McGill University
School of Computer Science
Sable Research Group

Programmer-friendly Decompiled Java

Sable Technical Report No. 2006-2

Nomair A. Naeem Laurie Hendren
{nnaeem, hendren}@cs.mcgill.ca

March 13, 2006

www.sable.mcgill. ca

Contents

Introduction

1.1 Javac-specific Decompilers e e e e
1.2 Tool-independentDecompilers
1.3 Contributions e e

Visitor-based AST Traversal Framework

Simple Structural Patterns

3.1 And Aggregation e e e e e
3.2 OrAggregation e e e e e e e
3.3 Useless Label Remover e e e
3.4 Loopstrengthening e e
3.5 Condition Simplification L e
3.6 Reducingthe scopeoflabeledblocks. L.
3.7 Shortcutincrementsanddecrements L L e
3.8 De-Inlining Static Final Fields e
3.9 \Variable Declarations and Initialization.
Structure-based Flow Analysis

4.1 Flow Analysis Framework e e e e
4.2 Implemented Flow Analyses L e e
Complex Patterns using Flow Analyses

5.1 ForLoop Construction e e
5.2 Program Obfuscation e e
Related Work

Conclusions and Future Work

12
12
13

15
15
16

17

18

List of Figures

1 Comparingdecompiler outputs L e e 4
2 Decompiling Obfuscated Code e 5
3 Reducing using th&& operator. e e 7
4 Application ofAnd Aggregation e 7
5 Reducing using thBoperator 8
6 Application of Or Aggregation e e e e 8
7 Strengthening LOOPS e e e 10
8 Application of While Strengthening e 10
9 Converting Binary Conditions to Unary Conditions 11
10 Application of Boolean Simplification L 11
11 Variable Declarations and Initialization. 12
12 Analyzingastatementsequence e e e e e 13
13 AnalyzingthéWhile construct. e 14
14 CopyElimination e e e e 14
15 TheWhile toFor conversion 15
16 ConstantPropagation e e e 17
17 Final result of decompiling obfuscated code of Figure 2..... 17

Abstract

Java decompilers convert Java class files to Java sourcecldes files may be created by a number of different
tools including standard Java compilers, compilers foeotanguages such as AspectJ, or other tools such as op-
timizers or obfuscators. There are two kinds of Java dedenspjavac-specific decompilershat assume that the
class file was created by a standard javac compilertaeokindependent decompilerghat can decompile arbitrary
class files, independent of the tool that created the class fifypicallyjavac-specific decompilergproduce more
readable code, but they fail to decompile many class filedymed by other tools.

This paper tackles the problem of how to mak®al-independentdecompiler, Dava, produce Java source code
that is programmer-friendly. In past work it has been shoat Dava can decompile arbitrary class files, but of-
ten the output, although correct, is very different from whgrogrammer would write and is hard to understand.
Furthermore, tools like obfuscators intentionally cosftise class files and this also leads to confusing decompiled
source files.

Given that Dava already produces correct Java abstracsymees (ASTs) for arbitrary class files, we provide
a new back-end for Dava. The back-end rewrites the ASTs tastoally equivalent ASTs that correspond to code
that is easier for programmers to understand. Our new badkirecludes a new AST traversal framework, a set
of simple pattern-based transformations, a structurecbasta flow analysis framework and a collection of more
advanced AST transformations that use flow analysis infaomaWe include several illustrative examples including
the use of advanced transformations to clean up obfuscatis c

1 Introduction

Java compilers, such as the standard javac compiler, peodlana class files and these are the binary form of the
program which can be distributed or made available via thertet for execution by Java Virtual Machines (JVMs).
Although the javac compiler is the most usual way of prodgdilass files, there are an increasing number of other
tools that also produce Java class files, including: congpfier other languages including AspectJ [1, 3, 4, 10] and
C [2] that produce class files; bytecode optimizers whichdpoe faster and/or smaller class files; and obfuscators
which seek to produce class files that are hard to decompdleaderstand.

Since Java class files contain Java bytecode, which is faigly-level intermediate representation, there has been
considerable interest and success in developing decampileich convert class files back to Java source. Such
decompilers are useful for programmers to understand audeHich they don’'t have Java source code and to help
understand the effect of tools such as optimizers, aspentave and obfuscators.

1.1 Javac-specific Decompilers

The original decompilers, such as Mocha [14], Jad [8], Jagd8ii Wingdis [19] and SourceAgain [17], ajavac-
specific decompilerm that they work by reversing the specific compilation patseused by the standard javac com-
piler. When given class files produced by a javac compiley tam produce very readable source files that correspond
closely to the original program. For example, consider thigiral Java program in Figure 1(a). When this program is
compiled using javac from jdk1.4 to produce a class file aed thecompiled with SourceAgain and Jad, one gets the
very respectable results in Figure 1 (b) and (c).

These javac-specific decompilers work by assuming thatytexbde was produced with a specific javac compiler
and then they look for code generation patterns which ane teersed to form the source code. Sometimes these
patterns are very specific. For example, compare the rdsulisd between the case when the original program was
compiled with jdk1.4 (Figure 1(c)) and with jdk1.3 (Figur&d)). Clearly the Jad decompiler was implemented to
understand the code generation patterns from javac froi3cknd it does not produce as nice an output when used
on class files produced using javac from jdk1.4.

1.2 Tool-independent Decompilers

Dava [12, 13] is atool-independent decompileuilt using the Soot [16, 18] Java optimizing framework. Bawakes
no assumptions regarding the source of the Java bytecods tratefore able to decompile arbitrary verifiable byte-
code. However, this generality comes with a price. Sincelthea decompiler relies on complex analyses to find

A WN PR

A OWN PR OO wWNBRE abwNPE

O©CoO~NOUIWNPRF

whi | e(done && alsoDone){
i f((@a<3 && b==1) || bt+a<l)
System.out.printin(b-a);

whi | e(bool && booll){
if(@@>31]j=1) &&j+i>1)
conti nue;
System.out.printin(j-i);
}

do{
i f(iflag || 'flagl)
br eak;
if(<3&&j==1]j+i<1l)
System.out.printin(j-i);
} while(true);

whi | e(flag && flagl){
if(<3&&j==1]j+i<1)
System.out.printin(- i);

label_2:{
label_1:
while(z0 = false){
if z1 == fal se){
br eak label_2;

el se{
label_0:{
i f@i0 < 3){
if@i1 == 1){
br eak label_0;
}

}
if@l +i0 >= 1)
conti nue label_1;

}
} /lend labelO:
System.out.printin(rl);

}
} /lend label2:

Figure 1: Comparing decompiler outputs

(a) Original Code

(b) SourceAgain (jdk1.4)

(c) Jad (jdk1.4)

(d) Jad (jdk1.3)

(e) Dava (jdk1.4)

control-flow structure in arbitrary bytecode, the decombitode is often not programmer-friendly. For example, in
Figure 1(e), the output from Dava is correct, but not veryitite for a programmer. One of the goals of this paper is
to provide tools that can convert the correct, but unintajtoutput of Dava to a more programmer-friendly output.

coO~NO O WNE

©CoOo~NO U WNPE

(a) Original Code

cl ass test {
private Vector buffer = new Vector();
i nt getStringPos(String string) {
for (int i=0;i<buffer.size();i++){
String curString =
(String)buffer.elementAt(i);
i f (curString.equals(string)) {
buffer.remove(i);
return i
}
}
return -1; } }

(b) Jad

<snip>
if(flag) /x Loop isnt completedsx/
conti nue;
sl.equals(s);
i f(flag) goto _L4;
_L3: JVM INSTR ifeq 59;
goto L5 L6
_L5: break MISSING_BLOCK_LABEL_48§;
_L6: break MISSING_BLOCK_LABEL_59;
<snip>

el se goto _L3

(c) SourceAgain

<snip>

do{
String str = nul | ;
if(i>= asize()
//the following goto could
/I'not be resolved
goto 81
}

<snip>
} whi | e(!bool);

<snip>

1
2
3
4

o ~NO O

36
37
38

class a{

(d) Dava

private java.util.Vector a;
public static bool ean b;
public static bool ean c;

i nt a(java.lang.String r1){
bool ean z0, $z2, z3;

int io,

$i2, i3;

java.lang.String r2;

z0 = ¢

i0 = 0;

label_1:{

label_0:
whil e (i0 < a.size()){
r2 = (String) a.elementAt(i0);

if

}
}

$i2 =
} /lend

(! (20X
z3 = r2.equals(rl);
i3 =(int) z3;
$i2 = i3;
if (z0) break label_1;
if (i3 ==0)
i0++;
el se{
a.remove(io);
return io;

}

(z0{
if (! (b)
$z2 =
el se
$z2 =
b = $z2;
br eak label_0;

true;

fal se;

.1;
labell:

return $i2; } }

Figure 2: Decompiling Obfuscated Code

The challenge of providing programmer-friendly output figtecode produced by non-javac tools is even more
complex. For example, consider the example in Figure 2. isn@ékample we compiled the Java program given in
Figure 2(a) with javac and then applied the Zelix KlassMastg#fuscator [11] to the generated class file. Figures
2(b) and (c) show the results of decompiling the obfuscal@ssdile with Jad and SourceAgain (only key snippets of
the code are shown). In both cases the decompilers failetbttupe valid Java code. However, as shown in Figure
2(d), Dava does create a valid Java program, which exposestra code introduced by the obfuscator. Even though
correct, clearly this code is not very programmer-frierayl thus another big challenge addressed in this paper is
how we can convert the obfuscated code into something timabis readable.

1.3 Contributions

As we have shown, the previously existing Dava decompiledpces correct, but potentially complicated Java code.
The purpose of this paper is to use the existing Dava decemgdl a front-end which delivers correct, but overly
complex abstract syntax trees (ASTS), and to develop a adeiplnew back-end which converts those ASTs into
semantically equivalent, but more programmer-friendlyTASThe new ASTs are then used to generate readable Java
source code. In order to build this new back-end we have dpeeélseveral new components.

e Since our new back-end works by rewriting the AST we devedapeisitor-based AST traversal framework, as
outlined in Section 2.

e Using the visitor-based framework we then developed a laugeber of simple structural patterns that could be
used to perform structural rewrites of the AST. These magityespond to common programming idioms and
representative examples are given in Section 3.

e Simple structural patterns can be used for many basic thak& order to do many more complicated rewrites
we needed to have data flow information. Thus, we have deedlagstructural data flow analysis framework,
as outlined in Section 4.

e Given the flow analysis information computed using the fraomi we have developed several more advanced
patterns. In Section 5 we discuss our advanced patterndonstructingor loops, and we show how analysis
information can be used to remove useless code from obkbatecode.

We have integrated all these techniques and tools into Dada@as we demonstrate with the examples in the rest
of the paper, we can apply these to produce more progranmmeardfy code.

2 Visitor-based AST Traversal Framework

A first step to implementing analyses/transformations ae@dtructure is to have a good traversal mechanism. Anal-
yses to be performed on Dava’s AST require a traversal rettiat provides hooks into the traversal allowing modi-
fication to the AST structure or the traversal routine.

Inspired by the traversal mechanism provided by SableCQrgg walker classes were created using an extended
version of the visitor design pattern. The Visitor-basesi¢rsal allows for the implementation of actions at any raide
the AST separately from AST creation. This allows for modirt#lementation of distinct concerns and a mechanism
which is easily adaptable to needs of different analyses.

3 Simple Structural Patterns

Dava'’s initial implementation focused on correct detetid Java constructs and did not address the complexity of
the output. To be useful as a program understanding toolntg®rtant that Dava competes with other decompilers
not only in the range of applicability but also the qualityoaftput.

The cryptic control flow in the decompiled output is complasgely due to the fact that Java bytecode only allows
binary comparison operations for deciding control flow. wer, this restriction does not exist in Java where boolean
expressions can be aggregated usingtkeand|| operators. Dava does not make use of this ability and henmseds
each comparison operation into a separate conditionaltrearis This results in the creation of unnecessary Java
constructs and their complicated nesting further increasele complexity. For instance, Hn statement evaluating
two conditions using thé:& operator in the source code gets decompiled into lfwostatements one completely
nested within the other. Similarly if a loop checks for mpiki conditions in the source this gets transformed into a
loop with one condition. The remaining conditions are cleebWithin the loop body. By statically checking for such
patterns, and merging the different conditions, the nunatbelava constructs can be reduced thereby reducing the
complexity of the output.

Abrupt control flow in the form of labeled blocks amdeak /continue statements, created by Dava to han-
dle anygoto statements not converted to Java constructs, also @atgthe output. Programmers rarely use such
constructs, since it makes understanding code hardert anttherefore desirable to minimize their use.

AST rewriting in Dava’s back-end is done using multiple gesals. As long as the AST is modified, because of
a matched pattern, the traversals are repeated until neefuptatterns apply. This is necessary since application of
one transformation might enable subsequent transformatim Sections 3.1- 3.9 we discuss some of the important
patterns that we identified.

3.1 And Aggregation

And aggregation is used to aggregate ffvostatements into one using t&&: symbol. Figure 3(a) shows the control
flow of two If conditions one fully nested in the other. From the contral/ftgaph it can be seen that A is executed
only if both condl andcond2 evaluate to true. B is executed no matter what. In Figure @éb¥yee the reduced
form of this graph where the twid statements have been merged into one by coalescing theiooisdising th&:&
operator. Statements 9 to 13 in Figure 1(e) match this patfdre matched pattern and the transformed code is shown
in Figure 4.

(if cond1] (if condl && condz]
T

if (condl) {

if (cond1 && cond2) {
if (cond2) {

(a) Unreduced (b) Reduced

Figure 3: Reducing using the& operator.

(a) Original Code (b) Transformed Code
9 if(i0 < 3){ i f(i0 <8 && i1 == 1){
10 if@il1 == 1){ br eak label_0;
11 br eak label_0; }
12}
13 }

Figure 4: Application oAnd Aggregation

3.2 Or Aggregation

Figure 5 shows the control flow of ti@r Operator. The unreduced version of the control flow showsAlimexecuted
if condl evaluates to true. If, however, the false branch is taken ¢toad2 is evaluated and A is executed if this
condition is false. B is executed no matter what. In shorts &ecuted if the first condition is true or the negated

second condition is true, followed by the execution of B ihcalses. This graph can therefore be reduced to that in
Figure 5(b) where th# statement aggregates the two conditions using| thgerator.

One of the patterns to which the control flow graph in Figud 5&n map is shown in Figure 5. The pattern looks
for a sequence of if statements (n is 2 in Figure 5) with the first n-1 statemergaking a particular label (label0
in Figure 5) and the nth statement targeting an outer labbE(lL in Figure 5). During execution this results in the
evaluation of a sequenceldf conditions and as soon as any of the n-1 conditions evalt@atage or the nth condition
evaluates to false a certain chunk of code (A in the figuregrigetted. If the program gets to the nth condition and this
evaluates to true then in this case A is not executed. This tteetefore corresponds to Hn statement with A as its
body and the condition the aggregated result of ORing theontlitions and the negated nth condition.

C if condl) C if condl || ! condz)
label_1: { T

F
label_0O : { 7
if (condl) -
break label |0
if (cond2) B |label_1: {
break label |

}// end label_0O

@ if(cond1 ||

lcond2)
A A
}// end label_1
B

[vhast

(a) Unreduced (b) Reduced

Figure 5: Reducing using theoperator

The decompiled code in Figure 1(e) has one occurrence gdlisrn. Statement 2 is the outer label and Statement
8 the inner one. There are tb statements in the sequence: statement 9 breaking the abwrdnd statement 14
targeting the outer one. The transformation removes thensdt statement by moving its negated condition into the
first statement. The new body of this statement consistatérsient 18. Assuming that And Aggregation has already
occurred the end result after Or Aggregation is shown in féigu

1 label_2:{

2 label_1:

3 while(z0 = fal se){

4 if (z1 == false)

5 br eak label_2;

6

7 el se{

8 if((0 <3 &&il ==1)
I 11 +i0 < 1)

9 System.out.printin(rl);

10 }

11 }

12}
13} //end label2:

Figure 6: Application of Or Aggregation

An interesting side-effect of the transformation is the ogal of labeled blocks andreak statements. The first
n-1 statements all break label0 whereas the nth statemmyettddabell. After the transformation all nbteak
statements have been removed which also allows the remblatb@l0. Also, although we cannot directly remove

labell, without checking that tHé body does not target it, we have reduced the number of abdggtsetargeting it
by one. The next subsection discusses an algorithm thaksHfi@cspurious labels and subsequently removes them.

3.3 Useless Label Remover

TheOr andAnd aggregation patterns provide new avenues for the reductiabeled blocks and abrupt edges. With
the help of pattern detection and use of DeMorgans Theoremumber of abrupt edges and labels can be reduced
considerably.

Labels can occur in Java code in two forms: as labels on Jawtroets e.gWhile loop or as labeled blocks.
If a label is shown to be spurious, by showing that there isbragt edge targeting it, then in the case of a labeled
construct the label is simply omitted. However, in the caka tabeled block, a transformation is required which
removes the labeled block from the AST. Algorithm 1 shows lacspurious labeled block is removed by replacing it
with its body in the parent node. Using this pattern labelEigure 6 can be removed since no abrupt edge targets it.

Algorithm 1 : Removing Spurious Labeled Blocks

Input: ASTNodenode

body«— GetBody(nodg
while body has more ASTNodds
nodel— GetNextNode(body)
if nodel is a Labeled Block Nodeen
if IsUselessLabelBlock (nodel}then
bodyl«< GetBody(nodel)
Replacenodelin bodyby body1
end
end
end

3.4 Loop strengthening

Similar tolf andIf-Else statements, loops can also hold aggregated conditionseagdieated before execution
of the loop body. Therefore pattern matching can be useddogthen the conditions within a loop. One such pattern,
for aWhile loop is shown on the left of Figure 7(a).

Reasoning about the control flow shows that Body A is execifiteoth condl andcond2 evaluate to true. If
either of the conditions are false the loop exits. This fitaith the notion of a conditional loop with two conditions
as seen in the reduced form of the code in Figure 7(a). Ndtigethe label on th&Vhile loop is still present in
the reduced code. This is because there can be an abruptneBigdyi A targeting this label. After the reduction the
algorithm in Section 3.3 is invoked to remove the label friv@ bop, if possible.

Figure 7(b) shows a similar strengthening pattern for ud@@nal loops. The only difference is that in this case
thelf-Else statement s free to have any construct in both branchesgskone of the branches has an abrupt edge
targeting the labeled loop. The reduction works by conmgrtheUnconditional-While loop to a conditional
loop with Body A as the body of the loop. Body B is then movedsaig the loop. The specialized pattern where
Body B is empty makes this pattern the same as the pattelviide loops.

Looking at our working example (Figure 6) wheted andOr aggregation have already been applied we can
see that statements 3 to 12 makgVhile loop which has ondf-Else statement. Notice that in this case the
If-Else statementis reversed: tife branch contains the break out of the loop anddise branch contains Body
A (statements 8 and 9). In this case we can applWwitdle strengthening pattern by adding the negated condition
of thelf-Else statement into thgVhile condition. The transformed code is shown in Figure 8. Natiet label2

(a) Strengthening conditional loops

(Unreduced) (Reduced)
label_O: label_O:
\M’ll | e(cond1){ whi | e(condl && cond2){
i f (cond2){ Body A
Body A }
}
el se{
break label_0

}
} /1end while

(b) Strengthening Unconditional loops

(Unreduced) (Reduced)
label_0: label_0:
whi | e(true) whi | e(cond1){
i f (cond1){ Body A
Body A }
} Body B
el se{
Body B
br eak label_0

}
} /1end while
Figure 7: Strengthening Loops

and labell which were at statement 1 and 2 in Figure 6 have feeoved by thdJseLessLabelRemover of
Section 3.3.

There are a number of other patterns which can be used t@#temnconditions in a while loop. One pattern
worth mentioning is when ®hile body contains only ond statement. This transformation result in empty while
bodies with the work being done from within the conditiongha# loop. Such kind of loops are often encountered in
concurrent programs e.g. busy waiting.

1 while(z0 = false && z1 = false){
2 if(({0 <3 && il ==1)
|| i1 +i0 < 1){
3 System.out.printin(rl);
4 }
5 1}

Figure 8: Application of While Strengthening

3.5 Condition Simplification

Expressions evaluating to boolean types are often usedaag conditions. The original Dava, however, represented
these as binary operations, comparing the expressions tmwiblean constantalse ortrue .

Figure 9 shows the different conversions that can be caoigd Since most programmers are used to reading
boolean expressions in the form of unary conditions thecefiethese transformation is that code becomes easier to
read

Applying this pattern on our working example of Figure 8 fiesin the simplification of the two boolean conditions

10

A= false -> A
Al= true --> 1A
A == false ---> 1A
A ==true --> A

Figure 9: Converting Binary Conditions to Unary Conditions

in Statement 1. The resulting code is given in Figure 10. limglback at the original source code from which this
decompiled output was generated (Figure 1(a)) we see fietapplying the AST rewriting, Dava’s output matches
the original source code.

1 while(z0 && z1){

2 if((0 <3 && il ==1)
|| i1 +1i0 < 1){

3 System.out.printin(rl);

4 }

5 }

Figure 10: Application of Boolean Simplification

3.6 Reducing the scope of labeled blocks

In an attempt to remove a labeled block some pattern mighg@ebmatched because the labeled block contains too
many children in its body. It is sometimes possible to redheescope of the labeled block by reducing the number
of children of a labeled block. An example would be a labelled¢kwhich consists of some code that does not target
the label followed by code which does target it. Since théahcode does not involve the use of the label there is
no reason why this code cannot occur outside the scope oaliedeld block. Moving this code outside (above) the
label makes the labeled block tighter in the sense that itfdaer children in its body. The reasoning behind this
transformation is that if there are fewer children in a labeblock, then there are better chances that some other
pattern will match. If no pattern matches, reducing the lladb®lock size still has the advantage of improving code
complexity since the programmer now has to concentrate omafler chunk of code to figure out the abrupt control
flow targeting the labeled block.

3.7 Shortcut increments and decrements

Another simple transformation for ease of reading codegsusge of shortcut increment and decrement statements. It
is common practice to represent the increment statementikusing the increment operator ++ and using a similar
decrement operator for the i =i - 1 statement. This transédion replaces occurrences of i =i + 1 with i++ and i=i-1
with i—.

3.8 De-Inlining Static Final Fields

Standard Java compilers inline the use of static final fiellse reasoning is that since the field is final the value
is not going to change and hence the constant value can berugleel bytecode instead of having to look up the
value from a class attribute. The decompiled output theesfontains the constant values wherever there was a static
final field in the original code. We think it is a good idea to toyrecover the use of the field that was used in the
original code since the name of the field might be able to debome contextual information to the programmer. A
simple transformation was written which keeps a pool oftallis final fields and their corresponding values found in

a particular class. A simple depth first traversal is themiedrout that checks for the occurrence of constant values
in the code. When a constant value is encountered it is chegkh the list of known values for the different static
final fields. If there is a match then the use of the constantevis replaced by the use of the static final field. This

11

kind of transformation allows for more use of identifierslie ttcode and allows the programmer to gather contextual
information while reading the code.

3.9 Variable Declarations and Initialization

Dava was previously unable to convert multiple variablda@tions into a single declaration statement. Also previ-

ously a declaration and the subsequent initialization®ftriable was always broken into two consecutive statesnent

A simple transformation now allows for the aggregation afatles with the same type into one declaration statement.
Also a variable which is initialized as soon as it is declacad now be initialized within the declaration statement.

This is a common programming idiom and makes the code moueaiat

(a) Unreduced (b) Reduced

int a int a, b=3,;
int b=3;
int c

Figure 11: Variable Declarations and Initialization

4 Structure-based Flow Analysis

Although AST rewriting based on pattern matching greatiyuees the complexity of the decompiled output, this
alone allows only for a limited scope of transformationsplseticated transformations need additional information
which is available only through the use of static data flowyses.

An example of this can be seen in Dava’s output, Figure 2(@)tHe obfuscated bytecode produced for the
original Java source shown in Figure 2(a). Although sencaltyi equivalent to the original code the output is hard to
understand. However, since obfuscators have to ensuréiamodifications do not change program semantics, a
simplification of the output, making it similar to the origilcode, should be possible. This requires added informatio
about the data and control flow to answer questions like: “WWhehe value of a particular variable at a program
point?”, "Is a particular piece of code ever executed?” amdrs. This information cannot be obtained from pattern
matching and we need data flow analysis for it. We discuss adosat decompiling obfuscated code in Section 5.2.

To perform more sophisticated transformations an anafyaimework was implemented that allows for simple
implementation of static data flow analyses. The analysssilts are then leveraged to perform further transformatio
on the AST. The framework removes the burden of correcthyetrging the AST from the analysis writer and allows
him/her to concentrate on the analysis. With a frameworkainchthe process of writing analyses for Dava has been
streamlined making it easier for new developers to exteadystem.

Since the analyses for the decompiler are performed on tHeitAS best to use a syntax-directed method of data
flow analysis such as structural analysis [7,15]. The acggmbf using this technique is that it gives, for each type
of high level control-flow construct in the language, a sefopimulas that perform data flow analysis. For instance
it allows the analysis of &Vhile loop by analyzing only its components: the conditional esgion and the body.
Apart from supporting ordinary compositional construetstsas conditionals and loops, the structural flow analysis
also supportbreak andcontinue statements (Section 4.1). We find that structural flow amgjy®ovides a more
efficient and intuitive implementation of analysis on theetrepresentation than iteration.

4.1 Flow Analysis Framework

The Structural Flow analysis framework for Dava’s AST hasrberitten by providing an abstrastructuredAnalysis
Java class. Programmers wanting to implement an analysis ordly implement the abstract methods in this class
which deal with the initialization of the analysis and therfbsequently dealing with the type of information to be
stored by different constructs.

12

The analysis begins by traversing the AST. As each Javarcmhst encountered a specialized method responsible
for processing this construct is invoked. Aput set containing information gathered so far is sent as amaggti
Each construct is handled differently depending on the anmapts it contains and its semantics. The processing of
the construct might add, remove or modify timput set. The result is returned in the form of antput set
which then becomes thiaput set for the next construct. Figure 12 shows how the frameWwaridles a sequence
of statements. The processing method iterates throughdhengents in the sequence with thgtput set of one
statement becoming thieput of the next statement. Trautput set of the last statement is tbatput set of the
sequence of statements. This kind of structure based flolysasé not new. Similar work has been done by Emami
et. al. [5, 7] for gathering alias and points-to-analysi®imation for the McCat C compiler. Dava’s flow analysis
framework is an implementation of the same approach utilimévicCat but implemented for Java.

process_StatementsNode(
StatementSequenceNode node,Object input){
List stmts = node.getStatements()
out = clone(input)
for each stmt, s in stmts
out = process(s,out)
return out

}

Figure 12: Analyzing a statement sequence

An important construct in flow analyses is the merge opematiderge defines the semantics of combining the
information present in twdlow-sets . Such a situation arises for instance when dealing withflthe-sets
obtained by processing tHé andelse branch of anlf-Else construct. Since the framework gathers sets of
information the programmer has the choice of choosing bextvumion and intersection as the merge operation.

Before discussing how the framework handles complicatedtcocts like conditionals and loops lets look at how
abrupt control flow statements are handled. Without going fhe details obreak andcontinue we know that
when such a statement is encountered control passes taglee ¢the abrupt statement. In the casdfak this
is usually a loop, a switch or a labeled block whereas in thse cdcontinue the target is always a loop. In our
framework whenever areak or continue is encountered the targeted construct andflihve-set are stored
into a hash table. Processing then continues with a spaiglset namedBOTTOMent onwards indicating that
this path is never realized (as the abrupt statement leadsiB®n to some other area of the code).

We use a hash table to store flow-sets so that when the targat abrupt statement is processed the stored
flow-sets that target this construct are retrieved and merged witlfithneset obtained through analysis of the
construct.

Figure 13 shows the control flow and pseudo-code for handlivile loop. The solid back-edge indicates loop
iteration and dotted lines indicate abrupt control flow.c8imve are dealing with a loop, a fixed point computation is
necessary to compute the firmltput set. Firstly the analysis processes the condition ofithéle construct. The
output set of this becomes thaput set for the fixed point computation. Within the fixed point qartation the
body of theWhile loop is processed followed by the generation ofitiput set for the next iteration. This is done
by merging theoutput set of the current iteration with tHeow-sets stored in thecontinue hash table, since
continue statements could be targeting the loop. This is followed byeage with the initial input to th&Vhile
loop, hence taking care of all possible entry points of tlopldOnce the fixed point is achieved then flioy-sets
stored in théoreak hash table are also merged usinghia@dleBreaks method. The output of this method is the
final output of processing th&/hile construct.

4.2 Implemented Flow Analyses

A number of typical compiler flow analyses have been implednising the structure-based flow analysis frame-
work. Some of them are briefly discussed below along withr theage:

Reaching DefsThis analysis computes information regarding which de€inibf a variable may reach a particular

13

initiallnpui

process_While(WhileNode node,Object input){
initiallnput = clone(input)
input = processCondition(condition,
initialinput)

do{

lastin = clone(input)

out = processBody(node,input)

out = handleContinue(out,node)

break o

continue -~

/I merge cond evaluating to false
input = merge(initialinput,out)
input = processCondition(condition,input)

} whi |l e(lastin != input)

result = handleBreaks(input,node)

return result

[break
L continue

Figure 13: Analyzing th&Vhile construct.

program point. The results of this analysis are used to céengiD-dU chains which are all possible definitions for a
particular use of a variable and conversely all possibls tmea particular definition. This information is crucialde-
ciding which variables and definitions are needed for a@alei chunk of code. We touch on this again in Section 5.1.

Constant Propagatiomhis analysis stores information about values a variablgtimave at a program point. Although
statically a lot cannot be said about the runtime value ofraiete, the results of this analysis have surprisingly good
results in simplifying obfuscated code (Section 5.2).

Reaching CopiedA copy statement is defined as a statement of the #orim i.e., a statement where the value of one
variable is being copied into another. Reaching copiessgaihformation about copies that reach a particular pragra
point. This information in conjunction with the uD-dU chainbtained from the reaching defs flow analysis can be
used to implement the copy elimination transformation. Aareple of this is shown in Figure 14. The unreduced
form of the code shows a copy statemenrt; which gets eliminated in the reduced version due to ctipyretion.

(a) Unreduced (b) Reduced

X = a; //copy stmt if (b ==23)
if(b == 3) foo(a);
foo(x);

Figure 14: Copy Elimination

Must Assign:A local or field isMUSTinitialized at a program point p if on all paths from the starthis point the local
or field occurs on the left side of an assignment statement.

The analysis is a forward analysis with intersection as tleege operation (there needs to be an assignment on
both paths for théuSTcondition to be satisfied). Information stored by the analgsdifferent points of the program
are the set of locals or fields that an@/STinitialized so far. A variable is added to this set if theramsassignment to
the variable. There are no specific constructs which killdigaar variable. Variables are therefore removed only by
the intersection operation applied at merge points. Théstaut) and ing;) are empty sets indicating no variable has
beenMUSTinitialized so far.

May Assign:The MAYassign analysis works similarly to tivSTanalysis and differs only in the use of union as the
merge operation. Hence this analysis gathers the localldsfieat have at least one assignment on at least one path

14

in the code. The analysis adds variables to flow sets sinsildreMUSTanalysis. However, once a variable is added it
is never removed from the set indicating the fact that a bézisiAYbe assigned on at least some path of the program.
An example of the use aflUSTandMAYanalyses is discussed in Sectieh

5 Complex Patterns using Flow Analyses

With the structure-based flow analysis framework in hand e have the resources to gather any additional infor-
mation required for more complex transformations. Simplaligses like reaching defs, constant propagaticncan
provide enough information to considerably improve theecobh the next two sections we discuss transformations
which would not have been possible without the flow analysiework.

5.1 For Loop Construction

Certain conditionalWhile loops can be represented more compactliy@s loops. Programmers generally prefer to
useFor loops specially when the loop has a consistent updateorAloop has four important constructs: Thret
where variables to be used in the body can be declared aradiz@t. This is invoked once before the first iteration of
the loop. Then there is theondition ~ which is evaluated before each iteration of the loop. The loaly executes

if the condition evaluates to true. Thipdate constructis executed at the end of each iteration and pasfapdates
on variables. The last part of tl@r loop is theBody which contains the loop code.

(a) Unreduced (b) Reduced
Body A; Body A
Init Stmts for (Init Stmts;cond;Update C)
whi | e (cond) { {
Body B Body B
Update C } I/ end for

} /lend while

Figure 15: TheNhile to For conversion

We define naturdfor loops as those loops where all four constructs oRbe loop contain at least one expression/s-
tatement. Th&Vhile to For transformation looks for patterns which can be convertealituralFor loops. The
pattern is shown in Figure 15(a).

The general form of the reduction is shown in Figure 15(b).wkler, there are a number of restrictions on
the different constructs and the transformation succeatisiball restrictions are fulfilled. The procedure and the
restrictions can be best explained by going through theriifgo for the transformation.

Algorithm 2 outlines the steps taken to transforidvaiile loop into aFor loop. The body of an ASTNode is
searched for a sequence of statements followedWide loop. The statement sequence is the combination of Body
A and Init Stmts in Figure 15(a). These statements are thalyzed to retrieve the init using thgetinit function.

TheGetlnit function goes through the sequence of statements and gathstatements that are initializing any
variables. Once all such statements have been gatheredrthapalyzed to check whether the initialized variables are
only used within thaVhile loop body. This information is readily available througle thD-dU chains created using
the reaching defs flow analysis. If all uses of variablegdhited in theinit —are present only in thé/hile body
then we know that the variable is live only within this bodyddrence the initialization is converted into a loop-local
declaration and initialization statement.

The next step in the algorithm is to retrieve the update statds for thé=or loop to be created. This is achieved
using theGetUpdate function. We know that the last statements to be executemt®dstarting a new iteration are
the update statements. Hence we look for these statemetite last node of the body of th&/hile loop. The

15

GetUpdate function retrieves the last node and checks that it is a semuef statements. If so the sequence of
statements is checked to see if they update a variable whthier initialized in thénit or is part of the condition

of theWhile loop. If we can not find such a statement the transformatis $ance we only want to createatural

For loops. However, if we are able to identify update statemémse are stripped away from the sequence of
statements. This again requires the use of the uD-dU chaictsetick that any update being made is not utilized in the
statements following the update statement. If there is @t update statement before the loop body ends then this
statement cannot be removed from its current location is¢iygience.

If aninit andupdate list are successfully retrieved then we can createRbe loop. The first step is to
create the sequence of statements that will replace thénexgequence (the combined Body A and Init stmts node of
Figure 15(a)). This is achieved by tlRemovelnitStmts function which goes through the statements and keeps
only those which do not belong to theit . Basically we are left with Body A which is then used to createew
statement sequence node.

Algorithm 2 : TheWhile toFor conversion

Input: ASTNodenode

body«— GetBody(nodg
while body has more ASTNodde

nodel— GetNextNode(body)

node2— GetNextNode(body)

if nodel is a series of statements and node2 is a conditionéd \atpthen
init — Getlnit(node)

update— GetUpdate(init,node?

newStmts-removelnitStmts(nodel,ini}

stmtsNode— ASTStatementSequenceNode(newStmts

condition+ GetCondition(node3
whileBody— GetBody(node?
forNode<— ASTForLoop(init,condition,update,whileBodly

Replacenodelandnode2by stmtsNodendforNodein body
end
end

TheFor loopis then created with the condition of téhile loop as its condition and the body of tiéhile loop
as its body minus the update statements which becomes tlateupalt of thé-or loop. The new statement sequence
node and th&or loop then replace the old statement sequence nodéuild loop in the AST. An example of this
transformation is discussed in the next section.

5.2 Program Obfuscation

In Section 4 we mentioned that without additional inforraatiprovided by flow analyses, Dava is unable to simplify
the confusing output produced by decompiling obfuscatelcigure 2(d) shows such an output. Program transfor-
mations targeting decompiled obfuscated code and usiragfldat analysis were implemented to simplify the output.
One such transformation uses the constant propagatiopsismédiscussed in Section 4.2. In the case of our example
constant propagation is able to prove that z0 is false at®&t 15 in Figure 2(d). This is so since z0 is only assigned
once from the boolean c, Statement 9, which is always fal¢® cbnsequences of this additional information are
that we are able to statically predict that fifie body is always executed since the condition in Statementvi&ya
evaluates to true. Hence the conditional is redundant aregrisved. Similarly at Statement 27, constant propagation
tells us that z0 is still false. Hence tife body, Statements 28 to 33, will never get executed and istafédy dead
code. This is also removed from the output. With just cortgpaopagation the output of Figure 2(d) changes to that
shown in Figure 16.

Once such code has been removed from the output the simpletrAssformations (Section 3) get activated which
result in further simplification of the output. For instaribe While loop on Statement 8 in Figure 16 gets converted

16

1 class af

2 private java.util.Vector a;
3 i nt a(java.lang.String r1){
4 bool ean z3;

5 int i0, $i2, i3;

6 java.lang.String r2;

7 i0 = 0;

8 whil e (i0 < a.size()){
9 r2 = (String) a.elementAt(i0);
10 z3 = r2.equals(rl);
11 i3 = (int) z3;

12 $i2 = i3;

13 if (i3 ==0)

14 i0++;

15 el se{

16 a.remove(i0);

17 return io;

18 }

19 }

20 %2 = -1;

21 return $i2; }

Figure 16: Constant Propagation

to aFor loop with Statement 7 as the init and Statement 14 as the epdat

Another interesting and very important transformationndi¢ated on statement 11 in Figure 16. In this case
the obfuscator was in fact able to confuse Dava by assignimgotean to an integer variable. However, Dava now
uses a flow analysis to check for such instances and remogasmtiecessary assignment introduced. Also notice
that declarations of variables that are no longer used aceramoved by Dava. The final output from Dava for the
obfuscated code is shown in Figure 17.

class a{
private java.util.Vector a;

i nt a(java.lang.String r1){
bool ean z3;
java.lang.String r2;

for(int i0 = 0;i0 < asize(); i0++){
r2 = (String) a.elementAt(i0);

z3 = r2.equals(rl);

if (231
a.remove(i0);
return io;

}

return -1; }

Figure 17: Final result of decompiling obfuscated code guFé 2

6 Related Work

There are numerous decompilers available for Java bytededenotable ones are Jad [8] and SourceAgain [17]. Jad
is a javac-specific decompiler which is free for non-comriarese. Its decompilation module has been integrated into
several graphical user interfaces including FrontEnd,®desafe Pro, DJ Java Decompiler and Cavaj. It is relatively

17

easy to break the decompiler by introducing non-standaodigh verifiable, bytecode.

SourceAgain is a commercial decompiler with an online wersivailable to test its capabilities. The decompiler
creates a flow graph representation from which it detecta damstructs. It does a better job at decompilation than
Jad but fails when given bytecode produced by non-java denspé.g, AspectJ. Although SourceAgain claims to be
able to decompile obfuscated code our tests have showrt thatrily able to handle name obfuscation(by converting
these to indexed names) and fails when even simple controbitiduscation has been carried out.

Structural Flow analysis initially presented by Sharir]ibideal for data-flow analysis using a structured repre-
sentation of the program. This technique has been suctlgasfed in creating an optimizing compiler which uses a
hierarchy of structured intermediate representationsjafious compiler optimizing techniquesy, inter-procedural
analysis, forward or backward analysis can all be impleegton the structured representation of the program in a
much more intuitive way than simple iteration.

7 Conclusions and Future Work

We have introduced the challenges involved in producingrmmer-friendly Java source with a tool-independent
decompiler. A tool-independent decompiler must deal wilbliteary verifiable bytecode as produced by a wide variety
of tools including compilers for other languages such asegspand C, bytecode optimizers and obfuscators.

The previously developed Dava decompiler dealt with theéblemm of producing correct Java output, but often
this output was hard to understand for the programmer. Bighper we demonstrated a variety of techniques that
we have used to develop a new back-end for Dava that conbertsoimplex AST structures produced by Dava into
semantically equivalent ASTs that are more programmenitiy.

Our approach is based on AST rewriting. This rewriting isguped by a visitor-based AST framework. We first
demonstrated a variety of simple structure-based patthatthandle many program idioms and demonstrated these
with a variety of examples. We then described the developofenstructure-based flow analysis framework that we
have used for implementing a variety of flow analyses. Usimggresults from these analyses we presented several
more complex AST rewriting rules includirfgr loop structuring and the elimination of redundant compateand
control flow introduced by an obfuscator.

We continue to actively develop more rewriting patterns analyses, including those that allow us to decompile
code produced by AspectJ compilers. All of the techniquesgmted in this paper have been implemented in the Soot
framework and will appear in the next public release of Soot.

References

[1] abc. The AspectBench Compiler. Home page with downlpBA®, documentation, support mailing lists, and bug detaba
http://aspectbench.org

[2] Axiomatic Multi-Platform C compiler suitehttp://www.axiomsol.com .

[3] Aspectd Eclipse Home. The AspectJ home page. httppébrg/aspectj/, 2003.

[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzihg,hotak, O. Lhotak, D. Sereni, G. Sittampalam, and JolEibabc:
An extensible AspectJ compiler. KOSD 2005pages 87-98, March 2005.

[5] M. Emami. A practical interprocedural alias analysis ém optimizing/parallelizing ¢ compiler. Master’s thessehool of
Computer Science, McGill University, August 1993.

[6] E. M. Gagnon and L. J. Hendren. Sablecc, an object-atrebmpiler framework. IMTOOLS '98: Proceedings of the
Technology of Object-Oriented Languages and Systpage 140, Washington, DC, USA, 1998. IEEE Computer Saciety

[7] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justianil BnSridharan. Designing the McCAT Compiler Based on
a Family of Structured Intermediate RepresentationsPrbteedings of the 5th International Workshop on Languages
Compilers for Parallel Computingpages 406—-420. Springer-Verlag, 1993.

[8] Jad - the fast JAva Decompiletittp://www.geocities.com/SiliconValley/Bridge/8617/ jad.html

[9] SourceTec Java Decompilénttp://www.srctec.com/decompiler/

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.rRahnd W. G. Grlswold An overview of AspectJ. In J. L. Knudsen
editor, European Conference on Object-oriented Programmirgjume 2072 of_ecture Notes in Computer Sciengages
327-353. Springer, 2001.

[11] Zelix KlassMaster - The second generation Java Obfoschttp://www.zelix.com/klassmaster

18

[12] J. Miecnikowski and L. J. Hendren. Decompiling Javadogide: problems, traps and pitfalls. In R. N. Horspool, adit
Compiler Constructionvolume 2304 otecture Notes in Computer Sciengages 111-127. Springer Verlag, 2002.

[13] J. Miecznikowski and L. Hendren. Decompiling Java gsstaged encapsulation. Rroceedings of the Working Conference
on Reverse Engineeringages 368-374, October 2001.

[14] Mocha, the Java Decompilétittp://www.brouhaha.com/ eric/computers/mocha.html

[15] M. Sharir. Structural analysis: A new approch to flow lgses in optimizing compllersComputer Language$:141-153,
1980.

[16] Soot - a Java Optimization Framewotitp://www.sable.mcgill.ca/soot/

[17] Source Again - A Java Decompiletittp://www.ahpah.com/

[18] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Poifiazvand V. Sundaresan. Optimizing Java bytecode usingthat
framework: Is it feasible? In D. A. Watt, edito§ompiler Construction, 9th International Conferens®lume 1781 of
Lecture Notes in Computer Scienpages 18-34, Berlin, Germany, March 2000. Springer.

[19] WingDis - A Java Decompilemittp://www.wingsoft.com/wingdis.html .

19

