 11-fold. In addition, it is likely that the points-tets themselves are significantly larger. Therefore, inorde
to implement such an analysis without using BDDs, it wouldrmethwhile to look for an efficient way to represent
points-to sets of abstract objects with context.

5 Call Graph

We now turn our attention to the effect of context sensiidh call graph construction. For the purposes of com-
parison, we have constructed context-sensitive call grgmojected away their contexts, and measured differénces
their context-insensitive projections. We adopted thishmdology because context-sensitive call graphs usirigrelif
ent context abstractions are not directly comparable. Bade in the graph represents a pair of method and abstract
context, but the set of possible abstract contexts is @iffen each context variation. In the context-insensitioggr-

tion, each node is simply a method, so the projections aeeilircomparable. Projecting away context discards some
information from the call graph, but only the informationiainis not directly comparable between different context
abstractions. In particular, the context-insensitivggtion preserves the set of methods reachable from thegrog
entry points, as well as the set of possible targets of edthitmin the program; it is these sets that we measure. The
set of reachable methods is particularly important becangeonservative interprocedural analysis must analyze al
of these methods, so a small set of reachable methods reithecesst of other interprocedural analyses.

We have not included the ZCWL algorithm in our study of caligh construction, because the context-insensitive
projection of the context-sensitive call graph that it proes is the same as the context-insensitive call graph that w
originally give it as input.

5.1 Reachable methods

Table V shows the number of methods reachable from the pmogratry points when constructing the call graph
using different variations of context sensitivity, exdlugl methods from the standard Java library. In Table V and all
subsequent tables in this paper, the most precise entraébrizenchmark has been highlighted in bold. In the case of
a tie, the most precise entry that is least expensive to ctarifas been highlighted.

For the simple benchmarks likempress anddb, the context-insensitive call graph is already quite Ee¢tom-
pared to the dynamic behaviour), and any further improvesdue to context sensitivity are relatively small. For the
more significant benchmarks, call graph construction besfghtly from 1-object sensitivity. The largest diffae
is 13 methods, in theloat benchmark. All of these methods are visit methods in an implgation of the visitor
design pattern, in the clagscendVi si t or . This class traverses a parse tree from a starting node dpuwe@ward
the root of the tree, visiting each node along the way. Somdskof nodes have no descendants that are ever the
starting node of a traversal, so the visit methods of thedesioan never be called. However, in order to prove this, an
analysis must analyze the visitor dispatch method corgersitively in order to keep track of the kind of node from
which it was called. Therefore, a context-insensitive ggialfails to show that these visit methods are unreachable.

In jess, sablecc-j, polyglot, chart, jython, pmd, andps, modelling abstract heap objects object-sensitivelyhfert
improves the precision of the call graph. In #ablecc-j benchmark, an additional 13 methods are proved unreachable
The benchmark includes its own implementation of maps aintd those in the Java standard library. The maps are
instantiated in a number of places, and different kinds géats are placed in the different maps. Methods such
astoString() andequal s() are called on some of the maps but not others. Calling oneeofrtithods on a
map causes it to be called on all elements of the map. Thereffoese methods are called on some kinds of map
elements, but not others. However, the objects stored iryemap are kept in generic map entry objects, which are
allocated at a single point in the map code. When abstragt tiejgcts are modelled without context, all map entries
are modelled by a single abstract object, and the conterdh ofaps are conflated. When abstract heap objects are



object-sensitive call site actually
Benchmark | insens. 1 2 3 1H 1 2 1H | executed
compress 59 59 59 59 59| 59 59 59 56
db 65 64 64 64 64 65 64 65 51
jack 317| 313 313 313 313] 316 313 316 291
javac 1154 | 1147 1147 1147 1147 1147 1147 1147 778
jess 630 629 629 629 623 | 629 629 629 395
mpegaudio 255 261 251 251 251} 251 251 251 222
mtrt 189 | 186 186 186 186 187 187 187 182
soot-c 2273 | 2264 2264 2264 2264 2266 2264 2266 1055
sablecc-j 1744 | 1744 1744 1744 1731 | 1744 1744 1744 1034
polyglot 2421 | 2419 2419 2419 2416 | 2419 2419 2419 2037
antlr 1323 | 1323 1323 1323 13231323 1323 1323 1099
bloat 2464 | 2451 2451 2451| 2451 2451 2451 138
chart 2081 | 2080 2080 2031 | 2080 2080 854
jython 1695 | 1693 1693 1683 | 1694 1693 1694 1004
pmd 4528 | 4521 4521 4521 4509 | 4521 4521 4521 1817
ps 835| 835 835 835 834 | 835 835 835 285

Table V: Number of reachable benchmark (non-library) mesha call graph

modelled with context, the map entries are treated as sepaigects depending on which map they were created for.
Note that successfully distinguishing the map entriesiregueceiver objects to be used as context, rather than call
site strings. The code that allocates a new entry is in a nidtiat is always called from the same call site, in another
method of the map class. In general, although modellingatisheap objects with context improved the call graph
for some benchmarks in an object-sensitive analysis, éneade any difference in analyses using call site strings as
the context abstraction.€. the 1-call-site and 1H-call-site columns are the same).

Overall, object-sensitive analysis results in slightlyadler call graphs than call site string analysis. The 1-cbje
sensitive call graph is never larger than the 1-call-siesgive call graph, and it is smaller @b, jack, mtrt, soot-c,
andjython. On thedb, jack, andjython benchmarks, the call-site-sensitive call graph can be raademall as the
1-object-sensitive call graph, but it requires 2-calé sdather than 1-call-site analysis.

5.2 Call edges

Table VI shows the size of the call graph in terms of call edgdiser than reachable methods. Only call edges
originating from a benchmark (non-library) method are dedn

In general, context sensitivity makes little differencethie size of the call graph when measured this way, with
one major exception. In theablecc-j benchmark, the number of call edges is 17925 in a contegnbitve anal-
ysis, but only 5175 in a 1-object-sensitive analysis. Thisld make a significant difference to the cost of a client
analysis whose complexity depends on the number of edgdwirall graph. The large difference is caused by
the following pattern of code. Thsablecc-j benchmark contains code to represent a parse tree, with dities
ent kinds of nodes. Each kind of node implements a methodadaknoveChi | d() . The code contains a large
number of calls of the fornt hi s. get Parent (). renoveChil d(this). In a context-insensitive analysis,
get Par ent () is found to possibly return any of hundreds of possible kifdsodes. Therefore, each of these many
calls tor emoveChi | d(t hi s) results in hundreds of call graph edges. However, in a coisenxsitive analysis,
get Par ent () is analyzed in the context of thtehi s pointer. For each kind of node, there is a relatively small
number of kinds of nodes that can be its parent. Thereforegimen contextget Par ent () is found to return only

a small number of kinds of parent node, so each call siteeafoveChi | d() adds only a small number of edges to
the call graph.
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object-sensitive call site actually
Benchmark | insens. 1 2 3 1H 1 2 1H | executed
compress 270 270 270 270 270 270 270 270 118
db 434 427 427 427 427 434 427 434 184
jack 1283 1251 1251 1251 1250 | 1276 1251 1274 833
javac 10360| 10296 10296 10296 10296 10318 10301 10318 2928
jess 3626| 3618 3618 3618 3571 | 3618 3618 361§ 919
mpegaudio 858 812 812 812 812 812 812 812 400
mtrt 761 739 739 739 739 746 746 746 484
soot-c 14611| 14112 14112 14112 13868 | 14185 14112 14185% 2860
sablecc-j 17925| 5175 5140 5140 5072 | 5182 5140 5182 2326
polyglot 11768| 11564 11564 11564 11374 | 11566 11566 11566 5440
antlr 9553 | 9553 9553 9553 9553 9553 9553 9553 4196
bloat 18586| 18143 18143 17722 | 18166 18143 18166 477
chart 9526 | 9443 9443 9178 | 9443 9443 2166
jython 9382 | 9367 9367 9307 | 9367 9365 9367 2898
pmd 18785| 18582 18582 18580 18263 | 18601 18599 18601 3879
ps 11338| 11292 11292 11292 10451 | 11298 11292 11298 705

Table VI: Number of call edges in call graph originating frarbenchmark (non-library) method

6 Virtual Call Resolution

Table VII shows the number of virtual call sites for which tt@l graph contains more than one potential target
method. Call sites with at most one potential target metlardle converted to cheaper static instead of virtual calls,
and they can be inlined, possibly enabling many other ogtitions. Therefore, an analysis that proves that call sites

are not polymorphic can be used to significantly improvetiore performance.

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H
compress 3 3 3 3 3 3 3 3
db 5 4 4 4 4 5 4 5
jack 25 23 23 23 22 24 23 24
javac 737 | 720 720 720 720 720 720 720
jess 45 45 45 45 45| 45 45 45
mpegaudio 27 24 24 24 24 24 24 24
mtrt 9 7 7 7 7 8 8 8
soot-c 983 | 913 913 913 913 938 913 938
sablecc-j 450 325 325 325 301| 380 325 380
polyglot 744 | 592 592 592 585 | 592 592 592
antlr 843 | 843 843 843 843 843 843 843
bloat 1079| 962 962 961 | 962 962 962
chart 254 | 235 235 214 | 235 235

jython 347 | 347 347 346 | 347 347 347
pmd 12241 1193 1193 1193 1163 | 1205 1205 120§
ps 304| 303 303 303 300| 303 303 303

Table VII: Total number of potentially polymorphic call e in benchmark (non-library) code

In the benchmarks written in an object-oriented style, bigtiavac, soot-c, sablecc-j, polyglot, bloat, andpmd,
many more call sites can be devirtualized using objectisemsnalysis than context-insensitive analysis. In some
cases, call site string analysis gives the same improverbahinever any more, and pot-c and sablecc-j, the

improvement from 1-object-sensitive analysis is much grethan from 1-call-site string analysis.
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In sablecc-j, there are three key sets of call sites that can be devizkalising context-sensitive analysis. Any
context-sensitive analysis is sufficient to devirtualize first set of call sites. Devirtualization of the secondéeall
sites requires an object-sensitive analysis; an analggigcall sites as the context abstraction cannot prove them
be monomorphic. Devirtualization of the third set of caiésinot only requires an object-sensitive analysis, bugd a
requires that abstract heap objects be modelled with contex

The first set of call sites are the calls to thenmoveChi | d() method mentioned in Section 5.2. Object sensitivity
reduces the number of potential target methods at eachss# &l sites. At many of them, it reduces the number down
to one, so the calls can be devirtualized. The same improveisiebtained with call site string context sensitivity.

The second set of call sites are calls to methods of iteratogslists. Thesablecc-j benchmark contains several
implementations of lists similar to those in the standardhJiébrary. A call toi t er at or () on any of these lists
invokesi t er at or () ontheAbstract Li st superclass, which in turn invokes thest | t er at or () method
specific to each list. The actual kind of iterator that is reéal depends on whidhi st |t er at or () was invoked,
which in turn depends on the receiver object of the cailtter at or () ; it is independent of the call site bf st -

It erator(),whichis always the same siteiitt er at or () . Therefore, calls tbhasNext () andnext () onthe
returned iterator can be devirtualized only with an obgatsitive analysis.

The third set of call sites are calls to methods such@sSt ri ng() andequal s() on objects stored in maps.
As we explained in Section 5.1, object-sensitive modelihgbstract heap objects is required distinguish the imadern
map entry objects in each separate use of the map implerimemtdthe map entry objects must be distinguished in
order to distinguish the objects that are stored in the mapsrefore, devirtualization of these calls to methods of
objects stored in maps requires an object-sensitive asdhest models abstract heap objects with context.

7 Cast Safety

We have used the points-to analysis results in a client aisalljat proves that some casts cannot fail. A given cast
cannot fail if the pointer that it is casting can only pointdbjects whose type is a subtype of the type of the cast.
Table VIII shows the number of casts in each benchmark thanatabe statically proven safe by the cast safety
analysis.

object-sensitive call site

Benchmark | insens. 1 2 3 1H 1 2 1H | ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 | 145 145 145 104 | 146 145 146 146
javac 405| 370 370 370 363 | 391 370 391

jess 130| 130 130 130 86| 130 130 130 130
mpegaudio 42 38 38 38 38| 40 40 40 42
mtrt 31 27 27 27 27 27 27 27 29
soot-c 955 932 932 932 878 | 932 932 932
sablecc-j 375 369 369 369 331| 370 370 370

polyglot 3539 | 3307 3306 3306 1017 | 3526 3443 3524 3318
antlr 295 275 275 275 237 | 276 275 276 276
bloat 1241 | 1207 1207 1160 | 1233 1207 1233 1234
chart 1097 | 1086 1085 934 | 1070 1070

jython 501 | 499 499 471 | 499 499 499 499
pmd 1427 | 1376 1375 1375 1300 | 1393 1391 1393

ps 641| 612 612 612 421 | 612 612 612 612

Table VIII: Number of casts potentially failing at run time
Context sensitivity improves precision of cast safety gsialin jack, javac, mpegaudio, mtrt, soot-c, sableccj,

polyglot, antlr, bloat, chart, jython, pmd, andps. Object sensitive cast safety analysis is never less gracid often
significantly more precise than the call site string contextsitive variations. The improvements due to context
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sensitivity are most significant in thelyglot andjavac benchmarks. lub, jack, javac, jess, soot-c, sablecc-j, polyglot,
antlr, bloat, chart, jython, pmd, andps, modelling abstract heap objects with receiver objectexrfurther improves
precision of cast safety analysis.

The improvement is most dramatic in thelyglot benchmark, which contains a hierarchy of classes repregent
different kinds of nodes in an abstract syntax tree. At tha& of this hierarchy is th&ode c class. This class
implements a method calletbpy() which, like thecl one() method ofChbj ect , returns a copy of the node on
which it is called. In fact, theopy() method first usesl one() to create the copy of the node, and then performs
some additional processing on it. The static return typsogfy () is Obj ect , but at most sites calling it, the returned
value is immediately cast to the static type of the node orclitiis called. In our analysis, thel one() native
method is modelled as returning its receiver; that is, thgimal object and the cloned version are represented by
the same abstract object. Therefore, given a program thiatadaone() directly, the cast safety analysis correctly
determines that the run-time type of the clone is the sambaof the original. However, ipolyglot, the call to
cl one() is wrapped insideopy() , and the casts appear at sites callimpy () . Whencopy() is analyzedin a
context-insensitive way, it is deemed to possibly retugnafrihe objects on which it is called throughout the program,
so the casts cannot be proven to succeed. In an objectigersitlysis, howevegopy() is analyzed separately in
the context of each receiver object on which it is called, iarghch such context, it returns only an object of the same
type as that receiver object. Therefore, the cast safetlysingroves statically that the casts of the return value of
copy() cannot fail.

The number of potentially failing casts in tipelyglot benchmark decreases even more dramatically between the
1-object-sensitive and 1H-object-sensitive columns dlda/11l, from 3307 to 1017. The majority of these casts are
in the parser generated by JavaCUP. The parser uSea@k as the LR parse stack. Each object popped from the
stack is cast to 8ynbol . The generatepolyglot parser contains about 2000 of these casts.Stec k class extends
Vect or , which uses an intern@l ermrent Dat a array to store the objects that have been pushed onto the $tac
order to prove the safety of the casts, the analysis mushgissh the array implementing the parse stack from the
arrays of other uses &fect or in the program. Since the array is allocated in one placé&entheVect or class,
the different array instances can only be distinguishethstract heap objects are modelled with context. Therefore,
modelling abstract heap objects with object sensitivityasessary to prove that these 2000 casts cannot fail.

8 Related Work

The work most closely related to our empirical evaluatiooaiftext-sensitive interprocedural analyses for Javaeis th
evaluation of object-sensitive analysis by Milanova, Reunand Ryder [14,15]. They implemented a limited form of
object sensitivity within their points-to analysis framak based on annotated constraints [18] and built on topeof th
BANE toolkit [1]. In particular, they selected a subset ofrger variables (method parameters, thg s pointer, and

the method return value) which they modelled context-siesy using the receiver object as the context abstraction
All other pointer variables and all abstract heap objecteevmodelled in a context-insensitive way. The precision
of the analysis was evaluated on benchmarks using versio8 af the Java standard library, and compared to a
context-insensitive and to a call site context-sensitivalysis, using call graph construction, virtual call resizin,

and mod-ref analysis as client analyses. Our BDD-basedemmghtation has made it feasible to evaluate object-
sensitive analysis on benchmarks using the much largeiovets3.1 01 of the Java standard library. Thanks to the
better scalability of the BDD-based implementation, weehpgrformed a much broader empirical exploration of the
design space of object-sensitive analyses. In particularhave modelled all pointer variables context-sensitjvel
rather than only a subset, we have used receiver objeogstoilength up to three, rather than only one, and we have
modelled abstract heap objects context-sensitively.

Whaley and Lam [25] suggest several client analyses of th&/EZ@lgorithm, but state that “in-depth analysis
of the accuracy of the analyses ...is beyond the scope op#psr.” They do, however, provide some preliminary
data about thread escape analysis and a “type refinemegsexidbr finding variables whose declared type could be
made more specific. In this paper, we have compared the measthe ZCWL algorithm against object-sensitive
and call site string context-sensitive analyses usingrakekent analyses, namely call graph construction, airtall
resolution, and cast safety analysis.

Liang, Pennings and Harrold [13] evaluated the effect oftextsensitivity on the size of pointed-to-by sets (the
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inverse of points-to sets), normalized using dynamic cauhitstead of using BDDs to allow their analyses to scale
to benchmarks using the large Java standard library, theylated the library with a hand-crafted model. Their
results agree with our findings that context sensitivity iayes precision for some benchmarks, and that a context-
sensitive heap abstraction is particularly important fiargsion. However, they found that call sites are sometimes
more precise than receiver objects. This difference coelddused by several factors, including their different céoi

of benchmarks, their different precision metric, or tha@ingation of the standard library.

Several context-sensitive points-to analyses other thastbset-based analyses studied in this paper have been
proposed. Wilson and Lam [26] computed summary functionsmsarizing the effects of functions, which they then
inlined into summaries of their callers. Liang and Harrdl@][proposed an equality-based context-sensitive arsalysi
its precision relative to subset-based context-sensinadysis remains to be studied. Ruf [19] compared context-
insensitive analysis to using “assumption sets” as thesxtabstraction, and concluded that on C benchmarks, contex
sensitivity had little effect on the points-to sets of peinstthat are actually dereferenced. In the future, it woeld b
interesting to empirically compare these additional vanies of context-sensitive analysis with those studiechin t

paper.

9 Conclusions

We have performed an in-depth empirical study of the effettgriations of context sensitivity on the precision of
Java points-to analysis. In particular, we studied obgectsitive analysis, context-sensitive analysis usingsgals

as the context abstraction, and the ZCWL algorithm. We atatlithe effects of these variations on the number of
contexts generated, the number of distinct points-to smistoucted, and on the precision of call graph construgtion
virtual call resolution, and cast safety analysis.

Overall, we found that context sensitivity improved cakygh precision by a small amount, improved the precision
of virtual call resolution by a more significant amount, améleled a major precision improvement in cast safety
analysis.

Object-sensitive analysis was clearly better than theratigations of context sensitivity that we studied, both in
terms of analysis precision and potential scalabilitye@ianalyses based on object-sensitive analyses werelesser
precise than those based on call site string context-8anaitalyses or on the ZCWL algorithm, and in many cases,
they were significantly more precise. As we increased thgtleof context strings, the number of abstract contexts
produced with object-sensitive analysis grew much morelglthan with the other variations of context sensitivity,
so object-sensitive analysis is likely to scale better. E\mv, the number of equivalence classes of contexts was
greater with object sensitivity than with the other vaonas, which indicates that object sensitivity better dgtiishes
contexts that give rise to differences in points-to sets.

Of the object-sensitive variations, extending the lenditomtext strings caused very few additional improvements
in analysis precision compared to 1-object-sensitiveyaigl However, modelling abstract heap objects with cdntex
did improve precision significantly in many cases. Therefave conclude that 1-object-sensitive and 1H-object-
sensitive analyses provide the best tradeoffs betweensmeand analysis efficiency. Our measurements of the
numbers of abstract contexts and distinct points-to sefgest that it should be feasible to implement an efficient non
BDD-based 1-object-sensitive analysis using currentémgntation techniques such as shared bit vectors. Efficient
implementing a 1H-object-sensitive analysis without BV require new improvements in the data structures and
algorithms used to implement points-to analyses, and weatxbat our results will motivate and help guide this future
research.

Although the ZCWL algorithm constructs call site stringsaobitrary length, we observed that client analyses
based on it were never more precise than those based on-gbjesitive analysis. In many cases, analyses based on
the ZCWL algorithm were even less precise than those baséecall-site-sensitive analysis. We found that the key
cause of the disappointing results of this algorithm wasdtstext-insensitive treatment of calls within SCCs of the
initial call graph — a large proportion of call edges weredad within such SCCs.
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