McGill University
School of Computer Science
Sable Research Group

Improving the Compiling Speed of the AspectBench Compiler

Sable Technical Report No. 2006-3

Jingwu Li and Laurie Hendren
{j1198, hendren}@s.ntgill.ca

August 14, 2006

www.sable.mcgill. ca

Contents

List of Tables

List of Figures

Acknowledgment

Abstraction

1 Introduction

2 Benchmarks and Initial Timing
2.1 Benchmarks
2.2 Platforms
2.3 Measurement Methodology e e
2.4 Initialtiming result L e e

3 Strategies

4 Profiling Technologies
4.1 abcinternaltimer e e
4.2 HPROF . . . e e
4.3 JProfiler
4.4 Weaving aspectsintoabc e e

5 Observations and Improvement

5.1 Abc-1.0.2 version observations and modifications

5.1.1 Profiling result of original abc-1.0.2version
5.1.2 Codeoptimization e e e
5.2 SootModification e e
5.2.1 Profiling result before optimization
5.2.2 HashSet substitution
5.2.3 Codeoptimization e e e
5.2.4 Performance of combined optimization
5.2.5 Profiling result after optimization
5.3 Abc Madification e

5.4 Using Soottooptimizeabc e e
5.4.1 Process to use Soot to optimize abc
5.4.2 Profiling result of Soot-optimized abc

5.4.3 Analysis of Soot-optimized abc
6 Conclusion
7 Future Work

References

32

33

34

List of Tables

g A W N P

10

11

12
13

14

15

16

17

18

19

20

Benchmarks e
Software and Hardware Platforms
Compilation time comparison between original abc-1.2&wn and ajc 1.2.1 version

Top 5 time consuming phases forabc 1.2.0version

Top 5 time consuming methods by using Xrunhprof to profile-alf.2 version compiling
eigenvbenchmark e

Compilation speed comparison between abc-1.0.2 versidrite abc-1.0.2 version with
modified chainContainsLocal() method

Compilation time (in second) comparison between ab@Nérsion and the abc-1.0.2 ver-
sion with modified setLocalName() method

Top 5 time consuming methods by using Xrunhprof to profile-al2.0 version compiling
eigenvbenchmark e

Compilation time comparison between abc-1.2.0 versiahtlam modified abc-1.2.0 version
using THashSet instead of HashSet in SmartLocalDefs

Compilation time comparison between abc-1.2.0 versiohtlae modified abc-1.2.0 version
using FastSet instead of HashSet in SmartLocalDefs

Compilation time comparison between abc-1.2.0 versiohtlae modified abc-1.2.0 version
using IDHashSet instead of HashSet in SmartLocalDefs

Number of reused Entry objectsin MyHashMap

Compilation time comparison between abc-1.2.0 versiohtlae modified abc-1.2.0 version
using MyHashSet instead of HashSet in SmartLocalDefs

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (using HashSet in SmartLocalDefs plus Code Opétigas)

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (using THashSet in SmartLocalDefs plus Code Opéitigns)

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (using FastSet in SmartLocalDefs plus Code Opéititins)

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (using MyHashSet in SmartLocalDefs plus Code Opéitions)

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (using IDHashSet in SmartLocalDefs plus Code Opétions)

Top 5 time consuming methods by using Xrunhprof to profile-£.2.0 version compiling
eigenv benchmark e

Compilation time comparison between original abc-1v218ion and the modified abc-1.2.0
version (avoiding duplicated methods)

12

12

14

14

15
15

16

22

22

23

23

21

22

23

24
25

File size (in byte) comparison between the classes gedkiram original abc-1.2.0 version

and the modified abc-1.2.0 version (avoiding duplicatechoas) 28
Compilation time comparison between abc-1.2.0 versimhthe Soot-optimized abc-1.2.0
VEISION . . . o o o e e 29
Compilation time (in millisecond) comparison at each gghaetween original abc-1.2.0
version and the Soot-optimized abc-1.2.0version oL 32
Improvement at each phase by using Soot-optimized &0-tersion 33
Compilation time comparison between original abc-1v21&ion and the abc-1.2.0 version

with all modifications combined e e 34

List of Figures

1

Compilation time (in second) comparison between abc ¥&€ion and ajc 1.2.1 version. . 4

Acknowledgment

I would like to express my deep sense of gratitude to my sug@ri?rof. Laurie Hendren, for her invalu-
able help and guidance during the project. | am highly inelelio her for constantly encouraging me by
giving her suggestions on my work. | am grateful to her foring\given me the support and confidence.

| also greatefully thank my wife, Mingjian Wang, for her sapp encouragement and understanding over
the past years.

Jingwu Li
August 2006

Abstract

The AspectBench Compiler (abc) is an extensible Aspectpdenand built based on Polyglot [13]
and Soot [2]. It generates optimized Java bytecode whichwafaster in many cases when compared
with ajc. However, the compilation speed of abc can be suobatly slower than ajc. Typically it is
roughly 4 times slower than ajc [1]. By using various profilitools, we observed some bottlenecks
during the process of compiling AspectJ source code. We firddiome data structures related to for-
ward and backward flow analysis and changed some algorithohsss the variable name generator and
around inlining to remove the bottlenecks or relieve theesigy of those bottlenecks. The experimental
results on selected benchmarks shows that the combinedicadidins reduce overall by 8% compilation
time as compared with original abc. The speed up is espgciathble for the benchmarks with around
advice applied many places. At the same time, we also retieagdss file size for the benchmarks with
around advices applied many places greatly, around 28%.

Vi

1 Introduction

Aspect Oriented Programming (AOP) is new programming tieglnto address crosscutting concerns. ltis
not like Object Oriented Programming which addresses comegoacerns within certain related objects and
abstract common attributes and methods to capsulate ictaiigess. AOP deals with unrelated objects and
modularizes the common concerns across the whole progrstensyand not limited in certain classes [15].

These crosscutting concerns, such as logging eventshcaasults, debugging support, error checking and
security control, can be implemented by using AOP in a vesy @ad clean way.

Aspect] is a seamless aspect-oriented extension to thedayamming language create at Xerox PARC
[16]. The first Aspectd compiler is called ajc which is now eleped and supported by the AspectJ Eclipse
project [7].

The AspectBench Compiler (abc) [1] is an alternative Aspecimpiler. It is a complete implementation

of AspectJ. It aims to make it easy to implement both exterssand optimizations of the core language
[3]. Generally, abc can generate optimized Jave bytecodehwdan run faster in many cases compared
with the ones generated by ajc [5]. However, on the other h#ra compilation speed of abc can be
substantially slower than ajc. Typically abc is roughly @és slower than ajc [1]. As we show in Section

2.4, our experiments show the compilation slowdown of mamchmarks is at least 8 times, especially for
eigenv, nullcheck and lod-sim benchmarks, around 22 tirtoeges, 15 times slower and 11 times slower

respectively.

The abc compiler’s slow compilation speed arises from tlsggtleand implementation strategy of abc. Abc
leverages existing compiler technology by combining Plalyg/hich is an extensible compiler framework
for Java in the frontend and Soot which is a framework forsis) optimization and transformation of Java
in the backend. During weaving phase, abc pays less attetatigenerate compacted and optimized code in
the first place and lets Soot in the later pass to optimizeethasaved codes. From the compiler developer's
view, this strategy reduces the complexity to write the veeaMowever, from the optimization view, it may
slow down the compilation process. If we could do the optatian in the first place, we could save a lot
of time in later phases to achieve the same aim. For examlenweaving advice, if we could test the
extracted shadow method exists or not, we can avoid credtipticate methods and save time in the later
pass to remove the duplicated methods. This requires usxtaame tasks in several phases, not like the
original abc which cleanly separates tasks among phases.

In this project, we investigate the hotspots in compilinthveibc by using various profiling tools. To improve

abc’s compilation speed, we use various ways to modify ablb ag use other implementation of HashSet,
reuse objects during forward and backward flow analysis dxahge some algorithms such as variable
name generator and around inlining and so on. We did the iexpets on the selected benchmarks and
yield results that those combined modifications reduced:timepilation speed overall 8% compared with

the original abc.

The organization of the report is as follows. In section 2 weatibe the benchmarks used in this project,

the experimental environment and the initial timing resiiite describe the general strategies we used for
optimization in section 3. We introduce various profilingleand techniques used in optimization in section

4. Section 5 describes the observations of the bottleneek®und and the attempts we took to attack those
bottlenecks. Finally, we give the conclusion of the projecsection 6 and discusses the future work in

section 7.

2 Benchmarks and Initial Timing

2.1 Benchmarks

In this project, the most benchmarks we used are coming framrsburces, the graduate optimizing com-
pilers course (COMP 621) and the abc benchmarks [1]. To letasi suite have good representation of
AspectJ, we chose the benchmarks with various aspect ysaghksling pointcut definitions, percflow,
pertarget, inter-type declarations, before advice, athfice, around advice and trace matching. We also
choose two tiny benchmarks hellono and helloworld to testittiitialization speed of abc, the compilation
speed of programs without aspects.

We used ten benchmarks in this project and we listed the $iteedenchmarks and their descriptions in
Table 1.

2.2 Platforms

Table 2 shows the environment and abc versions we used faumieg the performance of abc compiler.

2.3 Measurement Methodology

To measure performance, we compiled each benchmark 5 tintesadlected the compiling time of each
run, removing the one farthest to the average time, and thepuating the average time for the remaining 4
runs as the compiling time result for the benchmark.

2.4 Initial timing result

We list our initial timing result for abc 1.2.0 version and 4j.2.1 version in Table 3. It shows that abc is
substantially slower than ajc when compiling nullcheckjesv, wig11, dcm-sim, lod-sim and weka bench-
marks. The experiment shows that the compilation slowdofsthase benchmarks is at least 8 times, es-
pecially for eigenv (around 22 times slower) , nullcheclo(ard 15 times slower) and lod-sim benchmarks
(around 11 times slower).

To illustrate the slowdown of abc compilation speed comawith ajc, we generated a graph as shown in
Figure 1. From it we can see the compilation speed of abc lily idawer than ajc.

Benchmark

Normal Java Code

Aspect Codes

Classes|

Methods

Classes| Methods

Description

hellono

1

1

0 0

simple hello world program without any aspec

applied.

helloworld

1 6

simple hello world program with around advic

aspects applied.

asac

15

This benchmark starts three threads and €

e

ach

thread uses a sorting algorithm (Bubble Sort, Se-

lection Sort and Quick Sort) to sort arrays.

It

contains before, after and around advices. The
around advices are matched in a many places in

the benchmark.

nullcheck

23

116

A simulator program simulates the performan

of certificate revocation schemes. These schemes

look at reducing the risk of cryptographic certi
cates from becoming invalid. The aspects in p
gram detect methods returning null on an erro
force certain code standard. It contains before,
ter and around advices. The around advices
matched in a lot of places in the benchmark.

eigenv

This benchmark program is designed to comp
a matrix’s Eigen value and eigenvector. The va
for each of the computed element in the matrix
the Fibonacci's number for its original element

the original matrix. It contains before, after and

around advices. The around advices are matg
in a lot of places in the benchmark.

wigll

24

849

Aspect WIG Compiler is a compiler front-ern
which translates WIG programs to python pi
grams. It contains some intertype declaratio
before and after advices.

dcm-sim

25

126

Dynamic Coupling Metrics implemented usir
Aspect]. It uses a light weight data collecti
mechanism and can include the possibility of ¢
counting for objects being freed by the GC. T,
aspects in this benchmark contain around, bet
and after advices.

ute
ue
is
in

hed

g9
DN

AC-
he
ore

lod-sim

24

120

This benchmark checks the Law of Demetere
uses relatively complex join points, percflow, p¢
target, and cflow.

It
B~

weka

39

571

The stripped down weka that contains only thg
classes for the benchmark. It uses before and 4
advices.

se
after

weka-tm

38

571

Similar to weka benchmark except using trg

ce

matching.

Table 1: Benchmarks

3

| abc version | 1.0.2,1.2.0 |

| Soot version| 2.2.3 |

os.arch x86-64
0s.name Linux
os.version | 2.6.15-23-amd64-generic

java.vendor

Sun Microsystems Inc.

java.version

1.4.2

Hardware

AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ (CPU: 2010GHz Mem: 4GB)

Table 2: Software and Hardware Platforms

wall time (s) cpu time (s)
abc ajc abc ajc
hellono 2.6426 | 1.34 2.6301 | 1.26
helloworld 3.48 1.75 || 3.4475| 1.6751
asac 11.9676| 2.7876| 11.8826| 2.585
nullcheck || 78.945 | 5.2975| 78.7625| 3.8525
eigenv 65.9425| 3.2301| 65.83 | 3.0526
wigll 60.0176| 7.7701|| 59.205 | 6.9376
dcm-sim || 25.0401| 3.685 || 24.9526| 3.5101
lod-sim || 45.8626| 4.1651 | 45.7201| 3.975
weka 32.9875| 4.9876| 32.795 | 4.7426

benchmark

Table 3: Compilation time comparison between original 40 version and ajc 1.2.1 version

Compilation Time (s)

hellono helloworld asac nullcheck eigenv wigll dcm-sim lod-sim weka

Figure 1: Compilation time (in second) comparison betwdsnla2.0 version and ajc 1.2.1 version

3 Strategies

The general tuning strategy introduced by Jack Shirazig@grating doing the following two steps:

1. Identify the main bottlenecks

2. From the top few bottlenecks, choose the quickest andsasie to fix and address it.

Shiraza’s tuning strategy suggests that addressing thepehlesingle bottleneck rather than the absolute
topmost one because the elimination of one bottleneck acti@mges the characteristics of the application
and thus the bottlenecks of the application are consequeftén changed.

Generally, | followed this strategy to attack the perforceproblems in abc.

Establish a set of benchmarks and build the initial tinbiage line.

Choose the profiling tools.

Measure the performance on the benchmarks by using tfingydools.
Identify the top few bottlenecks.

Hypothesize the causes of the bottlenecks.

Create tests to verify the hypotheses.

Choose the quickest and easiest bottleneck or sevesallglelated ones to fix.

Alter the application to reduce the bottleneck(s).

© ©® N o g »~ w0 N PR

Test the alteration and make sure the modification is corre

=
o

. Measure the performance improvement after the modditat

11. Repeat from Step 3.

In the above performance tuning process, the only thingwuiwddites Shiraza'’s tuning strategy is that we

are not limiting our focus on the single cheapest bottlerscktime, we may select several closely related
bottlenecks to fix at a time. This is because that in some cHdses only consider one bottleneck at a time

we may narrow our view and limit our solution strategy. So wayrget some temporary solutions and in the
later on we have to change those solutions to fix other reladéitenecks. In the worst case, we may even
need to use a solution totally different from the one we chefere. This is especially true when solve the
bottlenecks caused by inefficient algorithms.

4 Profiling Technologies

In order to speed up compiling speed of abc, we need to havéstitipicture of abc during running time
and identify the bottlenecks in the program. Once we knowrevltiee time goes we know where to focus
our efforts. There are many profiling tools to help us to fuffibfiling task. In this project, we used several
profiling tools (approaches): abc internal timer, JProffleicommercial profiler) [8], Sun'apr of [17]
profiling agent and weaving advices into abc.

4.1 abcinternal timer

Abc provide several flag to enable internal timer AbcTimeréek the time spend in each compiling phase
in abc.main.Debug class. We listed the flags to enable abmalttimer in Listing 1.

Listing 1 Flags to enable abc internal timer
publ i c bool ean abcTi mer=true;
publ i c bool ean pol ygl ot Ti mer =true;
publ i ¢ bool ean soot Resol ver Ti nmer =true;
public bool ean tinmerTrace=true;

The abc internal timer generates output is in the format awslin Listing 2.

Listing 2 Output of abc internal timer

18.835%] Init. of Soot: 4638

00. 370%] Loading Jars: 91

01.937%] Create polyglot conpiler: 477
11.858%] Pol ygl ot phases: 2920
02.912%] Initial Soot resolving: 717
00. 000%] Soot resolving: O

00.016%] Aspect inheritance: 4
00.008%] Decl are Parents: 2

00.097%] Intertype Adjuster: 24
04.382%] Jinmplification: 1079
00.008%] Fix up constructor calls: 2
01.344%] Update pattern matcher: 331
00.061%] Weave Initializers: 15
00.000%] Load shadow types: O
02.497%] Conmpute advice lists: 615
00.097%] Add aspect code: 24

12. 435%] Weavi ng advice: 3062
00.126%] Exceptions check: 31

10. 246%] Advice inlining: 2523
01.072%] Interproc. constant propagator: 264
03.387%] Boxing renover: 834

04.788%] Duplicates renover: 1179

00. 248%] Renovi ng unused net hods: 61
00.138%] Specializing return types: 34
18. 104%] Soot Packs: 4458

05.036%] Soot Witing Qutput: 1240

Lo B e B s T e B e, B e T e T e T e B e, B e B e T e T e e B s B s T e T s B e B e B e T e B B M |

Currently, the abc compiling process is divided into 26 plsass shown in Listing 2. We use abc internal
timer profiling our 10 benchmarks and list the top 5 time conisig phases for each benchmark in Table 4.

6

benchmark the top 5 time consuming phases
rank 1 rank 2 rank 3 rank 4 rank 5
hellono Init. of Soot Polyglot phases | Create polyglot compiler] Update pattern matche Soot Packs
41.080% 21.341% 10.333% 6.200% 4.260%
helloworld Init. of Soot Polyglot phases Jimplification Create polyglot compiler| Soot Packs
30.534% 27.381% 8.117% 7.618% 5.432%
asac Soot Packs Weaving advice Polyglot phases Advice inlining Init. of Soot
20.959% 13.967% 13.561% 11.668% 8.470%
nullcheck Advice inlining | Duplicates remover Soot Packs Weaving advice Soot Writing Output
33.093% 23.311% 19.005% 8.121% 3.590%
eigenv Weaving advice Soot Packs Advice inlining Duplicates remover Polyglot phases
9 32.207% 27.052% 23.433% 3.638% 2.621%
wiall Polyglot phases| Soot Packs Jimplification Weaving advice Soot Writing Output
9 28.570% 23.784% 11.146% 9.151% 8.489%
dem-sim Soot Packs Advice inlining Weaving advice Polyglot phases Soot Writing Output
21.844% 16.865% 11.747% 10.726% 9.020%
lod-sim Weaving advice Soot Packs Boxing remover Polyglot phases Soot Writing Output
32.519% 23.313% 19.521% 5.874% 5.478%
weka Polyglot phases| Soot Packs Jimplification Soot Writing Output Weaving advice
26.885% 23.504% 16.192% 9.232% 9.128%
weka-tm Polyglot phases| Soot Packs Jimplification Weaving advice Compute advice listg
25.419% 23.651% 17.147% 9.253% 7.786%

Table 4: Top 5 time consuming phases for abc 1.2.0 version

Table 4 shows that there are several phases take large ddotdl@wompilation time for our test suite:

1. Polyglot phases: this phase takes large amount of cotiopitame for all benchmarks.
2. Soot Packs: similar as Polyglot phases, all benchmaklesgieat time at this phase.

3. Weaving advice: all benchmarks except two small bencksn@rellono and helloworld) take great
time at this phase, especially for eigenv and lod-sim bercha

4. Advice Inlining: For those benchmarks with around adsigaeullcheck, eigenv, asac and dcm-sim
benchmarks, abc spend large amount of time at this phassgiaky for nullcheck benchmark which
accounts 33% of total compilation time.

5. Jimplification: This phase accounts for the rank 3 timescomng phase for four benchmarks, hel-
loworld, wigl1, weka and weka-tm.

6. Duplicates remover: nullcheck and eigenv benchmarkstgkeat time at this phase, especially for
nullcheck benchmark account for 23.31% of total time.

7. Init. of Soot: This phase takes large part when compilimals benchmarks such as hellono and
helloworld?!

8. Soot Writing Output: Although this phase is in the top 5, lisaccounts for small amount of total
compilation time, from 3.590% to 9.232%.

The Weaving advice phase, Advice Inlining phase and Duigiceemover phase are quite closely related
and account for most compilation time for eigenv and nulighieenchmarks. In the later sections, we will
dive into the performance issue related to those three phase

1This phase takes constant time for all benchmarks.

4.2 HPROF

Sun’s JDK provides a simple command line profiling tbgr of for heap and cpu profiling. By using
hpr of , users can request various types of heap and cpu profilitgrésafrom JVM. Thehpr of can be
used to track down and isolate performance problems imglmemory usage and inefficient code. The
data generated blypr of can be in textual or binary format which can be used with tdikés HAT [18].
The disadvantages of using this tool is slow and the gertefdeesize is very big and it is very hard to
interpret the result for memory usage.

4.3 JProfiler

JProfiler is a commercial tool for profiling Java programsahtgan provide graphical output. It can be used
to find performance bottlenecks, pin down memory leaks asdlve threading issues. It is very powerful,

we can set filters to only profile part of the program we arer@died in. It provides many analysis views to
give us a full picture of the program we are profiling. In ouoject, we used JProfiler 4.0.2 trial version.

4.4 Weaving aspects into abc

Another approach we took to tracking down the performansaeif abc is weaving advices into abc.
We wrote around advices to record the execute time of eachauén abc’s abc.weaving.weaver package
and used ajc to weave those advice into abc. When using thevitibaveaved advices to compile the
benchmarks, it will generate the report about the total eti@c time and number of invocations for each
method in abc’s abc.weaving.weaver package. The impoctaaracteristic of this approach is that we can
profile part of the program where we are interested in. Weasaarchive similar report by setting profiling
filters in JProfiler.

5 Observations and Improvement

In this section, we describes the process we took to detédizakle the bottlenecks in abc. We started our
work on abc 1.0.2 versiofias described in Section 5.1. The rest of the sections desttrébworks based
on the most recent abc release abc 1.2.0 version.

Abc is constructed base on Polyglot and Soot [6]. It consiEseveral packages: abc, soot, polyglot and so
on. In this project, we mainly focus on the abc and soot paekago improve abc compilation speed, we
optimized those two packages respectively, as describgekcition 5.2 and 5.3.

Besides the manual optimization, we also tried to use thé Guonization tool to automatically optimiza-
tion abc. We described this approach in section 5.4.

2This is because when we start this project, summer 2005, .8 dersion is the newest release.

5.1 Abc-1.0.2 version observations and modifications
5.1.1 Profiling result of original abc-1.0.2 version

We list our profiling result for original abc 1.0.2 versionTable 5 and Trace 1. Table 5 shows the top 5
time consuming methods for compiling eigenv benchmark. ddwent column indicates how many times
a particular stack trace was found to be active. The stack iichis shown irt r ace column and the full
qualified method name at the top stack trace is showneinhod column. Trace 1 shows the stack trace for
the most time consuming method.

rank self | accum| count| trace| method

1 |5.96%]| 5.96% | 4531| 19812| abc.weaving.weaver.AroundWeaver
$Util.chainContainsLocal

2.10%| 8.06% | 1595 | 19118 java.util.LinkedList.listlterator
2.08% | 10.14%| 1578 | 19035 | soot.util. HashChain$Link.insertAfter
2.00% | 12.14%| 1516 | 19117 java.util.HashMap.newValuelterator
1.32% | 13.45%| 1002 | 11294 | java.util.HashMap.addEntry

gl hlwnN

Table 5: Top 5 time consuming methods by using Xrunhprof afilerabc-1.0.2 version compiling eigenv
benchmark

Trace 1 No. 19812

abc. weavi ng. weaver . AroundWeaver $Uti | . chai nCont ai nsLocal (AroundWaver . j ava: 166)

abc. weavi ng. weaver . AroundWeaver $Uti | . set Local Name(Ar oundWaver . j ava: 323)

abc. weavi ng. weaver . AroundWeaver $Uti | . access$1300(AroundWeaver. j ava: 119)

abc. weavi ng. weaver . AroundWeaver $Advi ceMet hod$Pr oceedMet hod$Advi ceAppl i cati onl nfo
. copySt mt Sequence(Ar oundWeaver . j ava: 1216)

abc. weavi ng. weaver . AroundWeaver $Advi ceMet hod$Pr oceedMet hod$Advi ceAppl i cati onl nfo
. doWeave(AroundWeaver . j ava: 986)

abc. weavi ng. weaver . AroundWeaver $Advi ceMet hod$Pr oceedMet hod. doWeave
(AroundWeaver . j ava: 793)

5.1.2 Code optimization

1. chainContainsLocal

From the profiling result Table 5 and Trace 1, we can know that
abc.weaving.weaver.AroundWeaver$Util.chainContagtsll consume a lot of time during compiling
eigenv benchmark.

This method is quite straightforward as shown in Listing Bjust iterates through the chain and
compare whether the elements in the chain contains elemdtht$he given name. So based on the
optimizing strategy we adopted, always start from the sasip few ones, we optimized this method
first.

After examining the AroundWeaver class, we found the actysé of input parameter is always
soot.util. HashChain which uses a HashMap as the undergimgture and maintains a doubly-linked

Listing 3 Original code of chainContainsLocal() method in abc-1\@&&sion
private static bool ean chai nCont ai nsLocal (Chain | ocals, String nane) {
Iterator it = locals.iterator();
while (it.hasNext()) {
if (((soot.Local) it.next()).getNanme().equals(nane))
return true;

}

return fal se;

list running through all of its entries. So the obvious siolutto optimize this method is using the
HashChain.contains() method to test the equals insteaérating over the chain and compare ele-
ments one by one. Listing 4 shows the chainContainsLocahodedfter modification.

Listing 4 After modification, the code of chainContainsLocal() methoabc-1.0.2 version
private static bool ean chai nCont ai nsLocal (Chain | ocals, String nane) {
HashChai n hc = (HashChai n)l ocal s;
return hc.contains(nane);

After applied this modification, the timing results of coiigg benchmarks are shown in Table 6. The
i mpr ovenent column is computed by (org - mod)/mod * 100.

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6401 | 2.6551 -0.57 2.5826 | 2.615 -1.26
helloworld | 3.4225 | 3.4301 -0.23 3.3701 3.4 -0.89
asac 8.805 8.54 3.01 8.7575 | 8.4775 3.2
nullcheck || 27.3276| 25.4351 6.93 27.1751| 25.305 6.89
eigenv 75.915 | 25.8851 65.91 75.83 | 25.805 65.97
wigll 59.0625| 59.335 -0.47 58.4526| 58.59 -0.24
dcm-sim 18.03 | 18.0376 -0.05 17.9075| 17.8325 0.42
lod-sim 39.41 | 40.275 -2.2 39.2751| 40.1725 -2.29
weka 32.9975| 33.0075 -0.04 32.7951| 32.8376 -0.13

Table 6: Compilation speed comparison between abc-1.0stoveand the abc-1.0.2 version with modified
chainContainsLocal() method

From Table 6, we can see that this modification speed up theitaiion time of eigenv benchmark
greatly, around 66%. It also reduce the compilation time @é&afor nullcheck benchmark.

2. setLocalName

Further analysis the above profiling result in Table 5 andd@rh we can see that
it is abc.weaving.weaver.AroundWeaver$Util.setLocatdamethod which invokes the

10

abc.weaving.weaver.AroundWeaver$Util.chainContagtsll() method. If we could reduce the num-
ber of invocations to chainContainsLocal method, we coldd eeduce the compilation time. Listing
5 shows that the original setLocalName in abc 1.0.2 version.

Listing 5 Original code of setLocalName() method in abc-1.0.2 versio
private static void setlLocal Nane(Chain |ocals, Local I|ocal,
String suggest edNane) {
String name = suggest edNane;
int i = 0;
whi | e (AroundWeaver. Util.chai nContainsLocal (locals, nanme)) {
nanme = suggest edNane + "$$" + (++i);

}

| ocal . set Nane(nane) ;

This method is to assign a local with non-duplicated namensy ¢hecking whether the local chain
contains the local variable with the suggested name. Ifilggeasted name exists reassign a new sug-
gested name and check again until the chain does not cohtasuggested name. The way to create
the suggested name in this method is poor. For example, if &g W assign a local variable with
suggested name "book”, but the chain has already contamskd3, "bookl1”, ... "book99”. In such
case, the setLocalName will invoke AroundWeaver.UtilioR@ntainsLocal method for 101 times
before it can create a non-duplicated suggested name "B6bkTo solve this problem, we can use
a static variable to help to generate unique local variabfaan® Listing 6 shows the setLocalName
method after modification.

Listing 6 After modification, the code of setLocalName() method in-at:2 version
private static |ong uni queNaneld = 0;
private static void setlLocal Nane(Chain |ocals, Local |ocal,
String suggest edNane) {
String name = suggestedNanme + (++uni queNanel d);
| ocal . set Nane(nane) ;

By doing this, we totally avoid the call to chainContainsebmethod. Table 7 shows that it speeds
up the compilation speed for eigenv benchmark dramatiaadlsirly 70% compared with original abc.
For the nullcheck benchmark, it reduced the compilatioretimarly 7%.

The previous optimization was performed on an older versioabc, version 1.0.2. All of the remaining
optimizations are done on the more recent version, abc.1.2.0

3This performance problem has been solved safme1.1.0 version.

11

benchmark wall time cpu time
org mod | improvement(%) org mod | improvement(%o)
hellono 2.6401 | 2.6401 0.0 2.5826 | 2.6201 -1.46
helloworld | 3.4225 | 3.4301 -0.23 3.3701 | 3.4076 -1.12
asac 8.805 | 8.6875 1.34 8.7575 | 8.625 1.52
nullcheck || 27.3276| 25.43 6.95 27.1751| 25.34 6.76
eigenv 75.915 | 22.9751 69.74 75.83 | 22.925 69.77
wigll 59.0625| 58.915 0.25 58.4526| 58.3075 0.25
dcm-sim 18.03 | 17.9476 0.46 17.9075| 17.8701 0.21
lod-sim 39.41 | 40.2001 -2.01 39.2751| 40.075 -2.04
weka 32.9975| 33.075 -0.24 32.7951| 32.9151 -0.37

Table 7. Compilation time (in second) comparison betweenlad.2 version and the abc-1.0.2 version with
modified setLocalName() method

5.2 Soot Modification
5.2.1 Profiling result before optimization

When using the Sun profiling toolgpr of , we observed that java.util. HashMap.addEntry is the st t
consuming operation for asac, eigenv and nullcheck bendtsnaad is the second position for wigl1 bench-
mark. Especially, it account for almost 11% of the total ragrtime for eigenv benchmark. Here we only
show the profiling results for eigenv benchmark as in TablEr&ce 2 and Trace 3.

rank self | accum| count| trace| method

1 | 10.99%| 10.99%| 30881 | 11345 java.uti.HashMap.addEntry|
9.70% | 20.69% | 27280 | 11344 | java.uti.HashMap.addEntry
5.59% | 26.28% | 15725| 13548 java.util.HashMap.addEntry
2.25% | 28.53%| 6315| 13544 | java.uti.HashMap.addEntry
1.88% | 30.41%| 5287 | 12721 java.util.AbstractList.iterator

gl blw|N

Table 8: Top 5 time consuming methods by using Xrunhprof tdilerabc-1.2.0 version compiling eigenv
benchmark

Trace 2No. 11345

java. util.HashMap. addEnt r y(HashMap. j ava: 739)

java. util.HashMap. put (HashMap. j ava: 392)

java. util.HashSet.add(HashSet.java: 192)

soot . tool kits. scal ar. Smart Local Def s$Local Def sAnal ysi s.
f I owThr ough(Smart Local Def s. j ava: 146)

soot . tool ki ts. scal ar. Forwar dFl owAnal ysi s.
doAnal ysi s(For war dFl owAnal ysi s. j ava: 165)

soot.tool kits. scal ar. Smart Local Def s$Local Def sAnal ysi s.
<init>(SmartLocal Defs.java: 121)

12

Trace 3No. 11344

java. util.HashMap. addEnt r y(HashMap. j ava: 739)

java. util.HashMap. put (HashMap. j ava: 392)

java.util.HashSet. add(HashSet.java: 192)

java.util.AbstractCol | ection.addAl | (Abstract Col | ection.java: 319)

soot . tool kits.scal ar. Smart Local Def s\ $Local Def sAnal ysi s.
copy(Smart Local Def s. j ava: 160)

soot . tool ki ts. scal ar. Forwar dFl owAnal ysi s.
doAnal ysi s(Forwar dFl owAnal ysi s. j ava: 127)

5.2.2 HashSet substitution

Although the profiling result shows that the operation ontéap is the bottleneck, from the trace result,

we can identify the actual bottleneck is the operation onh3as. In Sun JDK, the HashMap is used

as back end to implement HashSet. According to our optinoizettrategy, the first try is to use some

other implementation of HashSet to replace Sun’s impleatemt of HashSet used by abc. The realistic
problem is that the HashSet is used widely in abc and it is tmm@place all the use of HashSet in abc
source code. However from the profiling result, we know thatrmost time consuming HashSet operation
is invoked in SmartLocalDefs class. Thus, we can replaceHlaishSet use with another implementation
in SmartLocalDefs class to see the effect. In this projed,tiked THashSet, FastSet, IDHashSet and
MyHashSet to replace HashSet implementation.

1. GNU Trove: THashSet

We used the THashSet implementation provided by GNU Tro%g (High performance collections
for Java) package to replace HashSet in SmartLocalDeds.j@NU Trove is claimed to be a fast,
lightweight of implementations of the java.util Colleat®API. However the timing result shows that
almost all benchmarks are slightly slow down after using 3ir&et instead of HashSet. We only get
speed up for eigenv benchmark with the amount of 12% and ébsim benchmark with the amount
of 1.8%. Table 9 shows the timing result. The slowdown foro#ffier benchmarks is due to extra
overhead of loading extra Trove java classes.

2. Javolution: FastSet

Javolution [12] is a Java library for real-time and embedslettems. Its aim is to make the application
faster and more time-predictable. In our experiment, weJaselution 1.4 version. Table 10 shows
the compilation speed of all benchmarks get worse perfocmafter using FastSet to replace HashSet
in SmartLocalDefs class. Especially for the lod-sim benatknwe got 17% slowdown.

3. IDHashSet

After examining SmartLocalDefs.java, ForwardFlowAnajava, FlowAnalysis.java and Abstract-
FlowAnalysis.java, we know that those classes just add bjects contained in the DirectedGraph
object into HashSet or remove those objects from HashSegy @b not duplicate the objects or
change the objects contained in the DirectedGraph objeleat iB, the objects stored in the Hash-
Set have the character of reference-equality semanticsveSmuld use IdentityHashSet instead of
HashSet. However, in Sun’s JDK there is no IdentityHash&etdentityHashMap. The solution
turned to use the IdentityHashMap to implement HashSet.leTab shows the timing result after
using IDHashSet.

13

benchmark wall time cpu time
org mod | improvement(%) org mod | improvement(%o)
hellono 2.6426 | 2.685 -1.61 2.6301 | 2.6475 -0.67
helloworld 3.48 3.49 -0.29 3.4475 | 3.465 -0.51
asac 11.9676| 12.0026 -0.3 11.8826| 11.9276 -0.38
nullcheck || 78.945 | 80.205 -1.6 78.7625| 80.0251 -1.61
eigenv 65.9425| 58.0451 11.98 65.83 | 57.985 11.92
wigll 60.0176| 59.9325 0.15 59.205 | 59.2801 -0.13
dcm-sim || 25.0401| 25.4526 -1.65 24.9526| 25.3651 -1.66
lod-sim 45.8626| 45.0401 1.8 45.7201| 44.9426 1.71
weka 32.9875| 33.1326 -0.44 32.795 | 33.0175 -0.68
weka-tm || 34.4325| 34.6851 -0.74 34.25 | 34.4725 -0.65

Table 9: Compilation time comparison between abc-1.2.6ieerand the modified abc-1.2.0 version using
THashSet instead of HashSet in SmartLocalDefs

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 2.7 -2.18 2.6301 | 2.67 -1.52
helloworld 3.48 3.585 -3.02 3.4475 | 3.525 -2.25
asac 11.9676| 12.59 -5.21 11.8826| 12.5125 -5.31
nullcheck || 78.945 | 81.0551 -2.68 78.7625| 80.9125 -2.73
eigenv 65.9425| 66.05 -0.17 65.83 | 65.9626 -0.21
wigll 60.0176| 61.2126 -2.0 59.205 | 60.4326 -2.08
dcm-sim || 25.0401| 25.8701 -3.32 24.9526| 25.77 -3.28
lod-sim 45.8626| 53.8525 -17.43 45.7201| 53.7376 -17.54
weka 32.9875| 34.2651 -3.88 32.795 | 34.11 -4.01
weka-tm || 34.4325| 35.3251 -2.6 34.25 | 35.1526 -2.64

Table 10: Compilation time comparison between abc-1.2rfime and the modified abc-1.2.0 version using
FastSet instead of HashSet in SmartLocalDefs

This result is similar as the one by using THashSet (as showahle 9) in that we only get notable
speed up for one benchmark. This time, we get great improwee null benchmark with 26%.

However, we also slow down wigll, dcm-sim, lod-sim, wekakavan benchmarks around 4% to
6%.

4. MyHashSet

In the forward and backward flow analysis, the copy, mergdlamd hrough operations add elements
to or remove elements from HashSet which cause the set watdl@r remove Entry objects in the
underlining implementation of HashSet. Since during the #imalysis, the add and remove elements
are used frequently, is it possible that we can reuse thdseat#d Entry objects to improve the
performance for the bottleneck of java.util. HashMap.audf

In order to do this, we need to maintain a list to record thestéel Entry objects in the under-
lying implementation of HashSet. When addEntry is calle@, fiwst check whether the deleted

14

benchmark wall time cpu time
org mod | improvement(%) org mod | improvement(%o)
hellono 2.6426 | 2.6401 0.1 2.6301 | 2.6151 0.58
helloworld 3.48 3.4826 -0.08 3.4475 | 3.4576 -0.3
asac 11.9676| 12.2401 -2.28 11.8826| 12.155 -2.3
nullcheck || 78.945 | 58.495 25.91 78.7625| 58.395 25.86
eigenv 65.9425| 65.8825 0.1 65.83 | 65.805 0.04
wigll 60.0176| 62.315 -3.83 59.205 | 60.7701 -2.65
dcm-sim || 25.0401| 25.8325 -3.17 24.9526| 25.7175 -3.07
lod-sim 45.8626| 47.9051 -4.46 45.7201| 47.51 -3.92
weka 32.9875| 34.8026 -5.,51 32.795 | 34.5526 -5.36
weka-tm || 34.4325| 36.65 -6.45 34.25 36.06 -5.29

Table 11: Compilation time comparison between abc-1.2rfime and the modified abc-1.2.0 version using
IDHashSet instead of HashSet in SmartLocalDefs

list is empty or not. If the list is not empty, we just take omeuse without creating a new En-

try object. This solution consists several classes to impld: soot.toolkits.scalar.MyHashMap,
soot.toolkits.scalar.MyHashSet, soot.toolkits.scielgAbstractMap, soot.toolkits.scalar.MyLinkedHashSet
and

soot.toolkits.scalar.MyLinkedHashMap.

We calculated the reused Entry objects during the comgilati benchmarks as shown in Table 12.
We reused a lot of Entry objects for nullcheck, eigenv, lod;sweka and weka-tm benchmarks,
especially for eigenv benchmark, around 740000.

Benchmark| Reused Entry Objects
hellono 0
helloworld 2
asac 3739
nullcheck 21032
eigenv 739597
wigll 4863
dcm-sim 4361
lod-sim 20000
weka 22187
weka-tm 23254

Table 12: Number of reused Entry objects in MyHashMap

However, when we profiling the abc with MyHashSet modifiaatizvve only get great speed up for
nullcheck benchmark, around 29% as shown in Table 13. Agthahe number of reused Entry
objects for eigenv benchark is the greatest in our test,switeget 4% slowdown surprisingly. The
benefits we get by reusing Entry objects may be offset by teetoanaintain the deleted Entry objects
list and reset the entry fields for reuse. To demonstratepthiist, we listed the addEntry method in
MyHashMap class in Listing 7.

15

benchmark wall time cpu time
org mod | improvement(%) org mod | improvement(%o)
hellono 2.6426 | 2.6451 -0.1 2.6301 | 2.625 0.2
helloworld 3.48 3.52 -1.15 3.4475 | 3.4726 -0.73
asac 11.9676| 11.9851 -0.15 11.8826| 11.8875 -0.05
nullcheck || 78.945 | 56.1151 28.92 78.7625| 55.9726 28.94
eigenv 65.9425| 68.9275 -4.53 65.83 | 68.8125 -4.54
wigll 60.0176| 60.7726 -1.26 59.205 | 60.0226 -1.39
dcm-sim || 25.0401| 25.05 -0.04 24.9526| 24.9775 -0.1
lod-sim 45.8626| 47.66 -3.92 45.7201| 47.5426 -3.99
weka 32.9875| 33.0275 -0.13 32.795 | 32.8925 -0.3
weka-tm || 34.4325| 34.6801 -0.72 34.25 34.51 -0.76

Table 13: Compilation time comparison between abc-1.2rfime and the modified abc-1.2.0 version using
MyHashSet instead of HashSet in SmartLocalDefs

From Listing 7, we know that in order to reuse Entry objectsnsed first check whether the deleted
list is empty or not. If it is not empty, we take out the firsteteld Entry object from the list and reset
the field values to reuse it. So the extra overhead causedebyrtitess to reuse Entry objects may
slow down benchmarks.

Listing 7 addEntry() method in the MyHashMap.java
voi d addentry(int hash, Object key, Object value, int bucketlndex) {
if (deletedEntryList !'= null) {
/lexists deleted entry objects, reuse one
Entry e = del etedEntrylList;
del et edEntryLi st = del et edEntryLi st. next;
e.reset Entry(hash, key, val ue, tabl e[bucketlndex]);
t abl e[bucket | ndex] = e;
}else{ // create new Entry object
t abl e[bucket I ndex] = new Entry(hash, key, val ue, tabl e[bucketlndex]);

}

if (size++ >= threshol d)
resize(2 = table.length);

16

5.2.3 Code optimization

Another approach we used is to optimize the source code intSatalDefs and related classes. Our main
aim is to reduce the methods invocation which will finally sad HashMap.addEntry method be invoked.
Another aim is to get rid of unnecessary method calls anddawonecessary class casting. The following
are the code optimizations we took in SmartLocalDefs classralated classes.

1. SmartLocalDefs.LocalDefsAnalysis.flowThrow()

Listing 8 Original code of flowThrough() method in SmartLocalDefssslan Soot 2.2.3 version
protected voi d fl owThrough(Object inValue, Object unit, Object outValue) {
Unit u = (Unit) unit;
HashSet in = (HashSet) inVal ue;
HashSet out = (HashSet) out Val ue;
out.clear();
Set mask = (Set) unitToMask. get (u);
for(lterator inUt = in.iterator(); inUt.hasNext();) {
final Unit inU= (Unit) inUt.next();
i f(mask. contains(local Def (inU))) out.add(inU);

}
Local | = local Def (u);
if(I !'=null) {
out.renoveAl |l (defsO(1));
i f (mask. contai ns(l ocal Def (u))) out.add(u);
}

In the original code (as shown in Listing 8), there are twaetato invoke localDef() method with

same parameter "u”. This can be reduced to one method calittydiice a variable to store the
result returned from localDef() method. Another potenpiaiformance penalty in this method is that
it will add local "inU” into HashSet "out” even if "inU” is cotained in defsOf(l). Later on, it uses

removeAll() to get rid of those added local elements cowigim defsOf(l). To reduce the cost, we can
check whether "inU” is contained by defsOf(l) before adchiioi HashSet "out” as shown in Listing

9.

17

Listing 9 Modified code of flowThrough() method in SmartLocalDefs slasSoot 2.2.3 version
protected void fl owThrough(Object inValue, Cbject unit, Object outValue) {
Unit u = (Unit) unit;
HashSet in = (HashSet) inVal ue;
HashSet out = (HashSet) out Val ue;
out.clear();
Set mask = (Set) unitToMask. get (u);

Local | = local Def (u);
HashSet all DefUnits = null;
if (I == null){//add all units contained by mask
for(Iterator inUt =in.iterator(); inUt.hasNext();) {

final Unit inU= (Unit) inUt.next();
i f(mask. contai ns(l ocal Def (inU)))
out.add(inU);
}
} else {
[/ check unit whether contained in allDefUnits before add into out set.
al Il DefUnits = defsOf(1);
for(Iterator inUt =in.iterator(); inUt.hasNext();) {
i f(mask. contains(local Def (inU))){
/1only add unit not contained by allDefUnits
if (allDefUnits.contains(inU))
out.renove(inU;
el se
out.add(inU);
}

}
out.renoveAll (all DefUnits);

i f (mask. contains(l)) out.add(u);

2. SmartLocalDefs.LocalDefsAnalysis.copy()

Listing 10 Original code of copy() method in SmartLocalDefs class i0tS0h2.3 version
protected voi d copy(Cbject source, Ohject dest) {

HashSet sourceSet = (HashSet) source;

HashSet dest Set (HashSet) dest;

dest Set. cl ear();

dest Set . addAl | (sourceSet) ;

In this method (as shown in Listing 10), it first clear the degion set then add all elements from the
source set into destination set. If some elements in theee@at already contained in the destination

18

set, we may waste time to remove the elements then add theim &ga we use two iterations to
achieve the copy operation. First iteration performs geetion of two sets. Second iteration adds all
elements contained in source set but not contained in @dsinset into destination set. Listing 11
shows the copy method after modification.

Listing 11 Modified code of copy() method in SmartLocalDefs class intS08.3 version

protected voi d copy(Cbject source, Ohject dest) {

HashSet sourceSet = (HashSet) source;
HashSet dest Set = (HashSet) dest;
if (destSet.size() > 0)
/lretain all the el ements contained by sourceSet
dest Set.retai nAl | (sourceSet);

if (sourceSet.size() > 0) {
//add the el ements not contained by dest Set
for(lIterator its = sourceSet.iterator(); its.hasNext();) {
Chject o = its.next();
if (!destSet.contains(o)){//need add this el enent.
dest Set . add(0);

}

3. UnitGraph.getSuccsOf()

Listing 12 Original code of getSuccsOf() method in SmartLocalDefsglia Soot 2.2.3 version

public List getSuccsOf ((Object u)

{

i f(!unitToSuccs. contai nskKey(u))
t hrow new NoSuchEl enent Exception("Invalid unit " + u);
return (List) unitToSuccs. get(u);

In this method (as shown in Listing 12), the returned resuliratToSuccs.get(u) itself can be used
to check whether the map unitToSuccs contains key "u” or tfahe returned result is null means
the map contains no mapping for that key. So we can avoid théocanitToSuccs.containsKey(u)

method. Listing 13 shows the getSuccsOf method after madiibic.

. BackwardFlowAnalysis.doAnalysis()

In this method (as shown in Listing 14), the TreeSet impletaigon uses an integer comparator to
sort the elements inserted into it. The integers of the eftsrare assigned according to the sequence
that those elements appeared in the orderedUnits. It useslaMap to associate the elements with
their integer values. This implementation has two perforoeaissues: (1) it introduces the expense

19

Listing 13 Modified code of getSuccsOf() method in SmartLocalDefsiassoot 2.2.3 version
Modi fied code of getSuccsOf nethod in UnitG aph class:
public List getSuccsO((hject u)

{
List | = (List) unitToSuccs. get(u);
if (I == null) throw new Runti neException("lnvalid unit " + u);
return I;

}

Listing 14 Original code snippet of doAnalysis() method in Backwaai¥nalysis class in Soot 2.2.3

version
final Map numbers = new HashMap();

Li st orderedUnits new PseudoTopol ogi cal Orderer (). newli st (graph);
int i =1;
for(Iterator ult = orderedUnits.iterator(); ult.hasNext();) {
final Object u = (Object) ult.next();
nunbers. put (u, new I nteger(i));
i ++;

}

TreeSet changedUnits = new TreeSet (new Conparator () {
public int conmpare(Object ol, Cbject 02) {
Integer il = (Integer) nunbers.get(ol);
Integer i2 = (Integer) nunbers. get(02);
return -(il.intvValue() - i2.intValue());

})s

of creating HashMap object and putting elements with thedepvalues into HashMap object; (2) it
uses the Boxing and Unboxing conversions for getting artithgehe integer values in HashMap.

To avoid using a HashMap object, we could add an integer feettié object as the order value for
the comparator. After doing experiments and checking thecgocode of Soot, we know that the
elements added into TreeSet are Unit interface type objéétsr further review the source code, we
added the int field "sortOrder” into AbstractUnit class whis the ancestor of all other classes which
implements Unit interface or its subinterfaces. For theplémnternal representation, the ancestor
class AbstractStmt which represents the unit Statementeatends the AbstractUnit class. Once we
determine the actual object type, the next thing we need ie tlodowncast the Object into Abstrac-
tUnit type and use the integer field to compare in BackwandRloalysis.doAnalysis() method. The
modification is shown in Listing 15.

5. ForwardFlowAnalysis.doAnalysis()

Similarly, we made the modification for doAnalysis methodrorwardFlowAnalysis class as we did
for BackwardFlowAnalysis.doAnalysis().

20

Listing 15 Modified code snippet of doAnalysis() method in BackwardFmalysis class in Soot 2.2.3
version
Li st orderedUnits = new PseudoTopol ogi cal Orderer (). newLi st(graph);
int i = 1;
for(lIterator ult = orderedUnits.iterator(); ult.hasNext();) {
final AbstractUnit au = (AbstractUnit) ult.next();
au.sortOrder = i;
i ++;

}

/luse a field (sortOrder) in AbstractUnit object to store the order val ue
[/ for the conparator instead of using HashMap to associate object with
/lits order val ue.
TreeSet changedUnits = new TreeSet (new Conparator () {

public int conmpare(Object ol, Cbject 02) {

return - (((AbstractUnit)ol).sortOrder-((AbstractUnit)o2).sortOrder);

}

Y)

5.2.4 Performance of combined optimization

In the above two sections, we introduced various HashSsetitutie implementations and the code optimiza-
tions in Soot. What is the performance after combining thesekind of optimizations and which HashSet
implementation should we use in Soot? To answer those questive measured the performance of the
various combination optimizations.

1. HashSet + Code Optimizations Since the original abc ¥/&$€ion uses the HashSet in its implemen-
tation, this combination is actually the case that only Umedode optimization on the original abc
1.2.0 version.

Table 14 shows that we get the performance improved on atiimearks. The most improvement we
get is 5.4% for eigenv benchmark.
2. THashSet + Code Optimizations

Table 15 shows that all code optimization we took only getsameed up on the benchmarks com-
pared with no code optimization at all (as shown in Table 9ut Be still slow down on hellono
and helloworld benchmarks. Compared with the combinatidiashSet plus code optimizations (as
shown in Table 14), the combination of THashSet plus codenigdtions get worse performance.

21

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 | 2.6301 0.48 2.6301 | 2.59 1.53
helloworld 3.48 3.4576 0.65 3.4475 | 3.4175 0.88
asac 11.9676| 11.53 3.66 11.8826| 11.4625 3.54
nullcheck || 78.945 | 75.375 4.53 78.7625| 75.1025 4.65
eigenv 65.9425| 62.3826 5.4 65.83 | 61.9425 5.91
wigll 60.0176| 57.8825 3.56 59.205 | 56.8476 3.99
dcm-sim || 25.0401| 24.2126 3.31 24.9526| 24.055 3.6
lod-sim 45.8626| 43.51 5.13 45.7201| 43.1401 5.65
weka 32.9875| 31.48 4.57 32.795 | 31.1901 4.9
weka-tm || 34.4325| 33.2225 3.52 34.25 | 32.8525 4.09

Table 14: Compilation time comparison between original-al&x0 version and the modified abc-1.2.0
version (using HashSet in SmartLocalDefs plus Code Optititas)

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 | 2.695 -1.99 2.6301 | 2.6575 -1.05
helloworld 3.48 3.525 -1.3 3.4475 | 3.4575 -0.3
asac 11.9676| 11.7251 2.03 11.8826| 11.6501 1.96
nullcheck || 78.945 | 77.4075 1.95 78.7625| 77.2401 1.94
eigenv 65.9425| 60.54 8.2 65.83 | 60.4476 8.18
wigll 60.0176| 58.6801 2.23 59.205 | 57.965 2.1
dcm-sim || 25.0401| 24.6401 1.6 24.9526| 24.5226 1.73
lod-sim 45.8626| 44.0426 3.97 45.7201| 43.9325 3.91
weka 32.9875| 32.25 2.24 32.795 | 32.0025 2.42
weka-tm || 34.4325| 33.3375 3.19 34.25 33.13 3.28

Table 15: Compilation time comparison between original-al&x0 version and the modified abc-1.2.0
version (using THashSet in SmartLocalDefs plus Code Op#tions)

22

3. FastSet + Code Optimizations

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 | 2.695 -1.99 2.6301 | 2.6601 -1.15
helloworld 3.48 3.5726 -2.67 3.4475 | 3.5176 -2.04
asac 11.9676| 12.425 -3.83 11.8826| 12.3626 -4.04
nullcheck || 78.945 | 78.5901 0.45 78.7625| 78.4326 0.42
eigenv 65.9425| 64.1651 2.7 65.83 | 64.0726 2.67
wigll 60.0176| 59.3501 1.12 59.205 | 58.7451 0.78
dcm-sim || 25.0401| 25.0725 -0.13 24.9526| 24.9675 -0.06
lod-sim 45.8626| 51.9351 -13.25 45.7201| 51.885 -13.49
weka 32.9875| 33.2001 -0.65 32.795 | 33.01 -0.66
weka-tm || 34.4325| 34.2675 0.48 34.25 | 34.1025 0.44

Table 16: Compilation time comparison between original-al&x0 version and the modified abc-1.2.0
version (using FastSet in SmartLocalDefs plus Code Opétians)

Table 16 shows that the compilation speeds of the benchngaitka little faster compared with only
use FastSet (as shown in Table 10). Now we get three benchrspéed up: nullcheck, eigenv and
wigll. Compared with the combination of HashSet plus codinigations (as shown in Table 14),
the combination of FastSet plus code optimizations getevpesformance on all benchmarks.

4. MyHashSet + Code Optimizations

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 | 2.6451 -0.1 2.6301 | 2.6125 0.67
helloworld 3.48 3.4751 0.15 3.4475 | 3.44 0.22
asac 11.9676| 11.6175 2.93 11.8826| 11.5351 2.93
nullcheck || 78.945 | 55.2151 30.06 78.7625| 54.4676 30.85
eigenv 65.9425| 61.815 6.26 65.83 | 61.4675 6.63
wigll 60.0176| 58.3101 2.85 59.205 | 57.0175 3.7
dcm-sim || 25.0401| 24.3201 2.88 24.9526| 24.2176 2.95
lod-sim 45.8626| 44.6076 2.74 45.7201| 44.315 3.08
weka 32.9875| 31.6151 4.17 32.795 | 31.3526 4.4
weka-tm || 34.4325| 33.2101 3.56 34.25 | 33.0751 3.44

Table 17: Compilation time comparison between original-alZx0 version and the modified abc-1.2.0
version (using MyHashSet in SmartLocalDefs plus Code Optitions)

Table 17 shows similar results as the combination of THaispiBe code optimizations (as shown in

Table 15), speed up on almost all benchmarks compared wigruse MyHashSet in SmartLocalDefs

class (as shown in Table 13). When compared with the conibimaf HashSet plus code optimiza-

tions (as shown in Table 14), it get better performance olcineitk, eigenv and weka-tm benchmarks.
Especially for nullcheck benchmarks, around 25% speed up.

23

5. IDHashSet + Code Optimizations

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)
hellono 2.6426 | 2.6401 0.1 2.6301 | 2.5926 1.43
helloworld 3.48 3.4825 -0.08 3.4475 | 3.4275 0.59
asac 11.9676| 11.875 0.78 11.8826| 11.8275 0.47
nullcheck || 78.945 | 56.2476 28.76 78.7625| 56.0601 28.83
eigenv 65.9425| 64.9725 1.48 65.83 | 64.975 1.3
wigll 60.0176| 60.9051 -1.48 59.205 | 59.235 -0.06
dcm-sim || 25.0401| 25.0176 0.09 24.9526| 24.8925 0.25
lod-sim 45.8626| 45.6026 0.57 45.7201| 45.4451 0.61
weka 32.9875| 33.1425 -0.47 32.795 | 32.9501 -0.48
weka-tm || 34.4325| 35.1151 -1.99 34.25 | 34.9426 -2.03

Table 18: Compilation time comparison between original-al&x0 version and the modified abc-1.2.0
version (using IDHashSet in SmartLocalDefs plus Code Opétions)

Table 18 shows that we only get notable improvement on netlklbbenchmark, around 29% speed
up.

From the above experiments and analysis, both the combimatiHashSet plus code optimizations and the
combination of MyHashSet plus code optimizations are gabations for the java.util. HashMap.addEntry
bottleneck.

5.2.5 Profiling result after optimization

After applied the code optimization on abc 1.2.0 (the coratiam of HashSet plus code optimizations), we
profiled all the benchmarks again and found that java.ghiiMap.addEntry is still the bottleneck for most
benchmarks. But the results from Table 19 shows the pegesthat java.util. HashMap.addEntry accounts
for are all become smaller than the original result shownabl&@ 8, especially for eigenv benchmark which
now only accounts for 7.69% of total time profiling, 3.3% parcdown. And the total percentage of top 5
for compiling eigenv benchmark is from 30.41% down to 21.54%

rank self | accum| count| trace| method

1 |7.69%| 7.69% | 17904 | 11322 java.util.HashMap.addEntry|
2 | 5.51%| 13.20%| 12831 | 11318 java.util.HashMap.addEntry
3 | 4.79% | 17.99%| 11143 | 11319 java.util.HashMap.addEntry
4 | 2.34% | 20.33%| 5435| 12679 java.util. AbstractList.iteratot
5 | 1.22% | 21.54%| 2834 | 13501 | java.util.HashMap.addEntry

Table 19: Top 5 time consuming methods by using Xrunhprofddile abc-1.2.0 version compiling eigenv
benchmark

24

5.3 Abc Modification

During profiling and comparing the generated class files,ouad that abc does not generate identical codes
sometimes. The mainly difference as we showed in using 8amitimization abc in 5.2, the names of some
inlined methods are different. After examining the sour@gecabout abc inlining and debugging the running
result, we found that during around inlining abc produce yraduplicated methods. And after finish inlining,
abc normalized the inlined methods to compare the inlinethaaks and removed the duplicated ones.

The procedure to create new inlined methods and the coropanistwo methods are both expensive. To
create an new inlined method, it not only takes time to cra@athod signature but also needs to copy each
statement from the method to be inlined. And finally it alsechto modify the original method invocation
statement to invoke the new inlined method.

The way to compare whether two methods are identical is adgersive, it needs three steps:

1. Normalize method name and local variables,
2. Construct a string by contacting the method signaturestatdments in the method body,

3. Compare the String representation of the methods aréddéeor not.

If we could avoid creating the duplicated inline methodsha first place we can not only avoid creating
new methods but also could reduce the number methods we oemxdnpare. Another reason we could
speed up abc by changing the algorithms of weaving and mgjiphases is based on the fact that weaving
and inlining stages are the most time consuming phases inttbke compilation process from our profiling
result described in section 4.

In order to change the algorithms in weaving and inliningsasa we need to figure out the original ones.

The original procedure for around weaving:

1. For each matched joinpoint, assign a unique shadow icetdifgt it;

2. Extract the shadow codes to form a new method. To avoidusorg with shadow method, we call it
the shadow extracted method. The naming of new created shexoacted method uses the unique
shadow id with "shadow$” as prefix;

3. Replace the shadow codes with the method invocation teithdow extracted method;

4. Move the shadow extracted method call into proceed metfibeé shadow extracted method call is
insert into switch statement based on the unique shadowtittiproceed method;

5. Replace the shadow extracted method call with "around$ica method call which in turn invokes
the proceed method call;

The original procedure of around advice inlining is for eatladow method which originally contains the
matched joinpoint, recursively inline the methods whioh ealled in its body.

According to the original procedure of around weaving, thethod invocation contained in the shadow
methods are "around$” methods. So for around advice irgirtime process is as follows:

1. When inlining "around$” methods invoked in shadow methimtine proceed methods which are
called in the "around$” methods into advice class;

25

2. Before inlining "proceed$” methods, inline the "aroufidfiethods which is called in the proceed
methods.

After recursively inlining the "around$”, "proceed$” meitis, the body of "proceed$” methods will be
moved into "around$” methods and the "around$” methods emamed as "inline$” methods.

After weaving and inlining, the original abc used an additiboptimization phase to remove duplicated
methods and unused methods.

This implementation strategy is clean: at each phase,ytfoclises on one thing without considering other
tasks. However it also has its drawbacks as it increasesitaiiop time.

In the original abc-1.2.0 version it does not check whettadsw extracted methods are identical or not
when weaving around advices. So no matter whether two shadtracted methods are identical or not,
abc will generate all of them in the target classes. For exanip SortitemMain.jimple decompiled from
SortltemMain.class generated by abc-1.2.0, there aredwtical shadow extracted methods shadow$30
and shadow$45, as showing in the Listing 16.

In the modified abc, before creating a new shadow extractédatewe check whether there is any identical
shadow extracted method already residing in the shadow olasot. If there is one, we will use that one
without creation of an new one. By doing this, we can get sf\mnefits:

1. Avoid creating a new shadow method when there exists chtplil one;
2. Save time in later phase that removes unused methods;

3. Reduce the target classes size.

When we check the decompiled SortltemMain.class file gée@fay our modified abc-1.2.0 version,
only shadow$30 is remained in it.

Another performance issue in the original procedure of mdoadvice inlining is that it does not check
whether the new created "inline$” method exists in the aghdlass or not. So this cause abc generates
many duplicated methods and uses an additional phase tovedimuse duplicated methods.

To improve the performance, when doing inlining, we firsta@hwhether there is an identical "inline$”
method in the target class or not by using the signature gristl by contacting three integer type argu-
ments values, arguments types, method’s signature aret tdags name. If there exits one, we just reuse it
instead of creating an new "inline$” method.

Similarly, we can

1. Avoid creating a new "inline$” method when there existpldiated one;

2. Save time in later pass to check and remove duplicatedou&th

In our test suite, asac, nullcheck and eigenv benchmarkoathin around advices that could be inlined.

The result in Table 20 shows that we do get much improvemerih&se three benchmarks. For nullcheck

benchmark, we get great improvement, around 32% speed uplsd/get speed up around 8% for asac and
4% for eigenv benchmark.

26

Listing 16 Jimple code snippet in SortltemMain class generated byraligbc-1.2.0 version
public static final java.lang.String shadow$30
(AroundAspects, java.lang. StringBuffer){

Ar oundAspects r0;

java.lang. StringBuffer rl1;

java.io.PrintStream $r3;

java.lang. String $r4;

ro := @araneter0: AroundAspects;

rli .= @araneterl: java.lang. StringBuffer;

if rO!=null goto |abelO;

statici nvoke <AroundAspects: AroundAspects aspectOf ()>();

| abel O:

$r3 = <java.lang. System java.io.PrintStreamerr>;
virtualinvoke $r3.<java.io.PrintStream

void println(java.lang. String)>("before nmethod call");
$r4 = virtualinvoke rl.<java.lang. StringBuffer:

java.lang. String toString()>();
return $r4;

}

public static final java.lang. String shadow$45
(AroundAspects, java.lang. StringBuffer){

AroundAspects r0;

java.lang. StringBuffer ri;

java.io.PrintStream $r3;

java.lang. String $r4;

ro := @araneter0: AroundAspects;

ri := @araneterl: java.lang. StringBuffer;

if rO!= null goto |abel0;

statici nvoke <AroundAspects: AroundAspects aspectOf ()>();

| abel O:

$r3 = <java.lang. System java.io.PrintStreamerr>;
virtualinvoke $r3.<java.io.PrintStream

void println(java.lang. String)>("before nethod call");
$r4 = virtualinvoke rl.<java.lang. StringBuffer:

java.lang. String toString()>();
return $r4;

}

Besides the improvement on the compiling speed of thosehbesudks, we also reduce the size of generated
class files by removing the duplicated extracted shadow wdstit As shown in Table 21, for the bench-

“Here the "duplicated” means that the two methods are sanepettze method name.

27

benchmark wall time cpu time
org mod | improvement(%) org mod | improvement(%o)

hellono 2.6426 | 2.6451 -0.1 2.6301 | 2.5875 1.62
helloworld 3.48 3.48 0.0 3.4475 | 3.4101 1.09

asac 11.9676| 11.03 7.84 11.8826| 10.935 7.98
nullcheck || 78.945 | 53.695 31.99 78.7625| 53.625 31.92
eigenv 65.9425| 63.4751 3.75 65.83 | 63.355 3.76
wigll 60.0176| 59.8301 0.32 59.205 | 59.0226 0.31
dcm-sim || 25.0401| 25.105 -0.26 24.9526| 25.0051 -0.22
lod-sim 45.8626| 46.0625 -0.44 45.7201| 45.9401 -0.49
weka 32.9875| 32.87 0.36 32.795 | 32.7125 0.26
weka-tm || 34.4325| 34.41 0.07 34.25 | 34.295 -0.14

Table 20: Compilation time comparison between original-al&x0 version and the modified abc-1.2.0
version (avoiding duplicated methods)

marks with around advices (asac, nullcheck and eigenv IneadtP, we reduce the generated class files

size greatly. We reduce the half class file size for eigencherark, 22% for nullcheck and 15% for asac
benchmark.

benchmark generated classes file size
org mod | reduced(%)

hellono 465 465 0
helloworld 2228 2228 0
asac 64781| 54998 15.1
nullcheck | 301964 | 236743 21.6
eigenv | 157596| 79955 49.27
wigll 761894 | 761894 0
dcm-sim | 240105| 237682 1.01
lod-sim | 252020| 252020 0
weka 313900| 313900 0
weka-tm | 326871| 326871 0

Table 21: File size (in byte) comparison between the clageasrated from original abc-1.2.0 version and
the modified abc-1.2.0 version (avoiding duplicated meshod

5.4 Using Soot to optimize abc

Besides the manual optimization described in the previeasms, we also tried to use the Soot optimiza-
tion tool to automatically optimize abc. The reason that wehils is that if the optimization tool can speed
up abc then we can study what kind of optimizations perforimedptimization tool and take advantage of
them to manually optimize the abc source code.

SAlthough dem-sim benchmark also contains around advibesatound advices are applied in very few places in the applic
tion. So we did not reduce the generated class file size greatl

28

Since Soot itself is a Java optimization framework, we uséal optimize abc and see what is the effect of
using Soot to optimize abc compiler.

5.4.1 Process to use Soot to optimize abc
The process to use Soot to optimize abc is as follows:

. Compile abc and generate class files.

. Use Soot to optimize those generated abc class files (selyapp option).

1
2
3. Copy soot/baf/toolkits/base/peephole.dat into cpording Soot output directory.
4. Use the jar command to pack generate classes into a neacdlms

5

. Time the compilation time of abc with the new abcsoot.rkage.

5.4.2 Profiling result of Soot-optimized abc

After using Soot-optimized abc, the compilation speedidi@hchmarks are reduced, especially for hellono,
helloworld, asac benchmarks (speed up nearly 10.89%, 7&62%3.83% respectively$. The comparison
result is shown in Table 22.

benchmark wall time cpu time
org mod | improvement(%o) org mod | improvement(%o)

hellono 2.6426 | 2.355 10.89 2.6301 | 2.3025 12.46
helloworld 3.48 3.2151 7.62 3.4475 | 3.1825 7.69

asac 11.9676| 11.51 3.83 11.8826| 11.415 3.94
nullcheck || 78.945 | 78.175 0.98 78.7625| 78.0075 0.96
eigenv 65.9425| 65.3276 0.94 65.83 | 65.2051 0.95
wigll 60.0176| 59.5725 0.75 59.205 | 58.8101 0.67
dcm-sim || 25.0401| 24.5626 191 24.9526| 24.455 2.0
lod-sim 45.8626| 45.6876 0.39 45.7201| 45.5726 0.33

Table 22: Compilation time comparison between abc-1.2:ifime and the Soot-optimized abc-1.2.0 version

5.4.3 Analysis of Soot-optimized abc

In order to know whether Soot-optimized abc generate idahtlass files with the ones generated by orig-
inal abc, we wrote the program to automatically compare igeeé class files with original abc generated
class files, decompile the class files into Jimple files if tas<files are different and differentiate the Jimple
files to generate report. The following are the differendeseoved by examining the generated report files.

1. the inlined method name are different: (as shown in Lgsfii) ’

6At the begining, when we running our tests on a single CPU etierpve get great improvement on hellono, helloworld, asac
and nullcheck benchmarks, nearly 40%, 33%, 15% and 31%catagls.
"The method body of inline126around$18 and inline$11eizi18 are same.

29

Listing 17 Difference of Jimple codes decompiled from SortTracesclgsnerated by original abc-1.2.0

version and the Soot-optimized abc-1.2.0 version

138c138 original abc-1.2.0

< staticinvoke <SortTrace: java.lang. Qobject inline$126%around$18
(SortTrace,int[],int,int,QSortAl gorithm>(r4, rl, 10, 120, r0);

Soot -optim zed abc-1.2.0

> staticinvoke <SortTrace: java.lang. Object inline$ll4%around$18
(SortTrace,int[],int,int,QSortAl gorithm>(r4, rl, i0, i20, r0);

2. The order of some methods in the class files are different.

3. Some goto labels are different. As shown in Listing 18 amlihg 19, there are several different-
ness: the statement at "label126:” , "label28:” and "la®el28 Despite the fact that goto labels are
different, the semantics of these two code snhippets are.same

Listing 18 Jimple code of decompiled from the class file generated lgyrai abc-1.2.0 version
| abel 24:
$rd4l = <java.lang. System java.io.PrintStream out >;
virtual i nvoke $r4l. <java.io.PrintStream
void println(java.lang. String)>("Error witing to file");
goto | abel 28;

| abel 25:
$r42 = @aught excepti on;
ra3 = $ra2;
| abel 26:
goto | abel 29;
| abel 27:
throw r43;
| abel 28:

if r30 == null goto | abel 31;
virtual i nvoke r30.<java.io.PrintStream void close()>();
goto | abel 31;

| abel 29:
if r30 == null goto | abel 27;
virtual i nvoke r30.<java.io.PrintStream void close()>();
goto | abel 27;

From above analysis, we know the Soot-optimized abc gesmesdightly different code from original abc.
But the differences are minor and do not affect the functibnaSo we can be sure that Soot-optimized
abc generate class files are equal to original abc generktssl fdes. Then the question comes up, why
is Soot-optimized abc compiler faster compared with odfabc compiler and what kind of optimization

8The target label31 codes are same.

30

Listing 19 Jimple code of decompiled from the class file generated by-§gtimized abc-1.2.0 version
| abel 24:
$rd4l = <java.lang. System java.io.PrintStream out >;
virtual i nvoke $r4l. <java.io.PrintStream
void printlin(java.lang. String)>("Error witing to file");
goto | abel 29;

| abel 25:
$r42 = @aught excepti on;
ra3 = $ra2;
| abel 26:
goto | abel 28;
| abel 27:
throw r43;
| abel 28:

if r30 == null goto | abel 27;
virtual i nvoke r30.<java.io.PrintStream void close()>();
goto | abel 27;

| abel 29:
if r30 == null goto | abel 31;
virtual i nvoke r30.<java.io.PrintStream void close()>();
goto | abel 31;

happened by using Soot to optimize abc compiler? To answesethuestions, we need to profile these two
compilers and see which phase we get great improvementgdeoimpiling the benchmarks.

Table 23 shows the timing result at each phase for originallab.0 version and Soot-optimized abc 1.2.0
version.®

In order to identify which phase account for most of the olf@maprovement, based on Table 23, we
compute the percentage of improvement on each phase adootwial overall improvement by (org phase
- Soot phase)/(org total time - Soot total time)*100. Tableshows the generated results. In this table,
for each benchmark, the phase with largest positive valtigeiphase we get greatest improvement. If the
values are negative at some phases, that means we get slonatitivose phases.

Table 23 and Table 24 show that the Soot-optimized abc spgedsmpilation at Init. of Soot phase, Load-
ing Jars phase, Create Polyglot Compiler phase and Polggkse. For all other phases, Soot-optimized
abc compiler did not get all benchmarks speed up. It speedmp enchmarks but at the same time it also
slow down other benchmarks.

In order to know the reason that Soot-optimized abc get spped Init. of Soot phase for all benchmarks,
we profiled the classes loaded at Init. of Soot phase. Therttal 83 basic classes (93 for trace matching)
are loaded at this phase for both original abc version and-&utonized abc. Those 83 basic classes are
from java.io, java.lang, org.aspectbench.runtime andaspectj.lang packages. Comparing the loading time
for each class, we see that Soot-optimized abc load mansedas shorter time compared with original abc
did. We decompiled the class files related to Init. of Sootsgha&oot.Scene class and soot.SootResolver
class, but we did not see many differences between orighalarsion and Soot-optimized abc version.

%As the space limited, here we only list 6 benchmarks.

31

phase name hellono helloworld asac nullcheck eigenv wigll

org Soot org Soot org Soot org Soot org Soot org Soot
Init. of Soot 974 818 978 816 980 818 971 823 980 817 972 824
Loading Jars 4 4 4 3 19 6 37 25 4 4 680 192
Create polyglot compiler 245 219| 244 218 244 220 243 222 256 220 244 219
Polyglot phases 506 445 877 868 1569 1526 | 2550 2480| 1676 1601 | 17074 16048
Initial Soot resolving 80 75 85 74 188 166 989 928 105 101 571 1394
Soot resolving 1 0 0 0 0 0 0 0 0 0 1 0
Aspect inheritance 0 0 2 2 2 2 1 1 2 2 1 1
Declare Parents 1 1 1 2 2 1 2 1 2 1 1 1
Intertype Adjuster 15 22 13 16 13 20 13 17 13 17 72 54
Jimplification 90 74 260 175 574 542 985 953 1030 1012| 6661 6695
Fix up constructor calls 1 1 1 1 1 1 1 1 1 1 1 1
Update pattern matcher 147 132 84 67 198 180 106 100 76 60 56 64
Weave Initializers 9 8 7 8 9 8 21 13 7 8 73 51
Load shadow types 0 0 0 0 0 0 0 0 0 0 0 0
Compute advice lists 47 44 | 108 98 305 301 545 522 397 511 | 4798 4850
Add aspect code 12 14 20 22 13 14 14 14 20 18 14 14
Weaving advice 17 17 136 130 1616 1593| 6301 6287| 20593 20832| 5469 5606
Exceptions check 3 2 5 4 18 18 39 37 586 31 82 75
Advice inlining 6 7 37 36 1350 1357| 25675 25761| 14983 15198| 2860 1870
Interproc. constant propagatq 11 8 1 4 147 145 | 2205 2209| 1535 1578 72 73
Boxing remover 0 1 5 5 450 450 874 868 365 362 48 48
Duplicates remover 0 0 6 4 654 648 | 18086 18068| 2326 2328 635 653
Removing unused methods 1 1 4 5 35 34 227 230 84 82 90 92
Specializing return types 0 0 0 0 19 20 170 162 60 59 0 1
Soot Packs 101 106 174 159 2425 2413 | 14745 13756| 17297 17458| 14214 15075
Soot Writing Output 100 107 151 149 739 749 2785 3799| 1542 1562 | 5073 4900
total result 2371 2106| 3203 2866| 11570 11232| 77585 77277| 63940 63863| 59762 58801

Table 23: Compilation time (in millisecond) comparison atle phase between original abc-1.2.0 version
and the Soot-optimized abc-1.2.0 version

The main difference are the order of some declaration staitsrand the names of local variables. Finally,
we realized that the real reason is that the library path wisen those two compilers. When we use Soot
to optimize abc, it will automatically include the appliat packages abc used and optimize them too. So
the Soot-optimized abc jar file contains the tool packagaseat such as Polyglot, Soot, Jimple and so on.
Thus when run Soot-optimized abc, we did not set the tool agek in the classpath as we did for original
abc. After we put the tool packages and original abc into anand set the classpath like we did for Soot to
optimize abc, we did the experiment again. This time, Soafptimize abc only get little speed up at Init.
of Soot phase, from 0.3 to 3.6%.

To know why Soot-optimized abc get speed up in other phasesoime benchmarks, we compared the
Soot-optimized abc class files with original abc class filed decompiled the different files into Jimple

codes. However we did not find many differences between thendgiled Jimple codes that could be the
reason for speeding up the compilation speed.

6 Conclusion

In section 5.2, we described various soot optimizationsthedombinations. According to the experimen-
tal results, we found that there is no obvious better one éatmusing HashSet and MyHashSet in flow
analysis. In this section, we use those two optimizationsotabine with abc optimization to evaluate the
overall improvements. In Table 25, we shows the individyslmization and two overall combination op-

32

phase name the improvement(%)‘at each phase _ _
hellono | helloworld asac | nullcheck | eigenv | wigll | dcm-sim lod-sim
Init. of Soot 58.87 48.08 | 47.93 48.06 | 211.69| 15.41 51.63 704.55
Loading Jars 0.00 0.30 | 3.85 3.90 0.00 | 50.79 11.04 190.91
Create polyglot compiler 9.82 7.72 7.11 6.82 46.75 2.61 7.80 113.64
Polyglot phases 23.02 2.68 | 12.73 22.73 97.40 | 106.77 4.23 400.0
Initial Soot resolving 1.89 3.27 | 6.51 19.81 5.19 | -85.64 19.16 309.1
Soot resolving 0.38 0.00 | 0.00 0.00 0.00 0.11 0.00 0.0
Aspect inheritance 0.00 0.00 | 0.00 0.00 0.00 0.00 -0.33 0.0
Declare Parents 0.00 -0.30 0.30 0.33 1.30 0.00 0.33 0.0
Intertype Adjuster -2.65 -0.90 | -2.08 -1.30 -5.19 1.88 0.98 -18.19
Jimplification 6.04 25.23 | 9.47 10.39 23.38 -3.54 -0.65 109.1
Fix up constructor calls 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 0.0
Update pattern matcher 5.67 5.05 5.33 1.95 20.78 -0.84 2.28 36.37
Weave Initializers 0.38 -0.30 | 0.30 2.60 -1.30 2.29 0.00 4.55
Load shadow types 0.00 0.00 | 0.00 0.00 0.00 0.00 0.00 4.55
Compute advice lists 1.14 2.97 1.19 7.47 | -148.05 -5.42 -8.45 4.55
Add aspect code -0.76 -0.60 | -0.30 0.00 2.60 0.00 0.00 -4.55
Weaving advice 0.00 1.79 6.81 455 | 310.39| -14.26 -6.17 504.55
Exceptions check 0.38 0.30 | 0.00 0.65 | 720.78 0.73 0.65 4.55
Advice inlining -0.38 0.30 | -2.08 -27.93 | -279.22 | 103.02 -7.47 | 1613.64
Interproc. constant propagatg 1.14 -0.90 0.60 -1.30 -55.84 -0.11 0.00 0.0
Boxing remover 0.00 0.00 0.00 1.95 3.90 0.00 2.28 | -4018.19
Duplicates remover 0.00 0.60 1.78 5.85 -2.60 -1.88 -0.65 0.0
Removing unused methods 0.00 -0.30 | 0.30 -0.98 2.60 -0.21 0.00 4.55
Specializing return types 0.00 0.00 | -0.30 2.60 1.30 0.00 0.33 0.0
Soot Packs -1.89 4.46 | 3.56 321.11 | -209.09 | -89.60 1.30 213.64
Soot Writing Output -2.65 0.60 | -2.96 -329.23| -25.97| 18.01 21.76 -77.28

Table 24: Improvement at each phase by using Soot-optinabeél.2.0 version

timizations. We can see that when using the combination dii&dhSet, code optimization and abc around
inlining ("All 2” column in Table 25), the compilation speeasf almost all benchmarks is slower than the
using of the combination of HashSet, code optimization &weaound inlining ("All 1” column in Table
25). The only exception is nullcheck benchmark where thepilation speed of using "All 1” is around
24% slower than "All 27,10

So we choose "All 1" as our optimization solution for abc. Bsing this solution, we get 35% speed up
when compile nullcheck benchmark, 12% for eigenv benchraack10% for asac benchmark.

As to Soot-optimized abc, it only get speed up benchmarkhthli after we reset the classpath setting to
keep consistent with original abc. So it is not worth to dg@csoot-optimized abc.

Another conclusion we get by doing this project is that toespap a application the most efficient way is
to change the inefficient algorithms. By changing the iniffit algorithms you may get unexpected great
speed up as we did in this project.

7 Future Work

In this project, although we detected and relieved soméeneitks during the process of abc compilation,
there are still rooms to further optimize abc. Here | list issues that may be worth further addressing in
the future.

1%The compilation time of using "All 1” is 51.69s. The compitat time of using "All 2” is 39.035s.

33

org wall time improvement(%o)
benchmark wall time Soot Optimization abc All 1: All 2:
HashSet +H MyHashSet MyHashSet | around in-|| (a) + (d) | (c) + (d)
code opt| (b) + code opt| lining (d)
(a) (c)
hellono | 2.6426 0.48 -0.10 -0.10 -0.10 0.10 -0.19
helloworld | 3.4800 0.65 -1.15 0.15 0.00 1.08 -0.08
asac 11.9676 3.66 -0.15 2.93 7.84 10.47 10.35
nullcheck | 78.9450 4.53 28.92 30.06 31.99 34.53 50.56
eigenv | 65.9425 5.40 -4.53 6.26 3.75 12.08 9.81
wigll 60.0176 3.56 -1.26 2.85 0.32 4.40 4.01
dcm-sim | 25.0401 3.31 -0.04 2.88 -0.26 3.35 3.47
lod-sim | 45.8626 5.13 -3.92 2.74 -0.44 5.13 451
weka 32.9875 4.57 -0.13 4.17 0.36 4.69 4.61
weka-tm | 34.4325 3.52 -0.72 3.56 0.07 3.90 3.90

Table 25: Compilation time comparison between original a0 version and the abc-1.2.0 version with
all modifications combined

e Flow Analysis

In this project, although we relieve the severity of the leottcks related to Flow Analysis, there still

may be better solution to fully remove them. In this projeat, also tried to use bit vector to replace
the HashSet. But due to the variation of the number of elesrlggiiveen benchmarks, this attempt is
less efficient than using HashSet.

Inline "shadow$” methods

Currently, abc keeps shadow extracted methods in the shelds®/in order to keep it consistent with
the original source code arrangement: advices are in adlasees and the shadow extracted methods
are kept in the shadow classes. In the decompiled Jimple eaxean see many short "shadow$xxx”
method in the shadow classes. If we can inline those smatherid shadow methods into advice
classes instead of keeping them in shadow classes, it sepattl up the execution of the generated
classes. However the drawback of doing this is that it maw slown the compilation speed and
increase the generated class file size.

References

[1] abc: The AspectBench Compiler for AspectJ, "http://a@benlab.ox.ac.uk/introduction”

[2] Soot: a Java Optimization Framework, "http://www.sabicgill.ca/soot/”

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie HemdiSascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Juiiake, "Building the abc AspectJ compiler with

Polyglot and Soot”, Technical Report abc-2004-4, Dec. 2004

[4] Sascha Kuzin, "Efficient Implementation of Around-Adeifor the AspectBench Compiler”, MSc dissertation,

Oxford University, September 2004

34

[5] Pavel Avgustinov, Aske Simon Christensen, Laurie HemdiSascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Jliliate, "Optimising AspectJ”, PLDI 2005,
Chicago, USA, June 2005

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie HemdiSascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Jilibte, "abc: An extensible Aspectd compiler”,
AOSD 2005, Chicago, USA, March 2005

[7] Aspectd Eclipse project, "http://www.eclipse.orgiastj/”
[8] JProfiler, "http://www.ej-technologies.com/prodsifprofiler/overview.html”, EJ Technologies
[9] Jack Shiraza, "Java Performance Tuning”, 2nd EditiofRedlly, 2003
[10] John Jorgensen, "Speed the Plow - Improving the perdmce of Soot”, CS621 coruse project report, April 2001

[11] L.Hendren, C.Verbrugge, O.deMoor, and G.Sittampal&Dufour, C.Goard, "Measuring the dynamic be-
haviour of aspectj programs”, Sable Technical Report 2BMiarch 2004

[12] GNU Trove: High performance collections for Java, phtttrove4j.sourceforge.net/”

[13] Javolution: Java library for real-Time, embedded aighiperformance applications, "http://javolution.drg/
[14] Polyglot, "http://www.cs.cornell.edu/projectsigglot/”’

[15] Ivan Kiselev, "Aspect-Oriented Programming with Asp¥, Sams, 2002

[16] PARC: the origin of AspectJ project, "http://www.pacom/research/projects/aspectj/default.html”

[17] The HPROF Profiler Agent, "http://java.sun.com/j2sé/2/docs/guide/jvmpi/jvmpi.html#hprof”

[18] HAT: Heap Analysis Tool, "https://hat.dev.java.fiet/

35

