
McGill University

School of Computer Science

Sable Research Group

Dynamic Shape and Data Structure Analysis in Java

Sable Technical Report No. 2005-3

Sokhom Pheng and Clark Verbrugge
{spheng, clump}@cs.mcgill.ca

October 27, 2005

w w w . s a b l e . m c g i l l . c a

Abstract

Analysis of dynamic data structure usage is useful for both program understanding and for improving
the accuracy of other program analyses. Static shape analysis techniques, however, suffer from reduced
accuracy in complex situations. We have designed and implemented a dynamic shape analysis system
that allows one to examine and analyze how Java programs build and modify data structures. Using a
complete execution trace from a profiled run of the program, we build an internal representation that mir-
rors the evolving runtime data structures. The resulting series of representations can then be analyzed and
visualized, and we show how to use our approach to help understand how programs use data structures,
the precise effect of garbage collection, and to establish limits on static techniques for shape analysis.
A deep understanding of dynamic data structures is particularly important for modern, object-oriented
languages that make extensive use of heap-based data structures.

1 Introduction

Data structure orshape analysistechniques summarize dynamic data connectivity, with the goal of im-
proving alias analysis [9], automatic parallelization [11], optimizing garbage collection [21], debugging, or
as part of a general understanding of program behaviour. Investigation of data structures shape and usage
is particularly important for programs which make extensive use of heap data, such as in Java and other
object-oriented languages. Static approaches to shape analysis, however, suffer from overly-conservative
approximations, easily induced by temporary data structure inconsistenciesduring updates and modifica-
tions.

In this paper we investigate shape analysis from the perspective of dynamic analysis. Using complete traces
of Java program executions, we reconstruct the entire history of heap-based data as it is changed through
program modifications. This allows for the construction of data structure snapshots and animations, visually
illustrating evolution of program data, and also encoding a variety of properties of interest, including overall
shape, age of data, node types, reachability, and so on. For large benchmarks, data sizes can become
impractical, and so we also provide a more abstract and scalable numerical approach that summarizes the
distribution of shape over time. We demonstrate our techniques on a selection of small and moderately large
Java programs.

Data we dynamically gather provides lower limits on the potential accuracy of static, conservative shape
analyses. Specific and interesting program behaviours and programmingstyles are also easily discernible
through our visualization techniques. We are, for instance, able to show and measure the extent of and
variation in garbage data carried through program execution (GCdrag [20]). Similar strategies can be
applied to represent and understand arbitrary other data structure properties.

1.1 Contributions

Specific contributions of our work include:

• The design and implementation of a framework for capturing the complete dynamicevolution of data
structures in Java programs.

• We present two new techniques for data structure visualization: a series of snapshots that can encode
current and historical data structure properties, and a numerical, summary assessment that can represent
arbitrarily large data sets.

1

• We give experimental results on the data structure usage of a number of benchmark programs, including
non-trivial programs in the SPEC JVM98 [22] and JOlden [3] suites.

In the next section we discuss background and related work on shape and dynamic analysis. In Section 3
we describe the general design of our shape analyzer and the associated research challenges. Section 4 then
gives analyses results performed on a set of tiny, small and reasonablylarge benchmarks. Finally, we discuss
future work and conclude in Section 5.

2 Related Work

Our approach combines two main techniques, dynamic analysis and shape analysis. These have historically
been relatively orthogonal pursuits, and so we discuss them separatelybelow.

2.1 Shape Analysis

Shape analysis techniques vary from implementing a whole new language foridentifying data structures to
summarizing them using specialized graphs.

A frequent, and early approach to identifying data structures is to allow the programmer to provide high-
level information through program annotations. Hummel et al., for instance,define static annotations to
data structures in order to help the compiler identify opportunities for parallelizing transformations [12].
A similar approach is described by Fradet and Le Métayer, who define a new language annotation that
integrates the notion of shapes into the C language [7].

Many have tried identifying data structure shape without modifying the source code. Ghiya and Hendren
show how the conceptually simple categorization of data structures intotree, DAG,or cyclecan be sufficient
for compiler optimization [9]. More detailed approaches attempt to model data using various kinds of graph
abstractions. Klarlund and Schwartzbach’sgraph typesbuild a representation as a grammar describing data
structures having a backbone, such as doubly-linked lists [14]. Wilhelm et al. [23] defineshape graphsto
represent structural properties of data structures. Corbera et al. combines static shape graphs with abstract
storage graphs to give a more precise shape analysis [4]; their techniques were improved by Navarro et al.
by approximating the data structures in a graph combining memory locations having similar patterns [16].
Recently, Hackett and Rugina described a way of breaking down the entire shape abstraction into smaller
component and analyzing them separately [10].

While most work done on shape analysis has been done statically on C code,Bogda and Singh have dome
some exploratory work on shape analysis for Java code at run-time [1];good results are possible, but mainly
under repeated execution scenarios.

Our own work here also includes aspects of data structure visualization. Visually representing the heap is
an existing concern for debuggers [24], heap analysis tools [18], and visualizing profilers in general [19].
Most shape analysis studies, however, concentrate on the analysis morethan depicting the analysis results,
although there is recent work on defining structural shape properties suitable for visualization [13].

2

Java Program

*J Agent
JVM

...100101101000101

11010110100010110

01010010101010001

100101101000101...

*J Analyzer
*J Shape

Analyzer

. . .

putfield

aload_3

ifnonnull

aload_0

. . .

Trace File
 .dot Output

Summary

Figure 1:Design overview.

2.2 Dynamic Analysis

Dynamic program analysis can be performed online, or offline through theanalysis of program execution
trace files. Given the large resource demands of our precise shape analysis we have focused on the latter
technique; inroads have been made to the former [1], however.

Trace extraction from Java programs often relies on the use of the Java’s built-in Virtual Machine Profiling
Interface (JVMPI), or its new replacement JVMTI (Tracing Interface). Brown et al. describe a framework,
STEP, for profiler developers to encode general program trace datain a flexible and compact format [2].
JVMPI is also used by Dufour et al. in the implementation of *J [5], a tool for dynamic analysis of Java
programs used to generate Java program metrics [6]. Our work here builds on the *J framework.

The Daikon project from MIT [17] and the Dynamo project from IndianaUniversity [15] both provide online
forms of dynamic analysis, differing mostly in usage. Both projects are based on observing runtime values
and invariants to perform diverse analyses and optimizations. The Daikonproject uses the information to
report properties that were true over the observed period, which canthen be used for testing and verification
for example. Dynamo is a compiler architecture that uses the information to do runtime optimizations. The
challenges of efficient online dynamic analysis are quite different from our exhaustive approach to trace
analysis, but the invariant-based approach may be a useful basis for for determining specific data structure
properties.

3 Design

We begin with an overview of our design, followed by a description of the properties we can represent in
the output, and the analyses that we can perform. Fully accurate dynamic data structure analysis implies
significant research challenges in handling and representing large amounts of information; we describe the
major problems and some solutions in Section 3.4.

The overall flow for our shape analysis system is shown in Figure 1. Thefirst part of the process is data
gathering. Java programs are executed in the JVM (Java Virtual Machine), and an attached *J agent produces
execution trace files of the running program. Trace files are then fed into the *J shape analyzer. Here the
input event trace is used to reconstruct the program data structures and their evolution over time. The *J

3

shape analyzer may apply various analyses such as tree/DAG/cycle analysis, topological shape analysis, etc.
The last part of the process is the output representation of the analysis data. Results can be communicated as
literal snapshot or animated representations of graph structures, or in the case of larger outputs as numerical
summary graphs.

3.1 *J Shape Analyzer

The *J shape analyzer relies heavily on *J, which is a tool for dynamic analysis of Java programs [6, 5] and
it comes in two parts. The first part is the *J agent, which produces trace files containing events obtained
from the JVM through the JVMPI (Java Virtual Machine Profiling Interface). The second part is the *J
analyzer, a framework for reading trace files and performing different analyses on that data. The *J shape
analyzer extends the basic analysis facilities of *J.

For a complete and accurate analysis of runtime data structures we need complete data on heap objects
and references, and all values which may be stored in reference fields. *J provides both a complete trace
of all instructions executed, and unique identifiers for all objects. We arethus able to reconstruct heap
connectivity by tracking which object identifiers are subject and target of reference field writes; this includes
reference arrays. The *J shape analyzer reads events from the generated trace file and processes them one
by one. For each event processed a corresponding update is appliedto an internal structure that mirrors the
program’s heap nodes and their connectivity. This includes the removal of nodes due to GC. At each of
these modification points, analyses are then run to determine the evolving properties of the data structure.

3.2 Data Structure Properties

From the mirrored representation of the program data structures we are able to find and show a variety
of interesting and useful properties. Certainly type, or other node information can be easily included in
any graphical representation. We can further encode complex, historical node properties such as relative
age of its component nodes, and the data structure can also be examined moreabstractly, e.g., in terms of
reachability.

Node type in our representations is shown textually. However, since we are most interested in application
objects, we distinguish application from library objects through colour as well, and this strategy can ob-
viously be extended to many node properties. Figure 2 shows an example ofthis division, as well as a
visualization of theagingproperty: as an object ages, meaning that it lives longer within the program, its
colour becomes darker (in figure 2 this is applied only to application objects, not library objects). Observing
age and type can be a useful way of understanding how a structure is constructed; in figure 2, for example, it
is evident that the data structure is mostly built bottom-up, with application nodes near the tree root younger
than nodes deeper in the structure.

Reachability in our system is easily determined. By tracking all object references we also know the set of all
root objects, or entry points to the structure. Root objects include static variables, live local variables, and
live method parameters. Thus by comparing the transitive closure of references with the set of all allocated
but currently uncollected objects we can determine the set of dead objects,not reachable from the root set.
This information can be visualized, showing the exact amount and (remaining) connectivity of dead, garbage
objects the heap contains. Figure 3 shows a visualization of a data structurecontaining garbage data. Dead
objects are drawn with dotted lines, and we can easily see how many there areand exactly how they are
connected to each other and to the rest of the structure. Understanding how much data is carried in this way
can be useful for garbage collector optimization [20].

4

reference: 1147619112,
=> java.lang.Integer

reference: 1147617432,
=> BinaryNode

reference: 1147618568,
=> BinaryNode

reference: 1147618928,
=> BinaryNode

reference: 1147618552,
=> java.lang.Integer

reference: 1147619008,
=> BinaryNode

reference: 1147619088,
=> BinaryNode

reference: 1147618992,
=> java.lang.Integer

reference: 1147619048,
=> BinaryNode

reference: 1147619032,
=> java.lang.Integer

reference: 1147619072,
=> java.lang.Integer

reference: 1147618912,
=> java.lang.Integer

reference: 1147618848,
=> BinaryNode

reference: 1147618832,
=> java.lang.Integer

reference: 1147618888,
=> BinaryNode

reference: 1147618768,
=> BinaryNode

reference: 1147618872,
=> java.lang.Integer

reference: 1147618752,
=> java.lang.Integer

reference: 1147618808,
=> BinaryNode

reference: 1147618688,
=> BinaryNode

reference: 1147618792,
=> java.lang.Integer

reference: 1147618672,
=> java.lang.Integer

reference: 1147618728,
=> BinaryNode

reference: 1147618608,
=> BinaryNode

reference: 1147618712,
=> java.lang.Integer

reference: 1147618592,
=> java.lang.Integer

reference: 1147617832,
=> SplayTree

reference: 1147617816,
=> java.lang.String[]

Figure 2:A data structure showing the aging property. Nodes are coloured according to their age (and type); all leaf
nodes here are library objects, and all internal nodes application objects.

reference: 1147620208,
=> java.lang.Integer

reference: 1147620224,
=> java.lang.Integer

reference: 1147620240,
=> java.lang.Integer

reference: 1147617432,
=> BinaryNode

reference: 1147618688,
=> BinaryNode

reference: 1147618672,
=> java.lang.Integer

reference: 1147619728,
=> BinaryNode

reference: 1147619712,
=> java.lang.Integer

reference: 1147619168,
=> BinaryNode

reference: 1147619152,
=> java.lang.Integer

reference: 1147618608,
=> BinaryNode

reference: 1147618592,
=> java.lang.Integer

reference: 1147619648,
=> BinaryNode

reference: 1147619632,
=> java.lang.Integer

reference: 1147619088,
=> BinaryNode

reference: 1147619072,
=> java.lang.Integer

reference: 1147620256,
=> java.lang.Integer

reference: 1147620272,
=> java.lang.Integer

reference: 1147620288,
=> java.lang.Integer

reference: 1147620304,
=> java.lang.Integer

reference: 1147620320,
=> java.lang.Integer

reference: 1147617832,
=> SplayTree

reference: 1147619248,
=> BinaryNode

reference: 1147619232,
=> java.lang.Integer

reference: 1147619328,
=> BinaryNode

reference: 1147619312,
=> java.lang.Integer

reference: 1147619408,
=> BinaryNode

reference: 1147619808,
=> BinaryNode

reference: 1147619392,
=> java.lang.Integer

reference: 1147619488,
=> BinaryNode

reference: 1147619368,
=> BinaryNode

reference: 1147619472,
=> java.lang.Integer

reference: 1147619528,
=> BinaryNode

reference: 1147619448,
=> BinaryNode

reference: 1147619512,
=> java.lang.Integer

reference: 1147620088,
=> BinaryNode

reference: 1147620048,
=> BinaryNode

reference: 1147620072,
=> java.lang.Integer

reference: 1147619568,
=> BinaryNode

reference: 1147619008,
=> BinaryNode

reference: 1147619552,
=> java.lang.Integer

reference: 1147619048,
=> BinaryNode

reference: 1147619032,
=> java.lang.Integer

reference: 1147618992,
=> java.lang.Integer

reference: 1147620032,
=> java.lang.Integer

reference: 1147618968,
=> BinaryNode

reference: 1147618952,
=> java.lang.Integer

reference: 1147619432,
=> java.lang.Integer

reference: 1147620008,
=> BinaryNode

reference: 1147619968,
=> BinaryNode

reference: 1147619992,
=> java.lang.Integer

reference: 1147618928,
=> BinaryNode

reference: 1147618912,
=> java.lang.Integer

reference: 1147619952,
=> java.lang.Integer

reference: 1147618888,
=> BinaryNode

reference: 1147618872,
=> java.lang.Integer

reference: 1147619352,
=> java.lang.Integer

reference: 1147619928,
=> BinaryNode

reference: 1147619888,
=> BinaryNode

reference: 1147619912,
=> java.lang.Integer

reference: 1147618848,
=> BinaryNode

reference: 1147618832,
=> java.lang.Integer

reference: 1147619872,
=> java.lang.Integer

reference: 1147618808,
=> BinaryNode

reference: 1147618792,
=> java.lang.Integer

reference: 1147619792,
=> java.lang.Integer

reference: 1147619288,
=> BinaryNode

reference: 1147619272,
=> java.lang.Integer

reference: 1147619848,
=> BinaryNode

reference: 1147619832,
=> java.lang.Integer

reference: 1147618768,
=> BinaryNode

reference: 1147618752,
=> java.lang.Integer

reference: 1147617816,
=> java.lang.String[]

reference: 1147618568,
=> BinaryNode

reference: 1147618552,
=> java.lang.Integer

reference: 1147619608,
=> BinaryNode

reference: 1147619592,
=> java.lang.Integer

reference: 1147619128,
=> BinaryNode

reference: 1147619112,
=> java.lang.Integer

reference: 1147618648,
=> BinaryNode

reference: 1147618632,
=> java.lang.Integer

reference: 1147619688,
=> BinaryNode

reference: 1147619672,
=> java.lang.Integer

reference: 1147619208,
=> BinaryNode

reference: 1147619192,
=> java.lang.Integer

reference: 1147618728,
=> BinaryNode

reference: 1147618712,
=> java.lang.Integer

reference: 1147619768,
=> BinaryNode

reference: 1147619752,
=> java.lang.Integer

Figure 3:Showing garbage nodes in the data structure. Here unreachable nodes are drawn in dotted lines.

5

3.3 Analyses

The *J shape analyzer has all necessary information to support the implementation of various analyses,
including different summary and shape graph approaches, topologicalshape analysis, etc. We have imple-
mented a basic tree/DAG/cycle analysis as a proof of principle, and also to investigate the quality and utility
of this simple categorization.

Dynamically, a tree/DAG/cycle categorization is quite trivial to compute. From each entry point we simply
do a depth-first search to determine whether the nodes reachable from that entry point represent a tree, a DAG
or a cyclic graph. This information is then encoded in the graphical output; ifthe reachable nodes form a
tree then the entry point is drawn as a rectangle, if the structure is a DAG thenthe entry point is drawn as a
“house shape” (pentagon), and for cyclic structures a hexagon entry point is used. Although these qualities
are usually associated with the data structure itself more than the entry points, itis also true that a structure
may appear differently from different perspectives. Figure 2 showsexamples of tree and DAG entry points
into the same connected structure. By performing this analysis at each structure modification we obtain an
evolving view of the data, at least in terms of tree/DAG/cycle composition.

3.4 Representation Concerns

The most obvious and direct representation of data structure evolution is as series of literal snapshots of
the encoded data structures, as in figures 2 and 3. This is suitable for smalltests, examinations of specific
components, and for pedagogical pursuites, but unfortunately is not feasible as a general approach in most
benchmarks. The large data sets that must be manipulated in the context of theanalyzer impose strong
constraints on the style of presentation, and also on the kind of data that canbe gathered.

Tiny, test programs modify data structures only a relatively small number of times. More realistic programs,
however, can perform a very large number of updates; the Jess benchmark from SPECjvm98, for instance,
performs more than 48 million heap modifications. Examining all these snapshots isphysically unrealistic
for humans. Instead of generating snapshots for each modification we therefore only generate a snapshot
everynth changes, for differentn depending on the scale of investigation required. This can also help in
reducing the computational cost of the analysis.

Snapshot animation itself is suprisingly difficult, even with external tools. In order to have a nice animation
of the snapshots, we need to be able to incrementally add/subtract nodes andedges to an existing draw-
ing while ensuring existing nodes and edges do not move. This preservesthe location of nodes between
snapshots, making node identity trivially obvious as frames change. Current open source and commercial
tools for graph layout, however, focus on optimal, static representations,and do not in general attempt to
locate nodes in the same place between drawings. This results in animation frames where graphs in succes-
sive frames may bear little visual relation to each other, and thus are not useful as a visual replay of data
structure behaviour.

Improvements to drawing tools are possible of course. However, many programs also produce large data
structures, whether or not they are modified frequently. Even a simple program such as BiSort from the
JOlden benchmark suite generates more than 120 thousand objects—far toomany objects for a drawing
tool to handle, or to meaningfully show on a screen or in an animation. Interactive visualization techniques
can improve this situation, but it is clear that animations, and even representative snapshots are simply not
feasible in all situations. For the benchmarks we analyze in the subsequentsection we have thus concentrated
on alternative representations that draw only reduced, aggregate information on data structure properties, and
not the data structures themselves.

6

Finally, we note that the amount of data that can be acquired through the JVMPI interface in *J is limited.
Early events in the virtual machine startup are not available (occuring before JVMPI is initialized), and data
from native method executions is not reliably delivered. In our investigations we have restricted our analyses
to application code, not startup in order to ensure we have a complete eventtrace.

4 Experiments

We have analyzed a number of benchmarks from the SPECjvm98 and Joldenbenchmark suites. Below we
describe the programs analyzed, and present examples of visualizations, both as snapshots and in terms of
numerical summaries, along with discussion of interesting and relevant program features exposed by our
analyses and visualizations.

4.1 Benchmarks

For space reasons we cannot show results for all the benchmarks we have analyzed, and instead show a
selection of results from three basic categories. The first kind consist of tiny programs designed to test the
framework, and also suitable for snapshot visualizations. We used two well-known algorithms, a splay tree
implementation and a red-black tree implementation. Both programs construct a small tree and then delete
some nodes; below we only present the SplayTree benchmark program.

More realistic, but still manageably small results are obtained by analyzing benchmarks from the JOlden
suite. These are small but non-trivial programs that focus on use of dynamic data structures. Benchmarks
shown here include Barnes-Hut, BiSort, Em3d, and TSP (Travelling Salesman Problem).

Our final category is of moderately large programs, taken from the SPECjvm98 suite. The benchmarks that
are analyzed here are Jess and MpegAudio.

4.2 Snapshot Example

If a program is relatively small, and in general does not contain more than approximately 1k objects, a
meaningful visualization of data structures updates can be produced where a snapshot is generated for each
update. We use thedot tool in GraphViz[8] to layout the graphs, encoding node properties as discussed in
sections 3.2 and 3.3.

In Figure 4 we show snapshots generated for a series of data structureupdates performed in the SplayTree
program. From a) to c) the splay tree has a node inserted, with an image for each modification: first the new
node (and its associated data) are connected by pointing them to the node just below the root of the tree,
and then the root pointer is redirected to the new node. Different graph layouts between snapshots make
this progression less obvious, but this kind of visualization is still very rich indetail, and quite useful for
understanding data structure operations and behaviour.

4.3 Analysis & Numerical Summary Results

Most of our other programs contain well more than 1k objects, and thus arenot well-suited to the style of
literal representation used for SplayTree. Instead, we have focusedon the results of the tree/DAG/cycle
categorization. For each of the benchmarks below we calculate the number of entry points that reach tree,

7

reference: 1147618640,
=> BinaryNode

reference: 1147618624,
=> java.lang.Integer

reference: 1147617424,
=> BinaryNode

reference: 1147618560,
=> BinaryNode

reference: 1147618544,
=> java.lang.Integer

reference: 1147617824,
=> SplayTree

reference: 1147618600,
=> BinaryNode

reference: 1147618584,
=> java.lang.Integer

reference: 1147617808,
=> java.lang.String[]

reference: 1147617424,
=> BinaryNode

reference: 1147618560,
=> BinaryNode

reference: 1147618544,
=> java.lang.Integer

reference: 1147617824,
=> SplayTree

reference: 1147618600,
=> BinaryNode

reference: 1147618584,
=> java.lang.Integer

reference: 1147618624,
=> java.lang.Integer

reference: 1147618640,
=> BinaryNode

reference: 1147617808,
=> java.lang.String[]

reference: 1147617424,
=> BinaryNode

reference: 1147618560,
=> BinaryNode

reference: 1147618544,
=> java.lang.Integer

reference: 1147617824,
=> SplayTree

reference: 1147618640,
=> BinaryNode

reference: 1147618624,
=> java.lang.Integer

reference: 1147618600,
=> BinaryNode

reference: 1147618584,
=> java.lang.Integer

reference: 1147617808,
=> java.lang.String[]

(a) (b) (c)

Figure 4:SplayTree snapshots. An existing pair of nodes (tree node and associated data) is inserted just below the
root of the tree.

DAG, and cycle type data structures in the program, and plot this as it evolves over time (bytecodes exe-
cuted). To keep data sizes and visual presentations manageable the data shown is actually sampled every
100–100k updates, as indicated in the individual descriptions.

The tree/DAG/cycle designation has one important limitation: single, unconnected nodes are considered
trees. While this is true in a technical sense, many programs make extensive use of single node objects, and
this obfuscates any understanding of more realistic tree usage. For this reason we actually show a 4-way
categorization, separating single nodes into their own category.

To provide additional information we also show graphs of counts of live/dead objects over the same time
axis. This makes it easy to see general trends in volume of data and garbage, and also allows for limited
visual inspection of drag.

4.3.1 BiSort

BiSort performs two bitonic sorts, one forward and one backward. It works in two phases. The first phase
is the tree construction, and the second phase is the sorting.

In Figure 5, we can easily see the first phase, where the tree is being constructed. A number of single nodes
are allocated, and then consumed by construction of the base tree. At about 1/3 of the way through execution
the program enters its second phase; here many changes are performed on the tree, and the number of tree
structures becomes quite variable. As the tree is modified the data types fluctuate between DAG types and
tree types in a complementary fashion: nodes are being rearranged, andnot copied or deleted. Note that
there are not in fact as many disjoint structures as the number of trees andDAGs would indicate; call chains
and recursive calls in particular allow for the stack to contain multiple entry points to the same structure,
magnifying the apparent number of structures.

A conservative static analysis on this program might be forced to concludethat the data structures overall
are DAGs. Dynamically, however, the DAG stage is only intermediate, and trees dominate more than DAGs.

Figure 6 reinforces the observed phase behaviour of the data structures: objects are allocated (tree construc-
tion), followed by a long period of relative stability. Interestingly, there areno dead objects, an observation
compatible with our claim that the data structure is modified by moving nodes, not adding or deleting.

8

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node
Tree

 0

 2

 4

 6

 8

 10

 12

 14

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

DAG

Figure 5:BiSort analysis results by bytecode for every 10k updates. The top figure shows single nodes and trees over
bytecodes executed, and the bottom figure shows DAGs. There are no cycles in BiSort.

9

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object

Figure 6: BiSort GC results by bytecode for every 10k updates, showingthe number of live and dead objects over
bytecodes executed. There are no dead objects in Bisort.

4.3.2 Barnes-Hut

Barnes-Hut solves the classic N-body gravitational attraction problem. Barnes-Hut works in two phases;
this is not obvious by observing data structure type changes, but is clearly shown in the GC results graph of
figure 8. The first phase is the tree construction, where a quad-tree is constructed, and the second phase is
the force computation, where the tree is traversed.

From the graph in figure 7 it is evident that this program is quite dynamic in behaviour, and aggressive
and frequent GC is used to limit the amount of accumulated garbage. As with BiSort there are no cyclic
data structures at all. This is unsurprising for tree-based programs, but is also informative: it suggests, for
instance, that the quadtree does not make use of parent pointers in child nodes.

4.3.3 Em3d

Em3d simulates the propagation of electro-magnetic waves through 3D object using nodes in an irregular
bipartite graph to represent electric and magnetic field values.

In Figure 9, we can see that during the total execution of the program there are at most 5 trees and 1 dag
at any point. Data structures in Em3D are quite few, and the ratio of live nodes to entry points suggests a
limited number of larger data structures are used. In fact, there is mainly a tableof linked lists.

Behaviour is relatively stable throughout this benchmark, at least until near the end of the program. At that
point the data structures are reduced to a couple of single nodes and onetree. In this case we are able to
see the effect of tearing down the data structures, something much less evident in the previous benchmarks.
The conversion of data to garbage at the end of the program is confirmedby figure 10, where garbage rises
as live objects reduce in number.

10

 0

 5

 10

 15

 20

 25

 30

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node
Tree

 0

 1

 2

 3

 4

 5

 6

 7

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

DAG

Figure 7:Barnes-Hut analysis results by bytecode for every 100k updates. On the top figure is shown the number of
single node and tree entry points over “time” (bytecodes executed), and on the bottom the number of DAGs. Again,
there are no cyclic structures.

11

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 8:Barnes-Hut GC results by bytecode for every 100k updates, showing the number of live and dead objects
over bytecodes executed.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node
Tree
DAG

Figure 9:Em3d analysis result by bytecode for every 5k updates. Single nodes, trees, and DAGs are shown in this
figure.

12

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 10:Em3d GC result by bytecode for every 5k updates.

4.3.4 Power

Power solves the Power System Optimization Problem, where the price of eachcustomer’s power consump-
tion is set so that the economic efficiency of the whole community is maximized. It works in two phases.
The first phase is the tree construction, and the second phase is the pricecomputation.

Figure 11 shows there are only trees and single nodes present. This is consistent with the algorithm as it
only construct a single huge tree.

From the bottom graphs of figure 11 and figure 12, we can see that the tree construction phase occurs within
a very short time frame. However, from the top graphs, we can see that itconsists of roughly half of the total
data structure changes.

In Figure 12, we can see that within the computation phase, the number of liveand dead objects remains
relatively stable.

4.3.5 Travelling Salesman Problem

TSP computes an estimate of the best Hamiltonian circuit for the Travelling Salesman Problem. There are
two clear phases evident in both figures 13 and 14; a short initial phase constructing the problem, and a
longer phase of analysis.

TSP is our first presented benchmark to actually include cyclic data structures. There are also a very large
number of tree data structures, orders of magnitude more than single nodes, DAGS, or cycles. In fact the
algorithm mainly builds trees, and the few cycles can be attributed to a double-linked threading of trees
forming partial solutions to the input problem.

There is no garbage apparent in figure 14. However, the number of live objects decreases dramatically
twice; there is necessarily some garbage generated by these reductions.In this benchmark the generation of
dead nodes and their collection occurs between snapshots, leaving no direct evidence of dead nodes in our
sampled results. Larger, more detailed graphs or actual numbers would reveal this difference. In terms of
general trends, though, it is clear that TSP, particularly in comparison withBarnes-Hut, does not produce or

13

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 D

S

per 10k updates

Single node
Tree

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 D

S

bytecode count

Single node
Tree

Figure 11: Power analysis result for every 1k updates. The top graph is plotted with respect to the total number
of data structure changes, and the bottom graph with respectto the total bytecodes executed. Both graphs show the
number of single nodes and trees.

14

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 o

bj
ec

t

per 10k updates

Live Object
GC Object

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 12:Power GC result for every 1k updates. At the top the time axis is in terms of total data structure updates,
and at the bottom in terms of bytecodes executed.

15

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Tree

 0

 5

 10

 15

 20

 25

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node
DAG

Cycle

Figure 13:TSP analysis results by bytecode for every 1k updates. On thetop are trees, and on the bottom single
nodes, DAGs and cycles.

carry much garbage.

4.3.6 Jess

Jess produces a lot of structures of all types, although most of them aresingle node objects, as shown in
figure 15. There are no cycles, and there is a rhythmic pattern of tree/DAGconstruction. This behaviour
roughly corresponds with the algorithm and input, which does repeated, tree-based searches to solve an
input combinatorial problem.

Memory usage in Jess is more complicated than in the Jolden programs. From figure 16 we can see that a
large number of objects are dead, usually many more than are live at any one time. Moreover, while the live
set is overall stable, the number of dead nodes seems to have a a generalupward slant, increasing over time.
This is also true of single node structures shown in figure 15.

We believe this to be an artifact of heap adaptation. Jess allocates a lot of temporary objects (single nodes).
The heap pressure due to the use of temporary object allocations results inthe heap being expanded to

16

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object

Figure 14:TSP GC results by bytecode for every 1k updates. Again, thereare no dead objects evident in this graph.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node

 0

 50

 100

 150

 200

 250

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Tree
DAG

Figure 15:Jess analysis results by bytecode for every 100k updates. Onthe top are single nodes, and on the bottom
trees and DAGS. There are no cycles.

17

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 16:Jess gc results by bytecode for every 100k updates.

accommodate the perceived memory requirements. However, the core, necessary and retained data is not
increasing, and a larger heap merely provides more room for garbage toaccumulate. In this situation the
amount of drag increases as the heap increases, suggesting that more aggressive GC rather than increasing
heap size may result in more efficient execution.

4.3.7 MpegAudio

Most of the benchmarks produce extremely similar graphs whether the time axisis formed of bytecode
executions, or expressed in terms of data structure modifications: data structure updates are quite regular.
MpegAudio shows this is not always the case. In the top graphs of figure17 and figure 18, the number
of data structures is shown plotted against total number of data structure updates. The data structure is
smoothly constructed over the life of the program. The bottom graphs showsthe same data plotted with
respect to bytecodes executed. Here is becomes quite evident that the data structures constructed are built
early on and used without significant dynamic changes for most of the program. The same behaviour is
shown in the respective plottings of number of live and dead objects in figure 19.

4.4 Overall

For programs which make extensive use of heap structures a dynamic datastructure analysis has the abil-
ity to provide a great deal of information about execution. Literal snapshots of data structures are most
informative, but do not in general scale to being able to represent realprogram data. Even from a simple
tree/DAG/cycle descriptions of data structures, however, a surprising amount of detail on program behaviour
is discernible in our numerical summary graphs. We are easily able to see majorphases in data structure us-
age and construction. The variation in data structure is also clear; few programs consistently and uniformly
stick to one kind of structure, with most exhibiting fluctuations and transformations between at least trees
and DAGs. This challenge to conservative static approaches may be compensated somewhat by the general
lack of cycles, curiously appearing in just two of our six benchmarks. Atleast for these programs trees and
DAGs are very much dominant.

18

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

per 100 updates

Single node

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Single node

Figure 17:MpegAudio analysis result for every 100 updates. The top graph is plotted with respect to total number of
data structure changes, and the bottom graph with respect tototal bytecodes executed. These graphs show the number
of single nodes.

19

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

per 100 updates

Tree
DAG

Cycle

 0

 1

 2

 3

 4

 5

 6

 7

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 e

nt
ry

 p
oi

nt

bytecode count

Tree
DAG

Cycle

Figure 18:MpegAudio analysis result for every 100 updates. The top graph is plotted with respect to total number of
data structure changes, and the bottom graph with respect tototal bytecodes executed. These graphs show the number
of trees, DAGs and cycles.

20

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70

nu
m

be
r

of
 o

bj
ec

t

per 100 updates

Live Object
GC Object

 0

 500

 1000

 1500

 2000

 2500

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09

nu
m

be
r

of
 o

bj
ec

t

bytecode count

Live Object
GC Object

Figure 19:MpegAudio GC result for every 100 updates. At the top the timeaxis is in terms of total data structure
updates, and at the bottom in terms of bytecodes executed.

21

The impact of garbage on memory use is also intriguingly variable. Barnes-Hut and Jess generate great
amounts of garbage, and certainly in the latter case dragged dead objects can be seen as a potentially impor-
tant factor. Other benchmarks, such as TSP and BiSort carry little to no garbage, and may benefit from a
corresponding reduction in GC; these benchmarks are not strongly GC-dependent.

5 Future Work & Conclusions

Dynamic data structure analysis has the ability to show detailed information on various aspects of program
behaviour. This can help identify program characteristics, heap usage, and provide general understanding
of any calculable static or evolving dynamic data structure property, advancing various optimization and
analysis goals.

Our framework design and experience demonstrates the feasibility of this technique, and also highlights
the research challenges involved. Extracting and reconstructing data structure changes is itself a non-trivial
effort, with further complexity provided by the need for appropriate, scalable representations. The two forms
of visual output we describe attempt to accommodate different needs with respect to detail and large scale
analysis, while still encoding useful information.

There are a great many potential future directions for this work. Our dynamic data, for instance, can be
mapped to static code locations for direct comparison with static algorithms. This can help guide and
measure static algorithm design. The efficacy of dynamic versions of other, more efficient if less precise
data structure representations can also be evaluated.

Visualization improvements are many of course. We hope to improve animation quality by adapting existing
tools to support custom, if sub-optimal incremental layout. Scaling concernswith such literal representations
can be partially addressed through the use of interactive visualization techniques. Given the large data
volume, however, novel visualizations that compactly summarize specific properties are more immediate
goals.

Acknowledgements

This research has been supported by the le Fonds Québ́ecois de la Recherche sur la Nature et les Technolo-
gies and the Natural Sciences and Engineering Research Council of Canada.

References

[1] J. Bogda and A. Singh. Can a shape analysis work at run-time? InProceedings of the 1st Java Virtual
Machine Research and Technology Symposium. USENIX, 2001.

[2] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, C. Verbrugge, and Q. Wang. STEP: A
framework for the efficient encoding of general trace data. InProceedings of the 2002 ACM SIGPLAN-
SIGSOFT Workshop on Program Anaylsis for Software Tools and Engineering (PASTE), New York,
New York, United States, Nov. 2002. ACM Press.

[3] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching linked data structures in
Java controller. InPACT01, pages 280–291, Barcelona, Spain, Sept. 2001.

22

[4] F. Corbera, R. Asenjo, and E. Zapata. New shape analysis and interprocedural techniques for automatic
parallelization of C codes.Int. J. Parallel Program., 30(1):37–63, 2002.

[5] B. Dufour. Objective quantification of program behaviour using dynamic metrics. Master’s thesis,
McGill University, Montŕeal, Qúebec, Canada, 2004.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamicmetrics for Java. InProceedings
of the ACM SIGPLAN 2003 Conference on Object-Oriented Programming,Systems, Languages, and
Applications (OOPSLA ’03), pages 149–168, 2003.

[7] P. Fradet and D. L. Ḿetayer. Shape types. InPOPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 27–39, New York, NY, USA,
1997.

[8] E. R. Gansner and S. C. North. An open graph visualization system and its applications to software
engineering.Software — Practice and Experience, 30(11):1203–1233, 2000.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? ashape analysis for heap-directed
pointers in C. InPOPL ’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposiumon Princi-
ples of programming languages, pages 1–15, New York, NY, USA, 1996.

[10] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. InPOPL ’05: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles ofprogramming languages,
pages 310–323, New York, NY, USA, 2005.

[11] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. InIEEE Trans-
action on Parallel and Distributed Systems, Vol. 1, No. 1, pages 35–47, January 1990.

[12] J. Hummel, L. J. Hendren, and A. Nicolau. Abstract description of pointer data structures: an approach
for improving the analysis and optimization of imperative programs.ACM Lett. Program. Lang. Syst.,
1(3):243–260, 1992.

[13] D. Johannes, R. Seidel, and R. Wilhelm. Algorithm animation using shapeanalysis: visualising ab-
stract executions. InSoftVis ’05: Proceedings of the 2005 ACM symposium on Software visualization,
pages 17–26, New York, NY, USA, 2005.

[14] N. Klarlund and M. I. Schwartzbach. Graph types. InPOPL ’93: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 196–205, New York,
NY, USA, 1993.

[15] M. Leone and R. K. Dybvig. Dynamo: A staged compiler architecture for dynamic program optimiza-
tion. Technical Report No.490, Computer Science Department, Indiana University, Sept. 1997.

[16] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and E. Zapata. A new dependence test based on
shape analysis for pointer-based codes. InLCPC ’04: Proceedings of the 17th International Workshop
on Languages and Compilers for Parallel Computing, 2004.

[17] J. W. Nimmer and M. D. Ernst. Static verification of dynamically detected program invariants: In-
tegrating Daikon and ESC/Java. InProceedings of RV’01, First Workshop on Runtime Verification,
Paris, France, July-23 2001.

23

[18] T. Printezis and R. Jones. GCspy: an adaptable heap visualisation framework. InOOPSLA ’02: Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 343–358, New York, NY, USA, 2002.

[19] S. P. Reiss and M. Renieris. Jove: Java as it happens. InSoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, pages 115–124, New York, NY, USA, 2005.

[20] N. Röjemo and C. Runciman. Lag, drag, void and use - heap profiling and space-efficient compilation
revisited. InICFP ’96: Proceedings of the first ACM SIGPLAN international conference on Functional
programming, pages 34–41, New York, NY, USA, 1996.

[21] R. Shaham, E. K. Kolodner, and M. Sagiv. On the effectivenessof GC in Java. InISMM ’00: Proceed-
ings of the 2nd international symposium on Memory management, pages 12–17, New York, NY, USA,
2000.

[22] SPEC Corporation. The SPEC JVM Client98 benchmark suite.http://www.spec.org/jvm98/
jvm98/, 1998.

[23] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. InComputational Complexity, pages 1–17,
2000.

[24] T. Zimmermann and A. Zeller. Visualizing memory graphs. InSoftware Visualization, pages 191–204,
2001.

24

