
McGill University

School of Computer Science

Sable Research Group

Improving the Compiling Speed of the AspectBench Compiler

Sable Technical Report No. 2006-3

Jingwu Li and Laurie Hendren
{jli98, hendren}@cs.mcgill.ca

August 14, 2006

w w w . s a b l e . m c g i l l . c a

Contents

List of Tables iii

List of Figures iv

Acknowledgment v

Abstraction vi

1 Introduction 1

2 Benchmarks and Initial Timing 2

2.1 Benchmarks 2

2.2 Platforms 2

2.3 Measurement Methodology 2

2.4 Initial timing result 2

3 Strategies 5

4 Profiling Technologies 5

4.1 abc internal timer 6

4.2 HPROF .. . 8

4.3 JProfiler 8

4.4 Weaving aspects into abc 8

5 Observations and Improvement 8

5.1 Abc-1.0.2 version observations and modifications 9

5.1.1 Profiling result of original abc-1.0.2 version 9

5.1.2 Code optimization 9

5.2 Soot Modification 12

5.2.1 Profiling result before optimization 12

5.2.2 HashSet substitution 13

5.2.3 Code optimization 17

5.2.4 Performance of combined optimization 21

5.2.5 Profiling result after optimization 24

5.3 Abc Modification 25

i

5.4 Using Soot to optimize abc 28

5.4.1 Process to use Soot to optimize abc 29

5.4.2 Profiling result of Soot-optimized abc 29

5.4.3 Analysis of Soot-optimized abc 29

6 Conclusion 32

7 Future Work 33

References 34

ii

List of Tables

1 Benchmarks 3

2 Software and Hardware Platforms 4

3 Compilation time comparison between original abc-1.2.0 version and ajc 1.2.1 version . . . 4

4 Top 5 time consuming phases for abc 1.2.0 version 7

5 Top 5 time consuming methods by using Xrunhprof to profile abc-1.0.2 version compiling
eigenv benchmark 9

6 Compilation speed comparison between abc-1.0.2 version and the abc-1.0.2 version with
modified chainContainsLocal() method 10

7 Compilation time (in second) comparison between abc-1.0.2 version and the abc-1.0.2 ver-
sion with modified setLocalName() method 12

8 Top 5 time consuming methods by using Xrunhprof to profile abc-1.2.0 version compiling
eigenv benchmark 12

9 Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version
using THashSet instead of HashSet in SmartLocalDefs 14

10 Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version
using FastSet instead of HashSet in SmartLocalDefs 14

11 Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version
using IDHashSet instead of HashSet in SmartLocalDefs 15

12 Number of reused Entry objects in MyHashMap 15

13 Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version
using MyHashSet instead of HashSet in SmartLocalDefs 16

14 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (using HashSet in SmartLocalDefs plus Code Optimizations) 22

15 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (using THashSet in SmartLocalDefs plus Code Optimizations) 22

16 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (using FastSet in SmartLocalDefs plus Code Optimizations) 23

17 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (using MyHashSet in SmartLocalDefs plus Code Optimizations) 23

18 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (using IDHashSet in SmartLocalDefs plus Code Optimizations) 24

19 Top 5 time consuming methods by using Xrunhprof to profile abc-1.2.0 version compiling
eigenv benchmark 24

20 Compilation time comparison between original abc-1.2.0version and the modified abc-1.2.0
version (avoiding duplicated methods) 28

iii

21 File size (in byte) comparison between the classes generated from original abc-1.2.0 version
and the modified abc-1.2.0 version (avoiding duplicated methods) 28

22 Compilation time comparison between abc-1.2.0 version and the Soot-optimized abc-1.2.0
version .. . 29

23 Compilation time (in millisecond) comparison at each phase between original abc-1.2.0
version and the Soot-optimized abc-1.2.0 version 32

24 Improvement at each phase by using Soot-optimized abc-1.2.0 version 33

25 Compilation time comparison between original abc-1.2.0version and the abc-1.2.0 version
with all modifications combined 34

List of Figures

1 Compilation time (in second) comparison between abc 1.2.0version and ajc 1.2.1 version . . 4

iv

Acknowledgment

I would like to express my deep sense of gratitude to my supervisor Prof. Laurie Hendren, for her invalu-
able help and guidance during the project. I am highly indebted to her for constantly encouraging me by
giving her suggestions on my work. I am grateful to her for having given me the support and confidence.

I also greatefully thank my wife, Mingjian Wang, for her support, encouragement and understanding over
the past years.

Jingwu Li
August 2006

v

Abstract

The AspectBench Compiler (abc) is an extensible AspectJ compiler and built based on Polyglot [13]
and Soot [2]. It generates optimized Java bytecode which canrun faster in many cases when compared
with ajc. However, the compilation speed of abc can be substantially slower than ajc. Typically it is
roughly 4 times slower than ajc [1]. By using various profiling tools, we observed some bottlenecks
during the process of compiling AspectJ source code. We modified some data structures related to for-
ward and backward flow analysis and changed some algorithms such as the variable name generator and
around inlining to remove the bottlenecks or relieve the severity of those bottlenecks. The experimental
results on selected benchmarks shows that the combined modifications reduce overall by 8% compilation
time as compared with original abc. The speed up is especially notable for the benchmarks with around
advice applied many places. At the same time, we also reduce the class file size for the benchmarks with
around advices applied many places greatly, around 28%.

vi

1 Introduction

Aspect Oriented Programming (AOP) is new programming technique to address crosscutting concerns. It is
not like Object Oriented Programming which addresses common concerns within certain related objects and
abstract common attributes and methods to capsulate in object class. AOP deals with unrelated objects and
modularizes the common concerns across the whole program system and not limited in certain classes [15].
These crosscutting concerns, such as logging events, caching results, debugging support, error checking and
security control, can be implemented by using AOP in a very easy and clean way.

AspectJ is a seamless aspect-oriented extension to the Javaprogramming language create at Xerox PARC
[16]. The first AspectJ compiler is called ajc which is now developed and supported by the AspectJ Eclipse
project [7].

The AspectBench Compiler (abc) [1] is an alternative AspectJ compiler. It is a complete implementation
of AspectJ. It aims to make it easy to implement both extensions and optimizations of the core language
[3]. Generally, abc can generate optimized Jave bytecode which can run faster in many cases compared
with the ones generated by ajc [5]. However, on the other hand, the compilation speed of abc can be
substantially slower than ajc. Typically abc is roughly 4 times slower than ajc [1]. As we show in Section
2.4, our experiments show the compilation slowdown of many benchmarks is at least 8 times, especially for
eigenv, nullcheck and lod-sim benchmarks, around 22 times slower, 15 times slower and 11 times slower
respectively.

The abc compiler’s slow compilation speed arises from the design and implementation strategy of abc. Abc
leverages existing compiler technology by combining Polyglot which is an extensible compiler framework
for Java in the frontend and Soot which is a framework for analysis, optimization and transformation of Java
in the backend. During weaving phase, abc pays less attention to generate compacted and optimized code in
the first place and lets Soot in the later pass to optimize those weaved codes. From the compiler developer’s
view, this strategy reduces the complexity to write the weaver. However, from the optimization view, it may
slow down the compilation process. If we could do the optimization in the first place, we could save a lot
of time in later phases to achieve the same aim. For example, when weaving advice, if we could test the
extracted shadow method exists or not, we can avoid creatingduplicate methods and save time in the later
pass to remove the duplicated methods. This requires us to mix some tasks in several phases, not like the
original abc which cleanly separates tasks among phases.

In this project, we investigate the hotspots in compiling with abc by using various profiling tools. To improve
abc’s compilation speed, we use various ways to modify abc such as use other implementation of HashSet,
reuse objects during forward and backward flow analysis and change some algorithms such as variable
name generator and around inlining and so on. We did the experiments on the selected benchmarks and
yield results that those combined modifications reduced thecompilation speed overall 8% compared with
the original abc.

The organization of the report is as follows. In section 2 we describe the benchmarks used in this project,
the experimental environment and the initial timing result. We describe the general strategies we used for
optimization in section 3. We introduce various profiling tools and techniques used in optimization in section
4. Section 5 describes the observations of the bottlenecks we found and the attempts we took to attack those
bottlenecks. Finally, we give the conclusion of the projectin section 6 and discusses the future work in
section 7.

1

2 Benchmarks and Initial Timing

2.1 Benchmarks

In this project, the most benchmarks we used are coming from two sources, the graduate optimizing com-
pilers course (COMP 621) and the abc benchmarks [1]. To let our test suite have good representation of
AspectJ, we chose the benchmarks with various aspect usages, including pointcut definitions, percflow,
pertarget, inter-type declarations, before advice, afteradvice, around advice and trace matching. We also
choose two tiny benchmarks hellono and helloworld to test the initialization speed of abc, the compilation
speed of programs without aspects.

We used ten benchmarks in this project and we listed the size of the benchmarks and their descriptions in
Table 1.

2.2 Platforms

Table 2 shows the environment and abc versions we used for measuring the performance of abc compiler.

2.3 Measurement Methodology

To measure performance, we compiled each benchmark 5 times and collected the compiling time of each
run, removing the one farthest to the average time, and then computing the average time for the remaining 4
runs as the compiling time result for the benchmark.

2.4 Initial timing result

We list our initial timing result for abc 1.2.0 version and ajc 1.2.1 version in Table 3. It shows that abc is
substantially slower than ajc when compiling nullcheck, eigenv, wig11, dcm-sim, lod-sim and weka bench-
marks. The experiment shows that the compilation slowdown of those benchmarks is at least 8 times, es-
pecially for eigenv (around 22 times slower) , nullcheck (around 15 times slower) and lod-sim benchmarks
(around 11 times slower).

To illustrate the slowdown of abc compilation speed comparing with ajc, we generated a graph as shown in
Figure 1. From it we can see the compilation speed of abc is really slower than ajc.

2

Benchmark
Normal Java Codes Aspect Codes

Description
Classes Methods Classes Methods

hellono 1 1 0 0 simple hello world program without any aspects
applied.

helloworld 1 1 1 6 simple hello world program with around advice
aspects applied.

asac 7 15 1 6 This benchmark starts three threads and each
thread uses a sorting algorithm (Bubble Sort, Se-
lection Sort and Quick Sort) to sort arrays. It
contains before, after and around advices. The
around advices are matched in a many places in
the benchmark.

nullcheck 23 116 2 7 A simulator program simulates the performance
of certificate revocation schemes. These schemes
look at reducing the risk of cryptographic certifi-
cates from becoming invalid. The aspects in pro-
gram detect methods returning null on an error to
force certain code standard. It contains before, af-
ter and around advices. The around advices are
matched in a lot of places in the benchmark.

eigenv 1 9 2 11 This benchmark program is designed to compute
a matrix’s Eigen value and eigenvector. The value
for each of the computed element in the matrix is
the Fibonacci’s number for its original element in
the original matrix. It contains before, after and
around advices. The around advices are matched
in a lot of places in the benchmark.

wig11 24 849 7 14 AspectJ WIG Compiler is a compiler front-end
which translates WIG programs to python pro-
grams. It contains some intertype declarations,
before and after advices.

dcm-sim 25 126 4 8 Dynamic Coupling Metrics implemented using
AspectJ. It uses a light weight data collection
mechanism and can include the possibility of ac-
counting for objects being freed by the GC. The
aspects in this benchmark contain around, before
and after advices.

lod-sim 24 120 4 6 This benchmark checks the Law of Demetere. It
uses relatively complex join points, percflow, per-
target, and cflow.

weka 39 571 1 3 The stripped down weka that contains only those
classes for the benchmark. It uses before and after
advices.

weka-tm 38 571 1 3 Similar to weka benchmark except using trace
matching.

Table 1: Benchmarks

3

abc version 1.0.2, 1.2.0

Soot version 2.2.3

os.arch x86-64
os.name Linux
os.version 2.6.15-23-amd64-generic
java.vendor Sun Microsystems Inc.
java.version 1.4.2
Hardware AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ (CPU: 2010.317GHz Mem: 4GB)

Table 2: Software and Hardware Platforms

benchmark
wall time (s) cpu time (s)
abc ajc abc ajc

hellono 2.6426 1.34 2.6301 1.26
helloworld 3.48 1.75 3.4475 1.6751

asac 11.9676 2.7876 11.8826 2.585
nullcheck 78.945 5.2975 78.7625 3.8525

eigenv 65.9425 3.2301 65.83 3.0526
wig11 60.0176 7.7701 59.205 6.9376

dcm-sim 25.0401 3.685 24.9526 3.5101
lod-sim 45.8626 4.1651 45.7201 3.975
weka 32.9875 4.9876 32.795 4.7426

Table 3: Compilation time comparison between original abc-1.2.0 version and ajc 1.2.1 version

ajc
 abc

 0

 10

 20

 30

 40

 50

 60

 70

 80

wekalod−simdcm−simwig11eigenvnullcheckasachelloworldhellono

C
om

pi
la

tio
n

T
im

e
(s

)

Figure 1: Compilation time (in second) comparison between abc 1.2.0 version and ajc 1.2.1 version

4

3 Strategies

The general tuning strategy introduced by Jack Shirazi [8] is iterating doing the following two steps:

1. Identify the main bottlenecks

2. From the top few bottlenecks, choose the quickest and easiest one to fix and address it.

Shiraza’s tuning strategy suggests that addressing the cheapest single bottleneck rather than the absolute
topmost one because the elimination of one bottleneck oftenchanges the characteristics of the application
and thus the bottlenecks of the application are consequently often changed.

Generally, I followed this strategy to attack the performance problems in abc.

1. Establish a set of benchmarks and build the initial timingbase line.

2. Choose the profiling tools.

3. Measure the performance on the benchmarks by using the profiling tools.

4. Identify the top few bottlenecks.

5. Hypothesize the causes of the bottlenecks.

6. Create tests to verify the hypotheses.

7. Choose the quickest and easiest bottleneck or several closely related ones to fix.

8. Alter the application to reduce the bottleneck(s).

9. Test the alteration and make sure the modification is correct.

10. Measure the performance improvement after the modification.

11. Repeat from Step 3.

In the above performance tuning process, the only thing thatviolates Shiraza’s tuning strategy is that we
are not limiting our focus on the single cheapest bottleneckat a time, we may select several closely related
bottlenecks to fix at a time. This is because that in some cases, if we only consider one bottleneck at a time
we may narrow our view and limit our solution strategy. So we may get some temporary solutions and in the
later on we have to change those solutions to fix other relatedbottlenecks. In the worst case, we may even
need to use a solution totally different from the one we chosebefore. This is especially true when solve the
bottlenecks caused by inefficient algorithms.

4 Profiling Technologies

In order to speed up compiling speed of abc, we need to have a holistic picture of abc during running time
and identify the bottlenecks in the program. Once we know where the time goes we know where to focus
our efforts. There are many profiling tools to help us to fulfill profiling task. In this project, we used several
profiling tools (approaches): abc internal timer, JProfiler(a commercial profiler) [8], Sun’shprof [17]
profiling agent and weaving advices into abc.

5

4.1 abc internal timer

Abc provide several flag to enable internal timer AbcTimer totrack the time spend in each compiling phase
in abc.main.Debug class. We listed the flags to enable abc internal timer in Listing 1.

Listing 1 Flags to enable abc internal timer
public boolean abcTimer=true;
public boolean polyglotTimer=true;
public boolean sootResolverTimer=true;
public boolean timerTrace=true;

The abc internal timer generates output is in the format as shown in Listing 2.

Listing 2 Output of abc internal timer
[18.835%] Init. of Soot: 4638
[00.370%] Loading Jars: 91
[01.937%] Create polyglot compiler: 477
[11.858%] Polyglot phases: 2920
[02.912%] Initial Soot resolving: 717
[00.000%] Soot resolving: 0
[00.016%] Aspect inheritance: 4
[00.008%] Declare Parents: 2
[00.097%] Intertype Adjuster: 24
[04.382%] Jimplification: 1079
[00.008%] Fix up constructor calls: 2
[01.344%] Update pattern matcher: 331
[00.061%] Weave Initializers: 15
[00.000%] Load shadow types: 0
[02.497%] Compute advice lists: 615
[00.097%] Add aspect code: 24
[12.435%] Weaving advice: 3062
[00.126%] Exceptions check: 31
[10.246%] Advice inlining: 2523
[01.072%] Interproc. constant propagator: 264
[03.387%] Boxing remover: 834
[04.788%] Duplicates remover: 1179
[00.248%] Removing unused methods: 61
[00.138%] Specializing return types: 34
[18.104%] Soot Packs: 4458
[05.036%] Soot Writing Output: 1240

Currently, the abc compiling process is divided into 26 phases as shown in Listing 2. We use abc internal
timer profiling our 10 benchmarks and list the top 5 time consuming phases for each benchmark in Table 4.

6

benchmark
the top 5 time consuming phases

rank 1 rank 2 rank 3 rank 4 rank 5

hellono
Init. of Soot Polyglot phases Create polyglot compiler Update pattern matcher Soot Packs

41.080% 21.341% 10.333% 6.200% 4.260%

helloworld
Init. of Soot Polyglot phases Jimplification Create polyglot compiler Soot Packs

30.534% 27.381% 8.117% 7.618% 5.432%

asac
Soot Packs Weaving advice Polyglot phases Advice inlining Init. of Soot
20.959% 13.967% 13.561% 11.668% 8.470%

nullcheck
Advice inlining Duplicates remover Soot Packs Weaving advice Soot Writing Output

33.093% 23.311% 19.005% 8.121% 3.590%

eigenv
Weaving advice Soot Packs Advice inlining Duplicates remover Polyglot phases

32.207% 27.052% 23.433% 3.638% 2.621%

wig11
Polyglot phases Soot Packs Jimplification Weaving advice Soot Writing Output

28.570% 23.784% 11.146% 9.151% 8.489%

dcm-sim
Soot Packs Advice inlining Weaving advice Polyglot phases Soot Writing Output
21.844% 16.865% 11.747% 10.726% 9.020%

lod-sim
Weaving advice Soot Packs Boxing remover Polyglot phases Soot Writing Output

32.519% 23.313% 19.521% 5.874% 5.478%

weka
Polyglot phases Soot Packs Jimplification Soot Writing Output Weaving advice

26.885% 23.504% 16.192% 9.232% 9.128%

weka-tm
Polyglot phases Soot Packs Jimplification Weaving advice Compute advice lists

25.419% 23.651% 17.147% 9.253% 7.786%

Table 4: Top 5 time consuming phases for abc 1.2.0 version

Table 4 shows that there are several phases take large count of total compilation time for our test suite:

1. Polyglot phases: this phase takes large amount of compilation time for all benchmarks.

2. Soot Packs: similar as Polyglot phases, all benchmarks take great time at this phase.

3. Weaving advice: all benchmarks except two small benchmarks (hellono and helloworld) take great
time at this phase, especially for eigenv and lod-sim benchmarks.

4. Advice Inlining: For those benchmarks with around advices ,nullcheck, eigenv, asac and dcm-sim
benchmarks, abc spend large amount of time at this phase, especially for nullcheck benchmark which
accounts 33% of total compilation time.

5. Jimplification: This phase accounts for the rank 3 time consuming phase for four benchmarks, hel-
loworld, wig11, weka and weka-tm.

6. Duplicates remover: nullcheck and eigenv benchmark takes great time at this phase, especially for
nullcheck benchmark account for 23.31% of total time.

7. Init. of Soot: This phase takes large part when compiling small benchmarks such as hellono and
helloworld.1

8. Soot Writing Output: Although this phase is in the top 5 list, it accounts for small amount of total
compilation time, from 3.590% to 9.232%.

The Weaving advice phase, Advice Inlining phase and Duplicates remover phase are quite closely related
and account for most compilation time for eigenv and nullcheck benchmarks. In the later sections, we will
dive into the performance issue related to those three phases.

1This phase takes constant time for all benchmarks.

7

4.2 HPROF

Sun’s JDK provides a simple command line profiling toolhprof for heap and cpu profiling. By using
hprof, users can request various types of heap and cpu profiling features from JVM. Thehprof can be
used to track down and isolate performance problems involving memory usage and inefficient code. The
data generated byhprof can be in textual or binary format which can be used with toolslike HAT [18].
The disadvantages of using this tool is slow and the generated file size is very big and it is very hard to
interpret the result for memory usage.

4.3 JProfiler

JProfiler is a commercial tool for profiling Java programs which can provide graphical output. It can be used
to find performance bottlenecks, pin down memory leaks and resolve threading issues. It is very powerful,
we can set filters to only profile part of the program we are interested in. It provides many analysis views to
give us a full picture of the program we are profiling. In our project, we used JProfiler 4.0.2 trial version.

4.4 Weaving aspects into abc

Another approach we took to tracking down the performance issue of abc is weaving advices into abc.
We wrote around advices to record the execute time of each method in abc’s abc.weaving.weaver package
and used ajc to weave those advice into abc. When using the abcwith weaved advices to compile the
benchmarks, it will generate the report about the total execution time and number of invocations for each
method in abc’s abc.weaving.weaver package. The importantcharacteristic of this approach is that we can
profile part of the program where we are interested in. We alsocan archive similar report by setting profiling
filters in JProfiler.

5 Observations and Improvement

In this section, we describes the process we took to detect and tackle the bottlenecks in abc. We started our
work on abc 1.0.2 version2 as described in Section 5.1. The rest of the sections describe the works based
on the most recent abc release abc 1.2.0 version.
Abc is constructed base on Polyglot and Soot [6]. It consistsof several packages: abc, soot, polyglot and so
on. In this project, we mainly focus on the abc and soot packages. To improve abc compilation speed, we
optimized those two packages respectively, as described insection 5.2 and 5.3.
Besides the manual optimization, we also tried to use the Soot optimization tool to automatically optimiza-
tion abc. We described this approach in section 5.4.

2This is because when we start this project, summer 2005, abc 1.0.2 version is the newest release.

8

5.1 Abc-1.0.2 version observations and modifications

5.1.1 Profiling result of original abc-1.0.2 version

We list our profiling result for original abc 1.0.2 version inTable 5 and Trace 1. Table 5 shows the top 5
time consuming methods for compiling eigenv benchmark. Thecount column indicates how many times
a particular stack trace was found to be active. The stack trace id is shown intrace column and the full
qualified method name at the top stack trace is shown inmethod column. Trace 1 shows the stack trace for
the most time consuming method.

rank self accum count trace method
1 5.96% 5.96% 4531 19812 abc.weaving.weaver.AroundWeaver

$Util.chainContainsLocal
2 2.10% 8.06% 1595 19118 java.util.LinkedList.listIterator
3 2.08% 10.14% 1578 19035 soot.util.HashChain$Link.insertAfter
4 2.00% 12.14% 1516 19117 java.util.HashMap.newValueIterator
5 1.32% 13.45% 1002 11294 java.util.HashMap.addEntry

Table 5: Top 5 time consuming methods by using Xrunhprof to profile abc-1.0.2 version compiling eigenv
benchmark

Trace 1No. 19812
abc.weaving.weaver.AroundWeaver$Util.chainContainsLocal(AroundWeaver.java:166)
abc.weaving.weaver.AroundWeaver$Util.setLocalName(AroundWeaver.java:323)
abc.weaving.weaver.AroundWeaver$Util.access$1300(AroundWeaver.java:119)
abc.weaving.weaver.AroundWeaver$AdviceMethod$ProceedMethod$AdviceApplicationInfo

.copyStmtSequence(AroundWeaver.java:1216)
abc.weaving.weaver.AroundWeaver$AdviceMethod$ProceedMethod$AdviceApplicationInfo

.doWeave(AroundWeaver.java:986)
abc.weaving.weaver.AroundWeaver$AdviceMethod$ProceedMethod.doWeave

(AroundWeaver.java:793)

5.1.2 Code optimization

1. chainContainsLocal

From the profiling result Table 5 and Trace 1, we can know that
abc.weaving.weaver.AroundWeaver$Util.chainContainsLocal consume a lot of time during compiling
eigenv benchmark.

This method is quite straightforward as shown in Listing 3. It just iterates through the chain and
compare whether the elements in the chain contains elementswith the given name. So based on the
optimizing strategy we adopted, always start from the easiest top few ones, we optimized this method
first.

After examining the AroundWeaver class, we found the actualtype of input parameter is always
soot.util.HashChain which uses a HashMap as the underlyingstructure and maintains a doubly-linked

9

Listing 3 Original code of chainContainsLocal() method in abc-1.0.2version
private static boolean chainContainsLocal(Chain locals, String name) {

Iterator it = locals.iterator();
while (it.hasNext()) {

if (((soot.Local) it.next()).getName().equals(name))
return true;

}
return false;

}

list running through all of its entries. So the obvious solution to optimize this method is using the
HashChain.contains() method to test the equals instead of iterating over the chain and compare ele-
ments one by one. Listing 4 shows the chainContainsLocal method after modification.

Listing 4 After modification, the code of chainContainsLocal() method in abc-1.0.2 version
private static boolean chainContainsLocal(Chain locals, String name) {

HashChain hc = (HashChain)locals;
return hc.contains(name);

}

After applied this modification, the timing results of compiling benchmarks are shown in Table 6. The
improvement column is computed by (org - mod)/mod * 100.

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6401 2.6551 -0.57 2.5826 2.615 -1.26

helloworld 3.4225 3.4301 -0.23 3.3701 3.4 -0.89
asac 8.805 8.54 3.01 8.7575 8.4775 3.2

nullcheck 27.3276 25.4351 6.93 27.1751 25.305 6.89
eigenv 75.915 25.8851 65.91 75.83 25.805 65.97
wig11 59.0625 59.335 -0.47 58.4526 58.59 -0.24

dcm-sim 18.03 18.0376 -0.05 17.9075 17.8325 0.42
lod-sim 39.41 40.275 -2.2 39.2751 40.1725 -2.29
weka 32.9975 33.0075 -0.04 32.7951 32.8376 -0.13

Table 6: Compilation speed comparison between abc-1.0.2 version and the abc-1.0.2 version with modified
chainContainsLocal() method

From Table 6, we can see that this modification speed up the compilation time of eigenv benchmark
greatly, around 66%. It also reduce the compilation time near 7% for nullcheck benchmark.

2. setLocalName

Further analysis the above profiling result in Table 5 and Trace 1, we can see that
it is abc.weaving.weaver.AroundWeaver$Util.setLocalName method which invokes the

10

abc.weaving.weaver.AroundWeaver$Util.chainContainsLocal() method. If we could reduce the num-
ber of invocations to chainContainsLocal method, we could also reduce the compilation time. Listing
5 shows that the original setLocalName in abc 1.0.2 version.

Listing 5 Original code of setLocalName() method in abc-1.0.2 version
private static void setLocalName(Chain locals, Local local,

String suggestedName){
String name = suggestedName;
int i = 0;
while (AroundWeaver.Util.chainContainsLocal(locals, name)) {

name = suggestedName + "$$" + (++i);
}
local.setName(name);

}

This method is to assign a local with non-duplicated name by first checking whether the local chain
contains the local variable with the suggested name. If the suggested name exists reassign a new sug-
gested name and check again until the chain does not contain the suggested name. The way to create
the suggested name in this method is poor. For example, if we want to assign a local variable with
suggested name ”book”, but the chain has already contains ”book0”, ”book1”, ... ”book99”. In such
case, the setLocalName will invoke AroundWeaver.Util.chainContainsLocal method for 101 times
before it can create a non-duplicated suggested name ”book100”. To solve this problem, we can use
a static variable to help to generate unique local variable name.3 Listing 6 shows the setLocalName
method after modification.

Listing 6 After modification, the code of setLocalName() method in abc-1.0.2 version
private static long uniqueNameId = 0;
private static void setLocalName(Chain locals, Local local,

String suggestedName){
String name = suggestedName + (++uniqueNameId);
local.setName(name);

}

By doing this, we totally avoid the call to chainContainsLocal method. Table 7 shows that it speeds
up the compilation speed for eigenv benchmark dramatically, nearly 70% compared with original abc.
For the nullcheck benchmark, it reduced the compilation time nearly 7%.

The previous optimization was performed on an older versionof abc, version 1.0.2. All of the remaining
optimizations are done on the more recent version, abc 1.2.0.

3This performance problem has been solved sinceabc-1.1.0 version.

11

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6401 2.6401 0.0 2.5826 2.6201 -1.46

helloworld 3.4225 3.4301 -0.23 3.3701 3.4076 -1.12
asac 8.805 8.6875 1.34 8.7575 8.625 1.52

nullcheck 27.3276 25.43 6.95 27.1751 25.34 6.76
eigenv 75.915 22.9751 69.74 75.83 22.925 69.77
wig11 59.0625 58.915 0.25 58.4526 58.3075 0.25

dcm-sim 18.03 17.9476 0.46 17.9075 17.8701 0.21
lod-sim 39.41 40.2001 -2.01 39.2751 40.075 -2.04
weka 32.9975 33.075 -0.24 32.7951 32.9151 -0.37

Table 7: Compilation time (in second) comparison between abc-1.0.2 version and the abc-1.0.2 version with
modified setLocalName() method

5.2 Soot Modification

5.2.1 Profiling result before optimization

When using the Sun profiling toolshprof, we observed that java.util.HashMap.addEntry is the most time
consuming operation for asac, eigenv and nullcheck benchmarks and is the second position for wig11 bench-
mark. Especially, it account for almost 11% of the total running time for eigenv benchmark. Here we only
show the profiling results for eigenv benchmark as in Table 8,Trace 2 and Trace 3.

rank self accum count trace method
1 10.99% 10.99% 30881 11345 java.util.HashMap.addEntry
2 9.70% 20.69% 27280 11344 java.util.HashMap.addEntry
3 5.59% 26.28% 15725 13548 java.util.HashMap.addEntry
4 2.25% 28.53% 6315 13544 java.util.HashMap.addEntry
5 1.88% 30.41% 5287 12721 java.util.AbstractList.iterator

Table 8: Top 5 time consuming methods by using Xrunhprof to profile abc-1.2.0 version compiling eigenv
benchmark

Trace 2No. 11345
java.util.HashMap.addEntry(HashMap.java:739)
java.util.HashMap.put(HashMap.java:392)
java.util.HashSet.add(HashSet.java:192)
soot.toolkits.scalar.SmartLocalDefs$LocalDefsAnalysis.

flowThrough(SmartLocalDefs.java:146)
soot.toolkits.scalar.ForwardFlowAnalysis.

doAnalysis(ForwardFlowAnalysis.java:165)
soot.toolkits.scalar.SmartLocalDefs$LocalDefsAnalysis.

<init>(SmartLocalDefs.java:121)

12

Trace 3No. 11344
java.util.HashMap.addEntry(HashMap.java:739)
java.util.HashMap.put(HashMap.java:392)
java.util.HashSet.add(HashSet.java:192)
java.util.AbstractCollection.addAll(AbstractCollection.java:319)
soot.toolkits.scalar.SmartLocalDefs\$LocalDefsAnalysis.

copy(SmartLocalDefs.java:160)
soot.toolkits.scalar.ForwardFlowAnalysis.

doAnalysis(ForwardFlowAnalysis.java:127)

5.2.2 HashSet substitution

Although the profiling result shows that the operation on HashMap is the bottleneck, from the trace result,
we can identify the actual bottleneck is the operation on HashSet. In Sun JDK, the HashMap is used
as back end to implement HashSet. According to our optimization strategy, the first try is to use some
other implementation of HashSet to replace Sun’s implementation of HashSet used by abc. The realistic
problem is that the HashSet is used widely in abc and it is hardto replace all the use of HashSet in abc
source code. However from the profiling result, we know that the most time consuming HashSet operation
is invoked in SmartLocalDefs class. Thus, we can replace this HashSet use with another implementation
in SmartLocalDefs class to see the effect. In this project, we tried THashSet, FastSet, IDHashSet and
MyHashSet to replace HashSet implementation.

1. GNU Trove: THashSet

We used the THashSet implementation provided by GNU Trove [11] (High performance collections
for Java) package to replace HashSet in SmartLocalDefs.java. GNU Trove is claimed to be a fast,
lightweight of implementations of the java.util Collections API. However the timing result shows that
almost all benchmarks are slightly slow down after using THashSet instead of HashSet. We only get
speed up for eigenv benchmark with the amount of 12% and for lod-sim benchmark with the amount
of 1.8%. Table 9 shows the timing result. The slowdown for allother benchmarks is due to extra
overhead of loading extra Trove java classes.

2. Javolution: FastSet

Javolution [12] is a Java library for real-time and embeddedsystems. Its aim is to make the application
faster and more time-predictable. In our experiment, we useJavolution 1.4 version. Table 10 shows
the compilation speed of all benchmarks get worse performance after using FastSet to replace HashSet
in SmartLocalDefs class. Especially for the lod-sim benchmark, we got 17% slowdown.

3. IDHashSet

After examining SmartLocalDefs.java, ForwardFlowAnalysis.java, FlowAnalysis.java and Abstract-
FlowAnalysis.java, we know that those classes just add the objects contained in the DirectedGraph
object into HashSet or remove those objects from HashSet. They do not duplicate the objects or
change the objects contained in the DirectedGraph object. That is, the objects stored in the Hash-
Set have the character of reference-equality semantics. Sowe could use IdentityHashSet instead of
HashSet. However, in Sun’s JDK there is no IdentityHashSet but IdentityHashMap. The solution
turned to use the IdentityHashMap to implement HashSet. Table 11 shows the timing result after
using IDHashSet.

13

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.685 -1.61 2.6301 2.6475 -0.67

helloworld 3.48 3.49 -0.29 3.4475 3.465 -0.51
asac 11.9676 12.0026 -0.3 11.8826 11.9276 -0.38

nullcheck 78.945 80.205 -1.6 78.7625 80.0251 -1.61
eigenv 65.9425 58.0451 11.98 65.83 57.985 11.92
wig11 60.0176 59.9325 0.15 59.205 59.2801 -0.13

dcm-sim 25.0401 25.4526 -1.65 24.9526 25.3651 -1.66
lod-sim 45.8626 45.0401 1.8 45.7201 44.9426 1.71
weka 32.9875 33.1326 -0.44 32.795 33.0175 -0.68

weka-tm 34.4325 34.6851 -0.74 34.25 34.4725 -0.65

Table 9: Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version using
THashSet instead of HashSet in SmartLocalDefs

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.7 -2.18 2.6301 2.67 -1.52

helloworld 3.48 3.585 -3.02 3.4475 3.525 -2.25
asac 11.9676 12.59 -5.21 11.8826 12.5125 -5.31

nullcheck 78.945 81.0551 -2.68 78.7625 80.9125 -2.73
eigenv 65.9425 66.05 -0.17 65.83 65.9626 -0.21
wig11 60.0176 61.2126 -2.0 59.205 60.4326 -2.08

dcm-sim 25.0401 25.8701 -3.32 24.9526 25.77 -3.28
lod-sim 45.8626 53.8525 -17.43 45.7201 53.7376 -17.54
weka 32.9875 34.2651 -3.88 32.795 34.11 -4.01

weka-tm 34.4325 35.3251 -2.6 34.25 35.1526 -2.64

Table 10: Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version using
FastSet instead of HashSet in SmartLocalDefs

This result is similar as the one by using THashSet (as shown in Table 9) in that we only get notable
speed up for one benchmark. This time, we get great improvement on null benchmark with 26%.
However, we also slow down wig11, dcm-sim, lod-sim, weka, weka-tm benchmarks around 4% to
6%.

4. MyHashSet

In the forward and backward flow analysis, the copy, merge andflowThrough operations add elements
to or remove elements from HashSet which cause the set to allocate or remove Entry objects in the
underlining implementation of HashSet. Since during the flow analysis, the add and remove elements
are used frequently, is it possible that we can reuse those allocated Entry objects to improve the
performance for the bottleneck of java.util.HashMap.addEntry?

In order to do this, we need to maintain a list to record the deleted Entry objects in the under-
lying implementation of HashSet. When addEntry is called, we first check whether the deleted

14

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6401 0.1 2.6301 2.6151 0.58

helloworld 3.48 3.4826 -0.08 3.4475 3.4576 -0.3
asac 11.9676 12.2401 -2.28 11.8826 12.155 -2.3

nullcheck 78.945 58.495 25.91 78.7625 58.395 25.86
eigenv 65.9425 65.8825 0.1 65.83 65.805 0.04
wig11 60.0176 62.315 -3.83 59.205 60.7701 -2.65

dcm-sim 25.0401 25.8325 -3.17 24.9526 25.7175 -3.07
lod-sim 45.8626 47.9051 -4.46 45.7201 47.51 -3.92
weka 32.9875 34.8026 -5.51 32.795 34.5526 -5.36

weka-tm 34.4325 36.65 -6.45 34.25 36.06 -5.29

Table 11: Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version using
IDHashSet instead of HashSet in SmartLocalDefs

list is empty or not. If the list is not empty, we just take one to use without creating a new En-
try object. This solution consists several classes to implement: soot.toolkits.scalar.MyHashMap,
soot.toolkits.scalar.MyHashSet, soot.toolkits.scalar.MyAbstractMap, soot.toolkits.scalar.MyLinkedHashSet
and
soot.toolkits.scalar.MyLinkedHashMap.

We calculated the reused Entry objects during the compilation of benchmarks as shown in Table 12.
We reused a lot of Entry objects for nullcheck, eigenv, lod-sim, weka and weka-tm benchmarks,
especially for eigenv benchmark, around 740000.

Benchmark Reused Entry Objects
hellono 0
helloworld 2
asac 3739
nullcheck 21032
eigenv 739597
wig11 4863
dcm-sim 4361
lod-sim 20000
weka 22187
weka-tm 23254

Table 12: Number of reused Entry objects in MyHashMap

However, when we profiling the abc with MyHashSet modification, we only get great speed up for
nullcheck benchmark, around 29% as shown in Table 13. Although the number of reused Entry
objects for eigenv benchark is the greatest in our test suite, we get 4% slowdown surprisingly. The
benefits we get by reusing Entry objects may be offset by the cost to maintain the deleted Entry objects
list and reset the entry fields for reuse. To demonstrate thispoint, we listed the addEntry method in
MyHashMap class in Listing 7.

15

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6451 -0.1 2.6301 2.625 0.2

helloworld 3.48 3.52 -1.15 3.4475 3.4726 -0.73
asac 11.9676 11.9851 -0.15 11.8826 11.8875 -0.05

nullcheck 78.945 56.1151 28.92 78.7625 55.9726 28.94
eigenv 65.9425 68.9275 -4.53 65.83 68.8125 -4.54
wig11 60.0176 60.7726 -1.26 59.205 60.0226 -1.39

dcm-sim 25.0401 25.05 -0.04 24.9526 24.9775 -0.1
lod-sim 45.8626 47.66 -3.92 45.7201 47.5426 -3.99
weka 32.9875 33.0275 -0.13 32.795 32.8925 -0.3

weka-tm 34.4325 34.6801 -0.72 34.25 34.51 -0.76

Table 13: Compilation time comparison between abc-1.2.0 version and the modified abc-1.2.0 version using
MyHashSet instead of HashSet in SmartLocalDefs

From Listing 7, we know that in order to reuse Entry objects weneed first check whether the deleted
list is empty or not. If it is not empty, we take out the first deleted Entry object from the list and reset
the field values to reuse it. So the extra overhead caused by the process to reuse Entry objects may
slow down benchmarks.

Listing 7 addEntry() method in the MyHashMap.java
void addEntry(int hash, Object key, Object value, int bucketIndex) {

if (deletedEntryList != null) {
//exists deleted entry objects, reuse one
Entry e = deletedEntryList;
deletedEntryList = deletedEntryList.next;
e.resetEntry(hash, key, value, table[bucketIndex]);
table[bucketIndex] = e;

}else{ // create new Entry object
table[bucketIndex] = new Entry(hash, key, value, table[bucketIndex]);

}
if (size++ >= threshold)

resize(2 * table.length);
}

16

5.2.3 Code optimization

Another approach we used is to optimize the source code in SmartLocalDefs and related classes. Our main
aim is to reduce the methods invocation which will finally caused HashMap.addEntry method be invoked.
Another aim is to get rid of unnecessary method calls and avoid unnecessary class casting. The following
are the code optimizations we took in SmartLocalDefs class and related classes.

1. SmartLocalDefs.LocalDefsAnalysis.flowThrow()

Listing 8 Original code of flowThrough() method in SmartLocalDefs class in Soot 2.2.3 version
protected void flowThrough(Object inValue, Object unit, Object outValue) {

Unit u = (Unit) unit;
HashSet in = (HashSet) inValue;
HashSet out = (HashSet) outValue;
out.clear();
Set mask = (Set) unitToMask.get(u);
for(Iterator inUIt = in.iterator(); inUIt.hasNext();) {

final Unit inU = (Unit) inUIt.next();
if(mask.contains(localDef(inU))) out.add(inU);

}
Local l = localDef(u);
if(l != null) {

out.removeAll(defsOf(l));
if(mask.contains(localDef(u))) out.add(u);

}
}

In the original code (as shown in Listing 8), there are two places to invoke localDef() method with
same parameter ”u”. This can be reduced to one method call by introduce a variable to store the
result returned from localDef() method. Another potentialperformance penalty in this method is that
it will add local ”inU” into HashSet ”out” even if ”inU” is contained in defsOf(l). Later on, it uses
removeAll() to get rid of those added local elements contained in defsOf(l). To reduce the cost, we can
check whether ”inU” is contained by defsOf(l) before add it into HashSet ”out” as shown in Listing
9.

17

Listing 9 Modified code of flowThrough() method in SmartLocalDefs class in Soot 2.2.3 version
protected void flowThrough(Object inValue, Object unit, Object outValue) {

Unit u = (Unit) unit;
HashSet in = (HashSet) inValue;
HashSet out = (HashSet) outValue;
out.clear();
Set mask = (Set) unitToMask.get(u);
Local l = localDef(u);
HashSet allDefUnits = null;
if (l == null){//add all units contained by mask

for(Iterator inUIt = in.iterator(); inUIt.hasNext();) {
final Unit inU = (Unit) inUIt.next();
if(mask.contains(localDef(inU)))

out.add(inU);
}

} else {
//check unit whether contained in allDefUnits before add into out set.

allDefUnits = defsOf(l);
for(Iterator inUIt = in.iterator(); inUIt.hasNext();) {

if(mask.contains(localDef(inU))){
//only add unit not contained by allDefUnits
if (allDefUnits.contains(inU))

out.remove(inU);
else

out.add(inU);
}

}
out.removeAll(allDefUnits);
if(mask.contains(l)) out.add(u);

}
}

2. SmartLocalDefs.LocalDefsAnalysis.copy()

Listing 10 Original code of copy() method in SmartLocalDefs class in Soot 2.2.3 version
protected void copy(Object source, Object dest) {

HashSet sourceSet = (HashSet) source;
HashSet destSet = (HashSet) dest;
destSet.clear();
destSet.addAll(sourceSet);

}

In this method (as shown in Listing 10), it first clear the destination set then add all elements from the
source set into destination set. If some elements in the source set already contained in the destination

18

set, we may waste time to remove the elements then add them again. So we use two iterations to
achieve the copy operation. First iteration performs intersection of two sets. Second iteration adds all
elements contained in source set but not contained in destination set into destination set. Listing 11
shows the copy method after modification.

Listing 11 Modified code of copy() method in SmartLocalDefs class in Soot 2.2.3 version
protected void copy(Object source, Object dest) {

HashSet sourceSet = (HashSet) source;
HashSet destSet = (HashSet) dest;
if (destSet.size() > 0)
//retain all the elements contained by sourceSet
destSet.retainAll(sourceSet);

if (sourceSet.size() > 0) {
//add the elements not contained by destSet
for(Iterator its = sourceSet.iterator(); its.hasNext();) {

Object o = its.next();
if (!destSet.contains(o)){//need add this element.

destSet.add(o);
}

}
}

}

3. UnitGraph.getSuccsOf()

Listing 12 Original code of getSuccsOf() method in SmartLocalDefs class in Soot 2.2.3 version
public List getSuccsOf(Object u)
{

if(!unitToSuccs.containsKey(u))
throw new NoSuchElementException("Invalid unit " + u);

return (List) unitToSuccs.get(u);
}

In this method (as shown in Listing 12), the returned result of unitToSuccs.get(u) itself can be used
to check whether the map unitToSuccs contains key ”u” or not.If the returned result is null means
the map contains no mapping for that key. So we can avoid the call to unitToSuccs.containsKey(u)
method. Listing 13 shows the getSuccsOf method after modification.

4. BackwardFlowAnalysis.doAnalysis()

In this method (as shown in Listing 14), the TreeSet implementation uses an integer comparator to
sort the elements inserted into it. The integers of the elements are assigned according to the sequence
that those elements appeared in the orderedUnits. It uses a HashMap to associate the elements with
their integer values. This implementation has two performance issues: (1) it introduces the expense

19

Listing 13 Modified code of getSuccsOf() method in SmartLocalDefs class in Soot 2.2.3 version
Modified code of getSuccsOf method in UnitGraph class:

public List getSuccsOf(Object u)
{

List l = (List) unitToSuccs.get(u);
if (l == null) throw new RuntimeException("Invalid unit " + u);
return l;

}

Listing 14 Original code snippet of doAnalysis() method in BackwardFlowAnalysis class in Soot 2.2.3
version
final Map numbers = new HashMap();
List orderedUnits = new PseudoTopologicalOrderer().newList(graph);
int i = 1;
for(Iterator uIt = orderedUnits.iterator(); uIt.hasNext();) {

final Object u = (Object) uIt.next();
numbers.put(u, new Integer(i));
i++;

}

TreeSet changedUnits = new TreeSet(new Comparator() {
public int compare(Object o1, Object o2) {

Integer i1 = (Integer) numbers.get(o1);
Integer i2 = (Integer) numbers.get(o2);
return -(i1.intValue() - i2.intValue());

}
});

of creating HashMap object and putting elements with their order values into HashMap object; (2) it
uses the Boxing and Unboxing conversions for getting and setting the integer values in HashMap.

To avoid using a HashMap object, we could add an integer field to the object as the order value for
the comparator. After doing experiments and checking the source code of Soot, we know that the
elements added into TreeSet are Unit interface type objects. After further review the source code, we
added the int field ”sortOrder” into AbstractUnit class which is the ancestor of all other classes which
implements Unit interface or its subinterfaces. For the Jimple internal representation, the ancestor
class AbstractStmt which represents the unit Statement also extends the AbstractUnit class. Once we
determine the actual object type, the next thing we need to dois to downcast the Object into Abstrac-
tUnit type and use the integer field to compare in BackwardFlowAnalysis.doAnalysis() method. The
modification is shown in Listing 15.

5. ForwardFlowAnalysis.doAnalysis()

Similarly, we made the modification for doAnalysis method inForwardFlowAnalysis class as we did
for BackwardFlowAnalysis.doAnalysis().

20

Listing 15 Modified code snippet of doAnalysis() method in BackwardFlowAnalysis class in Soot 2.2.3
version
List orderedUnits = new PseudoTopologicalOrderer().newList(graph);
int i = 1;
for(Iterator uIt = orderedUnits.iterator(); uIt.hasNext();) {

final AbstractUnit au = (AbstractUnit) uIt.next();
au.sortOrder = i;
i++;

}

//use a field (sortOrder) in AbstractUnit object to store the order value
//for the comparator instead of using HashMap to associate object with
//its order value.
TreeSet changedUnits = new TreeSet(new Comparator() {

public int compare(Object o1, Object o2) {
return -(((AbstractUnit)o1).sortOrder-((AbstractUnit)o2).sortOrder);

}
});

5.2.4 Performance of combined optimization

In the above two sections, we introduced various HashSet substitute implementations and the code optimiza-
tions in Soot. What is the performance after combining thesetwo kind of optimizations and which HashSet
implementation should we use in Soot? To answer those questions, we measured the performance of the
various combination optimizations.

1. HashSet + Code Optimizations Since the original abc 1.2.0version uses the HashSet in its implemen-
tation, this combination is actually the case that only use the code optimization on the original abc
1.2.0 version.

Table 14 shows that we get the performance improved on all benchmarks. The most improvement we
get is 5.4% for eigenv benchmark.

2. THashSet + Code Optimizations

Table 15 shows that all code optimization we took only get some speed up on the benchmarks com-
pared with no code optimization at all (as shown in Table 9). But we still slow down on hellono
and helloworld benchmarks. Compared with the combination of HashSet plus code optimizations (as
shown in Table 14), the combination of THashSet plus code optimizations get worse performance.

21

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6301 0.48 2.6301 2.59 1.53

helloworld 3.48 3.4576 0.65 3.4475 3.4175 0.88
asac 11.9676 11.53 3.66 11.8826 11.4625 3.54

nullcheck 78.945 75.375 4.53 78.7625 75.1025 4.65
eigenv 65.9425 62.3826 5.4 65.83 61.9425 5.91
wig11 60.0176 57.8825 3.56 59.205 56.8476 3.99

dcm-sim 25.0401 24.2126 3.31 24.9526 24.055 3.6
lod-sim 45.8626 43.51 5.13 45.7201 43.1401 5.65
weka 32.9875 31.48 4.57 32.795 31.1901 4.9

weka-tm 34.4325 33.2225 3.52 34.25 32.8525 4.09

Table 14: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (using HashSet in SmartLocalDefs plus Code Optimizations)

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.695 -1.99 2.6301 2.6575 -1.05

helloworld 3.48 3.525 -1.3 3.4475 3.4575 -0.3
asac 11.9676 11.7251 2.03 11.8826 11.6501 1.96

nullcheck 78.945 77.4075 1.95 78.7625 77.2401 1.94
eigenv 65.9425 60.54 8.2 65.83 60.4476 8.18
wig11 60.0176 58.6801 2.23 59.205 57.965 2.1

dcm-sim 25.0401 24.6401 1.6 24.9526 24.5226 1.73
lod-sim 45.8626 44.0426 3.97 45.7201 43.9325 3.91
weka 32.9875 32.25 2.24 32.795 32.0025 2.42

weka-tm 34.4325 33.3375 3.19 34.25 33.13 3.28

Table 15: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (using THashSet in SmartLocalDefs plus Code Optimizations)

22

3. FastSet + Code Optimizations

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.695 -1.99 2.6301 2.6601 -1.15

helloworld 3.48 3.5726 -2.67 3.4475 3.5176 -2.04
asac 11.9676 12.425 -3.83 11.8826 12.3626 -4.04

nullcheck 78.945 78.5901 0.45 78.7625 78.4326 0.42
eigenv 65.9425 64.1651 2.7 65.83 64.0726 2.67
wig11 60.0176 59.3501 1.12 59.205 58.7451 0.78

dcm-sim 25.0401 25.0725 -0.13 24.9526 24.9675 -0.06
lod-sim 45.8626 51.9351 -13.25 45.7201 51.885 -13.49
weka 32.9875 33.2001 -0.65 32.795 33.01 -0.66

weka-tm 34.4325 34.2675 0.48 34.25 34.1025 0.44

Table 16: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (using FastSet in SmartLocalDefs plus Code Optimizations)

Table 16 shows that the compilation speeds of the benchmarksget a little faster compared with only
use FastSet (as shown in Table 10). Now we get three benchmarks speed up: nullcheck, eigenv and
wig11. Compared with the combination of HashSet plus code optimizations (as shown in Table 14),
the combination of FastSet plus code optimizations get worse performance on all benchmarks.

4. MyHashSet + Code Optimizations

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6451 -0.1 2.6301 2.6125 0.67

helloworld 3.48 3.4751 0.15 3.4475 3.44 0.22
asac 11.9676 11.6175 2.93 11.8826 11.5351 2.93

nullcheck 78.945 55.2151 30.06 78.7625 54.4676 30.85
eigenv 65.9425 61.815 6.26 65.83 61.4675 6.63
wig11 60.0176 58.3101 2.85 59.205 57.0175 3.7

dcm-sim 25.0401 24.3201 2.88 24.9526 24.2176 2.95
lod-sim 45.8626 44.6076 2.74 45.7201 44.315 3.08
weka 32.9875 31.6151 4.17 32.795 31.3526 4.4

weka-tm 34.4325 33.2101 3.56 34.25 33.0751 3.44

Table 17: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (using MyHashSet in SmartLocalDefs plus Code Optimizations)

Table 17 shows similar results as the combination of THashSet plus code optimizations (as shown in
Table 15), speed up on almost all benchmarks compared with only use MyHashSet in SmartLocalDefs
class (as shown in Table 13). When compared with the combination of HashSet plus code optimiza-
tions (as shown in Table 14), it get better performance on nullcheck, eigenv and weka-tm benchmarks.
Especially for nullcheck benchmarks, around 25% speed up.

23

5. IDHashSet + Code Optimizations

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6401 0.1 2.6301 2.5926 1.43

helloworld 3.48 3.4825 -0.08 3.4475 3.4275 0.59
asac 11.9676 11.875 0.78 11.8826 11.8275 0.47

nullcheck 78.945 56.2476 28.76 78.7625 56.0601 28.83
eigenv 65.9425 64.9725 1.48 65.83 64.975 1.3
wig11 60.0176 60.9051 -1.48 59.205 59.235 -0.06

dcm-sim 25.0401 25.0176 0.09 24.9526 24.8925 0.25
lod-sim 45.8626 45.6026 0.57 45.7201 45.4451 0.61
weka 32.9875 33.1425 -0.47 32.795 32.9501 -0.48

weka-tm 34.4325 35.1151 -1.99 34.25 34.9426 -2.03

Table 18: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (using IDHashSet in SmartLocalDefs plus Code Optimizations)

Table 18 shows that we only get notable improvement on nullcheck benchmark, around 29% speed
up.

From the above experiments and analysis, both the combination of HashSet plus code optimizations and the
combination of MyHashSet plus code optimizations are good solutions for the java.util.HashMap.addEntry
bottleneck.

5.2.5 Profiling result after optimization

After applied the code optimization on abc 1.2.0 (the combination of HashSet plus code optimizations), we
profiled all the benchmarks again and found that java.util.HashMap.addEntry is still the bottleneck for most
benchmarks. But the results from Table 19 shows the percentages that java.util.HashMap.addEntry accounts
for are all become smaller than the original result shown in Table 8, especially for eigenv benchmark which
now only accounts for 7.69% of total time profiling, 3.3% percent down. And the total percentage of top 5
for compiling eigenv benchmark is from 30.41% down to 21.54%.

rank self accum count trace method
1 7.69% 7.69% 17904 11322 java.util.HashMap.addEntry
2 5.51% 13.20% 12831 11318 java.util.HashMap.addEntry
3 4.79% 17.99% 11143 11319 java.util.HashMap.addEntry
4 2.34% 20.33% 5435 12679 java.util.AbstractList.iterator
5 1.22% 21.54% 2834 13501 java.util.HashMap.addEntry

Table 19: Top 5 time consuming methods by using Xrunhprof to profile abc-1.2.0 version compiling eigenv
benchmark

24

5.3 Abc Modification

During profiling and comparing the generated class files, we found that abc does not generate identical codes
sometimes. The mainly difference as we showed in using Soot to optimization abc in 5.2, the names of some
inlined methods are different. After examining the source code about abc inlining and debugging the running
result, we found that during around inlining abc produce many duplicated methods. And after finish inlining,
abc normalized the inlined methods to compare the inlined methods and removed the duplicated ones.

The procedure to create new inlined methods and the comparison of two methods are both expensive. To
create an new inlined method, it not only takes time to createmethod signature but also needs to copy each
statement from the method to be inlined. And finally it also need to modify the original method invocation
statement to invoke the new inlined method.

The way to compare whether two methods are identical is also expensive, it needs three steps:

1. Normalize method name and local variables,

2. Construct a string by contacting the method signature andstatements in the method body,

3. Compare the String representation of the methods are identical or not.

If we could avoid creating the duplicated inline methods in the first place we can not only avoid creating
new methods but also could reduce the number methods we need to compare. Another reason we could
speed up abc by changing the algorithms of weaving and inlining phases is based on the fact that weaving
and inlining stages are the most time consuming phases in thewhole compilation process from our profiling
result described in section 4.

In order to change the algorithms in weaving and inlining phases, we need to figure out the original ones.

The original procedure for around weaving:

1. For each matched joinpoint, assign a unique shadow id to identify it;

2. Extract the shadow codes to form a new method. To avoid confusing with shadow method, we call it
the shadow extracted method. The naming of new created shadow extracted method uses the unique
shadow id with ”shadow$” as prefix;

3. Replace the shadow codes with the method invocation to theshadow extracted method;

4. Move the shadow extracted method call into proceed method. The shadow extracted method call is
insert into switch statement based on the unique shadow id inthe proceed method;

5. Replace the shadow extracted method call with ”around$” advice method call which in turn invokes
the proceed method call;

The original procedure of around advice inlining is for eachshadow method which originally contains the
matched joinpoint, recursively inline the methods which are called in its body.

According to the original procedure of around weaving, the method invocation contained in the shadow
methods are ”around$” methods. So for around advice inlining, the process is as follows:

1. When inlining ”around$” methods invoked in shadow method, inline proceed methods which are
called in the ”around$” methods into advice class;

25

2. Before inlining ”proceed$” methods, inline the ”around$” methods which is called in the proceed
methods.

After recursively inlining the ”around$”, ”proceed$” methods, the body of ”proceed$” methods will be
moved into ”around$” methods and the ”around$” methods are renamed as ”inline$” methods.

After weaving and inlining, the original abc used an additional optimization phase to remove duplicated
methods and unused methods.

This implementation strategy is clean: at each phase, it only focuses on one thing without considering other
tasks. However it also has its drawbacks as it increases compilation time.

In the original abc-1.2.0 version it does not check whether shadow extracted methods are identical or not
when weaving around advices. So no matter whether two shadowextracted methods are identical or not,
abc will generate all of them in the target classes. For example, in SortItemMain.jimple decompiled from
SortItemMain.class generated by abc-1.2.0, there are two identical shadow extracted methods shadow$30
and shadow$45, as showing in the Listing 16.

In the modified abc, before creating a new shadow extracted method, we check whether there is any identical
shadow extracted method already residing in the shadow class or not. If there is one, we will use that one
without creation of an new one. By doing this, we can get several benefits:

1. Avoid creating a new shadow method when there exists duplicated one;

2. Save time in later phase that removes unused methods;

3. Reduce the target classes size.

When we check the decompiled SortItemMain.class file generated by our modified abc-1.2.0 version,
only shadow$30 is remained in it.

Another performance issue in the original procedure of around advice inlining is that it does not check
whether the new created ”inline$” method exists in the advice class or not. So this cause abc generates
many duplicated methods and uses an additional phase to remove those duplicated methods.

To improve the performance, when doing inlining, we first check whether there is an identical ”inline$”
method in the target class or not by using the signature constructed by contacting three integer type argu-
ments values, arguments types, method’s signature and target class name. If there exits one, we just reuse it
instead of creating an new ”inline$” method.

Similarly, we can

1. Avoid creating a new ”inline$” method when there exists duplicated one;

2. Save time in later pass to check and remove duplicated methods.

In our test suite, asac, nullcheck and eigenv benchmarks allcontain around advices that could be inlined.
The result in Table 20 shows that we do get much improvement for those three benchmarks. For nullcheck
benchmark, we get great improvement, around 32% speed up. Wealso get speed up around 8% for asac and
4% for eigenv benchmark.

26

Listing 16 Jimple code snippet in SortItemMain class generated by original abc-1.2.0 version
public static final java.lang.String shadow$30
(AroundAspects, java.lang.StringBuffer){

AroundAspects r0;
java.lang.StringBuffer r1;
java.io.PrintStream $r3;
java.lang.String $r4;
r0 := @parameter0: AroundAspects;
r1 := @parameter1: java.lang.StringBuffer;
if r0 != null goto label0;
staticinvoke <AroundAspects: AroundAspects aspectOf()>();

label0:
$r3 = <java.lang.System: java.io.PrintStream err>;
virtualinvoke $r3.<java.io.PrintStream:

void println(java.lang.String)>("before method call");
$r4 = virtualinvoke r1.<java.lang.StringBuffer:

java.lang.String toString()>();
return $r4;

}

public static final java.lang.String shadow$45
(AroundAspects, java.lang.StringBuffer){
AroundAspects r0;
java.lang.StringBuffer r1;
java.io.PrintStream $r3;
java.lang.String $r4;
r0 := @parameter0: AroundAspects;
r1 := @parameter1: java.lang.StringBuffer;
if r0 != null goto label0;
staticinvoke <AroundAspects: AroundAspects aspectOf()>();

label0:
$r3 = <java.lang.System: java.io.PrintStream err>;
virtualinvoke $r3.<java.io.PrintStream:

void println(java.lang.String)>("before method call");
$r4 = virtualinvoke r1.<java.lang.StringBuffer:

java.lang.String toString()>();
return $r4;

}

Besides the improvement on the compiling speed of those benchmarks, we also reduce the size of generated
class files by removing the duplicated extracted shadow methods. 4 As shown in Table 21, for the bench-

4Here the ”duplicated” means that the two methods are same except the method name.

27

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.6451 -0.1 2.6301 2.5875 1.62

helloworld 3.48 3.48 0.0 3.4475 3.4101 1.09
asac 11.9676 11.03 7.84 11.8826 10.935 7.98

nullcheck 78.945 53.695 31.99 78.7625 53.625 31.92
eigenv 65.9425 63.4751 3.75 65.83 63.355 3.76
wig11 60.0176 59.8301 0.32 59.205 59.0226 0.31

dcm-sim 25.0401 25.105 -0.26 24.9526 25.0051 -0.22
lod-sim 45.8626 46.0625 -0.44 45.7201 45.9401 -0.49
weka 32.9875 32.87 0.36 32.795 32.7125 0.26

weka-tm 34.4325 34.41 0.07 34.25 34.295 -0.14

Table 20: Compilation time comparison between original abc-1.2.0 version and the modified abc-1.2.0
version (avoiding duplicated methods)

marks with around advices (asac, nullcheck and eigenv benchmark)5, we reduce the generated class files
size greatly. We reduce the half class file size for eigenv benchmark, 22% for nullcheck and 15% for asac
benchmark.

benchmark
generated classes file size
org mod reduced(%)

hellono 465 465 0
helloworld 2228 2228 0

asac 64781 54998 15.1
nullcheck 301964 236743 21.6

eigenv 157596 79955 49.27
wig11 761894 761894 0

dcm-sim 240105 237682 1.01
lod-sim 252020 252020 0
weka 313900 313900 0

weka-tm 326871 326871 0

Table 21: File size (in byte) comparison between the classesgenerated from original abc-1.2.0 version and
the modified abc-1.2.0 version (avoiding duplicated methods)

5.4 Using Soot to optimize abc

Besides the manual optimization described in the previous sections, we also tried to use the Soot optimiza-
tion tool to automatically optimize abc. The reason that we do this is that if the optimization tool can speed
up abc then we can study what kind of optimizations performedby optimization tool and take advantage of
them to manually optimize the abc source code.

5Although dcm-sim benchmark also contains around advices, the around advices are applied in very few places in the applica-
tion. So we did not reduce the generated class file size greatly.

28

Since Soot itself is a Java optimization framework, we used it to optimize abc and see what is the effect of
using Soot to optimize abc compiler.

5.4.1 Process to use Soot to optimize abc

The process to use Soot to optimize abc is as follows:

1. Compile abc and generate class files.

2. Use Soot to optimize those generated abc class files (only use -app option).

3. Copy soot/baf/toolkits/base/peephole.dat into corresponding Soot output directory.

4. Use the jar command to pack generate classes into a new abcsoot.jar.

5. Time the compilation time of abc with the new abcsoot.jar package.

5.4.2 Profiling result of Soot-optimized abc

After using Soot-optimized abc, the compilation speed of all benchmarks are reduced, especially for hellono,
helloworld, asac benchmarks (speed up nearly 10.89%, 7.62%and 3.83% respectively).6 The comparison
result is shown in Table 22.

benchmark
wall time cpu time

org mod improvement(%) org mod improvement(%)
hellono 2.6426 2.355 10.89 2.6301 2.3025 12.46

helloworld 3.48 3.2151 7.62 3.4475 3.1825 7.69
asac 11.9676 11.51 3.83 11.8826 11.415 3.94

nullcheck 78.945 78.175 0.98 78.7625 78.0075 0.96
eigenv 65.9425 65.3276 0.94 65.83 65.2051 0.95
wig11 60.0176 59.5725 0.75 59.205 58.8101 0.67

dcm-sim 25.0401 24.5626 1.91 24.9526 24.455 2.0
lod-sim 45.8626 45.6876 0.39 45.7201 45.5726 0.33

Table 22: Compilation time comparison between abc-1.2.0 version and the Soot-optimized abc-1.2.0 version

5.4.3 Analysis of Soot-optimized abc

In order to know whether Soot-optimized abc generate identical class files with the ones generated by orig-
inal abc, we wrote the program to automatically compare generated class files with original abc generated
class files, decompile the class files into Jimple files if the class files are different and differentiate the Jimple
files to generate report. The following are the differences observed by examining the generated report files.

1. the inlined method name are different: (as shown in Listing 17)7

6At the begining, when we running our tests on a single CPU computer we get great improvement on hellono, helloworld, asac
and nullcheck benchmarks, nearly 40%, 33%, 15% and 31% respectively.

7The method body of inline126around$18 and inline$114$around$18 are same.

29

Listing 17 Difference of Jimple codes decompiled from SortTrace.class generated by original abc-1.2.0
version and the Soot-optimized abc-1.2.0 version
138c138 original abc-1.2.0
< staticinvoke <SortTrace: java.lang.Object inline126around$18

(SortTrace,int[],int,int,QSortAlgorithm)>(r4, r1, i0, i20, r0);
--- Soot-optimized abc-1.2.0
> staticinvoke <SortTrace: java.lang.Object inline114around$18

(SortTrace,int[],int,int,QSortAlgorithm)>(r4, r1, i0, i20, r0);

2. The order of some methods in the class files are different.

3. Some goto labels are different: As shown in Listing 18 and Listing 19, there are several different-
ness: the statement at ”label126:” , ”label28:” and ”label29:”. 8 Despite the fact that goto labels are
different, the semantics of these two code snippets are same.

Listing 18 Jimple code of decompiled from the class file generated by original abc-1.2.0 version
label24:

$r41 = <java.lang.System: java.io.PrintStream out>;
virtualinvoke $r41.<java.io.PrintStream:

void println(java.lang.String)>("Error writing to file");
goto label28;

label25:
$r42 := @caughtexception;
r43 = $r42;

label26:
goto label29;

label27:
throw r43;

label28:
if r30 == null goto label31;
virtualinvoke r30.<java.io.PrintStream: void close()>();
goto label31;

label29:
if r30 == null goto label27;
virtualinvoke r30.<java.io.PrintStream: void close()>();
goto label27;

From above analysis, we know the Soot-optimized abc generates slightly different code from original abc.
But the differences are minor and do not affect the functionality. So we can be sure that Soot-optimized
abc generate class files are equal to original abc generated class files. Then the question comes up, why
is Soot-optimized abc compiler faster compared with original abc compiler and what kind of optimization

8The target label31 codes are same.

30

Listing 19 Jimple code of decompiled from the class file generated by Soot-optimized abc-1.2.0 version
label24:

$r41 = <java.lang.System: java.io.PrintStream out>;
virtualinvoke $r41.<java.io.PrintStream:

void println(java.lang.String)>("Error writing to file");
goto label29;

label25:
$r42 := @caughtexception;
r43 = $r42;

label26:
goto label28;

label27:
throw r43;

label28:
if r30 == null goto label27;
virtualinvoke r30.<java.io.PrintStream: void close()>();
goto label27;

label29:
if r30 == null goto label31;
virtualinvoke r30.<java.io.PrintStream: void close()>();
goto label31;

happened by using Soot to optimize abc compiler? To answer these questions, we need to profile these two
compilers and see which phase we get great improvement during compiling the benchmarks.

Table 23 shows the timing result at each phase for original abc 1.2.0 version and Soot-optimized abc 1.2.0
version.9

In order to identify which phase account for most of the overall improvement, based on Table 23, we
compute the percentage of improvement on each phase accountfor total overall improvement by (org phase
- Soot phase)/(org total time - Soot total time)*100. Table 24 shows the generated results. In this table,
for each benchmark, the phase with largest positive value isthe phase we get greatest improvement. If the
values are negative at some phases, that means we get slow down at those phases.

Table 23 and Table 24 show that the Soot-optimized abc speedsup compilation at Init. of Soot phase, Load-
ing Jars phase, Create Polyglot Compiler phase and Polyglotphase. For all other phases, Soot-optimized
abc compiler did not get all benchmarks speed up. It speed up some benchmarks but at the same time it also
slow down other benchmarks.

In order to know the reason that Soot-optimized abc get speedup at Init. of Soot phase for all benchmarks,
we profiled the classes loaded at Init. of Soot phase. There are total 83 basic classes (93 for trace matching)
are loaded at this phase for both original abc version and Soot-optimized abc. Those 83 basic classes are
from java.io, java.lang, org.aspectbench.runtime and org.aspectj.lang packages. Comparing the loading time
for each class, we see that Soot-optimized abc load many classes in shorter time compared with original abc
did. We decompiled the class files related to Init. of Soot phase, soot.Scene class and soot.SootResolver
class, but we did not see many differences between original abc version and Soot-optimized abc version.

9As the space limited, here we only list 6 benchmarks.

31

phase name
hellono helloworld asac nullcheck eigenv wig11

org Soot org Soot org Soot org Soot org Soot org Soot

Init. of Soot 974 818 978 816 980 818 971 823 980 817 972 824
Loading Jars 4 4 4 3 19 6 37 25 4 4 680 192
Create polyglot compiler 245 219 244 218 244 220 243 222 256 220 244 219
Polyglot phases 506 445 877 868 1569 1526 2550 2480 1676 1601 17074 16048
Initial Soot resolving 80 75 85 74 188 166 989 928 105 101 571 1394
Soot resolving 1 0 0 0 0 0 0 0 0 0 1 0
Aspect inheritance 0 0 2 2 2 2 1 1 2 2 1 1
Declare Parents 1 1 1 2 2 1 2 1 2 1 1 1
Intertype Adjuster 15 22 13 16 13 20 13 17 13 17 72 54
Jimplification 90 74 260 175 574 542 985 953 1030 1012 6661 6695
Fix up constructor calls 1 1 1 1 1 1 1 1 1 1 1 1
Update pattern matcher 147 132 84 67 198 180 106 100 76 60 56 64
Weave Initializers 9 8 7 8 9 8 21 13 7 8 73 51
Load shadow types 0 0 0 0 0 0 0 0 0 0 0 0
Compute advice lists 47 44 108 98 305 301 545 522 397 511 4798 4850
Add aspect code 12 14 20 22 13 14 14 14 20 18 14 14
Weaving advice 17 17 136 130 1616 1593 6301 6287 20593 20832 5469 5606
Exceptions check 3 2 5 4 18 18 39 37 586 31 82 75
Advice inlining 6 7 37 36 1350 1357 25675 25761 14983 15198 2860 1870
Interproc. constant propagator 11 8 1 4 147 145 2205 2209 1535 1578 72 73
Boxing remover 0 1 5 5 450 450 874 868 365 362 48 48
Duplicates remover 0 0 6 4 654 648 18086 18068 2326 2328 635 653
Removing unused methods 1 1 4 5 35 34 227 230 84 82 90 92
Specializing return types 0 0 0 0 19 20 170 162 60 59 0 1
Soot Packs 101 106 174 159 2425 2413 14745 13756 17297 17458 14214 15075
Soot Writing Output 100 107 151 149 739 749 2785 3799 1542 1562 5073 4900
total result 2371 2106 3203 2866 11570 11232 77585 77277 63940 63863 59762 58801

Table 23: Compilation time (in millisecond) comparison at each phase between original abc-1.2.0 version
and the Soot-optimized abc-1.2.0 version

The main difference are the order of some declaration statements and the names of local variables. Finally,
we realized that the real reason is that the library path we set to run those two compilers. When we use Soot
to optimize abc, it will automatically include the application packages abc used and optimize them too. So
the Soot-optimized abc jar file contains the tool packages itused such as Polyglot, Soot, Jimple and so on.
Thus when run Soot-optimized abc, we did not set the tool packages in the classpath as we did for original
abc. After we put the tool packages and original abc into one jar and set the classpath like we did for Soot to
optimize abc, we did the experiment again. This time, Soot tooptimize abc only get little speed up at Init.
of Soot phase, from 0.3 to 3.6%.

To know why Soot-optimized abc get speed up in other phases for some benchmarks, we compared the
Soot-optimized abc class files with original abc class files and decompiled the different files into Jimple
codes. However we did not find many differences between the decompiled Jimple codes that could be the
reason for speeding up the compilation speed.

6 Conclusion

In section 5.2, we described various soot optimizations andthe combinations. According to the experimen-
tal results, we found that there is no obvious better one between using HashSet and MyHashSet in flow
analysis. In this section, we use those two optimizations tocombine with abc optimization to evaluate the
overall improvements. In Table 25, we shows the individual optimization and two overall combination op-

32

phase name
the improvement(%) at each phase

hellono helloworld asac nullcheck eigenv wig11 dcm-sim lod-sim
Init. of Soot 58.87 48.08 47.93 48.06 211.69 15.41 51.63 704.55
Loading Jars 0.00 0.30 3.85 3.90 0.00 50.79 11.04 190.91
Create polyglot compiler 9.82 7.72 7.11 6.82 46.75 2.61 7.80 113.64
Polyglot phases 23.02 2.68 12.73 22.73 97.40 106.77 4.23 400.0
Initial Soot resolving 1.89 3.27 6.51 19.81 5.19 -85.64 19.16 309.1
Soot resolving 0.38 0.00 0.00 0.00 0.00 0.11 0.00 0.0
Aspect inheritance 0.00 0.00 0.00 0.00 0.00 0.00 -0.33 0.0
Declare Parents 0.00 -0.30 0.30 0.33 1.30 0.00 0.33 0.0
Intertype Adjuster -2.65 -0.90 -2.08 -1.30 -5.19 1.88 0.98 -18.19
Jimplification 6.04 25.23 9.47 10.39 23.38 -3.54 -0.65 109.1
Fix up constructor calls 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Update pattern matcher 5.67 5.05 5.33 1.95 20.78 -0.84 2.28 36.37
Weave Initializers 0.38 -0.30 0.30 2.60 -1.30 2.29 0.00 4.55
Load shadow types 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.55
Compute advice lists 1.14 2.97 1.19 7.47 -148.05 -5.42 -8.45 4.55
Add aspect code -0.76 -0.60 -0.30 0.00 2.60 0.00 0.00 -4.55
Weaving advice 0.00 1.79 6.81 4.55 310.39 -14.26 -6.17 504.55
Exceptions check 0.38 0.30 0.00 0.65 720.78 0.73 0.65 4.55
Advice inlining -0.38 0.30 -2.08 -27.93 -279.22 103.02 -7.47 1613.64
Interproc. constant propagator 1.14 -0.90 0.60 -1.30 -55.84 -0.11 0.00 0.0
Boxing remover 0.00 0.00 0.00 1.95 3.90 0.00 2.28 -4018.19
Duplicates remover 0.00 0.60 1.78 5.85 -2.60 -1.88 -0.65 0.0
Removing unused methods 0.00 -0.30 0.30 -0.98 2.60 -0.21 0.00 4.55
Specializing return types 0.00 0.00 -0.30 2.60 1.30 0.00 0.33 0.0
Soot Packs -1.89 4.46 3.56 321.11 -209.09 -89.60 1.30 213.64
Soot Writing Output -2.65 0.60 -2.96 -329.23 -25.97 18.01 21.76 -77.28

Table 24: Improvement at each phase by using Soot-optimizedabc-1.2.0 version

timizations. We can see that when using the combination of MyHashSet, code optimization and abc around
inlining (”All 2” column in Table 25), the compilation speedof almost all benchmarks is slower than the
using of the combination of HashSet, code optimization and abc around inlining (”All 1” column in Table
25). The only exception is nullcheck benchmark where the compilation speed of using ”All 1” is around
24% slower than ”All 2”.10

So we choose ”All 1” as our optimization solution for abc. By using this solution, we get 35% speed up
when compile nullcheck benchmark, 12% for eigenv benchmarkand 10% for asac benchmark.

As to Soot-optimized abc, it only get speed up benchmarks slightly after we reset the classpath setting to
keep consistent with original abc. So it is not worth to deploy a soot-optimized abc.

Another conclusion we get by doing this project is that to speed up a application the most efficient way is
to change the inefficient algorithms. By changing the inefficient algorithms you may get unexpected great
speed up as we did in this project.

7 Future Work

In this project, although we detected and relieved some bottlenecks during the process of abc compilation,
there are still rooms to further optimize abc. Here I list twoissues that may be worth further addressing in
the future.

10The compilation time of using ”All 1” is 51.69s. The compilation time of using ”All 2” is 39.035s.

33

benchmark
org wall time improvement(%)

wall time
Soot Optimization abc All 1: All 2:

HashSet +
code opt
(a)

MyHashSet
(b)

MyHashSet
+ code opt
(c)

around in-
lining (d)

(a) + (d) (c) + (d)

hellono 2.6426 0.48 -0.10 -0.10 -0.10 0.10 -0.19
helloworld 3.4800 0.65 -1.15 0.15 0.00 1.08 -0.08

asac 11.9676 3.66 -0.15 2.93 7.84 10.47 10.35
nullcheck 78.9450 4.53 28.92 30.06 31.99 34.53 50.56

eigenv 65.9425 5.40 -4.53 6.26 3.75 12.08 9.81
wig11 60.0176 3.56 -1.26 2.85 0.32 4.40 4.01

dcm-sim 25.0401 3.31 -0.04 2.88 -0.26 3.35 3.47
lod-sim 45.8626 5.13 -3.92 2.74 -0.44 5.13 4.51
weka 32.9875 4.57 -0.13 4.17 0.36 4.69 4.61

weka-tm 34.4325 3.52 -0.72 3.56 0.07 3.90 3.90

Table 25: Compilation time comparison between original abc-1.2.0 version and the abc-1.2.0 version with
all modifications combined

• Flow Analysis

In this project, although we relieve the severity of the bottlenecks related to Flow Analysis, there still
may be better solution to fully remove them. In this project,we also tried to use bit vector to replace
the HashSet. But due to the variation of the number of elements between benchmarks, this attempt is
less efficient than using HashSet.

• Inline ”shadow$” methods

Currently, abc keeps shadow extracted methods in the shadowclass in order to keep it consistent with
the original source code arrangement: advices are in adviceclasses and the shadow extracted methods
are kept in the shadow classes. In the decompiled Jimple code, we can see many short ”shadow$xxx”
method in the shadow classes. If we can inline those small extracted shadow methods into advice
classes instead of keeping them in shadow classes, it shouldspeed up the execution of the generated
classes. However the drawback of doing this is that it may slow down the compilation speed and
increase the generated class file size.

References

[1] abc: The AspectBench Compiler for AspectJ, ”http://abc.comlab.ox.ac.uk/introduction”

[2] Soot: a Java Optimization Framework, ”http://www.sable.mcgill.ca/soot/”

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and JulianTibble, ”Building the abc AspectJ compiler with
Polyglot and Soot”, Technical Report abc-2004-4, Dec. 2004

[4] Sascha Kuzin, ”Efficient Implementation of Around-Advice for the AspectBench Compiler”, MSc dissertation,
Oxford University, September 2004

34

[5] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and JulianTibble, ”Optimising AspectJ”, PLDI 2005,
Chicago, USA, June 2005

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhotak, Ondrej Lhotak,
Oege de Moor, Damien Sereni, Ganesh Sittampalam, and JulianTibble, ”abc: An extensible AspectJ compiler”,
AOSD 2005, Chicago, USA, March 2005

[7] AspectJ Eclipse project, ”http://www.eclipse.org/aspectj/”

[8] JProfiler, ”http://www.ej-technologies.com/products/jprofiler/overview.html”, EJ Technologies

[9] Jack Shiraza, ”Java Performance Tuning”, 2nd Edition, O’Reilly, 2003

[10] John Jorgensen, ”Speed the Plow - Improving the performance of Soot”, CS621 coruse project report, April 2001

[11] L.Hendren, C.Verbrugge, O.deMoor, and G.Sittampalam, B.Dufour, C.Goard, ”Measuring the dynamic be-
haviour of aspectj programs”, Sable Technical Report 2004-2, March 2004

[12] GNU Trove: High performance collections for Java, ”http://trove4j.sourceforge.net/”

[13] Javolution: Java library for real-Time, embedded and high-performance applications, ”http://javolution.org/”

[14] Polyglot, ”http://www.cs.cornell.edu/projects/polyglot/”

[15] Ivan Kiselev, ”Aspect-Oriented Programming with AspectJ”, Sams, 2002

[16] PARC: the origin of AspectJ project, ”http://www.parc.com/research/projects/aspectj/default.html”

[17] The HPROF Profiler Agent, ”http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html#hprof”

[18] HAT: Heap Analysis Tool, ”https://hat.dev.java.net/”

35

