McGill University
School of Computer Science
Sable Research Group

Metrics for Measuring the Effectiveness of Decompilers and
Obfuscators

Sable Technical Report No. 2006-4

Nomair Naeem Michael Batchelder Laurie Hendren

June 2006

www.sable.mcgill. ca

Contents

1 Introduction 3
2 Related Work 3
3 Metrics 4
3.1 Program Size e e e 5
3.2 NumberofJava Constructs e 5
3.3 Conditional Complexity e e 5
3.4 lIdentifier Complexity e e e e e 6
4 Results 6
4.1 Benchmarks e e 6
4.2 DecompiledCode L e e e 7
421 ProgramSize e e e 8
4.2.2 Conditional Statements e 8
4.2.3 Conditional Complexity e e 9
4.2.4 AbruptControl Flow e e 9
425 LabeledBlocks e e 10
4.2.6 LocalVariables 10
4.2.7 OverallComplexity e e 11
4.3 Obfuscated Code s e 11
431 ProgramSize e e 12
4.3.2 Conditional Statements e 12
4.3.3 Conditional Complexity e e 13
4.3.4 AbruptControl Flow e e 14
4.3.5 LabeledBlocks e e 14
4.3.6 Identifier Complexity e 15
4.3.7 OverallComplexity e e e e e 15
5 Conclusions and Future Work 15

List of Figures

© 00N O Ul WDN P

e el e
A WDNPRFR O

Program size for decompiledcode 8

Conditional statement count for decompiledcode o oL 8
Average conditional complexity for decompiledcode 9
Abrupt control flow count for decompiledcode Lo 10
Labeled block count for decompiledcode 10
Local variable count for decompiledcode oo 11
Overall complexity for decompiledcode oL 11
Program size for obfuscatedcode e 13

Simple conditional statement count for obfuscatedcode - 13
Average conditional complexity for obfuscatedcode oL 13
Abrupt control flow count for obfuscatedcode L 14
Labeled block count for obfuscatedcode Lo 14
Identifier complexity for obfuscatedcode o ... 15
Overall complexity for obfuscatedcode 15

Abstract

Java developers often use decompilers to aid reverse emgigeand obfuscators to prevent reverse engineering.
Decompilers translate low-level class files to Java soundeodten produce “good” output. Obfuscators rewrite class
files into semantically-equivalent class files that areegitfil) difficult to decompile, or (2) decompilable, but puoe
“hard-to-understand” Java source.

This paper presents a set of metrics we have developed tdifyuhae effectiveness of decompilers and obfusca-
tors. The metrics include some selective size and countiglgics, a expression complexity metric and a metric for
evaluating the complexity of identifier names.

We have applied these metrics to evaluate a collection afrdpiders. By comparing metrics of the original Java
source and the decompiled source we can show when the ddemsnmioduced “good” code (as compared to the
original code). We have also applied the metrics on the codduyzed by obfuscators and show how the metrics
indicate that the obfuscators produced “hard-to-undedStaode (as compared to the unobfuscated code).

Our work provides a first step in evaluating the effectiverefsddecompilers and obfuscators and we plan to apply
these techniques to evaluate new decompiler and obfudeatsrand techniques.

1 Introduction

Two popular tools in the development of Java applicatioeslacompilersandobfuscators Decompilers are used in
reverse engineering to recreate Java source from classrfdeids. Several Java decompilers are known to be quite
good, especially when decompiling class files that have Ipeeduced using a knowpavac compiler. That is,
Java decompilers often produce source code‘tbaks good”. Obfuscators, on the other hand, are used to prevent
effective reverse engineering. Obfuscators convert ¢llessinto semantically-equivalent class files which eitl{&)

are difficult or impossible to decompile or (2) lead to decdetpsource that ishard to understand”.

The purpose of this paper is to provide metrics that can giyahese more abstract notions tttie output of the
decompiler looks goodbr that“the output of the obfuscator is hard to understandiistorical and current software
measurement techniques and metrics are heavily gearedd®a@ftware engineering uses. In particular, it has been
suggested that metrics can be used to measure programrfonigaefd to detect error-prone software modules. In
contrast, we are more interested in metrics that can helpmgpare two versions of the same program. Specifically,
we want to compare an original source program against iterdpited version to determine if the decompiler is
producing clear and understandable output. Further, we twactompare the obfuscated output to determine if it is
harder to understand.

This paper provides two major contributions. First, we definset of simple metrics aimed at measuring the
effectiveness of decompilers and obfuscators. Secondder ¢o validate our metrics and study the effectiveness of
a variety of tools, we have applied them to output of threeodsiilers including our Soot-based Dava decompiler
[13, 14] and two obfuscators, including JBCO (Java Bytedob@iscator) which we are currently developing as part
of the Soot toolkit [17, 20].

The structure of the paper is as follows. In Section 2 we gi®an overview of some of the most related previous
work on software metrics with a focus on why those metricsaarare not suitable for our purposes. In Section 3
we introduce our metrics and in Section 4 we provide an oeandgf our benchmarks and evaluate the metrics in the
context of decompilers and obfuscators. Finally, conolusiand future work are given in Section 5.

2 Related Work

There has been much research into software complexity angt matrics have been proposed and embraced by the
software engineering community throughout the years. dfaasxamples are McCabe’s cyclomatic number [12], and
Halstead'’s programming effort measures [6]. More recdotr&sfhave been geared towards quality analysis for large-
scale software projects and processes including desiguoiple violation detection, tracking module evolution J11
and software engineering process improvement [4].

These complexity metrics are designed to measure effeetds code reliability, programming effort, and clarity
(or cognitive expressibility) [19]. What this paper focasm is the specific idea of cognitive expressibility. When a
decompiler tries to recover the (higher-level repres@riatource code of a binary program itis effectively atténg

to recover a cognitive representation - a human-readabéd (east programmer-readable) version that is semalytical
equivalent to the binary. Likewise, when an obfuscator eatso garble a program it is attempting to decrease the
cognitive representability of the program by adding comipyeof some kind.

Because the quality of the cognitive representation is eyrilterest, some well-developed metrics in the liter-
ature are nonetheless somewhat useless here. McCabe@n@yi number, for example, shows the complexity of
the control flow through a piece of code. It is the number ofditional branches in the flowchart. However, if a
program segment is compiled into a binary fornB and then decompiled into a source code segn$érthen S
andS’ will have the same cyclomatic number regardless of how tltemgiler chooses to represent loops and other
branching instructions in the program. Therefore the roetdes not discern any differences between the cognitive
representations &f ands’.

Similarly, Halstead’s metrics are not all suitable for oase. They are most often used during code developmentin
large projects in order to track complexity trends. A spikélalstead metrics can signify a highly error-prone module,
for example. However, this is not our concern. We wish to us#ios to compare two high-level representations of a
program, both with the same semantics. Halstead’s metoicotlend themselves well to this problem.

Halstead’s program volume metric is a measure of the minimumber of bits required for coding a program.
In the case of Java, non-local variables (either class fieldstatic fields) and method names are preserved in the
compiled bytecode. A common Java obfuscation techniquerisrtame these identifiers, often with shorter and more
incomprehensible names. This reduces the program volutreddmireduces the ability of a decompiler to recover the
full cognitive representation of the original program.

Indeed, many metrics are designed to compare large soffwvajects in a very abstract way in order to predict
maintainability, reliability and/or programming effoilost of these are not useful to the particular problem at hand

However, some of the criticism that Halstead's measures bagn over the years - specifically the argument that
they are a bad measure because they consider lexical andlteatmplexity rather than the structural complexity of
a program [7] - is a key ingredient to our own proposed metritise high-level measures of textual structure and
complexity are in fact exactly what we wish to measure, aliily control flow complexity.

Finally, there has been a lot of work on developing metricstfe analysis of Object-Oriented projects [2]. Specif-
ically, they try to measure the "Object-Orientedness” & ftameworks that projects employ, as opposed to the low-
level instruction sequences found on at the method or fandével. Examples include Chidamber and Kemerer’s
Depth of Inheritance Tree, Number of immediate sub-clasta<lass, and Number of classes to which a class is cou-
pled. In fact there has been fairly passionate debate a®tos#fulness of older metrics that involve graph-oriented
models, such as the cyclomatic number, when evaluating pattetriented system [5]. Nevertheless, these OOD
metrics are also of little use here because we are compaigigal, decompiled, and obfuscated bytecode - none of
these transformations currently affect the object-ogdmtature of a prograr.

We are much more interested in the high-level human-readstlrce code representation of a program’s meth-
ods. This makes the approach in [16] a good starting poirgy #valuate only source code and they measure such
intricacies as identifier length, nesting depth, and decisiode complexity. However, their goal is to identify oerts
in the set of functions of a programd.,, they try to answer the question "What functions don’t faithin normal
ranges”). They suggest that these functions may indicatsasf poor design or complex functionality. Our approach
is not intended for highlighting problem areas of a progranrather to compare two different semantically-equivalen
versions of an entire program as a measure of the effecgasfecode transformation tools.

3 Metrics

We experimented with a wide variety of metrics and in thistisecwe present those metrics that we found to be
most useful for the purposes of evaluating decompilers drfdscators. We first present the simplest metrics for
size (Section 3.1) and counting relevant constructs (&e@&i2). One of the key differences among decompilers is
their treatment of conditional expressions and in Secti®@w& define aonditional complexitynetric designed to

expose those differences. Finally, a special problemdhiced in decompilation and and obfuscation is the naming of

1Although the more advanced techniques currently beingémphted in our JBCO obfuscator will obfuscate the objeietrted design, in
which case some OOD metrics may become applicable.

identifiers. We introduce aidentifier complexitynetric in Section 3.4.

All of the metrics were computed using specialized traversaer the abstract system tree (AST) representation
of Java source as produced by the polyglot-based Soot frdnte

3.1 Program Size

A simple program size metric is useless in comparing differentprograms other than to say one is larger than the
other. However, this metric can be very useful in comparimg tepresentations of theameprogram. Arguably,
more verbose code is more complex and this metric is a goddlbigel measurement to see if decompilers produce
unnecessarily verbose code and if obfuscators insertéelssseode.

For our purposes, we defipeogram siz€o be the number of nodes in program’s AST representatiomshMigeng
size in this way discounts comments, spurious parentheskarsy program formatting issues.

3.2 Number of Java Constructs

Another simple metric for the comprehensibility of a Javagram is the frequency of different Java constructs in the
code. Of course it is necessary to identify which constractsstrong indicators of complexity. After considering
empirical results, we narrowed our attention to four catego

e | f andl f - El se statements (Simple Conditionals)
e Abrupt control flow pr eak andcont i nue)
e Labeled blocks

e Local variables

Simple conditionals help to indicate the amount of decigitaking in a program. A more complex program will
have more branching and therefore mbfeandl f - El se statements.

Abrupt control flow directives are even more indicative ofrgdex programming. It is argued that the use of these
statements decreases the tractability of control flow aatktbre increases code complexity.

Labeled blocks are compound statements which are explialteled. While programmers will often section their
code using blocks, the existence of a label suggests th& Harsed for controlling execution flow (through the use
of a explicitly labeledor eak or cont i nue). Other than exception handling, this is one of the mostearctontrol
flow mechanisms in Java.

Local variable counts can also indicate complexity. Thearinformation one must consider when reading code
the harder it is to understand. Programmers don’t usuadigterunnecessary identifiers, but tools like decompilets an
obfuscators often do.

3.3 Conditional Complexity

Boolean expressions which decide control flow in a prograe,(those deciding f , For , andWhi | e branching)
play a particularly crucial role in analyzing code. Asiderfr boolean constants ((ue or f al se), the simplest
conditional expressions consist of a unary boolean litemddoolean variable. This is assigned a complexity weight of
1. However, conditional expressions can be aggregationssiings of simpler expressions. A boolean literal can be
reversed with the negation operataoy relational operators{(, >, <=, >=, ==) can be used to compare expressions.
We argue that these operators, while more complex than desbuaplean, are still fairly easy to understand and
therefore we give them a weight of 0.5. Expression aggregatsing the && or|| operators requires the reader of
code to evaluate the meaning of two subexpressions anddtoemtbine the two - arguably a more complex task - so
we define the weight for these operators to be 1.

The complexity for each boolean expression in a progranmiplyi the sum of all the weights described above.
Taking the subtree that represents the expression, thededithe tree are boolean literals (increasing the complexi

by 1 each) and every internal node is either an unary, relakior binary operation (increasing the complexity by 0.5,
0.5, or 1, respectively).

Given this description, the expressiarh && ! done would be assigned a complexity of d<b refers to two
variables (weight of 1 each) and the relational operatoingiit a complexity of 2.5.! done is a boolean with a
negation operator and is given 1.5. The aggrega8ié) édds another 1 to the overall complexity for a total of 5.

Average conditional complexifgr a program is simply the average of the conditional coxifikss over all boolean
expressions in the program.

3.4 Identifier Complexity

The name used for an identifier can provide valuable insigbtthe context in which the variable is used. This in turn
can ease a programmer’s task of understanding the codeednamst obfuscators garble identifiers in a program. We
compute the complexity of identifiers by calculating a suncafplexities for all identifiers where each is weighted
by a relative importance. An identifierhas it's importance factaf(z) defined as follows:

4, if x is a Method

3, if x is a Class
I(z) =<2, if X is a Field

1.5, ifxisaFormal

1, if X is a Local

We argue that method names are particularly important fogqam understanding so we give them the highest im-
portance value. Each identifier's complexity is computethassum of token and character complexities (described
below) multiplied by their importance factor.

Token complexity is a measure of recognizable languagehaMpkens are parsed by delimited by non-alphas and
uppercase alphas. For exampet ASTNode is split intoget , AST andNode. Notice ASTNode is split into two
tokens, the second one starting with a capital alpha). 8ipjl _ Junk$$nane is broken intoJunk andnane.
Tokens are then counted and tb&en complexitis defined as the ratio of total tokens to those found in aatietiy?

If the dictionary contains the tokeg®t andNode but notAST then token complexity foget ASTNode will be 1.5.

Character complexity is a ratio of total characters to thdassified as non-complex. Non-complex characters
are those which arpot part of a sequence of non-alphas of length greater than 1.cii&ecter complexity for the
identifier___Junk$$nane, for example, is 1.625 as there are five complex to 8 non-cexngharacters (, _, _
,$,%and J, u, n, k, n, a m, e, respectively). Note that a sesuef non-alphas of length one is not considered as
complex since it very likely exists as a word separator, aeih_Socket .

4 Results

In order to exercise our metrics we performed two sets of exy@nts on a set of small-to-medium sized benchmarks.
In Section 4.1 we introduce the benchmarks, in Section 4.@nesent our first set of experiments aimed at examining
decompilers and in Section 4.3 we examine our second sepefiexents with obfuscators.

4.1 Benchmarks

The benchmarks have been culled from a graduate-level ¢enggtimizations course where students were required
to develop interesting and computation-intensive progréon comparing the performance of various Java Virtual
Machines. Each one was written in the Java source languabeamnpiled withj avac. The following is a brief
description of each.

2The dictionary used in our experiments was a standard énigligyuage dictionary. However, one could use a speciglgser dictionary that
also contained domain-specific identifiers.

Asac: is a multi-threaded sorter which compares the performahtteedBubble Sort, Selection Sort, and Quick Sort
algorithms.

Chromo: implements a genetic algorithm, an optimization technidpa uses randomization instead of a determin-
istic search strategy. It generates a random populatiohraihcosomes. With mutations and crossovers it tries
to achieve the best chromosome over successive generations

Decode: implements an algorithm for decoding encrypted messageg Ghamir's Secret Sharing scheme.
FFT: performs fast fourier transformations on complex doubkzision data.

Fractal: generates a tree-like (as in leaves) fractal image.

LU: implements Lower/Upper Triangular Decomposition for rixafiactorization.

Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoreticalequpation to pi for a given alpha.

Sliding: solves the well-known Sliding Block Puzzle Problem.

Traffic: is an animation of a road intersection controlled by a trafigmal. It uses multithreading to simulate cars
moving through the intersection.

Triphase: performs three separate numerically-intensive prograiiise first is linpack linear system solver that
performs heavy double precision floating-point arithmefice second is a heavily multithreaded matrix multi-
plication algorithm. The third is a multithreaded variahttee Sieve prime-finder algorithm.

The benchmarks we selected are not large (our size metfwigrsin Figure 1), but are in fact quite varied and
exhibit many different properties and coding styles.

4.2 Decompiled Code

Decompilation is the process of retrieving a high-leveresgntation from a lower-level representation of a program
In the case of Java the lowest level of representation iscbyie, a language for the Java Virtual Machine similar, but
still higher level than, actual machine or assembler codeceytecode is already a higher-level representatiom tha
pure machine code, it is in fact possible to retrieve well¥fed, valid, and compilable Java source code from it in
most normal cases.

There exists a number of Java decompilers which performevebytecode specifically produced by Sun’s Java
j avac compiler. The most popular of these are Jad [8] and SourdeA#8]. When given bytecode produced by
a knownj avac compiler, these decompilers produce very good output tsecthey recognize the code patterns
known to be created byavac and simply recreate the equivalent source code. If unkncattems appear in the
bytecode, then SourceAgain and particularly Jad are véepafmable to fully decompile programs into valid source.
Thesgavac-specificlecompilers are therefore often not able to handle bytepomiuced from other sources such as
optimizers, instrumenters, obfuscators and third-pastygilers generating bytecode from non-Java source largguag

In contrast to javac-specific decompilers, our Soot-basaehiecompiler was created to handle arbitrary byte-
code. Dava does not specifically look for patterns exhibitedavac output; it operates on the idea thay valid
bytecode should be decompilable. While this requires muaternomplicated decompilation techniques, it is a more
robust approach since even simple obfuscators can tramgimgrams into bytecode that is not recognizabjesasac
output. However, there is a price to pay. The output of Davg ma “look good”. In fact, the original version of
Dava (henceforth referred to Bava(Original) produced semantically-correct, but ofteigly” code. More recently
we have built a new backend for Dava that transformstigdy” code into code thatooks better” [15]. We refer to
this new version of Dava @3ava(Improved)

3We would have liked to experiment with some larger benchsaskwell, but in order to do so in a rigorous manner all of treodepilers and
obfuscators would have to work correctly on those benchmarkis appears not to be the case. As the other tools matdrigemome more robust
on larger applications, it will be possible to experimenthwarger programs.

Although we have previously given specific examples to campiae output of the decompilers, we have been
unable to quantify the quality of their output. Thus, thepmse of the experiments in this section is to quantify how
well the various decompilers perform and, in particulagreine how much better Dava(Improved) is compared to
Dava(Original).

4.2.1 Program Size

Since each decompiler has its own source code formattirig, stye normalized all output with a style formatter
(JRefactory’s JavaStyle [9]) in order to remove these diffiees. The formatter ensures that the AST contains the
same number of AST nodes for the same constructs {ablock with one statement in its body is calculated the
same whether brackets exist, distinguishing the block am@ound statement, or not). Figure 1 shows the number
of nodes in the AST for all benchmarks. Traffic is largest withhase, sliding, and chromo following it.

8000 OOriginal
7000 BJad —
6000 [SourceAgain

O Dava(Improved)
W Dava(Original)

5000
4000 -
3000
2000 -
1000 4
0 4 L1
Fractal asac triphase LU decode probe sliding traffic Matrix FFT chromo

Figure 1: Program size for decompiled code

The outputs from the different decompilers do show somemae in the size of the code. Dava(Original) produces
the largest ASTs, as was expected. However, Dava(Impréveth)e to decrease program sizes considerably. Most of
this size reduction can be attributed to the removal of aljtumpps, labeled blocks, and the aggregation of conditional
statements using the boolean && afjidbperators. The output produced by Jad and SourceAgainlysnatches
original source very closely, an expected result giverrthgé of pattern matching to recognize constructs produced
byj avac.

4.2.2 Conditional Statements

Since Dava(Original) did not deal with short-circuit cantilow created by && and| operators, it produces moké
andl f - El se statements. Dava(lmproved) implements numerous aggoegeansformations, greatly reducing the
number of conditionals, as supported by the metrics in Ei@uattests to this faét.

160 O Original

140 OJad

120 [SourceAgain

100 O Dava(Improved)
W Dava(Original)

80 +
60
40
20 4

Fractal asac triphase probe sliding traffic Matrix ~ chromo

Figure 2: Conditional statement count for decompiled code

The largest peaks for the number of conditionals are fromalJ@asiginal). With Dava(Improved), however, there
is a drastic drop in these constructs which, in most casesh@aathat of the other decompilers. Interestingly, all de-
compiler output (except Dava(Original)) for the slidingisemark contain fewer conditionals than the original seurc

4Note that in this and subsequent graphs we do not show résubenchmarks for which the metrics are the same, or neaglsame, for all
versions of the benchmark. If the reviewers prefer we caludtecthose in the final version of paper.

This would indicate that the benchmark’s original code useny simple non-aggregated conditional statements and
was perhaps written by a novice programmer. An examinatidghi® benchmark proved this to be so. Another in-
teresting observation is that the general strategies imaproved) sometimes find more aggregation opportunities
than Jad and SourceAgain (asac and chromo), and sometirdeddimer (triphase). This demonstrates that different
decompilation strategies can impact the quality of the outp

4.2.3 Conditional Complexity

Conditional complexity is a measure of how complex the baolexpressions within conditional construcis (

| f - El se, and loop constructs) are. Conditional complexity incesaas boolean subexpressions are aggregated
using the && or|| operators. At the same time the use of negations (!) alseasers conditional complexity. Figure 3
shows conditional complexity for the benchmarks.

For most benchmarks Jad and SourceAgain produce code wittsathe same measure as the original. Small
variations occur when a boolean flag is represented usingethated flag and vice versa.

4 O Original
OJad
35 E SourceAgain i

O Dava(Improved)
W Dava(Original)

2.5 1H

Fractal asac triphase probe sliding LU traffic Matrix chromo
Figure 3: Average conditional complexity for decompiledieo

An exception to this is the sliding benchmark. Here we seedthahe decompilers increase the complexity by
almost the same amount. The decompilers all detect the ehanaggregate multiple conditions and in doing so
increase the conditional complexity, thereby redudifcgandl f - El se statements.

Comparing Dava(Improved) and Dava(Original) we see thattapom the probe benchmark there is a definite
increase in conditional complexity implying the aggregatof conditions. When we investigated the probe code, we
noticed that whereas Dava(Original) was creating conditiof the form “!flag” Dava-Improved was able to switch
the bodies to have conditions of the form “flag”. Furtherréh@as no chance of aggregation in the code. Thus, the
removal of negation decreases the complexity and we semtthie complexity values for probe.

By examining the metrics for the original metrics, we see gheonditional complexity between 2 and 3 is normal.
In the future, a metric-aware Dava could use its aggregatamsformation sparingly in an attempt to maintain this
level.

4.2.4 Abrupt Control Flow

Eliminating Br eak andCont i nue statements is one of key transformations implemented iraQaoproved). We
argue that these abrupt control flow devices, of all Javatoarts, add the most complexity to source code because they
represent disjoint execution flow. The more abrupt edge® thee in a program, the less the code reads sequentially.
This makes it very difficult for a programmer because it iases the "problem space” by increasing the number of
scoping levels that must be kept track of, as well as the ¢ohed disparate code chunks.

Out of all the benchmarks, sliding and traffic were the onlg®which had a sizable number lof eak state-
ments. All decompilers end up introducing some abrupt flowthis number is usually very low for javac-specific
decompilers, Jad and SourceAgain, as seen in Figure 4. Athjsris due to the matching of code patterns to obtain
concise output.

100 +—— OOriginal

OJad

@ SourceAgain

@ Dava(Improved)
M Dava(Original)

80 +——

60 -

40 -

20

O,m

asac triphase probe sliding LU traffic chromo

Figure 4: Abrupt control flow count for decompiled code

Dava(Original), on the other hand, suffers greatly by pridg code with many complicatdal eak statements
nested withinLabel ed- Bl ock constructs. This is because the low-level bytecode reptesd of its control flow
through onlyl f andGot o instructions; a naive decompiler will take the simplesttecand transform these into abrupt
br eaks. The impact of more complex abrupt flow transformationspgaémented in Dava(Improved), can be seen
in the reduction of abrupt statements for Dava(Improveaaspared to Dava(Original). In many cases Dava is able
to produce fewer, if not the same, number of abrupt statesreengad and SourceAgain. However sliding and traffic
are two benchmarks which still show there is room for improeat.

4.2.5 Labeled Blocks

Directly related to abrupt statements are the number ofddlddocks present in decompiled code. Labeled blocks are
especially bad programming practice and, in fact, they esate the previous problems with abrupt control flow by
allowing more disjoint execution jumps than available witilabelecbr eak statements. Unsurprisingly, no labeled
blocks appear in the original source of any of the benchmdddand SourceAgain are able to maintain this minimum.
The general restructuring algorithm in Dava(Original) toe other hand, produces a high number (Figure 5). Luckily,
Dava(Improved) shows a 75% reduction over Dava(Original).

25

20 E Dava(lImproved)
15 M Dava(Original)
10 -
5 LI I
0 ‘ —
asac triphase decode probe sliding traffic ~ chromo

Figure 5: Labeled block count for decompiled code

4.2.6 Local Variables

Dava(Original) produces many local variables in its outpithis is because Dava takes its input fr@® MP which

has been computed from the low-level Soot IR which uses maesi hariables in order to get simple and precise
compiler analyses. With Dava(Improved), copy eliminatiord constant propagation is used to considerably reduce
the number of locals (Figure 6). Jad and SourceAgain ougpafjain, very close to the original for this metric.

An exception to this is triphase where we see a very high nufdrelad. Inspection of Jad’s output for this
benchmark shows that it is unable to handle aggregatedritpptiint and double precision calculations. These are
broken down into 3-address form where each statement intexda new local variable.

10

140 OOriginal)
OJad
B SourceAgain S
O Dava(Improved)

W Dava(Original)

120

80 4

60

40

20 +

asac triphase decode probe sliding traffic Matrix chromo FFT

Figure 6: Local variable count for decompiled code

4.2.7 Overall Complexity

In order to provide one summary metric, we experimented witrariety of composite metrics. We found a good
overall complexity metric which is defined by first expregsgach component metric as a normalized value with
respect to the value for the original Java benchmark, and ¢lenbining the normalized values, each component
multiplied by a constant representing that metric’s impoce. The sum of the constants is 1, so that when comparing
the original javac source to itself will always result in arecall metric of 1.

For example, for the size component we compute the nornablizkie by (size of decompiled benchmark)/(size
of original benchmark) and we multiply this normalized v@hy 0.2. Figure 7 gives the result using 0.2 * size + 0.2 *
if_count + 0.2 * condcomplexity + 0.1 * nurmabrupt + 0.1 * nurdabeled + 0.2 * nurdocals, where each component
of this metric corresponds to normalized values of the o8 presented in subsections 4.2.1 through 4.2.6.

OOriginal
25 BJad
B SourceAgain
O Dava(Improved)
W Dava(Original)

Fractal asac triphase decode probe sliding LU traffic Matrix chromo FFT

Figure 7: Overall complexity for decompiled code

Using this overall metric we can see that Jad and SourceAga@uce decompiled code that is close to the original
code (remember that these benchmarks have not been olgitistat thus javac-specific decompilers work well for
them). We can also observe that Dava(Original) does in fatyre (ugly) code that is not as similar to the original
code, but that the additional transformations implemeirté@ava(Improved) do improve upon this substantially.

4.3 Obfuscated Code

Obfuscation deals with altering a program in order to makeaite obscure or confusing to understand. An obfuscator
may work on a high-level or low-level representation of thegvam, or both. Obscuring high-level code contributes

to a decrease in overall comprehensibility and by obsculiadgow-level code, obfuscators can make it more difficult

for decompilers to regenerate source code at all.

Although for a long time Java programs were mostly obfustatechanging the names of identifiers (JShrink,
RetroGuard), new techniques have emerged which performratdiow obfuscation. One such obfuscation is the
introduction of opaque predicates [3]. These predicatascad be statically decided through analyses such as copy
propagation and therefore they introduce a level of conifylésuch as undecidably dead code) in the program that a

11

reverse-engineering tool such as a decompiler is unabéntove or simplify. Zelix Klassmaster is a notable example
in this category of second-generation tools [10]. We uses$tizaster for most of our experiments in this section.

Finally, new ideas in Java-specific obfuscations is leatbragnew third generation. JBCO (Java ByteCode Obfus-
cator) is an obfuscator that we are currently working on Wigierforms such convoluted transformations as to render
current decompilers useless. These transformations thlentage of the fact that there are many valid, but obscure,
uses of Java bytecode that do not translate naturally teleigd Java. Thus, decompilers are not able to handle these
obfuscations. However, for this paper we require correcbd®iled source code in order to calculate our metrics.
Thus, for the purposes of this paper we enable only the theginseration name obfuscation and add some method
indirection with JBCO, so that all of the decompilers willldte able to work correctly.

The experiments in this section were performed as follows.cvated our baseline by first compiling the appli-
cation using an ordinaryavac compiler to produce the class files and then decompiled tbless files with our
Dava decompiler, with all of the advanced transformatiamsed on. This option is labeled Dava(lImproved) in sub-
sequent figures. We used the Dava decompiler because itistrelough to be able to decompile code after first- and
second-generation obfuscations, whereas the other délessngften fail to decompile after the obfuscations.

To create the obfuscated versions of the source code we fiiplied the obfuscators (Klassmaster and JBCO)
to the class files to produce obfuscated class files. We theonggled the obfuscated class files using Dava. We
used Dava in two configurations, ti@riginal one, and thémprovedone where all simplifications are applied. In
the subsequent figures JBCO(Improved) refers to the caseewlgeobfuscated with JBCO and then decompiled with
Dava(Improved) and JBCO(Original) refers to the case wherebfuscated with JBCO and then decompiled with
Dava(Original). Similarly, we created two versions for lassmaster obfuscator.

By comparing the Dava(Improved) versions with JBCO(Imga)vand Klassmaster(Improved) one can observe
the impact the the two obfuscators had on the metrics. By eoimgp the Klassmaster(Improved) to Klassmas-
ter(Original), and similarly comparing JBCO(Improved)BCO(Original), we can observe the impact of the ad-
vanced Dava simplifications in undoing some of the obfusaatintroduced by the obfuscators. These include some
identifier renaming optimizations, control-flow simplift@ns, copy elimination and advanced dead-code eliminatio

Although we computed all the metrics for both obfuscatorgskmaster and JBCO, we only show results for
Klassmaster in many of the figures. This is because JBCO haffewi on some of the metrics since we enable only
two obfuscations: renaming identifiers and moving libraadlscinto new methods with obfuscated names.

4.3.1 Program Size

Figure 8 shows the program size metric. It is clear that bBfBQ and Klassmaster increase the size in all cases.
Comparing the two obfuscators we see that the size increageeater for Klassmaster. This is expected because
Klassmaster adds dead code guarded by opaque predicatdsaahitherefore not be removed by the static analyses
performed by Dava. JBCO size increases are due to the additimethods which are used to invoke library calls
through an extra level of indirection. Therefore, the difece between the unobfuscated Dava(Improved) case with
the JBCO(Improved) case is directly proportional to the banof unique library methods called in the program. A
smart decompiler could apply a refactoring algorithm torowene this obfuscation through re-inlining these unneeded
indirections.

Also interesting is the difference between Klassmasten aitd without Dava’s advanced simplification analyses,
Klassmaster(Original) versus Klassmaster(Improved)is @ifference is most obvious for the decode and chromo
benchmarks. Inthese cases the Dava dead code eliminatiowes a large amount of code introduced by Klassmaster.
Nevertheless, not all dead code is removed because muclisafutarded by opaque predicates. Dava is unable to
statically detect the values of these predicates and héeceode remains. A much more powerful context sensitive
flow analysis would be required to remove the remaining dealé c

4.3.2 Conditional Statements

Figure 9 demonstrates a large increase in the number ofttmmalistatements after obfuscation by Klassmaster. This
is consistent with Klassmaster’s technique of introducedundant or dead code enclosed by simdlestatements.
Dava attempts to aggregate many of the conditionals andarartsnes remove some redundancies, as illustrated by

12

O Dava(Improved)

O JBCO(Improved)

6000 - E@JIBCO(Criginal)

O klassmaster(Improved)
5000 + Wklassmaster(Original)

7000

4000 -

il

Fractal asac triphase decode probe chromo FFT

Figure 8: Program size for obfuscated code

the difference between Klassmaster(Original) and Klassen@dmproved). However, a large number of these condi-
tions still remain.

200

180 O Dava(Improved)
160 O Klassmaster(Improved)
140 M Klassmaster(Original)
120
100 +

80

60

40

20

o4
Fractal asac triphase LU probe sliding traffic Matrix chromo

Figure 9: Simple conditional statement count for obfustatede

4.3.3 Conditional Complexity

Conditional complexity is shown in Figure 10. Here, the @ase in complexity is mainly due to the fact that Klass-
master introduces its own conditional constructs whichsamgple un-aggregated boolean expressions. Hence, al-
though the number of conditional constructs increasesavleage conditional complexity decreases. An additional
possible reason for the drop in complexity is that the oaginytecode is intermixed with obfuscation code. This
inhibits the pattern-based simplifications and therefesaiits in fewer conditional aggregations. The increase see
Klassmaster(Improved) versus Klassmaster(Originaljiestd the aggregation of conditions. Some benchmarks show
a decrease which most likely occurs due to removal of dead adich included complex conditionals.

4

0O Dava(Improved) —
35 - DO Klassmaster(improved) || M
3 -+ —— MKlassmaster(Original) — —
2.5+ [
2
154
14
0.5
o+ | | | | | | | |

Fractal asac triphase decode probe sliding LU traffic Matrix chromo

Figure 10: Average conditional complexity for obfuscatede

13

4.3.4 Abrupt Control Flow

The count of abrupt statementsreak andcont i nue) for the obfuscated code as compared to the un-obfuscated
code is shown in Figure 11. We can see a marked increase iptattatements (particularly in triphase, decode and
chromo).

140

ODava (Improved)

120 ¢ OKlassmaster(Improved)

M Klassmaster(Original)

100 +

60 +
40 +

20 +

T
asac triphase probe sliding traffic Matrix ~ chromo FFT

Figure 11: Abrupt control flow count for obfuscated code

The abrupt metric is particularly useful in identifying oistated code. Abrupt edges in the flow graph of a
program are a direct result of control-flow obfuscation teghes and it clearly worsens the readability. As stated
earlier, a programmer has a lot to keep track of when tryirfgltow abrupt control, especially when execution jumps
directly out of multiple nesting levels. Thus, programmiersd to make sparse use of complex abrupt control-flow,
whereas obfuscators intentionally add them in to comitat control flow.

It is interesting to note that javac-specific decompilershsas Jad and Sourceagain often fail to decompile such
code because the control-flow in the class files does notgmwral to any known structured Java control flow pattern.
Dava succeeds in decompiling and reducing the number opabautrol flow statements due to its use use of graph-
based restructurings.

As demonstrated by comparing Klassmaster(Original) tagti@aster(Improved), the Dava simplifications are able
to restructure some of the code to reduce abrupt control fiomany of the benchmarks, but not all cases of abrupt
control-flow can be removed.

4.3.5 Labeled Blocks

Labeled blocks are shown in Figure 12, correlating closatp the number of abrupt statements. The Klassmas-
ter(Original) case has a large number of labels but Klasgr@sproved) shows that Dava’s simplifications can

reduce these to a more acceptable level. For some bench(fR&ksand probe) all labeled blocks can be removed.
Over the whole benchmark suite 65% of the labeled blockseameved.

40

O Dava(Improved)
OKlassmaster(Improved)
30 M Klassmaster(Original)

35

25 A

20
15 A
10 A

asac triphase decode probe sliding LU traffic Matrix chromo FFT

Figure 12: Labeled block count for obfuscated code

14

4.3.6 Identifier Complexity

Identifier obfuscation is a very important metric for evding obfuscators. Nearly all obfuscators perform identifie
obfuscation and it is perhaps the only technique that iy fraéversible [1]. Figure 13 shows that JBCO performs
identifier obfuscation extremely well based on our metrimdémaster also does well, though a difference between the
Klassmaster(Original) and Klassmaster(lImproved) vataesbe seen due to a basic local variable renaming algorithm
implemented in Dava. Also, removal of dead code reducesatea Mariable count, some of which have complex
names, hence decreasing the complexity.

O Dava(Improved)

400 — @JBCO(Improved)
N @ JBCO(Original)
350 1 OKlassmaster(Improved) o

M Klassmaster(Original)
300 —

250 +

200 +

150 4

T T T
triphase decode probe sliding LU Matrix traffic chromo FFT

Figure 13: Identifier complexity for obfuscated code

4.3.7 Overall Complexity

Figure 14 reports the same overall complexity metric as w@dluced in Section 4.2.7. Note that this metric does
not include identifier complexity, so one should really ddes both the identifier complexity presented in figure 13
and the overall metric in figure 14 which summarizes corfim+ like obfuscations, when considering the effect of
obfuscators.

75 ODava(Improved)
7 @ JBCO(Improved)
6.5 @ JIBCO(Original)
5.2 Oklassmaster(Improved)
5 M klassmaster(Original)
4.5 4
4 4
3.5 1
3 4
2.5
2 4
154
14
0.5
04
1& & < < O O L e Q A
& & & F S % S S & &
& & x@‘é\ & & N & @ 5\‘0 <

Figure 14: Overall complexity for obfuscated code
Considering these two figures we can see that, as expecoteefféict of JBCO is mostly on identifier obfuscation,
whereas Klassmaster shows significant impacts on the gteuof the code. It is also interesting to note that the

Klassmaster(Improved) is closer to the unobfuscated doale Klassmaster(Original), indicating that the advanced
transformations in Dava do help to clean up the code somewhat

5 Conclusions and Future Work

The purpose of this paper was to provide metrics to evalhateffectiveness of decompilers and obfuscators in order
to help quantify if a decompiler produces code that is simibathe original source and if an obfuscator effectively

15

produces code very different from the original.

We first defined a set of metrics that were specifically deslgaelistinguish between two semantically-equivalent
programs. These metrics included a simple size metric,rakweetrics for counting key constructs, a conditional
complexity metric and an identifier complexity metric. Wealsuggested an overall metric which combines the
individual metrics.

In order to evaluate the metrics we examined a collectioreebdhpilers including the javac-specific decompilers
Jad and SourceAgain and two versions of the tool-indepemfara decompiler, the original Dava and a new improved
Dava version which includes transformations to improveghality of the output source. The metrics demonstrated
the general belief that javac-specific decompilers prodocke that is very close to the original source, when used on
unobfuscated class files. The metrics also demonstrateththanproved Dava decompiler produces code more like
the original source than the original Dava.

We also used the metrics to evaluate two obfuscators, aswepsion of our JBCO obfuscator and the KlassMaster
obfuscator. The results show that obfuscators are quiéetdfé in producing Java source that is different and more
complicated than the original source. Size metrics showeat additional code was added, an increase in abrupt
statements and labeled blocks showed an increase in cdiotrotomplexity and increases in identifier complexity
metrics demonstrated that, while simple to perform, nahmging is one of the most effective obfuscation techniques
available.

In the future we plan to use our metrics to evaluate the neasgh of development for both the Dava decom-
piler and the JBCO obfuscator. We would also like to identime useful object-oriented metrics for the use in
investigating third-generation obfuscators.

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 8al®. Vadhan, and K. Yang. On the (im)possibility of obfustg
programs.Lecture Notes in Computer Scien@439:1-??, 2001.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for cbggiented designlEEE Trans. Softw. Eng20(6):476—-493,
1994.

[3] C. Collberg, C. Thomborson, and D. Low. Manufacturingah, resilient, and stealthy opaque construct®rinciples of
Programming Languages 1998, POPL,9fges 184196, 1998.

[4] R. Conn. A reusable, academic-strength, metrics-basédare engineering process for capstone courses anecisojin
SIGCSE '04: Proceedings of the 35th SIGCSE technical syionposn Computer science educatigrages 492-496, New
York, NY, USA, 2004. ACM Press.

[5] L. O. Ejiogu. On diminishing the vibrant confusion in sofire metrics SIGPLAN Not.32(2):35-38, 1997.

[6] M. H. Halstead. Elements of Software Science (Operating and programmistgss series) Elsevier Science Inc., New
York, NY, USA, 1977.

[7] P.G. Hamer and G. D. Frewin. M.h. halstead’s softwarersoé - a critical examination. ICSE '82: Proceedings of the 6th
international conference on Software engineeripgges 197-206, Los Alamitos, CA, USA, 1982. IEEE Computsiedy
Press.

[8] Jad - the fast JAva Decompiletit t p: / / www. geoci ti es. com SiliconVal |l ey/ Bri dge/ 8617/ ad. htni .

[9] JavaStyle - JRefactory’s Pretty Printét.t p: / / www. j r ef act ory. sour cf or ge. net .

[10] Zelix KlassMaster - The second generation Java Obfoscht t p: / / ww. zel i x. con kl assmast er .

[11] G. Langelier, H. Sahraoui, and P. Poulin. Visualizattmlased analysis of quality for large-scale software systeln ASE
'05: Proceedings of the 20th IEEE/ACM international Coefece on Automated software engineeripgges 214-223, New
York, NY, USA, 2005. ACM Press.

[12] T.J. McCabe. A complexity metridEEE Trans. Software Eng2(4):308-320, December 1976.

[13] J. Miecnikowski and L. J. Hendren. Decompiling Javadogide: problems, traps and pitfalls. In R. N. Horspool, cdit
Compiler Constructionvolume 2304 ot ecture Notes in Computer Sciengages 111-127. Springer Verlag, 2002.

[14] J. Miecznikowski and L. Hendren. Decompiling Java gsstaged encapsulation. Broceedings of the Working Conference
on Reverse Engineeringages 368-374, October 2001.

[15] N. A. Naeem and L. Hendren. Programmer-friendly decidedpJava. InProceedings of the 14th IEEE International
Conference on Program Comprhensi@006.

[16] P.N. Robillard, D. Coupal, and F. Coallier. Profilingtseare through the use of metricSoftw. Pract. Exper21(5):507-518,
1991.

[17] Soot - a Java Optimization Framewolii.t p: / / www. sabl e. ntgi | | . ca/ soot /.

[18] Source Again - A Java Decompileiit t p: / / www. ahpah. cont .

16

[19] K.-C. Tai. A program complexity metric based on data fioformation in control graphs. IICSE '84: Proceedings of the
7th international conference on Software engineerpages 239-248, Piscataway, NJ, USA, 1984. IEEE Press.

[20] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Poifiazvand V. Sundaresan. Optimizing Java bytecode usingtha
framework: Is it feasible? In D. A. Watt, edito§ompiler Construction, 9th International Conferens®lume 1781 of
Lecture Notes in Computer Scienpages 18-34, Berlin, Germany, March 2000. Springer.

17

