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Abstract

Most programs exhibit significant repetition of behaviour, and detecting program phases is an in-
creasingly important aspect of dynamic, adaptive program optimizations. Phase-based optimization can
also reduce profiling overhead, save simulation time, and help in program understanding. Using a novel
state space characterization, we give an an overview of state-of-the-art phase detection and prediction
techniques. We use this systematic exposition to situate our own long-range phase analysis, and eval-
uate our approach using a novel phase prediction evaluation metric. Our results show that phases with
relatively long periods can be predicted with very high accuracy. This new technique, as well as the
unexplored regions in our high level characterization suggest that further improvements and variations
on program phase analysis are both possible and potentially quite useful.

1 Introduction

It is well known that the behavior of a program is not random. A typical program performs similar work,
loads similar resources, and in general shows stable performance over significant periods of time. Most pro-
grams are also quite repetitive, with similar behavior occurring cyclically throughout the whole execution.
Detecting the repetitive portions of program execution is the process of phase detection. Phase detection
technique can be used to capture the beginning of relatively stable executions, and also to identify the repet-
itive cycles in the whole program execution. Both of the these properties are valuable for doing adaptive
optimizations, reducing profiling and simulation overhead, applying system reconfigurations, improving
program understanding, and so on.

Of course successful application requires a good understanding of the form of phase detection being offered;
a number of phase detection approaches exist, based on a variety of different phase properties. Scientific
and computationally-intensive applications may benefit more from stable phase prediction techniques than
irregular applications based on dynamic data structures. In this paper we explore a systematic classification
of phase detection and prediction techniques. This is intended to organize phase analysis works and thus
aid appropriate selection, as well as expose gaps in the phase analysis state space exploration. We further
develop a quantitative metric for evaluation of repetitive phase prediction. Previous work on evaluating
phase detection has concentrated on fixed-length phase intervals; our metric applies to variable-length, long
range phases, and we give experimental evidence of its use on standard Java benchmarks.

Specific contribution of this paper include:

• We summarize a variety of popular program phase detection techniques, and present a structured
solution space to organize the different approaches. Similarities and differences among the techniques
provide direction for future work in phase analysis.

• We give a precise definition for variable periodic phase length and present a new set of evaluation
metrics for long range periodic phase detection.

• Using a new long-range phase detection technique we give experimental evidence of both the exis-
tence and the efficacy of periodic phase detection.

In the next section we present motivation for phase detection, listing the important application areas. Section
3 gives basic definitions and defines our solution space; section 4 then examines various representative phase
detection approaches and positions them in the solution space. This is followed by an exposition of the
evaluation metrics in section 5. Finally, we summarize and conclude in section 6.
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2 Motivation

Phase detection and prediction techniques focus on discovering the flat, stable portions or the repetitive por-
tions in program execution. The phase information obtained is valuable in various areas including program
understanding, debugging, reducing simulation and profiling workload, system reconfiguration and adaptive
runtime optimizations. In this section we briefly give descriptions of how phase information can support
these goals.

• Program understanding and debugging

Phase detection techniques can determine the boundaries of each sub-portion of the program exe-
cution. Such results can be used to analyze the workload of a program at different stages, locating
bottlenecks and detecting program defects at a finer granularity than the whole program scope. A.
Georges et al. [14], associate the major workload of a program with representative methods. By mea-
suring hardware events only for these selected methods, hardware related performance bottlenecks
can be located with much less effort. Compile-time data reordering frameworks can also benefit from
phase information mapped to static program structures, by focusing optimizations within the actual
critical areas [41].

• Reducing simulation and profiling workload

Program simulation, especially on accurate, cycle-level hardware simulators, can be quite time-con-
suming. It is very worthful to select the crucial simulation periods to model, and thus save a large
portion of the total simulation time. Phase detection techniques can be used to help simulators find
the interesting points to simulate. Sherwood et al., for example, use phase detection techniques to
determine the portion of execution to simulate and to guide computer architecture research [34].

Similarly, workloads for both offline and online profiling can be reduced by only sampling representa-
tive parts selected by phase detectors. This also benefits trace size; many profilers can generate huge
traces, and phase detection can also function as a lossy compression solution to the trace files that
attempts to preserve the most meaningful information. W. Liu et al. demonstrate the use of phases
for reducing profile cost by giving a phase-driven simulation mechanism that can obtain acceptable
accuracy while only simulating a small portion of the code [24]. In the case of online profiling, reduc-
tions in sample content and frequency have been recognized as important; various authors mention
that optimizations based on runtime profiling need to be applied judiciously, or the cost will outweigh
the benefit in many situations [1, 3, 21, 26].

• System reconfiguration

Embedded or mobile systems often have demanding resource requirements, it can be very valuable
to reconfigure the system dynamically to minimize resource consumption. Dhodapkar and Smith,
for example, introduce tuning points based on phases; these are selected to save power and improve
overall performance by enabling or disabling resources adaptively [10]. Similarly, the phase detection
technique introduced by Shen et al. has been shown to be effective in adaptive cache resizing and
memory remapping [32]. Trade-off’s between speed and energy use of a system based on phase
information have also been explored [4, 9, 19].

• Adaptive optimizations

Runtime, adaptive optimization is the most exciting application of phase detection, and many adaptive
systems are built on determining and exploiting phases. The SOFTWARE CODE TRACE in Dynamo,
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for example, is refreshed based on monitoring the generation rate of new CODE TRACES in recent
intervals [20]. In fact, this is a type of phase detection, and most systems that attempt to locate
“hot” code based on runtime data can be seen as phase detectors. M. Arnold et al. [2] give a survey
of adaptive optimization techniques, especially in a virtual machine environment. Many techniques
introduced in that work can get benefit from phase information.

3 Definitions

An initial step in phase detection is to come up with criteria for deciding when phases begin and end: what
is a phase? To a large extent this can be seen as a choice between different thresholds for similarity when
examining program execution; a phase is sequence of similar actions, as seen from a particular sampling
perspective. This viewpoint does not capture all of the potential phase designations, as we will argue below,
but is sufficient for a general exposition of phases based on stable behaviour.

M. Hind et al. give a basic classification [17] of phase detection. Formally, they define PD[τ , σ](P) to
be the abstract definition of a phase detection problem that takes a profile string P as input. This is then
parameterized according to the available thresholds:

• Granularity(τ ) specifies how a profile is partitioned into fixed-length, atomic units of comparison,
denoted chunks. Granularity size is also the minimum size of a detectable phase.

• Similarity(σ) is a boolean function that, give two strings, determines if the two strings are similar.
That is σ1(S1, S2) returns true if S1 is similar to S2, and false otherwise. Using continuous output (eg
the interval [0.0, 1.0]) from such a function can provide detail on relative similarity, although a binary
decision must be made at some level.

Using this model, they take two input strings (traces), convert each string into an abstract representation,
and compute the similarity between the abstract representations. They then give a generic algorithm based
on this model and demonstrate it on a simple alphabet string example.

The above approach, and its specific instantiations, are in fact based on recognizing stable phases. A stable
phase can be defined as above, or more abstractly as a maximal length sequence of consecutive intervals
containing no large performance change. Such definitions are very appropriate for identifying phases in
programs in which long sequences of unchanging behaviour occur frequently. Scientific benchmarks, for
instance, tend to exhibit such activity, and studies of the SPECcpu95 [39] and SPECcpu2000 suites [38]
show the utility of this kind of phase definition [10, 23, 24, 33, 35].

Phases, however, are not completely characterized by this definition, and fixed-length interval approaches
have been recognized as potentially inadequate for many programs. If the length of the interval is not ap-
propriately set the intervals can easily step “out of sync” with the intrinsic periodic behaviour of a given
program. Lau et al. [22] illustrate this problem graphically and give basic motivation for considering vari-
able length intervals in program execution.

Fixed interval approaches also suffer from reduced accuracy in the case of larger granularities. When study-
ing the program behaviour at a large scale, fewer long, flat execution sequences will appear—adjacent large
intervals are likely to be quite different. Many programs, however, do have significant periodic and repetitive
portions, even at coarser scales. To capture this form of phase we augment the above stable phase definitions
with a definition of long-range periodic phases:
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Definition 1 A long range periodic phase is a tuple P < α, θ, δ > where,

• α is a set of segments S1, ..., Sn appear in program execution and n > 1.

• θ is a function computes the correlation between each two items in α.

• δ is a threshold. For arbitary two items Sx, Sy in α where 1 ≤ x, y ≤ n, the following inequation
must be hold: θ(Sx, Sy) > δ

More simply, periodic phases are repetitive patterns in program execution. This approach can be applied
recursively, allowing multiple level repetitive program behaviours to be addressed.

Solution Space

In order to more fully understand phase detection approaches, fixed-interval, variable interval, long-range
and others, we here provide a general solution space that characterizes different strategies. This three-
dimensional space allows us to position a selection of representative techniques in order to make their
similarities and differences more obvious. The three axes of our phase solution space are defined as follows:

• Dimension 1: Phase scale

This dimension represents the kinds of basic units a detection technique uses to identify phases. These
units can include static program structure (SP), Fixed intervals (FI), Variable intervals (VI), and Long
range (LR) phases.

• Dimension 2: Data type

This dimension reflects the type of data that a detection technique uses to analyze the program be-
haviour. Discrete points in this dimension are associated with high level software data (H-Sf), Low
level software data (L-Sf), mixed software/simulated hardware data (Sf+S.Hw), simulated hardware
data (S.Hw), and finally actual hardware data (Hw).

High level software data refers to large scale software structures such as loops, procedures or basic
blocks. Low level software data refers to the smaller scale software structures such as instructions.

• Dimension 3: Application time

A phase analysis can be applied to a program data acquired at different stages of execution. In this
dimension we represent whether the phase detection is based on static analysis (St), pure offline (Off)
trace data, offline/online mixed profiles(Off+On), simulated online data (S.On), or online from actual
executions (On).

The above dimensions form a discrete 3-D space of different phase detection approaches, as shown in Figure
1 . To further separate different approaches we also represent pure phase determination techniques using a
ball in our graph, and phase prediction techniques using a circle.
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Figure 1: The empty solution space for phase analysis categorization.

4 Phase detection and prediction techniques

In this section we introduce a set of representative phase detection techniques, positioning each in the so-
lution space defined in the previous section. We follow the “phase scale” axis, incrementally describing
techniques based on static program structure, fixed length interval, variable length interval and long range
periodic phase, as they intersect with our other axes. We will partially fill the empty space shown in Figure
1, ultimately producing Figure 11. For reference the coordinate values of the solution space detailed in the
last section are summarized in table 1.

4.1 Static program structure based

Phase, inherently, is a dynamic issue. Due to the complexity of the program runtime behaviour it is hard
to discover runtime phases from static program analysis. Nevertheless, for some types of program, such as
scientific code with quite regular and easily predictable behaviour, it is possible to form a usable analytical
model of the runtime program performance.

Fraguela et al. [13], for instance, present a compiler tool to predict the memory hierarchy performance of
scientific programs, based on an analytical model. The performance of set-associative caches with a partic-
ular least recently used (LRU) replacement policy is modelled and predicted under loop-oriented workloads.
Probabilistic Miss Equations (PMEs) are used to estimate the cache penalty of each memory reference in
each loop. Their model can be used to guide compiler optimizations, and they validate their work with
trace-driven simulations, on different hardware platforms using the SPECfp95 [39] benchmark suite.

5



PHASE SCALE

SP Phase composited of static program structure
FI Phase composited of fixed length intervals
VI Phase composited of variable length intervals
LR Phase composited of long range periodic portions

DATA TYPE

H-Sf Based on high level software data
L-Sf Based on low level software data
Sf+S.Hw Based on mixed software data and simulated hardware data
S.Hw Based on simulated hardware data
Hw Based on actual hardware data

STATIC/OFFLINE/ONLINE

St Purely static analysis solution
Off Offline solution
Off+On Offline and online mixed solution
S.On Simulated solution aim at online application
On Online runtime solution

Table 1: The position coordinate values of Solution Space

There are various similar approaches based on static analysis [7,15,43,44]. These works all model, and thus
in some sense detect repetitive program behaviour analytically. Precisely speaking, these are not typical
phase detection technique, focusing more on controlling and generating stable phase behaviour. In the
solution space we thus show it as a “cup”, as opposed to a “ball” for a typical phase detection work or a
“circle” for work aimed at phase prediction.

With respect to the solution space axes, these efforts all build phases based on pure static program struc-
ture. They combine data from the software structure and a simulated model of hardware performance, and
are purely static analysis works. Using PME as a representative name, the collective coordinate of these
techniques is [SP (static program structure), Sf/S.HW (software and simulated hardware data), St(static
analysis)].

Of course not all static approaches are analytical. A. Georges et al., for example, have developed an analysis
for detecting “method level phase behavior in Java” [14]. The authors develop an offline analysis technique
for Java workload composed of three steps. In the first step, the execution time is measured for each method
invocation. Using an offline tool they then analyze the dynamic call graph to identify phases corresponding
to method executions. Methods that take a large portion of the whole execution time but which have a
less frequent invocation count are then candidates for major method level phases. Figure 2 show a simple
example of a method level phase result based on the data shown in table 2. All the orange (shaded) nodes
are identified as phases.

In Georges et al.’s implementation, runtime performance for each of the selected phases is measured using
hardware event counters. This, however, is less of a combination of high level program structure with
microprocessor-level and more of a simple mechanism for accurate timing; phases are also computed offline.
The coordinate of this work is then [SP, H-Sf (high level software data), Off (offline)]. In the solution space
we denote this work by MLPJ.
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printElement
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swapprint comparereadElement

Figure 2: Method level phases determined by measuring execution time and invocation frequency (modified
from Figure 3 in [14]).

Method information
name total time time/call calls
main 1800 1800 1
init 30 30 1
readData 300 200 1
readElement 200 4 50
print 30 30 1
sortData 1300 1300 1
compare 600 2 300
swap 500 2 250
printData 170 170 1
printElement 150 3 50

Table 2: Method execution data from [14]
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4.2 Fixed length Interval detection and prediction

A large number of phase detection techniques are based on fixed length interval data. They share a common
style:

• The program execution is divided into fixed length intervals by some means.

• Specific profiling data is measured in each intervals.

• If the difference between the profiling data of two consecutive intervals is larger than a predefined
threshold a phase transition point is detected.

The fundamental detection logic for these works is more or less similar. The differences among them are
in how the profiling data is selected, how the data is organized, how the threshold is set, and what kind of
comparison algorithm is used. Below we address fixed length interval approaches by dividing them into two
major approaches, pure detection works, and techniques that aim at phase prediction.

4.2.1 Detection

Phase detection efforts are built on a variety of different basic structures and data sources. High and low level
events of different forms have been considered, and both online and offline techniques have been developed.

Sherwood et al. make use of moderately high level program structure by using Basic Block Vectors (BBVs)
to detect phase changes [33]. A BBV is an array with an entry for each static basic block in the program.
BBVs are used to track the execution frequency of individual basic blocks; the value of an array entry is
simply the number of times that a given basic block has been executed during a given interval. Phase changes
are detected when the Manhattan distance

∆i,i−1 =
∞
∑

j=0

|BBVi[j] − BBVi−1[j]|

between consecutive intervals i and i − 1 exceeds a predefined threshold ∆th. In the published paper this
technique is applied to the problem of selecting crucial simulation points.

Following a more low level perspective, A. Dhodapkar and J. Smith use the Instruction Working Set to detect
phase transitions [10]. This allows the computation of a relative working set distance

δ =
|W (ti, τ)

⋃

W (tj, τ)| − |W (ti, τ)
⋂

W (tj , τ)|

|W (ti, τ)
⋃

W (tj, τ)|

where a working set W (ti, τ) for i=1,2,..., is a set of distinct segments s1, s2, ..., sω touched over the ith

window of size τ . “Segments” here are memory regions of fixed size (e.g., pages). The instruction working
set is hashed into an n-bit vector, the working set signature. Combined with a suitable threshold, the distance
between working set signatures over time is then the basis for a fixed interval phase analysis.

Another low level data choice is provided by Balasubramonian et al. who use conditional branch counts
as the monitoring data [4]. They use a counter to measure the number of dynamic conditional branches
executed over a fixed execution interval. In their scheme, no fixed threshold is set; instead the detection
algorithm dynamically varies the threshold throughout the execution of the program. This work is based
on a cycle-level hardware simulator, SimpleScalar [5], interacting with the phase detection scheme. Phase

8



analysis is used to determine whether the current state is stable or unstable. If in the latter case, simulated
reconfiguration hardware adaptively adjusts to the new state of the program.

All three of these works are based on fixed length intervals and so fall on the same point of the phase
scale axis in our solution space. BBV uses pure high level software data and offline computation, while the
second two are online techniques and use low level data—software in the case of instruction working set,
and (simulated) hardware in the case of the conditional branch count approach. Coordinates of the three
techniques thus are:

• Basic block distance analysis (BBDA): [FI (fixed interval), H-Sf, Off (offline)]

• Instruction working set (InstWS): [FI, L-Sf (low level software), S.On (simulated online)]

• Conditional branch counting (CBrC): [FI, S.Hw (simulated hardware data), S.On]

4.2.2 Prediction

Detection techniques work in a reactive manner; program behaviour changes are observed only after the
occurrence of the change. This delay is minimally one interval long, often much more in order to achieve
good confidence of stable behaviour. However, if the behaviour changes can be predicted the delay between
observation and reaction can be reduced.

Prediction techniques can be roughly divided into three types:

Analytic model predictors. The analytic techniques discussed in section 4.1 use a static model to
represent the actions of execution kernels, and thus can also give a prediction of future behaviour. This type
of predictor can work well on programs where the behaviour can be easily modularized, such as scientific
computations. For general purpose programs, however, it is not practical to build an accurate analytic model,

Statistical predictors. Simple statistical predictors can be used to estimate of future behaviour based on
historical behaviour [12]. Many statistical predictors have been developed, including (among many others):

• Last value predictors assume the next value of a memory location or computation is the same as the
last. This approach works well within a stable phase, but not in phase transitions or more complex
phase behaviour.

• Average(N) predictors uses the average of the last N intervals as the predicated value for the next
interval.

• Freq(N) predictors chooses the most frequent value in the last N intervals as the prediction for the
next interval.

• Exponentially weighted moving average (EWMA(N)) predictors place more emphasis on the most re-
cent history, weighting a historical value’s contribution to a predicted value by an exponential function
of age.

Statistical prediction strategies have been widely used in optimizations based on (return) value prediction
[6,16,28,29]. Hu et al., for instance, present a parameterized stride predictor and give return value prediction
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data for SPECjvm98 benchmarks on simulated hardware [18]. In general a variety of strategies can be
applied to estimate single values from related historical data; most are based on exploiting stable phases, but
stride, context and a few other predictors can provide small scale “phase” detection for individual variables.

Table-based predictors. Extending the basic idea of statistical predictors, table-based predictors pre-
dict values using information other than just the most recent history. This approach has been applied to
create a memoization predictor for return value prediction [29], but can also be applied to predict phases. In
general these techniques encode a current state as well as history as the index into a prediction table. The
prediction of the future is stored in the table and can be updated when large behaviour changes are identified.
The differences between individual implementation can be:

• What type of data is used to build the prediction

• What is the detailed construction and organization strategy of the historical data

• What algorithm is used to create the index into the prediction table

• What kind of a mechanism is used to update the predicted value in accordance with the most recent
measurement

E. Duesterwald et al. give a general study on predicting program behaviour [12]. A set of predictor models of
both statistical and table-based types on fixed size intervals are introduced and compared. Their experimental
results show that table-based predictors can cope with program behaviour variability better than statistical
predictors. This work uses hardware data from Power3 and Power4 architecture on SPECcpu2000 [38]
benchmarks. We denote this work by GenPred and assign it a coordinate in the solution space of [FI, Hw
(hardware data), S.On].

T. Sherwood and S. Sair [35] present a Run length encoding phase prediction (RLEP) technique using low
level branch data. First, a phase ID is built for each interval based on its footprint for the executed branches.
As shown in Figure 3, the PC of a branch is hashed into an index of the accumulator table, and the number
of instructions executed are added into the corresponding entry. After the execution of an interval the most
significant parts of the accumulator entries are combined to construct the footprint of this interval. If the
footprint is “unique” enough according to their definition a new phase ID is assigned to this interval.

In a subsequent step the phase ID of the current interval and the number of consecutive repetitions of the
phase are hashed into the prediction table to find the phase for the next interval. This process is shown in
figure 4.

Similar general strategies have been followed in other work [23], and as a representative the coordinate of
the RLEP predictor is [FI, S.Hw, S.On].

4.3 Variable intervals

In the previous section we introduced a collection of representative, state-of-the-art phase detection tech-
niques. These all share the same property of splitting the execution into fixed length intervals, and detecting
behavioural differences by observing noticeable variations according to predefined measurement metrics be-
tween consecutive intervals. All those techniques are able to perform satisfiably in a certain set of situations.

In a recent paper, Lau et al. point out that fixed lengths can become “out-of-sync” with the intrinsic period
of the program [22]. This problem can make a program’s periodic phase behaviour difficult to detect using
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Figure 3: RLEP: Building the phase ID from the branch footprint in [35].

Figure 4: RLEP: Using phase ID and the number of repetitions to predict the next phase in [35].

11



fixed length interval solutions, and they graphically show that variable length intervals are necessary in some
situations. Figure 5 from [22] show a simple example of how the fixed length interval solutions can fail in
capturing the actual phase because of asychronization. A sinusoid signal is shown in the top figure. Two
unsuitable fixed interval division are provided in the lower two figures. The average value of the intervals
are shown by the solid lines. It is clear that no obvious repetitive features of the input sinusoidal curve are
preserved in the lower two figures.

Figure 5: Demonstrating the synchronization problem due to using fixed length intervals [22].

Lau et al. also graphically demonstrate that there are multiple levels of phases in programs that current fixed
length interval techniques cannot handle at all. This motivates an initial study on variable interval phase
detection using the SimPoint simulator [37]. Programs are instrumented with ATOM [36] to generate traces
of each loop branch, method call and method return. Based on these traces, they construct a hierarchy of
variable length interval phases using SEQUITUR, a linear-time, context free grammar algorithm that infers a
hierarchical structure from a sequence of discrete symbols [27]. SEQUITUR recursively replaces repetitive
sequences with a grammatical rule that can generate the sequence. This result is a hierarchical representation
of the original sequence that can offers insights into its lexical structure. An example is shown in Figure 6.

• S := BBAc

• B := Ab

• A := aa

Figure 6: Grammar generated for the input “aabaabaac” by SEQUITUR from [22].

Although their work is still at an early stage the main contribution of this work is important. They show
that programs have a hierarchy of phase behaviour at many different levels of granularity, and point out
limitations of traditional fixed length interval solutions. Lau et al.’s work is an offline work based on high
level software data; we denote it in the solution space as MotVL and assign it the coordinate [VI(variable
interval), H-Sf, Off]. This work defines a point in a largely empty sub-space of the whole solution space.
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4.4 Periodic long range phases

The synchronization problems that motivate variable length intervals can theoretically be handled by choos-
ing an appropriately short interval length, of course with a inversely proportionate increase in overhead costs.
This makes variable length interval approaches more of an optimization to existing stable phase detection
techniques, and does not change the basic kinds of phases detected.

For more irregular programs, however, stable phase behaviour is only visible at extremely fine scales. Figure
8 shows data from the JACK benchmark of SPECjvm98 [40]. Here stable phases are only evident when
greatly magnified; there are no significant periods of stable activity. Yet the program clearly does show a
large scale periodic phase behaviour. This motivates the value of coarse granularity, long range periodic
phase approaches. Below we first describe our own approach to this problem, and then discuss other related
techniques.

Our approach to long range periodic phases involves both detection and prediction, using the hardware event
data commonly available in modern processors. Our intention is to apply this online, although our current
prototyping results are based on a simulation of online processing.

The algorithm works by capturing and associating the beginning pattern of each periodic phase with the
phase itself. Thus the initial patterns predict the length of upcoming periodic phases. Several heuristics are
used due to the fairly complex behaviour of popular Java benchmarks (SPECjvm98 [40] and DaCapo [30]).
These heuristics include:

• We capture variations at multiple levels of granularity

• We measure confidence in our predictor patterns dynamically, adjusting weights and associations
automatically at runtime based on the real performance data

• We use data-rechecking to confirm or invalidate patterns

• We use a re-synchronization scheme to avoid phase shifting problems due to minor variations in
periodicity

Figure 7 is a simplified activity diagram showing how these heuristics cooperate to improve overall predic-
tion confidence. In this figure we use P(val, length) to represent a particular prediction with a validation
value val and a predicted phase duration length. The R(val, length) is used to denote the real val and length
in the observed, future phase repetition. A repetition will only be used to give prediction after we identify
that it does occur regularly; that is, we have enough confidence in it. The confidence will be strengthened if it
is confirmed by later data and decreased otherwise. The length of the repetitive period is adjusted gradually
based on the result of a “length rechecking” scheme we use for re-synchronization.

Figure 9 shows a sample result from our work on JACK in predicting the L1 instruction cache miss data. The
actual program execution is represented by a red curve, and the simulated results are composed of two parts,
a traced part and a predicted part represented by green and blue curves respectively. Traced results represent
the learning period of the algorithm, when confidence in phase prediction is low, whereas the predicted part
represents actual estimations of future behaviour. These results demonstrate that our solution performs well
after the initial learning period, with most major features quite accurately predicted in the latter half of the
program. This result is typical of the Java benchmarks we have investigated.

Our work is designated PreOnline. It is a simulated online solution, focusing on long range phases, and is
based on real hardware data; this gives it a coordinate of [LR (long range), Hw (hardware data), S.On].
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Figure 7: Improving prediction confidence in long range periodic phase analysis.
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Figure 9: Periodic long range phase prediction results on JACK

Of course long range phases have been considered by others. Shen et al., for example, detect long range
phases using somewhat different techniques than discussed so far [32], basing their analysis on a trace
of reuse distance data from programs. Reuse distance is defined as the number of distinct data elements
accessed between two consecutive references to the same element. Certainly, reuse distance is not a fixed
length interval and can cover a large portion of the program execution. They use a discrete wavelet transform
[8] as a filter to remove the least significant changes and locate the most important ones. Phase markers
in the code are then inserted using ATOM [36] to indicate phase transitions determined by this offline
processing. As an example, the phase markers made on the TOMCATV benchmark are shown in Figure
10. Shen et al. apply their phase analysis to “cache resizing,” and test their work on the Cheetah cache
simulator [42]. Simulation data suggests this phase analysis can help considerably, reducing cache size up
to 40% without significantly increasing the number of cache misses.

Figure 10: Phase markers based on reuse distance are inserted into TOMCATV [32].
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We refer this work as LocalityPD. It is an offline analysis (Discrete Wavelet Transform) and simulated
online (phase markers) mixed solution. Reuse distance is considered high level software data, and this work
aims at long range periodic phases. The coordinate of LocalityPD is thus [LR, H-Sf, Off+On].

In fact, the same fundamental methodology employed by Shen et al. can be used on various trace data,
including hardware events. Recently, they presented an extension of their work to hardware trace data, such
as IPC and cache hit rates [31]. This latter effort applies only to a reduced subset of highly input-driven
programs, named “service application” by the authors. The technique, however is general, and so we denote
this work as SerApp and assign it the coordinate [LR, Hw,Off+On].

As a summary, all the phase detection techniques and their positions in the solution space are shown in
Figure 11. For clarity we also provide isometric projections onto each of the three orthogonal planes in
Figure 12.

From these figures we can observe that people have attempted to detect phase behaviour from different
directions. Historically, work has concentrated on the measurement of fixed length intervals. More recent
work, however, has attempted to go past the fixed length limitation to variable length periods, which are more
adaptive to the inherent period of a program. Software-related data is widely used, but hardware related data
is getting more and more attention, primarily for its tighter relation to performance and (typically) lower
collection cost. Application time of phase techniques varies significantly; we have static techniques, offline,
multi-pass analyses on runtime trace data, and so on. Although real online detection implementations are
still lacking, many simulated online works have been developed. These simulated online analysis works
only process runtime trace data in one pass; this makes them inherently easier to port into actual online
applications.
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Figure 11: A summary of phase analysis techniques in the solution space
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5 Evaluation metrics

As well as organizing phase analysis approaches, it is important to develop techniques for evaluating and
ultimately comparing them: we need a set of well defined metrics. In this section, we will give an introduc-
tion to the widely used evaluation metrics for fixed length interval phase techniques. We also propose a set
of metrics aimed at evaluating long range periodic phase works, and use our own algorithm and results as
an example of applying and understanding these measurements.

5.1 Fixed length interval phase evaluation metrics

Most phase detection works are based on fixed length intervals, and consequentially a set of comparatively
mature metrics has been developed. Below we describe the most widely used phase detection evaluation
metrics:

• Sensitivity and False Positives. A simple measure of phase detection efficacy is to consider how
often an algorithm correctly identifies phases [35].

Sensitivity measures the ability of a phase detection mechanism to identify a phase change after there
is a significant performance change. It is defined as the fraction of intervals showing significant
performance changes with respect to the preceding interval over all intervals.

The False positive rate is the fraction of intervals where the performance shows no significant change,
but is nevertheless claimed as a phase transition by the detector. Both these measurements are obvi-
ously quite dependent on the definition of significant.

• Transition correlation and accuracy score. Nagpurkar et al. propose an evaluation strategy based
on a theoretical perfect phase detector, giving a “correct” phase boundary solution for a particular
program’s execution [25]. By comparing the results of the perfect detector and a given, real detector
they define the transition correlation as

Correlation =
bothInPhase + bothInTransition

totalEvents

where bothInPhase is the total number of profile elements for which both detectors agree it is in a
stable phase, and similarly bothInTransition is the total number of profile elements for which both
detectors agree it is in a period of phase transition.

In combination with Sensitivity and False Positive, they further introduce a novel accuracy scoring
metric, defined as

Score =
Correlation

2
+

Sensitivity
4

+
False Positive

4

The Score weights correlation equally with the sum of sensitivity and false positive. Obviously other
weightings and combinations are possible as well.

• Stability and Average Phase Length. A better stable phase detector should logically detect more
stable phases than other detectors. Stability is thus defined as the fraction of intervals that belong to a
detected stable phase; a higher stability means a more complete coverage of the program. Similarly,
Average Phase Length is defined as the number of intervals that are part of stable phases, divided by
the total number of stable phases.

18



• Performance variance

Shase detection techniques need be able to resolve stable phases in the presence of relatively small
performance variations. A small performance variance in a stable phase is an indicator that the phase
detector has figured out the phase boundary correctly [35]. A poor phase detection result will show a
comparatively large performance variance within a phase due to the inclusion of more intervals than
is strictly necessary. Of course the concrete definition of this metric must be considered in the context
of the whole program variation, and so is highly application-specific.

• CoV

CoV refers to the Coefficient of Variation, a statistical measure of standard deviation as a percentage
of the average: CoV = stddev/mean. CoV can be used to compare different phase classification results.
For stable phase detection, a lower CoV is desired; in an extreme case, all the intervals in a detected
phase would have exactly the same value in the measurement data, resulting a Cov of zero, or perfect
phase identification.

Dhodapkar and Smith apply the first three groups of metrics to compare three fixed interval phase detection
techniques, BBDA, InstWS and CBrC [11]. They conclude that BBDA can provide higher sensitivity and
more stable phases. However, InstWS yields 30% longer phases than BBDA, albeit with less stability within
phases. CBrC can provide as good sensitivity as BBDA, but is less effective at detecting major performance
phase changes.

The Cov metric is used in a number of works [22,23,35]. Lau et al., for instance, compute the average Cov
based on CPI (Cycle Per Instruction) for the SPECcpu2000 [38] benchmarks [23] and find results can vary
10%–15% depending on the different parameter settings of their phase detection mechanism.

5.2 Periodic phase detection and prediction metrics

Most of the metrics in section 5.1 are only effective for measurement of stable phases. For long periodic
phase detection there are no widely used, relatively standard metrics. Based on attempts to evaluate our own
work we therefore developed a set of metrics suitable for this purpose, directed in particular at measuring
online prediction utility.

• Traced Rate

In order to predict repetitive sequences some portion of the execution must be initially, and occasion-
ally traced. This provides the basic historical data required to make future predictions, and validates
the current predicted behaviour. The traced rate is thus defined to measure the tracing overhead in a
predictive setting; it is calculated as the percentage of the traced portion of the whole execution (the
complement is the predicted rate). For two similar prediction results a lower traced rate is desireable,
indicating more extensive predictor success and less data acquisition overhead.

• Level Coverage

Predicting behaviour to arbitrary accuracy is difficult. Fortunately, in many cases it is not necessary
to make a precisely accurate prediction; a prediction within reasonable bounds is sufficient for an
optimization decision. An adaptive optimizer, for example, that works on the basis of “hot path” pro-
filing does not need perfectly accurate information—an accompanying predictor need not determine
the exact frequency of each execution path as long as it can correctly predict which ones are hot. In
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our case we do not need to predict hardware event counts to precise binary equivalence, some number
of trailing bits can be ignored while still identifying phase trends and general behaviour.

We thus define level coverage as the percentage of predicted values which are binned in the same
“level” as the real value. This is an important correctness metric for the prediction work, although the
number and size of levels is necessarily application specific.

• Correlation

Standard statistical measures between predicted and actual data streams of course can be applied.
Here we use the Pearson correlation function, computed from:

Correlation =
ΣXY − ΣXΣY

N
√

(ΣX2 − (ΣX)2

N
)(ΣY 2 − (ΣY )2

N
)

(1)

Level coverage measures the absolute differences between two set of data, whereas correlation mea-
sures the similarity between the main trends in the two sets of data. Correlation does not indicate how
successful each individual prediction is, but does give a sense of overall agreement.

• CorScore

The CorScore is defined to combine the traced rate and correlation metrics; this allows us to measure
success with respect to overhead cost. It is computed as Correlation*(1-Traced Rate)*100. A higher
CorScore means a comparatively higher correlation is obtained with a comparatively lower traced
rate.

Metric results for the predictions made by our PreOnline periodic phase detection technique are shown in
Table 3.

In general our algorithm can detect and predict the behaviour of most benchmarks with high accuracy. This
does vary according to the characteristics of the the specific benchmark. In programs with intrinsic, regular,
repetitive patterns, such as JACK and JESS in the SPECjvm98 benchmark suite and PS in the Dacapo suite,
our algorithm can obtain quite good prediction results by tracing only a small portion of the execution. Thus,
we have very high correlation values while maintaining the trace rate below 20%. In the most extreme case,
PS, we trace no more than 1% of the execution and give nearly perfect prediction with a correlation of 0.944.

Of course for other benchmarks with less intrinsic repetition we may need to trace nearly half of the execu-
tion in order to obtain a correlation more than 0.8, e.g., as in PMD and BLOAT. Their much lower CorScores
indicate the corresponding reduced return for reward. Not all cases correlate well either; ANTLR, does not
even reach 0.6. Nevertheless, on average we achieve a CorScore of 62.97, a high enough value to suggest
further investigation of our technique.

6 Conclusions and future work

Phase detection and prediction have received more and more attention in the program analysis and optimiza-
tion community; extracting the internal phases of a program is important to a variety of applications. At the
same time, the mechanism of phase detection also vary widely; an understanding of how current techniques
are related is important to future research.
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bench Correl. CorScore LevCov(%) Traced Rate(%)

compress 0.983 90.95 62.66 7.51
db 0.701 50.12 71.79 28.55
jack 0.845 69.84 94.69 17.30
javac 0.805 57.53 89.96 28.49
jess 0.931 81.82 97.68 12.06
raytrace 0.912 84.73 99.52 7.78

antlr 0.597 32.36 80.68 45.79
bloat 0.915 50.27 86.32 45.07
fop 0.749 35.44 82.66 52.71
pmd 0.807 46.10 79.13 42.93
ps 0.944 93.51 99.96 0.95

Average 0.835 62.97 85.91 26.29

Table 3: Metric analysis of prediction results on Java benchmarks. High Correl, CorScore and LevCov
values and low Traced Rate values are desireable.

In this paper, we cover a large set of phase detection techniques and define a general solution space that
aims to highlight common features as well as differences between approaches. Our solution space provides
researchers with a clear understanding of the whole spectrum of phase techniques, and further shows the
empty spaces and directions for further research.

Our phase space incorporates both stable and “periodic” phase approaches; periodic phases have not been
previously clearly defined as far as we know. We motivated and introduced an initial work on long range
periodic phase, and provided experimental results showing its efficacy on non-trivial Java benchmarks with
inherit periodic behaviors. To quantitatively evaluate our approach we have also defined a new set of metrics
that evaluates periodic phase prediction results in an online measurement context.

Our future work will focus on developing our periodic phase prediction approach and demonstrating its
application in a realistic, online setting. An initial port of this algorithm to JikesRVM is in progress. We will
then focus on reducing profiling overhead and optimizing GC points based on predicted phase information.
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