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Abstract

Software obfuscators are used to transform code so that it becomes more difficult to understand and harder to
reverse engineer. Obfuscation of Java programs is particularly important since Java’s binary form, Java bytecode, is
relatively high-level and susceptible to high-quality decompilation. The objective of our work is to develop and study
obfuscation techniques that produce obfuscated bytecode that is very hard to reverse engineer while at the same time
not significantly degrading performance.

We present three kinds of obfuscation techniques that: (1) obscure intent at the operational level; (2) obfuscate
program structure such as complicating control flow and confusing object-oriented design; and (3) exploit the seman-
tic gap between what is allowed at the Java source level and what is allowed at the bytecode level.

We have implemented all of our techniques as a tool called JBCO (Java Byte Code Obfuscator), which is built on
top of the Soot framework. We developed a benchmark suite forevaluating our obfuscations and we examine runtime
performance, control flow graph complexity and the negativeimpact on decompilers. These results show that most of
the obfuscations do not degrade performance significantly and many increase complexity, making reverse engineering
more difficult. The impact on decompilers was two-fold. For those obfuscations that can be decompiled, readability
is greatly reduced. Otherwise, the decompilers fail to produce legal source code or crash completely.

1 Introduction

Reverse engineering is the act of uncovering the underlyingdesign of a product through analysis of its structure,
features, functions and operation. Analysis is often performed by taking apart the said product to discover the various
pieces or modules that make up its design. Reverse engineering has a long history, including applications in military
and pharmacology industries. It could be argued that software has proven to be among the most susceptible forms
to reverse-engineering. Since software is an easily and cheaply reproduced product (unlike a military bomber, for
example) it must rely on either passive protection such as a patent-law or some form of active protection such as
hiding software applications on servers, encryption or obfuscation. This paper presents and studies a wide range of
techniques for obfuscating Java bytecode.

Obfuscation is the obscuring of intent in design. With software this means transforming code such that it remains
semantically equivalent to the original, but is more esoteric and confusing. A simple example is the renaming of
variable and method identifiers. By changing a method fromgetName to a random sequence of characters such as
sdfhjioew , information about the method is hidden that a reverse-engineer could otherwise have found useful. A
more complex example is introducing unnecessary control flow that is hidden using opaque predicates, expressions
that will always evaluate to the same answer (true or false) but whose value is not possible to estimate statically.
Obfuscation is one of the more promising forms of code protection because it is translucent. It may be obvious to
a malicious attacker that a program has been obfuscated but this fact will not necessarily improve their chances at
reverse-engineering. Also, obfuscation can severely complicate a program such that even if it is decompilable it is
very difficult to understand, making extraction of tangibleintellectual property close to impossible, without serious
time investment.

Java is particularly vulnerable to reverse engineering because its binary form, bytecode, is relatively high-level
and contains considerable information about types, and field and method names. Furthermore, there are often many
references in the code to known fields and methods in publicly-available class libraries, including the standard ones
provided with a Java implementation. Java decompilers exploit these weaknesses and there has been a long history of
decompilers that convert bytecode into quite readable Javasource code, particularly when the bytecode is in exactly
the format produced by knownjavac compilers [13,15–17,19,22].

Java obfuscators are one way of foiling decompilers. These tools convert Java bytecode into semantically-equivalent
bytecode that is difficult to decompile, or even if decompilable is very hard for a programmer or tool to understand.
However, a very important factor is that one wants the obfuscations to make reverse-engineering difficult (the most
pain), but at the same time not hurt performance of the obfuscated application (the least gain). This tradeoff is not
obvious, since the same obfuscations that make it hard for a decompiler may also severely impact the analysts and
optimizations in JIT compilers found in modern Java VirtualMachines (JVMs).

The main goal of our work was to develop and implement a collection of obfuscations that would make reverse
engineering difficult, while at the same time not affect performance too much. We examine some variations of pre-
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viously suggested obfuscations and we also develop some newtechniques, most notably techniques that exploit the
semantic gap between what can be expressed in Java bytecode and what is allowed in valid Java source.

The remainder of the the paper is organized as follows. In Section 2 we give a short summary of previous work
in obfuscation. Section 3 gives a high-level overview of ourJBCO obfuscator. Sections 4 through 6 present our
obfuscations grouped by type: operator-level obfuscation, modifying program structure and exploiting the seman-
tic gap. At the end of each of those sections we summarize the impact of the obfuscations on three decompilers.
Due to space considerations we can only give a brief description of each obfuscation and can’t show the full results
of the obfuscations. However, some detailed examples and some challenge cases for decompilers can be found at
http://www.sable.mcgill.ca/JBCO . In Section 7 we introduce a benchmark set and provide a summary
of the impact of each obfuscation on runtime performance andcontrol-flow complexity. Finally, Section 8 gives
conclusions and future work.

2 Related Work

Obfuscation is a form ofsecurity through obscurity. While Barak argues that there are seemingly few truly irreversible
obfuscations [2] and, in theory, “deobfuscation” under certain general assumptions has been shown by Appel to be
NP-Easy [1], obfuscation is nevertheless a valid and viablesolution for general programs.

Early attempts at obfuscation invariably involved machine-level instruction rewriting. Cohen used a technique
he called “program evolution” to protect operating systemsthat included the replacement of instructions, or small
sequences of instructions, with ones that perform semantically equal functions, instruction reordering, adding or re-
moving arbitrary jumps, and even de-inlining methods [5]. Many of these ideas are now standard.

Much later, a more theoretical approach to obfuscations waspresented by Collberget al. [6]. They outline ob-
fuscations as program transformations and develop terminology to describe an obfuscation in terms of performance
effect and quality. They rely on a number of well-known software metrics [4,12,18] to measure quality. Later, in [7],
they reconsider the concepts of lexical obfuscations (namechanging) and data transformations (e.g., splitting boolean
values into two discrete numerics that are combined only at evaluation time). However, their chief contributions are
in control-flow obfuscations. They make use of opaque predicates to introduce dead code, specifically engineering the
dead branches to have buggy versions of the live branches.

A technique for combining the data of a program with its control-flow was developed by Wanget al. [24], whereby
control and data flow analysis become co-dependent. While not Java-specific, a two-process obfuscation approach
which uses inter-process communication to communicate between a “control-flow” process and a “computation” pro-
cess was presented by Ge.et al. [8]. Unfortunately, this kind of low-level jury-rigging is not possible in Java. A
different multi-process technique for maintaining opaquepredicates presented by Majumdar and Thomborson could
certainly be implemented in Java [14].

Sakabeet al. concentrate their efforts on the object-oriented nature of Java — the high-level information in a
program. Using polymorphism, they invent a unique return type class which encapsulates all return types and then
modify every method to return an object of this type [20]. Method parameters are encapsulated in a similar way
and method names are cloned across different classes. In this way the true return types of methods and the number
and types of a methods parameters are hidden. They further obfuscate typing by introducing anif with an opaque
predicate to branch around new object instantiations whichconfuses the true type of the object and they use exceptions
as explicit control ow. Unfortunately, their empirical results show significantly slower execution speeds — an average
slowdown of 30% — and a 300% blowup in class file size.

Sonsonkinet al. present more high-level obfuscations which attempt to confuse program structure [21]. They
suggest the coalescing of multiple class files into one — combining the functionality of two or more functionally-
separate sections of the program — and its reverse of splitting a single class file into multiple unique units.

The obfuscations presented in this paper build upon both theolder and simple operation-level obfuscations as well
as control flow and program structure obfuscations. The variations that we have implemented have been chosen to
maximize obfuscation, while also minimizing the impact on runtime performance. We have also developed a new set
of obfuscations, different from the others, which exploit the semantic gap between Java bytecode and Java source.
Many of these were inspired by our experiences in building Java bytecode optimizers and and decompilers. The cases
that are difficult for those tools are exactly the cases that should be created by obfuscators.
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3 JBCO Structure

JBCO – our Java ByteCode Obfuscator – is built on top of Soot [23]. Soot is a Java bytecode transformation and
annotation framework providing multiple intermediate representations and infrastructure for dataflow analysis and
transformations. In developing JBCO we use two intermediate representations: Jimple, a typed 3-address intermediate
form; and Baf, a typed abstraction of bytecode.

JBCO is a collection of Jimple and Baf transformations and analyses. Whenever possible, we analyze and trans-
form Jimple, since it is at a higher abstraction and easier towork with. However, some low-level obfuscations require
modifying actual bytecode instructions and for those we work at the Baf level. There are three categories of analyses
and transformations:

Information Aggregators: collect data about the program for other transformations such as identifier names, constant
usage, or local variable to type pairings.

Code Analyses: build new forms of information about the code such as control-flow graphs, stack height and type
data, or use-def chains. These are used to identify where in the program transformations can be applied. For ex-
ample, in order to produce verifiable bytecode we must ensureproper matchings between allocations of objects
and their initializations.

Instrumenters: actually modify the code, adding obfuscations or shuffling the code to obscure meaning.

JBCO can be used either as a command-line tool or via a graphical user interface.1 Each obfuscation can be
activated independently and depending on the severity of the of the obfuscation desired, a weight of 0-9 can be given
where 0 corresponds to no applications of the obfuscations and 9 corresponds to applying it everywhere possible. We
also provide a mechanism to allow developers to guide the obfuscations to specific regions of a program by using
regular expressions to specify certain classes, fields or methods. This is useful when a developer wants certain parts to
be heavily obfuscated or when a specific hot method should notbe obfuscated because of performance considerations.

4 Operator-level Obfuscation

Our first group of obfuscations works at the operator level. That is, we convert a local operation into a semanti-
cally equivalent computation that is harder for a reverse-engineer to understand. These obfuscations are likely to be
decompilable, but the decompiled code is hard to understand. 2

4.1 Renaming Identifiers: classes, fields and methods (RI[C, M,F])

Perhaps one of the simplest, but also very effective, obfuscations is identifier renaming. Java bytecode retains the
names of classes, fields and methods and these names are oftenvery useful for the reverse engineer. For example,
a method calledgetDate , with a return type ofDate is quite explicit. Some of these names cannot be touched
because they may be: defined in libraries, referred to via reflection, or as entry points into the application. However,
for the remaining cases, the fields, methods and classes can be renamed, as long as this remaming is done consistently
through the application.

We have developed two techniques for choosing identifier names. The first is to create random strings using
characters that are hard to distinguish visually. Thus we randomly create valid identifiers from the alphabets of{S,
5 $}, {l,1, I} and{ }. In this case decompiled code would include identifiers likeI1l, Ill, , , S5S$
or SS5$. These identifiers will clearly appear mangled to reverse-engineers and although a tool could replace them
with less visually confusing identifiers, it is not a straightforward process to create semantically meaningful names for
them. Our second technique is to steal names from other partsof the application or standard library. In this case the
getDate may be renamedgetFirstName . This switch is not as obvious to a reverse-engineer or tool and conveys
incorrect semantic information.

1JBCO will soon be released as a new component of Soot.
2For each obfuscation, we give the acronym we use for it. This acronym us used both in the experimental results and also as the flag used to

enable the obfuscation in JBCO.
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4.2 Embedding Constant Values as Fields (ECVF)

Programmers often use constants, particularly string constants, to convey important information. For example, a state-
ment of the formSystem.err.println("Illegal argument, value must be posi tive."); pro-
vides some context to the reverse engineer. The point of the ECVF obfuscation is to move the constant into a static
field and then change references to the constant into references to the field. This could lead to something like
System.err.println( .lI); , which conveys significantly less meaning. If the static field is initialized
only once, an interprocedural constant propagation could sometimes undo this obfuscation. However, if the initializa-
tion of the field is further obfuscated through the use of an opaque predicate, this is no longer possible.

4.3 Packing Local Variables into Bitfields (PLVB)

In order to introduce a level of obfuscation on local variables with primitive types (boolean, char, byte integer), it is
possible to combine some variables and pack them into one variable which has more bits (a long, for example). The
simplest solution would be to pack variables starting from the least-significant or most-significant bit. However, to
provide further confusion we randomly choose a range of bitsto use for each local variable. For example, an integer
variable may get packed into bits 9 through 43. Since each read or write of the original variable must be replaced by
a packing and unpacking operation in the obfuscated code, this can potentially slow down the application. Thus, this
obfuscation is used sparingly and applied randomly to only some of the locals. Without further obfuscation of the
constants used for packing and unpacking, this kind of obfuscation could be undone by a clever decompiler that was
aware of this technique.

4.4 Converting Arithmetic Expressions to Bit-Shifting Ope rations (CAE2BO)

Optimizing compilers sometimes convert a complex operation such as multiplication or division into a sequence of
cheaper operations. This same trick can be used to obfuscatethe code. In particular, we look for instances of ex-
pressions in the form ofv ∗ C (a similar technique is used forv/C), wherev is a variable andC is a constant.
We then extract fromC the largest integer valuei which is less thanC and is also a power of 2,i = 2s, where
s = floor(log2(v)). We then compute the remainder,r = v − i. If s is in the range of−128 . . .127, then we can
convert the original computation as(v << s) + (v ∗ r) and the expressionv ∗ r can be further decomposed. In order
to further obfuscate the computation we don’t use the shift values directly, but rather find an equivalent values′. To
do this we take advantage of the fact that shifting a 32-bit word by 32 (or a multiple of 32) always returns it to its
original state. Thus we choose a random multiplem, and compute a new shift value,s′ = (byte)(s+(m∗32)), which
computes an equivalent shift value in the correct range (−128 . . .127).

As an example, an expression of the formv ∗ 195 in the original program would be converted first to(v <<
7) + (v << 6) + (v << 1) + v and then the three shift values would be further obfuscated to something like
(v << 39) + (v << 38) + (v << −95) + v.

A decompiler that is aware of this calculation could potentially reverse it, but if one or more of the constants were
hidden with an opaque predicate, this would further hamper decompilation.

4.5 Impact of Operator-level Obfuscations on Decompilers

Although we fully expected all of these simple, operator-level, obfuscations to be decompilable (i.e. a decompiler
should produce correct compilable Java code, even though this code would be confusing to a reverse engineer), we
were quite surprised to find the results in Table I. For these and subsequent decompiler tests in this paper, we created
some small micro-tests for each obfuscation.3 A score ofPassindicates that the decompiler produced correct Java
source that could be recompiled byjavac , whereasFail indicates that the decompiler produced code that cannot be
recompiled, andCrashmeans that the decompiler did not terminate normally.

3The reason that we used micro-tests is that some decompilers, most notably pattern-based decompilers like Jad, are verysensitive to whether
the bytecode looks exactly like it came from ajavac compiler or not. Since all of our tests have been run through Soot, which even without
obfuscations is sometimes enough to confuse decompilers, we wanted to ensure that our tests were small enough so that we could measure the
impact of the obfuscation itself and not indirect effects due to processing with Soot.
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Table I: Measuring Decompiler Success against Operator-level Obfuscations
Obfuscation Jad SourceAgain Dava
Renaming Identifers: classes, fields and methods Fail Pass Pass
Embedding Constant Values as Fields Fail Fail Fail
Packing Local Variables into Bitfields Fail Fail Fail
Converting Arithmetic Expressions to Bit-Shifting OpsFail Fail Pass

Why do decompilers fail on these simple obfuscations? Jad isunable to correctly process our renamed identifiers
containing the character $. The other three obfuscations unwittingly exploit a semantic gap between bytecode and Java
source. At the bytecode level, booleans, bytes and chars areall expressed as integers, whereas in Java these are given
different types which must be used consistently and in a manner so as not to lose precision. The decompilers failed to
find consistent typing and casting for these computations and thus produced Java source that would not compile.4

5 Obfuscating Program Structure

Program structure can be thought of as framework. In a building this would be the supporting beams, the floors,
and the ceiling. It would not be the walls or the carpeting. Wedefine structure in this chapter to include two facets:
low-level method control flow and high-level object-oriented design. These obfuscations should be decompilable by
modern decompilers such as SourceAgain and Dava.

5.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in Java bytecode offers a useful control flow obfuscation tool. It is the only organic way (other
than the try-catch structure) to manufacture a control flow graph that has a node whose successor count is greater than
two. This can severely increase the complexity of a method.

This obfuscation adds edges to the control flow graph by inserting a switch. To ensure that the switch itself is never
executed it is wrapped in an opaque predicate. All bytecode instructions with a stack height of zero are potentially safe
jump targets for cases in the switch. We have defined an analysis to compute these zero-height locations and we select
a random set of them as targets for the cases in the dead switch. This obfuscation increases the connectedness and
overall complexity of a method. A decompiler cannot remove the dead switch because it cannot statically determine
the value of the opaque predicate.

5.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair amount of duplication. Even within one method a sequence
of instructions might appear a number of times. By finding these clones and replacing them with a single switched
instance we can potentially reduce the size of the method while also confusing the control flow, creating control flow
that is not naturally expressed in Java.

We determine when a duplicate sequenceD is a clone of the original sequenceO using the following checks and
analyses:

• D must be of the same length asO and for each indexi, instructionDi must equalOi.

• EachDi must be protected by the same try blocks as the originalOi. If the original is not protected at all, neither
can the duplicate.

• Every instruction in a sequence other than the first must haveno predecessors that falloutsidethe sequence (i.e.
there should be no branching into the middle of a sequence).

4Clearly our research group would like to fix Soot/Dava to properly handle this variation of the typing problem - it is quiteinteresting to have
one subgroup building a decompiler, while at the same time another subgroup is trying to break it!
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• EachDi must share the same stack height and basic types as the original Oi.

• EachDi must not have the same offset within the method asany instructionOj .

When a duplicate sequence is found, a new integer which acts as a control flow flag is created. The duplicates are
removed completely and replaced with an assignment of the flag to a unique id followed by a goto directed at the first
instruction in the original sequence. The original sequence is prepended with instructions which store 0 to the flag (the
“first” unique id) and appended with a switch. The default jump falls through to the next instruction (the successor of
the original sequence). A jump to the successor of each duplicate sequence is added to the switch based on its flag id.
For each method we search for duplicates of length 3 through 20.

5.3 Replacing if Instructions with Try-Catch Blocks (RIITCB)

The try-catch construct in the Java language can be used to create control flow, either through an explicit throw
statement or by inserting a statement that is known to createan exception. This obfuscation exploits a well known fact
of Java: invoking an instance method on anull object will always result in a NullPointerException. This obfuscation
searches forifnull tests and replaces these with an unneeded and harmless instance method call on the reference
which is wrapped in a try block. The method call will raise an exception when the reference is null, thus the target of
the originalifnull branch is used as the target for the handler part of the try. The only thing remaining to do is to
prepend the handler with a pop instruction in order to removethe NullPointerException reference that will be placed
on the stack. This is very similar to the approach by Sakabeet al. in [20], although they relied on creating special
exception objects which added unnecessary overhead.

5.4 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs because of the widespread use of the Java libraries. These libraries
have clear and well-defined documentation. The very existence of library objects and method calls can give shape and
meaning to a method based entirely on how they are being used.The method calls that direct execution into the native
Java libraries — the design of which is known as an Application Programming Interface (API) — cannot be renamed
because the obfuscator should not change library code5. Therefore, the next best option is to hide the names of the
library methods. The approach we take in this obfuscation isto indirect all library calls through intermediate methods
with nonsensical identifiers.

Each method of each class is checked for library calls. A new methodM is then created for every library method
L referenced in the program. The methodM is instrumented to invoke the library methodL. The new method
M is placed in a randomly chosen class in order to cause “class-coagulation”, an increase in class interdependence.
Therefore, this obfuscation is two-fold. It confuses the object-oriented design of the program and also hides the library
method calls by moving them to a completely different “physical” part of the program.

5.5 Building Library Buffer Classes (BLBC)

In addition to library method calls, having a class that extends a library class directly can lend a certain amount of
clarity to a program. Parent class methods that are over-ridden in the child are more obvious as well. Any experienced
Java programmer will quickly grasp a large amount of design intent from this information.

This obfuscation attempts to cloud this particular design structure of Java. For each class which directly extends
a library class we create a new buffer class. The buffer classis inserted as a child of the library class and a parent of
the application class. Since no part of the program itself ever uses the buffer class directly, methods over-ridden in the
child class can be defined as nonsense methods in the buffer class, further adding confusion. This serves as a way to
complicate and confuse the design of the program by adding extra layers and, ultimately, it spreads the single-intent
class structure over multiple files making it difficult for a reverse-engineer.

5While it is not completely impossible, it is not reasonable.Obfuscating library code would mean that those modified libraries would have to be
distributed with the program as well, causing both licensing issues and an unreasonable increase in the program’s distribution size
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5.6 The impact of program structure obfuscations on decompi lers

As in the previous section we developed micro-tests for eachobfuscation to be as fair as possible to the decompilers.
The results are shown in Table II. Jad fairs badly when tryingto decompile our structure obfuscations, most likely
due to its lack of control flow analysis. It resorts to leavingpure bytecode in its output where it is unable to produce
correct source. More surprisingly, SourceAgain also have difficulty with the heavier control flow obfuscations. In fact
RDS causes it to crash completely.

Table II: Measuring Decompiler Success against Structure Obfuscations
Obfuscation Jad SourceAgain Dava
Adding Dead-Code Switch Statements Fail Fail Pass
Finding and Reusing Duplicate Sequences Fail Crash Pass
Replacing if Instructions with Try-Catch Blocks Fail Pass Pass
Building API Buffer Methods Fail Fail Fail
Building Library Buffer Classes Fail Pass Pass

None of the decompilers were able to properly mark which methods might throw exceptions, which is a require-
ment of Java source. Because some methods indirected by the BAPIBM obfuscation might throw exceptions the new
methods that call them are required to as well.

6 Exploiting the Design Gap

Inherent in the design of the Java language are certain gaps between what is representable in Java source code and what
is representable in bytecode. The classic example is the goto bytecode instruction which has no direct counterpart in
source6.

The obfuscations detailed in this section were designed to exploit these bytecode-to-source gaps. Smart decom-
pilers can sometimes transform the obfuscated bytecode into a semantically equivalent form of source code yet it is
usually unreadable. Often, however, these obfuscations can result in a situation where decompilers either produce
incorrect code or do not produce any code whatsoever. On occassion the decompilers crash altogether.

6.1 Converting Branches to jsr Instructions (CB2JI)

The jsr bytecode7, short for Java subroutine, is analogous to thegoto other than the fact that it pushes a return
address on the stack. Normally, the return address is storedto a register after ajsr jump and when the subroutine is
complete theret bytecode is used to return.

Thejsr - ret construct is particularly difficult to handle when dealing with typing issues because each subroutine
can be called from multiple places, requiring that type information be merged and therefore a more conservative
estimate. Also, decompilers will usually expect to find a specific ret for everyjsr .

This obfuscation replacesif andgoto targets withjsr instructions. The old jump targets havepop instructions
inserted before them in order to throw away the return address which is pushed onto the stack. If the jump target’s
predecessor in the instruction sequence falls through thena goto is inserted after it which jumps directly to the old
target (stepping over thepop ).

6.2 Reordering load Instructions Above if Instructions (RLAII)

In some cases patterns in bytecode produced byjavac can be examined to identify areas of possible obfuscation.
This simple obfuscation looks for situations where a local variable is used directly following both paths of anif

6Abrupt jumps in source must be performed through thebreak or continue statements which force a certain level of structure since they
must always be directly associated with well-defined statement blocks

7Thejsr was originally introduced to handle finally blocks — sections of code that are ensured to run after a try block whether an exception is
thrown or not. It is a historical anomaly that is no longer used by modernjavac compilers.
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branch. That is, along both branches the first instruction loads the variable on to the stack. This is a somewhat
common occurance — consider code that follows the patternif x then i=...else i=... .

This obfuscation then moves theload instruction above theif , removing its clones along both branches. While a
modern decompiler like Dava which is based on a 3-address intermediate representation will be able to overcome this
obfuscation with little problem, any decompiler relying onpattern matching (such as Jad) will become very confused.

6.3 Disobeying Constructor Conventions (DCC)

The Java language specification [9] stipulates that class constructors – those methods used to instantiate a new object
of that class type – must always call either an alternate constructor of the same class or their parent class’ constructor
as thefirst directive. In the event that neither is specified in sourcejavac explicitly adds a call to the parent at the
beginning of the method in the compiled bytecode.

While this super call, as a rule, must be the first statement inthe Javasourceit is, in fact, not required to be the
first within the bytecode. By exploiting this fact it is possible to create constructor methods whose bytecode represen-
tation cannot be converted into legal source. This obfuscation randomly chooses among four different approaches to
transforming constructors in order to confuse decompilers:

Wrapping the super call within a try block: This ensures that any decompiled source will berequiredto wrap the
call in a try as well to conform to the rules of Java. To properly allow the exception to propagate, the handler
unit — a throw instruction — is appended to the end of the method.

Taking advantage of classes which are children of java.lang.Throwable: This approach inserts athrow instruc-
tion before the super call and creates a new try block in the method that traps just the newthrow . The handler
unit is designated to be the super call itself. This takes advantage of the fact that the class is throwable and can
be pushed onto the stack through the throw mechanism insteadof the standard load.

Inserting a jsr jump and a pop instruction directly before the super constructor call: The jsr ’s target is the
pop instruction, which removes the subsequent return address that is pushed on the stack as a result of thejsr
instruction. This confuses the majority of decompilers which have problems dealing withjsr instructions.

Adding new instructions before the super call: This approach inserts adup followed by anifnull before the
super call. Theifnull target is the super call. Theif branch instruction will always befalse since the
object it is comparing is the object being instantiated in the current constructor. Two new instructions are inserted
along the false branch of theif : a push null followed by athrow . A new try block is created spanning
from theifnull up to the super call. The catch block is appended to the end of the method as a sequence of
pop, load o, goto sc , whereo is the object being instantiated andsc is the super call. This confuses
decompilers because it is more difficult to deduce which local will be on the stack when the super call site is
reached.

6.4 Partially Trapping Switch Statements (PTSS)

There is a big gap between high-level structured use of try-catch blocks in Java source and their low-level byte imple-
mentation. Whereas the Java construct allows only well-nested and structured uses, the bytecode implementation is
a much lower trap abstraction. A bytecode trap specifies a bytecode rangea . . . b, a handler unith, and an exception
typeE. If an exceptionT is raised within the method at bytecodec then the JVM searches for a trap in the list which
matches either the type ofT or a parent type ofT whose bytecode rangea . . . b containsc. If a trap is found then the
stack is emptied,T is pushed on top, and the program counter is set to the handlerh.

There are no rules that enforce nesting of these ranges and atthe bytecode level these may overlap or even share
code with handler code.

Thus, one way of confusing decompilers is to trap sequentialsections of bytecode that are not necessarily sequen-
tial in Java source code. The perfect example of this is the switch construct. In source code, the switch statement
encapsulates different blocks of code astargetsof the switch. However, in bytecode there is nothing explicitly tying
theswitch instruction to the different code blocks (i.e. there is no explicit encapsulation).
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If the switch is placed within a trap range along with onlypart of the code blocks which are associated as
its targets then there will be no way for an automatic decompiler to output semantically equivalent code that looks
anything like the original source. It simply must reproducethe trap in the source code in some form, potentially by
duplicating code.

This transformation is conservatively limited to those switch constructs which arenot already trapped, which
alleviates some analysis work. This implies that theswitch instruction itself and any additional instructions that are
selected for trapping were not previously trapped in any way.

6.5 Combining Try Blocks with their Catch Blocks (CTBCB)

Java source code can only represent try-catch blocks in one way: with a try block directly followed by one or more
catch blocks associated with it. In bytecode, however, try blocks can protect the same code that is used to handle the
exceptions it throws or one of its catch blocks can appear “above” it in the instruction sequence.

This obfuscation combines a try-catch block such that both the beginning of the try block and the beginning of the
catch block are the same instruction. This is accomplished by prepending the first unit of the try block with anif that
branches to either the try code or the catch code based on an integer control flow flag. Once the try section has been
officially entered, the flag is set to indicate that any execution of theif in the future should direct control to the catch
section. The integer flag is reset to its original value when the try section is completed.

6.6 Indirecting if Instructions (III)

While javac will always produce very predictable try blocks it is possible to abuse these constructs in other ways.
This obfuscation takes advantage of this by indirectingif branching throughgoto instructions which are within a
special try block. Normally, modern compilers would removethe goto and modify theif to jump directly to its
final target. However, since a try block protects all these gotos it is not valid to remove them unless the code can be
statically shown to never raise an exception. Since there isno explicitgoto allowed in Java source, it becomes very
difficult for a decompiler to synthesize equivalent source code.

6.7 Goto Instruction Augmentation (GIA)

Explicit goto statements are not allowed in Java source. Studies have shown this to be a good design decision [3]. In
source, you must use abrupt statements instead. Java bytecodedoeshave agoto instruction because it is necessary
for simulating higher-level constructs such as loops. Therefore it is possible to insert an explicitgoto within the
bytecode. While it is very easily reversed using control flowgraph analysis it can still cause many simple decompilers
to fail.

Our obfuscation takes a simple approach. It randomly splitsa method into two sequential parts: The first, contain-
ing the start of the method,P1 and a second, containing the end of the method,P2. It then reorders these two parts and
inserts twogoto instructions. The firstgoto is inserted as the first instruction in the method and points to the start
of P1. The second is inserted at the end ofP1 and targetsP2. The final method now looks like{ goto P1, P2, P1,
goto P2}.

As an added step, a try block is manufactured to span from the end ofP2 to the beginning ofP1, thereby “gluing”
the two sections together. This makes it difficult for a decompiler to shuffle the instructions back to their original order.

6.8 The impact of exploiting the semantic gap on decompilers

All of the decompilers have difficulty with the obfuscationsfrom this section. Table III shows that Dava was only
successful with one out of seven. Jad and SourceAgain failedall tests. In all cases Jad generates source with many
bytecode instructions left in it and therefore it is difficult to identify anything specific as the cause. In most of the cases
SourceAgain was unable to realize where certain local variables were used. It would declare a local variable within a
nested block even when the parent block used that variable, for example. Both SourceAgain and Dava had difficulties
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marking methods which might throw exceptions. They could not properly name the super constructor method calls in
DCC either, leaving the bytecode name<init> which is not a legal Java identifier.

Table III: Measuring Decompiler Success against Semantic Gap Obfuscations
Obfuscation Jad SourceAgain Dava
Converting Branches to jsr Instructions Fail Fail Crash
Reordering loads Above if Instructions Fail Fail Pass
Disobeying Constructor Conventions Fail Fail Crash
Partially Trapping Switch Statements Fail Fail Fail
Combining Try Blocks with their Catch Blocks Fail Fail Fail
Indirecting if Instructions Fail Fail Fail
Goto Instruction Augmentation Fail Fail Fail

Dava also crashed on the DCC obfuscation due to its inabilityto handle the throwing of explicitly null exceptions.
Soot is unable to read in classfiles that includejsr instructions with no matchingret . This is not a limitation of
Dava itself but we marked it as having crashed on the CB2JI obfuscation because of this.

7 Empirical Evaluation

Since an important aspect of our work is the evaluation of theimpact of obfuscations on runtime performance, we
have gathered a set of benchmarks from a graduate-level compiler optimizations course where students were required
to develop interesting and computation-intensive programs for comparing the performance of various Java Virtual
Machines. Each one was written in Java and compiled withjavac. The benchmarks represent a wide array of programs
each with their own unique coding style, resource usage, andultimate task. Below is a list of each benchmark with a
brief description of its key features.

Asac: is a multi-threaded sorter which compares the performance of the Bubble Sort, Selection Sort, and Quick Sort
algorithms. It uses reflection to access each sorting algorithm class by name and creates a new thread for each
one. In the experiments, the benchmark sorts a randomly generated array of 30,000 integers.

Chromo: implements a genetic algorithm, an optimization techniquethat uses randomization instead of a determin-
istic search strategy. It generates a random population of chromosomes. With mutations and crossovers it tries
to achieve the best chromosome over successive generations. It instantiates many chromosome objects and, for
each generation, evaluates over 5,000 of these 64-bit arraychromosomes.

Decode: implements an algorithm for decoding encrypted messages using Shamir’s Secret Sharing scheme.

FFT: performs fast fourier transformations on complex double precision data.

Fractal: generates a tree-like (as in leaves) fractal image. It callsjava.lang.Math trigonometric methods heavily and
is deeply recursive in nature.

LU: implements Lower/Upper Triangular Decomposition for matrix factorization.

Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoretical approximation to pi for a given alpha.

Triphase: performs three separate numerically-intensive programs.The first is linpack linear system solver that
performs heavy double precision floating-point arithmetic. The second is a heavily multithreaded matrix multi-
plication algorithm. The third is a multithreaded variant of the Sieve prime-finder algorithm. In total, 1,730 java
threads are created during the execution of this program with as a many as 130 of them alive at once.
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7.1 Impact of Obfuscations on Performance

Figure 1(a) summarizes the ratio of the execution time of obfuscated benchmark to the execution time of original
benchmark.8 A ratio of 1 indicates that the obfuscation had no effect on performance, a ratio of less than 1 indicates
that the obfuscated benchmark was faster, and a ratio greater than 1 indicates that the obfuscated benchmark was
slower.9 Each bar corresponds to one obfuscation, the diamond on the bar corresponds to the average ratio over all
the benchmarks. The bars show the range of ratios with the bottom of the bar corresponds to the benchmark with the
lowest ratio and the top of the bar corresponds to the benchmarks with the highest ratio.

All experiments were run on an AMD AthlonTM64 X2 Dual Core Processor 3800+ machine with 4 gigabytes of
RAM running Ubuntu 6.06 Dapper Drake Linux. The machine was unloaded and running no extraneous processes at
the time each experiment was performed. Sun Microsystem’s Java HotSpotTM64-Bit Server VM (build 1.5.0 06 b05)
was used in all experiments with the initial and maximum Javaheap sizes set to 128 and 1024 megabytes, respectively.

As shown by recent empirical studies by Guet al. [10, 11], small variations in code layout can lead to relatively
large performance differences in Java (on the order of 5-10%). Thus, we can expect some performance differences
between the original and obfuscated code just because the obfuscated code leads to different code layouts. Thus, the
significant performance differences are really those less than .95 or greater than 1.05.

We can see that average performance of the obfuscated code isvery reasonable, with quite a few below 1. The
most expensive obfuscation appears to CB2JI, which converts branches to jsr instructions, with an average slowdown
of 1.16 and a maximum slowdown of almost 1.6. This maximum slowdown was in the LU benchmark and in further
investigations we found that almost the entire cause for thedecreased performance was a slowdown in one deeply
nested loop which now had very complex control flow. The JIT compiler struggled to analyze this nested loop and
caused a 5-fold slowdown in compilation time. There are 6 obfuscations that lead to a maximum slowdown greater
than 1.2. These obfuscations should be used carefully, avoiding hot methods whenever possible.

In some cases the obfuscations actually seem to slightly improve peformance. The RLAII obfuscation that moves
loads above ifs is one such case. This does make sense since itis moving a load that is known to be needed on both
branches earlier in the computation.

7.2 Impact of obfuscations on control-flow complexity

Whereas Figure 1(a) shows how much the obfuscated application slowed down (the gain), Figure 1(b) shows the
the increase in code complexity due to obfuscations (the pain). We have opted for a reasonably simple measure of
complexity based on counting the number of nodes and edges inthe control flow graph of the program, where the
nodes in the control flow graph are basic blocks and the edges are control flow edges. Obfuscations which change the
structure of the code may introduce new control flow edges and/or redirect control flow edges to split basic blocks.
The numbers reported in Figure 1(b) show the ratio of the sum of the number of nodes and edges of the obfuscated
code over the sum of nodes and edges of the original. This count captures the impact of control flow obfuscations
well, but does not measure the impact of simpler obfuscations such as identifier renaming.

As expected, the operation-level obfuscations have no impact on control-flow complexity. The increase in com-
plexity for these obfuscations is better demonstrated by anincrease in identifier complexity and an increase in the
number of operations.10

The structure obfuscations do show a signficant increase in control-flow complexity. The two obfuscations that
confuse the object-oriented design, Building API Buffer Methods (BAPIBM) and Building Library Buffer Classes
(BLBC), do not increase control-flow complexity, but would affect other metrics which measure coupling.

As we have shown in Table III, the third group of obfuscationsare those that are most effective in breaking
decompilers. Some of these also show some significant increases in control-flow complexity. Based on our experiences
with Dava, which can partially handle many of these cases, weexpect that a complete decompilation will lead to source
code with a lot of code duplication and heavy use of labeled blocks.

8To time the original benchmark, we first processed it via Sootwith no obfuscations turned on. This is to factor out any differences due to Soot
processing.

9The execution time is computed by timing 10 runs, dropping the slowest and fastest and averaging the remaining 8 runs. Thelargest standard
error we observed over these 8 runs was 2.6% and the majority of the measurements had a standard error well below that.

10We have collected these kinds of metrics, which do demonstrate an increase.
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(a) Performance Ratio — (average execution time of obfuscated program)/(average execution time of original pro-
gram). High and low bars are given.

(b) Complexity Ratio — (sum of edges and nodes in obfuscated CFG)/ (sum of edges and nodes in original CFG).
High and low bars are given.

Figure 1: Performance and Complexity Ratios comparing obfuscated programs to their original forms.
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8 Conclusions and Future Work

This paper has presented a collection of obfuscation techniques for Java bytecode. The intent was to make the byte-
code harder to reverse-engineer without imposing significant performance penalties. We presented three groups of
obfuscations. The first group were relatively simple and focused on operator-level obfuscations which are intended to
make the code harder to reverse-engineer. Although we didn’t expect these to break decompilers, several decompilers
failed to properly type the obfuscated code. The second group of techniques were aimed at confusing both the control
flow within methods and the object-oriented design. The decompilers also had trouble with some of these techniques,
although they should in principle be decompilable, even though the decompiled code is much more complex than the
original. These decompiler failures were mostly due to the obfuscations creating unstructured control flow which is
much more difficult to decompile than structured control flow. The third group of obfuscations were mostly new tech-
niques and were aimed at exploiting the gap between the high-level structure of Java source and the lower-level rules
for bytecode. These obfuscations were very successful in both increasing the complexity of the code and breaking the
decompilers.

The effect on performance of the obfuscations varied, the average performance ratio of obfuscated/original ranged
from .96 to 1.16, which is very reasonable. The maximum ratioreached almost 1.6, with 6 of 16 obfuscations having
a maximum ratio of over 1.2. This demonstrates that in some cases the obfuscations should not be used everywhere in
the program, particularly in hot methods. More detailed analysis of specific instances showed that some performance
slowdowns were due to the increased time needed by the JIT compilers to deal with the analysis of the complex control
flow created by the obfuscations. Hence the obfuscations arenot just more difficult for reverse engineers to understand,
they also cause problems for tools like compilers and decompilers.

All of our obfuscations have been implemented in the JBCO tool, which is built on top of Soot. We are quite
pleased with the wide variety of obfuscations we developed and this paper has shown how they work individually. We
feel that the next interesting problem is to develop new techniques to automatically determine where each obfuscation
should be applied and how to best select a combination of obfuscations so that one can achieve the best overall effect
without applying all obfuscations at all points. We have also started to develop a wide variety of metrics to quantify
the effect of obfuscators and decompilers.
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