McGill University
School of Computer Science
Sable Research Group

Assessing the Impact of Optimization in Java Virtual
Machines

Sable Technical Report No. 2005-4

Dayong Gu, Clark Verbrugge and Etienne M. Gagnon
{dgul, clump}@s.ntgill.ca, egagnon@abl evm org

November 2, 2005

www.sable.mcgill. ca

Abstract

Many new Java runtime optimizations report relatively dmsihgle-digit performance improve-
ments. On modern virtual and actual hardware, however,dhHfempnance impact of an optimization can
be influenced by a variety of factors in the underlying systetdsing a case study of a new garbage
collection optimization in two different Java virtual maels, we show the various issues that must be
taken into consideration when claiming an improvement. Waneéne the specific and overall perfor-
mance changes due to our optimization and show how uninteside-effects can contribute to, and
distort the final assessment. Our experience shows that \Whardware concerns can generate vari-
ances of up to 9.5% in whole program execution time. Conatder of these confounding effects is
critical to a good understanding of Java performance anichigtion.

1 Introduction

Compiler and runtime optimizations are typically deemedcsssful if a measurable, reasonably stable
performance improvement can be shown over a selection afhipearks, even if the effect is relatively
small or not uniformly positive. In the case of Java virtuaahine (VM) or software level optimizations,
low-level hardware and VM effects are often presumed amexitthrough the complexity of interaction, or
by considering average case behaviour.

In fact, inadvertent changes in low-level behaviour camificantly affect overall program execution, and
seemingly stable results can vary by surprisingly large arsfor functionally identical programs. Using
an in-depth study of a new garbage collection optimizatiemdescribe a variety of confounding, low-level
factors that are not always deeply considered when angyptimization behaviour, and give experimental
evidence of their relative impact. In our case we find thatralmioation of instruction cache changes due to
trivial code modifications, and subtle, consequent datadgsnd usage differences can induce almost a 10%
whole program performance variation. We are able to shomifgignt variations in both interpreter and JIT
environments. As the largest contributors to variance atainique to our case study, other optimizations
achieving single-digit performance improvements (or ddgtions) may thus be affected by the same issues.

Previous studies on the complexity of measuring perforrmananodern VMs have argued for the impor-
tance of a holistic view of program performance [20], or haainted out some of the factors that can
directly affect and distort the measurement of specificroptitions, such as garbage collection [4]. In
this paper we extend these concerns showing the wide ranigsusfs that must be addressed to ensure a
well-informed interpretation of performance change duepiimization, and the surprisingly large potential
impact of low-level concerns on high level performance.

Specific contributions of our work include:

e We present and analyze a new garbage collection optimizdtiat can improve GC performance in
both JIT (Jikes RVM) and interpreter (SableVM) environnser®ur detailed, multi-level experimental
analysis provides further guidance on when to apply oungiptition and which applications will benefit
most.

e We experimentally show that a relatively high variation erformance is possible in a JVM due to
unintended side-effects of code modifications. This camttyralistort the evaluation of optimization
behaviour, yet it is not always fully considered in the Eemre.

e Using both VM and low-level hardware counter informatiore provide an analysis and unique charac-
terization of the SPECjvm98 and the DaCapo benchmarks egjhact to their instruction and data cache

sensitivity. Understanding such benchmark charactesisi of course crucial to choosing appropriate
optimizations.

The remainder of this paper is organized as follows. In $ac#, we discuss related work on GC and
Java performance measurement and analysis. Section 3dkerilebs our garbage collection optimization,
and Section 4 gives initial data on its performance. In 8ad§, critical, low-level and unintended factors
that affect the overall performance are shown through atysiseof anomalies and inconsistencies in the
base measurements, particularly with respect to wholeranodpehaviour. Section 6 provides directions for
future work in this area and presents our conclusions.

2 Related work

Our investigations are motivated through a case study oflaage collection (GC) optimization. GC has
been a target of optimization for decades, and from a vaoktirections. Ungar'generational scavenging
[31] technigue and more recent works Age-basedsC [29] Older-first GC [28] andBeltway GCJ6],

for instance, all aim to improve performance by adjustingection time according to object lifetimes.
Alternatively, live objects can be aggregated into regiorthe heap based on a selection of object attributes.
This either aims to improve data locality in the program P8, or to reduce the memory access overhead
of the collector [24]. Optimizations on data prefetchingl #gawy sweeping [7, 9] aim to improve data cache
performance. Our approach tries to reduce the GC workldéthugh the implementation design is also
helpful in reducing data cache misses.

Measuring the performance and understanding the behaviava programs is challenging. Many factors,
from program characteristics, VM techniques and implet@ns, and OS strategies, to hardware platform
performance, can affect to the final measured performanc®uibur et al. provides a set of concise and
precisely defined dynamic metrics for Java programs [12] lswver level, L. Eeckhoutt al.[13] analyze
the interaction between Java virtual machine and micrdataral platform factors by using principal
component analysis to reduce the data dimensionality. Mistath et al. suggest an approach named
vertical profiling[20] to understand how Java programs interact with the uyidgrabstraction levels, from
application, virtual machine, and OS, to hardware. To ustded the behaviour of a particular program
execution, they first obtain profiling data from differenvdés, then visualize the data and discover the
correlations between the anomalous performance and tffibrralata visually or using statistical metrics.
Our examination here is in the same spirit of a multi-levieNgew of performance, though focusing on the
variance due to optimizations rather than for program agprakent.

Some other works specifically study GC performance. S. Bilacket al. [4] discuss performanceyths

of canonical GC algorithms on widely used Java benchmarksey Tompare the performance of classic
GC and memory allocation algorithms in different configimas and environments. The impact of special
implementation factors, such as “write barriers” and tlze sif nursery space of generational collectors, on
mutator and GC performance are carefully studied. In thiepae extend their results to a further range of
factors and influences, particularly unintended cache&ffd he large impact of instruction cache changes
has been noticed in other contexts as well [19], althoughreatment is more in depth.

In order to fully analyze our benchmarks we have correlatstiuction cache, data cache, and other low
level events with program behaviour. Similar analyses Hmaen done for C benchmarks [11, 23]; we of
course aim at Java benchmarks, and concentrate on themndbaiween instruction and data cache sensitiv-
ity. Our data is gathered using thardware performance countefsund in modern processors, and used in
numerous low-level performance studies [2, 17, 25, 30, B2pur case we used the PCL [3] and PAPI [8]

libraries for this low-level access.

3 Case study: GC optimization

Most Java virtual machines use mark-sweep or copying GG [@2$ome variant (often generational) of
these two algorithms. Both of these algorithms taaeing collectors. Starting from a set of root references
(static variables, stack references), they visit emathableobject seeking references to other reachable
objects. Finally, the memory storage of non-reachablectbijs reclaimed. Gagnon and Hendren proposed
a bi-directional object layout [16] aiming to improve the performance of G&cing. In this section, we
present aeference sectiotracing strategy that improves on it. This optimization @#sdmplementations

in SableVM and Jikes RVM form the basic case study that mis/aur analysis of measurement concerns.

3.1 Bi-directional layout and reference section scanning

Bi-directional layout is an alternative way of physicalpresenting objects in memory. Traditionally, all
the fields of an object are located after the object headee. I8fh graph in Figure 1 shows the traditional
layout of an object of typ& extending typeB extending typeA. The right graph in Figure 1 shows the
bi-directional layout of the same object. The basic ideaidalifectional layout is to relocate reference
fields before the object header and group them together intigoous section; we denote these sections as
reference sectianThe main advantage of the bi-directional layout is the $iciip of locating all references

in an object during GC. References are contiguous, and osigghe count of reference section size must
be stored (usually in the object header). There is no needdesa a table of offsets in the object’s type
information block to identify references, as must be dorth wie traditional layout.

Non-reference A Non-reference A
fields fields in C
o
2 A
_____________________ @ Non-reference
=} fields in B
Ref, a
RETErErces Non-reference
...................... fields in A .
Vtable Ptr T eloa
A o A
@ Lockwor A
Non-reference & oeheld I P
fields
T © | _References_ .
o in
&
______________________ 2
References =
______________________ @ o
@ References
o L inB._...___]
Non-reference | Ao o Y
fields o)
&
References i |o| [[
e
> | References_|
Vtable Ptr T P> n
F <% [
Qo
Lockword A Y

Figure 1: An instance of typ€ extending typeB extending typeA in both traditional and bi-directional
object layouts

Based on the bi-directional layout, we developed a new eafar section based (RS) scanning strategy to
further reduce the required work for tracing frgrar objectto per reference sectionWWhen a new reachable

object is found, the location of its reference section (@des have one) is stored in a work list. The collector
then uses this work list, which only contains relevant infation, to copy or mark referents.

Compared to normal bi-directional layout tracing, our sioluhas the following advantages:

e The collector skips tracing of all reachable objects thath#o references.
e The compactness of the work list may help improve cacheitgcal

e In coping collectors, using a work list allows for depth4firacing instead of default breadth-first tracing.
This usually leads to better cache locality [22].

3.2 Implementing RS scanning

We implemented RS scanning in two representative Javaalimachines: SableVM [14] and Jikes RVM
[1]. SableVM is an efficient interpreter-based Java runtivhich has a simple, yet efficient copying GC, and
already implements the bi-directional object layout [1LEkes RVM is an adaptive compiler-based runtime
for Java written in Java; new GC algorithms can be easily emginted using itd#lemory Management
Toolkit (MMTK) [5].

3.2.1 SableVM

SableVM has a semi-space copying GC which uses a two-p@ogeming algorithm [22]. In thio-space
the scan pointerre-visits all copied objects to detect other reachable aibjantil it catches theopying
pointer.

In our RS scanning implementation, the location of refeeesections is saved in 512-entry blocks organized
in a work list. We use the higher address end oftthepaceto store these 512-entry blocks. Unused blocks
are maintained in a free list, ready to be redseZompared to the total size of the heap, the space required
by these 512-entry blocks is very small. For SPECjvm98 [2ridhmarks, we needed at most five blocks (in
javag), or 20K at the end dfo-spacgand another 1K for headers) to perform GC on a two 16M semiesp
heap.

Since our RS scanning strategy can reduce GC workload armdwaplata cache locality, we expect signif-
icant GC performance improvement in SableVM.

3.2.2 Jikes RVM

We also implemented the bi-directional layout and the R8rsog strategy in Jikes RVM version 2.3.4 by
modifying both the RVM and the MMTKk.

RVM

To implement the bi-directional object layout, we modifibe ©bject model component and the routines
that compute the offset of fields. In the type informationcilowe replaced the array storing the offset of
references with a single integer indicating the number efrétierences. We also moved the hash code from

IActually, a separate block header is allocated for managiy/free lists.

before the object header to the end of the object in orderdmahanging the location of references when
the object is hashed.

MMTk

The Memory Management Toolkit (MMTK) provides a full set tfagegies to implement GC. It also pro-
vides a series of common compound data structures such as que dequeue which is quite useful in
various GC implementations. We chose the address-pairetieqdata structure to maintain our reference
section information. Then, we modified the scan utility tofpem RS scanning. The sub-component of
MMTk used to access the object type information was also @iéno support the new object model. Fur-
thermore, some basic GC plans, suctbasePlarandstopTheWorldGCwere extended to support the new
scan utility. In our current RS scanning implementation,lavgely reuse existing MMTk routines—this is
not always optimal for pure reference section scanningissufficient for an initial implementation.

As Jikes RVM already used work lists for tracing, we do notext@s much improvement in Jikes RVM as
in SableVM.

4 Initial experimental results

To study the effect of using the bi-directional layout anel RS scanning strategy, we collected performance
data on the SPECjvm98 benchmarks [27] exeepegaudiand on five benchmarkantlr, bloat, fop, pms,
and ps of the DaCapo suite [10]. We excludedpegaudioas it does not trigger garbage collection in
SableVM’s default settings. We excluded thatik, chart, jythonand xalan DaCapo benchmarks as they
either required unsupported graphical bindings or hadatifie issues in the version of SableVM used for
testing. We also excludeasgldbas its execution time is mostly dependent on the thread stdredf the
underlying operating system. Experiments were run on aioAth.4G workstation with 1G memory, with
some earlier results from a Pentium 11l 733MHz workstatiathvd12M memory.

4.1 SableVM results

SableVM uses a simple semi-space copying GC. Yet, it daligepod GC performance due to the imple-
mentation of a number of efficient memory access technigndsaa efficient algorithm for computing and
retrieving GC maps [15].

Figure 2 shows the GC speedup obtained in SableVM by usingcB&@s1g on our benchmarks with a
32MB initialize heap. A significant speedup, 16% in averag@btained with a maximum of about 30%
improvement ordb.

We also measured the impact of RS whole program executiog, tglhown in figure 3. Although, the
overall performance speedup is still positive in generad, motice a mysterious performance decline in
some benchmarks, most obviousbytrace Equally puzzling are the- 2% performance improvements
shown bycompressanddb. GC usually takes less than 1% of execution time in the Salé\erpreter
environment, and so this indicates a significant, uninbeati impact on the mutator.

0.35
(Org-RS)/Org mm

0.3

0.25

0.2

0.15

0.1

0.05

jess
mtrt
bloat
fop
pmd
ps

antlr

= 8 3
5] S,
o

javac

Figure 2: GC speedup in SableVM. Time is measured as cycka# sluring GC execution. The vertical

(EgecutionTimeoriginal— ErecutionTimeoptimized)

axis shows speedup, measured-as: EaceutionTimeorigmat
0.08
(Org-RS)/Org
0.06
0.04
0.02 -
I -I_I —m_
0 I - -
-0.02
004l
Q o x Q 1] :.':‘ = E E Q T 1]
IS N 28"

Figure 3: Whole program execution speedup in SableVM

0.1

(Org-RS)/Org mmm

0.08

0.06 -

0.04

0.02 -

=%
k=]

comp
db
jack
javac
jess
mtrt
antlr
bloat
pmd
ps

Figure 4: SS GC speedup in Jikes RVM

0.1

(Org-RS)/Org mmm
0.08

0.06 -
0.04 -
0.02 |
ol m B =m__M |
| |

-0.02

-0.04

1%
= o

pmd

=%
k=]

jess
antlr
bloat

E
£

jack
javac

o
=l

comp |+

Figure 5: GenMS GC speedup in Jikes RVM

4.2 Jikes RVM results

We tested the RS scanning strategy in two types of GC in Jikéd:FSemiSpace (SS) copying and Gen-
erational-copying-Marksweep hybrid GC (GenMS). We chdmesé two because they are representative
GC configurations. The former is the most classic tracing GiiClwcan give better performance for some
benchmarks when the heap size is large enough [26]. The igtiee best choice for most benchmarks in
most heap configurations of Jikes RVM.

We show the GC performance speedup for both collectors inré&gg4 and 5, and the results for whole
program execution in Figures 6 and 7. The heap size was s2iB 8/hen testing SPECjvm98 benchmarks,
as we did for SableVM. For the DaCapo benchmarks, the heapagis set to 80MB, due to a larger data
workload.

For semi-space copying (SS), we obtained a stable impraveorethe speed of GC for all benchmarks,
similar to SableVM. At the same time we also show an overadlith@ performance for whole program
execution time. We note that when using SS GC in Jikes RVM, &@4 a large portion of execution
time (up to 40%). Whole program execution performance isefioee highly dependent on the collector’s
performance.

0.1
(Org-RS)/Org mmm

0.08

0.06

0.04

0.02

=%
k=]

comp
db
jack
javac
jess
mtrt
antlr
bloat
pmd
ps

Figure 6: Whole program execution speedup when using SS Gikés RVM

0.1
(Org-RS)/Org s

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

comp
do |
jack
javac
jess
antlr
bloat
fop
pmd
ps

Figure 7: Whole program execution speedup when using Gen1$Qikes RVM

In the case of GenMS garbage collection performance refultsoth GC and whole program execution
are less consistent. In the SPECjvm98 suite, the RS stratidfyelivered overall GC improvement on
most benchmarks (excepstvag), but in the DaCapo benchmarks we only see an improvemeiidéantlr
benchmark. For other benchmarks GC performance is eitiidlasito the original version or worse. Whole
program execution time shows no obvious stable trend,ipesit negative.

4.3 Summary

Viewed in isolation, and even overall in some cases, our R8rsng improves performance in both inter-
preter and adaptive JIT compiler environments. Thesetedubwever, are not well reflected in a general
sense and anomalous measurements suggests significatiowarn the performance of the mutator. A more
detailed examination is thus the subject of the next section

5 Detailed performance analysis

The inconsistent results found in Section 4 are puzzlinmfadgorithmic and virtual machine implementa-
tion points of view, as nearly all of the VM structure beyohe nhecessary GC code was kept unmodified.
Below we further investigate a series of low-level and bematk-specific factors that contribute to the
unexpected performance differences.

5.1 General factors

We integrated the PCL [3] and PAPI [8] libraries to SableVMlalkes RVM respectively in order to
retrieve hardware counter data during benchmark execuienthen identified and investigated each of the
following factors as a potential source of performancegiatarity.

5.1.1 Hardware instruction workload

As the source code of a virtual machines is compiled, an alsvémurce of performance difference is in
the generated code. Evanprovedsource code can generate an increase in hardware workleatt dode
generation patterns or optimizations.

We used hardware performance counter data to investigatehéinges due to our implementation of RS.
The final version of RS (used in our measurements) actuatlyces the number of instructions executed
during GC instructions for most benchmarks on both virtuathines. Furthermore, there is no noticeable
difference in the executed instruction count for the mutétariations were about 0.03% in average). In
general, the RS strategy reduces the workload of GC and du@scnease the workload of the mutator, and
S0 is not a significant contributor to the performance défifees.

5.1.2 Scan order

Changing the position of fields in the object layout has am@kimpact on the data cache. Within the
mutator these changes are expected to be both minor andizeddaitiroughout execution. Within a semi-
space copying collector, however, the scan order of refeemas a direct relation to the new location

of reachable objects in the heap after collection. Minomges to scan ordering can result in a widely
different distribution of objects in the heap, and can thifisca data locality in the mutator and in later
collection cycles.

As the bi-directional layout changes thatural scan order of references, we define two scan orders:

e Original favourite order (OFO): This is the natural reference scan order in the traditiomabut,
where references of super classes are scanned first.

e Bi-directional favourite order (BFO): This is natural reference scan order in the bi-directioag |
out, where references of super classes are scanned lastt{@ite of subclasses).

Figure 8 shows data cache miss comparison betvided and OFO RS implementations in Jikes RVM.
Switching the scan order leads to a new heap layout that elsatigta locality in the mutator. However,
there is no obvious winner between the two orders. Most adsimgdata cache misses are lower than the
variance in the execution time. Table 1 shows the averageeuof cycles between two consecutive L1
data or instruction cache misses. Given the low data caastdén the mutator part, it is safe to assert that
data locality is not the key issue for the performance an@m®abserved in Section 4.

0.2
Data cache misses variation (OFO- BFO)/OFO mmmmm

0.15

0.1

0.05 |

oF — o I I- u |
-0.05 ! I
o T 1%
e E @

-0.1

.
ol

2
kel

comp
jack
javac
jess
mtrt
antlr
bloat
p

Figure 8: The effect of scan order on data cache performandi&és RVM

5.1.3 Hash code location

The position and value of the hash code is another implerientdifference between our RS/bi-directional
implementation and the original Jikes RVM implementatiblowever, our profiling results indicate that the
number of objects that actually use a hash code is quite $arathese benchmarks. For example, in the
SPECjvm98 benchmarks (measured on SableVM, which usesilarsiazy hash code creation approach),
most objects are not hashed. Evenjthecbenchmark, which exhibits the largest number of hashedtsje
no more than 0.5% of copied objects are hashed. Thereforeamvrule out the hash code factor as the main
source of anomalies.

10

Benchmark In Mutator In GC
Inst. | Data || Inst. | Data

compress|| 239 | 871 || 128K | 77
db | 725 | 400 || 341K | 152
jack || 145 | 244 || 38K | 123
javac || 201 | 259 || 264K | 138
jess| 176 | 376 || 80K | 146
mtrt | 534 | 312 || 264K | 159
raytrace|| 475 | 311 || 242K | 161
antlr | 183 | 316 | 44K | 150
bloat || 150 | 205 || 132K | 175
fop || 203 | 269 || 200K | 163
pmd | 196 | 191 || 124K | 148
ps| 191 | 291 || 288K | 200

[Average]| 285 | 337 [179K | 150 |

Table 1: Benchmark characteristics: Cache Density (cymbescache miss) in SableVM on a Pentium Il
workstation.

5.1.4 Code positioning

Finally, any change to the source code of the mutator or theator is likely to change the precise location
of parts of compiled code, possibly affecting the instmutttache success rate.

Table 1 shows that during GC very few instruction cache rsisseur. In fact, in the GC phase the collector
mostly works by iterating over a small set of instructioriss ithus unlikely for code position differences to
cause any significant impact on GC performance.

On the other hand, Table 1 also shows that instruction caébsemare more frequent in the mutator. To
gain additional insight on the issue, we performed two expents.

The second column of Table 2 shows the largest performararggels we found in SPECjvm98 benchmark
on a series otode shiftedversions of SableVM. The only difference between theseimessis the length
of some extra useless space, varying from 0 bytes to doublsizke of a cache line, reserved in the string
table section of the executable binary. This causes laterpiexecutable code to be shifted, without ac-
tually changing the binary code. Surprisingly, such aativhodification triggered significant performance
differences, up to 6.09%.

As a second experiment, we changed the position of some oatikds RVM by hand, and we generated
a set of variances. We then compiled two versions of Jikes RutM with and one without thdardware
Performance MonitorindHPM) component. In our measurements, no HPM code was esckclit other
words, we simply added a piece of non-executed code to Jikds. Rhe results are shown in the third
column of Table 2. Note how the simple addition of some nogeated component to Jikes RVM can affect
performance by up to 9.46%!

5.2 Benchmark specific factors

In this section, we extend our analysis to benchmark-spefatitors which can also influence the perfor-
mance. These properties include the relative number amdbditon of reference fields, variation in GC

11

Benchmark || L.V.F.(%) of L.V.F.(%) of

Code Shifting| Extra Componen
compress 2.78 1.24
db 6.09 4.80
jack 2.04 5.19
javac 2.00 4.40
jess 2.69 6.39
mtrt 3.69 4.70
raytrace 3.21 6.42
antlr 0.89 5.75
bloat 1.49 9.46
fop 1.14 2.94
pmd 1.39 3.31
ps 1.89 1.62

Table 2: Impact of the code shifting in SableVM and adding #inaenever executed component in Jikes
RVM (L.V.F. for Largest Variation Found in execution time)

collection points and GC strategy, and relative cache seihgof the benchmarks.

In the experiments below we used an instrumented SableVMttteg heap-related data.

5.2.1 RS scanning gains

Section 3.1 presents the potential advantages of the R8gtrdy its nature, RS scanning will bring larger
benefits when accessing long, contiguous reference sectiamn objects with a single reference, the cost of
RS scanning is greater than the cost of normal scanning. Mgenieasured the number of reference field in
scanned objects in SPECjvm98 benchmarks.

We found thadb, mtrtandraytracehave more than 40% objects with no reference at all. Thesebare
skipped by the RS strategy which leads to a significant imgmr@nt in GC speed over the original SableVM
implementation. A relatively large number of single-refece objects are found jack and especiallyess
(43.4%), for which our RS strategy brings less improvemeértte behavior ofcompresswhich has the
lightest GC workload of all analyzed SPECjvm98 benchmaaks] ofjavac which triggers fourforced
GCs, however, cannot be completely explained from theeafsr composition data alone.

5.2.2 GenMS behaviour analysis

Jikes RVM's garbage collector manages both applicatioa datl VM-specific data. Thus purely internal
VM changes can be reflected in the workload experienced bifcatipns. This can be seen as a major
source of the anomalous behaviour of some of the DaCapo benkh under the GenMS GC strategy.

Our modifications to the Jikes RVM object model in the implatagion of the RS strategy caused a slight
change in GC workload. In particular, we noticed that the iz surviving objects, after collection, for
these benchmarks was slightly different (by only a few Kytls) between the original and the RS imple-
mentations. Given the large heap size, we would not expegcsignificant impact from this when using a
semi-space copying collector. But, in the case of a gemeraticollector, where most of the work is done on
a small nursery, a small size difference can have largerdisp&le found thabloat causes 27 GCs with the

12

RS version and 33 with the original. As a further complicatia lower number of GCs doesn’t necessarily
mean lower total GC time. In this case, the nursery-GC thikaviis a full-heap GC is much longer than
other nursery GCs. The RS version is actually faster in taischmark until near the end of the execution,
when after a full-heap GC, one extra longer nursery-GC ggéiied. This final GC eliminates all the prior
gains. The aggregate GC timehdbat for both original and RS versions in two heap size settingjg(&nd
160M) are shown in Figure 9. In both heap settings, the RSoreis faster than the original version at
every step. In the 80M case, RS wins over original versiorsistently until the last step where an extra
long nursery GC cycle is triggered. In the 160M case, RS resltmtal garbage collection time by 4.4%.

9000 .
Org(80M) ——
8000 RS(80M) ——— []

[Org(160M)
RS(160M) |
7000 TJ e
e I ; e

5000

4000

3000

GC amount time (ms)

2000

1000

0 i 1 1 1 1 1 2
0 10 20 30 40 50 60

Execution time (s)

Figure 9: Bloat GenMS performance can be changed becausmaorf aode differences

5.2.3 Generational or semi-space?

Specific benchmarks respond differently to different G@tsgies under different input loads. This can also
affect perception of performance.

Jikes RVM’s GenMS GC, for instance, treats objects diffdyeaccording to their potential lifetime, and
in most cases provides better performance than SemiSpac#&ty benchmarks, such gk, jessand

ps are suitable for generational GC, where they can operate than 10 times faster in ordinary heap size
settings. On the other hand, the performance gains are soeselost when operating on large heaps in
some benchmarks. In some cases, sudifbandpmd SemiSpace is actually nearly as fast or event faster
than GenMS in normal heap settings. Since the performan@&Caft a function of heap size, we examine
how much the GenMS can win over SS in different heap sizes.Hoie the result for SPECjvm98 in Figure
10 and for DaCapo benchmarks in Figure 11. The y-axis expsebe GC time of SemiSpace normalized
to that of GenMS. The heap size is shown as a multiple of thdleshheap size setting. Note that there is
no SemiSpace GC aompressanddbwhen the heap size is larger than 3.5X and 4X the minimunngetti
respectively.

13

Obviously the specific choice of GC strategy and heap sizealsgnificant affect on performance. The

impact on measuring optimizations is more subtle, and dipem the varying benchmark responses to
these parameters. An optimization to a strategy being usadsub-optimal situation may be more or less
effective, affecting different benchmarks to differengoees.

100

10

S Fom
*
* m
Lii
*inC

SS/GenMS GC time (log)
)
6
b

0.1 I I I I I
1 2 3 4 5

compress —+— jack ----%- jess —-m--
db ---%--- javac & mtrt ---e--

raytrace ----e-

Figure 10: Performance comparison between SS and GenMSEG|&R98 benchmarks, the minimal heap
size is 32M

100

10

SS/GenMS GC time (log)

0.1 L 1 I I I
1 2 3 4 5

Normalized heap size

antlr —+— bloat ---»--- fop %~ pmd & ps —-m--

Figure 11: Performance comparison between SS and GenMS Gagdabenchmarks, the minimal heap
size is 40M

5.2.4 Hardware related benchmark characteristics

To further study the benchmark characteristics on hardwegayenerated hardware event traces using Jikes
RVM to show the hardware behaviour at each thread switclmitggval. These trace results show significant
variations among benchmarks for different hardware events

We will briefly discuss, here, the results for the followirangple benchmarksompress, dlandjack Their
L1 instruction and data cache densities are respectivelyisin Figures 12, 13 and 14.

Compressanddb have more data than instruction cache misses, ujditle We note that all three bench-
marks show some kind of recursive pattern in their instactiache curve. Particularlgb exhibits many

14

high impulses in the instruction cache curve.jdok, the number of instruction cache misses is larger and
the width of each recursive pattern is much widammpressas lower instruction cache miss peaks, which
is expected as it executes a comparatively smaller pieced#.cThese facts exhibit different optimization
opportunities for these benchmarks. For example, datditpogtimizations have higher potential benefits
in compresanddb. Moreover, the high impulses @bindicates the existence of small chunks of hot code in
this benchmark. If the instruction cache behavior was sawathanged, the performance could potentially
be affected. In other worddpis likely very sensitive to code motion.

Figure 15 shows the different cache performance bias ofHmearks. The center position is determined
by the I-Cache (x-axis) and D-cache (y-axis) miss densitye fiectangle area for each benchmark shows
the standard cache density variation for the measuremtwats. Benchmarkompresss an extremely
data cache biased program, while a large number of benclnsarg&h aantlr, are highly instruction cache
biased programs. The performancedbf mtrtandbloat have similar dependency on these two caches. The
two arrows for each benchmark represent the average of phE08 largest cache miss variations between
two continuous intervals of the benchmark. The length ofatiew is an indicator for the probability that a
program phase transition points can be detected by mamitdine corresponding hardware event variation.

Compress, L1 Cache performance in 0-6billion cycles
0.008 T T T T T

GCs
oo + pawge
+
+ +
t + ¥ s + 4
0.006 I doy A A A U T
< + ot to M 4 s - + it - PR T o +* +
g 0005 " .. 4T+ + R e oty * e T & b
o ++£ T et w o " A T e h P + fﬁi RATE L S
5 o % +t€;+ +++ *:++++ i%ﬁ;ﬁ» . A P fut;‘; - i r Tt ++ . " } I++++¢ o,
AU e S I T) S e SO S A 2 O - S
2 N P G T S -t~ e e G B AR A TR
8 0003 fuiw, TE ;* e | AT FTA e T I e T e D e e T e |
g e ¥ PR g T+ o+ 4 +
= ol | B R I
0.002 i : +++++ t Jr ot A R . L 1
R e i + " }f o
0.001 wor ot : . fﬁ:} L]
" % §+++§
o L *‘*”‘g §§ PEES 3%&5%%%
2e+10 5e+10 6e+10
Elasped Cycles
Figure 12: Compress hardware event trace
Db, L1 Cache performance in 0-10billion cycles
0.0045 T T o
s —
0.004 L1DCM/Cyc + 4
L1ICM/Cyc -~
0.0035 | 1
o e]
2 0003 ||
>
)
5 0.0025 1
[=8
2 0.002 | 1
2]
2
S 00015 | i
0.001 | 1
0.0005 .

Elasped Cycles

Figure 13: Db hardware event trace

15

Misses per cycle

D-Cache density (Misses per million cycle)

Jack, L1 Cache performance in 0-4billion cycles

GCs

LIDCM/Cyc +

LLICM/CyC -

ﬁﬁ% NS | L . Fol o | + + + ¥ * | of y e o | * | 7
Baki et i nciec e it e b st S
0 5e+09 le+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10
Elasped Cycles
Figure 14: Jack hardware event trace
6000 T T T T T T T
5000 b
4000 | b
3000 b
compress
2000 b
T db
trt) |, ‘Taytrace _
Y PP
1000 | e ——pmd - fop i]
dn‘bloat"iﬁ I Y N B
ps jack javac antlr
0 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

I-Cache density (Misses per million cycle)

Figure 15: Benchmark cache bias

16

4e+10

5.2.5 Summary

From the above data, we summarize that:

e The reference composition of the objects is an importaribfado determine the suitability of applying
the RS scanning strategy.

e The performance of Java virtual machines can be significaffibcted by unintended code motion side-
effects.

e Benchmarks show different sensitivity to code motion sffects, as well as other hardware-level issues
(data cache, etc.).

e Generational GC does not give a constant improvement owgrgeace GC across all benchmarks. (This
situation exhibits some potential for adaptively setting hursery size to improve performance).

e The real performance of GC improvements is difficult to measn hybrid systems like Jikes RVM,
where internal VM-specific data is stored in the heap easityupbing results.

6 Conclusions and future work

Optimizations in a modern virtual machine environment idyehave the potential for complex interactions

with various systems aspects, high and low-level. Our G@Gropation case study shows that these inter-
actions are both subtle and significant. Cache effects datmimnd are a well known source of variance;
their large impact and indirect causality is, however, ganpgly. Our experimental results also show how
changes in GC timing, caused by code or data modificatiomteucontribute to performance variation.

These basic concerns apply equally well to many other opéitiins—certainly any that affect the place-
ment of code or data, or which may alter the timing or pararsaieGC. Unless these factors are controlled
for, conservatively, real-time performance changes & than 10% should be considered preliminary.

Of course a potential variance is also a potential sourc@tiintzation. At a fine grain the cache behaviour
shows strong repetitive sequences, and at a coarse grainlmeanhmarks have a bias in their sensitivity
toward instruction or data cache misses; future work ontadapptimizations that branch on early detection
of these qualities may be very applicable. Different, andenva@curate (less-perturbing) measurements may
also help decide on an optimization—we have shown thatestalbkrage behaviour can be misleading, and
development of appropriate measurement/evaluatioregiest that (heuristically at least) give a good sense
of potential variation would be quite useful. Currently we &cusing on techniques for more optimal code
layout in order to better exploit the instruction cache.

References

[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith Ngo, J. J. Barton, S. F. Hummel, J. C.
Sheperd, and M. Mergen. Implementing Jalapefo in Jav@QRSLA '99: Proceedings of the 14th
ACM SIGPLAN conference on Object-oriented programmingtesys, languages, and applicatipns
pages 314-324, Oct. 1999.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. higger, S.-T. A. Leung, R. L. Sites,
M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. Cambas profiling: where have all the
cycles gone?ACM Trans. Comput. Sysfi5(4):357-390, Nov. 1997.

17

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

R. Berrendorf, H. Ziegler, and B. Mohr. Pcl-the perfomsa counter library. htt p: // waw.
fz-juelich.de/zam PCL/.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths andlities: The performance impact of
garbage collection. IRroceedings of the ACM SIGMETRICS Conference on Measutdrdondel-
ing Computer Systempages 25-36, June 2004.

S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and Wa&téligh Performance Garbage Collection
in Java with MMTk. InICSE '04: Proceedings of the 26th International ConferenoeSoftware
Engineering pages 137-146. IEEE Computer Society, May 2004.

S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Mo$3eltway: getting around garbage
collection gridlock.SIGPLAN Not.37(5):153-164, June 2002.

H.-J. Boehm. Reducing garbage collector cache missekSNMIM '00: Proceedings of the 2nd inter-
national symposium on Memory managemeages 59-64, Oct. 2000.

S. Brown, J. Dongarra, N. Garner, K. London, and P. Mu®API. http://icl.cs. utk. edu/
papi .

C.-Y. Cher, A. L. Hosking, and T. N. Vijaykumar. Softwaprefetching for mark-sweep garbage
collection: hardware analysis and software redesigiASRLOS-XI: Proceedings of the 11th interna-
tional conference on Architectural support for programmianguages and operating systemages
199-210, Oct. 2004.

DaCapo Group. The DaCapo benchmark sthtet p: / / www al i . ¢s. unmass. edu/ DaCapo.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Chaiziclg and predicting program behavior and
its variability. INPACT '03: Proceedings of the 12th International Confereoéarallel Architectures
and Compilation Techniguepage 220. IEEE Computer Society, Sep. 2003.

B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Bmsmc metrics for Java. lRroceedings
of the ACM SIGPLAN 2003 Conference on Object-Oriented Rrogning, Systems, Languages, and
Applications (OOPSLApages 149-168, Oct. 2003.

L. Eeckhout, A. Georges, and K. De Bosschere. How Javgrpms interact with virtual machines at
the microarchitectural level. IRroceedings of the 18th ACM SIGPLAN conference on Objéetiad
programing, systems, languages, and applicatiggages 169-186, Oct. 2003.

E. Gagnon. SableVM. http://www.sablevm.org/.

E. Gagnon.A Portable Research Framework for the Execution of Javadéyte PhD thesis, McGill
University, 2002.

E. M. Gagnon and L. J. Hendren. SableVM:A Research Fvaoriefor the Efficient Execution of Java
Bytecode. InProceedings of the Java Virtual Machine Research and TdogpdSymposium (JVM
'01), pages 27-40. USENIX Association, Apr. 2001.

D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a safrnoise in JVM performanceStudia
Informatica Universalis4(1):83-99, March 2005.

18

[18] S. Z. Guyer and K. S. McKinley. Finding your cronies: t&taanalysis for dynamic object coloca-

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

tion. In OOPSLA '04: Proceedings of the 19th annual ACM SIGPLAN Gené® on Object-oriented
programming, systems, languages, and applicatipages 237-250, Oct. 2004.

K. Hammond, G. L. Burn, and D. B. Howe. Spiking your caghie J. T. O. Donnell and K. Hammond,
editors,GLA, pages 58—-68. Springer-Verlag, July 1993.

M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Veali profiling: understanding the behavior
of object-priented applications. I@OPSLA '04: Proceedings of the 19th annual ACM SIGPLAN

Conference on Object-oriented programming, systemsukages, and applicationgpages 251-269,
Oct. 2004.

X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Wang, and P. Cheng. The garbage
collection advantage: improving program locality. Q®©PSLA '04: Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-oriented programmingtesys, languages, and applicatipns
pages 69-80, Oct. 2004.

R. Jones and R. LingGarbage Collection: Algorithms for Automatic Dynamic Magnblanagement
John Wiley and Sons, Ltd, 1996.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Caltlee strong correlation between code
signatures and performance. IBPASS '05: Proceedings of the IEEE International Symmposin
Performance Analysis of Systems and Softwaage 220. IEEE Computer Society, March 2005.

F. Qian and L. Hendren. An adaptive, region-based attucfor java. InNlISMM '02: Proceedings of
the 3rd international symposium on Memory managenpades 127-138, June 2002.

R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, arB. Wong. Compiler orchestrated
prefetching via speculation and predication. ABPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming laages and operating systenmages 189—
198, Oct. 2004.

S. Soman, C. Krintz, and D. F. Bacon. Dynamic selectibapplication-specific garbage collectors.
In ISMM '04: Proceedings of the 4th international symposiunMamory managemenpages 49-60,
Oct 2004.

Standard Performance Evaluation Corportion. SPEORrhenchmarks. htt p://wwv. spec.
org/ osg/jvnB8.

D. Stefanovic, M. Hertz, S. M. Blackburn, K. S. McKigleand J. E. B. Moss. Older-first garbage
collection in practice: evaluation in a java virtual maahinin MSP '02: Proceedings of the 2002
workshop on Memory system performangages 25—-36, June 2002.

D. Stefanovi€, K. S. McKinley, and J. E. B. Moss. Agesbd garbage collection. @OPSLA '99:
Proceedings of the 14th ACM SIGPLAN conference on Objeeti®d programming, systems, lan-
guages, and applicationpages 370-381, Oct. 1999.

P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diviza Grove, and M. Hind. Using hardware
performance monitors to understand the behavior of Javicappns. InVM'04:Proceedings of the
3rd Virtual Machine Research and Technology SymposMay 2004.

19

[31] D. Ungar. Generation scavenging: A non-disruptivehipgrformance storage reclamation algorithm.
In SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN softweagineering symposium on
Practical software development environmemiages 157-167, Apr. 1984.

[32] X.Veraand J. Xue. Let’s study whole program cache beinanalytical. Ininternational Symposium
on High-Performance Computer Architecture (HPCA 8) (IEGi)ges 175-186, Feb. 2002.

20

