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Abstract

Many new Java runtime optimizations report relatively small, single-digit performance improve-
ments. On modern virtual and actual hardware, however, the performance impact of an optimization can
be influenced by a variety of factors in the underlying systems. Using a case study of a new garbage
collection optimization in two different Java virtual machines, we show the various issues that must be
taken into consideration when claiming an improvement. We examine the specific and overall perfor-
mance changes due to our optimization and show how unintended side-effects can contribute to, and
distort the final assessment. Our experience shows that VM and hardware concerns can generate vari-
ances of up to 9.5% in whole program execution time. Consideration of these confounding effects is
critical to a good understanding of Java performance and optimization.

1 Introduction

Compiler and runtime optimizations are typically deemed successful if a measurable, reasonably stable
performance improvement can be shown over a selection of benchmarks, even if the effect is relatively
small or not uniformly positive. In the case of Java virtual machine (VM) or software level optimizations,
low-level hardware and VM effects are often presumed amortized through the complexity of interaction, or
by considering average case behaviour.

In fact, inadvertent changes in low-level behaviour can significantly affect overall program execution, and
seemingly stable results can vary by surprisingly large amounts for functionally identical programs. Using
an in-depth study of a new garbage collection optimization,we describe a variety of confounding, low-level
factors that are not always deeply considered when analyzing optimization behaviour, and give experimental
evidence of their relative impact. In our case we find that a combination of instruction cache changes due to
trivial code modifications, and subtle, consequent data layout and usage differences can induce almost a 10%
whole program performance variation. We are able to show significant variations in both interpreter and JIT
environments. As the largest contributors to variance are not unique to our case study, other optimizations
achieving single-digit performance improvements (or degradations) may thus be affected by the same issues.

Previous studies on the complexity of measuring performance in modern VMs have argued for the impor-
tance of a holistic view of program performance [20], or havepointed out some of the factors that can
directly affect and distort the measurement of specific optimizations, such as garbage collection [4]. In
this paper we extend these concerns showing the wide range ofissues that must be addressed to ensure a
well-informed interpretation of performance change due tooptimization, and the surprisingly large potential
impact of low-level concerns on high level performance.

Specific contributions of our work include:

• We present and analyze a new garbage collection optimization that can improve GC performance in
both JIT (Jikes RVM) and interpreter (SableVM) environments. Our detailed, multi-level experimental
analysis provides further guidance on when to apply our optimization and which applications will benefit
most.

• We experimentally show that a relatively high variation in performance is possible in a JVM due to
unintended side-effects of code modifications. This can greatly distort the evaluation of optimization
behaviour, yet it is not always fully considered in the literature.

• Using both VM and low-level hardware counter information, we provide an analysis and unique charac-
terization of the SPECjvm98 and the DaCapo benchmarks with respect to their instruction and data cache
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sensitivity. Understanding such benchmark characteristics is of course crucial to choosing appropriate
optimizations.

The remainder of this paper is organized as follows. In Section 2, we discuss related work on GC and
Java performance measurement and analysis. Section 3 then describes our garbage collection optimization,
and Section 4 gives initial data on its performance. In Section 5, critical, low-level and unintended factors
that affect the overall performance are shown through an analysis of anomalies and inconsistencies in the
base measurements, particularly with respect to whole program behaviour. Section 6 provides directions for
future work in this area and presents our conclusions.

2 Related work

Our investigations are motivated through a case study of a garbage collection (GC) optimization. GC has
been a target of optimization for decades, and from a varietyof directions. Ungar’sgenerational scavenging
[31] technique and more recent works onAge-basedGC [29] Older-first GC [28] andBeltway GC[6],
for instance, all aim to improve performance by adjusting collection time according to object lifetimes.
Alternatively, live objects can be aggregated into regionsin the heap based on a selection of object attributes.
This either aims to improve data locality in the program [18,21], or to reduce the memory access overhead
of the collector [24]. Optimizations on data prefetching and lazy sweeping [7,9] aim to improve data cache
performance. Our approach tries to reduce the GC workload, although the implementation design is also
helpful in reducing data cache misses.

Measuring the performance and understanding the behavior of Java programs is challenging. Many factors,
from program characteristics, VM techniques and implementations, and OS strategies, to hardware platform
performance, can affect to the final measured performance. B. Dufour et al. provides a set of concise and
precisely defined dynamic metrics for Java programs [12]. Ata lower level, L. Eeckhoutet al. [13] analyze
the interaction between Java virtual machine and microarchitectural platform factors by using principal
component analysis to reduce the data dimensionality. M. Hauswirth et al. suggest an approach named
vertical profiling [20] to understand how Java programs interact with the underlying abstraction levels, from
application, virtual machine, and OS, to hardware. To understand the behaviour of a particular program
execution, they first obtain profiling data from different levels, then visualize the data and discover the
correlations between the anomalous performance and the profiling data visually or using statistical metrics.
Our examination here is in the same spirit of a multi-levelled view of performance, though focusing on the
variance due to optimizations rather than for program development.

Some other works specifically study GC performance. S. Blackburn et al. [4] discuss performancemyths
of canonical GC algorithms on widely used Java benchmarks. They compare the performance of classic
GC and memory allocation algorithms in different configurations and environments. The impact of special
implementation factors, such as “write barriers” and the size of nursery space of generational collectors, on
mutator and GC performance are carefully studied. In this paper we extend their results to a further range of
factors and influences, particularly unintended cache effects. The large impact of instruction cache changes
has been noticed in other contexts as well [19], although ourtreatment is more in depth.

In order to fully analyze our benchmarks we have correlated instruction cache, data cache, and other low
level events with program behaviour. Similar analyses havebeen done for C benchmarks [11, 23]; we of
course aim at Java benchmarks, and concentrate on the relation between instruction and data cache sensitiv-
ity. Our data is gathered using thehardware performance countersfound in modern processors, and used in
numerous low-level performance studies [2, 17, 25, 30, 32].In our case we used the PCL [3] and PAPI [8]
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libraries for this low-level access.

3 Case study: GC optimization

Most Java virtual machines use mark-sweep or copying GC [22], or some variant (often generational) of
these two algorithms. Both of these algorithms aretracing collectors. Starting from a set of root references
(static variables, stack references), they visit eachreachableobject seeking references to other reachable
objects. Finally, the memory storage of non-reachable objects is reclaimed. Gagnon and Hendren proposed
a bi-directional object layout [16] aiming to improve the performance of GC tracing. In this section, we
present areference sectiontracing strategy that improves on it. This optimization andits implementations
in SableVM and Jikes RVM form the basic case study that motivates our analysis of measurement concerns.

3.1 Bi-directional layout and reference section scanning

Bi-directional layout is an alternative way of physically representing objects in memory. Traditionally, all
the fields of an object are located after the object header. The left graph in Figure 1 shows the traditional
layout of an object of typeC extending typeB extending typeA. The right graph in Figure 1 shows the
bi-directional layout of the same object. The basic idea of bi-directional layout is to relocate reference
fields before the object header and group them together in a contiguous section; we denote these sections as
reference section. The main advantage of the bi-directional layout is the simplicity of locating all references
in an object during GC. References are contiguous, and only asingle count of reference section size must
be stored (usually in the object header). There is no need to access a table of offsets in the object’s type
information block to identify references, as must be done with the traditional layout.

Figure 1: An instance of typeC extending typeB extending typeA in both traditional and bi-directional
object layouts

Based on the bi-directional layout, we developed a new reference section based (RS) scanning strategy to
further reduce the required work for tracing fromper objectto per reference section: When a new reachable
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object is found, the location of its reference section (if itdoes have one) is stored in a work list. The collector
then uses this work list, which only contains relevant information, to copy or mark referents.

Compared to normal bi-directional layout tracing, our solution has the following advantages:

• The collector skips tracing of all reachable objects that have no references.

• The compactness of the work list may help improve cache locality.

• In coping collectors, using a work list allows for depth-first tracing instead of default breadth-first tracing.
This usually leads to better cache locality [22].

3.2 Implementing RS scanning

We implemented RS scanning in two representative Java virtual machines: SableVM [14] and Jikes RVM
[1]. SableVM is an efficient interpreter-based Java runtimewhich has a simple, yet efficient copying GC, and
already implements the bi-directional object layout [15].Jikes RVM is an adaptive compiler-based runtime
for Java written in Java; new GC algorithms can be easily implemented using itsMemory Management
Toolkit (MMTk) [5].

3.2.1 SableVM

SableVM has a semi-space copying GC which uses a two-pointerscanning algorithm [22]. In theto-space,
the scan pointerre-visits all copied objects to detect other reachable objects until it catches thecopying
pointer.

In our RS scanning implementation, the location of reference sections is saved in 512-entry blocks organized
in a work list. We use the higher address end of theto-spaceto store these 512-entry blocks. Unused blocks
are maintained in a free list, ready to be reused1. Compared to the total size of the heap, the space required
by these 512-entry blocks is very small. For SPECjvm98 [27] benchmarks, we needed at most five blocks (in
javac), or 20K at the end ofto-space(and another 1K for headers) to perform GC on a two 16M semi-space
heap.

Since our RS scanning strategy can reduce GC workload and improve data cache locality, we expect signif-
icant GC performance improvement in SableVM.

3.2.2 Jikes RVM

We also implemented the bi-directional layout and the RS scanning strategy in Jikes RVM version 2.3.4 by
modifying both the RVM and the MMTk.

RVM

To implement the bi-directional object layout, we modified the object model component and the routines
that compute the offset of fields. In the type information block, we replaced the array storing the offset of
references with a single integer indicating the number of the references. We also moved the hash code from

1Actually, a separate block header is allocated for managingwork/free lists.
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before the object header to the end of the object in order to avoid changing the location of references when
the object is hashed.

MMTk

The Memory Management Toolkit (MMTk) provides a full set of strategies to implement GC. It also pro-
vides a series of common compound data structures such as queue and dequeue which is quite useful in
various GC implementations. We chose the address-pair dequeue data structure to maintain our reference
section information. Then, we modified the scan utility to perform RS scanning. The sub-component of
MMTk used to access the object type information was also changed to support the new object model. Fur-
thermore, some basic GC plans, such asbasePlanandstopTheWorldGC, were extended to support the new
scan utility. In our current RS scanning implementation, welargely reuse existing MMTk routines—this is
not always optimal for pure reference section scanning, butis sufficient for an initial implementation.

As Jikes RVM already used work lists for tracing, we do not expect as much improvement in Jikes RVM as
in SableVM.

4 Initial experimental results

To study the effect of using the bi-directional layout and the RS scanning strategy, we collected performance
data on the SPECjvm98 benchmarks [27] exceptmpegaudioand on five benchmarks,antlr, bloat, fop, pms,
and ps of the DaCapo suite [10]. We excludedmpegaudioas it does not trigger garbage collection in
SableVM’s default settings. We excluded thebatik, chart, jythonandxalan DaCapo benchmarks as they
either required unsupported graphical bindings or had reflection issues in the version of SableVM used for
testing. We also excludedhsqldbas its execution time is mostly dependent on the thread scheduler of the
underlying operating system. Experiments were run on an Athlon 1.4G workstation with 1G memory, with
some earlier results from a Pentium III 733MHz workstation with 512M memory.

4.1 SableVM results

SableVM uses a simple semi-space copying GC. Yet, it delivers good GC performance due to the imple-
mentation of a number of efficient memory access techniques and an efficient algorithm for computing and
retrieving GC maps [15].

Figure 2 shows the GC speedup obtained in SableVM by using RS scanning on our benchmarks with a
32MB initialize heap. A significant speedup, 16% in average,is obtained with a maximum of about 30%
improvement ondb.

We also measured the impact of RS whole program execution time, shown in figure 3. Although, the
overall performance speedup is still positive in general, we notice a mysterious performance decline in
some benchmarks, most obviouslyraytrace. Equally puzzling are the> 2% performance improvements
shown bycompressanddb. GC usually takes less than 1% of execution time in the SableVM interpreter
environment, and so this indicates a significant, unintentional impact on the mutator.
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Figure 2: GC speedup in SableVM. Time is measured as cycles spent during GC execution. The vertical

axis shows speedup, measured as:(ExecutionT imeOriginal−ExecutionT imeOptimized)
ExecutionT imeOriginal
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Figure 3: Whole program execution speedup in SableVM
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Figure 4: SS GC speedup in Jikes RVM
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Figure 5: GenMS GC speedup in Jikes RVM

4.2 Jikes RVM results

We tested the RS scanning strategy in two types of GC in Jikes RVM: SemiSpace (SS) copying and Gen-
erational-copying-Marksweep hybrid GC (GenMS). We chose these two because they are representative
GC configurations. The former is the most classic tracing GC which can give better performance for some
benchmarks when the heap size is large enough [26]. The latter is the best choice for most benchmarks in
most heap configurations of Jikes RVM.

We show the GC performance speedup for both collectors in Figures 4 and 5, and the results for whole
program execution in Figures 6 and 7. The heap size was set to 32MB when testing SPECjvm98 benchmarks,
as we did for SableVM. For the DaCapo benchmarks, the heap size was set to 80MB, due to a larger data
workload.

For semi-space copying (SS), we obtained a stable improvement on the speed of GC for all benchmarks,
similar to SableVM. At the same time we also show an overall positive performance for whole program
execution time. We note that when using SS GC in Jikes RVM, GC takes a large portion of execution
time (up to 40%). Whole program execution performance is therefore highly dependent on the collector’s
performance.
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Figure 6: Whole program execution speedup when using SS GC inJikes RVM
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Figure 7: Whole program execution speedup when using GenMS GC in Jikes RVM
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In the case of GenMS garbage collection performance resultsfor both GC and whole program execution
are less consistent. In the SPECjvm98 suite, the RS strategystill delivered overall GC improvement on
most benchmarks (exceptjavac), but in the DaCapo benchmarks we only see an improvement fortheantlr
benchmark. For other benchmarks GC performance is either similar to the original version or worse. Whole
program execution time shows no obvious stable trend, positive or negative.

4.3 Summary

Viewed in isolation, and even overall in some cases, our RS scanning improves performance in both inter-
preter and adaptive JIT compiler environments. These results, however, are not well reflected in a general
sense and anomalous measurements suggests significant variation in the performance of the mutator. A more
detailed examination is thus the subject of the next section.

5 Detailed performance analysis

The inconsistent results found in Section 4 are puzzling from algorithmic and virtual machine implementa-
tion points of view, as nearly all of the VM structure beyond the necessary GC code was kept unmodified.
Below we further investigate a series of low-level and benchmark-specific factors that contribute to the
unexpected performance differences.

5.1 General factors

We integrated the PCL [3] and PAPI [8] libraries to SableVM and Jikes RVM respectively in order to
retrieve hardware counter data during benchmark execution. We then identified and investigated each of the
following factors as a potential source of performance irregularity.

5.1.1 Hardware instruction workload

As the source code of a virtual machines is compiled, an obvious source of performance difference is in
the generated code. Evenimprovedsource code can generate an increase in hardware workload due to code
generation patterns or optimizations.

We used hardware performance counter data to investigate the changes due to our implementation of RS.
The final version of RS (used in our measurements) actually reduces the number of instructions executed
during GC instructions for most benchmarks on both virtual machines. Furthermore, there is no noticeable
difference in the executed instruction count for the mutator (variations were about 0.03% in average). In
general, the RS strategy reduces the workload of GC and does not increase the workload of the mutator, and
so is not a significant contributor to the performance differences.

5.1.2 Scan order

Changing the position of fields in the object layout has a potential impact on the data cache. Within the
mutator these changes are expected to be both minor and amortized throughout execution. Within a semi-
space copying collector, however, the scan order of references has a direct relation to the new location
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of reachable objects in the heap after collection. Minor changes to scan ordering can result in a widely
different distribution of objects in the heap, and can thus affect data locality in the mutator and in later
collection cycles.

As the bi-directional layout changes thenatural scan order of references, we define two scan orders:

• Original favourite order (OFO): This is the natural reference scan order in the traditional layout,
where references of super classes are scanned first.

• Bi-directional favourite order (BFO): This is natural reference scan order in the bi-directional lay-
out, where references of super classes are scanned last (after those of subclasses).

Figure 8 shows data cache miss comparison betweenBFO andOFO RS implementations in Jikes RVM.
Switching the scan order leads to a new heap layout that changes data locality in the mutator. However,
there is no obvious winner between the two orders. Most changes in data cache misses are lower than the
variance in the execution time. Table 1 shows the average number of cycles between two consecutive L1
data or instruction cache misses. Given the low data cache density in the mutator part, it is safe to assert that
data locality is not the key issue for the performance anomalies observed in Section 4.
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Figure 8: The effect of scan order on data cache performance in Jikes RVM

5.1.3 Hash code location

The position and value of the hash code is another implementation difference between our RS/bi-directional
implementation and the original Jikes RVM implementation.However, our profiling results indicate that the
number of objects that actually use a hash code is quite smallfor these benchmarks. For example, in the
SPECjvm98 benchmarks (measured on SableVM, which uses a similar lazy hash code creation approach),
most objects are not hashed. Even thejavacbenchmark, which exhibits the largest number of hashed objects,
no more than 0.5% of copied objects are hashed. Therefore, wecan rule out the hash code factor as the main
source of anomalies.
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Benchmark In Mutator In GC
Inst. Data Inst. Data

compress 239 871 128K 77
db 725 400 341K 152

jack 145 244 38K 123
javac 201 259 264K 138

jess 176 376 80K 146
mtrt 534 312 264K 159

raytrace 475 311 242K 161
antlr 183 316 44K 150
bloat 150 205 132K 175

fop 203 269 200K 163
pmd 196 191 124K 148

ps 191 291 288K 200

Average 285 337 179K 150

Table 1: Benchmark characteristics: Cache Density (cyclesper cache miss) in SableVM on a Pentium III
workstation.

5.1.4 Code positioning

Finally, any change to the source code of the mutator or the collector is likely to change the precise location
of parts of compiled code, possibly affecting the instruction cache success rate.

Table 1 shows that during GC very few instruction cache misses occur. In fact, in the GC phase the collector
mostly works by iterating over a small set of instructions; it is thus unlikely for code position differences to
cause any significant impact on GC performance.

On the other hand, Table 1 also shows that instruction cache misses are more frequent in the mutator. To
gain additional insight on the issue, we performed two experiments.

The second column of Table 2 shows the largest performance changes we found in SPECjvm98 benchmark
on a series ofcode shiftedversions of SableVM. The only difference between these versions is the length
of some extra useless space, varying from 0 bytes to double the size of a cache line, reserved in the string
table section of the executable binary. This causes later binary executable code to be shifted, without ac-
tually changing the binary code. Surprisingly, such a trivial modification triggered significant performance
differences, up to 6.09%.

As a second experiment, we changed the position of some code in Jikes RVM by hand, and we generated
a set of variances. We then compiled two versions of Jikes RVM: one with and one without theHardware
Performance Monitoring(HPM) component. In our measurements, no HPM code was executed. In other
words, we simply added a piece of non-executed code to Jikes RVM. The results are shown in the third
column of Table 2. Note how the simple addition of some non-executed component to Jikes RVM can affect
performance by up to 9.46%!

5.2 Benchmark specific factors

In this section, we extend our analysis to benchmark-specific factors which can also influence the perfor-
mance. These properties include the relative number and distribution of reference fields, variation in GC
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Benchmark L.V.F.(%) of L.V.F.(%) of
Code Shifting Extra Component

compress 2.78 1.24
db 6.09 4.80

jack 2.04 5.19
javac 2.00 4.40

jess 2.69 6.39
mtrt 3.69 4.70

raytrace 3.21 6.42

antlr 0.89 5.75
bloat 1.49 9.46

fop 1.14 2.94
pmd 1.39 3.31

ps 1.89 1.62

Table 2: Impact of the code shifting in SableVM and adding an extra never executed component in Jikes
RVM (L.V.F. for Largest Variation Found in execution time)

collection points and GC strategy, and relative cache sensitivity of the benchmarks.

In the experiments below we used an instrumented SableVM to gather heap-related data.

5.2.1 RS scanning gains

Section 3.1 presents the potential advantages of the RS strategy. By its nature, RS scanning will bring larger
benefits when accessing long, contiguous reference sections. For objects with a single reference, the cost of
RS scanning is greater than the cost of normal scanning. We thus measured the number of reference field in
scanned objects in SPECjvm98 benchmarks.

We found thatdb, mtrtandraytracehave more than 40% objects with no reference at all. These objects are
skipped by the RS strategy which leads to a significant improvement in GC speed over the original SableVM
implementation. A relatively large number of single-reference objects are found injack and especiallyjess
(43.4%), for which our RS strategy brings less improvement.The behavior ofcompress, which has the
lightest GC workload of all analyzed SPECjvm98 benchmarks,and of javac, which triggers fourforced
GCs, however, cannot be completely explained from the reference composition data alone.

5.2.2 GenMS behaviour analysis

Jikes RVM’s garbage collector manages both application data and VM-specific data. Thus purely internal
VM changes can be reflected in the workload experienced by applications. This can be seen as a major
source of the anomalous behaviour of some of the DaCapo benchmarks under the GenMS GC strategy.

Our modifications to the Jikes RVM object model in the implementation of the RS strategy caused a slight
change in GC workload. In particular, we noticed that the size of surviving objects, after collection, for
these benchmarks was slightly different (by only a few Kilobytes) between the original and the RS imple-
mentations. Given the large heap size, we would not expect any significant impact from this when using a
semi-space copying collector. But, in the case of a generational collector, where most of the work is done on
a small nursery, a small size difference can have larger impacts. We found thatbloat causes 27 GCs with the
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RS version and 33 with the original. As a further complication, a lower number of GCs doesn’t necessarily
mean lower total GC time. In this case, the nursery-GC that follows a full-heap GC is much longer than
other nursery GCs. The RS version is actually faster in this benchmark until near the end of the execution,
when after a full-heap GC, one extra longer nursery-GC is triggered. This final GC eliminates all the prior
gains. The aggregate GC time ofbloat for both original and RS versions in two heap size settings(80M and
160M) are shown in Figure 9. In both heap settings, the RS version is faster than the original version at
every step. In the 80M case, RS wins over original version consistently until the last step where an extra
long nursery GC cycle is triggered. In the 160M case, RS reduces total garbage collection time by 4.4%.
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Figure 9: Bloat GenMS performance can be changed because of minor code differences

5.2.3 Generational or semi-space?

Specific benchmarks respond differently to different GC strategies under different input loads. This can also
affect perception of performance.

Jikes RVM’s GenMS GC, for instance, treats objects differently according to their potential lifetime, and
in most cases provides better performance than SemiSpace GC. Many benchmarks, such asjack, jessand
ps, are suitable for generational GC, where they can operate more than 10 times faster in ordinary heap size
settings. On the other hand, the performance gains are sometimes lost when operating on large heaps in
some benchmarks. In some cases, such asdb andpmd, SemiSpace is actually nearly as fast or event faster
than GenMS in normal heap settings. Since the performance ofGC is a function of heap size, we examine
how much the GenMS can win over SS in different heap sizes. We show the result for SPECjvm98 in Figure
10 and for DaCapo benchmarks in Figure 11. The y-axis expresses the GC time of SemiSpace normalized
to that of GenMS. The heap size is shown as a multiple of the smallest heap size setting. Note that there is
no SemiSpace GC oncompressanddb when the heap size is larger than 3.5X and 4X the minimum setting
respectively.
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Obviously the specific choice of GC strategy and heap size hasa significant affect on performance. The
impact on measuring optimizations is more subtle, and depends on the varying benchmark responses to
these parameters. An optimization to a strategy being used in a sub-optimal situation may be more or less
effective, affecting different benchmarks to different degrees.
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5.2.4 Hardware related benchmark characteristics

To further study the benchmark characteristics on hardware, we generated hardware event traces using Jikes
RVM to show the hardware behaviour at each thread switching interval. These trace results show significant
variations among benchmarks for different hardware events.

We will briefly discuss, here, the results for the following sample benchmarks:compress, dbandjack. Their
L1 instruction and data cache densities are respectively shown in Figures 12, 13 and 14.

Compressanddb have more data than instruction cache misses, unlikejack. We note that all three bench-
marks show some kind of recursive pattern in their instruction cache curve. Particularly,db exhibits many
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high impulses in the instruction cache curve. Injack, the number of instruction cache misses is larger and
the width of each recursive pattern is much wider.compresshas lower instruction cache miss peaks, which
is expected as it executes a comparatively smaller piece of code. These facts exhibit different optimization
opportunities for these benchmarks. For example, data locality optimizations have higher potential benefits
in compressanddb. Moreover, the high impulses indb indicates the existence of small chunks of hot code in
this benchmark. If the instruction cache behavior was somehow changed, the performance could potentially
be affected. In other words,db is likely very sensitive to code motion.

Figure 15 shows the different cache performance bias of benchmarks. The center position is determined
by the I-Cache (x-axis) and D-cache (y-axis) miss density. The rectangle area for each benchmark shows
the standard cache density variation for the measurement intervals. Benchmarkcompressis an extremely
data cache biased program, while a large number of benchmarks, such asantlr, are highly instruction cache
biased programs. The performance ofdb, mtrtandbloat have similar dependency on these two caches. The
two arrows for each benchmark represent the average of the top 10% largest cache miss variations between
two continuous intervals of the benchmark. The length of thearrow is an indicator for the probability that a
program phase transition points can be detected by monitoring the corresponding hardware event variation.
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5.2.5 Summary

From the above data, we summarize that:

• The reference composition of the objects is an important factor to determine the suitability of applying
the RS scanning strategy.

• The performance of Java virtual machines can be significantly affected by unintended code motion side-
effects.

• Benchmarks show different sensitivity to code motion side-effects, as well as other hardware-level issues
(data cache, etc.).

• Generational GC does not give a constant improvement over semi-space GC across all benchmarks. (This
situation exhibits some potential for adaptively setting the nursery size to improve performance).

• The real performance of GC improvements is difficult to measure in hybrid systems like Jikes RVM,
where internal VM-specific data is stored in the heap easily perturbing results.

6 Conclusions and future work

Optimizations in a modern virtual machine environment clearly have the potential for complex interactions
with various systems aspects, high and low-level. Our GC optimization case study shows that these inter-
actions are both subtle and significant. Cache effects dominate, and are a well known source of variance;
their large impact and indirect causality is, however, surprisingly. Our experimental results also show how
changes in GC timing, caused by code or data modifications, further contribute to performance variation.
These basic concerns apply equally well to many other optimizations—certainly any that affect the place-
ment of code or data, or which may alter the timing or parameters of GC. Unless these factors are controlled
for, conservatively, real-time performance changes of less than 10% should be considered preliminary.

Of course a potential variance is also a potential source of optimization. At a fine grain the cache behaviour
shows strong repetitive sequences, and at a coarse grain many benchmarks have a bias in their sensitivity
toward instruction or data cache misses; future work on adaptive optimizations that branch on early detection
of these qualities may be very applicable. Different, and more accurate (less-perturbing) measurements may
also help decide on an optimization—we have shown that stable, average behaviour can be misleading, and
development of appropriate measurement/evaluation strategies that (heuristically at least) give a good sense
of potential variation would be quite useful. Currently we are focusing on techniques for more optimal code
layout in order to better exploit the instruction cache.
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