McGill University
School of Computer Science
Sable Research Group

Dynamic Shape and Data Structure Analysis in Java

Sable Technical Report No. 2005-3

Sokhom Pheng and Clark Verbrugge
{spheng, clunp}@s.ntgill.ca

October 27, 2005

www.sable.mcgill. ca

Abstract

Analysis of dynamic data structure usage is useful for bodlgiam understanding and for improving
the accuracy of other program analyses. Static shape @tdghniques, however, suffer from reduced
accuracy in complex situations. We have designed and imgiigad a dynamic shape analysis system
that allows one to examine and analyze how Java programd &nd modify data structures. Using a
complete execution trace from a profiled run of the programbuild an internal representation that mir-
rors the evolving runtime data structures. The resultimgs®f representations can then be analyzed and
visualized, and we show how to use our approach to help utatherfiow programs use data structures,
the precise effect of garbage collection, and to estabiishsl on static techniques for shape analysis.
A deep understanding of dynamic data structures is paatiguimportant for modern, object-oriented
languages that make extensive use of heap-based dataistauct

1 Introduction

Data structure oshape analysisechniques summarize dynamic data connectivity, with the goal of im-
proving alias analysis [9], automatic parallelization [11], optimizing garbafjeation [21], debugging, or

as part of a general understanding of program behaviour. Inedistigof data structures shape and usage
is particularly important for programs which make extensive use of hety dach as in Java and other
object-oriented languages. Static approaches to shape analysisehosudfer from overly-conservative
approximations, easily induced by temporary data structure inconsistehoieg updates and modifica-
tions.

In this paper we investigate shape analysis from the perspective afilyaaalysis. Using complete traces
of Java program executions, we reconstruct the entire history oflhesgd data as it is changed through
program modifications. This allows for the construction of data structumestiots and animations, visually
illustrating evolution of program data, and also encoding a variety of ptiepef interest, including overall
shape, age of data, node types, reachability, and so on. For larghrbarks, data sizes can become
impractical, and so we also provide a more abstract and scalable numepcateh that summarizes the
distribution of shape over time. We demonstrate our techniques on a seldatimalband moderately large
Java programs.

Data we dynamically gather provides lower limits on the potential accuracy té,stanservative shape
analyses. Specific and interesting program behaviours and prograrstyieg are also easily discernible
through our visualization techniques. We are, for instance, able to shdwnaasure the extent of and
variation in garbage data carried through program execution ¢@&@ [20]). Similar strategies can be
applied to represent and understand arbitrary other data structyrerties.

1.1 Contributions

Specific contributions of our work include:

e The design and implementation of a framework for capturing the complete dymswlittion of data
structures in Java programs.

e \We present two new techniques for data structure visualization: a sérsespshots that can encode
current and historical data structure properties, and a numerical, syragsassment that can represent
arbitrarily large data sets.

o We give experimental results on the data structure usage of a numbatabirbark programs, including
non-trivial programs in the SPEC JVM98 [22] and JOlden [3] suites.

In the next section we discuss background and related work on shdpgdyaamic analysis. In Section 3
we describe the general design of our shape analyzer and the ssdoeiearch challenges. Section 4 then
gives analyses results performed on a set of tiny, small and reasdaigaypenchmarks. Finally, we discuss
future work and conclude in Section 5.

2 Related Work

Our approach combines two main techniques, dynamic analysis and slayssarmhese have historically
been relatively orthogonal pursuits, and so we discuss them sepdralaly.

2.1 Shape Analysis

Shape analysis techniques vary from implementing a whole new languaigleridifying data structures to
summarizing them using specialized graphs.

A frequent, and early approach to identifying data structures is to allowrtigrgammer to provide high-
level information through program annotations. Hummel et al., for instashefne static annotations to
data structures in order to help the compiler identify opportunities for parafiglizansformations [12].

A similar approach is described by Fradet and Létdyer, who define a new language annotation that
integrates the notion of shapes into the C language [7].

Many have tried identifying data structure shape without modifying the sotwde. Ghiya and Hendren
show how the conceptually simple categorization of data structures@g®AG, or cyclecan be sufficient

for compiler optimization [9]. More detailed approaches attempt to model ditg various kinds of graph
abstractions. Klarlund and Schwartzbadjraph typesuild a representation as a grammar describing data
structures having a backbone, such as doubly-linked lists [14]. Wilhelh ¢23] defineshape graphso
represent structural properties of data structures. Corbera eirabiiges static shape graphs with abstract
storage graphs to give a more precise shape analysis [4]; their teebnieguie improved by Navarro et al.
by approximating the data structures in a graph combining memory locationgyheamiitar patterns [16].
Recently, Hackett and Rugina described a way of breaking down the shtipe abstraction into smaller
component and analyzing them separately [10].

While most work done on shape analysis has been done statically on CBumpilg and Singh have dome
some exploratory work on shape analysis for Java code at run-timgdddt results are possible, but mainly
under repeated execution scenarios.

Our own work here also includes aspects of data structure visualizatisnally representing the heap is
an existing concern for debuggers [24], heap analysis tools [18]yeualizing profilers in general [19].
Most shape analysis studies, however, concentrate on the analysishaomrepicting the analysis results,
although there is recent work on defining structural shape propevitable for visualization [13].

JVM

...100101101000101
11010110100010110
01010010101010001

Trace File | 100101101000101...
— -

.dot Output

putfield

aload_3 *J Shape *J Analyzer
ifnonnull > Analyzer
aload 0

Summary

A

Figure 1:Design overview.

2.2 Dynamic Analysis

Dynamic program analysis can be performed online, or offline througlnhéysis of program execution
trace files. Given the large resource demands of our precise shalysianme have focused on the latter
technique; inroads have been made to the former [1], however.

Trace extraction from Java programs often relies on the use of thes Jaulin Virtual Machine Profiling
Interface (JVMPI), or its new replacement JVMTI (Tracing Interfadg&rown et al. describe a framework,
STEP, for profiler developers to encode general program tracerdatfiexible and compact format [2].
JVMPI is also used by Dufour et al. in the implementation of *J [5], a tool figmraiic analysis of Java
programs used to generate Java program metrics [6]. Our work hiéale bo the *J framework.

The Daikon project from MIT [17] and the Dynamo project from Indidhaversity [15] both provide online
forms of dynamic analysis, differing mostly in usage. Both projects aredo@s®bserving runtime values
and invariants to perform diverse analyses and optimizations. The Dprkgect uses the information to
report properties that were true over the observed period, whicthearbe used for testing and verification
for example. Dynamo is a compiler architecture that uses the information toxtimeuoptimizations. The
challenges of efficient online dynamic analysis are quite different frameghaustive approach to trace
analysis, but the invariant-based approach may be a useful basig figtErmining specific data structure
properties.

3 Design

We begin with an overview of our design, followed by a description of tlop@rties we can represent in
the output, and the analyses that we can perform. Fully accurate dynaraistdecture analysis implies
significant research challenges in handling and representing largentsradunformation; we describe the
major problems and some solutions in Section 3.4.

The overall flow for our shape analysis system is shown in Figure 1.fildtgart of the process is data
gathering. Java programs are executed in the JVM (Java Virtual Mgchirgban attached *J agent produces
execution trace files of the running program. Trace files are then fed iathJtihape analyzer. Here the
input event trace is used to reconstruct the program data structutébeinevolution over time. The *J

shape analyzer may apply various analyses such as tree/DAG/cyclsigragological shape analysis, etc.

The last part of the process is the output representation of the anadyasisResults can be communicated as
literal snapshot or animated representations of graph structures, eréagk of larger outputs as numerical

summary graphs.

3.1 *J Shape Analyzer

The *J shape analyzer relies heavily on *J, which is a tool for dynamitysisaof Java programs [6, 5] and
it comes in two parts. The first part is the *J agent, which produces trigsecfintaining events obtained
from the JVM through the JVMPI (Java Virtual Machine Profiling Inteefac The second part is the *J
analyzer, a framework for reading trace files and performing diffesiaalyses on that data. The *J shape
analyzer extends the basic analysis facilities of *J.

For a complete and accurate analysis of runtime data structures we need teodstéeon heap objects
and references, and all values which may be stored in reference fidlggovides both a complete trace
of all instructions executed, and unique identifiers for all objects. Welare able to reconstruct heap
connectivity by tracking which object identifiers are subject and tarfgeference field writes; this includes
reference arrays. The *J shape analyzer reads events fromnbeatgd trace file and processes them one
by one. For each event processed a corresponding update is a@pmiedhternal structure that mirrors the
program’s heap nodes and their connectivity. This includes the rembvaldes due to GC. At each of
these modification points, analyses are then run to determine the evolvingtigepéthe data structure.

3.2 Data Structure Properties

From the mirrored representation of the program data structures weblagréoafind and show a variety

of interesting and useful properties. Certainly type, or other nodenrdbon can be easily included in

any graphical representation. We can further encode complex, h#tadde properties such as relative
age of its component nodes, and the data structure can also be examineabstaaetly, e.g., in terms of

reachability.

Node type in our representations is shown textually. However, since evmast interested in application
objects, we distinguish application from library objects through colour dk amd this strategy can ob-
viously be extended to many node properties. Figure 2 shows an examipliss diivision, as well as a
visualization of theaging property: as an object ages, meaning that it lives longer within the progts
colour becomes darker (in figure 2 this is applied only to application objeattibrary objects). Observing
age and type can be a useful way of understanding how a structumesisweied; in figure 2, for example, it
is evident that the data structure is mostly built bottom-up, with application nadedme tree root younger
than nodes deeper in the structure.

Reachability in our system is easily determined. By tracking all object reesewe also know the set of all
root objects, or entry points to the structure. Root objects include statables, live local variables, and

live method parameters. Thus by comparing the transitive closure oénefes with the set of all allocated
but currently uncollected objects we can determine the set of dead olnjetteachable from the root set.
This information can be visualized, showing the exact amount and (rempagadngectivity of dead, garbage
objects the heap contains. Figure 3 shows a visualization of a data stroctiaéning garbage data. Dead
objects are drawn with dotted lines, and we can easily see how many thexadaexactly how they are

connected to each other and to the rest of the structure. Understamsinguch data is carried in this way
can be useful for garbage collector optimization [20].

4

reference: 1147619112,
=> java.lang.Integer

reference: 1147618928
=> BinaryNode

reference: 1147618848
=> BinaryNode

reference: 1147617432,
=> BinaryNode

reference: 1147618552,
=> java.lang.Integer

reference: 1147619088}
=> BinaryNode

reference: 1147619008
=> BinaryNode

reference: 1147618912
=> java.lang.Integer

reference: 114761907,
=> java.lang.Integer

reference: 1147619048
=> BinaryNode

reference: 1147618992
=> java.lang.Integer

reference: 1147618768
=> BinaryNode

reference: 1147618888
=> BinaryNode

reference: 114761883
=> java.lang.Integer

reference: 1147618752
=> java.lang.Integer

reference: 1147619032,
=> java.lang.Integer

reference: 114761887
=> java.lang.Integer

reference: 114761867
=> java.lang.Integer

reference: 114761879,
=> java.lang.Integer

reference: 114761859
=> java.lang.Integer

reference: 114761871.
=> java.lang.Integer

Figure 2:A data structure showing the aging property. Nodes are cetbaccording to their age (and type); all leaf

nodes here are library objects, and all internal nodes egttjin objects.

ol 147620206 g
Sanginoger | jevaang e = jaa g moger

e 147616730, \ rfeence: 1147620004
e -

a.

sazsiasia, oo LTI
eanode. T i ode

o : DU .
+ e 10672, = ercieen, e L4760, s 147618712
- = Bnanfiode ey g g -

g e ¢ e

e 1471053
= v ang niger,

. s TaTo15521]
N A = Gayote
- Totoonce: LATOIOMDRY (erece: 14701937 Tooonce: 176108
an = ananads = v g g = Bnanfiods
e N —— ronce: LUTGIGERY (Toforere 14761973
= ananiode = Branfiode = ol g = Bnanfiodo = v g ey,

g meger S Biayade = ava g ey, = Enaniode e g g = ananade = Bnaniode o g g " Gnanode

S g s

CITr N

oo
el 147619532,
< g e -

= o g g " Bnanose = Bnaniade v g s = Enaniode = Bnantiade = o g g = Eraniode e g e = ananfiode = g s = Bnaiode

Trence: 14761903
= o g g

Figure 3:Showing garbage nodes in the data structure. Here unrelaaiadies are drawn in dotted lines.

3.3 Analyses

The *J shape analyzer has all necessary information to support the imqioe of various analyses,
including different summary and shape graph approaches, topolatiape analysis, etc. We have imple-
mented a basic tree/DAG/cycle analysis as a proof of principle, and alsostigate the quality and utility
of this simple categorization.

Dynamically, a tree/DAG/cycle categorization is quite trivial to compute. Froch eatry point we simply
do a depth-first search to determine whether the nodes reachable &ientity point represent a tree, a DAG
or a cyclic graph. This information is then encoded in the graphical outptiteifeachable nodes form a
tree then the entry point is drawn as a rectangle, if the structure is a DAGHaamtry point is drawn as a
“house shape” (pentagon), and for cyclic structures a hexagoy ittt is used. Although these qualities
are usually associated with the data structure itself more than the entry pomtssib true that a structure
may appear differently from different perspectives. Figure 2 srexasples of tree and DAG entry points
into the same connected structure. By performing this analysis at eactustrowdification we obtain an
evolving view of the data, at least in terms of tree/DAG/cycle composition.

3.4 Representation Concerns

The most obvious and direct representation of data structure evolutiensisrizs of literal snapshots of
the encoded data structures, as in figures 2 and 3. This is suitable fortestsllexaminations of specific
components, and for pedagogical pursuites, but unfortunately iasitle as a general approach in most
benchmarks. The large data sets that must be manipulated in the contextaofatiizer impose strong
constraints on the style of presentation, and also on the kind of data thia¢ grathered.

Tiny, test programs modify data structures only a relatively small number o$tiMere realistic programs,
however, can perform a very large number of updates; the Jeskrharicfrom SPECjvm98, for instance,
performs more than 48 million heap modifications. Examining all these snapsipbtgsisally unrealistic

for humans. Instead of generating snapshots for each modification veddieeonly generate a snapshot
everynth changes, for different depending on the scale of investigation required. This can also help in
reducing the computational cost of the analysis.

Snapshot animation itself is suprisingly difficult, even with external toolsrdieicto have a nice animation
of the snapshots, we need to be able to incrementally add/subtract nodedga®lto an existing draw-
ing while ensuring existing nodes and edges do not move. This pregbevéscation of nodes between
snapshots, making node identity trivially obvious as frames change. r@wpen source and commercial
tools for graph layout, however, focus on optimal, static representatmigisglo not in general attempt to
locate nodes in the same place between drawings. This results in animatios fWwaere graphs in succes-
sive frames may bear little visual relation to each other, and thus are rfat asea visual replay of data
structure behaviour.

Improvements to drawing tools are possible of course. However, magyams also produce large data
structures, whether or not they are modified frequently. Even a simptggrosuch as BiSort from the
JOlden benchmark suite generates more than 120 thousand objects—faarigambjects for a drawing
tool to handle, or to meaningfully show on a screen or in an animation. Ititeragsualization techniques
can improve this situation, but it is clear that animations, and even reprégestaapshots are simply not
feasible in all situations. For the benchmarks we analyze in the subsegatinh we have thus concentrated
on alternative representations that draw only reduced, aggregataaifon on data structure properties, and
not the data structures themselves.

Finally, we note that the amount of data that can be acquired through theUbkrface in *J is limited.
Early events in the virtual machine startup are not available (occuringeb@¥6VP1 is initialized), and data
from native method executions is not reliably delivered. In our investigatice have restricted our analyses
to application code, not startup in order to ensure we have a completetacmt

4 Experiments

We have analyzed a number of benchmarks from the SPECjvm98 and beldelnmark suites. Below we

describe the programs analyzed, and present examples of visualizatidmas snapshots and in terms of
numerical summaries, along with discussion of interesting and relevantapndgatures exposed by our
analyses and visualizations.

4.1 Benchmarks

For space reasons we cannot show results for all the benchmarkaweeahalyzed, and instead show a
selection of results from three basic categories. The first kind corfdistyqorograms designed to test the
framework, and also suitable for snapshot visualizations. We used twesvn algorithms, a splay tree
implementation and a red-black tree implementation. Both programs constructl @&remand then delete
some nodes; below we only present the SplayTree benchmark program.

More realistic, but still manageably small results are obtained by analyzimghbearks from the JOlden
suite. These are small but non-trivial programs that focus on usenafrdig data structures. Benchmarks
shown here include Barnes-Hut, BiSort, Em3d, and TSP (Travellingr@ate®roblem).

Our final category is of moderately large programs, taken from the SPEBsuite. The benchmarks that
are analyzed here are Jess and MpegAudio.

4.2 Snapshot Example

If a program is relatively small, and in general does not contain more thproa@mately 1k objects, a
meaningful visualization of data structures updates can be produced wkeapshot is generated for each
update. We use thaottool in GraphViz[8] to layout the graphs, encoding node properties as discussed in
sections 3.2 and 3.3.

In Figure 4 we show snapshots generated for a series of data struptlates performed in the SplayTree
program. From a) to c) the splay tree has a node inserted, with an imagecfomedification: first the new
node (and its associated data) are connected by pointing them to the nblelgus the root of the tree,
and then the root pointer is redirected to the new node. Different grgplts between snapshots make
this progression less obvious, but this kind of visualization is still very rictietail, and quite useful for
understanding data structure operations and behaviour.

4.3 Analysis & Numerical Summary Results

Most of our other programs contain well more than 1k objects, and thusoangell-suited to the style of
literal representation used for SplayTree. Instead, we have foarséke results of the tree/DAG/cycle
categorization. For each of the benchmarks below we calculate the nufrdr@rpopoints that reach tree,

reference: 1147617824] | reference: 1147617808] reference: 1147617824) [reference: 1147618640| | reference: 1147617808] reference: 1147617824] [reference: 114761780¢]
=> SplayTree = javalang String] => SplayTree => BinaryNode => java lang,String[] => SplayTree => java lang.String]

reference: 1147618624,
=> java.lang.Integer

reference: 1147617424|
=> BinaryNode

reference: 1147618624,
=> javalang Integer

Teference: 1147618600
=> BinaryNode.

Teference: 1147618562
=> java.Jang.Integer

() (b) T ©

Figure 4: SplayTree snapshots. An existing pair of nodes (tree nodeassociated data) is inserted just below the
root of the tree.

DAG, and cycle type data structures in the program, and plot this as it evoler time (bytecodes exe-
cuted). To keep data sizes and visual presentations manageable theadatasactually sampled every
100-100k updates, as indicated in the individual descriptions.

The tree/DAG/cycle designation has one important limitation: single, uncorthaoes are considered
trees. While this is true in a technical sense, many programs make extessigésingle node objects, and
this obfuscates any understanding of more realistic tree usage. Fordb@reve actually show a 4-way
categorization, separating single nodes into their own category.

To provide additional information we also show graphs of counts of lialdebjects over the same time
axis. This makes it easy to see general trends in volume of data and gasdmabalso allows for limited
visual inspection of drag.

43.1 BiSort

BiSort performs two bitonic sorts, one forward and one backwardotks/in two phases. The first phase
is the tree construction, and the second phase is the sorting.

In Figure 5, we can easily see the first phase, where the tree is beisiguaiad. A number of single nodes
are allocated, and then consumed by construction of the base tree.uAtl&Abof the way through execution
the program enters its second phase; here many changes are pdréorthe tree, and the number of tree
structures becomes quite variable. As the tree is modified the data typestéunttaeen DAG types and
tree types in a complementary fashion: nodes are being rearrangedoptoapied or deleted. Note that
there are not in fact as many disjoint structures as the number of tre@f@wiwould indicate; call chains
and recursive calls in particular allow for the stack to contain multiple entrytpdinthe same structure,
magnifying the apparent number of structures.

A conservative static analysis on this program might be forced to conthadé¢he data structures overall
are DAGs. Dynamically, however, the DAG stage is only intermediate, ansldirainate more than DAGSs.

Figure 6 reinforces the observed phase behaviour of the data sésictinjects are allocated (tree construc-
tion), followed by a long period of relative stability. Interestingly, thereravalead objects, an observation
compatible with our claim that the data structure is modified by moving nodesddtgaor deleting.

20 T T T T T

18 | Single node —+— <oy < | T
Tree - ¢ 6k !
16 S it X% R

12
10 ‘\—r /\

number of entry point

0 5e+07 1le+08 1.5e+08 2e+08
bytecode count

3e+08

14 .

12+ DAG -+

number of entry point

0 L— L i RN I i | \ L
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08
bytecode count

Figure 5:BiSort analysis results by bytecode for every 10k updatbs.t®p figure shows single nodes and trees over
bytecodes executed, and the bottom figure shows DAGs. Ther@aycles in BiSort.

140000 T T T T T
120000 | /,,/ i
100000 | / —
3]
Q
2 80000 | Y :
"6 /
£ 60000 /
E /
>
c
40000 / —
20000 / Live Object —+— E
//
0 7* 1 1 1 1 1
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 6: BiSort GC results by bytecode for every 10k updates, showirghumber of live and dead objects over
bytecodes executed. There are no dead objects in Bisort.

4.3.2 Barnes-Hut

Barnes-Hut solves the classic N-body gravitational attraction problermeBaHut works in two phases;
this is not obvious by observing data structure type changes, but isycdbarvn in the GC results graph of
figure 8. The first phase is the tree construction, where a quad-treassracted, and the second phase is
the force computation, where the tree is traversed.

From the graph in figure 7 it is evident that this program is quite dynamic imetr, and aggressive
and frequent GC is used to limit the amount of accumulated garbage. As withtBire are no cyclic
data structures at all. This is unsurprising for tree-based programis, &dlso informative: it suggests, for
instance, that the quadtree does not make use of parent pointers inadhésl. n

433 Em3d

Em3d simulates the propagation of electro-magnetic waves through 3D objegtnodes in an irregular
bipartite graph to represent electric and magnetic field values.

In Figure 9, we can see that during the total execution of the prograrma #nerat most 5 trees and 1 dag
at any point. Data structures in Em3D are quite few, and the ratio of livesnmdentry points suggests a
limited number of larger data structures are used. In fact, there is mainly aofdiviked lists.

Behaviour is relatively stable throughout this benchmark, at least umtilthe end of the program. At that
point the data structures are reduced to a couple of single nodes amictendén this case we are able to
see the effect of tearing down the data structures, something much lesstawithe previous benchmarks.
The conversion of data to garbage at the end of the program is confobynféglire 10, where garbage rises
as live objects reduce in number.

10

30 T T T T
Single node —+—
Tree <
25 | | R
5 20| | | ‘ | N
o i ! |
> I
< |
[-
k]
@
Qo
[S
5 i
c
2.5e+09
e
= i
S
o
E\ -
< :
CD !
ks]
@ B i
] i
£ f
3 1
S 2F 4
1 - .
0 1 1 1 1
0 5e+08 le+09 1.5e+09 2e+09 2.5e+09

bytecode count

Figure 7:Barnes-Hut analysis results by bytecode for every 100k t¢gd#n the top figure is shown the number of
single node and tree entry points over “time” (bytecodesetazl), and on the bottom the number of DAGs. Again,
there are no cyclic structures.

11

Live Object —+—
GC Object <~

120000

193[qo Jo Jaquinu

1le+09 1.5e+09 2e+09 2.5e+09

5e+08

bytecode count

Figure 8:Barnes-Hut GC results by bytecode for every 100k updatesyisly the number of live and dead objects

over bytecodes executed.

Single node —+—

Tree <

.

DAG --

ORI ORI RO

B H K~ = HIOOOEK

SHHSIBIHORRRIRERIOR - - HOMBRIHC - SHORIBK IORNBHOK - KM - -~

2 SOOI >R KR —

[Te) < ™

juiod Anua jo Jaquinu

1

1.5e+08 2e+08 2.5e+08 3e+08
bytecode count

le+08

5e+07

Figure 9:Em3d analysis result by bytecode for every 5k updates. &ingtles, trees, and DAGs are shown in this

figure.

12

45000 T T T T T
40000 | Live Object —+ .
GC Object

35000 |- \ g
30000 |- \ -

25000 |- J -

20000 [HI 50 1B E BT e -

number of object

|
15000 t
10000 | .

5000 |- o

0 1 I} 1 1 1 A
0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

bytecode count

Figure 10:Em3d GC result by bytecode for every 5k updates.

4.3.4 Power

Power solves the Power System Optimization Problem, where the price ofestomer’s power consump-
tion is set so that the economic efficiency of the whole community is maximized. rkswo two phases.
The first phase is the tree construction, and the second phase is thegonipatation.

Figure 11 shows there are only trees and single nodes present. Thissisteat with the algorithm as it
only construct a single huge tree.

From the bottom graphs of figure 11 and figure 12, we can see that ¢heotnstruction phase occurs within
a very short time frame. However, from the top graphs, we can see tetsists of roughly half of the total
data structure changes.

In Figure 12, we can see that within the computation phase, the number aflivdead objects remains
relatively stable.

4.3.5 Travelling Salesman Problem

TSP computes an estimate of the best Hamiltonian circuit for the Travelling Said3mblem. There are
two clear phases evident in both figures 13 and 14; a short initial preesgracting the problem, and a
longer phase of analysis.

TSP is our first presented benchmark to actually include cyclic data stesctlihere are also a very large
number of tree data structures, orders of magnitude more than single @S, or cycles. In fact the
algorithm mainly builds trees, and the few cycles can be attributed to a doukéstlthreading of trees
forming partial solutions to the input problem.

There is no garbage apparent in figure 14. However, the numbereobhjects decreases dramatically
twice; there is necessarily some garbage generated by these reductithis benchmark the generation of
dead nodes and their collection occurs between snapshots, leavingaoadidence of dead nodes in our
sampled results. Larger, more detailed graphs or actual numbers woedd tieis difference. In terms of

general trends, though, it is clear that TSP, particularly in comparisorBaithes-Hut, does not produce or

13

35 T T T T T T T T T
Single node —+—
Tree
30 B
25 F B
(7]
2 20} i
o
@
Qo
g 15 |- B
>
c
10 | B
i TR S Ak ko khk K] | | [
NAA / A &N | \
N Y Y Y VASAR A WAL Y VAN Y X
0 ! 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
per 10k updates
35 T T T T X T
Single node —+—
Tree
30 ¢ —
25 F —
(]
2 20t 4
o
9]
Qo
E 15 F B
=
<
10 —
— "'+""\,,,
5| T T~ *\\# 4—‘\\¢/ /“iw .
1 |
O 1 1 1 1 1 1
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09

bytecode count
Figure 11: Power analysis result for every 1k updates. The top graplotteg with respect to the total number

of data structure changes, and the bottom graph with respeiee total bytecodes executed. Both graphs show the
number of single nodes and trees.

14

40000 T T T T T T T T T

35000 —

30000 —
8 25000 |- .
Qo
o
© 20000 - Live Object —+—
9 GC Object
IS
S 15000 b
<

10000 |- **’”Hfﬁ\ i

5000 | WM \ 4

ot \
#H***MW
0 Sannilli I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
per 10k updates

40000 T T T T T T

35000 - —

30000 [—
8 25000 | .
i)
o
© 20000 Live Object —+— R
2 GC Object
£
S 15000 ¢ b
e

10000 %\ 4

5000 § \ .

0 ‘ ‘| ‘ |‘ ‘ AF\\?‘// Tﬁ +T+ 1 ’
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09

bytecode count

Figure 12:Power GC result for every 1k updates. At the top the time axis terms of total data structure updates,
and at the bottom in terms of bytecodes executed.

15

20000 T T T T T
Tree
18000 - E
16000 - E
14000 E
12000 E
10000 E

8000 1

number of entry point

6000 —

4000 E

2000 F —

0 1 1 1 1 1
0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07

bytecode count
25 T T T T T

20 | * i KK KK * * * Mk o
15 * *

10 + Single node —+— —
DAG

number of entry point

Cycle x

[% X
RN ; I
“‘ M %m A i KX R
i VIR L B T T B et S e (I S R L B I AN FI R B IO BTN SR T S NI
0 4 i A AR | . TRV i 2l 5
0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07

bytecode count

Figure 13: TSP analysis results by bytecode for every 1k updates. Otothare trees, and on the bottom single
nodes, DAGs and cycles.

carry much garbage.

4.3.6 Jess

Jess produces a lot of structures of all types, although most of thesingile node objects, as shown in
figure 15. There are no cycles, and there is a rhythmic pattern of treeti@f&truction. This behaviour
roughly corresponds with the algorithm and input, which does repeatstbtrsed searches to solve an
input combinatorial problem.

Memory usage in Jess is more complicated than in the Jolden programs. Fuoenlftgwe can see that a
large number of objects are dead, usually many more than are live at artiyyan Moreover, while the live
set is overall stable, the number of dead nodes seems to have a a gemenal slant, increasing over time.
This is also true of single node structures shown in figure 15.

We believe this to be an artifact of heap adaptation. Jess allocates a lot @rggynpbjects (single nodes).
The heap pressure due to the use of temporary object allocations restlits lieap being expanded to

16

100000 T T T T T

90000

Live Object —+— —

80000

T
T
1

70000

60000 |

50000 |- zf/ / o
40000 | j f M §
i

number of object

30000
| [
20000 [+ 1]
10000 E
o 1 1 1 1 1
0 le+07 2e+07 3e+07 4e+07 5e+07 6e+07

bytecode count

Figure 14:TSP GC results by bytecode for every 1k updates. Again, trereo dead objects evident in this graph.

6000 T T T

T
Single node —+—

5000

4000

3000

2000

number of entry point

1000

T
—
i

il I

0 5e+08 1le+09 1.5e+09 2e+09 2.5e+09
bytecode count

250 T T T T

200 -/ -
150 | i

100 |

number of entry point

50 f

0 5e+08 le+09 1.5e+09 2e+09 2.5e+09
bytecode count

Figure 15:Jess analysis results by bytecode for every 100k updatetheéXop are single nodes, and on the bottom
trees and DAGS. There are no cycles.

17

80000 T T T T
Live Object —+—
GC Object

70000 - B

60000 - —
50000 —

40000 —

number of object

30000 [1
20000 - 1

10000

0 5e+08 1le+09 1.5e+09 2e+09 2.5e+09
bytecode count

Figure 16:Jess gc results by bytecode for every 100k updates.

accommodate the perceived memory requirements. However, the coessapcand retained data is not
increasing, and a larger heap merely provides more room for garbagetmulate. In this situation the
amount of drag increases as the heap increases, suggesting thaggressie GC rather than increasing
heap size may result in more efficient execution.

4.3.7 MpegAudio

Most of the benchmarks produce extremely similar graphs whether the timésdgisned of bytecode
executions, or expressed in terms of data structure modifications: dattustrupdates are quite regular.
MpegAudio shows this is not always the case. In the top graphs of fiju@nd figure 18, the number
of data structures is shown plotted against total number of data structdedesp The data structure is
smoothly constructed over the life of the program. The bottom graphs sth@ssame data plotted with
respect to bytecodes executed. Here is becomes quite evident thatatstrdetures constructed are built
early on and used without significant dynamic changes for most of trgggoro The same behaviour is
shown in the respective plottings of number of live and dead objects irefitfur

4.4 Overall

For programs which make extensive use of heap structures a dynamitidatare analysis has the abil-
ity to provide a great deal of information about execution. Literal snefgsbf data structures are most
informative, but do not in general scale to being able to represenpregiam data. Even from a simple
tree/DAG/cycle descriptions of data structures, however, a surprisiogiat of detail on program behaviour
is discernible in our numerical summary graphs. We are easily able to seephag@s in data structure us-
age and construction. The variation in data structure is also clear; fewgons consistently and uniformly
stick to one kind of structure, with most exhibiting fluctuations and transformati@tween at least trees
and DAGs. This challenge to conservative static approaches may be msabpe somewhat by the general
lack of cycles, curiously appearing in just two of our six benchmarkdeast for these programs trees and
DAGs are very much dominant.

18

1000 T T T T T T

900 |- j’*JﬁMﬁ%\H—o—wﬂ/H\H/\H—**ﬁ R T
800 K

700 |+ / .

600 / —

500 - / 1

400 | E

300 |

200 % Single node —+— —

100 / 4
o L

0 10 20 30 40 50 60 70
per 100 updates

1000 T T T T T T

number of entry point

900 } } & -

800 | g
700 £ 4
600 | 4
500 f _

400 | .

number of entry point

300 i
200 + Single node —+— -

100 £ 4

ok 1 1 1 1 1 1
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09

bytecode count

Figure 17:MpegAudio analysis result for every 100 updates. The tophyiaplotted with respect to total number of
data structure changes, and the bottom graph with resptaateldytecodes executed. These graphs show the number
of single nodes.

19

6 | X DR

3t Tree X ! 5 : .
DAG ------ : : ! :
Cycle

number of entry point

0 N N v N3 ; N N \I,
0 10 20 30 40 50 60 70
per 100 updates

7 T T T . T T T

6 * * Tree -
. DAG -
Cycle —*

number of entry point

1k >1< * -

0 I I I ‘ I I L
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09
bytecode count

Figure 18:MpegAudio analysis result for every 100 updates. The tophyiaplotted with respect to total number of
data structure changes, and the bottom graph with resptaateldytecodes executed. These graphs show the number
of trees, DAGs and cycles.

20

2500 T T T T T T
T P
/H | A
2000 /Z \‘ f
L \ » i
|
f “J/Hf
8 /
2 1500 | e .
o ’/'
° -~
[/
o /
£ 1000 | R
g f**%
;‘s Live Object —+—
| GC Object
500 | j’**ﬁ g
e
O /./r 1 1 1 1 1 1
0 10 20 30 40 50 60 70
per 100 updates
2500 T T T T T T
5 P —— = —¥
2000 F X 4
.g &
& 1500 £ —
o
ks
@
Qo |
£ 1000 ¥ h
5 F
2 E
Live Object —+—
A GC Object
500 £ i
0 1 1 1 1 1 1
0 2e+08 4e+08 6e+08 8e+08 le+09 1.2e+09 1.4e+09

bytecode count

Figure 19:MpegAudio GC result for every 100 updates. At the top the taxis is in terms of total data structure
updates, and at the bottom in terms of bytecodes executed.

21

The impact of garbage on memory use is also intriguingly variable. Baroésihtl Jess generate great
amounts of garbage, and certainly in the latter case dragged dead objebts seen as a potentially impor-
tant factor. Other benchmarks, such as TSP and BiSort carry little tonbagm and may benefit from a
corresponding reduction in GC; these benchmarks are not stronglyep@adent.

5 Future Work & Conclusions

Dynamic data structure analysis has the ability to show detailed information musaspects of program
behaviour. This can help identify program characteristics, heap puaadeprovide general understanding
of any calculable static or evolving dynamic data structure property, ath@warious optimization and
analysis goals.

Our framework design and experience demonstrates the feasibility of thisigee, and also highlights

the research challenges involved. Extracting and reconstructing dattustr changes is itself a non-trivial
effort, with further complexity provided by the need for appropriateladita representations. The two forms
of visual output we describe attempt to accommodate different needs wjibateto detail and large scale
analysis, while still encoding useful information.

There are a great many potential future directions for this work. Ouamiyn data, for instance, can be
mapped to static code locations for direct comparison with static algorithms. @&hihelp guide and

measure static algorithm design. The efficacy of dynamic versions of, attoge efficient if less precise
data structure representations can also be evaluated.

Visualization improvements are many of course. We hope to improve animatibty dnyaadapting existing
tools to support custom, if sub-optimal incremental layout. Scaling conegttmsuch literal representations
can be partially addressed through the use of interactive visualizationiqeels. Given the large data
volume, however, novel visualizations that compactly summarize specifiegies are more immediate
goals.

Acknowledgements

This research has been supported by the le Fon@gois de la Recherche sur la Nature et les Technolo-
gies and the Natural Sciences and Engineering Research Councihafi&€a

References

[1] J. Bogda and A. Singh. Can a shape analysis work at run-tim&?olceedings of the 1st Java Virtual
Machine Research and Technology SymposW8ENIX, 2001.

[2] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, €&bkigge, and Q. Wang. STEP: A
framework for the efficient encoding of general trace dat&@rbteedings of the 2002 ACM SIGPLAN-
SIGSOFT Workshop on Program Anaylsis for Software Tools and EngiggASTE) New York,
New York, United States, Nov. 2002. ACM Press.

[3] B. Cahoon and K. S. McKinley. Data flow analysis for software etefing linked data structures in
Java controller. IPACTO] pages 280291, Barcelona, Spain, Sept. 2001.

22

[4] F. Corbera, R. Asenjo, and E. Zapata. New shape analysis amgrimtedural techniques for automatic
parallelization of C codednt. J. Parallel Program, 30(1):37-63, 2002.

[5] B. Dufour. Objective quantification of program behaviour usingayic metrics. Master’s thesis,
McGill University, Montréal, Quebec, Canada, 2004.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamietrics for Java. IrProceedings
of the ACM SIGPLAN 2003 Conference on Object-Oriented ProgramiSiygjems, Languages, and
Applications (OOPSLA '03pages 149-168, 2003.

[7] P. Fradet and D. L. Mtayer. Shape types. POPL '97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagages 27-39, New York, NY, USA,
1997.

[8] E. R. Gansner and S. C. North. An open graph visualization systehits applications to software
engineering Software — Practice and Experien@®(11):1203-1233, 2000.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic grapbfRape analysis for heap-directed
pointers in C. INPOPL '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposiufrinci-
ples of programming languaggsages 1-15, New York, NY, USA, 1996.

[10] B. Hackett and R. Rugina. Region-based shape analysis withettdokations. IliPOPL '05: Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Princip@egfamming languages
pages 310-323, New York, NY, USA, 2005.

[11] L. J. Hendren and A. Nicolau. Parallelizing programs with recersigta structures. IEEEE Trans-
action on Parallel and Distributed Systems, Vol. 1, Nagpdges 3547, January 1990.

[12] J. Hummel, L. J. Hendren, and A. Nicolau. Abstract descriptioroaffer data structures: an approach
for improving the analysis and optimization of imperative prograAGM Lett. Program. Lang. Syst.
1(3):243-260, 1992.

[13] D. Johannes, R. Seidel, and R. Wilhelm. Algorithm animation using shaplysis: visualising ab-
stract executions. I80ftVis '05: Proceedings of the 2005 ACM symposium on Software vidimiiza
pages 17-26, New York, NY, USA, 2005.

[14] N. Klarlund and M. I. Schwartzbach. Graph types. R@PL '93: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming languageges 196—205, New York,
NY, USA, 1993.

[15] M. Leone and R. K. Dybvig. Dynamo: A staged compiler architectarelffnamic program optimiza-
tion. Technical Report N0.490, Computer Science Department, Indiaiverndity, Sept. 1997.

[16] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and&pata. A new dependence test based on
shape analysis for pointer-based codes.@®C '04: Proceedings of the 17th International Workshop
on Languages and Compilers for Parallel Computig§04.

[17] J. W. Nimmer and M. D. Ernst. Static verification of dynamically detectegy@m invariants: In-
tegrating Daikon and ESC/Java. Rroceedings of RV’'01, First Workshop on Runtime Verification
Paris, France, July-23 2001.

23

[18] T. Printezis and R. Jones. GCspy: an adaptable heap visualisaioawork. INOOPSLA '02: Pro-
ceedings of the 17th ACM SIGPLAN conference on Object-orientedgroging, systems, languages,
and applicationspages 343-358, New York, NY, USA, 2002.

[19] S. P. Reiss and M. Renieris. Jove: Java as it happenSoftvis '05: Proceedings of the 2005 ACM
symposium on Software visualizatigmages 115-124, New York, NY, USA, 2005.

[20] N. Rojemo and C. Runciman. Lag, drag, void and use - heap profiling ané-gfcient compilation
revisited. INNICFP '96: Proceedings of the first ACM SIGPLAN international confier2on Functional
programming pages 34-41, New York, NY, USA, 1996.

[21] R. Shaham, E. K. Kolodner, and M. Sagiv. On the effectivené&C in Java. IfSMM '00: Proceed-
ings of the 2nd international symposium on Memory managermageés 12—-17, New York, NY, USA,
2000.

[22] SPEC Corporation. The SPEC JVM Client98 benchmark shiitep: / / www. spec. or g/ j vinB8/
j viB8/,1998.

[23] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysisCémputational Complexitypages 1-17,
2000.

[24] T. Zimmermann and A. Zeller. Visualizing memory graphsShiftware Visualizatiorpages 191-204,
2001.

24

