McGill University
School of Computer Science
Sable Research Group

Obfuscating Java: the most pain for the least gain

Sable Technical Report No. 2006-5

Michael Batchelder Laurie Hendren

October 16, 2006

www.sable.mcgill. ca

Contents

1 Introduction

2 Related Work

3 JBCO Structure

4 Operator-level Obfuscation
4.1 Renaming ldentifiers: classes, fieldsand methods (RIf3)
4.2 Embedding Constant Values as Fields (ECVF) oo w o oo i i it e
4.3 Packing Local Variables into Bitfields (PLVB) & . . .
4.4 Converting Arithmetic Expressions to Bit-Shifting Qgions (CAE2BO)
4.5 Impact of Operator-level Obfuscations on Decompilers...

5 Obfuscating Program Structure
5.1 Adding Dead-Code Switch Statements (ADSS) ¢ oo
5.2 Finding and Reusing Duplicate Sequences (RDS)
5.3 Replacingf Instructions with Try-Catch Blocks (RIITCB) o ...
5.4 Building API Buffer Methods (BAPIBM) e
5.5 Building Library Buffer Classes (BLBC) ciii i i e
5.6 The impact of program structure obfuscationsondeclenspi

6 Exploiting the Design Gap

6.1 Converting Branchesier Instructions (CB2Jl)
6.2 Reorderingoad Instructions Abovéf Instructions (RLAI)
6.3 Disobeying Constructor Conventions (DCC) it v o e e e e e e
6.4 Partially Trapping Switch Statements (PTSS) o0 o 0 o0 oo
6.5 Combining Try Blocks with their Catch Blocks (CTBCB)
6.6 Indirectingf Instructions(lll)
6.7 Goto Instruction Augmentation (GIA) e
6.8 The impact of exploiting the semanticgapondecompilers

7 Empirical Evaluation
7.1 Impact of Obfuscations on Performance o o o o
7.2 Impact of obfuscations on control-flow complexityo

8 Conclusionsand Future Work

)]

10
10
11
11
11
11

12
13
13

15

List of Figures

1 Performance and Complexity Ratios comparing obfuscategrpms to their original forms. 14

List of Tables

I Measuring Decompiler Success against Operator-levali§dations 7
Il Measuring Decompiler Success against Structure Obfise 9
Il Measuring Decompiler Success against Semantic Gapsghtions 12

Abstract

Software obfuscators are used to transform code so thatdnbes more difficult to understand and harder to
reverse engineer. Obfuscation of Java programs is patlguimportant since Java’'s binary form, Java bytecode, is
relatively high-level and susceptible to high-quality dexpilation. The objective of our work is to develop and study
obfuscation techniques that produce obfuscated bytetwmdéstvery hard to reverse engineer while at the same time
not significantly degrading performance.

We present three kinds of obfuscation techniques that: {&¢ure intent at the operational level; (2) obfuscate
program structure such as complicating control flow andwusinfj object-oriented design; and (3) exploit the seman-
tic gap between what is allowed at the Java source level aadl izallowed at the bytecode level.

We have implemented all of our techniques as a tool calleddBJava Byte Code Obfuscator), which is built on
top of the Soot framework. We developed a benchmark suitevaiuating our obfuscations and we examine runtime
performance, control flow graph complexity and the negatiyeact on decompilers. These results show that most of
the obfuscations do not degrade performance significanthyn@any increase complexity, making reverse engineering
more difficult. The impact on decompilers was two-fold. Rowge obfuscations that can be decompiled, readability
is greatly reduced. Otherwise, the decompilers fail to poedegal source code or crash completely.

1 Introduction

Reverse engineering is the act of uncovering the underlgiegign of a product through analysis of its structure,
features, functions and operation. Analysis is often peréal by taking apart the said product to discover the various
pieces or modules that make up its design. Reverse engigd®as a long history, including applications in military
and pharmacology industries. It could be argued that softas proven to be among the most susceptible forms
to reverse-engineering. Since software is an easily andpiheeproduced product (unlike a military bomber, for
example) it must rely on either passive protection such aatanp-law or some form of active protection such as
hiding software applications on servers, encryption ouebétion. This paper presents and studies a wide range of
techniques for obfuscating Java bytecode.

Obfuscation is the obscuring of intent in design. With saitaithis means transforming code such that it remains
semantically equivalent to the original, but is more esotand confusing. A simple example is the renaming of
variable and method identifiers. By changing a method fgatName to a random sequence of characters such as
sdfhjioew , information about the method is hidden that a reversersmgicould otherwise have found useful. A
more complex example is introducing unnecessary contral fiat is hidden using opaque predicates, expressions
that will always evaluate to the same answer (true or fals¢ Whose value is not possible to estimate statically.
Obfuscation is one of the more promising forms of code ptaiadecause it is translucent. It may be obvious to
a malicious attacker that a program has been obfuscatedhisufatt will not necessarily improve their chances at
reverse-engineering. Also, obfuscation can severely tioatp a program such that even if it is decompilable it is
very difficult to understand, making extraction of tangibieellectual property close to impossible, without sesou
time investment.

Java is particularly vulnerable to reverse engineeringbse its binary form, bytecode, is relatively high-level
and contains considerable information about types, and fietl method names. Furthermore, there are often many
references in the code to known fields and methods in pukdicailable class libraries, including the standard ones
provided with a Java implementation. Java decompilersoitdblese weaknesses and there has been a long history of
decompilers that convert bytecode into quite readable Samece code, particularly when the bytecode is in exactly
the format produced by knowavac compilers [13,15-17,19,22].

Java obfuscators are one way of foiling decompilers. These tonvert Java bytecode into semantically-equivalent
bytecode that is difficult to decompile, or even if decomiplidais very hard for a programmer or tool to understand.
However, a very important factor is that one wants the olztisns to make reverse-engineering difficult (the most
pain), but at the same time not hurt performance of the oltesicapplication (the least gain). This tradeoff is not
obvious, since the same obfuscations that make it hard fecardpiler may also severely impact the analysts and
optimizations in JIT compilers found in modern Java Virtiichines (JVMs).

The main goal of our work was to develop and implement a ctile®f obfuscations that would make reverse
engineering difficult, while at the same time not affect parfance too much. We examine some variations of pre-

viously suggested obfuscations and we also develop someauhmiques, most notably techniques that exploit the
semantic gap between what can be expressed in Java bytewbddat is allowed in valid Java source.

The remainder of the the paper is organized as follows. Ini@e2 we give a short summary of previous work
in obfuscation. Section 3 gives a high-level overview of dBICO obfuscator. Sections 4 through 6 present our
obfuscations grouped by type: operator-level obfuscatioadifying program structure and exploiting the seman-
tic gap. At the end of each of those sections we summarizentpadt of the obfuscations on three decompilers.
Due to space considerations we can only give a brief desmmipf each obfuscation and can’t show the full results
of the obfuscations. However, some detailed examples am@ stallenge cases for decompilers can be found at
http://www.sable.mcgill.ca/JBCO . In Section 7 we introduce a benchmark set and provide a sunma
of the impact of each obfuscation on runtime performance @drol-flow complexity. Finally, Section 8 gives
conclusions and future work.

2 Related Work

Obfuscation is a form afecurity through obscurityWhile Barak argues that there are seemingly few truly ersible
obfuscations [2] and, in theory, “deobfuscation” undertaiergeneral assumptions has been shown by Appel to be
NP-Easy [1], obfuscation is nevertheless a valid and viabletion for general programs.

Early attempts at obfuscation invariably involved macHmeel instruction rewriting. Cohen used a technique
he called “program evolution” to protect operating systehst included the replacement of instructions, or small
sequences of instructions, with ones that perform senslytiequal functions, instruction reordering, adding or re
moving arbitrary jumps, and even de-inlining methods [5hriy of these ideas are now standard.

Much later, a more theoretical approach to obfuscationspwasented by Collbergt al. [6]. They outline ob-
fuscations as program transformations and develop tetoggdo describe an obfuscation in terms of performance
effect and quality. They rely on a number of well-known saftevmetrics [4,12, 18] to measure quality. Later, in [7],
they reconsider the concepts of lexical obfuscations (netmeging) and data transformatioesy, splitting boolean
values into two discrete numerics that are combined onlyauation time). However, their chief contributions are
in control-flow obfuscations. They make use of opaque pegdgto introduce dead code, specifically engineering the
dead branches to have buggy versions of the live branches.

A technique for combining the data of a program with its coltiow was developed by Wareg al. [24], whereby
control and data flow analysis become co-dependent. Whilda@-specific, a two-process obfuscation approach
which uses inter-process communication to communicated®at a “control-flow” process and a “computation” pro-
cess was presented by Get al [8]. Unfortunately, this kind of low-level jury-riggingsinot possible in Java. A
different multi-process technique for maintaining opaguedicates presented by Majumdar and Thomborson could
certainly be implemented in Java [14].

Sakabeet al. concentrate their efforts on the object-oriented natdirdawa — the high-level information in a
program. Using polymorphism, they invent a unique retupetglass which encapsulates all return types and then
modify every method to return an object of this type [20]. N parameters are encapsulated in a similar way
and method names are cloned across different classes.slwalyi the true return types of methods and the number
and types of a methods parameters are hidden. They furtifiesaatie typing by introducing aifi with an opaque
predicate to branch around new object instantiations wiactiuses the true type of the object and they use exceptions
as explicit control ow. Unfortunately, their empirical vdts show significantly slower execution speeds — an average
slowdown of 30% — and a 300% blowup in class file size.

Sonsonkinet al. present more high-level obfuscations which attempt tdummprogram structure [21]. They
suggest the coalescing of multiple class files into one — doimg the functionality of two or more functionally-
separate sections of the program — and its reverse of aglidtisingle class file into multiple unique units.

The obfuscations presented in this paper build upon botbltter and simple operation-level obfuscations as well
as control flow and program structure obfuscations. Theatiaris that we have implemented have been chosen to
maximize obfuscation, while also minimizing the impact antime performance. We have also developed a new set
of obfuscations, different from the others, which explbi tsemantic gap between Java bytecode and Java source.
Many of these were inspired by our experiences in buildivg bgtecode optimizers and and decompilers. The cases
that are difficult for those tools are exactly the cases thatilsl be created by obfuscators.

3 JBCO Structure

JBCO - our Java ByteCode Obfuscator — is built on top of So8L [Soot is a Java bytecode transformation and
annotation framework providing multiple intermediate negentations and infrastructure for dataflow analysis and
transformations. In developing JBCO we use two intermedigpresentations: Jimple, a typed 3-address intermediate
form; and Baf, a typed abstraction of bytecode.

JBCO is a collection of Jimple and Baf transformations aralyases. Whenever possible, we analyze and trans-
form Jimple, since it is at a higher abstraction and easiamoidk with. However, some low-level obfuscations require
modifying actual bytecode instructions and for those wekvadrthe Baf level. There are three categories of analyses
and transformations:

Information Aggregators: collectdata about the program for other transformationk s identifier names, constant
usage, or local variable to type pairings.

Code Analyses: build new forms of information about the code such as cofftogV graphs, stack height and type
data, or use-def chains. These are used to identify wheheiprbgram transformations can be applied. For ex-
ample, in order to produce verifiable bytecode we must erager matchings between allocations of objects
and their initializations.

Instrumenters: actually modify the code, adding obfuscations or shufflimg¢ode to obscure meaning.

JBCO can be used either as a command-line tool or via a grapiser interfacé. Each obfuscation can be
activated independently and depending on the severityeobththe obfuscation desired, a weight of 0-9 can be given
where 0 corresponds to no applications of the obfuscatind®aorresponds to applying it everywhere possible. We
also provide a mechanism to allow developers to guide thasolations to specific regions of a program by using
regular expressions to specify certain classes, fields trads. This is useful when a developer wants certain parts to
be heavily obfuscated or when a specific hot method shouldanobfuscated because of performance considerations.

4 Operator-level Obfuscation

Our first group of obfuscations works at the operator levehatTis, we convert a local operation into a semanti-
cally equivalent computation that is harder for a revensgirgeer to understand. These obfuscations are likely to be
decompilable, but the decompiled code is hard to understand

4.1 Renaming Identifiers: classes, fields and methods (RI[C, M,F])

Perhaps one of the simplest, but also very effective, olatimts is identifier renaming. Java bytecode retains the
names of classes, fields and methods and these names areeftarseful for the reverse engineer. For example,
a method calledjetDate , with a return type oDate is quite explicit. Some of these names cannot be touched
because they may be: defined in libraries, referred to viaeagidin, or as entry points into the application. However,
for the remaining cases, the fields, methods and classeseag@mémed, as long as this remaming is done consistently
through the application.

We have developed two techniques for choosing identifierazanihe first is to create random strings using
characters that are hard to distinguish visually. Thus wel@anly create valid identifiers from the alphabets| 6f
5 $}, {I,1, I} and{_}. In this case decompiled code would include identifiers IKelll, ____, , S55%
or SS5%. These identifiers will clearly appear mangled tens~engineers and although a tool could replace them
with less visually confusing identifiers, it is not a stratiighward process to create semantically meaningful naes f
them. Our second technique is to steal names from other gfattie application or standard library. In this case the
getDate may be renamegdetFirstName . This switch is not as obvious to a reverse-engineer or todlcanveys
incorrect semantic information.

1JBCO will soon be released as a new component of Soot.
2For each obfuscation, we give the acronym we use for it. Tériereym us used both in the experimental results and alscesfa used to
enable the obfuscation in JBCO.

4.2 Embedding Constant Values as Fields (ECVF)

Programmers often use constants, particularly stringteorts to convey important information. For example, eestat
ment of the fornBystem.err.printin("lllegal argument, value must be posi tive."); pro-
vides some context to the reverse engineer. The point of @&FEobfuscation is to move the constant into a static
field and then change references to the constant into refeseto the field. This could lead to something like
System.err.printin(___.ID; , which conveys significantly less meaning. If the staticdfiisl initialized
only once, an interprocedural constant propagation cauitesimes undo this obfuscation. However, if the initializa
tion of the field is further obfuscated through the use of aape predicate, this is no longer possible.

4.3 Packing Local Variables into Bitfields (PLVB)

In order to introduce a level of obfuscation on local varéablvith primitive types (boolean, char, byte integer), it is
possible to combine some variables and pack them into on@blamwhich has more bits (a long, for example). The
simplest solution would be to pack variables starting fréwa feast-significant or most-significant bit. However, to
provide further confusion we randomly choose a range oftbitsse for each local variable. For example, an integer
variable may get packed into bits 9 through 43. Since eaahaearite of the original variable must be replaced by
a packing and unpacking operation in the obfuscated cottegdin potentially slow down the application. Thus, this
obfuscation is used sparingly and applied randomly to oaipes of the locals. Without further obfuscation of the
constants used for packing and unpacking, this kind of afaftisn could be undone by a clever decompiler that was
aware of this technique.

4.4 Converting Arithmetic Expressions to Bit-Shifting Ope rations (CAE2BO)

Optimizing compilers sometimes convert a complex opemnagiach as multiplication or division into a sequence of
cheaper operations. This same trick can be used to obfugeatnde. In particular, we look for instances of ex-
pressions in the form of = C (a similar technique is used far/C), wherev is a variable and” is a constant.
We then extract fronC the largest integer valuewhich is less tharC' and is also a power of 2, = 2%, where

s = floor(loga(v)). We then compute the remainder= v — i. If s is in the range of-128...127, then we can
convert the original computation és << s) + (v x r) and the expression« r can be further decomposed. In order
to further obfuscate the computation we don't use the shifters directly, but rather find an equivalent valde To

do this we take advantage of the fact that shifting a 32-bitdway 32 (or a multiple of 32) always returns it to its
original state. Thus we choose a random multipleand compute a new shift valug,= (byte)(s+ (m*32)), which
computes an equivalent shift value in the correct range2g . . . 127).

As an example, an expression of the foom 195 in the original program would be converted first(to <<
7) + (v << 6) + (v << 1) + v and then the three shift values would be further obfuscaiesbimething like
(v << 39) + (v << 38) + (v << —95) + v.

A decompiler that is aware of this calculation could potaihtireverse it, but if one or more of the constants were
hidden with an opaque predicate, this would further hampeothpilation.

4.5 Impact of Operator-level Obfuscations on Decompilers

Although we fully expected all of these simple, operataele obfuscations to be decompilable (i.e. a decompiler

should produce correct compilable Java code, even thougttdde would be confusing to a reverse engineer), we

were quite surprised to find the results in Table I. For thesksaibsequent decompiler tests in this paper, we created
some small micro-tests for each obfuscatioA score ofPassindicates that the decompiler produced correct Java

source that could be recompiled f[avac , wheread-ail indicates that the decompiler produced code that cannot be
recompiled, an€Crashmeans that the decompiler did not terminate normally.

3The reason that we used micro-tests is that some decompiterst notably pattern-based decompilers like Jad, aresemgitive to whether
the bytecode looks exactly like it came fronjawac compiler or not. Since all of our tests have been run througbt,Svhich even without
obfuscations is sometimes enough to confuse decompilersyamted to ensure that our tests were small enough so thabwié measure the
impact of the obfuscation itself and not indirect effecte do processing with Soot.

Table I: Measuring Decompiler Success against Operatet-@bfuscations

Obfuscation Jad | SourceAgain| Dava
Renaming Identifers: classes, fields and methods || Falil Pass Pass
Embedding Constant Values as Fields Fail Fail Fail
Packing Local Variables into Bitfields Fail Fail Fail
Converting Arithmetic Expressions to Bit-Shifting OpsFail Fail Pass

Why do decompilers fail on these simple obfuscations? Jadable to correctly process our renamed identifiers
containing the character $. The other three obfuscatiowdtimgly exploit a semantic gap between bytecode and Java
source. At the bytecode level, booleans, bytes and chaedlangpressed as integers, whereas in Java these are given
different types which must be used consistently and in a masmas not to lose precision. The decompilers failed to
find consistent typing and casting for these computatiodgtams produced Java source that would not confpile.

5 Obfuscating Program Structure

Program structure can be thought of as framework. In a mgldhis would be the supporting beams, the floors,
and the ceiling. It would not be the walls or the carpeting. d&éne structure in this chapter to include two facets:
low-level method control flow and high-level object-oriedtdesign. These obfuscations should be decompilable by
modern decompilers such as SourceAgain and Dava.

5.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in Java bytecode offers a useful cofitne obfuscation tool. It is the only organic way (other
than the try-catch structure) to manufacture a control flaaph that has a node whose successor count is greater than
two. This can severely increase the complexity of a method.

This obfuscation adds edges to the control flow graph by timgea switch. To ensure that the switch itself is never
executed it is wrapped in an opaque predicate. All bytecostelctions with a stack height of zero are potentially safe
jump targets for cases in the switch. We have defined an aaétysompute these zero-height locations and we select
a random set of them as targets for the cases in the dead switi obfuscation increases the connectedness and
overall complexity of a method. A decompiler cannot remdwedead switch because it cannot statically determine
the value of the opaque predicate.

5.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair atafuduplication. Even within one method a sequence
of instructions might appear a number of times. By findingsthelones and replacing them with a single switched
instance we can potentially reduce the size of the methotkwalso confusing the control flow, creating control flow
that is not naturally expressed in Java.

We determine when a duplicate sequentes a clone of the original sequen€eusing the following checks and
analyses:

e D must be of the same length @sand for each index, instructionD; must equab);.

e EachD; must be protected by the same try blocks as the originalf the original is not protected at all, neither
can the duplicate.

e Everyinstruction in a sequence other than the first must hay@edecessors that fallitsidethe sequenca.€.
there should be no branching into the middle of a sequence).

4Clearly our research group would like to fix Soot/Dava to prdphandle this variation of the typing problem - it is quiiteresting to have
one subgroup building a decompiler, while at the same tino¢hen subgroup is trying to break it!

e EachD; must share the same stack height and basic types as theabéigin

e EachD; must not have the same offset within the methodmginstructionO;.

When a duplicate sequence is found, a new integer which a@santrol flow flag is created. The duplicates are
removed completely and replaced with an assignment of thedla unique id followed by a goto directed at the first
instruction in the original sequence. The original seqeas@repended with instructions which store 0 to the flag (the
“first” unique id) and appended with a switch. The default pufalls through to the next instruction (the successor of
the original sequence). A jump to the successor of eachahiplsequence is added to the switch based on its flag id.
For each method we search for duplicates of length 3 throGgh 2

5.3 Replacing i f Instructions with Try-Catch Blocks (RIITCB)

The try-catch construct in the Java language can be usecdeédeccontrol flow, either through an explicit throw
statement or by inserting a statement that is known to ceeagxception. This obfuscation exploits a well known fact
of Java: invoking an instance method onwdl object will always result in a NullPointerException. Thisfascation

searches foifnull tests and replaces these with an unneeded and harmlesmstathod call on the reference
which is wrapped in a try block. The method call will raise aeeption when the reference is null, thus the target of
the originalifnull branch is used as the target for the handler part of the trg. ofity thing remaining to do is to

prepend the handler with a pop instruction in order to rentbeeNullPointerException reference that will be placed
on the stack. This is very similar to the approach by Salatlsd. in [20], although they relied on creating special
exception objects which added unnecessary overhead.

5.4 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs becauséefwidespread use of the Java libraries. These libraries
have clear and well-defined documentation. The very existefilibrary objects and method calls can give shape and
meaning to a method based entirely on how they are being tibednethod calls that direct execution into the native
Java libraries — the design of which is known as an ApplicaRoogramming Interface (APl) — cannot be renamed
because the obfuscator should not change libraryTotleerefore, the next best option is to hide the names of the
library methods. The approach we take in this obfuscati¢m iisdirect all library calls through intermediate methods
with nonsensical identifiers.

Each method of each class is checked for library calls. A nethodM is then created for every library method
L referenced in the program. The methdfl is instrumented to invoke the library methdd The new method
M is placed in a randomly chosen class in order to cause “claagulation”, an increase in class interdependence.
Therefore, this obfuscation is two-fold. It confuses th@gaboriented design of the program and also hides theriibra
method calls by moving them to a completely different “plegsi part of the program.

5.5 Building Library Buffer Classes (BLBC)

In addition to library method calls, having a class that egtea library class directly can lend a certain amount of
clarity to a program. Parent class methods that are ovdenith the child are more obvious as well. Any experienced
Java programmer will quickly grasp a large amount of desigent from this information.

This obfuscation attempts to cloud this particular desigucsure of Java. For each class which directly extends
a library class we create a new buffer class. The buffer daissserted as a child of the library class and a parent of
the application class. Since no part of the program itself eges the buffer class directly, methods over-riddenen th
child class can be defined as nonsense methods in the bufs:; élirther adding confusion. This serves as a way to
complicate and confuse the design of the program by additrg &yers and, ultimately, it spreads the single-intent
class structure over multiple files making it difficult foreverse-engineer.

SWhile it is not completely impossible, it is not reasonatféafuscating library code would mean that those modifiedaties would have to be
distributed with the program as well, causing both licegsssues and an unreasonable increase in the programibulisin size

5.6 The impact of program structure obfuscations on decompi lers

As in the previous section we developed micro-tests for edthscation to be as fair as possible to the decompilers.
The results are shown in Table Il. Jad fairs badly when trggndecompile our structure obfuscations, most likely
due to its lack of control flow analysis. It resorts to leavpuge bytecode in its output where it is unable to produce
correct source. More surprisingly, SourceAgain also haffieualty with the heavier control flow obfuscations. In fact
RDS causes it to crash completely.

Table II: Measuring Decompiler Success against Structinfeiszations

Obfuscation Jad | SourceAgain| Dava
Adding Dead-Code Switch Statements Fail Fail Pass
Finding and Reusing Duplicate Sequences Fail Crash Pass
Replacing if Instructions with Try-Catch Blocks Fail Pass Pass
Building API Buffer Methods Fail Fail Fail

Building Library Buffer Classes Fail Pass Pass

None of the decompilers were able to properly mark which mdshmight throw exceptions, which is a require-
ment of Java source. Because some methods indirected byAPKBBI obfuscation might throw exceptions the new
methods that call them are required to as well.

6 Exploiting the Design Gap

Inherent in the design of the Java language are certain gaysbén what is representable in Java source code and what
is representable in bytecode. The classic example is thelytecode instruction which has no direct counterpart in
sourcé.

The obfuscations detailed in this section were designedpto# these bytecode-to-source gaps. Smart decom-
pilers can sometimes transform the obfuscated bytecodeisemantically equivalent form of source code yet it is
usually unreadable. Often, however, these obfuscatiomseasult in a situation where decompilers either produce
incorrect code or do not produce any code whatsoever. Orssiccethe decompilers crash altogether.

6.1 Converting Branchesto | sr Instructions (CB2Jl)

Thejsr bytecodé, short for Java subroutine, is analogous todleéo other than the fact that it pushes a return
address on the stack. Normally, the return address is stor@degister after gr jump and when the subroutine is
complete theet bytecode is used to return.

Thejsr -ret constructis particularly difficult to handle when dealinighwtyping issues because each subroutine
can be called from multiple places, requiring that type iinfation be merged and therefore a more conservative
estimate. Also, decompilers will usually expect to find acifieret for everyjsr

This obfuscation replacés andgoto targets withjsr instructions. The old jump targets hgwep instructions
inserted before them in order to throw away the return addndsch is pushed onto the stack. If the jump target’s
predecessor in the instruction sequence falls throughdttgrio is inserted after it which jumps directly to the old
target (stepping over thgop).

6.2 Reordering | oad Instructions Above i f Instructions (RLAII)

In some cases patterns in bytecode producefbgc can be examined to identify areas of possible obfuscation.
This simple obfuscation looks for situations where a loaaiable is used directly following both paths of dn

6 Abrupt jumps in source must be performed throughliheak or continue statements which force a certain level of structure sineg th
must always be directly associated with well-defined statgrblocks

"Thejsr was originally introduced to handle finally blocks — secti@f code that are ensured to run after a try block whether egption is
thrown or not. It is a historical anomaly that is no longerdubg moderrjavac compilers.

branch. That is, along both branches the first instructi@uidothe variable on to the stack. This is a somewhat
common occurance — consider code that follows the paitexnthen i=...else i=...

This obfuscation then moves thead instruction above thg , removing its clones along both branches. While a
modern decompiler like Dava which is based on a 3-addressiirgdiate representation will be able to overcome this
obfuscation with little problem, any decompiler relying pattern matching (such as Jad) will become very confused.

6.3 Disobeying Constructor Conventions (DCC)

The Java language specification [9] stipulates that classtractors — those methods used to instantiate a new object
of that class type — must always call either an alternatetoactsr of the same class or their parent class’ constructor
as thefirst directive In the event that neither is specified in souj@eac explicitly adds a call to the parent at the
beginning of the method in the compiled bytecode.

While this super call, as a rule, must be the first statemetitdnlavasourceit is, in fact, not required to be the
first within the bytecode. By exploiting this fact it is pdsks to create constructor methods whose bytecode represen-
tation cannot be converted into legal source. This obfimeaandomly chooses among four different approaches to
transforming constructors in order to confuse decompilers

Wrapping the super call within atry block: This ensures that any decompiled source wiltéguiredto wrap the
call in a try as well to conform to the rules of Java. To propatlow the exception to propagate, the handler
unit— athrow instruction — is appended to the end of the method.

Taking advantage of classeswhich are children of java.lang.Throwable: This approach insertsthrow instruc-
tion before the super call and creates a new try block in thiaotkthat traps just the nethirow . The handler
unit is designated to be the super call itself. This takesatage of the fact that the class is throwable and can
be pushed onto the stack through the throw mechanism inefehd standard load.

Insertingaj sr jump and a pop instruction directly beforethe super constructor call: The jsr 's target is the
pop instruction, which removes the subsequent return addnessstpushed on the stack as a result ofithe
instruction. This confuses the majority of decompilersahhtiave problems dealing wifr instructions.

Adding new instructions before the super call: This approach inserts dup followed by anifnull before the
super call. Thefnull target is the super call. THE branch instruction will always bfalse since the
objectitis comparing is the object being instantiated endttirrent constructor. Two new instructions are inserted
along the false branch of the : apush null followed by athrow . A new try block is created spanning
from theifnull up to the super call. The catch block is appended to the erteahethod as a sequence of
pop, load o, goto sc , Whereo is the object being instantiated asd is the super call. This confuses
decompilers because it is more difficult to deduce whichllaéth be on the stack when the super call site is
reached.

6.4 Partially Trapping Switch Statements (PTSS)

There is a big gap between high-level structured use ofdtgkchlocks in Java source and their low-level byte imple-
mentation. Whereas the Java construct allows only welleesnd structured uses, the bytecode implementation is
a much lower trap abstraction. A bytecode trap specifies ecbge range . .. b, a handler unit,, and an exception
type E. If an exceptiorl” is raised within the method at bytecodéen the JVM searches for a trap in the list which
matches either the type @f or a parent type of’ whose bytecode range . . b containse. If a trap is found then the
stack is emptied[" is pushed on top, and the program counter is set to the haindler

There are no rules that enforce nesting of these ranges ahd bytecode level these may overlap or even share
code with handler code.

Thus, one way of confusing decompilers is to trap sequeseigions of bytecode that are not necessarily sequen-
tial in Java source code. The perfect example of this is thielsweonstruct. In source code, the switch statement
encapsulates different blocks of codetargetsof the switch. However, in bytecode there is nothing exidiing
theswitch instruction to the different code blockisg. there is no explicit encapsulation).

10

If the switch is placed within a trap range along with onbart of the code blocks which are associated as
its targets then there will be no way for an automatic dectenpd output semantically equivalent code that looks
anything like the original source. It simply must reprodtive trap in the source code in some form, potentially by
duplicating code.

This transformation is conservatively limited to thosetsWiconstructs which armot already trapped, which
alleviates some analysis work. This implies thatsiagtch instruction itself and any additional instructions thag ar
selected for trapping were not previously trapped in any.way

6.5 Combining Try Blocks with their Catch Blocks (CTBCB)

Java source code can only represent try-catch blocks in aye with a try block directly followed by one or more
catch blocks associated with it. In bytecode, however, loghs can protect the same code that is used to handle the
exceptions it throws or one of its catch blocks can appeawvabhit in the instruction sequence.

This obfuscation combines a try-catch block such that buttbieginning of the try block and the beginning of the
catch block are the same instruction. This is accomplisiygatépending the first unit of the try block with &n that
branches to either the try code or the catch code based ontiegyeircontrol flow flag. Once the try section has been
officially entered, the flag is set to indicate that any exiecubf theif in the future should direct control to the catch
section. The integer flag is reset to its original value whnentty section is completed.

6.6 Indirecting i f Instructions (lI)

While javac will always produce very predictable try blocks it is pos$sito abuse these constructs in other ways.
This obfuscation takes advantage of this by indirectingoranching througlgoto instructions which are within a
special try block. Normally, modern compilers would rematlre goto and modify theif to jump directly to its
final target. However, since a try block protects all thesigd is not valid to remove them unless the code can be
statically shown to never raise an exception. Since theme isxplicitgoto allowed in Java source, it becomes very
difficult for a decompiler to synthesize equivalent sourcde:

6.7 Got o Instruction Augmentation (GIA)

Explicit goto statements are not allowed in Java source. Studies havenghmio be a good design decision [3]. In
source, you must use abrupt statements instead. Java tgoeshave agoto instruction because it is necessary
for simulating higher-level constructs such as loops. &fwee it is possible to insert an expligbto within the
bytecode. While it is very easily reversed using control fgpaph analysis it can still cause many simple decompilers
to fail.

Our obfuscation takes a simple approach. It randomly spliteethod into two sequential parts: The first, contain-
ing the start of the method; and a second, containing the end of the mettidd]t then reorders these two parts and
inserts twogoto instructions. The firsgoto is inserted as the first instruction in the method and pomthé start
of P;. The second is inserted at the endifand targetd. The final method now looks liké goto Py, P», P,
goto P»}.

As an added step, a try block is manufactured to span fromnti@EP, to the beginning of;, thereby “gluing”
the two sections together. This makes it difficult for a depien to shuffle the instructions back to their original atde

6.8 The impact of exploiting the semantic gap on decompilers

All of the decompilers have difficulty with the obfuscatioftem this section. Table Ill shows that Dava was only
successful with one out of seven. Jad and SourceAgain fallgdsts. In all cases Jad generates source with many
bytecode instructions left in it and therefore it is diffictd identify anything specific as the cause. In most of thesas
SourceAgain was unable to realize where certain local bbegawere used. It would declare a local variable within a
nested block even when the parent block used that variaslexmple. Both SourceAgain and Dava had difficulties

11

marking methods which might throw exceptions. They couldproperly name the super constructor method calls in
DCC either, leaving the bytecode narieit> which is not a legal Java identifier.

Table Ill: Measuring Decompiler Success against Semaraje Gbfuscations

Obfuscation Jad | SourceAgain| Dava
Converting Branches to jsr Instructions Fail Fail Crash
Reordering loads Above if Instructions Fail Fail Pass
Disobeying Constructor Conventions Fail Fail Crash
Partially Trapping Switch Statements Fail Fail Fail
Combining Try Blocks with their Catch Blocks Fail Fail Fail
Indirecting if Instructions Fail Fail Fail
Goto Instruction Augmentation Fail Fail Fail

Dava also crashed on the DCC obfuscation due to its inaldlibandle the throwing of explicitly null exceptions.
Soot is unable to read in classfiles that inclysle instructions with no matchinget . This is not a limitation of
Dava itself but we marked it as having crashed on the CB2Jllsmaition because of this.

7 Empirical Evaluation

Since an important aspect of our work is the evaluation ofitfygact of obfuscations on runtime performance, we
have gathered a set of benchmarks from a graduate-levelilewrptimizations course where students were required
to develop interesting and computation-intensive progréon comparing the performance of various Java Virtual
Machines. Each one was written in Java and compiledjaitac The benchmarks represent a wide array of programs
each with their own unique coding style, resource usageu#imlate task. Below is a list of each benchmark with a
brief description of its key features.

Asac: is a multi-threaded sorter which compares the performahttedubble Sort, Selection Sort, and Quick Sort
algorithms. It uses reflection to access each sorting dlgorclass by name and creates a new thread for each
one. In the experiments, the benchmark sorts a randomlyggkearray of 30,000 integers.

Chromo: implements a genetic algorithm, an optimization technitpa uses randomization instead of a determin-
istic search strategy. It generates a random populatiohrahhcosomes. With mutations and crossovers it tries
to achieve the best chromosome over successive generdtiorstantiates many chromosome objects and, for
each generation, evaluates over 5,000 of these 64-bit elraynosomes.

Decode: implements an algorithm for decoding encrypted messageg Ghamir's Secret Sharing scheme.
FFT: performs fast fourier transformations on complex doub&zision data.

Fractal: generates a tree-like (as in leaves) fractal image. It @l lang.Math trigonometric methods heavily and
is deeply recursive in nature.

LU: implements Lower/Upper Triangular Decomposition for mafactorization.
Matrix: performs the inversion function on matrices.
Probe: uses the Poisson distribution to compute a theoreticalaqupation to pi for a given alpha.

Triphase: performs three separate numerically-intensive prograiiise first is linpack linear system solver that
performs heavy double precision floating-point arithmefice second is a heavily multithreaded matrix multi-
plication algorithm. The third is a multithreaded variafittee Sieve prime-finder algorithm. In total, 1,730 java
threads are created during the execution of this programagita many as 130 of them alive at once.

12

7.1 Impact of Obfuscations on Performance

Figure 1(a) summarizes the ratio of the execution time ofistdited benchmark to the execution time of original
benchmark. A ratio of 1 indicates that the obfuscation had no effect oriqgenance, a ratio of less than 1 indicates
that the obfuscated benchmark was faster, and a ratio grbwate 1 indicates that the obfuscated benchmark was
slower? Each bar corresponds to one obfuscation, the diamond oratheolbresponds to the average ratio over all
the benchmarks. The bars show the range of ratios with therhaif the bar corresponds to the benchmark with the
lowest ratio and the top of the bar corresponds to the bendtzmath the highest ratio.

All experiments were run on an AMD AthldH64 X2 Dual Core Processor 3800+ machine with 4 gigabytes of
RAM running Ubuntu 6.06 Dapper Drake Linux. The machine waleaded and running no extraneous processes at
the time each experiment was performed. Sun Microsysteswis HotSpdt'64-Bit Server VM (build 1.5.0 06 b05)
was used in all experiments with the initial and maximum Jeeap sizes set to 128 and 1024 megabytes, respectively.

As shown by recent empirical studies by @ual [10, 11], small variations in code layout can lead to rekdsi
large performance differences in Java (on the order of 5)10Bus, we can expect some performance differences
between the original and obfuscated code just because fhsaalbed code leads to different code layouts. Thus, the
significant performance differences are really those leas t95 or greater than 1.05.

We can see that average performance of the obfuscated cedgyiseasonable, with quite a few below 1. The
most expensive obfuscation appears to CB2JI, which combeanches to jsr instructions, with an average slowdown
of 1.16 and a maximum slowdown of almost 1.6. This maximurnwdlmvn was in the LU benchmark and in further
investigations we found that almost the entire cause ford#hereased performance was a slowdown in one deeply
nested loop which now had very complex control flow. The Jitpder struggled to analyze this nested loop and
caused a 5-fold slowdown in compilation time. There are Gstditions that lead to a maximum slowdown greater
than 1.2. These obfuscations should be used carefullydizgphot methods whenever possible.

In some cases the obfuscations actually seem to slightlyowegpeformance. The RLAII obfuscation that moves
loads above ifs is one such case. This does make sense ssoeoiving a load that is known to be needed on both
branches earlier in the computation.

7.2 Impact of obfuscations on control-flow complexity

Whereas Figure 1(a) shows how much the obfuscated applicatbwed down (the gain), Figure 1(b) shows the
the increase in code complexity due to obfuscations (the)pale have opted for a reasonably simple measure of
complexity based on counting the number of nodes and edgié® inontrol flow graph of the program, where the
nodes in the control flow graph are basic blocks and the edgeatrol flow edges. Obfuscations which change the
structure of the code may introduce new control flow edgegoanddirect control flow edges to split basic blocks.
The numbers reported in Figure 1(b) show the ratio of the stitheonumber of nodes and edges of the obfuscated
code over the sum of nodes and edges of the original. Thist@antures the impact of control flow obfuscations
well, but does not measure the impact of simpler obfuscasoich as identifier renaming.

As expected, the operation-level obfuscations have no dinma control-flow complexity. The increase in com-
plexity for these obfuscations is better demonstrated binarease in identifier complexity and an increase in the
number of operation¥’

The structure obfuscations do show a signficant increasentra-flow complexity. The two obfuscations that
confuse the object-oriented design, Building API Bufferthms (BAPIBM) and Building Library Buffer Classes
(BLBC), do not increase control-flow complexity, but woulfegt other metrics which measure coupling.

As we have shown in Table Ill, the third group of obfuscati@ms those that are most effective in breaking
decompilers. Some of these also show some significant isesea control-flow complexity. Based on our experiences
with Dava, which can partially handle many of these casegxpect that a complete decompilation will lead to source
code with a lot of code duplication and heavy use of labeledks.

8To time the original benchmark, we first processed it via Sdtit no obfuscations turned on. This is to factor out anyedifhices due to Soot
processing.

9The execution time is computed by timing 10 runs, droppirggslowest and fastest and averaging the remaining 8 runslafigest standard
error we observed over these 8 runs was 2.6% and the majbtitg oneasurements had a standard error well below that.

10we have collected these kinds of metrics, which do demaesaraincrease.

13

1.7

1.5 +

1.4 +

1.2 +

(a) Performance Ratio — (average execution time of obfescptogram)/(average execution time of original pro-
gram). High and low bars are given.

2.8
2.6
2.4 +
22 T
o1
1.8 +
1.6 + *
. .
1.4 + |
1.2 + * +
T S UNPUNDUN 1l141*1 1 1¢1+1 111 1
FEEF /88888 [§3684 7
o ¢ T < S & 9 o < T K
QE\ & T X O

(b) Complexity Ratio — (sum of edges and nodes in obfuscate@)C(sum of edges and nodes in original CFG).
High and low bars are given.

Figure 1: Performance and Complexity Ratios comparing sd#ted programs to their original forms.

14

8 Conclusions and Future Work

This paper has presented a collection of obfuscation tgalesifor Java bytecode. The intent was to make the byte-
code harder to reverse-engineer without imposing sigmifiperformance penalties. We presented three groups of
obfuscations. The first group were relatively simple andifed on operator-level obfuscations which are intended to
make the code harder to reverse-engineer. Although wetdidpect these to break decompilers, several decompilers
failed to properly type the obfuscated code. The secondmobtechniques were aimed at confusing both the control
flow within methods and the object-oriented design. The dgglers also had trouble with some of these techniques,
although they should in principle be decompilable, evemgfiothe decompiled code is much more complex than the
original. These decompiler failures were mostly due to thiuscations creating unstructured control flow which is
much more difficult to decompile than structured control flalwe third group of obfuscations were mostly new tech-
nigues and were aimed at exploiting the gap between thelbigdstructure of Java source and the lower-level rules
for bytecode. These obfuscations were very successfultiboreasing the complexity of the code and breaking the
decompilers.

The effect on performance of the obfuscations varied, tieezae performance ratio of obfuscated/original ranged
from .96 to 1.16, which is very reasonable. The maximum nagtéhed almost 1.6, with 6 of 16 obfuscations having
a maximum ratio of over 1.2. This demonstrates that in sorsesctine obfuscations should not be used everywhere in
the program, particularly in hot methods. More detailedysis of specific instances showed that some performance
slowdowns were due to the increased time needed by the JIpirsto deal with the analysis of the complex control
flow created by the obfuscations. Hence the obfuscationsmijast more difficult for reverse engineers to understand,
they also cause problems for tools like compilers and dedensp

All of our obfuscations have been implemented in the JBCQ, twhich is built on top of Soot. We are quite
pleased with the wide variety of obfuscations we developebthis paper has shown how they work individually. We
feel that the next interesting problem is to develop newnaples to automatically determine where each obfuscation
should be applied and how to best select a combination ofsohfions so that one can achieve the best overall effect
without applying all obfuscations at all points. We haveoadtarted to develop a wide variety of metrics to quantify
the effect of obfuscators and decompilers.

Acknowledgments

This work was supported, in part, by NSERC and FQRNT

References

[1] A. W. Appel. Deobfuscation is in NP, Aug. 21 2002.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. 8al$. Vadhan, and K. Yang. On the (im)possibility of
obfuscating programd.ecture Notes in Computer Scien2é39:1-??, 2001.

[3] B. A. Benander, N. Gorla, and A. C. Benander. An empirgtaidy of the use of the goto statemedt. Syst.
Softw, 11(3):217-223, 1990.

[4] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob@iented design.IEEE Trans. Softw. Eng.
20(6):476-493, 1994.

[5] F. B. Cohen. Operating system protection through pnogesolution.Comput. Securl2(6):565-584, 1993.

[6] C. Collberg, C. Thomborson, and D. Low. Breaking abstoars and unstructuring data structuresI@CL '98:
Proceedings of the 1998 International Conference on CoerpLanguagespage 28, Washington, DC, USA,
1998. IEEE Computer Society.

[7] C. S. Collberg and C. Thomborson. Watermarking, tangesfing, and obfuscation - tools for software protec-
tion. In IEEE Transactions on Software Engineeringlume 28, pages 735-746, Aug. 2002.

15

[8] J. Ge, S. Chaudhuri, and A. Tyagi. Control flow based otditisn. INDRM '05: Proceedings of the 5th ACM
workshop on Digital rights managemeptges 83-92, New York, NY, USA, 2005. ACM Press.

[9] J. Gosling, B. Joy, G. Steele, and G. Brachhe Java Language Specification, Second Editkadison Wesley,
2000.

[10] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a saifngoise in JVM performance. l@omponent And
Middleware Performance workshop, OOPSLA 202204.

[11] D. Gu, C. Verbrugge, and E. M. Gagnon. Relative factarperformance analysis of Java virtual machines. In
VEE '06: Proceedings of the 2nd international conferencé/otual execution environmentpages 111-121.
ACM Press, 2006.

[12] S. Henry and K. Kafura. Software structure metrics dase information flow.IEEE Transactions on Software
Engineering 7(5):510-518, 1981.

[13] Jad - the fast JAva Decompiler. Available dritp://www.kpdus.com/jad.html

[14] A. Majumdar and C. Thomborson. Manufacturing opaqeslfrates in distributed systems for code obfuscation.
In V. Estivill-Castro and G. Dobbie, editor§wenty-Ninth Australasian Computer Science ConferenGS@
2006) volume 48 ofCRPIT, pages 187-196, Hobart, Australia, 2006. ACS.

[15] J. Miecnikowskiand L. J. Hendren. Decompiling Javadagtde: problems, traps and pitfalls. In R. N. Horspool,
editor, Compiler Constructionvolume 2304 ofLecture Notes in Computer Sciengages 111-127. Springer
Verlag, 2002.

[16] J. Miecznikowski and L. Hendren. Decompiling Java gsstaged encapsulation. Rroceedings of the Working
Conference on Reverse Engineeripgges 368-374, October 2001.

[17] Mocha, the Java Decompiler. Available orhttp://www.brouhaha.com/"eric/computers/
mocha.html

[18] J. C. Munson and T. M. Khoshgoftaar. Measurement of statecture complexityd. Syst. Softw20(3):217-225,
1993.

[19] N. A. Naeem and L. Hendren. Programmer-friendly decibedplava. InProceedings of the 14th IEEE Interna-
tional Conference on Program Comprhensi@g06.

[20] Y. Sakabe, M. Soshi, and A. Miyaji. Java obfuscatiorhwdttheoretical basis for building secure mobile agents.
In Communications and Multimedia Securipages 89-103, 2003.

[21] M. Sosonkin, G. Naumovich, and N. Memon. Obfuscatiomesign intent in object-oriented applications. In
DRM ’'03: Proceedings of the 3rd ACM workshop on Digital riglhanagemenpages 142-153, New York,
NY, USA, 2003. ACM Press.

[22] Source Again - A Java Decompiler. Available dritp://www.ahpah.com/

[23] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, Egr@&a, and P. Co. Soot - a Java optimization framework.
In Proceedings of CASCON 199%ages 125-135, 1999.

[24] C. Wang, J. Hill, J. Knight, and J. Davidson. Softwanaper resistance: Obstructing static analysis of programs.
Technical Report CS-2000-12, University of Virginia, D2600.

16

