
McGill University

School of Computer Science

Sable Research Group

Programmer-friendly Decompiled Java

Sable Technical Report No. 2006-2

Nomair A. Naeem Laurie Hendren
{nnaeem, hendren}@cs.mcgill.ca

March 13, 2006

w w w . s a b l e . m c g i l l . c a

Contents

1 Introduction 3

1.1 Javac-specific Decompilers 3

1.2 Tool-independent Decompilers 3

1.3 Contributions 6

2 Visitor-based AST Traversal Framework 6

3 Simple Structural Patterns 6

3.1 And Aggregation 7

3.2 Or Aggregation 7

3.3 Useless Label Remover 9

3.4 Loop strengthening 9

3.5 Condition Simplification 10

3.6 Reducing the scope of labeled blocks 11

3.7 Shortcut increments and decrements 11

3.8 De-Inlining Static Final Fields 11

3.9 Variable Declarations and Initialization 12

4 Structure-based Flow Analysis 12

4.1 Flow Analysis Framework 12

4.2 Implemented Flow Analyses 13

5 Complex Patterns using Flow Analyses 15

5.1 For Loop Construction 15

5.2 Program Obfuscation 16

6 Related Work 17

7 Conclusions and Future Work 18

1

List of Figures

1 Comparing decompiler outputs 4

2 Decompiling Obfuscated Code 5

3 Reducing using the&& operator. 7

4 Application ofAnd Aggregation . 7

5 Reducing using the‖ operator . 8

6 Application of Or Aggregation 8

7 Strengthening Loops 10

8 Application of While Strengthening 10

9 Converting Binary Conditions to Unary Conditions 11

10 Application of Boolean Simplification 11

11 Variable Declarations and Initialization 12

12 Analyzing a statement sequence 13

13 Analyzing theWhile construct. 14

14 Copy Elimination 14

15 TheWhile to For conversion . 15

16 Constant Propagation 17

17 Final result of decompiling obfuscated code of Figure 2 . .. 17

2

Abstract

Java decompilers convert Java class files to Java source. Java class files may be created by a number of different
tools including standard Java compilers, compilers for other languages such as AspectJ, or other tools such as op-
timizers or obfuscators. There are two kinds of Java decompilers, javac-specific decompilersthat assume that the
class file was created by a standard javac compiler andtool-independent decompilersthat can decompile arbitrary
class files, independent of the tool that created the class files. Typicallyjavac-specific decompilersproduce more
readable code, but they fail to decompile many class files produced by other tools.

This paper tackles the problem of how to make atool-independentdecompiler, Dava, produce Java source code
that is programmer-friendly. In past work it has been shown that Dava can decompile arbitrary class files, but of-
ten the output, although correct, is very different from what a programmer would write and is hard to understand.
Furthermore, tools like obfuscators intentionally confuse the class files and this also leads to confusing decompiled
source files.

Given that Dava already produces correct Java abstract syntax trees (ASTs) for arbitrary class files, we provide
a new back-end for Dava. The back-end rewrites the ASTs to semantically equivalent ASTs that correspond to code
that is easier for programmers to understand. Our new back-end includes a new AST traversal framework, a set
of simple pattern-based transformations, a structure-based data flow analysis framework and a collection of more
advanced AST transformations that use flow analysis information. We include several illustrative examples including
the use of advanced transformations to clean up obfuscated code.

1 Introduction

Java compilers, such as the standard javac compiler, produce Java class files and these are the binary form of the
program which can be distributed or made available via the Internet for execution by Java Virtual Machines (JVMs).
Although the javac compiler is the most usual way of producing class files, there are an increasing number of other
tools that also produce Java class files, including: compilers for other languages including AspectJ [1, 3, 4, 10] and
C [2] that produce class files; bytecode optimizers which produce faster and/or smaller class files; and obfuscators
which seek to produce class files that are hard to decompile and understand.

Since Java class files contain Java bytecode, which is fairlyhigh-level intermediate representation, there has been
considerable interest and success in developing decompilers which convert class files back to Java source. Such
decompilers are useful for programmers to understand code for which they don’t have Java source code and to help
understand the effect of tools such as optimizers, aspect weavers and obfuscators.

1.1 Javac-specific Decompilers

The original decompilers, such as Mocha [14], Jad [8], Jasmin [9], Wingdis [19] and SourceAgain [17], arejavac-
specific decompilersin that they work by reversing the specific compilation patterns used by the standard javac com-
piler. When given class files produced by a javac compiler they can produce very readable source files that correspond
closely to the original program. For example, consider the original Java program in Figure 1(a). When this program is
compiled using javac from jdk1.4 to produce a class file and then decompiled with SourceAgain and Jad, one gets the
very respectable results in Figure 1 (b) and (c).

These javac-specific decompilers work by assuming that the bytecode was produced with a specific javac compiler
and then they look for code generation patterns which are then reversed to form the source code. Sometimes these
patterns are very specific. For example, compare the resultsfor Jad between the case when the original program was
compiled with jdk1.4 (Figure 1(c)) and with jdk1.3 (Figure 1(d)). Clearly the Jad decompiler was implemented to
understand the code generation patterns from javac from jdk1.3 and it does not produce as nice an output when used
on class files produced using javac from jdk1.4.

1.2 Tool-independent Decompilers

Dava [12,13] is atool-independent decompilerbuilt using the Soot [16,18] Java optimizing framework. Dava makes
no assumptions regarding the source of the Java bytecode andis therefore able to decompile arbitrary verifiable byte-
code. However, this generality comes with a price. Since theDava decompiler relies on complex analyses to find

3

(a) Original Code

1 while(done && alsoDone){
2 if((a<3 && b==1) || b+a<1)
3 System.out.println(b-a);
4 }

(b) SourceAgain (jdk1.4)

1 while(bool && bool1){
2 if((i >= 3 || j != 1) && j + i >= 1)
3 continue;
4 System.out.println(j-i);
5 }

(c) Jad (jdk1.4)

1 do{
2 if(!flag || !flag1)
3 break;
4 if(i < 3 && j == 1 || j + i < 1)
5 System.out.println(j-i);
6 } while(true);

(d) Jad (jdk1.3)

1 while(flag && flag1){
2 if(i < 3 && j == 1 || j + i < 1)
3 System.out.println(j - i);
4 }

(e) Dava (jdk1.4)

1 label_2:{
2 label_1:
3 while(z0 != false){
4 if z1 == false){
5 break label_2;
6 }
7 else{
8 label_0:{
9 if(i0 < 3){
10 if(i1 == 1){
11 break label_0;
12 }
13 }
14 if(i1 + i0 >= 1){
15 continue label_1;
16 }
17 } / / end l a b e l 0 :
18 System.out.println(r1);
19 }
20 }
21 } / / end l a b e l 2 :

Figure 1: Comparing decompiler outputs

4

control-flow structure in arbitrary bytecode, the decompiled code is often not programmer-friendly. For example, in
Figure 1(e), the output from Dava is correct, but not very intuitive for a programmer. One of the goals of this paper is
to provide tools that can convert the correct, but unintuitive, output of Dava to a more programmer-friendly output.

(a) Original Code

1 class test {
2 private Vector buffer = new Vector();
3 int getStringPos(String string) {
4 for(int i=0;i<buffer.size();i++){
5 String curString =
6 (String)buffer.elementAt(i);
7 if (curString.equals(string)) {
8 buffer.remove(i);
9 return i;
10 }
11 }
12 return -1; } }

(b) Jad

<snip>
1 if(flag) /∗ Loop i s n t comp le ted∗ /
2 continue;
3 s1.equals(s);
4 if(flag) goto _L4; else goto _L3
5 _L3: JVM INSTR ifeq 59;
6 goto _L5 _L6
7 _L5: break MISSING_BLOCK_LABEL_48;
8 _L6: break MISSING_BLOCK_LABEL_59;

<snip>

(c) SourceAgain

<snip>
1 do{
2 String str = null;
3 if(i >= a.size()){
4 / / t h e f o l l o w i n g goto cou ld
5 / / no t be r e s o l v e d
6 goto 81
7 }
8 <snip>
9 } while(!bool);

<snip>

(d) Dava

1 class a{
2 private java.util.Vector a;
3 public static boolean b;
4 public static boolean c;

5 int a(java.lang.String r1){
6 boolean z0, $z2, z3;
7 int i0, $i2, i3;
8 java.lang.String r2;

9 z0 = c;
10 i0 = 0;
11 label_1:{
12 label_0:
13 while (i0 < a.size()){
14 r2 = (String) a.elementAt(i0);
15 if (! (z0)){
16 z3 = r2.equals(r1);
17 i3 = (int) z3;
18 $i2 = i3;
19 if (z0) break label_1;
20 if (i3 == 0)
21 i0++;
22 else{
23 a.remove(i0);
24 return i0;
25 }
26 }
27 if (z0){
28 if (! (b))
29 $z2 = true;
30 else
31 $z2 = false;
32 b = $z2;
33 break label_0;
34 }
35 }
36 $i2 = -1;
37 } / / end l a b e l 1 :
38 return $i2; } }

Figure 2: Decompiling Obfuscated Code

The challenge of providing programmer-friendly output forbytecode produced by non-javac tools is even more
complex. For example, consider the example in Figure 2. In this example we compiled the Java program given in
Figure 2(a) with javac and then applied the Zelix KlassMaster obfuscator [11] to the generated class file. Figures
2(b) and (c) show the results of decompiling the obfuscated class file with Jad and SourceAgain (only key snippets of
the code are shown). In both cases the decompilers failed to produce valid Java code. However, as shown in Figure
2(d), Dava does create a valid Java program, which exposes the extra code introduced by the obfuscator. Even though
correct, clearly this code is not very programmer-friendlyand thus another big challenge addressed in this paper is
how we can convert the obfuscated code into something that ismore readable.

5

1.3 Contributions

As we have shown, the previously existing Dava decompiler produces correct, but potentially complicated Java code.
The purpose of this paper is to use the existing Dava decompiler as a front-end which delivers correct, but overly
complex abstract syntax trees (ASTs), and to develop a completely new back-end which converts those ASTs into
semantically equivalent, but more programmer-friendly ASTs. The new ASTs are then used to generate readable Java
source code. In order to build this new back-end we have developed several new components.

• Since our new back-end works by rewriting the AST we developed a visitor-based AST traversal framework, as
outlined in Section 2.

• Using the visitor-based framework we then developed a largenumber of simple structural patterns that could be
used to perform structural rewrites of the AST. These mostlycorrespond to common programming idioms and
representative examples are given in Section 3.

• Simple structural patterns can be used for many basic tasks,but in order to do many more complicated rewrites
we needed to have data flow information. Thus, we have developed a structural data flow analysis framework,
as outlined in Section 4.

• Given the flow analysis information computed using the framework we have developed several more advanced
patterns. In Section 5 we discuss our advanced pattern for reconstructingfor loops, and we show how analysis
information can be used to remove useless code from obfuscated bytecode.

We have integrated all these techniques and tools into Dava and as we demonstrate with the examples in the rest
of the paper, we can apply these to produce more programmer-friendly code.

2 Visitor-based AST Traversal Framework

A first step to implementing analyses/transformations on a tree structure is to have a good traversal mechanism. Anal-
yses to be performed on Dava’s AST require a traversal routine that provides hooks into the traversal allowing modi-
fication to the AST structure or the traversal routine.

Inspired by the traversal mechanism provided by SableCC [6], tree walker classes were created using an extended
version of the visitor design pattern. The Visitor-based traversal allows for the implementation of actions at any nodeof
the AST separately from AST creation. This allows for modular implementation of distinct concerns and a mechanism
which is easily adaptable to needs of different analyses.

3 Simple Structural Patterns

Dava’s initial implementation focused on correct detection of Java constructs and did not address the complexity of
the output. To be useful as a program understanding tool it isimportant that Dava competes with other decompilers
not only in the range of applicability but also the quality ofoutput.

The cryptic control flow in the decompiled output is complex largely due to the fact that Java bytecode only allows
binary comparison operations for deciding control flow. However, this restriction does not exist in Java where boolean
expressions can be aggregated using the&& and‖ operators. Dava does not make use of this ability and hence converts
each comparison operation into a separate conditional construct. This results in the creation of unnecessary Java
constructs and their complicated nesting further increases code complexity. For instance, anIf statement evaluating
two conditions using the&& operator in the source code gets decompiled into twoIf statements one completely
nested within the other. Similarly if a loop checks for multiple conditions in the source this gets transformed into a
loop with one condition. The remaining conditions are checked within the loop body. By statically checking for such
patterns, and merging the different conditions, the numberof Java constructs can be reduced thereby reducing the
complexity of the output.

6

Abrupt control flow in the form of labeled blocks andbreak /continue statements, created by Dava to han-
dle anygoto statements not converted to Java constructs, also complicate the output. Programmers rarely use such
constructs, since it makes understanding code harder, and it is therefore desirable to minimize their use.

AST rewriting in Dava’s back-end is done using multiple traversals. As long as the AST is modified, because of
a matched pattern, the traversals are repeated until no further patterns apply. This is necessary since application of
one transformation might enable subsequent transformations. In Sections 3.1- 3.9 we discuss some of the important
patterns that we identified.

3.1 And Aggregation

And aggregation is used to aggregate twoIf statements into one using the&& symbol. Figure 3(a) shows the control
flow of two If conditions one fully nested in the other. From the control flow graph it can be seen that A is executed
only if both cond1 andcond2 evaluate to true. B is executed no matter what. In Figure 3(b)we see the reduced
form of this graph where the twoIf statements have been merged into one by coalescing the conditions using the&&

operator. Statements 9 to 13 in Figure 1(e) match this pattern. The matched pattern and the transformed code is shown
in Figure 4.

 T

F

T
F

A

B

if cond1

if cond2

(a) Unreduced

if cond1 && cond2

A

FT

B

if (cond1 && cond2) {
 A

}

B

(b) Reduced

 if (cond2) {

 A
 }

B

 }

if (cond1) {

Figure 3: Reducing using the&& operator.

(a) Original Code

9 if(i0 < 3){
10 if(i1 == 1){
11 break label_0;
12 }
13 }

(b) Transformed Code

if(i0 <3 && i1 == 1){
break label_0;

}

Figure 4: Application ofAnd Aggregation

3.2 Or Aggregation

Figure 5 shows the control flow of theOr Operator. The unreduced version of the control flow shows that A is executed
if cond1 evaluates to true. If, however, the false branch is taken then cond2 is evaluated and A is executed if this
condition is false. B is executed no matter what. In short, A is executed if the first condition is true or the negated

7

second condition is true, followed by the execution of B in all cases. This graph can therefore be reduced to that in
Figure 5(b) where theIf statement aggregates the two conditions using the‖ operator.

One of the patterns to which the control flow graph in Figure 5(a) can map is shown in Figure 5. The pattern looks
for a sequence of nIf statements (n is 2 in Figure 5) with the first n-1 statements breaking a particular label (label0
in Figure 5) and the nth statement targeting an outer label (label1 in Figure 5). During execution this results in the
evaluation of a sequence ofIf conditions and as soon as any of the n-1 conditions evaluatesto true or the nth condition
evaluates to false a certain chunk of code (A in the figure) is targeted. If the program gets to the nth condition and this
evaluates to true then in this case A is not executed. This code therefore corresponds to anIf statement with A as its
body and the condition the aggregated result of ORing the n-1conditions and the negated nth condition.

B

(a) Unreduced

F T

F

T

if cond2

if cond1

A

T

if cond1 || ! cond2

F

B

label_1: {
 if(cond1 ||

}
B

(b) Reduced

 label_0 : {
 if (cond1)

 break label_0
 if (cond2)

 break label_1
 } // end label_0

 A
 } // end label_1

label_1: {

B

 A
!cond2)

A

Figure 5: Reducing using the‖ operator

The decompiled code in Figure 1(e) has one occurrence of thispattern. Statement 2 is the outer label and Statement
8 the inner one. There are twoIf statements in the sequence: statement 9 breaking the inner label and statement 14
targeting the outer one. The transformation removes the secondIf statement by moving its negated condition into the
first statement. The new body of this statement consists of statement 18. Assuming that And Aggregation has already
occurred the end result after Or Aggregation is shown in Figure 6.

1 label_2:{
2 label_1:
3 while(z0 != false){
4 if (z1 == false){
5 break label_2;
6 }
7 else{
8 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
9 System.out.println(r1);
10 }
11 }
12 }
13 } / / end l a b e l 2 :

Figure 6: Application of Or Aggregation

An interesting side-effect of the transformation is the removal of labeled blocks andbreak statements. The first
n-1 statements all break label0 whereas the nth statement targets label1. After the transformation all n-1break
statements have been removed which also allows the removal of label0. Also, although we cannot directly remove

8

label1, without checking that theIf body does not target it, we have reduced the number of abrupt edges targeting it
by one. The next subsection discusses an algorithm that checks for spurious labels and subsequently removes them.

3.3 Useless Label Remover

TheOr andAnd aggregation patterns provide new avenues for the reductionof labeled blocks and abrupt edges. With
the help of pattern detection and use of DeMorgans Theorem the number of abrupt edges and labels can be reduced
considerably.

Labels can occur in Java code in two forms: as labels on Java constructs e.g.While loop or as labeled blocks.
If a label is shown to be spurious, by showing that there is no abrupt edge targeting it, then in the case of a labeled
construct the label is simply omitted. However, in the case of a labeled block, a transformation is required which
removes the labeled block from the AST. Algorithm 1 shows howa spurious labeled block is removed by replacing it
with its body in the parent node. Using this pattern label1 inFigure 6 can be removed since no abrupt edge targets it.

Algorithm 1 : Removing Spurious Labeled Blocks

Input : ASTNodenode

body← GetBody(node)
while body has more ASTNodesdo

node1← GetNextNode(body)
if node1 is a Labeled Block Nodethen

if IsUselessLabelBlock (node1)then

body1← GetBody(node1)

Replacenode1in bodyby body1
end

end
end

3.4 Loop strengthening

Similar to If andIf-Else statements, loops can also hold aggregated conditions to beevaluated before execution
of the loop body. Therefore pattern matching can be used to strengthen the conditions within a loop. One such pattern,
for aWhile loop is shown on the left of Figure 7(a).

Reasoning about the control flow shows that Body A is executedif both cond1 andcond2 evaluate to true. If
either of the conditions are false the loop exits. This fits inwith the notion of a conditional loop with two conditions
as seen in the reduced form of the code in Figure 7(a). Notice that the label on theWhile loop is still present in
the reduced code. This is because there can be an abrupt edge in Body A targeting this label. After the reduction the
algorithm in Section 3.3 is invoked to remove the label from the loop, if possible.

Figure 7(b) shows a similar strengthening pattern for unconditional loops. The only difference is that in this case
theIf-Else statement is free to have any construct in both branches as long as one of the branches has an abrupt edge
targeting the labeled loop. The reduction works by converting theUnconditional-While loop to a conditional
loop with Body A as the body of the loop. Body B is then moved outside the loop. The specialized pattern where
Body B is empty makes this pattern the same as the pattern forWhile loops.

Looking at our working example (Figure 6) whereAnd andOr aggregation have already been applied we can
see that statements 3 to 12 make aWhile loop which has oneIf-Else statement. Notice that in this case the
If-Else statement is reversed: theIf branch contains the break out of the loop and theelse branch contains Body
A (statements 8 and 9). In this case we can apply theWhile strengthening pattern by adding the negated condition
of the If-Else statement into theWhile condition. The transformed code is shown in Figure 8. Noticethat label2

9

(a) Strengthening conditional loops

(Unreduced)

label_0:
while(cond1){

if(cond2){
Body A

}
else{

break label_0
}

} / / end wh i le

(b) Strengthening Unconditional loops

(Unreduced)

label_0:
while(true){

if(cond1){
Body A

}
else{

Body B
break label_0

}
} / / end wh i le

(Reduced)

label_0:
while(cond1 && cond2){

Body A
}

(Reduced)

label_0:
while(cond1){

Body A
}
Body B

Figure 7: Strengthening Loops

and label1 which were at statement 1 and 2 in Figure 6 have beenremoved by theUseLessLabelRemover of
Section 3.3.

There are a number of other patterns which can be used to strengthen conditions in a while loop. One pattern
worth mentioning is when aWhile body contains only oneIf statement. This transformation result in empty while
bodies with the work being done from within the conditions ofthe loop. Such kind of loops are often encountered in
concurrent programs e.g. busy waiting.

1 while(z0 != false && z1 != false){
2 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
3 System.out.println(r1);
4 }
5 }

Figure 8: Application of While Strengthening

3.5 Condition Simplification

Expressions evaluating to boolean types are often used as unary conditions. The original Dava, however, represented
these as binary operations, comparing the expressions to the boolean constantsfalse or true .

Figure 9 shows the different conversions that can be carriedout. Since most programmers are used to reading
boolean expressions in the form of unary conditions the effect of these transformation is that code becomes easier to
read

Applying this pattern on our working example of Figure 8 results in the simplification of the two boolean conditions

10

A != false ---> A
A != true ---> !A
A == false ---> !A
A == true ---> A

Figure 9: Converting Binary Conditions to Unary Conditions

in Statement 1. The resulting code is given in Figure 10. Looking back at the original source code from which this
decompiled output was generated (Figure 1(a)) we see that, after applying the AST rewriting, Dava’s output matches
the original source code.

1 while(z0 && z1){
2 if((i0 < 3 && i1 == 1)

|| i1 + i0 < 1){
3 System.out.println(r1);
4 }
5 }

Figure 10: Application of Boolean Simplification

3.6 Reducing the scope of labeled blocks

In an attempt to remove a labeled block some pattern might notget matched because the labeled block contains too
many children in its body. It is sometimes possible to reducethe scope of the labeled block by reducing the number
of children of a labeled block. An example would be a labeled block which consists of some code that does not target
the label followed by code which does target it. Since the initial code does not involve the use of the label there is
no reason why this code cannot occur outside the scope of the labeled block. Moving this code outside (above) the
label makes the labeled block tighter in the sense that it hasfewer children in its body. The reasoning behind this
transformation is that if there are fewer children in a labeled block, then there are better chances that some other
pattern will match. If no pattern matches, reducing the labeled block size still has the advantage of improving code
complexity since the programmer now has to concentrate on a smaller chunk of code to figure out the abrupt control
flow targeting the labeled block.

3.7 Shortcut increments and decrements

Another simple transformation for ease of reading code is the use of shortcut increment and decrement statements. It
is common practice to represent the increment statement i = i+ 1 using the increment operator ++ and using a similar
decrement operator for the i = i - 1 statement. This transformation replaces occurrences of i = i + 1 with i++ and i=i-1
with i–.

3.8 De-Inlining Static Final Fields

Standard Java compilers inline the use of static final fields.The reasoning is that since the field is final the value
is not going to change and hence the constant value can be usedin the bytecode instead of having to look up the
value from a class attribute. The decompiled output therefore contains the constant values wherever there was a static
final field in the original code. We think it is a good idea to tryto recover the use of the field that was used in the
original code since the name of the field might be able to deliver some contextual information to the programmer. A
simple transformation was written which keeps a pool of all static final fields and their corresponding values found in
a particular class. A simple depth first traversal is then carried out that checks for the occurrence of constant values
in the code. When a constant value is encountered it is checked with the list of known values for the different static
final fields. If there is a match then the use of the constant value is replaced by the use of the static final field. This

11

kind of transformation allows for more use of identifiers in the code and allows the programmer to gather contextual
information while reading the code.

3.9 Variable Declarations and Initialization

Dava was previously unable to convert multiple variable declarations into a single declaration statement. Also previ-
ously a declaration and the subsequent initialization of the variable was always broken into two consecutive statements.
A simple transformation now allows for the aggregation of variables with the same type into one declaration statement.
Also a variable which is initialized as soon as it is declaredcan now be initialized within the declaration statement.
This is a common programming idiom and makes the code more natural.

(a) Unreduced

int a;
int b=3;
int c;

(b) Reduced

int a, b=3,c;

Figure 11: Variable Declarations and Initialization

4 Structure-based Flow Analysis

Although AST rewriting based on pattern matching greatly reduces the complexity of the decompiled output, this
alone allows only for a limited scope of transformations. Sophisticated transformations need additional information
which is available only through the use of static data flow analyses.

An example of this can be seen in Dava’s output, Figure 2(d), for the obfuscated bytecode produced for the
original Java source shown in Figure 2(a). Although semantically equivalent to the original code the output is hard to
understand. However, since obfuscators have to ensure thattheir modifications do not change program semantics, a
simplification of the output, making it similar to the original code, should be possible. This requires added information
about the data and control flow to answer questions like: “What is the value of a particular variable at a program
point?”, ”Is a particular piece of code ever executed?” and so on. This information cannot be obtained from pattern
matching and we need data flow analysis for it. We discuss moreabout decompiling obfuscated code in Section 5.2.

To perform more sophisticated transformations an analysisframework was implemented that allows for simple
implementation of static data flow analyses. The analyses’ results are then leveraged to perform further transformation
on the AST. The framework removes the burden of correctly traversing the AST from the analysis writer and allows
him/her to concentrate on the analysis. With a framework in hand the process of writing analyses for Dava has been
streamlined making it easier for new developers to extend the system.

Since the analyses for the decompiler are performed on the AST it is best to use a syntax-directed method of data
flow analysis such as structural analysis [7, 15]. The advantage of using this technique is that it gives, for each type
of high level control-flow construct in the language, a set offormulas that perform data flow analysis. For instance
it allows the analysis of aWhile loop by analyzing only its components: the conditional expression and the body.
Apart from supporting ordinary compositional constructs such as conditionals and loops, the structural flow analysis
also supportsbreak andcontinue statements (Section 4.1). We find that structural flow analysis provides a more
efficient and intuitive implementation of analysis on the tree representation than iteration.

4.1 Flow Analysis Framework

The Structural Flow analysis framework for Dava’s AST has been written by providing an abstractStructuredAnalysis
Java class. Programmers wanting to implement an analysis need only implement the abstract methods in this class
which deal with the initialization of the analysis and then subsequently dealing with the type of information to be
stored by different constructs.

12

The analysis begins by traversing the AST. As each Java construct is encountered a specialized method responsible
for processing this construct is invoked. Aninput set containing information gathered so far is sent as an argument.
Each construct is handled differently depending on the components it contains and its semantics. The processing of
the construct might add, remove or modify theinput set. The result is returned in the form of anoutput set
which then becomes theinput set for the next construct. Figure 12 shows how the frameworkhandles a sequence
of statements. The processing method iterates through the statements in the sequence with theoutput set of one
statement becoming theinput of the next statement. Theoutput set of the last statement is theoutput set of the
sequence of statements. This kind of structure based flow analysis is not new. Similar work has been done by Emami
et. al. [5, 7] for gathering alias and points-to-analysis information for the McCat C compiler. Dava’s flow analysis
framework is an implementation of the same approach utilized in McCat but implemented for Java.

process_StatementsNode(
StatementSequenceNode node,Object input){
List stmts = node.getStatements()
out = clone(input)
for each stmt, s in stmts

out = process(s,out)
return out

}

Figure 12: Analyzing a statement sequence

An important construct in flow analyses is the merge operation. Merge defines the semantics of combining the
information present in twoflow-sets . Such a situation arises for instance when dealing with theflow-sets
obtained by processing theIf andelse branch of anIf-Else construct. Since the framework gathers sets of
information the programmer has the choice of choosing between union and intersection as the merge operation.

Before discussing how the framework handles complicated constructs like conditionals and loops lets look at how
abrupt control flow statements are handled. Without going into the details ofbreak andcontinue we know that
when such a statement is encountered control passes to the target of the abrupt statement. In the case ofbreak this
is usually a loop, a switch or a labeled block whereas in the case ofcontinue the target is always a loop. In our
framework whenever abreak or continue is encountered the targeted construct and theflow-set are stored
into a hash table. Processing then continues with a specialflow-set namedBOTTOMsent onwards indicating that
this path is never realized (as the abrupt statement leads execution to some other area of the code).

We use a hash table to store flow-sets so that when the target ofan abrupt statement is processed the stored
flow-sets that target this construct are retrieved and merged with theflow-set obtained through analysis of the
construct.

Figure 13 shows the control flow and pseudo-code for handlingaWhile loop. The solid back-edge indicates loop
iteration and dotted lines indicate abrupt control flow. Since we are dealing with a loop, a fixed point computation is
necessary to compute the finaloutput set. Firstly the analysis processes the condition of theWhile construct. The
output set of this becomes theinput set for the fixed point computation. Within the fixed point computation the
body of theWhile loop is processed followed by the generation of theinput set for the next iteration. This is done
by merging theoutput set of the current iteration with theflow-sets stored in thecontinue hash table, since
continue statements could be targeting the loop. This is followed by amerge with the initial input to theWhile
loop, hence taking care of all possible entry points of the loop. Once the fixed point is achieved then anyflow-sets
stored in thebreak hash table are also merged using thehandleBreaks method. The output of this method is the
final output of processing theWhile construct.

4.2 Implemented Flow Analyses

A number of typical compiler flow analyses have been implemented using the structure-based flow analysis frame-
work. Some of them are briefly discussed below along with their usage:

Reaching Defs:This analysis computes information regarding which definition of a variable may reach a particular

13

cond

input

out

initialInput

continue

continue

break

break

input

result

process_While(WhileNode node,Object input){
initialInput = clone(input)
input = processCondition(condition,

initialInput)
do{

lastin = clone(input)
out = processBody(node,input)
out = handleContinue(out,node)

/ / merge cond e v a l u a t i n g to f a l s e
input = merge(initialInput,out)
input = processCondition(condition,input)

} while(lastin != input)
result = handleBreaks(input,node)
return result

}

Figure 13: Analyzing theWhile construct.

program point. The results of this analysis are used to compute uD-dU chains which are all possible definitions for a
particular use of a variable and conversely all possible uses for a particular definition. This information is crucial inde-
ciding which variables and definitions are needed for a particular chunk of code. We touch on this again in Section 5.1.

Constant Propagation:This analysis stores information about values a variable must have at a program point. Although
statically a lot cannot be said about the runtime value of a variable, the results of this analysis have surprisingly good
results in simplifying obfuscated code (Section 5.2).

Reaching Copies:A copy statement is defined as a statement of the forma=b; i.e., a statement where the value of one
variable is being copied into another. Reaching copies gathers information about copies that reach a particular program
point. This information in conjunction with the uD-dU chains obtained from the reaching defs flow analysis can be
used to implement the copy elimination transformation. An example of this is shown in Figure 14. The unreduced
form of the code shows a copy statementx=a; which gets eliminated in the reduced version due to copy elimination.

(a) Unreduced

x = a; / / copy s t m t
if(b == 3)

foo(x);

(b) Reduced

if (b == 3)
foo(a);

Figure 14: Copy Elimination

Must Assign:A local or field isMUSTinitialized at a program point p if on all paths from the startto this point the local
or field occurs on the left side of an assignment statement.

The analysis is a forward analysis with intersection as the merge operation (there needs to be an assignment on
both paths for theMUSTcondition to be satisfied). Information stored by the analysis at different points of the program
are the set of locals or fields that areMUSTinitialized so far. A variable is added to this set if there isan assignment to
the variable. There are no specific constructs which kill a particular variable. Variables are therefore removed only by
the intersection operation applied at merge points. The out(start) and in(si) are empty sets indicating no variable has
beenMUSTinitialized so far.

May Assign:TheMAYassign analysis works similarly to theMUSTanalysis and differs only in the use of union as the
merge operation. Hence this analysis gathers the local or fields that have at least one assignment on at least one path

14

in the code. The analysis adds variables to flow sets similar to theMUSTanalysis. However, once a variable is added it
is never removed from the set indicating the fact that a variableMAYbe assigned on at least some path of the program.
An example of the use ofMUSTandMAYanalyses is discussed in Section??.

5 Complex Patterns using Flow Analyses

With the structure-based flow analysis framework in hand we now have the resources to gather any additional infor-
mation required for more complex transformations. Simple analyses like reaching defs, constant propagationetc.can
provide enough information to considerably improve the code. In the next two sections we discuss transformations
which would not have been possible without the flow analysis framework.

5.1 For Loop Construction

Certain conditionalWhile loops can be represented more compactly asFor loops. Programmers generally prefer to
useFor loops specially when the loop has a consistent update. AFor loop has four important constructs: TheInit
where variables to be used in the body can be declared and initialized. This is invoked once before the first iteration of
the loop. Then there is thecondition which is evaluated before each iteration of the loop. The loop only executes
if the condition evaluates to true. Theupdate construct is executed at the end of each iteration and performs updates
on variables. The last part of theFor loop is theBody which contains the loop code.

(a) Unreduced

Body A;
Init Stmts
while (cond) {

Body B
Update C

} / / end wh i le

(b) Reduced

Body A
for (Init Stmts;cond;Update C)
{

Body B
} / / end f o r

Figure 15: TheWhile to For conversion

We define naturalFor loops as those loops where all four constructs of theFor loop contain at least one expression/s-
tatement. TheWhile to For transformation looks for patterns which can be converted into naturalFor loops. The
pattern is shown in Figure 15(a).

The general form of the reduction is shown in Figure 15(b). However, there are a number of restrictions on
the different constructs and the transformation succeeds only if all restrictions are fulfilled. The procedure and the
restrictions can be best explained by going through the algorithm for the transformation.

Algorithm 2 outlines the steps taken to transform aWhile loop into aFor loop. The body of an ASTNode is
searched for a sequence of statements followed by aWhile loop. The statement sequence is the combination of Body
A and Init Stmts in Figure 15(a). These statements are then analyzed to retrieve the init using theGetInit function.

TheGetInit function goes through the sequence of statements and gathers all statements that are initializing any
variables. Once all such statements have been gathered theyare analyzed to check whether the initialized variables are
only used within theWhile loop body. This information is readily available through the uD-dU chains created using
the reaching defs flow analysis. If all uses of variables initialized in theinit are present only in theWhile body
then we know that the variable is live only within this body and hence the initialization is converted into a loop-local
declaration and initialization statement.

The next step in the algorithm is to retrieve the update statements for theFor loop to be created. This is achieved
using theGetUpdate function. We know that the last statements to be executed before starting a new iteration are
the update statements. Hence we look for these statements inthe last node of the body of theWhile loop. The

15

GetUpdate function retrieves the last node and checks that it is a sequence of statements. If so the sequence of
statements is checked to see if they update a variable which is either initialized in theinit or is part of the condition
of theWhile loop. If we can not find such a statement the transformation fails since we only want to createnatural
For loops. However, if we are able to identify update statementsthese are stripped away from the sequence of
statements. This again requires the use of the uD-dU chains to check that any update being made is not utilized in the
statements following the update statement. If there is a useof the update statement before the loop body ends then this
statement cannot be removed from its current location in thesequence.

If an init andupdate list are successfully retrieved then we can create theFor loop. The first step is to
create the sequence of statements that will replace the existing sequence (the combined Body A and Init stmts node of
Figure 15(a)). This is achieved by theRemoveInitStmts function which goes through the statements and keeps
only those which do not belong to theinit . Basically we are left with Body A which is then used to createa new
statement sequence node.

Algorithm 2 : TheWhile to For conversion

Input : ASTNodenode

body← GetBody(node)
while body has more ASTNodesdo

node1← GetNextNode(body)
node2← GetNextNode(body)
if node1 is a series of statements and node2 is a conditional while loopthen

init ← GetInit(node1)
update← GetUpdate(init,node2)
newStmts←removeInitStmts(node1,init)
stmtsNode← ASTStatementSequenceNode(newStmts)

condition← GetCondition(node2)
whileBody← GetBody(node2)
forNode← ASTForLoop(init,condition,update,whileBody)

Replacenode1andnode2by stmtsNodeandforNodein body
end

end

TheFor loop is then created with the condition of theWhile loop as its condition and the body of theWhile loop
as its body minus the update statements which becomes the update part of theFor loop. The new statement sequence
node and theFor loop then replace the old statement sequence node andWhile loop in the AST. An example of this
transformation is discussed in the next section.

5.2 Program Obfuscation

In Section 4 we mentioned that without additional information, provided by flow analyses, Dava is unable to simplify
the confusing output produced by decompiling obfuscated code. Figure 2(d) shows such an output. Program transfor-
mations targeting decompiled obfuscated code and using data flow analysis were implemented to simplify the output.
One such transformation uses the constant propagation analysis discussed in Section 4.2. In the case of our example
constant propagation is able to prove that z0 is false at Statement 15 in Figure 2(d). This is so since z0 is only assigned
once from the boolean c, Statement 9, which is always false. The consequences of this additional information are
that we are able to statically predict that theIf body is always executed since the condition in Statement 15 always
evaluates to true. Hence the conditional is redundant and isremoved. Similarly at Statement 27, constant propagation
tells us that z0 is still false. Hence theIf body, Statements 28 to 33, will never get executed and is effectively dead
code. This is also removed from the output. With just constant propagation the output of Figure 2(d) changes to that
shown in Figure 16.

Once such code has been removed from the output the simpler AST transformations (Section 3) get activated which
result in further simplification of the output. For instancetheWhile loop on Statement 8 in Figure 16 gets converted

16

1 class a{
2 private java.util.Vector a;

3 int a(java.lang.String r1){
4 boolean z3;
5 int i0, $i2, i3;
6 java.lang.String r2;

7 i0 = 0;
8 while (i0 < a.size()){
9 r2 = (String) a.elementAt(i0);
10 z3 = r2.equals(r1);
11 i3 = (int) z3;
12 $i2 = i3;
13 if (i3 == 0)
14 i0++;
15 else{
16 a.remove(i0);
17 return i0;
18 }
19 }
20 $i2 = -1;
21 return $i2; }

Figure 16: Constant Propagation

to aFor loop with Statement 7 as the init and Statement 14 as the update.

Another interesting and very important transformation is indicated on statement 11 in Figure 16. In this case
the obfuscator was in fact able to confuse Dava by assigning aboolean to an integer variable. However, Dava now
uses a flow analysis to check for such instances and removes the unnecessary assignment introduced. Also notice
that declarations of variables that are no longer used are also removed by Dava. The final output from Dava for the
obfuscated code is shown in Figure 17.

class a{
private java.util.Vector a;

int a(java.lang.String r1){
boolean z3;
java.lang.String r2;

for(int i0 = 0;i0 < a.size(); i0++){
r2 = (String) a.elementAt(i0);
z3 = r2.equals(r1);
if (z3){

a.remove(i0);
return i0;

}
}
return -1; }

Figure 17: Final result of decompiling obfuscated code of Figure 2

6 Related Work

There are numerous decompilers available for Java bytecode. Two notable ones are Jad [8] and SourceAgain [17]. Jad
is a javac-specific decompiler which is free for non-commercial use. Its decompilation module has been integrated into
several graphical user interfaces including FrontEnd Plus, Decafe Pro, DJ Java Decompiler and Cavaj. It is relatively

17

easy to break the decompiler by introducing non-standard, though verifiable, bytecode.

SourceAgain is a commercial decompiler with an online version available to test its capabilities. The decompiler
creates a flow graph representation from which it detects Java constructs. It does a better job at decompilation than
Jad but fails when given bytecode produced by non-java compilers,e.g., AspectJ. Although SourceAgain claims to be
able to decompile obfuscated code our tests have shown that it is only able to handle name obfuscation(by converting
these to indexed names) and fails when even simple control flow obfuscation has been carried out.

Structural Flow analysis initially presented by Sharir [15] is ideal for data-flow analysis using a structured repre-
sentation of the program. This technique has been successfully used in creating an optimizing compiler which uses a
hierarchy of structured intermediate representations [7]. Various compiler optimizing techniquese.g., inter-procedural
analysis, forward or backward analysis can all be implemented on the structured representation of the program in a
much more intuitive way than simple iteration.

7 Conclusions and Future Work

We have introduced the challenges involved in producing programmer-friendly Java source with a tool-independent
decompiler. A tool-independent decompiler must deal with arbitrary verifiable bytecode as produced by a wide variety
of tools including compilers for other languages such as AspectJ and C, bytecode optimizers and obfuscators.

The previously developed Dava decompiler dealt with the problem of producing correct Java output, but often
this output was hard to understand for the programmer. In this paper we demonstrated a variety of techniques that
we have used to develop a new back-end for Dava that converts the complex AST structures produced by Dava into
semantically equivalent ASTs that are more programmer-friendly.

Our approach is based on AST rewriting. This rewriting is supported by a visitor-based AST framework. We first
demonstrated a variety of simple structure-based patternsthat handle many program idioms and demonstrated these
with a variety of examples. We then described the development of a structure-based flow analysis framework that we
have used for implementing a variety of flow analyses. Using the results from these analyses we presented several
more complex AST rewriting rules includingfor loop structuring and the elimination of redundant computation and
control flow introduced by an obfuscator.

We continue to actively develop more rewriting patterns andanalyses, including those that allow us to decompile
code produced by AspectJ compilers. All of the techniques presented in this paper have been implemented in the Soot
framework and will appear in the next public release of Soot.

References

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ, documentation, support mailing lists, and bug database.
http://aspectbench.org .

[2] Axiomatic Multi-Platform C compiler suite.http://www.axiomsol.com .
[3] AspectJ Eclipse Home. The AspectJ home page. http://eclipse.org/aspectj/, 2003.
[4] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,J. Lhoták, O. Lhoták, D. Sereni, G. Sittampalam, and J. Tibble. abc:

An extensible AspectJ compiler. InAOSD 2005, pages 87–98, March 2005.
[5] M. Emami. A practical interprocedural alias analysis for an optimizing/parallelizing c compiler. Master’s thesis, School of

Computer Science, McGill University, August 1993.
[6] E. M. Gagnon and L. J. Hendren. Sablecc, an object-oriented compiler framework. InTOOLS ’98: Proceedings of the

Technology of Object-Oriented Languages and Systems, page 140, Washington, DC, USA, 1998. IEEE Computer Society.
[7] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and B. Sridharan. Designing the McCAT Compiler Based on

a Family of Structured Intermediate Representations. InProceedings of the 5th International Workshop on Languagesand
Compilers for Parallel Computing, pages 406–420. Springer-Verlag, 1993.

[8] Jad - the fast JAva Decompiler.http://www.geocities.com/SiliconValley/Bridge/8617/ jad.html .
[9] SourceTec Java Decompiler.http://www.srctec.com/decompiler/ .

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of AspectJ. In J. L. Knudsen,
editor,European Conference on Object-oriented Programming, volume 2072 ofLecture Notes in Computer Science, pages
327–353. Springer, 2001.

[11] Zelix KlassMaster - The second generation Java Obfuscator. http://www.zelix.com/klassmaster .

18

[12] J. Miecnikowski and L. J. Hendren. Decompiling Java bytecode: problems, traps and pitfalls. In R. N. Horspool, editor,
Compiler Construction, volume 2304 ofLecture Notes in Computer Science, pages 111–127. Springer Verlag, 2002.

[13] J. Miecznikowski and L. Hendren. Decompiling Java using staged encapsulation. InProceedings of the Working Conference
on Reverse Engineering, pages 368–374, October 2001.

[14] Mocha, the Java Decompiler.http://www.brouhaha.com/˜eric/computers/mocha.html .
[15] M. Sharir. Structural analysis: A new approch to flow analysis in optimizing compilers.Computer Languages, 5:141–153,

1980.
[16] Soot - a Java Optimization Framework.http://www.sable.mcgill.ca/soot/ .
[17] Source Again - A Java Decompiler.http://www.ahpah.com/ .
[18] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Optimizing Java bytecode using theSoot

framework: Is it feasible? In D. A. Watt, editor,Compiler Construction, 9th International Conference, volume 1781 of
Lecture Notes in Computer Science, pages 18–34, Berlin, Germany, March 2000. Springer.

[19] WingDis - A Java Decompiler.http://www.wingsoft.com/wingdis.html .

19

