
MC2FOR : A MATLAB TO FORTRAN 95 COMPILER

by

Xu Li

School of Computer Science

McGill University, Montréal

April 2014

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2014 Xu Li

Abstract

MATLAB R© is a dynamic numerical scripting language widely used by scientists, engi-

neers and students. While MATLAB’s high-level syntax and dynamic types make it ideal for

fast prototyping, programmers often prefer using high-performance static languages such

as FORTRAN for their final distribution. Rather than rewriting the code by hand, our solu-

tion is to provide a source-to-source compiler that translates the original MATLAB program

to an equivalent FORTRAN program.

In this thesis, we introduce MC2FOR, a source-to-source compiler which transforms

MATLAB to FORTRAN and handles several important challenges during the transforma-

tion, such as efficiently estimating the static type characteristics of all the variables in a

given MATLAB program, mapping numerous MATLAB built-in functions to FORTRAN, and

correctly supporting some MATLAB dynamic features in the generated FORTRAN code.

This compiler consists of two major parts. The first part is an interprocedural analysis

component to estimate the static type characteristics, such as the shapes of the arrays and

the ranges of the scalars, which are used to generate variable declarations and to remove

unnecessary array bounds checking in the translated FORTRAN program. The second part is

an extensible FORTRAN code generation framework automatically transforming MATLAB

constructs to equivalent FORTRAN constructs.

This work has been implemented within the McLab framework, and we evaluated the

performance of the MC2FOR compiler on a collection of 20 MATLAB benchmarks. For

most of the benchmarks, the generated FORTRAN program runs 1.2 to 337 times faster

than the original MATLAB program, and in terms of physical lines of code, typically grows

only by a factor of around 2. These experimental results show that the code generated by

MC2FOR performs better on average, at the cost of only a modest increase in code size.

i

ii

Résumé

MATLAB R© est un langage de script dynamique très utilisé par les scientifiques, les

ingénieurs et les étudiants. La syntaxe de haut niveau et le typage dynamique de MATLAB

en font un langage idéal pour faire du prototypage rapide, mais les programmeurs préfèrent

souvent utiliser des langages statiques performants comme FORTRAN pour la distribution

finale. Au lieu de réécrire le code à la main, notre solution est de proposer un compilateur

qui traduit le programme MATLAB original vers un program FORTRAN équivalent.

Dans cette thèse, nous introduisons MC2FOR, un compilateur qui transforme MAT-

LAB vers FORTRAN et surmonte plusieurs difficultés importantes rencontrées durant la

transformation, dont celles d’estimer efficacement le type statique de toutes les variables

dans un programme MATLAB donné, de trouver une correspondance pour les nombreuses

fonctions intégrées de MATLAB vers FORTRAN et de supporter correctement quelques ca-

ractéristiques dynamiques de MATLAB dans le code FORTRAN généré.

Le compilateur est constitué de deux parties majeures : la première partie est une ana-

lyse interprocédurale qui estime des caractéristiques du type statique, comme la forme des

tableaux et les limites des scalaires, qui sont utlilisées pour générer des déclarations de va-

riables et pour supprimer les vérifications de limite de tableaux inutiles dans le programme

FORTRAN généré. La deuxième partie est un framework de génération de code extensible

qui transforment automatiquement des constructions de MATLAB vers des constructions de

FORTRAN équivalentes.

Ce travail a été implementé dans le framework McLAB, et nous avons évalué les per-

formances du compilateur MC2FOR sur une collection de 20 programmes MATLAB. Pour

la plupart des programmes, le programme FORTRAN généré s’éxécute entre 1.2 et 337 fois

plus rapidement que le programme MATLAB original, et en termes de lignes de code, gran-

iii

dit seulement par un facteur de deux. Ces résultats expérimentaux démontrent que MC2FOR

est en mesure de générer du code qui performe mieux en moyenne que l’original sans pour

autant augmenter de trop sa taille.

iv

Acknowledgements

It’s a great pleasure to work with Professor Laurie Hendren. Her positive attitude and

high standard in research always help us towards the best solution. I would also like to

thank all the other members in the lab, especially Matthieu Dubet, Vineet Kumar, and

Ismail Badawi, we help and learn from each other both in work and in life. Since the very

beginning of my life, my parents become my first teachers and friends. They guide me

how to survive in this wonderful but also tough world and support me to chase my dream

without any hesitation. Finally, and also the most importantly, I would like to thank SU

Qingyuan, who is my best friend, my girlfriend, my wife and my soulmate. We met as

strangers, we fell in love at the first glance, and we support and trust each other more than

families. She is the source of my strength to get through all the difficulties in my master

program and all the challenges in the future.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

Table of Contents xv

1 Introduction 1

2 Background and Overview 5
2.1 Potential Challenges . 6

2.2 Overview of MC2FOR . 6

2.3 Components in MC2FOR . 8

3 Shape Analysis 11
3.1 Propagating Shapes through MATLAB Built-in Functions 12

3.1.1 Typical Behaviors of Built-in Functions on Shapes 14

3.1.2 Features of the Language . 16

3.1.3 Shape Propagation Equation Language 20

vii

3.1.4 Shape Matching Algorithm . 30

3.1.5 Summary . 34

3.2 Merging Different Shapes . 35

3.2.1 Merging Strategy . 35

3.2.2 Merging Shapes in Loop Statements 39

3.3 Shape Analysis Result Verification . 41

4 Range Value Analysis 43
4.1 Propagating Ranges through Built-in Functions 49

4.2 Merging Different Range Values . 57

4.3 Propagating Shapes through Array Indexing 59

4.3.1 Brief Introduction of Array Indexing in MATLAB 60

4.3.2 For Array Set Statement . 64

4.3.3 For Array Get Statement . 67

5 Transforming MATLAB to FORTRAN 95 71
5.1 Introduction . 72

5.1.1 Why FORTRAN 95? . 72

5.1.2 Potential Problems . 74

5.2 Basic Transformations . 75

5.2.1 Types . 76

5.2.2 Variable Declarations . 76

5.2.3 Built-in Functions . 77

5.2.4 Control Flow Statements . 83

5.2.5 User-defined Functions . 84

5.3 Advanced Problems in Mapping Types . 85

5.3.1 For Subscripts in Array Indexing 86

5.3.2 For Loop Range Expressions . 86

5.3.3 Assigning Multiple Types to the Same Variable 86

5.4 Array Indexing Transformation . 89

5.4.1 For Array Get Statements . 89

viii

5.4.2 For Array Set Statements . 91

5.4.3 Shortcut Linear Indexing Transformation 92

5.5 Run-time Array Bounds Checking and Variable Resizing 93

5.5.1 For Array Get statements . 93

5.5.2 For Array Set statements . 94

5.5.3 For Assignment Statements . 95

6 Experimental Results 97
6.1 Description of the Benchmarks . 98

6.2 Experimental Results . 100

6.3 Analysis of Results . 103

6.3.1 MC2FOR and MATLAB Coder vs. MATLAB 103

6.3.2 MC2FOR vs. MATLAB Coder . 105

6.3.3 MC2FOR without Checks vs. with Checks 106

6.4 Summary . 108

7 Related Work 109

8 Conclusions and Future Work 111

Appendices

A Shape Propagation Equation Language 113
A.1 Tokens . 113

A.2 Grammar . 114

A.3 Some Shape Equation Examples . 117

A.4 Implementation Details . 119

A.5 The Aspect File to Detect Array Growth 123

Bibliography 129

ix

x

List of Figures

2.1 The overview of MC2FOR. We highlight the boxes which are the contribu-

tions of this thesis. 7

3.1 MATLAB code examples of merging two different shapes 36

3.2 The analysis result of MATLAB code examples in Figure 3.1 38

3.3 MATLAB code example of merging shapes with variant dimensions 39

3.4 The profiling results of the benchmark adapt by AspectMatlab and shape

analysis . 42

4.1 MATLAB code example of array growth 44

4.2 MATLAB code example of array growth with non-constant value 45

4.3 Generated FORTRAN code v1.0 for the MATLAB code in Figure 4.2 (b) . . 46

4.4 Generated FORTRAN code v2.0 for the MATLAB code in Figure 4.2 (b). . . 48

4.5 MATLAB code example of merging range values in loops 58

4.6 MATLAB code example of out-of-bound array set assignment 60

4.7 Illustration of MATLAB array indexing . 62

4.8 MATLAB script example of linear indexing 63

4.9 MATLAB script example of array growth 64

5.1 MATLAB code example of using mldivide built-in function 79

5.2 Generated FORTRAN code for the code example in Figure 5.1 81

5.3 FORTRAN module for mapping MATLAB built-in function mldivide 81

5.4 MATLAB code example to illustrate function overloading 82

5.5 Generated FORTRAN code for the code example in Figure 5.4 82

5.6 FORTRAN module ones supporting function overloading 83

xi

5.7 if constructs in MATLAB (left) and FORTRAN (right) 84

5.8 for loop constructs in MATLAB (left) and FORTRAN (right) 84

5.9 while loop constructs in MATLAB (left) and FORTRAN (right) 84

5.10 Translating entry point function from MATLAB to FORTRAN 85

5.11 Subscript in MATLAB (left) and FORTRAN (right) 86

5.12 Transformation of for loop constructs in MATLAB to FORTRAN 87

5.13 Using derived data type in FORTRAN to map inconvertible types of the

same variable in MATLAB . 88

5.14 The function ARRAY_GET3SV . 90

5.15 The subroutine ARRAY_SET3SV2 . 92

5.16 Run-time array bounds checking code for array get statement 94

5.17 Run-time array bounds checking and variable reshape code for array set

statement . 95

5.18 Illustration of allocating allocatable arrays in user-defined functions 96

6.1 Constant value replacement for the power function in FORTRAN 106

A.1 Example to illustrate shape matching process 121

xii

List of Tables

3.1 Built-in functions of shape propagation equation language 26

3.2 Shape merging relation table . 40

4.1 Operators supported by the range value analysis 49

5.1 Mapping MATLAB types to FORTRAN . 76

5.2 Mapping MATLAB arithmetic operators to FORTRAN 78

5.3 Mapping MATLAB relational operators to FORTRAN 78

5.4 Mapping MATLAB logical operators to FORTRAN 79

5.5 Directly mapping MATLAB commonly used mathematical built-ins to FOR-

TRAN . 80

6.1 Performance comparison . 101

6.2 Physical lines of code comparison . 104

6.3 MC2FOR without and with checks . 107

xiii

xiv

List of Listings

2.1 MATLAB implementation of Babai algorithm 5

3.1 Shape matching algorithm 1 of 5: function matchShape 31

3.2 Shape matching algorithm 2 of 5: function case.match 31

3.3 Shape matching algorithm 3 of 5: function patternlist.match 32

3.4 Shape matching algorithm 4 of 5: function expression.match 32

3.5 Shape matching algorithm 5 of 5: function outputlist.match 34

3.6 Shape merging strategy . 36

3.7 The equals function to check whether the analysis in loops gets to the fixed

point . 37

4.1 Unary plus operator (+) . 52

4.2 Binary plus operator (+) . 52

4.3 Unary minus operator (-) . 52

4.4 Binary minus operator (-) . 53

4.5 Element-wise multiplication operator (.*) 53

4.6 Matrix multiplication operator (*) . 53

4.7 Element-wise rdivision operator (./) . 54

4.8 Matrix rdivision operator (/) . 54

4.9 Natural logarithm operator (log) . 54

4.10 Exponential operator (exp) . 55

4.11 Absolute value operator (abs) . 55

4.12 Colon operator (:) . 55

4.13 Range value merging strategy . 57

4.14 Range value equals function . 57

xv

4.15 Shape analysis for array set statements . 65

4.16 Shape analysis for array get statement . 68

5.1 Variable declaration in FORTRAN . 77

A.1 The aspect file to detect array growth . 123

xvi

Chapter 1

Introduction

MATLAB [Matb] is a well established language commonly used by engineers, scientists

and students. This user community finds MATLAB convenient for prototyping their applica-

tions because of MATLAB’s flexible syntax, the fact that no static declarations are required,

the availability of many high-level array operators, and access to a rich set of built-in func-

tions. However, once the user has developed their prototype application, he/she often wants

to move to a more traditional high-performance scientific language such as FORTRAN.

There are two compelling reasons to make such a transition to FORTRAN. Firstly, the

user may want high-performance code, which can be freely distributed. If the applica-

tion has been translated to FORTRAN, then the user may compile the code with any of the

numerous high-performance optimizing FORTRAN compilers, including open source com-

pilers like GFortran [GNU13]. Secondly, the prototyped MATLAB code may implement

a function which needs to be integrated into an existing system already implemented in

FORTRAN. For example, a weather forecasting system may use many different models,

and new models must be implemented in FORTRAN for integration into the system.

Given that converting from MATLAB to FORTRAN is a common problem, our goal is

to make this easy for programmers by providing MC2FOR, a source-to-source compiler

that transforms MATLAB programs to FORTRAN. This compiler enables MATLAB users

to move their applications from MATLAB to FORTRAN without the effort and knowledge

required of manually rewriting their code in FORTRAN. To be generally useful our compiler

needs to: (1) be easy to use, (2) produce efficient FORTRAN code, and (3) produce readable

1

Introduction

FORTRAN code.

Although MATLAB’s roots are as a simple scripting language to interface with FOR-

TRAN libraries,1 modern MATLAB has evolved into quite a complex language, with syntax

and semantics that have grown somewhat organically. Thus, although there is natural match

between many array operations available in MATLAB and FORTRAN, there is actually a

large gap between the dynamic nature of MATLAB and the statically-compiled nature of

FORTRAN. As one example, in MATLAB there are are no variable declarations, and vari-

ables may hold any type, and in fact may hold different types at different program points.

Whereas in FORTRAN all variables must be statically declared and must have well-defined

types. Thus, to perform an automatic translation, our compiler must implement sophisti-

cated static analyses, including a mechanism to analyze the many built-in functions.

The main contributions of this thesis are as follows:

Identified need/challenges: We have identified the need for a compiler to help program-

mers transform MATLAB to FORTRAN, and we have identified the main challenges.

Shape Analysis: We have designed and implemented an interprocedural shape analysis

that estimates the number and extent of array dimensions, including handling built-

in functions via a domain-specific language for expressing shape propagation rules

through the functions.

Range Analysis: We have implemented a custom range analysis for MATLAB scalar vari-

ables in order to minimize the overhead of inlined array bounds checking and array

shape resizing in the generated FORTRAN code.

Code Generation Strategies: We have designed and implemented code generation strate-

gies for mapping the different types of variables, the simple control constructs, and

the more difficult aspects of MATLAB.

Tool Implementation and Empirical Evaluation: We have implemented the tool as an

open source project (www.sable.mcgill.ca/mclab/mc2for.html), and

we have evaluated the tool on a suite of 20 benchmarks, showing that we can produce

both efficient and compact code.
1 wwww.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

2

www.sable.mcgill.ca/mclab/mc2for.html

The thesis is structured as follows. In Chapter 2, we give the necessary background and

overall structure of our compiler. In Chapter 3, we provide a detailed explanation of our

shape analysis, including our approach for handling the shape propagation through MAT-

LAB built-in functions. Chapter 4 describes our approach to range analysis, which is used to

minimize the inlined array bounds checking and array shape resizing. Chapter 5 introduces

the transformation to map the different types of variables, the simple control constructs,

and the more dynamic features of MATLAB to FORTRAN. Chapter 6 provides our empir-

ical study of using the compiler on a collection of 20 MATLAB benchmarks. Chapter 7

discusses some related works, and finally we conclude the whole thesis in Chapter 8.

3

Introduction

4

Chapter 2

Background and Overview

MATLAB is widely used to prototype code for algorithms, implement solutions to com-

plicated mathematical problems, and even run simulations for systems. Based on its array

and dynamic language nature, MATLAB is especially suitable for solving linear algebra

problems. For example, Listing 2.1 shows a MATLAB implementation of a well known

linear algebra algorithm, the Babai nearest plane algorithm.

1 function z_hat = babai(R,y)

2 % compute the Babai estimation

3 % find a sub-optimal solution for min_z ||R*z-y||_2

4 % R - an upper triangular real matrix of n-by-n

5 % y - a real vector of n-by-1

6 % z_hat - resulting integer vector

7 n=length(y);

8 z_hat=zeros(n,1);

9 z_hat(n)=round(y(n)./R(n,n));

10

11 for k=n-1:-1:1

12 par=R(k,k+1:n)*z_hat(k+1:n);

13 ck=(y(k)-par)./R(k,k);

14 z_hat(k)=round(ck);

15 end

16 end

Listing 2.1 MATLAB implementation of Babai algorithm

5

Background and Overview

This algorithm is an approximation to solve the closest vector problem and has perva-

sive applications in the field of wireless communication. Imagine that we want to transform

this MATLAB implementation to FORTRAN- what potential problems may we encounter?

2.1 Potential Challenges

First of all, how should we declare the MATLAB variables in the transformed FORTRAN

program? MATLAB is a dynamic scripting language which doesn’t need variable dec-

larations (although for readability MATLAB programmers often put some informal type

information as comments), while in FORTRAN, to declare an array variable, we need to

know at least the type and the number of dimensions of the variable, which means that in

order to transform MATLAB to FORTRAN, first we need to find some way to obtain the

type and shape information of all the variables in the given MATLAB program. Secondly,

assuming that we can correctly declare all the variables, how should we map those built-in

functions in MATLAB to FORTRAN? For example, in Listing 2.1, how should we map the

length function at line 7, the zeros function at line 8 and the round function at lines 9

and 14. Thirdly, besides these two significant problems, we also need to think about how

to map MATLAB constructs to the equivalent constructs in FORTRAN and how we should

handle the differences between MATLAB and FORTRAN. For example, in MATLAB the

programmer may leave out some of the trailing indices in an array reference, and the miss-

ing dimensions will be linearized, while in FORTRAN the number of the indices must be

the same as the number of dimensions of the accessed array. Further, how should we map

dynamic features such as the MATLAB behaviour that automatically grows an array when

a write to that array is out of bounds?

2.2 Overview of MC2FOR

In order to solve these problems, we designed and implemented MC2FOR, as illustrated in

Figure 2.1. First, let’s focus on the input (top of figure) and output (bottom of figure) of

MC2FOR. Note that the user only provides the name of the MATLAB file which is the entry

point of the user’s program to the compiler. Any other MATLAB files that may be used by

6

2.2. Overview of MC2FOR

the program should be in the same directory as the entry point function file. If the entry

point function has one or more input parameters, then the user should also provide the type

and shape information for each of the parameter(s). The MC2FOR compiler then finds all

functions reachable directly or indirectly from the entry point, loads the necessary files, and

translates all the reachable MATLAB functions to equivalent FORTRAN. The output of the

compiler is a collection of FORTRAN files, which can be compiled with any FORTRAN 95-

compliant compiler. Thus, from the user’s point of view, it is very simple to use MC2FOR.

Figure 2.1 The overview of MC2FOR. We highlight the boxes which are the contributions of this
thesis.

7

Background and Overview

2.3 Components in MC2FOR

Now let us concentrate on the actual structural organization of MC2FOR. The central com-

ponent driving the compilation process is the Tamer [Dub12, DH12b] module. It starts

with the entry point function and iteratively discovers all the functions that are directly and

indirectly called. For each processed MATLAB function file, the McLab Front End [McL]

is used to scan and parse the file, generating a high-level intermediate representation (IR),

McAST. The analysis and transformation engine, McSAF [Doh11, DH12a] is then used

to transform to a lower-level AST; and to perform initial analyses such as kind analy-

sis [DHR11], which determines which identifiers refer to arrays, and which refer to func-

tions.1 The Tamer then processes the IR into an even lower-level IR, TamerIR, which is

more suitable for interprocedural static analysis.

For the purposes of the MC2FOR project, our main new analyses have been imple-

mented in the Tamer’s framework. The Tamer’s framework, besides providing a low-level

IR with well-defined semantic meanings, also provides an extensible interprocedural ab-

stract value analysis framework. In the framework, Tamer already provided some basic

MATLAB type characteristics analyses, like simple constant analysis and MATLAB class

(mclass) analysis. In order to generate FORTRAN, MC2FOR provides two more impor-

tant analysis components to the framework, which are the shape analysis and the range

value analysis. The shape analysis computes shape information of all the variables for all

program points in a given MATLAB program. The range value analysis extends the basic

constant analysis and is used to estimate the range of a scalar variable at each program

point. The range value analysis can assist the shape analysis in the case of static array

bounds checking.

The TamerIR is in the form of three address code, which is very suitable for static anal-

ysis but introduces a lot of temporary variables making the code unreadable. In order to

generate readable FORTRAN and other target languages code, there is a restructuring com-

ponent, Tamer+, which aggregates the low-level three address code of TamerIR back to

1In MATLAB the syntactic construct a(i) can either be an array reference or a function call. In fact, even
the reference to the identifier i can either be a reference to a variable i, or a call to the predefined function i
which gives the complex value i.

8

2.3. Components in MC2FOR

the high-level IR of McAST. The obtained type characteristics and the new transformed

McAST are then given as inputs to the FORTRAN code generation backend. By traversing

the IR, the backend generates an functionally equivalent FORTRAN IR. In this traversing

process, MC2FOR solves the problems of mapping built-in functions in MATLAB to FOR-

TRAN, transforming difference between MATLAB and FORTRAN in array indexing and

so on. There is also a standalone FORTRAN library, libmc2for, shipped together with

MC2FOR, which is used to map those built-in functions which have no direct FORTRAN

equivalents. Finally, after building the FORTRAN IR, MC2FOR pretty prints the IR into

files with corresponding names. One of them maps to the entry point function file and the

others map to the user-defined function file(s) used in the program. The resulting FOR-

TRAN programs should be easy to redistribute, since they can be compiled with any FOR-

TRAN 95-compliant compiler (including the open source GFortran). Further, as we show in

Chapter 6, the resulting FORTRAN code is often more efficient than the original MATLAB

code.

9

Background and Overview

10

Chapter 3

Shape Analysis

As with other dynamically-typed programming languages, MATLAB programmers do

not need to declare the type of variables before defining and then using them in the code.

This feature gives the programmers a lot of convenience, allows them to focus on the design

of the algorithm, and supports fast prototyping. In contrast, for statically-typed program-

ming languages, like FORTRAN, the programmers must declare the type of variables before

defining and then using them in the code. The advantage of variable declaration is that it

simplifies the compilation process as the compilers know exactly what types of operators to

generate, as well as knowing exactly how much storage to allocate for different variables.

To pave the way for translating a given MATLAB program to a FORTRAN 95 program,

the first step of MC2FOR is to statically estimate some properties or characteristics1 of all

the variables used in the MATLAB program. With enough knowledge of all the variables,

MC2FOR can thus generate the variable declaration section in the converted FORTRAN

program.

In this thesis, the estimated characteristics of variables include five components: con-

stant information, mclass information, shape information, range value information and

complex information. The constant and range value information are not used directly for

type declaration in the converted FORTRAN code, but they are essential to other value anal-

ysis components. The mclass, shape, and complex information are all needed for declaring

1This is also called value analysis in our research.

11

Shape Analysis

variables in the converted FORTRAN code. For example, if variable var is a 2-by-3 complex

array, then in the converted FORTRAN code, it will be declared as:

COMPLEX, DIMENSION(2,3) :: var

Intuitively, the shape of an array is defined as the total number of dimensions, also

called rank, and the size of each dimension, also called extent. In MATLAB, even a scalar

is represented as a 1-by-1 array. So, the shape analysis is an analysis to estimate the rank

and extent of all the variables in a given MATLAB program.

In order to get the shape information of all the variables in a given program, we de-

signed and implemented a shape information flow analysis component, which can be in-

tegrated with the Tamer’s interprocedural value analysis framework. The component also

includes a concise and extensible domain-specific language to write shape propagation

equations for built-ins utilizing Tamer’s built-in framework. Recall that the Tamer’s built-in

framework provides us with an extensible framework to handle abstract values propagating

through MATLAB built-in functions, and the Tamer’s interprocedural value analysis frame-

work takes care of propagating abstract value analysis in a given MATLAB program and

merging the different values at the fixed point. Thus, for the shape analysis, we should first

design and implement a solution to estimate how do the shapes propagate through built-ins

and integrate it into the Tamer’s built-in framework, then develop a merging strategy for the

shape analysis which is invoked by the Tamer’s interprocedural value analysis framework.

In this chapter, we start with the solution to estimate shape information through MAT-

LAB built-in functions in Section 3.1, and then we discuss the problem of how to merge

different shape results for control flow statements in Section 3.2, finally, we introduce a

solution to assist in assessing the correctness of shape analysis results in Section 3.3.

3.1 Propagating Shapes through MATLAB Built-in Func-

tions

In the shape analysis, we implement a shape propagator object to collect shape information

by using Tamer’s interprocedural value analysis framework. When the shape propaga-

tor goes through a program to analyze the shape information of all its variables, one of

12

3.1. Propagating Shapes through MATLAB Built-in Functions

the most difficult problems it encounters is how to statically infer shape information of a

built-in function’s output argument(s) given the input argument(s). For example, when the

propagator encounters the statement arr = ones(k, l, m), if we want to translate this

code to FORTRAN, we have to know some shape information of the variable arr. The

problem is how to statically obtain the shape information of arr. Let’s assume that k, l and

m are all scalars and whose values are 2, 3, 4, respectively. With the knowledge of how the

built-in function ones works, we know that the variable arr will be a 2-by-3-by-4 array,

which means that arr will have three dimensions and the sizes of each dimension are 2, 3

and 4, respectively. Then, together with other value information of arr, like its mclass, we

would know to declare the variable arr in the generated FORTRAN code. But, the problem

is not that simple. What if the assignment expression is arr = ones(v) where v equals

4 or even v is a vector containing two 3s? Again, with the knowledge of how the built-in

function ones works, we know that the variable arr will be a 4-by-4 array or a 3-by-3

array. But there are hundreds of built-in functions in MATLAB, and for each of them, there

are multiple rules determining the shape information of output argument(s) based on the

shape information or/and other value information, like constant information, of function’s

input argument(s). So, is there a general solution to solve this problem?

In this section, we propose a concise and extensible domain specific language, the shape

propagation equation language, to write shape propagation equations for each MATLAB

built-in functions to describe the behaviors of how the shapes propagate through the built-

ins. Besides the shape propagation equation language, we also introduce a matching al-

gorithm whose inputs are the encountered built-in function’s input argument(s) and the

corresponding shape equation for the function, and whose output is the shape information

of the function’s output argument(s). We made the shape propagation language as concise

as possible, so that it’s easy to be remembered and understood; and furthermore, we made

it extensible, so that it can be used to implement shape equations for new built-in functions

in the future.

We wrote shape equations for most frequently used built-ins and put them together with

other existing value propagation equations2, which can be regarded as a value propagation

dictionary for MATLAB built-in functions. By these means, every time the shape propa-
2For example, mclass propagation equations and complex propagation equations.

13

Shape Analysis

gator encounters a built-in function in a given program, it will fetch the shape equation in

the dictionary, and by applying matching algorithm on that equation, it will get the shape

information of the output argument(s).

This section is divided into 5 subsections. Subsection 3.1.1 presents the typical be-

haviors of built-in functions on the shapes. Subsection 3.1.2 introduces the necessary fea-

tures of the shape propagation equation language used to cover those behaviors in subsec-

tion 3.1.1. Subsection 3.1.3 provides a more formal description of the language. Subsec-

tion 3.1.4 presents the shape matching algorithm. Subsection 3.1.5 concludes the whole

section.

3.1.1 Typical Behaviors of Built-in Functions on Shapes

Before formally introducing the shape propagation equation language and shape propaga-

tion equations for built-ins, we summarize the most typical behaviors of how a built-in

function propagates shape information of its input and output argument(s). In other words,

what shape information of the output arguments will be yielded based on the encountered

built-in function’s input argument(s). In order to make the language as concise as possi-

ble, we only equip the language with enough features to describe all these behaviors. By

supporting all the typical behaviors, no matter how many new built-ins are introduced into

MATLAB in the future, we still can describe how these new built-in works on shapes by

writing shape equations in this language.

To simplify the shape representation in the shape analysis, we use a list of numbers

enclosed by a pair of square brackets to represent shape information of an array, and each

number in the vector represents the size of corresponding dimension of the array. For

example, if arr is a 3-by-5 array, we will represent its shape as [3,5]3, in which 3 means

that the size of the first dimension of arr is 3 and 5 means that the size of the second

dimension of arr is 5. By studying a lot of MATLAB built-in functions, we summarized

the key possible behaviors into four major categories as below.

Based on the shape of input argument(s): The first typical behavior of built-in functions

on shape is that the shape of output argument(s) only depends on the shape of input
3Please don’t be confused with the bibliography reference marks

14

3.1. Propagating Shapes through MATLAB Built-in Functions

argument(s). For example, the built-in function round takes only one input argument

and the shape of output argument is the same as the shape of input argument; more-

over, the return shape of some arithmetic built-ins, like +, -, .* and ./, also only

depends on the shape of the input arguments.4

Based on numeric values of input argument(s): The shape of output argument(s) of some

built-in functions depends on the numeric value of input argument(s) of the functions.

For example, the output of built-in function call true(3) will be a 3-by-3 array and

the output of ones([1,2,3]) will be a 1-by-2-by-3 array.

Based on optional numbers or strings: The shape of output argument(s) of some built-in

functions depends on some optional numbers or character strings in their input argu-

ment lists. For example, the return shape of the built-in function svd, which is used

to compute singular value decomposition of an array, depends on an optional input

number argument, 0, and an optional input string argument, ’econ’. For instance, if

the shape of array X is [3,2], after the assignment expression [U,S,V] = svd(X),

the shape of U, S and V will be [3,3], [3,2] and [2,2], respectively; while, after

the assignment expression [U,S,V] = svd(X,0) or [U,S,V] = svd(X,’econ’),

the shape of U, S and V will be [3,2], [2,2] and [2,2], respectively.

Sometimes, the optional input arguments may not affect the return shape, like the

built-in function call ones(2,2,’int8’) will return a 2-by-2 array full of 1s in the

MATLAB numeric type of int8, while without explicitly putting the character string

argument ’int8’, the default return MATLAB numeric type of the array elements

will be double, but the return shape will remain as 2-by-2. In this case, we still need

some matching expressions to match this input string argument.

Other cases: The above three categories already cover most behaviors. However, there

are still a few special cases in MATLAB. For example, the built-in function cross,

which is used to get cross product of two vectors or matrices. Besides this function

requires that both two input vector or array arguments must have the same shape, it

4.* is element-wise multiplication, and ./ is element-wise division

15

Shape Analysis

also requires that the vectors must be 3 element vectors or the matrices must have at

least one dimension with the size of 3.

3.1.2 Features of the Language

In order to make the shape propagation equation language as concise as possible, we de-

signed this language equipped with small number of necessary features. These features

are capable enough to describe all the key possible behaviors of how a MATLAB built-in

function propagates the shape information through its input argument(s) to its output ar-

gument(s). A more formal introduction of the language and the equations will be given in

Subsection 3.1.3.

Shape matching expressions: To handle the behavior based on the shape of input argu-

ment(s), there are some shape matching expressions in this language. The shape

matching expressions are the basic and essential elements in this language. In detail,

we use the $ symbol, upper-case letters, like M, and vector expressions, like [m,n]

to match the shape of input argument(s). The $ symbol is used to match an input ar-

gument of 1-by-1 shape (or called scalar), upper-case letters are used to match other

arrays which are not of 1-by-1 shape, and vector expressions are more specific than

the upper-case letters, which has restriction on certain dimensions. For example, for

the built-in function mtimes, which is the matrix product of two matrices where the

number of columns of the first matrix must equal the number of rows of the second

matrix, by using shape matching expressions to describe this behavior, it will be:

[m,k],[k,n] -> [m,n]

This can be considered as an equation to describe how shape information propagates

through the function. In this thesis, we call it a shape propagation equation. By

interpreting this equation, we can get several shape propagation properties of this

function, they are:

1. There should be only two input arguments and one output argument.

2. The two input arguments should have two dimensions.

16

3.1. Propagating Shapes through MATLAB Built-in Functions

3. If the shape of the first input argument is m-by-k, and the shape of the second

input argument is k-by-n, then the shape of the output argument will be m-by-n;

4. Moreover, in this example, the vector expressions also implies a restriction on

the shape of inputs. Since, the second dimension of the first input argument and

the first dimension of the second input argument are represented in the same

lower-case letter, k, it requires that the number of columns of the first matrix

must equal the number of rows of the second matrix. If they are not equal,

in MATLAB, there is going to be a run-time error5 in execution, and in the

shape analysis, the return shape information of this function will be marked as

[shape propagation fails] which is used to inform the users of the shape

analysis that there is a misuse of function mtimes in its input MATLAB code,

and the shape analysis will carry on to the end of the program. If the matching

process succeeds, the first dimension of the output matrix will be the same size

as the first dimension of the first input argument, and the second dimension will

be the same size as the second dimension of the second input argument.

Assignment expression and function call expressions: To handle the behavior based on

the numeric values of input argument(s), there is some functionality to capture the

numeric values of the input argument(s). For example, for the built-in function ones,

which is always used as an array preallocation function and will generate an array

full of 1s. The shape propagation equation of this function is:

[] -> $ ||

($,n=previousScalar(),add(n))+ -> M

In this equation, we use function previousScalar to ask for the value of previous

matched scalar argument and use function add to add n into the default return shape

array. In this language, we define n=previousScalar() as assignment expression

and define previousScalar() and add(n) as function call expressions. By inter-

preting this equation, it means that there are two cases, separated by a || symbol,

for this matching process: the first case is that if the input argument is empty, the

5In MATLAB R2013a, the error information is inner matrix dimensions must agree.

17

Shape Analysis

return shape will be the same as a scalar, which is 1-by-1; the second case is that

if the input argument is a list of scalars, and for each scalar, we use the assignment

expression n=previousScalar() to get the integer value of the previous matched

scalar, then we use the function call add(n) to add the integer value into a default re-

turn shape array, the + symbol has the same meaning as in regular expressions, since

the first case already covers the empty input argument situation, here we use the +

symbol to represent the fact that there is at least one scalar to match. After matching

all the input arguments, the output shape will be the default return shape array.6

String literals: To handle the behavior based on optional strings7, we also include char-

acter string literals as a kind of shape matching expression. Then we can use it to

match those optional input string literals arguments. For example, for the built-in

function ones, now we can extend the shape equation to support the function taking

string literals as its input argument, like ones(3,3,’int8’). The shape equation to

cover this function is:

[]|’int8’ -> $ ||

($,n=previousScalar(),add())+,’int8’? -> M

In this equation, we introduced several new symbols and expressions. In the first

case, the | symbol is used to separate two shape matching expressions, [] and

’int8’. It means that the input argument can be either empty or a string of ’int8’

and the return shape will be 1-by-1. In the second case, the ? symbol has the similar

meaning as in regular expressions. Since ’int8’? appears at the last position of the

left hand side part of the -> symbol, it means that at the end of the input argument

list, there can be a string literal argument or not.

Assert expressions: To handle the remaining special cases, the language consists of some

assert expressions, which is used to assess some conditions. The assert expression

will be evaluated, and if its return value is true, the matching process continues, or the

6If any upper-case letter, like M in this example, does not appear in the shape matching side, it will be used
to represent the default return shape array.

7Optional numbers in the input argument list will be handled by using the $ symbol.

18

3.1. Propagating Shapes through MATLAB Built-in Functions

matching process on current case terminates. Recall the MATLAB built-in function

cross which requires that two input vectors or matrices must be 3 element vectors or

have at least one dimension with the size of 3, besides the requirement that two inputs

also must be in the same shape. To describe these requirements, the corresponding

shape equation is:

M,M,atLeastOneDimEqls(3)->M ||

M,M,$,n=previousScalar(),

k=previousShapeDim(n),isEqual(k,3)->M

The assert expression atLeastOneDimEqls(3) in the first case is used to check

whether there is at least one dimension with the size of 3. The second case in

above equation is used to cover the case where the built-in function call with one

extra optional input scalar, like cross(A,B,DIM) in which A and B are two matrices

and DIM is a scalar to indicate that along which dimension to apply cross product.

So based on the equation, we use $ to match that optional scalar input, and use

n=previousScalar() to store the scalar’s numeric value into n, and then we use

another assignment expression, k=previousShapeDim(n), to get the corresponding

dimension’s size, finally, we use another assert expression isEqual(k,3) to check

whether the corresponding dimension’s size equals 3. Since MATLAB is evolving

all the time, there may always come out some new built-ins. To handle this chal-

lenge, we made the language extensible by allowing programmers add new assert

expression functions inside function call CST node.

Other advanced features: There are also some other function calls can be used in the

assignment expression. For example, for the built-in function diag, which is used to

return the main diagonals of the matrices, the shape equation for it is:

[m,n],k=minimum(m,n) -> [k,1] ||

[n,1]|[1,n],$,k=previousScalar(),n=add(k) -> [n,n]

In this equation example, the equation uses minimum to find the minimum value be-

tween m and n.

19

Shape Analysis

Moreover, the assignment expression can also be used as an assignment to an indexed

upper-case letter, which is used to change the previous matched shape expression

information. For example, for the built-in function median, which is used to get the

median value of a vector or an array, the shape equation for this function is:

[1,n]|[n,1] -> $ ||

M,M(1)=1 -> M ||

M,M -> M ||

M,$,n=previousScalar(),M(n)=1 -> M

This equation consists of four cases. In the first case, it tries to match a row vector or

a column vector, and returns a shape of 1-by-1 as the result. In the second case, we

introduced the array indexing assignment expression, M(1)=1. This case first tries

to match an array using M and the match assigns the shape information into M, then

M(1)=1 overwrites the first dimension’s size of the shape stored in M to 1, and finally

returns the modified shape M as the result. In the third case, it tries to match two same

shape matrices and then return the shape of them as the result. For the last case, it

tries to match an array and a scalar, then to get the value of that scalar and to store

the value into n, and the array indexing assignment expression, M(n)=1, will set the

nth dimension’s size of the shape stored in M to 1, and finally return the shape stored

in M as the result.

In summary, the shape propagation equation language supports shape matching expres-

sions, function call expressions, assignment expressions and assert expressions. In the fol-

lowing subsections, we give a detailed introduction of the language and how the matching

algorithm works in the shape equation.

3.1.3 Shape Propagation Equation Language

The shape propagation equation language is the language to write shape propagation equa-

tions which are used to describe how MATLAB built-in functions behave on shape infor-

mation of input and output arguments. The tokens and the formal grammar of the language

20

3.1. Propagating Shapes through MATLAB Built-in Functions

are listed in Appendix A.1 and A.2. In this subsection, we introduce the general structure

and semantics of the constructs in this language, starting with the top-level constructs.

Caselist: Since almost all the MATLAB built-in functions can take several combinations of

input arguments, a shape equation of a built-in function is represented as a caselist of

at least one case, and the cases are separated by OROR (||) symbols. For example,

case1 || case2 || case3

The formal grammar snippet code for this construct is:

caselist

= case.c

| case.c OROR caselist.l

;

The separate cases are evaluated from left to right. If any of them is matched suc-

cessfully with the shape of input argument(s), the matching process terminates and

returns the corresponding shape result.

Case: Each case in the caselist can be divided into two parts, a pattern list side and a

shape output list side, separated by an ARROW (->) symbol. All the pattern list

expressions will be at the left hand side of the ARROW symbol, and all the shape

output list expressions will be at the right hand side of the ARROW symbol. For

example,

pattern list side -> shape output list side

The formal grammar snippet code for this construct is:

case

= patternlist.p ARROW outputlist.o

;

The pattern list side is evaluated prior to the shape output list side.

21

Shape Analysis

Pattern list side: The pattern list side is composed of a list of pattern expressions which

are separated by COMMA (,) symbols, and all the expressions are evaluated from

left to right. For example,8

PExp_1 , PExp_2 , ... PExp_n -> shape output list side

The formal grammar snippet code for this construct is:

patternlist

= pattern.e

| pattern.e COMMA patternlist.p

;

If any expression on the pattern list side fails in the matching process, the match-

ing process for the enclosing case will be terminated and if there are still remaining

case(s) in the caselist, the matching process will start from that next case, repeating

the matching process again until one case is matched successfully or there isn’t any

case left in the caselist. If none of the cases in the caselist matches the input argu-

ment(s) successfully, it means that there must be some misuse of the built-in function

by the MATLAB programmer. Our compiler will issue a warning to the user of the

shape analysis.

Pattern expressions: Pattern expressions can be categorized into three different kinds of

expressions: shape matching expression, assignment expression and assert expres-

sion. The formal grammar snippet code for this construct is:

pattern

= matchExpr.m

| assignExpr.a

| assertExpr.a

;

8Inside the example, PExp is short for pattern expression.

22

3.1. Propagating Shapes through MATLAB Built-in Functions

Among these three expressions, only the shape matching expression is used to match

the shape of the input argument(s) and if the matching is successful, the input argu-

ment is consumed, which means the matching process will point to the next input

argument if there are any left, or go to the shape output list side. The other two ex-

pressions, assignment expression and assert expression, are helper expressions in the

shape propagation.

Shape matching expression: There are four kinds of symbols which are used to

represent shape matching expression: the DOLLAR ($) symbol, upper-case

letters, vertcat expressions and the ANY (#) symbol. Since we use vectors

of numbers to represent shapes for arrays, in the grammar, we name shape

matching expression as vector expression, so the formal grammar snippet code

for shape matching expression is:
vectorExpr

= SCALAR.d

| UPPERCASE.u

| ANY.a

| vertcatExpr.v

;

vertcatExpr

= LSPAREN RSPAREN

| LSPAREN arglist.al RSPAREN

;

arglist

= arg.a

| arg.a COMMA arglist.al

;

arg

= scalarExpr.s

| vectorExpr.v

;

23

Shape Analysis

scalarExpr

= NUMBER.n

| LOWERCASE.l

;

Here is the description for all those four kinds of symbols.

1. The $ symbol: This symbol is used to match input arguments of 1-by-1

shape (also called scalars in our research);

2. Upper-case letters: These symbols are used to match input arguments of

arrays which are not of 1-by-1 shape. Since it’s almost impossible to need

more than 26 different upper-case letters in one shape equation, to make

the language concise, it only allows using one letter to match an array’s

shape, not combination of letters;

3. Vertcat expressions: Vertcat expressions are defined as a list of lower-case

letters or numbers enclosed by a pair of square brackets, like [1,k] or

[m,2,n]. Vertcat expressions are also used to match input arguments of

arrays, while it may impose more restrictions on the size of certain dimen-

sions;

4. The # symbol: In some cases, we may not care about the shape of current

input argument. For example, the built-in function vertcat is the verti-

cal concatenation of arrays with any dimension. The concatenated arrays

must have the same number of columns9, but don’t need to have the same

number of rows. The shape equation for this built-in is:
$,n=previousShapeDim(1),N=copy($),N(1)=0,

(#,k=previousShapeDim(1),K=copy(#),K(1)=0,

isEqual(K,N),n=add(k))*,N(1)=n -> N

||

M,n=previousShapeDim(1),N=copy(M),N(1)=0,

(#,k=previousShapeDim(1),K=copy(#),K(1)=0,

isEqual(K,N),n=add(k))*,N(1)=n -> N

9Actually, in MATLAB, if the input arrays of vertcat have more than two dimensions, all the dimen-
sions except for the first dimension must be the same size.

24

3.1. Propagating Shapes through MATLAB Built-in Functions

This equation probably is the most complicated shape propagation equation

which we have ever written. This equation has two cases: the first case

is used to match the situation where the first input argument is a scalar;

and the second case is used to match the situation where the first input

argument is a non-scalar array. The reason why we have two cases for

this equation simply is that we want to separate matching a scalar from

matching other arrays. So we can just go through the case for matching

non-scalar arrays, and the scalar case is just a special case of the non-

scalar arrays one. In the non-scalar arrays case, it will start by matching

an array, then it fetches the first dimension’s size of this array and stores

the value into n, then it uses N to copy the shape in M and sets the first

dimension of the shape in N to 0.10 The expressions inside the ()* symbol

are used to match any number of input array arguments. For each array,

the equation will save the size of its first dimension into k, copy the shape

of this array to K, set the first dimension of the shape in K to 0, then by

using the function call isEqual(K,N), compare all the dimensions except

the first dimension11 of the shape stored in K with the ones stored in N. If

the result of isEqual(K,N) is true, the shape equation will add the sizes

of their first dimensions together. The matching process will repeat the

expression matching inside ()* until there is not any input argument left,

then the return array will have the same shape as all the input arrays except

the first dimension which is the summation of the sizes of all the input

arrays’ first dimension.

Function call expression: The formal grammar snippet code for this construct is:

fnCall

= ID.i LRPAREN RRPAREN

| ID.i LRPAREN arglist.al RRPAREN

;

10The reason we copy the shape before we apply computation is for the safeness of the original shape
information.

11We achieved this goal by setting the first dimensions of them to 0.

25

Shape Analysis

Besides the function calls we have already introduced, like previousScalar,

add and minimum, there are still several more built-in functions in this language.

The complete list of currently implemented built-in functions is given in Ta-

ble 3.1.

Table 3.1 Built-in functions of shape propagation equation language

Function Functionality of the function
previousScalar() get the value of previous matched scalar

previousShapeDim(arg)
get the size of previous matched shape’s argth
dimension

add(arg) add arg to the default return shape array
minus(arg1,arg2) compute arg1 - arg2

div(arg1,arg2) compute arg1 / arg2

minimum(arg1,arg2) get the minimum between arg1 and arg2

copy(arg) copy the shape of arg to the temporary variable

numOutput(arg)
checking whether the number of output argu-
ments equals arg

isEqual(arg1,arg2)
comparing the value of arg1 with the one of
arg2

atLeastOneDimEqls(arg)
checking whether there is at least one dimen-
sion’s size of matched array equals arg

Since MathWorks may introduce new MATLAB built-in functions with some

new restrictions in the future, we made the shape propagation equation language

extensible by allowing users to add new function calls into the language. The

user can add new functions inside the function call node in this language, and

then implement the new restrictions inside the new functions.

One more thing needed to be clarified is the rules for how all the lower-case and

upper-case letters work in the equations. On the pattern list side, for the shape

matching expressions, the lower-case or upper-case letters are used to match the

shapes of input arguments, and if a letter has already appeared in the equation,

when the letter comes again, the matching process requires them to have the

same value, if not, the matching fails; for the other expressions, the lower-case

or upper-case letter are used to store some values for the purpose of propagating

26

3.1. Propagating Shapes through MATLAB Built-in Functions

shapes through. On the output list side, the lower-case or upper-case letters are

used to return the shape information stored in them.

Assignment expression: Assignment expression is represented as:

lvalue = rvalue

Lvalue can be (1) lower-case letters, (2) upper-case letters, (3) # symbol, and

(4) indexed upper-case letters or # symbol. The rvalue can be numbers, lower-

case letters, other shape matching expressions and function call expressions.

The formal grammar snippet code for assignment expression is:

assignExpr

= assignmentLHS.l EQUAL assignmentRHS.r

;

assignmentLHS

= LOWERCASE.l

| UPPERCASE.u

| UPPERCASE.u LRPAREN scalarExpr.s RRPAREN

| ANY.a LRPAREN scalarExpr.s RRPAREN

;

assignmentRHS

= scalarExpr.s

| vectorExpr.v

| fnCall.f

;

Assert expression: Assert expressions are represented by function call expressions

only. The formal grammar snippet code for assert expression is:
assertExpr

= fnCall.f

;

Assert expressions can be put at any place on the pattern list side, and will

be evaluated to determine whether the current matching process should con-

27

Shape Analysis

tinue. For example, the assert expression atLeastOneDimEqls(arg) in Ta-

ble 3.1 checks whether there is at least one dimension’s size of matched array

equals arg, if not, the current matching process will terminate and start from

next case again if there is any case left.

Shape output list side: The shape output list side is very similar to the pattern list side,

because both of them are composed of a list of expressions. For example,12

pattern list side -> OExp_1, OExp_2, ... OExp_n

While, in the shape output list side, there is only one kind of expression: the shape

matching expression. Although we know that for some built-in functions, the number

of output arguments affects the return shape of the functions, we put those assert

expressions in the pattern list side, like numOutput. So, the formal grammar snippet

code for this construct is:

outputlist

= vectorExpr.v

| vectorExpr.v COMMA outputlist.o

;

Moreover, the shape matching expressions may have the same representation in the

shape output list side and pattern list side, but they work differently in two sides. In

the shape output list side, the shape matching expressions are used to return the shape

result, not to match the shape of argument(s).

Operators: There are some operators can be used on some pattern expressions or even

pattern list introduced above, and most of these operators have the similar meaning

as in regular expressions.

The () operator: The parentheses operator will produce a compound expression

which is composed of at least one shape matching expression at the first place.

It is mostly used to enclose at least one shape matching expression followed by

12Inside the example, OExp is short for shape output list expression.

28

3.1. Propagating Shapes through MATLAB Built-in Functions

assignment and assert expressions, and to work together with other operators to

match one or more optional input arguments;

The ? operator: Putting a question mark operator after a shape matching expression

or compound expression in the pattern list side means that during the matching

process, the preceding expression is optional, and if there is no input argument

for this expression to match, it won’t be an error;

The + operator: Putting a plus operator after a shape matching expression or com-

pound expression in the pattern list side means that during the matching process,

the preceding expression will be evaluated at least one or more times which de-

pends on the number of input argument(s);

The * operator: Putting a star operator after shape matching expression or com-

pound expression in the pattern list side means that during the matching process,

the preceding expression may be evaluated one or more times which depends

on the number of input argument(s);

The | operator: The choice operator let the shape of input argument(s) matches

either the expression before or the expression after the operator;

The ’’ pair: The single quotation pair encloses some string literals and is only used

to match an input string literal argument.

With these operators, the formal grammar snippet code for all the pattern matching

expressions is:

matchExpr

= basicMatchExpr.m OR basicMatchExpr.n

| basicMatchExpr.m QUESTION

| basicMatchExpr.m MULT

| basicMatchExpr.m PLUS

| basicMatchExpr.m

;

29

Shape Analysis

basicMatchExpr

= LRPAREN patternlist.p RRPAREN

| SQUOTATION ID.i SQUOTATION

| SQUOTATION LOWERCASE.i SQUOTATION

| vectorExpr.v

;

A list of some shape equation examples is attached in Appendix A.3.

3.1.4 Shape Matching Algorithm

After we have the shape propagation equation language and understand the semantics of

its constructs, it’s time to clearly explain how can we infer shapes through encountered

built-in functions by using shape propagation equations.

Recall that when an abstract value propagator encounters a built-in function during its

analysis in a given MATLAB program, it will apply the built-in framework. The built-in

framework will invoke the matching algorithms in each component13 in the abstract value

analysis. For the shape analysis component, the built-in framework requires us to provide

a corresponding matching algorithm to it, which is used to infer the return shape of the

built-in functions. The algorithm is achieved by several functions working together, which

are in Listing 3.1 to 3.5.

Listing 3.1 shows the shape matching function called by the built-in framework, which

returns the final shape result by taking in the encountered built-in’s name and its input argu-

ment list. Inside the matchShape function, the shape analysis iterates over all the cases in

the encountered built-in’s shape equation to find the first matched case. For each case, the

shape analysis invokes the shape matching function of the case construct in Listing 3.2. In-

side the shape matching function of the case construct, the shape analysis invokes the shape

matching function of the pattern list construct in Listing 3.3, if the pattern list side matches

the input argument list successfully, the shape analysis will invoke the shape matching func-

tion of the output list construct in Listing 3.5, and finally, return the result to the built-in

13Current components include mclass analysis component, complex analysis component, shape analysis
component and range value analysis component.

30

3.1. Propagating Shapes through MATLAB Built-in Functions

framework. Listing 3.4 shows the shape matching function for all the possible expressions

in the pattern list construct.

the matching algorithm entry function

called by the built-in framework.

function matchShape(builtin, inputArgs)

get shape equation for the builtin

caselist = parse the shape equation

for each case in caselist

shape_result = case.match(case, inputArgs)

if shape_result != not_matched_shape

return shape_result

end if

end loop

if all the cases do not match inputArgs

return not_matched_shape

end function

Listing 3.1 Shape matching algorithm 1 of 5: function matchShape

match function of case, returns a shape result

function case.match(case, inputArgs)

get pattern_list of case

get output_list of case

matched = pattern_list.match(pattern_list, inputArgs)

if matched

shape_result = output_list.match(output_list)

return shape_result

else

if pattern list side fails in matching inputArgs

return not_matched_shape

end if

end function

Listing 3.2 Shape matching algorithm 2 of 5: function case.match

31

Shape Analysis

match function of pattern list, returns a boolean

value indicating whether the matching succeeds.

function pattern_list.match(pattern_list, inputArgs)

MatchingPosition is regarded as a global variable

shared by all these matching functions, to

indicate which input argument is being matched.

MatchingPosition = 0

for each expression in pattern_list

matched = expression.match(expression, inputArgs)

if not matched

return false

end if

end loop

the return depends on whether all the expressions

succeed in matching all the input arguments.

return MatchingPosition == inputArgs.length

end function

Listing 3.3 Shape matching algorithm 3 of 5: function patternlist.match

match function of expression, return a boolean

value indicating whether the matching succeeds

function expression.match(expression, inputArgs)

if the expression is a shape matching expression

try to match this expression with inputArgs[MatchingPosition]

if matched

increment MatchingPosition

return true

else

return false

end if

else if it’s an assignment expression

evaluate this expression

return true

else if it’s an assert expression

passed = evaluate this expression

return passed

32

3.1. Propagating Shapes through MATLAB Built-in Functions

for the case of (exp,...,exp)

else if it’s a PARENTHESES compound expression

for each expression enclosed by the parentheses

matched = expression.match(expression, inputArgs)

if not matched

return false

end if

end loop

return true

for the case of exp?

else if it’s a QUESTION MARK compound expression

if MatchingPosition < inputArgs.length

matched = expression.match(expression, inputArgs)

return matched

else

return true

end if

for the case of exp+

else if it’s a PLUS compound expression

if MatchingPosition <= inputArgs.length - 1

repeat

matched = expression.match(expression, inputArgs)

until MatchingPosition == inputArgs.length or not matched

return matched

else

return false;

end if

for the case of exp*

else if it’s a STAR compound expression

if MatchingPosition < inputArgs.length

repeat

mtached = expression.match(expression, inputArgs)

until MatchingPosition == inputArgs.length or not matched

return matched

else

return true

end if

33

Shape Analysis

for the case of exp|exp

else if it’s an OR compound expression

matched = first_expression.match(first_expression, inputArgs)

if not matched

matched = second_expression.match(second_expression, inputArgs)

return matched

else

return true

end if

end if

end function

Listing 3.4 Shape matching algorithm 4 of 5: function expression.match

match function of output list, returns a shape result

function output_list.match(output_list)

shape_result = new an empty shape information list

for each shape matching expression in output_list

get shape based on the expression

add shape to shape_result

end loop

return shape_result

end function

Listing 3.5 Shape matching algorithm 5 of 5: function outputlist.match

The implementation details of applying this matching algorithm by using the shape propa-

gation equation is given in the Appendix A.4.

3.1.5 Summary

In this section, we introduced a concise and extensible domain specific language, shape

propagation equation language, and shape propagation equations written in the language

to solve the problem of how to estimate shape information propagating through MATLAB

built-in functions. For each built-in function, we defined a shape equation in this language.

With the shape equations and a corresponding matching algorithm, every time the shape

analysis encounters a built-in function, the analysis can statically infer the function’s return

34

3.2. Merging Different Shapes

shapes of the output argument(s) by looking up its shape equation and executing the shape

matching algorithm.

3.2 Merging Different Shapes

After we solve the problem of how shape information propagates through MATLAB built-in

functions, another big problem in the shape analysis is how to merge different shapes for

the same variable. Different shapes for the same variable come from the situations where

a variable is assigned different shapes on different branches in an if-else statement, or a

variable is assigned different shapes in different iterations in a loop statement.

Recall that our abstract value analysis framework guarantees that the shape analysis can

go through all the branches or iterations to collect shape information for all the variables,

but when a variable has different shapes on different branches in an if-else statement or

from different iterations in a loop statement, we need to consider how to merge the different

shapes of the variable. The framework requires us to provide a merging strategy and a

corresponding equals function to check whether the analysis get to the fixed point in a

loop statement for the shape analysis component. For example, in Figure 3.1 (a), when the

shape propagator analyzes the if-branch, it will infer the shape of variable arr1 as [2,2];

and when it analyzes the else-branch, it will infer the shape of arr2 as [2,3]. The problem

is what is the shape of arr1 at the end of this if-else statement. Moreover, in Figure 3.1

(b), what if the numbers of the shapes’ dimensions are different?

In this section, we first introduce a merging strategy and an equals function for our

shape analysis to handle both the situations of merging shapes with the same or different

ranks in Subsection 3.2.1, then we list some wild MATLAB cases of merging different

shapes in loop statements and explain the final version of the merging strategy and the

equals function in Subsection 3.2.2.

3.2.1 Merging Strategy

The brief idea of the shape merging strategy is that, first, make sure both shapes have the

same number of dimensions by adding 1(s) to the end of the dimension list of the shape

35

Shape Analysis

1 function foo1(n)
2 if (n>10)
3 arr1 = ones(2,2); % the shape of arr1 will be [2,2].
4 else
5 arr1 = ones(2,3); % the shape of arr1 will be [2,3].
6 end
7 arr2 = arr1; % what is the shape of arr1 and arr2?
8 end

(a) Merging two shapes with the same number of dimensions
1 function foo2(n)
2 if (n>10)
3 arr1 = ones(2,2); % the shape of arr1 will be [2,2].
4 else
5 arr1 = ones(2,3,2); % the shape of arr1 will be

[2,3,2].
6 end
7 arr2 = arr1; % what is the shape of arr1 and arr2?
8 end

(b) Merging two shapes with the different number of dimensions

Figure 3.1 MATLAB code examples of merging two different shapes

with smaller number of dimensions, and then for each dimension, if the size values are

identical in both shapes, use this value as the size of corresponding dimension in the return

shape, or mark the size of corresponding dimension as unknown in the return shape. The

pseudocode for the merging strategy and the equals function are given in Listing 3.6 and

3.7, respectively.

1 function merge(shape_a, shape_b)

2 if either shape_a or shape_b is not_matched_shape

3 return not_matched_shape

4 else if either shape_a or shape_b is unmergeable_shape

5 return unmergeable_shape

6 else

7 dim_a = get dimension list from shape_a

8 dim_b = get dimension list from shape_b

9 if dim_a.length > dim_b.length

10 INDEX = dim_b.length

11 repeat

12 # adding trailing 1s to the end of dim_b

36

3.2. Merging Different Shapes

13 add 1 to the end of dim_b

14 increment INDEX

15 until INDEX == dim_a.length

16 else if dim_a.length < dim_b.length

17 INDEX = dim_a.length

18 repeat

19 # adding trailing 1s to the end of dim_a

20 add 1 to the end of dim_a

21 until INDEX == dim_b.length

22 end if

23 INDEX = 1 # initializing to point at the first element in the list

24 dim_new = new an empty dimension list

25 repeat

26 if dim_a[INDEX] == dim_b[INDEX]

27 add dim_a[INDEX] to the end of dim_new

28 else

29 add unknown to the end of dim_new

30 end if

31 increment INDEX

32 until INDEX == dim_a.length

33 shape_result = new shape from dim_new

34 return shape_result

35 end if

36 end function

Listing 3.6 Shape merging strategy

1 function equals(shape_a, shape_b)

2 if both shape_a and shape_b are not_matched_shape

3 return true

4 else if both shape_a and shape_b are unmergeable_shape

5 return true

6 else

7 dim_a = get dimension list from shape_a

8 dim_b = get dimension list from shape_b

9 if dim_a.length != dim_b.length

10 return false

11 else

12 INDEX = 1 # initializing to point at the first element in the list

37

Shape Analysis

13 repeat

14 # comparing each dimension between two shapes

15 if dim_a[INDEX] != dim_b[INDEX]

16 return false

17 end if

18 increment INDEX

19 until INDEX == dim_a.length

20 return true

21 end if

22 end function

Listing 3.7 The equals function to check whether the analysis in loops gets to the fixed point

According to the merging strategy and corresponding equals function, the code examples

in Figure 3.1 will be analyzed as in Figure 3.2.

1 function foo1(n)
2 if (n>10)
3 arr1 = ones(2,2); % the shape of arr1 will be [2,2].
4 else
5 arr1 = ones(2,3); % the shape of arr1 will be [2,3].
6 end
7 arr2 = arr1;
8 % the shape of arr1 and arr2 will both be [2,?].
9 end

(a) Merging two shapes with the same number of dimensions
1 function foo2(n)
2 if (n>10)
3 arr1 = ones(2,2); % the shape of arr1 will be [2,2].
4 else
5 arr1 = ones(2,3,2); % the shape of arr1 will be

[2,3,2].
6 end
7 arr2 = arr1;
8 % the shape of arr1 and arr2 will both be [2,?,?].
9 end

(b) Merging two shapes with the different number of dimensions

Figure 3.2 The analysis result of MATLAB code examples in Figure 3.1

38

3.2. Merging Different Shapes

3.2.2 Merging Shapes in Loop Statements

In the pseudocode of the shape merging strategy and the equals function in Listing 3.6

and 3.7, we didn’t explain what is the shape of unmergeable_shape at lines 4 and 5 in

both listings. It is used to represent those shapes that cannot be merged during the shape

analysis in MATLAB loop statements. First, let’s have a look at some wild features of

MATLAB in Figure 3.3.

1 function wild1(n)
2 arr1 = [];
3 for i = 1 : n
4 arr1 = [arr1 i];
5 arr2 = ones(arr1);
6 % the arr2 is growing from a scalar
7 % to a matirx of n dimensions
8 end
9 end

(a) Merging shapes with variant dimensions example 1
1 function wild2(n)
2 for i = 1 : n
3 arr1 = 1 : i;
4 arr2 = ones(arr1);
5 % the arr2 is growing from a scalar
6 % to a matirx of n dimensions
7 end
8 end

(b) Merging shapes with variant dimensions example 2

Figure 3.3 MATLAB code example of merging shapes with variant dimensions

In both code examples in Figure 3.3, the array arr2 grows from a scalar to an array

of n dimensions. Recall that the bottom line to generate FORTRAN declaration code for a

MATLAB array variable is at least the rank of the array referred by the variable is constant

at compile-time. Without knowing the rank of the array referred by the variable, we cannot

generate declaration code for the variable. In these two code examples, the dimension of

arr2 depends on the input argument n, there is no way to generate FORTRAN declaration

code for the variable arr2.

39

Shape Analysis

Although we cannot generate FORTRAN code for those array variables, we should still

handle this kind of case when we encounter it during the shape analysis in a given MAT-

LAB program. The problem is that since the array keeps growing, there will be no fixed

point based on our current shape merging strategy and equals function in Listing 3.6 and

3.7, the analysis will eventually end up in an infinite loop. In order to hit the fixed point

in the shape analysis for arrays which keep growing in a loop statement, we set up an up-

per bound counter number to the iterations which the shape analysis can take at most on

merging different shapes for a variable in the loop statement. If the iteration times hits the

upper bound counter number, the shape analysis will push the shape of that variable to the

unmergeable_shape.

Let’s go back to the shape merging strategy and equals function in Listing 3.6 and 3.7,

at lines 4 and 5 in both listings, when the iteration times which the shape analysis takes

on merging different shapes for a variable hit the upper bound counter number, the shape

analysis will push the shape of this variable to unmergeable_shape, then in the following

iteration, the equals function will inform the shape analysis that the analysis get to the

fixed point for the loop statement.

The final shape merging relation is illustrated in Table 3.2. The ./ symbol represents

the merging operation. The not_matched represents the shape not succeeding in matching

during the shape analysis. The reason can be either the programming typo in the MATLAB

code or the implementation bug in the shape analysis. The unmergeable represents the

shape of variables may having dependency on themselves in loops and cannot being merged

by the shape analysis. Note that a variable with a shape of unmergeable is a legal usage

in MATLAB. The ordinary represents the shape with a concrete dimension list. A shape

has a concrete dimension list means that there may be some sizes of some dimensions are

unknown, but at least the rank of the shape is known.

Table 3.2 Shape merging relation table

./ not_matched unmergeable ordinary

not_matched not_matched not_matched not_matched
unmergeable not_matched unmergeable unmergeable
ordinary not_matched unmergeable ordinary

40

3.3. Shape Analysis Result Verification

3.3 Shape Analysis Result Verification

Finally, how can we know the result from the shape analysis is correct? It’s definitely not

a valid nor an efficient way to examine the correctness of the results by manually checking

them line by line. To solve this problem, we use the AspectMatlab compiler [TAH10], a

dynamic MATLAB profiling toolkit, to weave some aspects into a given MATLAB program,

and then print out the shape information of all the variables (or at least variables we care

about) after the execution of the weaved program. Although we can only get shape infor-

mation of the variables on the execution path, it is still far better than verifying the shape

analysis results by manually checking them line by line. We can adjust the value of con-

ditional expressions of those control statements in the given program to make it execute as

many branches as possible. Here, in Figure 3.4, is the results comparison between profil-

ing one of our benchmarks14 by using the AspectMatlab compiler and the shape analysis.

The corresponding aspect file is list in Appendix A.5. The - symbols in the column of

shape change in the table (a) means that the shape of the variable never changes during

the execution of the program. If the shape changes during the execution of the program,

the shape change column in table (a) will record its second last time shape information.

Based on the results in the figure, we can see that the shape analysis successfully captured

the growth of the array SRmat statically and mark the shape of SRmat as [?,6].

14The benchmark adapt.

41

Shape Analysis

variable name shape change final shape
scale - [1 1]

a - [1 1]
b - [1 1]

sz_guess - [1 1]
tol - [1 1]
i - [1 1]

SRmat [3270 6] [3271 6]
iterating - [1 1]

done - [1 1]
h - [1 1]
c - [1 1]

Fa - [1 1]
Fc - [1 1]
Fb - [1 1]
S - [1 1]

SRvec - [1 6]
m - [1 1]

state - [1 1]
n - [1 1]
l - [1 1]
p - [1 1]

SR0vec - [1 6]
err - [1 1]

SR1vec - [1 6]
SR2vec - [1 6]

tol2 - [1 1]
a0 - [1 1]
b0 - [1 1]

tol0 - [1 1]
c0 - [1 1]

quad - [1 1]
(a) The result of AspectMatlab

variable name shape info
scale [1 1]

a [1 1]
b [1 1]

sz_guess [1 1]
tol [1 1]
i [1 1]

SRmat [? 6]
iterating [1 1]

done [1 1]
h [1 1]
c [1 1]

Fa [1 1]
Fc [1 1]
Fb [1 1]
S [1 1]

SRvec [1 6]
m [1 1]

state [1 1]
n [1 1]
l [1 1]
p [1 1]

SR0vec [1 6]
err [1 1]

SR1vec [1 6]
SR2vec [1 6]

tol2 [1 1]
a0 [1 1]
b0 [1 1]

tol0 [1 1]
c0 [1 1]

quad [1 1]
(b) The result of shape analysis

Figure 3.4 The profiling results of the benchmark adapt by AspectMatlab and shape analysis

42

Chapter 4

Range Value Analysis

There are still some remaining problems left in the shape analysis. One of them is how

does the shape information propagate through the MATLAB array indexing expressions1.

The array indexing expression in MATLAB is an array accessed by an index list enclosed

in parentheses. The representation of an array indexing expression is:

array_name(index_list)

The array indexing expressions can exist on both left hand side (which are array indexing

set statements) or right hand side (which are array indexing get statements) of assignment

expressions, for example:

array_name(index_list) = Rvalue or

Lvalue = array_name(index_list)

The reason we skip this problem in Chapter 3 is that the shape analysis for MATLAB array

indexing expressions is inseparable with the array bounds checking problem in MATLAB.

Different from those statically-typed programming languages, like C, C++ or FORTRAN,

in which arrays can only be resized by using deallocate and allocate statements manually,

an array in MATLAB can automatically grow2 to a larger size by using out-of-bound index

in an array indexing set statement. For instance, in the code example in Figure 4.1, after we

1Which exist in the array get statements and array set statements in our Tamer IR.
2We define the situation where the size of an array changes to a larger one as the array growth.

43

Range Value Analysis

1 function foo6()
2 arr1 = ones(3,3); % the shape of arr1 is [3,3].
3 arr1(3,4) = 2; % is it an error in MATLAB?
4 end

Figure 4.1 MATLAB code example of array growth

define the shape of array variable arr1 to [3,3] at line 2, we try to access it with the index

list (3,4) and assign 2 to the element in that position. If you are a programmer from the

background of a statically-typed programming language, you may think this is definitely

incorrect. But, surprisingly, this is allowed in MATLAB. MATLAB allows some array set

assignment to grow the shape of the indexed array. Back to the example, the shape analysis

will compare the shape of arr1, which is [3,3], with the two indices, which are 3 and 4.

After finding that the second index is greater than the size of the array’s second dimension,

the shape analysis will grow the shape of the array from [3,3] to [3,4].3 Although this

may be the simplest case where an array’s shape grows by an out-of-bound index, we

still can see that we require a valid array bounds checking, so that the shape analysis can

determine when an array indexing expression may alter the shape of the result.

Furthermore, what if an array is indexed by a scalar variable without a constant value?

For example, in Figure 4.2 (a), k may have different value at line 8. The naive solution is

that in the corresponding generated FORTRAN code, we declare arr1 as an allocatable array

variable and then inline the run-time array bounds checking code and reallocation code4 for

that array indexing set assignment. What if although the index k doesn’t have a constant

value, neither of the k’s possible values exceeds the bounds of arr1? For instance, in the

code example in Figure 4.2 (b), neither of the possible values of k exceeds the array bounds

of the array arr1. In Figure 4.3, it is the generated FORTRAN code for the code example

in Figure 4.2 (b) with the inlined run-time array bounds checking code and reallocation

code. In this situation, inlining run-time array bounds checking code and reallocation code

is obviously unnecessary.

To remove unnecessary inlined run-time array bounds checking code and reallocation

3A more detailed algorithm for the array growth problem is given in latter section of this chapter.
4Which is an overhead at the runtime to the performance of the generated FORTRAN code.

44

1 function foo7(n)
2 arr1 = ones(3,3);
3 if (n>10)
4 k = 2;
5 else
6 k = 4;
7 end
8 arr1(3,k) = 2; % k may have value of 2 or 4 at runtime.
9 end

(a) The index k may exceed the array bounds
1 function foo7(n)
2 arr1 = ones(3,3);
3 if (n>10)
4 k = 2;
5 else
6 k = 3;
7 end
8 arr1(3,k) = 2; % k may have value of 2 or 3 in runtime.
9 end

(b) Neither of the k’s possible values will exceed the array bounds

Figure 4.2 MATLAB code example of array growth with non-constant value

code, we extend our constant value analysis to range value analysis. Like the shape analy-

sis, the range value analysis is also implemented as a component analysis plugged into the

Tamer’s abstract value analysis framework. Since the shape analysis may need the result of

the range value analysis, we run the range value analysis before the shape analysis. Sim-

ilarly, the range value analysis depends on the result of the constant value analysis, so we

run constant value analysis before the range value analysis. The final order of these three

value analyses is: the constant propagation comes first, then the range value analysis and

finally the shape analysis.

The range value analysis is an analysis to estimate the value(s) a variable can assume at

each point in the program by estimating the minimum and maximum values each variable

can reach. The range value of a variable is a pair of values in the domain of the range values:

the first one represents the minimum possible value, which we call the lower bound; and

the second one represents the maximum possible value, which we call the upper bound.

Therefore, the range value information of a given variable is represented as:

45

Range Value Analysis

FUNCTION foo7(n)
USE mod_ones
IMPLICIT NONE
DOUBLE PRECISION :: n
DOUBLE PRECISION , DIMENSION(:,:) , ALLOCATABLE :: arr1, arr1_bk
DOUBLE PRECISION :: k
INTEGER(Kind=4) :: arr1_d1max
INTEGER(Kind=4) :: arr1_d2max
INTEGER(Kind=4) :: arr1_d1
INTEGER(Kind=4) :: arr1_d2
! insert runtime allocation.
IF (ALLOCATED(arr1)) THEN

DEALLOCATE(arr1);
ALLOCATE(arr1(3,3));

ELSE
ALLOCATE(arr1(3,3));

END IF
! end
arr1 = ones(3,3);
IF (n .GT. 10.0) THEN

k = 2;
ELSE

k = 3;
ENDIF
! insert runtime array bounds check and reallocation.
arr1_d1 = SIZE(arr1, 1);
arr1_d2 = SIZE(arr1, 2);
IF ((3 > arr1_d1) .OR. (k > arr1_d2)) THEN

IF (ALLOCATED(arr1_bk)) THEN
DEALLOCATE(arr1_bk);

END IF
ALLOCATE(arr1_bk(arr1_d1, arr1_d2));
arr1_bk = arr1;
DEALLOCATE(arr1);
arr1_d1max = MAX(3, arr1_d1);
arr1_d2max = MAX(INT(k), arr1_d2);
ALLOCATE(arr1(arr1_d1max, arr1_d2max));
arr1(1:arr1_d1, 1:arr1_d2) = arr1_bk(1:arr1_d1, 1:arr1_d2);

END IF
! end
arr1(3, INT(k)) = 2.0;
END FUNCTION

Figure 4.3 Generated FORTRAN code v1.0 for the MATLAB code in Figure 4.2 (b)

46

<lower bound, upper bound>

The domain of the range values is a closed numeric value interval, ordered by including

a smallest element (-inf, the range value decreasing to the negative infinity), all the real

number elements, and a largest element (+inf, the range value increasing to the positive

infinity). Moreover, to support range value analysis through control flow statements, we

add two special symbols to real numbers, + and -. We put these two symbols as the super-

scripts of real numbers, for example, 5+ or 5−. You can interpret these symbols as follows.

Consider there is a ε , ε is positive and close to 0, where 5+ means 5+ε and 5− means 5-ε .

Back to the representation of the range values, if the range value of a variable represented as

<10,+inf>, it means that at this point of the program, the variable may be any value greater

than or equal to 10 to +inf, and if the range value of a variable represented as <10+,+inf>,

it means that at this point of the program, the variable may be any value greater than but not

equal to 10 to +inf. Moreover, the lower bound in a range value can only be one of -inf,

any real number and any real number with + superscript, and the upper bound in a range

value can only be one of +inf, any real number and any real number with - superscript.

In MATLAB, besides scalar variables, a variable can also refer to an array. In order

to support the range values of the array variables, we should first figure out what is the

meaning of the range value of an array variable. Intuitively, the range value of an array

should be the result from merging the range values of all its elements. But, it’s much

harder to define the range value for an array than for a scalar in MATLAB. For instance,

the built-in function rand returns an array containing pseudo-random values drawn from

the standard uniform distribution on the open interval (0,1). It’s hard to define a more

precise range value for it than <0,1>. Moreover, the built-in function svd will produce a

vector containing singular values. Defining the return range value for this function needs a

complicated computation which involves a lot of overhead during the analysis. To balance

between the efficiency of the analysis and its accuracy, we need to support array bounds

checking in the shape analysis. Unlike the shape analysis which supports shapes on both

scalar variables and array variables, the range value analysis only supports the analysis in

the domain of the range values for scalar variables.

By involving the range value analysis, the problem in the above example in Figure 4.2 (b)

47

Range Value Analysis

can be solved. In detail, after the if-else statement, the possible values of k at line 8 can be

either 2 or 3, whose range value is represented as <2,3>. By comparing the upper bound

of k’s range value, which is 3, with the original size of arr1’s second dimension, which

is 3, the shape analysis confirm that the index k won’t exceed the array bounds of arr1.

Therefore, the FORTRAN code generation phase doesn’t need to inline the run-time array

bounds checking code and reallocation code before this statement, which means that the

performance overhead from inlining the run-time checks and reallocations is removed. The

corresponding generated FORTRAN code is in Figure 4.4, which is much more readable

and efficient than the generated code in Figure 4.3.

FUNCTION foo7(n)
USE mod_ones
IMPLICIT NONE
DOUBLE PRECISION :: n
DOUBLE PRECISION , DIMENSION(3,3) :: arr1
DOUBLE PRECISION :: k
arr1 = ones(3,3);
IF (n .GT. 10.0) THEN

k = 2;
ELSE

k = 3;
ENDIF
arr1(3, INT(k)) = 2.0;
END FUNCTION

Figure 4.4 Generated FORTRAN code v2.0 for the MATLAB code in Figure 4.2 (b).

This chapter is composed of three sections. We start with the equations for propagating

range values through certain MATLAB built-in operators (functions) in Section 4.1, then we

present a solution to merge different range values in Section 4.2, and finally in Section 4.3,

we end the chapter with an algorithm to perform the shape analysis through array indexing

expressions by using the result from the range value analysis, as well as the static array

bounds checking inside the analysis.

48

4.1. Propagating Ranges through Built-in Functions

4.1 Propagating Ranges through Built-in Functions

All of the currently supported MATLAB built-in operators (functions) in the range value

analysis are listed in Table 4.1. These twelve built-in operators are the most commonly

used built-in operators in MATLAB programs and the range values propagating through

these operators are easily inferred.

Table 4.1 Operators supported by the range value analysis

unary plus operator (+) binary plus operator (+)
unary minus operator (-) binary minus operator (-)
element-wise multiplication operator (.*) matrix multiplication operator (*)
element-wise rdivision operator (./) matrix rdivision operator (/)
natural logarithm operator (log(x)) exponential operator (exp(x))
absolute value operator (abs(x)) colon operator (:)

We implement a range value propagation function for each of above operators to illus-

trate how the range values propagate through them. Before introducing all the range value

propagation functions, we need to define some operations on the values in the range value

domain. The order of values in the range value domain is: the smallest value, -inf, is

smaller than any other values, then the real numbers and the real numbers with the super-

scripts of + or - are in the same order as they are in the algebra, finally, the largest value,

+inf, is greater than any other values. With the definition of the order of the values in the

range domain, we have:

min: find the minimum value in all the given values according to the order given above.

max: find the maximum value in all the given values according to the order given above.

equals (==): -inf only equals -inf; +inf only equals +inf; the equals operation on real

numbers and real numbers with superscripts has the same meaning as in the algebra.

unary +: keep the original value.

unary -: change the signs of the original values. For example, -(-inf) goes to +inf, and

-(10−) goes to -10+.

49

Range Value Analysis

+ (plus): if any operand is -inf (+inf), the result will be -inf (+inf); if neither of the

operands is -inf nor +inf, the + operator follows the rule as:

x− + y−, x− + y or x + y−, where x and y are real numbers5⇒ (x+ y)−;

x+ + y+, x+ + y or x + y+⇒ (x+ y)+;

x + y⇒ (x+ y);

when + applies on real numbers, the result will be the same as in the algebra.

- (minus): if the first operand is -inf (+inf), the result will be -inf (+inf); if the second

operand is -inf (+inf), the result will be +inf (-inf); if neither of the operands is

-inf nor +inf, the - operator follows the rule as:

x - y+, x− - y+ or x− - y⇒ (x− y)−;

x - y−, x+ - y− or x+ - y⇒ (x− y)+;

x - y⇒ (x− y);

when - applies on real numbers, the result will be the same as in the algebra.

× (times): The× operations on the values in the domain of the range values are a little bit

complicated and it follows the rule as:

-inf × x or x × -inf, x < 0⇒ +inf;

-inf × x or x × -inf, x = 0⇒ 0;

-inf × x or x × -inf, x > 0⇒ -inf;

+inf × x or x × +inf, x < 0⇒ -inf;

+inf × x or x × -inf, x = 0⇒ 0;

+inf × x or x × -inf, x > 0⇒ +inf;

if neither of the operands is -inf nor +inf, the × operator follows the rule as:

x+ × y⇒ (x× y)s, where s is the sign of y;

x+ × y+⇒ (x× y)s, where s is the sign of the result of x+ y;

x × y+⇒ (x× y)s, where s is the sign of x;

x− × y⇒ (x× y)s, where s is the opposite sign of y;

x− × y−⇒ (x× y)s, where s is the opposite sign of the result of x+ y;

x × y−⇒ (x× y)s, where s is the opposite sign of x;

x+ × y− or x− × y+⇒ (x× y)s, where s is the sign of the result of x− y;
5Assuming that all the following x and y are real numbers.

50

4.1. Propagating Ranges through Built-in Functions

x × y, x and y are real numbers⇒ (x× y);

when × applies on real numbers, the result will be the same as in the algebra.

÷ (divide): As with the× operations, the÷ operations are also a little bit complicated and

follow the rule as:

-inf ÷ x, x < 0⇒ +inf;

-inf ÷ x, x > 0⇒ -inf;

x ÷ -inf, x < 0⇒ 0+;

x ÷ -inf, x > 0⇒ 0−;

+inf ÷ x, x < 0⇒ -inf;

+inf ÷ x, x > 0⇒ +inf;

x ÷ +inf, x < 0⇒ 0−;

x ÷ +inf, x > 0⇒ 0+;

if neither of the operands is -inf nor +inf, the ÷ operator follows the rule as:

x+ ÷ y⇒ (x÷ y)s, where s is the sign of y;

x+ ÷ y+⇒ (x÷ y)s, where s is the sign of the result of y− x;

x ÷ y+⇒ (x÷ y)s, where s is the opposite sign of x;

x− ÷ y⇒ (x÷ y)s, where s is the opposite sign of y;

x− ÷ y−⇒ (x÷ y)s, where s is the sign of the result of x− y;

x ÷ y−⇒ (x÷ y)s, where s is the sign of x;

x+ ÷ y−⇒ (x÷ y)s, where s is the sign of the result of x+ y;

x− ÷ y+⇒ (x÷ y)s, where s is the opposite sign of the result of x+ y;

x ÷ y, x and y are real numbers⇒ (x÷ y);

when ÷ applies on real numbers, the result will be the same as in the algebra.

log: log of the values in the range domain greater than 0 but not +inf goes to the same

result as in algebra; log of +inf goes to +inf.

exp: exp of -inf (+inf) goes to 0 (+inf); if the operand is neither -inf nor +inf, the

result will be the same as in algebra.

In the following listings from 4.1 to 4.12, there is the pseudocode of the range value

propagation functions for the built-in operators in Table 4.1. In the pseudocode, the arith-

51

Range Value Analysis

metic operations on the values in the range value domain follow the rules listed above. Note

that the result from colon operator is a vector, not a scalar. Although we only support range

value analysis for scalar variables, since colon operator is used frequently in array indexing

in MATLAB and not hard to infer the range value result from the operator, we decide to also

support range value analysis for it.

function range_value_unary_plus(operand_a)

if operand_a has a known range value

<a,b> = get range value pair from operand_a

return <a,b>

else

return unknown

end if

end function

Listing 4.1 Unary plus operator (+)

function range_value_binary_plus(operand_a, operand_b)

if both operand_a and operand_b have known range values

<a,b> = get range value pair from operand_a

<c,d> = get range value pair from operand_b

return <a+c,b+d>

else

return unknown

end if

end function

Listing 4.2 Binary plus operator (+)

function range_value_unary_minus(operand_a)

if operand_a has a known range value

<a,b> = get range value pair from operand_a

return <-b,-a>

else

return unknown

end if

end function

Listing 4.3 Unary minus operator (-)

52

4.1. Propagating Ranges through Built-in Functions

function range_value_binary_plus(operand_a, operand_b)

if both operand_a and operand_b have known range values

<a,b> = get range value pair from operand_a

<c,d> = get range value pair from operand_b

return <a-d,b-c>

else

return unknown

end if

end function

Listing 4.4 Binary minus operator (-)

function range_value_ew_multiply(operand_a, operand_b)

if both operand_a and operand_b have known range values

<a,b> = get range value pair from operand_a

<c,d> = get range value pair from operand_b

return <min(a×c, a×d, b×c, b×d),max(a×c, a×d, b×c, b×d)>
else

return unknown

end if

end function

Listing 4.5 Element-wise multiplication operator (.*)

function range_value_mat_multiply(operand_a, operand_b)

if both operand_a and operand_b have scalar values

return range_value_ew_multiply(operand_a, operand_b)

else

return unknown

end if

end function

Listing 4.6 Matrix multiplication operator (*)

53

Range Value Analysis

function range_value_ew_rdivide(operand_a, operand_b)

if both operand_a and operand_b have known range values

<a,b> = get range value pair from operand_a

<c,d> = get range value pair from operand_b

return <min(a÷c, a÷d, b÷c, b÷d),max(a÷c, a÷d, b÷c, b÷d)>
else

return unknown

end if

end function

Listing 4.7 Element-wise rdivision operator (./)

function range_value_mat_rdivide(operand_a, operand_b)

if both operand_a and operand_b have scalar values

return range_value_ew_rdivide(operand_a, operand_b)

else

return unknown

end if

end function

Listing 4.8 Matrix rdivision operator (/)

function range_value_natural_log(operand_a)

if operand_a has a known range value

<a,b> = get range value pair from operand_a

if a > 0 # if a < 0, the result will be complex number.

return <log(a),log(b)>

else

return unknown

end if

else

return unknown

end if

end function

Listing 4.9 Natural logarithm operator (log)

54

4.1. Propagating Ranges through Built-in Functions

function range_value_exp(operand_a)

if operand_a has a known range value

<a,b> = get range value pair from operand_a

return <exp(a),exp(b)>

else

return unknown

end if

end function

Listing 4.10 Exponential operator (exp)

function range_value_abs(operand_a)

if operand_a has a known range value

<a,b> = get range value pair from operand_a

if b < 0

return <-b,-a>

else if a > 0

return <a,b>

else

return <min(0, abs(a), b), max(abs(a), b)>

end if

else

return unknown

end if

end function

Listing 4.11 Absolute value operator (abs)

function range_value_colon(operand_a, operand_b)

if both operand_a and operand_b have known range values

<a,b> = get range value pair from operand_a

<c,d> = get range value pair from operand_b

return <min(a,c), max(b,d)>

else return unknown

end if

end function

Listing 4.12 Colon operator (:)

55

Range Value Analysis

Besides above twelve built-in operators in Table 4.1, the range value of a variable can

also be updated from control flow statements, like if-else, for loop and while loop statement,

in MATLAB. For example, if the conditional expression in an if clause is var < 5, we can

confidently infer that in the if branch, the upper bound of the variable var is smaller than 5,

which can be represented as <something,5−>. More precisely speaking, to support range

value analysis through control flow statements, we need to support range value analysis

for five MATLAB built-in relational operators: less than (<), less than or equal to (<=),

greater than (>), greater than or equal to (>=) and equal to (==). Note that for the range

value analysis, we only consider the cases where one of the operand is a variable and the

other operand is a constant, because if both operands are constant, there is no need to know

the range value of a constant, and if both operands are scalar variables, actually, they are

comparing their run-time values when executing the program.

less than: If the left hand side is a scalar variable, update the upper bound of the variable

to the value of the right hand side constant minus ε; if the right hand side is a scalar

variable, update the lower bound of the variable to the value of the left hand side

constant plus ε .

less than or equal to: If the left hand side is a scalar variable, update the upper bound of

the variable to the value of the right hand side constant; if the right hand side is a

scalar variable, update the lower bound of the variable to the value of the left hand

side constant.

greater than: If the left hand side is a scalar variable, update the lower bound of the vari-

able to the value of the right hand side constant plus ε; if the right hand side is a

scalar variable, update the upper bound of the variable to the value of the left hand

side constant minus ε .

greater than or equal to: If the left hand side is a scalar variable, update the lower bound

of the variable to the value of the right hand side constant; if the right hand side is a

scalar variable, update the upper bound of the variable to the value of the left hand

side constant.

56

4.2. Merging Different Range Values

equal to: Update both the lower and upper bound of the scalar variable to the value of the

constant.

4.2 Merging Different Range Values

With the same reason as the shape analysis, the range value analysis also needs to provide

a merging strategy and an equals function to the abstract value analysis framework. Intu-

itively, the merging strategy and the equals function can be achieved by applying simple

comparisons between the range values of the variables needed to be merged or compared,

something like in Listing 4.13 and Listing 4.14.

function merge(range_a, range_b)

if either range_a or range_b is unknown

return unknown

else

<a, b> = get range value pair from range_a

<c, d> = get range value pair from range_b

return <min(a,c),max(b,d)>

end if

end function

Listing 4.13 Range value merging strategy

function equals(range_a, range_b)

if both range_a and range_b are unknown

return true

else if both range_a and range_b have range value pairs

<a, b> = get range value pair from range_a

<c, d> = get range value pair from range_b

if a == c and b == d

return true

end if

else return false

end if

end function

Listing 4.14 Range value equals function

57

Range Value Analysis

As in the shape analysis, we also need to handle how to merge different range values in

the loop statements. In Figure 4.5, it’s a simple code example to demonstrate the problem

of merging different range values in a while loop. In the example, since we don’t know

how many iterations the while loop will take, we cannot determine the upper bound of

the variable a, and neither the lower bound nor the upper bound of the variable b. Recall

1 function foo8(n)
2 a = 5; % the range value of a is <0,0>
3 b = 5; % the range value of b is <5,5>
4 while (n > 10)
5 a = a * 5;
6 % the upper bound of a cannot be fixed.
7 b = b * -5;
8 % neither the lower nor the upper
9 % bound of b can be fixed.

10 n = n - 1;
11 end
12 end

Figure 4.5 MATLAB code example of merging range values in loops

the upper bound counter number used to stop the shape analysis ending in an infinite loop

in analyzing loop statements, we also add a similar-functionality counter number inside

the range value analysis. Different from the shape analysis, since the range value has two

bounds, we set an upper bound counter numbers for each bound. For each bound, if the

iteration times which the range value analysis takes to merge different range values of that

bound hit the counter number, the range value of that bound will be pushed to -inf or

+inf respectively. Back to the example in Figure 4.5, the range value information of a and

b after the while loop will be <5,+inf> and <-inf,+inf> based on this solution. Since in

Section 4.1, we list the operations on the values in the range value domain, after involving

-inf and +inf, the merging function in Listing 4.13 and the equals funciton in Listing 4.14

are still working.

58

4.3. Propagating Shapes through Array Indexing

4.3 Propagating Shapes through Array Indexing

The array bounds checking is crucial for most modern compilers. Without valid array

accesses, the execution result of a program is obviously unsound. For the same reason,

we also equip our MC2FOR compiler with an appropriate array bounds checking strategy.

The array bounds checking in our compiler consists of two phases: one is the compile-

time or static array bounds checking; and the other one is the run-time or dynamic array

bounds checking. The static array bounds checking is achieved during the abstract value

analysis phase, strictly speaking, during the shape analysis phase. Because the array growth

problem, the array bounds check and the shape analysis for array indexing expressions are

inseparable. The dynamic array bounds checking is achieved by inlining the run-time array

bounds checking code blocks in the generated FORTRAN programs. The inlined run-time

array bounds checking code will definitely introduce some overhead during the execution

of the generated FORTRAN programs. Recall the generated FORTRAN code in Figure 4.3

and Figure 4.4, the goal of the static array bounds checking is to remove those unnecessary

run-time array bounds checking code as much as possible.

Based on the fact that our abstract value analysis framework is built upon the Tamer’s

simplified three address IR, the array indexing expressions only exist in two kinds of state-

ments: array set statements and array get statements. For array indexing expressions in

both array set statements and array get statements, the static array bounds checking will

try to determine whether the index is valid, in other words, whether the index is in the

array bounds, neither smaller than the lower bound6 nor greater than the upper bound of

the array. The only difference between the static array bounds checking on two statements

is the reaction when the checks find an out-of-bound array indexing. The out-of-bound

array indexing is definitely a run-time error in an array get statement, while in an array set

statement, it may be not a run-time error. The MATLAB will always first try to grow the

original array according to the out-of-bound index (or indices) and the shape of original

array before throwing an exception. For example, in the code example in Figure 4.6 (a),

the shape of arr will be [5,5] after line 2, although the index (5,10) obviously exceeds

6Mostly, the lower bound of an array is 1.

59

Range Value Analysis

1 function foo9()
2 arr = ones(5,5);
3 arr(5,10) = 5;
4 end

(a) An out-of-bound array indexing growing the original array
1 function foo9()
2 arr = ones(5,5);
3 arr(50) = 5;
4 end

(b) An out-of-bound array indexing throwing run-time error

Figure 4.6 MATLAB code example of out-of-bound array set assignment

the upper bound of the array, the array indexing will grow the shape of the array to [5,10]

at line 3. While for the code example in Figure 4.6 (b), the array indexing expression at

line 3 will not grow the original array, since the MATLAB interpreter does not have enough

information to resize arr based on its current shape and the only index, 50. In this case,

MATLAB will throw a run-time exception.7 Based on these two examples, we can imply

that the MATLAB interpreter will always try to resize the original array when there is an

out-of-bound array indexing in an array set statement before throwing an exception.

4.3.1 Brief Introduction of Array Indexing in MATLAB

Before showing the algorithm of the shape analysis for the array indexing expressions, we

need a brief introduction of the array indexing in MATLAB. Indexing into an array is a

means of selecting a subset of elements from the array and the index of an array is also

called the subscript. According to our experience and a MATLAB online documentation8,

the valid subscripts in MATLAB can be divided into five categories: (1) scalar literals, (2)

scalar variables, (3) vector expressions, (4) vector variables and (5) colon notation (:). In

Figure 4.7, there is some MATLAB code to illustrate how these five kinds of subscripts

7The exception for this out-of-bound indexing is “In an assignment A(I)= B, an array A
cannot be resized.”

8Array Indexing in MATLAB, by Steve Eddins and Loren Shure, MathWorks,
http://www.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

60

4.3. Propagating Shapes through Array Indexing

work in accessing MATLAB arrays. Note that the special built-in operator end at line 13

and 25 is used to return the last position of the indexed array. The single colon notation

(:) in a subscript position at line 34 is shorthand for 1:end and is often used to select an

entire row or column.

Besides various kinds of subscripts, the relation between the number of the indices and

the rank of the accessed array is also very interesting. In MATLAB, the number of the

indices doesn’t need to be equal to the rank of the accessed array as in some programming

languages, like FORTRAN. In some circumstances, it is legal to access an array with indices

whose number is less than or even greater than the rank of the accessed array.

For the case where the number of the indices is less than the rank of the accessed array,

the MATLAB interpreter will use the last index in the index list to perform linear indexing

on the remaining dimensions of the accessed array. For example, in Figure 4.8 (a), the array

arr is a 2 dimensional array and there is only one subscript. In this case, the only index 3

is regarded as the last index and all the two dimensions of arr is regarded as the remaining

dimensions. The MATLAB interpreter will iterate arr in the column-major order to apply

linear indexing. Accessing the array with the subscript 3 at line 6 returns 3, because 3 is

the value of the third element of the array in column-major order. Another example is in

Figure 4.8 (b). In this example, the array arr has three dimensions and is accessed by the

index list (2,3) at line 10. In this example, the number of the indices is less than the rank

of arr. The interpreter will use the last index 3 to proceed the linear indexing on arr’s

remaining dimensions, which are the second and third dimensions. Since the third element

of the remaining dimensions has the value of 3, the array indexing with (2,3) returns 3.

When the number of the indices is greater than the rank of the accessed array, if this

array access is in an array get statement, it’s definitely a run-time error , but if it is in an

array set statement, the MATLAB interpreter first tries to grow the original array according

to the extra index (or indices), if the endeavor fails, the interpreter throws a run-time error.

For example in Figure 4.9 (a), at line 2, the number of the indices (2,2,2), which is 3,

is greater than the rank of the array arr, which is only 2. Since this array accessing is

on the left hand side of the assignment, the MATLAB interpreter first tries to grow the

original array. For this case, the interpreter succeeds in resizing the array, so the resized

array becomes a 2-by-2-by-2 array. While in Figure 4.9 (b), at line 2, although the array

61

Range Value Analysis

1 % constructing a vector
2 >> v = [2 4 6 8 10 12 14 16];
3 % the subscript is a scalar literal
4 >> v(3)
5 ans =
6 6
7 % the subscript is a scalar variable
8 >> idx = 3;
9 >> v(idx)

10 ans =
11 6
12 % the subscript is the special end operator
13 >> v(end)
14 ans =
15 16
16 % the subscript is a vector expression
17 >> v([1 2 3])
18 ans =
19 2 4 6
20 % the subscript is a vector expression
21 >> v(1:3)
22 ans =
23 2 4 6
24 % the subscript is a vector expression
25 >> v(1:end)
26 ans =
27 2 4 6 8 10 12 14 16
28 % the subscript is a vector variable
29 >> idxv = 1:3;
30 >> v(idxv)
31 ans =
32 2 4 6
33 % the subscript is a colon notation
34 >> v(:)
35 ans =
36 2 4 6 8 10 12 14 16

Figure 4.7 Illustration of MATLAB array indexing

62

4.3. Propagating Shapes through Array Indexing

1 >> arr = [[1; 2; 3] [4; 5; 6] [7; 8; 9]]
2 arr =
3 1 4 7
4 2 5 8
5 3 6 9
6 >> arr(3)
7 ans =
8 3

(a) Linear indexing example a
1 >> arr = ones(3,3,3);
2 >> arr(2,:,:) = [[1; 2; 3] [4; 5; 6] [7; 8; 9]];
3 >> arr(2,:,:)
4 ans(:,:,1) =
5 1 2 3
6 ans(:,:,2) =
7 4 5 6
8 ans(:,:,3) =
9 7 8 9

10 >> arr(2,3)
11 ans =
12 3

(b) Linear indexing example b

Figure 4.8 MATLAB script example of linear indexing

accessing is on the left hand side of the assignment, the MATLAB interpreter cannot succeed

in resizing the array arr with the extra index colon notation. But, at line 4, the extra index

1:3 gives the interpreter more information about how the programmer wants to resize the

array, and the interpreter succeeds in resizing the array arr.

In the following two subsections, we present the shape analysis for both array set state-

ments and array get statements. Inside the shape analysis, we integrate the static array

bounds checking to handle the potential array growth problem for the array indexing ex-

pressions in array set statements. Since MATLAB requires that subscript indices must be

real positive integers or logicals, the bottom line to proceed static array bounds checking

is that the shape of the accessed array is exactly known, in other words, the sizes of all the

dimensions of the array are exactly integer numbers, and both bounds of the range values

63

Range Value Analysis

1 >> arr = ones(2,2);
2 >> arr(2,2,2) = 0
3 arr(:,:,1) =
4 1 1
5 1 1
6 arr(:,:,2) =
7 0 0
8 0 0
9 >> size(arr)

10 ans =
11 2 2 2

(a) Succeed in resizing the array with extra index
1 >> arr = ones(2,2);
2 >> arr(2,2,:) = rand(2,2)
3 Assignment has more non-singleton rhs dimensions than

non-singleton subscripts
4 >> arr(2,2,1:3) = [4 5 6];
5 >> size(arr)
6 ans =
7 2 2 3

(b) More examples of resizing the array with extra index

Figure 4.9 MATLAB script example of array growth

of the indices are exactly real9 numbers. If these two requirements cannot be met, we have

to leave the array bounds checking to the inlined FORTRAN code.

4.3.2 For Array Set Statement

The array set statement is one kind of assignment statement where the array accessing is at

the left hand side of the assignment. This statement is used to reset one or more elements

selected by the subscript(s) in the array. Based on the description of the array indexing

in last subsection, the indices can be narrowed down to three different kinds: (1) colon

notation, (2) having a scalar value, or (3) having a vector value. And for each kind of

index, the relation between the number of the indices and the rank of the accessed array

has three possibilities: (1) less than, (2) equal to, or (3) greater than. So the shape analysis

9MATLAB can cast real number index to integer number index implicitly.

64

4.3. Propagating Shapes through Array Indexing

should appropriately handle all these nine combination possibilities of the indices for a

given array set statement. Moreover, when accessing an array with an out-of-bound index

in an array set statement, the out-of-bound array indexing may grow the accessed array,

which means the shape information of the accessed array may be changed. If the out-of-

bound array indexing cannot grow the shape of the array, which corresponds to a run-time

error, the shape analysis should inform the abstract value analysis framework to mark the

current flow set as nonviable10. The pseudocode of the shape analysis algorithm for array

set statements is in Listing 4.15.

function handle_array_set_stmt(array, index_list)

for array set statements, the shape analysis

result returns to the indexed array.

arr_dim_ls = get dimension list of the array

POS = 1 # initialing to point at the first index in the index_list

for each index in the index_list

case 1: colon notation

if the index is a colon notation

if POS > arr_dim_ls.length

out-of-bound index with colon notation

mark the current flow_set as nonviable

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

won’t resize the shape of the array

else

the ordinary case

won’t resize the shape of the array

end if

case 2: scalar value

else if the index has a scalar value

if POS > arr_dim_ls.length

out-of-bound index with a scalar

range_val = get range value of index_list[POS]

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

add range_val.upper_bound to the end of arr_dim_ls

end if

10In the Tamer’s abstract value analysis framework, the nonviable flow sets represent the non-reachable
code (for statements after errors, or non-viable branches).

65

Range Value Analysis

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

range_val = get the range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

num = get the number of elements in the remaining dimensions

if range_val.upper_bound > num

mark the current flow_set as nonviable

else

won’t resize the shape of the array

end if

end if

else

the ordinary case

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

if range_val.upper_bound > arr_dim_ls[POS]

out-of-bound index with a scalar

arr_dim_ls[POS] = range_val.upper_bound

else

won’t resize the shape of the array

end if

end if

end if

case 3: vector value

else if the index has a vector value

if POS > arr_dim_ls.length

out-of-bound index with a scalar

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

add range_val.upper_bound to the end of arr_dim_ls

end if

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

66

4.3. Propagating Shapes through Array Indexing

else

num = get the number of elements in the remaining dimensions

if range_val.upper_bound > num

mark the current flow_set as nonviable

else

won’t resize the shape of the array

end if

end if

else

the ordinary case

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

if range_val.upper_bound > arr_dim_ls[POS]

out-of-bound index with a scalar

arr_dim_ls[POS] = range_val.upper_bound

else

won’t resize the shape of the array

end if

end if

end if

end if

increment POS

end loop

shape_result = new shape from arr_dim_ls

return shape_result

end function

Listing 4.15 Shape analysis for array set statements

4.3.3 For Array Get Statement

The array get statement is another kind of assignment statement where the array accessing

is at the right hand side of the assignment. This statement is used to assign one or more

elements selected by the subscript(s) in the array to the variable on the left hand side. The

array indexing expressions in the array get statements cannot resize the accessed array,

but since FORTRAN doesn’t have built-in array bounds checking for array indexing, we

have to either perform array bounds checking in the compile-time or inline run-time array

67

Range Value Analysis

bounds checking code in the generated FORTRAN code. The compile-time array bounds

checking is achieved via the shape analysis for array get statements. The same as the

array set statement, the shape analysis handles properly all those nine combinations of the

indices introduced in last subsection and if the out-of-bound array indexing occurs, the

shape analysis informs the abstract value analysis framework to mark the current flow set

as nonviable. The pseudocode of the shape analysis algorithm for array get statements is

in Listing 4.16.

function handle_array_get_stmt(target, array, index_list)

for array get statements, the shape analysis result

returns to the left hand side target variable.

new_dim_ls = new a dimension list

arr_dim_ls = get dimension list of the array

POS = 1 # initializing to point at the first index in the index_list

for each index in the index_list

case 1: colon notation

if the index is a colon notation

if POS > arr_dim_ls.length

out-of-bound index with colon notation

mark the current flow_set as nonviable

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

won’t resize the shape of the indexed array

but has to set the dimension size for target

num = get the number of elements in the remaining dimensions

add num to the end of new_dim_ls

else

the ordinary case

won’t resize the shape of the indexed array

but has to set the dimension size for target

add arr_dim_ls[POS] to the end of new_dim_ls

end if

case 2: scalar value

else if the index has a scalar value

if POS > arr_dim_ls.length

out-of-bound index with a scalar

mark the current flow_set as nonviable

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

range_val = get range value of the index

68

4.3. Propagating Shapes through Array Indexing

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

num = get the number of elements in the remaining dimensions

if range_val.upper_bound > num

mark the current flow_set as nonviable

else

won’t resize the shape of the array

end if

end if

to set the dimension size for target

add 1 to the end of new_dim_ls

else

the ordinary case

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

if range_val.upper_bound > arr_dim_ls[POS]

out-of-bound index with a scalar

mark the current flow_set as nonviable

else

won’t resize the shape of the array

end if

end if

to set the dimension size for target

add 1 to the end of new_dim_ls

end if

case 3: vector value

else if the index has a vector value

if POS > arr_dim_ls.length

out-of-bound index with a scalar

mark the current flow_set as nonviable

else if POS == index_list.length and POS < arr_dim_ls.length

proceed linear indexing

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

num = get the number of elements in the remaining dimensions

if range_val.upper_bound > num

mark the current flow_set as nonviable

69

Range Value Analysis

else

won’t resize the shape of the array

end if

end if

to set the dimension size for target

add unknown to the end of new_dim_ls

else

the ordinary case

range_val = get range value of the index

if range_val.lower_bound < 1

mark the current flow_set as nonviable

else

if range_val.upper_bound > arr_dim_ls[POS]

out-of-bound index with a scalar

mark the current flow_set as nonviable

else

won’t resize the shape of the array

end if

end if

to set the dimension size for target

add unknown to the end of new_dim_ls

end if

end if

increment POS

end loop

return the shape from new_dim_ls

end function

Listing 4.16 Shape analysis for array get statement

70

Chapter 5

Transforming MATLAB to FORTRAN 95

After solving the problem of the shape analysis through the array indexing expressions,

we finally pave the way for transforming MATLAB to FORTRAN 95. Together with other

abstract value characteristics, like mclass and complex information, our MC2FOR compiler

is able to declare all the variables of a given MATLAB program in the generated FORTRAN

code, which is crucial for a statically-typed language. Besides the variable declaration,

we should also map those types in MATLAB to the corresponding types in FORTRAN. For

example, in MATLAB, there are double, int8, int16, int32, char and some other types;

how to map them into FORTRAN intrinsic types? Furthermore, there are also a lot of

constructs mapping issues. The original intention of designing MATLAB was to make this

language a sort of dynamic version of FORTRAN, but after evolving more than 30 years,

the syntax of MATLAB has become quite different from the syntax of FORTRAN and even

some syntax or features look quite wild from the point of view of a FORTRAN programmer.

In this chapter, we start with a brief review of the history of MATLAB in Section 5.1,

including elaborating the reason why we pick FORTRAN 95 instead of any other version of

FORTRAN and presenting some potential issues when translating MATLAB to FORTRAN. In

Section 5.2, we list some basic transformations from MATLAB to FORTRAN, like mapping

built-in types, built-in functions or operators, control flow statements, main entry point

functions and user-defined functions. Besides those basic transformations, we also discuss

some advanced mapping problems, like mapping types for subscripts in the array indexing

expressions, variables in the loop range expressions and assigning multiple types to the

71

Transforming MATLAB to FORTRAN 95

same variable in Section 5.3, transforming flexible array indexing in MATLAB to more

rigorous array indexing in FORTRAN in Section 5.4 , and finally inlining the run-time array

bounds checking and variable’s shape resizing code in Section 5.5.

5.1 Introduction

According to the article “The Origins of MATLAB” [Molb] written by the creator of

MATLAB, Clever Moler, MATLAB is designed by him to give his students the access to

LINPACK and EISPACK1 without them having to learn FORTRAN. We may believe the

original intention of designing MATLAB is to make it a dynamic or script version of FOR-

TRAN, which means that the programmers can have access to the FORTRAN libraries with-

out declaring types for all the used variables and remembering long input argument lists

when calling subroutines from the libraries. In 2000, according to the article “MATLAB

Incorporates LAPACK” [Mola] written by Clever Moler, MATLAB was rewritten to use

a newer set of FORTRAN libraries for matrix manipulation, LAPACK. For these reasons,

MATLAB has similar syntax to FORTRAN. Based on above facts, we picked FORTRAN as

the target language of translating MATLAB. In this section, we further explain the reason

why we choose FORTRAN 95 among any other version of FORTRAN as our target language

and list some potential problems when translating MATLAB to FORTRAN.

5.1.1 Why FORTRAN 95?

In the versions of FORTRAN prior to 90, like 66 and 77, there are many features not sup-

ported, i.e. operator overloading, derived (structured) data types, dynamic memory allo-

cation and so on, which are necessary to translate MATLAB to FORTRAN. Therefore, we

directly start the comparison from FORTRAN 90 and other following versions. Here, first

we list some features in FORTRAN 90, which are essential for translating MATLAB to FOR-

TRAN.

1These two software libraries are written in FORTRAN for performing numerical linear algebra on digital
computers.

72

5.1. Introduction

• Inline comments;

• Ability to operate on arrays (or array sections) as a whole, the greatly simplifying

math and engineering computations;

• Recursive procedures;

• Operator overloading;

• Derived (structured) data types;

• Dynamic memory allocation;

• New and enhanced intrinsic procedures.

Then FORTRAN 95 is a minor version, mostly to resolve some outstanding issues from

the FORTRAN 90 version. Some new features which are also useful for converting MATLAB

to FORTRAN are:

• Add a number of extensions, notably from the high performance FORTRAN specifi-

cation, which add constructs supporting parallel computing;

• Clearly defined that ALLOCATABLE arrays are automatically deallocated when they go

out of scope;

• Several features noted in FORTRAN 90 to be “obsolescent” were removed from FOR-

TRAN 95, which makes the language more concise and cleaner.

After FORTRAN 95, there are also two new versions of FORTRAN, which are FOR-

TRAN 2003 and FORTRAN 2008. These two versions provide new features to support

object-oriented programming, enhancements of old features, interoperability with C and

also parallel execution. Here is a brief list of some features in FORTRAN 2003 and 2008.

• Object-oriented programming support: type extension and inheritance, polymor-

phism, dynamic type allocation, and type-bound procedures, providing complete

support for abstract data types;

73

Transforming MATLAB to FORTRAN 95

• Derived type enhancements;

• Input/output enhancements;

• Procedure pointers (the same as function pointers in C);

• Interoperability with the C programming language;

• Enhanced integration with the host operating system: access to command line argu-

ments, environment variables, and processor error messages.

• Coarray FORTRAN, a parallel execution model;

• The DO CONCURRENT construct, for loop iterations with no inter-dependencies;

• The BLOCK construct, containing declarations of objects with construct scope.

Since our static analysis framework and code generation only focus on the numeric

computation aspect of MATLAB, we may not consider the object-oriented programming

aspect of MATLAB for now. There is also the fact that most current FORTRAN compil-

ers are only fully compliant with the FORTRAN 90/95 version. Although some FORTRAN

compilers can support a significant number of FORTRAN 2003 and FORTRAN 2008 fea-

tures, the programs written in FORTRAN 90/95 will be more stable than the ones written in

FORTRAN 2003 and FORTRAN 2008.

Based on all these considerations, we decide to choose FORTRAN 95 as the standard

version of our generated FORTRAN code. However, with the improvement of most FOR-

TRAN compilers in the future, we may pick a more recent version of FORTRAN as the

version of our generated FORTRAN code, and we may use the new features in those FOR-

TRAN versions to support more features in MATLAB, for instance, using DO CONCURRENT

construct to execute for loop iterations in parallel, or accessing to command line arguments

to support data visualization using a third-party software, like gnuplot.

5.1.2 Potential Problems

The original intention of designing MATLAB is to make this language a kind of dynamic

version of FORTRAN, but with more than thirty years evolvement of the language and its

74

5.2. Basic Transformations

dynamic language nature, the syntax of MATLAB becomes quite different from the syntax

of FORTRAN and even some syntax or features looks quite wild from the point of view of

a FORTRAN programmer. For example, in FORTRAN, the number of the indices must be

equal to the rank of the accessed array; while in MATLAB, as we introduced in Subsec-

tion 4.3.1, the number of the indices can be less than, equal to or greater than the rank of

the accessed array. We have to consider how to transform the various kinds of array in-

dexing in MATLAB to the more rigorous way in FORTRAN. Built-in functions in MATLAB

are overloaded, which means we should also provide the similar features in the generated

FORTRAN code. Since MATLAB is a dynamically-typed programming language, variables

can be reused referring to different-type values or even different-shape arrays. But in FOR-

TRAN, variables are statically declared only once and cannot be changed to another type

within their scopes in the program. Moreover, removing features noted in FORTRAN 90 as

“obsolescent” from FORTRAN 95 makes the language more concise and cleaner, but this

leads to some new problems when translating MATLAB to FORTRAN. For example, be-

fore FORTRAN 95, the compiler allows implicit type coercions, like DO statements can use

REAL or DOUBLE PRECISION variables in range expressions which actually expect INTEGER

variables. This implicit type coercion is an important feature in weakly-typed languages,

like MATLAB. After removing this feature from FORTRAN 95, the compiler requires us to

explicitly cast REAL and DOUBLE PRECISION variables to INTEGER variables in the range ex-

pressions. These are just some of potential problems we may encounter when we transform

MATLAB to FORTRAN. We hope that this will give the reader some idea of the problems

to be solved. In the remaining of this chapter, we start with some basic and straightforward

transformations and then go to handle more advanced problems like we mentioned above.

5.2 Basic Transformations

In this section, we list some basic and straightforward transformations from MATLAB to

FORTRAN 95, like mapping types and generating variable declarations in Subsection 5.2.1

and 5.2.2, mapping built-in operators or functions in Subsection 5.2.3, transforming con-

trol flow statements in Subsection 5.2.4, and mapping user-defined functions in Subsec-

tion 5.2.5.

75

Transforming MATLAB to FORTRAN 95

5.2.1 Types

In Table 5.1, the left column is the primitive data types in MATLAB, and the right column

is the corresponding intrinsic types in FORTRAN.

Table 5.1 Mapping MATLAB types to FORTRAN

Primitive Data Types in MATLAB Types in FORTRAN

double DOUBLE PRECISION
single REAL
int8 INTEGER(KIND=1)

int16 INTEGER(KIND=2)
int32 INTEGER(KIND=4)
int64 INTEGER(KIND=8)
char CHARACTER

logical LOGICAL
complex COMPLEX

Besides these primitive data types, the MC2FOR compiler also supports cell arrays

in MATLAB. We use derived data type2 in FORTRAN to map cell arrays in MAT-

LAB.

5.2.2 Variable Declarations

In the generated FORTRAN code, we translate MATLAB scalar variables to scalar variables

with the corresponding types and MATLAB non-scalar array variables to multidimensional

arrays. If the shape of an array variable is not a constant shape, we declare this variable as

an ALLOCATABLE array variable in FORTRAN. In Listing 5.1, there are some FORTRAN code

snippets to illustrate variable declarations in FORTRAN. In the code snippets, the variable

var_1 is used to map an integer scalar variable in MATLAB, the variable var_2 is used

to map a double-type varied-shape 2-dimensional array variable, and the variable var_3 is

used to map a single-type 3-by-4-sized array variable.

2Also known as union type and similar to the struct in C/C++.

76

5.2. Basic Transformations

INTEGER(KIND=4) :: var_1

DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: var_2

REAL, DIMENSION(3,4) :: var_3

Listing 5.1 Variable declaration in FORTRAN

5.2.3 Built-in Functions

In Table 5.2, 5.3, 5.4 and 5.5, we list some mappings of arithmetic operators, relational

operators, logical operators and commonly used mathematical built-ins from MATLAB to

FORTRAN. Note that the left division (.\) in MATLAB can be supported by swapping the

operands of the operator and replacing the operator with the right division operator (./), and

the colon operator in MATLAB can be supported by using an implied DO loop in an array

constructor in FORTRAN. For example, the expression var = 1 : 10 in MATLAB will be

converted to var = (/I, I=1, 10/) in FORTRAN. Some of the arithmetic operators, like

complex conjugate transpose, matrix right and left division, and matrix power do not have

directly-mapped operators in FORTRAN. The reason we list them in the table is that they

are commonly used in MATLAB programs and we must provide a valid solution to handle

them if we want to convert MATLAB programs to FORTRAN. Moreover, since there are

only a small subset of MATLAB built-ins can be directly mapped in FORTRAN comparing

to the large amount of MATLAB built-ins, we have to make sure that the solution is also

available to handle other built-ins with no direct mappings.

For the built-in function in MATLAB without a directly mapped intrinsic function in

FORTRAN, we leave the built-in function’s name in the generated FORTRAN code as the

same as it is in MATLAB, and then implement a separate module containing a FORTRAN

function with the same function signature doing the same work as it does in MATLAB. For

example, in Figure 5.1, there is a MATLAB function computing linear equations using the

built-in operaotr \, whose corresponding built-in function is mldivide and which is also in

Table 5.2. The generated FORTRAN code for this example is in Figure 5.2 and Figure 5.3.

Since there is no direct FORTRAN intrinsic function to map \ operator (mldivide function)

in MATLAB, we provide a module which contains a user-defined FORTRAN function with

77

Transforming MATLAB to FORTRAN 95

Table 5.2 Mapping MATLAB arithmetic operators to FORTRAN

MATLAB arithmetic operators FORTRAN arithmetic operators
+ (addition or unary plus) +

- (subtraction or unary minus) -
.* (multiplication) *
./ (right division) /
.\ (left division) swap operands and use right division
: (colon operator) use implied DO loop in array constructors

.ˆ (power) **
.’ (transpose) TRANSPOSE

’ (complex conjugate transpose) no direct mapping
* (matrix multiplication) MATMUL
/ (matrix right division) no direct mapping
\ (matrix left division) no direct mapping
ˆ (matrix power) no direct mapping

Table 5.3 Mapping MATLAB relational operators to FORTRAN

MATLAB relational operators FORTRAN relational operators
< (less than) .LT.

<= (less than or equal to) .LE.
> (greater than) .GT.

>= (greater than or equal to) .GE.
== (equal to) .EQ.

˜= (not equal to) .NE.

the same function signature as the mldivide function and this user-defined function will do

the same work as the function mldivide does in MATLAB. For this example, since there is

a same-functionality FORTRAN subroutine, DGESV3, in LAPACK library, we implement this

user-defined function as a wrapper function by calling the FORTRAN subroutine DGESV in

LAPACK library. Note that not all the MATLAB built-in functions can find a corresponding

FORTRAN subroutine in LAPACK library, like ones and zeros, so sometimes we have to

implement user-defined functions by ourselves.

3LAPACK subroutines solving the system of linear equations for long-precision real.

78

5.2. Basic Transformations

Table 5.4 Mapping MATLAB logical operators to FORTRAN

MATLAB logical operators FORTRAN logical operators
& and && .AND.
| and || .OR.

˜ .NOT.
xor .XOR.
any ANY
all ALL

bitand IAND
bitor IOR

bitcmp NOT
bitxor IEOR

function linear()

A = [3.1, 1.3, -5.7; 1.0, -6.9, 5.8; 3.4 7.2 -8.8];
B = [-1.3; -0.1; 1.8];
X = A \ B;

end

Figure 5.1 MATLAB code example of using mldivide built-in function

In summary, to support a built-in function in MATLAB without a directly-mapped in-

trinsic FORTRAN function, instead of inlining the same-functionality FORTRAN code into

the generated program, the MC2FOR compiler will leave a “hole” with the same function

signature as the function in MATLAB in the transformed code and requires someone to fill

up the “hole” by implementing a user-defined FORTRAN function with the same signature

and doing the same job as the function in MATLAB.4 Furthermore, if another user has a

better implementation for that “hole”, the only thing the user need to do is removing the

old FORTRAN function for that “hole” and recompiling the programs with the new one.

By using this solution, whenever there comes a new MATLAB built-in function, the code

generation will leave a “hole” for that function and requires a separate FORTRAN mod-

4We have already implemented some FORTRAN functions to map some built-in functions in MATLAB,
and put them in a user-define FORTRAN library libmc2for which is shipped with the compiler.

79

Transforming MATLAB to FORTRAN 95

Table 5.5 Directly mapping MATLAB commonly used mathematical built-ins to FORTRAN

MATLAB built-ins FORTRAN intrinsic functions
sum SUM
ceil CEILING
floor FLOOR
mod MODULO
rem MOD

round NINT
fix INT
sin SIN
asin NOT
sinh SINH
cos COS
acos ACOS
cosh COSH
tan TAN
atan ATAN
tanh TANH
exp EXP
log LOG

log10 LOG10
sqrt SQRT
abs ABS
conj CONJG
min MIN
max MAX

numel SIZE
size SHAPE

80

5.2. Basic Transformations

PROGRAM linear
USE mod_mldivide
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(3,3) :: A
DOUBLE PRECISION, DIMENSION(3,1) :: B,X

A(1,:) = [3.1, 1.3, -5.7];
A(2,:) = [1.0, -6.9, 5.8];
A(3,:) = [3.4, 7.2, -8.8];

B(1,1) = -1.3;
B(2,1) = -0.1;
B(3,1) = 1.8;

X = mldivide(A,B);

END PROGRAM

Figure 5.2 Generated FORTRAN code for the code example in Figure 5.1

MODULE mod_mldivide

CONTAINS

FUNCTION mldivide(A,B)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:,:) :: A
DOUBLE PRECISION, DIMENSION(:,:) :: B
DOUBLE PRECISION, DIMENSION(SIZE(B,1),SIZE(B,2)) :: mldivide
INTEGER, DIMENSION(SIZE(B)) :: pivot
INTEGER :: ok

CALL DGESV(SIZE(A,1), SIZE(B,2), A, SIZE(A,1), pivot, B, SIZE(B,1),ok)
mldivide = B;

END FUNCTION mldivide

END MODULE mod_mldivide

Figure 5.3 FORTRAN module for mapping MATLAB built-in function mldivide

81

Transforming MATLAB to FORTRAN 95

ule to fulfill that “hole”, which means that we don’t need to change any code in the code

generation framework to handle a new MATLAB built-in function.

MATLAB supports function overloading by argument list, i.e., we can call multiple

functions with the same name but a different number of arguments, or arguments of differ-

ent types. For example, we can pass any number of indices to the built-in function ones

as in Figure 5.4. To map this features from MATLAB to FORTRAN, we use the INTERFACE

construct in FORTRAN. The generated FORTRAN code for the example function in Fig-

ure 5.4 is in Figure 5.5 and 5.6. In this way, the generated FORTRAN code will be quite

similar to the original input MATLAB code.

function test_ones()

A = ones(3);
B = ones(3,4);
C = ones(3,4,5);

end

Figure 5.4 MATLAB code example to illustrate function overloading

PROGRAM test_ones
USE mod_ones
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(3,3) :: A
DOUBLE PRECISION, DIMENSION(3,4) :: B
DOUBLE PRECISION, DIMENSION(3,4,5) :: C

A = ones(3);
B = ones(3,4);
C = ones(3,4,5);

END PROGRAM

Figure 5.5 Generated FORTRAN code for the code example in Figure 5.4

82

5.2. Basic Transformations

MODULE mod_ones
INTERFACE ones
MODULE PROCEDURE ones_1, ones_2, ones_3, ones_i ! may be more
END INTERFACE ones

CONTAINS

FUNCTION ones_1(x)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: x
DOUBLE PRECISION, DIMENSION(INT(x),INT(x)) :: ones_1
ones_1 = 1.0
END FUNCTION ones_1

FUNCTION ones_2(x,y)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION, DIMENSION(INT(x),INT(y)) :: ones_2
ones_2 = 1.0;
END FUNCTION ones_2

FUNCTION ones_3(x,y,z)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: x, y, z
DOUBLE PRECISION, DIMENSION(INT(x),INT(y),INT(z)) :: ones_3
ones_3 = 1.0;
END FUNCTION ones_3

END MODULE mod_ones

Figure 5.6 FORTRAN module ones supporting function overloading

5.2.4 Control Flow Statements

The mappings of if-else, for loop and while loop constructs from MATLAB to FORTRAN are

kind of straightforward. We list them in Figure 5.7, 5.8 and 5.9, respectively. Although in

computer science, subroutines5 are also considered as one kind of flow control statements,

we leave the transformation of the subroutines to the Subsection 5.2.5.
5The terminology for subroutines varies; they may be routines, procedures, functions or methods (espe-

cially if they belong to classes or type classes). In MATLAB, the subroutines are the user-defined functions.

83

Transforming MATLAB to FORTRAN 95

if logical_expression
statements

[elseif logical_expression
statements]

else
statements

end

IF (logical_expression) THEN
statements

[ELSE IF (logical_expression) THEN
statements]

ELSE
statements

END IF

Figure 5.7 if constructs in MATLAB (left) and FORTRAN (right)

for var = start[: step] : stop
statements

end

DO var = start, stop[, step]
statements

END DO

• In FORTRAN (right block), var should be an integer variable;
• start is the initial value var is given;
• stop is the final value;
• and step is the increment by which var is changed. If it’s omitted, unity is assumed.

Figure 5.8 for loop constructs in MATLAB (left) and FORTRAN (right)

while logical_expression
statements

end

DO WHILE (logical_expression)
statements

END DO

Figure 5.9 while loop constructs in MATLAB (left) and FORTRAN (right)

5.2.5 User-defined Functions

For now, our toolkit only accepts MATLAB function files, no script files, as the input to

the front end. Functions in MATLAB can return (1) no value, (2) one value, or (3) multiple

values. Generally speaking, if a user-defined function file has only one return value, we map

it to the user-defined function file in FORTRAN; and if a user-defined function file returns

no value or multiple values, we map it to the user-defined subroutine file in FORTRAN.

Since in MATLAB every function file can be the main entry point program file, we map

the main entry point function file in MATLAB to the main program file in FORTRAN. If the

84

5.3. Advanced Problems in Mapping Types

main entry point function file has input values, we use the FORTRAN 95 subroutine GETARG

to get input arguments for the main programs. At the left hand side of Figure 5.10, there is

a MATLAB entry point function with one integer input argument. On the right hand side,

it is the generated FORTRAN code. Inside the FORTRAN code, we use the FORTRAN 95

intrinsic subroutine GETARG to read one input from the command line and assign the value

of the input to the corresponding variable.

% MATLAB entry point function
function entry_point(arg_1)
...
end

! Fortran code generation
PROGRAM entry_point
! declaration section
INTEGER :: arg_1
INTEGER :: int_tmpvar
CHARACTER(10) :: arg_buffer
...
! main program starts
int_tmpvar = 0;
arg_buffer = ’0000000000’;
DO int_tmpvar = 1 , IARGC()
CALL GETARG(int_tmpvar,

arg_buffer);
IF ((int_tmpvar == 1)) THEN
READ(arg_buffer, *) arg_1

END IF
END DO
...
END PROGRAM entry_point

Figure 5.10 Translating entry point function from MATLAB to FORTRAN

5.3 Advanced Problems in Mapping Types

MATLAB is a weakly-typed programming language because types are implicitly converted.

That’s why you can use a double value subscript to index an array in MATLAB, even though

MATLAB requires that subscript indices must either be real positive integers or logicals. But

FORTRAN is a strongly-typed programming language, types should be converted explicitly.

For example, in FORTRAN, the array indices must be in the INTEGER type, and in order to

85

Transforming MATLAB to FORTRAN 95

achieve more efficiency, DO statements cannot use REAL and DOUBLE PRECISION variables

since FORTRAN 95.

5.3.1 For Subscripts in Array Indexing

Since FORTRAN doesn’t support type coercion and requires that the indices of the array ac-

cessing must be in the type of INTEGER, the MC2FOR compiler uses the FORTRAN intrinsic

function INT to explicitly convert the types of the indices of the accessed array to INTEGER

in the generated code. Here is an example in Figure 5.11.

% MATLAB code snippet
arr = [1,2,3,4,5,6];
arr(3.0) = 6;

! converted FORTRAN code snippet
arr = [1,2,3,4,5,6];
arr(INT(3.0)) = 6;

Figure 5.11 Subscript in MATLAB (left) and FORTRAN (right)

5.3.2 For Loop Range Expressions

In MATLAB, recall the for loop construct in Figure 5.8. The expression after the keyword

for, which is var = start[: step] : stop, is called the range expression. The vari-

able var can be in the double type and the values of start, step and stop can also be

in the double type. While after FORTRAN 95, the var, start, stop and step must be in

the type of INTEGER. So we have to transform the loop constructs in MATLAB one more

step than directly transformed in Figure 5.8. The final version of transforming for loops in

MATLAB to FORTRAN is in Figure 5.12.

5.3.3 Assigning Multiple Types to the Same Variable

We know that in FORTRAN and other statically-typed programming languages, after the

declaration of a variable, we can only assign values of the declared type to the variable.

While in MATLAB, a same variable can be assigned with values of different types. One so-

lution to map this feature in MATLAB to FORTRAN is that we use static single assignment

86

5.3. Advanced Problems in Mapping Types

for var = start[: step] : stop
statements

end

(a) For loop construct in MATLAB
! if the range expression has step
var = start;
step_new =

INT((stop-start)/step+1);
DO var_new = 1, step_new
statements
var = var + step;

END DO

! if the range expression has no
step, unity is assumed

var = start;
step_new = INT((stop-start+1);
DO var_new = 1, step_new
statements
var = var + step;

END DO

(b) Transformed for loop construct in FORTRAN

Figure 5.12 Transformation of for loop constructs in MATLAB to FORTRAN

form (SSA form) to rename the variable with multiple definitions to different variables,

which ensures that each variable is assigned exactly once. But this solution will be very ex-

pensive and introduce extra overhead. For example, if all the definitions of the variable are

in the same type, for the code generation, we don’t want to split this variable according to

different use-def chains. In our transformation framework, we choose to rename variables

only when it’s necessary.

The condition to trigger renaming a variable is that this variable has different type

informations in different DU-UD webs. If the variable has different type in a certain DU-

UD web, we transform this variable to a derived-data type variable in FORTRAN. In the

generated derived-data type, there are several data fields which exactly match those possible

types of the variable in the MATLAB program. Besides those data fields, there is a character

string data field, named token, which serves to indicate which field is currently active. In

Figure 5.13, the left hand side is a piece of code example in MATLAB, and the right hand

side is the corresponding generated FORTRAN code.

In Figure 5.13, you may have already noticed that since a has different types, the gen-

erated FORTRAN code for the operations involving a also has different possibilities. In

other words, to translate MATLAB statement, b = a + 3;, at line 9, we inlined run-time

checking code and different statements from line 17 to line 23 in the generated FORTRAN

87

Transforming MATLAB to FORTRAN 95

1 % MATLAB code snippet
2 if ...
3 a = int8(15);
4 ...
5 else
6 a = 15.0;
7 ...
8 end
9 b = a + 3;

10 ...

1 ! Fortran code snippet
2 TYPE a
3 CHARACTER(10) token
4 INTEGER(KIND=1) val_int8
5 DOUBLE val_double
6 END TYPE a
7 ! generated fortran code
8 IF ... THEN
9 a%val_int8 = int8(15);

10 a%token = ’int8’;
11 ...
12 ELSE
13 a%val_double = 15.0;
14 a%token = ’double’;
15 ...
16 END IF
17 IF (a%token .EQ. ’int8’) THEN
18 b%val_int8 = a%val_int8 + 3;
19 b%token = ’int8’;
20 ELSE
21 b%val_double = a%val_double + 3;
22 b%token = ’double’;
23 END IF
24 ...

Figure 5.13 Using derived data type in FORTRAN to map inconvertible types of the same vari-
able in MATLAB

code.

One more thing to notice, actually the ideal type or data structure to map this variable

in MATLAB should be something similar to the union type in C/C++, because, at any time,

there can be only one type for that variable. But there is no such a data type in FORTRAN,

and the derived-data type in FORTRAN is more likely to the struct type in C/C++, which

means, comparing with the union type, we may sacrifice some extra storage to support this

feature in MATLAB.

88

5.4. Array Indexing Transformation

5.4 Array Indexing Transformation

As we mentioned in Subsection 4.3.1, in MATLAB the number of the subscripts in an array

indexing can be less than, equal to or greater than the rank of the indexed array. But for

FORTRAN, it requires that the number of the indices in an array indexing must be equal

to the rank of the indexed array. So we need to figure out a strategy to transform the

array indexing in MATLAB to a more rigorous way of array indexing in FORTRAN. In

our MC2FOR compiler, we designed a strategy named rigorous indexing transformation

to transform the array indexing in MATLAB to a more rigorous way of array indexing

in FORTRAN. Strictly speaking, the rigorous indexing transformation is only for the case

where the number of the subscripts in an array indexing is less than the rank of the accessed

array, or we can say the linear indexing case, because if the number of the subscripts in an

array indexing is equal to the rank of the accessed array, the subscript list will be the same

in both MATLAB and FORTRAN, and if the number of the subscripts in an array indexing

is greater than the rank of the accessed array, after inlining the array shape resizing code

before the array indexing statement, the indexing will also be the same in both languages,

since the number of the subscripts in the array indexing now is equal to the rank of the

reshaped array.

5.4.1 For Array Get Statements

For the linear indexing transformation, in the generated code, we implement some user-

defined FORTRAN functions to proceed the indexing work and return the same result as the

indexing does in MATLAB. The names of the FORTRAN functions are based on a naming

convention. For the array indexing in the array get statement, the name of the function

starts with ARRAY_GET. Then we add the rank of the accessed array to the end of the name.

After that, for each index in the index list, if the index is a colon notation, we add C to

the end of the name of the function; if the index has vector value, we add V to the end

of the name of the function; and if the index has scalar value, we add S to the end of

the name of the function. When there is no index left in the index list, the name of the

transformation function is done. For example, if the accessed array arr is a 3-dimensional

89

Transforming MATLAB to FORTRAN 95

array and the index list is (scalar_var,vector_var), the transformation function name

will be ARRAY_GET3SV. The input argument list of a transformation function starts with the

name of the accessed array. Then for each index in the index list, we add the index itself

to the end of the list. When there is no index left in the index list, the input argument list

of the transformation function is done. Continue with the above example, the mapping of

var = arr(scalar_var,vector_var) in MATLAB will be var = ARRAY_GET3SV(arr,

scalar_var, vector_var) in the generated FORTRAN code.

Moreover, the FORTRAN function ARRAY_GET3SV can be used to process all the cases

where the array’s rank is 3, the first index has a scalar value and the second index has a

vector value. The implementation of the function ARRAY_GET3SV in our MC2FOR compiler

is in Figure 5.14.

FUNCTION ARRAY_GET3SV(array, idx_1, idx_2)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:,:,:) :: array
INTEGER :: d2, d3
DOUBLE PRECISION :: idx_1
DOUBLE PRECISION, DIMENSION(:,:) :: idx_2
DOUBLE PRECISION, DIMENSION(1,SIZE(idx_2)) :: ARRAY_GET3SV
INTEGER :: i, idx_new_1, idx_new_2

d2 = size(array,2);
d3 = size(array,3);
idx_new_2 = 1;
DO i = INT(idx_2(1,1)), INT(idx_2(1,SIZE(idx_2)))
idx_new_1 = i - d2 * (idx_new_2-1);
IF (idx_new_1 > d2) THEN
idx_new_2 = idx_new_2 + 1;
idx_new_1 = idx_new_1 - d2;

END IF
ARRAY_GET3SV(1,i) = array(INT(idx_1),idx_new_1,idx_new_2);

END DO
END FUNCTION ARRAY_GET3SV

Figure 5.14 The function ARRAY_GET3SV

90

5.4. Array Indexing Transformation

5.4.2 For Array Set Statements

The array set statements assign new values to some of the elements in the original arrays.

Instead of using functions, we implemented user-defined FORTRAN subroutines to perform

both the array indexing and assigning work. The naming convention of the transformation

subroutine for the array set statements is similar to the one for the array get statements

with a small update. The name starts with ARRAY_SET, then followed by the rank of the

accessed array. After that, for each index in the index list, if the index is a colon notation,

we add C to the name of the function; if the index has vector value, we add V to the name

of the function; and if the index has scalar value, we add S to the name of the function.

When there is no index left in the index list, we add the rank of the right hand side value

or variable to the end of the name of the function, then the name of the transformation

subroutine is done. For example, if the accessed array is a 3-dimensional array, the index

list is (scalar_var,vector_var) and the right hand side variable is a vector variable, the

transformation subroutine name will be ARRAY_SET3SV2. The input argument list of the

transformation subroutine starts with the name of the accessed array. Then for each index

in the index list, we add the index itself to the end of the list. When there is no index

left in the index list, we add the name of the right hand side variable or value to the end

of the list, then the input argument list of the subroutine is done. Back to the above ex-

ample, the statement arr(scalar_var,vec_var1)= value in MATLAB will be mapped

to CALL ARRAY_GET3SV2(arr, scalar_var, vec_var1, value) in the generated FOR-

TRAN code.

The same as the transformation functions for the array get statements, the transforma-

tion subroutines for the array set statements are also reusable. The subroutine ARRAY_SET3SV2

can be used to all the cases where the accessed array is 3-dimensional, the first index has

a scalar value, the second index has a vector value and the rank of the right hand side is

2-dimensional. The implementation of the subroutine ARRAY_SET3SV2 in our MC2FOR is

in Figure 5.15.

91

Transforming MATLAB to FORTRAN 95

SUBROUTINE ARRAY_SET3SV2(array, idx_1, idx_2, value)
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:,:,:) :: array
DOUBLE PRECISION :: idx_1
DOUBLE PRECISION, DIMENSION(:,:) :: idx_2
DOUBLE PRECISION, DIMENSION(:,:) :: value
INTEGER :: d2, d3
INTEGER :: i, idx_new_1, idx_new_2

d2 = size(array,2);
d3 = size(array,3);
idx_new_2 = 1;
DO i = INT(idx_2(1,1)), INT(idx_2(1,SIZE(idx_2)))
idx_new_1 = i - d2 * (idx_new_2-1);
IF (idx_new_1 > d2) THEN
idx_new_2 = idx_new_2 + 1;
idx_new_1 = idx_new_1 - d2;

END IF
array(INT(idx_1),idx_new_1,idx_new_2) = value(1,i);

END DO
END SUBROUTINE ARRAY_SET3SV2

Figure 5.15 The subroutine ARRAY_SET3SV2

5.4.3 Shortcut Linear Indexing Transformation

For some cases where both the shape of the accessed array and the subscript(s) are exactly

known, the compiler can proceed a linear indexing transformation in compile-time instead

of inlining a special-named function call as we mentioned in previous two subsections, it

will use the transformed subscripts as the new subscripts. For example, in MATLAB, pro-

grammers always prefer to use one subscript to access a column or a row vector. While in

FORTRAN, since we declare all the vectors as two dimensional arrays, we have to trans-

form this linear indexing in MATLAB to regular array indexing in FORTRAN. The linear

indexing transformation for this case is simple. We only need to add “1” to the first place

or the second place of the index list based on whether the array is a row vector or a column

vector. The more complicated cases are where the accessed arrays are with two or more

dimensions. For example, the array A is with the shape of 3-by-4, the linear array indexing

A(5) will be transformed to A(2,2) in the generated FORTRAN code.

92

5.5. Run-time Array Bounds Checking and Variable Resizing

5.5 Run-time Array Bounds Checking and Variable Re-

sizing

For the array get and set statements which we cannot applied static array bounds checking

in the compile-time, the MC2FOR compiler will insert some run-time array bounds check-

ing code and shape resizing code before the array indexing expressions in the generated

FORTRAN code.

5.5.1 For Array Get statements

FORTRAN doesn’t have array bounds checking for the array indexing.6 If the index ex-

ceeds the upper bound of the corresponding dimension of the accessed array, the compiler

will not raise an exception and return whatever value on that address. But MATLAB has

built-in array bounds checks, so for array get statements, we add run-time array bounds

checking code before the array get statements. If the number of the indices in an array

indexing equals the rank of the accessed array, our MC2FOR compiler will add the array

bounds check code before the array get statement, and the code is simply comparing each

index in the index list with the size of corresponding dimensions. If any index exceeds the

upper bound of the accessed dimension of the array, the program terminates and raise an

out-of-bound array indexing exception. For example, in Figure 5.16, (b) is the converted

FORTRAN code for the array get statement example in (a).

For the case where the number of the indices in an array indexing is less than the rank

of the accessed array, recall that we use a FORTRAN transformation function to map this

kind of array get statement in MATLAB, our MC2FOR compile will put the run-time array

bounds checking code inside the transformation function.

For the case where the number of the indices in an array indexing is greater than the

rank of the accessed array, unless the extra index has the scalar value of 1 or all the extra

indices have the scalar values of 1, our MC2FOR compiler will throw an out-of-bound

indexing exception.

6Although third-party FORTRAN compilers may support some options to enable the generation of run-time
checks, for example, the -fcheck=‘bounds’ options of GFortran.

93

Transforming MATLAB to FORTRAN 95

% MATLAB code snippet
target_var = array(index_list);

(a) Array get statement example in MATLAB

! converted FORTRAN code snippet
array_d1 = SIZE(array,1);
array_d2 = SIZE(array,2);
... ! if array has more dimensions.
IF first_index > array_d1 or second_index > array_d2 [or ...] THEN
STOP "ABNORMALY: out-of-bound indexing exception."

END IF
target_var = array(index_list);

(b) Converted FORTRAN code for the code snippet in Figure 5.16 (a)

Figure 5.16 Run-time array bounds checking code for array get statement

5.5.2 For Array Set statements

The run-time array bounds checking for the array get statements is a little bit more com-

plicated than the one for the array set statements discussed in Subsection 5.5.1, because

the accessed array may be grown by the out-of-bound array indexing in MATLAB. To map

this dynamic feature in MATLAB to the generated FORTRAN code, besides the run-time ar-

ray bounds checking code, our MC2FOR compiler also inlines the run-time deallocate and

allocate code for the array set statements, which is in case of the accessed array is grown

by the out-of-bound array indexing. The steps to do run-time array bounds checking and

variable reshape are listed in order as below.

1. Back up the current size of the accessed array;

2. Compare each index in the index list with the size of the corresponding dimensions

of the accessed array, if the out-of-bound indexing occurs, go to the following step,

if not, go to the end of the algorithm;

3. Back up the accessed array;

4. Deallocate the array and reallocate the array with the new shape;

5. Copy the backup value back to the reshaped array, the end.

94

5.5. Run-time Array Bounds Checking and Variable Resizing

In Figure 5.17, (a) is an array set statement code snippet in MATLAB, and (b) is the gener-

ated FORTRAN code with the run-time array bounds checking code for the code snippet in

(b).

array(p, 5) = value;

(a) Array set statement code snippet in MATLAB

! step 1, back up the current size of the accessed array
array_d1 = SIZE(array, 1);
array_d2 = SIZE(array, 2);
! step 2, compare the indices with the dimensions
IF ((p > array_d1) .OR. (5 > array_d2)) THEN
! step 3, back up the accessed array with a temporary array
IF (ALLOCATED(array_bk)) THEN

DEALLOCATE(array_bk);
END IF
ALLOCATE(array_bk(array_d1, array_d2);
array_bk = array;
! step 4, deallocate and reallocate the accessed array
DEALLOCATE(array);
array_d1max = MAX(p, array_d1);
array_d2max = MAX(5, array_d2);
ALLOCATE(array(array_d1max, array_d2max));
! step 5, copy the backup value back to the reshaped array
array(1:array_d1, 1:array_d2) = array_bk(1:array_d1, 1:array_d2);

END IF
array(INT(p), 5) = value;

(b) Converted FORTRAN code snippet for the code snippet in Figure 5.17 (a)

Figure 5.17 Run-time array bounds checking and variable reshape code for array set statement

5.5.3 For Assignment Statements

When assigning to a variable, the right hand side can be summarized into three cate-

gories: (1) another variable, (2) a directly-mapped built-in function or operator, or (3) a

not-directly-mapped built-in function. The first case is a simple array assignment, if both

the array variables are not allocatable arrays, they should be have the same shape; if the left

hand side array variable is an allocatable array, it will be first allocated with the same shape

of the right hand side array variable, and then each element of the right hand side array will

95

Transforming MATLAB to FORTRAN 95

be assigned to the corresponding element of the left hand side array. The second case is

similar to the first case. For the third case, the allocation is done by the user-defined FOR-

TRAN function. Recall the MATLAB built-in function ones. When using ones to assign

to an allocatable array in FORTRAN, the allocation is achieved in the user-defined module

mod_ones, as illustrated in Figure 5.18 (a) and (b). So based on above reasons, there is no

need to inline any extra code to perform run-time array bounds checking or shape resizing

for the assignment statements.

PROGRAM test_ones
USE mod_ones
IMPLICIT NONE
DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: A

A = ones(3,4);

END PROGRAM

(a) FORTRAN program to allocate storage using a user-defined function

MODULE mod_ones
INTERFACE ones
MODULE PROCEDURE ones_1, ones_2, ones_3, ones_i ! may be more
END INTERFACE ones

CONTAINS
! omit some lines of code
FUNCTION ones_2(x,y)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: x, y
DOUBLE PRECISION, DIMENSION(INT(x),INT(y)) :: ones_2
ones_2 = 1.0;
END FUNCTION ones_2
! omit some lines of code
END MODULE mod_ones

(b) FORTRAN module mod_ones to allocate storage for allocatable arrays

Figure 5.18 Illustration of allocating allocatable arrays in user-defined functions

96

Chapter 6

Experimental Results

In this chapter, we demonstrate some experiments on a set of 20 MATLAB benchmarks

to evaluate the performance of our MC2FOR compiler.

First we compare the running time of (1) the original benchmarks under MATLAB

2013a, which is the standard software and environment to run the MATLAB code, and (2)

the GFortran-compiled FORTRAN programs generated by MC2FOR for the benchmarks.

We also examine the running time of (3) the benchmarks under Octave [oct], which is an

open source software and environment for numerical computations and mostly compatible

with MATLAB, and (4) the C programs generated by MATLAB Coder [Mata] for reference.

In order to get a measurable execution time, for each benchmark we adjusted a scale num-

ber to control the problem size, including the number of iterations and the size of arrays,

to make the benchmark to run approximately 20 seconds under MATLAB. Then we use

the same scale number to run the same benchmark under Octave, FORTRAN and MATLAB

Coder.

Besides the running time, another factor to evaluate the performance of our compiler is

the size of the code generated by MC2FOR for the input MATLAB benchmarks. So we list

the physical lines of code (LOC) of the original MATLAB benchmarks and the generated

FORTRAN code by MC2FOR. We also list the LOC of the generated C code by MATLAB

Coder for reference.

In the following sections of this chapter, we first provide a brief description of the 20

MATLAB benchmarks in Section 6.1, then show the experimental results in Section 6.2 and

97

Experimental Results

give a detailed discussion of the results in Section 6.3, and finally sum up the whole chapter

in Section 6.4.

6.1 Description of the Benchmarks

The set of benchmarks for the experiments is acquired from a variety of sources, most of

them come from related projects, like FALCON and OTTER projects, Chalmers University

of Technology1, “The MathWorks’ Central File Exchange”2 and ACM CALGO library3.

A brief description of the benchmarks is given here.

• adpt is an implementation to find the adaptive quadrature using Simpson’s rule. This

benchmark features an array whose size cannot be predicted before compilation.

[Numerical Methods]

• arsm is a simulation of AR process. This benchmarks involves several kinds of array

constructions, like from MATLAB built-in functions randn, ones, eye, zeros and

horzcat, and most of the operations are focused on arrays. [ACM CALGO library]

• bbai is an implementation of a well known linear algebra algorithm, the Babai near-

est plane algorithm. This algorithm is an approximation to solve the closest vector

problem. This benchmark has simple array read and scalar operations. [McLab]

• bubl is an implementation of the standard bubble sort algorithm. This benchmark

contains nested loops and consists of many array read and write operations. [McLab]

• capr is an implementation of computing the capacitance of a transmission line using

finite difference and Gauss-Seidel method. It’s a loop-based program that involves

basic scalar operations on two small-sized arrays. [Chalmers EEK 170]

• clos is an implementation to calculate the transitive closure of a directed graph. It

contains matrix multiplication operations between two 450-by-450 arrays. [Otter]

1 http://www.elmagn.chalmers.se/courses/CEM/
2http://www.mathworks.com/matlabcentral/fileexchange
3http://calgo.acm.org/

98

6.1. Description of the Benchmarks

• crte is the front part of a simulated maximum likelihood statistical regression. It first

creates a random matrix X and optimizes the columns to maximize the minimum

euclidean distance between points. This benchmarks features a lot of array read

operations and basic scalar computations. [McLab]

• crni is an implementation of the Crank-Nicholson solution to the heat equation. This

benchmark involves some elementary scalar operations on a 2300-by-2300 array.

[Numerical Methods]

• dich is an implementation of the Dirichlet solution to Laplace’s Equation. It’s also

a loop-based program which involves basic scalar operations on a small-sized array.

[Numerical Methods]

• diff is an implementation to calculate the diffraction pattern of monochromatic light

throught a transmission grating for two slits. This benchmark also features an array

whose size is increased dynamically like the benchmark adpt. [Appelbaum (MUC)]

• edit is an implementation to find the edit distance between the source string s1 and

the target string s2, so it involves computations on strings of characters. [Castro

(MUC)]

• fdtd is an implementation to apply the Finite Difference Time Domain (FDTD) tech-

nique on a hexahedral cavity with conducting walls. This benchmark features array

read and write operations on 3-dimensional arrays. [Chalmers EEK 170]

• fft is an implementation to compute the discrete fourier transform for complex data.

The benchmark has nested loops, basic array read operations and simple scalar oper-

ations. [Numerical Recipes]

• fiff is an implementation of finite-difference solution to the wave equation. It’s a

loop-based program which involves basic scalar operation on a 2-dimensional array.

[Numerical Methods]

• lgdr is an implementation to evaluate the normalized, orthogonormal legendre poly-

nomials, and also the first derivative and second derivative of the polynomials. This

99

Experimental Results

benchmark has simple array read and write operations and basic scalar operations.

[ACM CALGO library]

• mbrt is an implementation to compute mandelbrot set with specified number ele-

ments and number of iterations. This benchmark contains basic scalar operations on

complex data. [McLab]

• nb1d is an implementation to simulate the gravitational movement of a set of objects.

It involves computations on vectors inside nested loops. [Otter]

• nb3d is also an implementation to simulate the gravitational movement of a set of

objects. This benchmark differs from the benchmark nb1d is that this benchmark

involves operations on 3-dimensional arrays and there are very complicated high-

level array read and write operations, for example, using a 2-dimensional array and

a colon notation to index another 2-dimensional array to get a 3-dimensional array.

[Otter]

• scra is an implementation to produce a reduced-rank approximation to a matrix,

which uses the benchmark spqr to compute the SPQR factorizations of A and A’.

This benchmarks contains basic array read operations and simple scalar operations.

[ACM CALGO library]

• spqr is an implementation to compute a pivoted semi-QR decomposition of an m-by-

n matrix A. This benchmarks contains basic array read operations and simple scalar

operations. [ACM CALGO library]

6.2 Experimental Results

All the programs were executed on a machine with Intel(R) Core(TM) i7-3930k CPU @

3.20GHz x 12 processor and 16 GB memory running GNU/Linux (3.2.0-26-generic #41-

Ubuntu). The MATLAB version is R2013a, the GNU Octave version is 3.2.4, the generated

FORTRAN code is compiled with the GFortran compiler of GCC version 4.6.3 with level 3

100

6.2. Experimental Results

optimization, and the profiler tools are GNU gprof4 and gcov5.

In Table 6.1, we list the execution time of different benchmarks under MATLAB, Oc-

tave, FORTRAN (with array bounds checking) and MATLAB Coder.

Table 6.1 Performance comparison

Benchmarks MATLAB Octave
FORTRAN
(checked) MATLAB Coder

(sec) (sec) Slowdown (sec) Speedup (sec) Speedup
adpt 20.25 156.9 7.7 5 4.1 - -
arsm 20.28 125.9 6.2 0.32 63.4 0.4 50.7
bbai 20.25 102 5.0 0.55 36.8 4.8 4.2
bubl 20.6 5047 245 1.55 13.3 9.6 2.1
capr 20.29 5900 290.8 1.94 10.5 6.1 3.3
clos 20.57 675 32.8 507 0.04 19.6 1.0

clos+ 20.57 675 32.8 17.3 1.2 19.6 1.0
crte 20.54 - - 0.32 64.2 - -
crni 20.39 3852 188.9 1.9 10.7 2.4* 8.5
dich 20.48 11325 553.0 5.3 3.9 2.7 7.6

dich+ 20.48 11325 553.0 2.1 9.8 2.7 7.6
diff 20.16 1152 57.1 4.8 4.2 - -
edit 20.77 423 20.4 0.21 98.9 0.9* 23.1
fdtd 20.38 26.6 1.3 2.3 8.9 3.5 5.8
fft 18.71 2854.1 152.5 2.73 6.9 8.1 2.3
fiff 20.48 8301 405 0.92 22.3 0.3 68.3

fiff+ 20.48 8301 405 0.52 39.4 0.3 68.3
lgdr 20.2 72.6 3.6 0.06 336.7 0.04 505
mbrt 20.21 1381 68.3 3.3 6.1 3.57 5.7
nb1d 20.57 55.8 2.7 1.08 19.0 2.45 8.4
nb3d 20.36 24.1 1.2 39 0.5 61.1 0.3
scra 20.2 76.9 3.8 0.48 42.1 0.61* 33.1
spqr 20.58 88.4 4.3 0.46 44.7 0.67* 30.7

In the column labeled “Benchmarks”, for some benchmarks we add a superscript “+”

symbol to the name of the benchmark, which means for that benchmark, we made some

4http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
5http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

101

Experimental Results

manual optimization to the generated FORTRAN program and record the running time un-

der FORTRAN again. The “-” in the columns under Octave for the benchmark crte means

that this benchmark cannot be run under Octave for the reason of not supporting the MAT-

LAB built-in function randi. The “-” in the columns under MATLAB Coder indicates that

the corresponding MATLAB benchmarks cannot be compiled or run under MATLAB Coder

for some reasons, for example, the dynamically growing arrays. The “*” symbol on the

right shoulder of the data in the column of “(sec)” under MATLAB Coder means that the

benchmarks can be compiled and run under MATLAB Coder with some conditional mod-

ification on the benchmarks, like adding preallocation statements for all the arrays before

they are used in the array writes.

From the results in Table 6.1, we can see that for most benchmarks, after converting

to FORTRAN by MC2FOR, there is a performance speedup which varies from 1.2 to 337,6

besides two exceptions, the benchmarks clos and nb3d. The generated FORTRAN program

for clos is running about 25 times slower than the benchmark running under MATLAB; the

generated FORTRAN program for nb3d is running about 2 times slower than the bench-

mark running in MATLAB. The detailed explanation is given in the following section.

The benchmarks running under Octave are significantly slower than under MATLAB which

varies from 1.2 to 553. One reasonable explanation is that Octave has no just-in-time (JIT)

accelerator and purely interprets the program. Most of the benchmarks can be transformed

by MATLAB Coder to C programs and the running time of the C programs is similar to

the running time of the generated FORTRAN program. During the experiment, we also

found that there are at least two features of MATLAB which are currently not supported

by MATLAB Coder. Detailed discussion of the experiment result is given in the following

section.

In Table 6.2, we list the LOC of the original MATLAB benchmarks, the generated FOR-

TRAN programs by MC2FOR and the generated C programs by MATLAB Coder. The LOC

here also includes the lines of whitespace and comments. First of all, the numbers of the

LOC of the generated FORTRAN and C are, as expected, larger than the number of the LOC

of the original MATLAB benchmark, since there are extra inlined lines of code for the vari-

able declarations and code to support some dynamic features of MATLAB, like dynamically
6We highlight the cells in which the speedup is above 1.

102

6.3. Analysis of Results

growing arrays7 and array bounds checking. Because of the similar syntax between MAT-

LAB and FORTRAN and the fact our MC2FOR generate FORTRAN based on a readable IR,

for most of the benchmarks, the number of the LOC of the generated FORTRAN is within or

around a factor of 2 the size of the number of the LOC of the original MATLAB benchmark.

While, the number of the LOC of the C code generated by the Coder is significantly larger

than the number of the LOC of the original benchmarks. After going through the generated

C code, we found that for each benchmark the Coder always generates some extra files

with the name of the entry point function adding the suffix of “ api”, “ data”, “ emxutil”,

“ initialize”, “ mex” or “ terminate”. This may support extra functionality, whereas our

code focus on only the benchmarks and generates stand-alone code.

6.3 Analysis of Results

In this section, we provide some detailed discussion on the experimental results in Table 6.1

and 6.2.

6.3.1 MC2FOR and MATLAB Coder vs. MATLAB

For most benchmarks, there are performance speedups after transforming the code from

MATLAB to FORTRAN except for the benchmarks clos and nb3d.

After profiling the benchmark clos with gprof, we discovered that the GFortran intrinsic

function for matrix multiplication, MATMUL, is not very efficient. In order to validate that

this was the problem, we use the option -fexternal-blas of GFortran to replace the the

call to MATMUL with a call to the subroutine DGEMM in the default FORTRAN BLAS

(Basic Linear Algebra Subprograms) library under Ubuntu.

The program using the subroutine DGEMM runs about 7 times faster than the program

using the intrinsic function MATMUL, but still 3.5 times slower than the clos benchmark

running under MATLAB. A reasonable explanation is that according to one document on

the website of Intel8, at least since MATLAB R2010a, MATLAB uses the Intel MKL BLAS
7MATLAB Coder may not support this feature currently.
8http://software.intel.com/en-us/articles/using-intel-mkl-with-matlab

103

Experimental Results

Table 6.2 Physical lines of code comparison

Benchmarks MATLAB
FORTRAN
(checked)

MATLAB Coder
(headers + sources)

(lines) (lines) F / M (lines) C / M
adpt 169 327 1.9 - -
arsm 113 181 1.6 387 + 2228 23
bbai 28 67 2.4 228 + 931 41.4
bubl 23 96 4.2 258 + 686 41
capr 206 479 2.3 339 + 1455 8.7
clos 78 157 2.0 256 + 734 12.7
crte 157 679 4.3 - -
crni 194 237 1.2 285 + 769 5.4
dich 131 161 1.2 220 + 685 6.9
diff 115 167 1.5 - -
edit 396 720 1.8 326 + 5011 13.5
fdtd 122 197 1.6 271 + 744 8.3
fft 77 289 3.8 279 + 1004 16.7
fiff 105 139 1.3 213 + 572 7.5

lgdr 118 197 1.7 216 + 640 7.3
mbrt 43 98 2.3 278 + 844 26.1
nb1d 166 327 2.0 394 + 2173 15.5
nb3d 141 215 1.5 386 +3590 28.2
scra 201 533 2.7 468 + 2949 17
spqr 190 497 2.6 345 + 2140 13.1

by default, and Intel MKL BLAS may have a better implementation than the one default

for Ubuntu. To further proof that this is the key reason, we use the OpenBLAS instead of

default BLAS in Ubuntu. The compiled program runs 1.2 times faster than the benchmark

under MATLAB.

The benchmark nb3d features very flexible array read and write operations on arrays of

three dimensions. MATLAB may already have some very optimized compiled subroutines

to perform those operations. While for MC2FOR, we currently support those flexible array

operations by writing user-defined FORTRAN subprograms and putting them in the library

libmc2for, and they may not be very optimized. This may also be the same reason why

the generated C program by MATLAB Coder for this benchmark also runs slower than

104

6.3. Analysis of Results

the benchmark runs under MATLAB, because the generated C code by MATLAB Coder

is compiled by the GNU C compiler on the local machine, while the optimized compiled

subroutines in MATLAB may be compiled with better compilers, for example, the Intel

Compilers, and with better optimization.

Since MATLAB is closed source, it’s really hard to know what exactly happens inside

MATLAB, but in one thread on the MATLAB Answers9, the MathWorks Support Team

gave some feedback about one question of “why is my MATLAB Coder generated MEX

file slower than my MATLAB function”. Based on the feedback, we know that some of

MATLAB functions are compiled already, and sometimes they are even multithreaded, so

they are highly optimized for the PC. While, the generated C code on the other hand is

more of a readable and portable C code and is not optimized for a particular platform, so

the slowdown in this case is expected regardless of MEX or standalone compilation.

6.3.2 MC2FOR vs. MATLAB Coder

In our 20 benchmarks, we found that there are two dynamic features of MATLAB can not

be supported by current MATLAB Coder. Firstly, the Coder cannot support the benchmarks

with dynamically growing arrays, like the benchmarks adpt and diff ; Secondly, the Coder

cannot support the benchmarks with unpreallocated arrays, like the benchmarks crni, edit,

scra and spqr. After adding the statements of array preallocation, these benchmarks then

can be transformed by the Coder.

For most of the successfully transformed benchmarks, the running time of the C pro-

grams is similar to the running time of the FORTRAN programs transformed by MC2FOR.

There are two benchmarks, dich and fiff, whose MATLAB Coder generated programs run

more than two times faster than their MC2FOR generated programs. After reading the

generated C code by MATLAB Coder, we found that the Coder does the constant folding

optimization and inlines some function files into their calling functions.

In order to validate that this is one possible reason, for the benchmark dich, we first

profiled the generated FORTRAN program and find there is one expression, at the left hand

side of Figure 6.1, whose evaluation result should be constant but seems not be replaced at

9http://www.mathworks.com/matlabcentral/answers/102725

105

Experimental Results

runtime and cost a lot of time to evaluate at runtime. Then we manually replaced the ex-

pression with its constant value, as in the right of Figure 6.1, and we found that the running

time of the generated FORTRAN programs improves from 5.3 seconds to 2.1 seconds and

is faster than the C programs generated by the Coder. We did the similar manual optimiza-

tol = (10 ** -5); tol = 9.9999999999999991E-6;

Figure 6.1 Constant value replacement for the power function in FORTRAN

tion for the generated FORTRAN program for the benchmark fiff and made its running time

improves from 0.92 seconds to 0.52 seconds.

Although now we know that constant folding can help improving the performance of the

transformed program, there is a potential limitation for MC2FOR to do this. The MC2FOR

is implemented in Java, which means that the constant folding is achieved based on the

result computed by Java built-in mathematical methods. One potential concern is that the

result may not be the same as it is when the expression is executed in FORTRAN at runtime.

While, for MATLAB Coder, since both MATLAB and MATLAB Coder are written in C (or

also in C++), the static constant folding result is the same as it is when the expression is

executed at runtime. Based on this reason, MC2FOR have to be very careful about the

constant folding it performs during the transformation and leave the constant folding work

for some complicated expressions to the third-party FORTRAN compilers, like GFortran.

6.3.3 MC2FOR without Checks vs. with Checks

There is a -nocheck flag can be passed as an argument to MC2FOR when performing the

transformation from MATLAB to FORTRAN. This flag controls whether the compiler will

inline the array bounds checking code for the array read operations. In Table 6.3, We list

the running time and LOC of the generated FORTRAN code both without and with the array

bounds checking.

From the results in Table 6.3, we can see that the extra inlined array bounds checking

for array read operations doesn’t add significant overhead to the running time of the gen-

erated programs. Moreover, for some benchmarks, after adding the checks and compiled

106

6.3. Analysis of Results

Table 6.3 MC2FOR without and with checks

Benchmarks
Running Time in Second

(nocheck \ check)
LOC

(nocheck \ check)
adpt 4.9 \ 5 302 \ 327
arsm 0.26 \ 0.32 181 \ 181
bbai 0.55 \ 0.55 67 \ 67
bubl 3.79 \ 1.55 86 \ 96
capr 1.91 \ 1.94 354 \ 479
clos 507 \ 507 157 \ 157

clos+ 70 \ 70 157 \ 157
crte 0.29 \ 0.32 484 \ 679
crni 1.9 \ 1.9 237 \ 237
dich 5.3 \ 5.3 161 \ 161

dich+ 2.1 \ 2.1 161 \ 161
diff 4.8 \ 4.8 167 \ 167
edit 0.28 \ 0.21 690 \ 720
fdtd 2.3 \ 2.3 197 \ 197
fft 2.6 \ 2.73 229 \ 289
fiff 0.92 \ 0.92 139 \ 139

fiff+ 0.52 \ 0.52 139 \ 139
lgdr 0.06 \ 0.06 197 \ 197
mbrt 3.3 \ 3.3 98 \ 98
nb1d 1.06 \ 1.08 302 \ 327
nb3d 39 \ 39 215 \ 215
scra 0.48 \ 0.48 433 \ 533
spqr 0.45 \ 0.46 402 \ 497

with level 3 optimization of GFortran, the performance is even improved more than with-

out adding the checks, for example, the running time of the benchmark bubl runs two times

faster after adding the checks. In order to find the potential reasons, we compiled the gener-

ated FORTRAN both with and without the array bounds checking using -S option to get the

assembly code. By reading the assembly code, we found that the compiler performs some

optimization on the STOP statement in FORTRAN. Since the STOP statement provides a

potential exit of the program, the GFortran compiler will not generate assembly code for

the statements following the STOP statement in the same path.

107

Experimental Results

The difference between the number of LOC of the generated FORTRAN code without

and with array bounds checking depends on two factors: (1) how much static information

do we know about the shape of the accessed arrays and the constant or range value of

the indices; (2) how many array read operations are there in the original input MATLAB

code. In other words, even if there are a lot of array read operations, as far as the shape

of the accessed arrays and the constant or range value of those indices are exactly known,

we can perform the array bounds checking at compile-time and thus don’t need to inline

any checking code in the generated FORTRAN. For the experimental results in Table 6.2,

we can see that when we pass arrays with compile-time-known shapes in the driver files

to the benchmarks, there will be no extra inlined array bounds checking code in the gen-

erated FORTRAN, while we pass arrays with compile-time-unknown shapes in the driver

files to the benchmarks, there will be inlined array bounds checking code in the generated

FORTRAN.

6.4 Summary

In summary, the overall running time of the generated FORTRAN code from MC2FOR for

these benchmarks is better than the running time of these benchmarks running in MATLAB,

and according to the comparison of the LOCs, the size of the generated FORTRAN code is

in an acceptable range.

108

Chapter 7

Related Work

Before MathWorks put a just-in-time (JIT) accelerator under the hood of MATLAB, its

inefficient performance had already drawn some attention from researchers and engineers.

FALCON [RP99] is a MATLAB to FORTRAN 90 translator with a sophisticated type infer-

ence mechanism. Although the FALCON project provided us with a lot of interesting ideas

about how to proceed, MC2FOR has quite a few important differences. For example, the

inference mechanism in FALCON is based on a forward/backward propagation strategy,

while our analysis only involves a forward propagation. FALCON distinguishes scalar,

vector and matrix, while we treat all the variables as a matrix. Scalar is a 1-by-1 matrix and

vector is a 1-by-n or n-by-1 matrix. FALCON uses static single assignment (SSA) form

to make sure all the variables have only one definition, this may simplify the code genera-

tion, but may also introduce some extra overhead to the transformed program. Instead, we

only split the variables with different types in different webs of definitions and uses. The

two projects also have totally different approaches to shape analyses for MATLAB built-in

functions: FALCON implements a table for each built-in function to tell how the shape of

output depends on the shape of inputs, but this strategy cannot support the case where the

shape of output depends on the value of inputs. Further, the type system of MATLAB had

been extended since FALCON, and our approach thus handles more MATLAB types. Our

system is also available for other researchers.

There are many existing range analyses for different purpose. The one implemented in

MC2FOR is specific to address MATLAB and closest to a generalized constant propagation

109

Related Work

in C [VCH96] which proposed a similar analysis to estimate the range of a variable may

reach at each program point. The range value analysis through MATLAB built-in functions

also has its roots in the interval arithmetic.

MC2FOR builds upon previous work in the McLAB group. In early work, Jun Li de-

veloped a prototype which demonstrated the feasibility of translating MATLAB to FOR-

TRAN 95 [Li09]. This early prototype focused on a limited subset of MATLAB and made

simplifying assumptions. To provide a more solid analysis basis, the McSAF analysis

framework and Tamer’s extensible interprocedural abstract value analysis framework were

developed. These two frameworks working together form the major transformation and

analysis engine in the McLAB toolkit. Concurrent to our development of MC2FOR, our lab

is also working on another project to statically compile MATLAB to X10 [IBM12, KH13],

which also uses the shape analysis in MC2FOR.

MATLAB CoderTM is a commercial translator to generate standalone C and C++ code

from MATLAB. MATLAB Coder supports a subset of core MATLAB language features and

is a closed source system, with no research papers on its design. In Chapter 6, we already

listed the experimental results of our testing benchmarks on MATLAB Coder and compared

the performance nd LOC of the generated files of the Coder with our MC2FOR. Part of the

objective of our work is to provide an open source framework, which other researchers can

easily use. For example, the McLAB toolkit, plus the shape and range analysis presented

in this thesis would be a suitable starting point for developing a C/C++ back end.

Besides MATLAB, programmers or researchers also have interests in other similar array

languages, for example, Python and R. Shed Skin1 is an experimental restricted Python

to C++ compiler, that can translate pure, but implicitly statically typed Python (2.4-2.6)

programs into optimized C++ programs. The Cython language2 is a superset of the Python

language that additionally supports calling C functions and declaring C types on variables

and class attributes. This allows the compiler to generate very efficient C code from Cython

code. Rcpp3 provides a powerful API on top of R, permitting direct interchange of rich R

objects (including S3, S4 or Reference Class objects) between R and C++.

1http://code.google.com/p/shedskin/
2http://www.cython.org/
3http://www.rcpp.org/

110

Chapter 8

Conclusions and Future Work

In this thesis, we have presented a source-to-source compiler which transforms MAT-

LAB programs to equivalent FORTRAN programs. Since MATLAB is a dynamic and weakly-

typed language, while FORTRAN is a static and strongly-typed language, there are quite a

number of challenges.

In our MC2FOR, we introduced a shape analysis in Chapter 3, which is used to estimate

the number and extent of dimensions of all the variables in a given MATLAB program.

In the shape analysis, we also proposed a domain-specific language, the shape propaga-

tion equation language, to write equations used for propagating shape information through

MATLAB built-in functions. In order to remove unnecessary run-time array bounds check-

ing code in the transformed FORTRAN program, we implemented a range value analysis

specific for MATLAB in Chapter 4, which is an extension of constant analysis in our frame-

work, to estimate the possible range of value a scalar variable may reach at each program

point. Both the shape and range value analysis are implemented in the Tamer’s framework.

In the code generation of MC2FOR in Chapter 5, we started with our approach to assigning

declared types and introducing explicit type conversions, then we introduced the built-in

mapping framework used to map numerous MATLAB built-in functions to FORTRAN, and

we also presented the way how MC2FOR handles the various linear indexing transforma-

tion from MATLAB to FORTRAN.

Finally, in Chapter 6, we evaluated our MC2FOR on a collection of 20 MATLAB bench-

marks. First we compare the running time of the original benchmarks under MATLAB

111

Conclusions and Future Work

2013a, which is the standard software and environment to run the MATLAB code, and the

GFortran-compiled FORTRAN programs generated by MC2FOR for the benchmarks. We

also examine the running time of the benchmarks under Octave, which is an open source

software and environment for numerical computations and mostly compatible with MAT-

LAB, and the C programs generated by MATLAB Coder for reference. We use a scale

number for each benchmark to make sure that the time of the benchmarks running under

MATLAB, Octave, FORTRAN and MATLAB Coder is for solving the same size of problem.

Besides the running time, another factor to evaluate the performance of our compiler is the

size of the code generated by MC2FOR for the input MATLAB benchmarks. So we list the

physical lines of code (LOC) of the original MATLAB benchmarks and the generated FOR-

TRAN code by MC2FOR. We also list the LOC of the generated C code by MATLAB Coder

for reference. From the results, we show that the code generated by MC2FOR is usually

more efficient than the original MATLAB code running under MATLAB, at the cost of only

a modest increase in code size

In order to improve the performance of MC2FOR, we plan to make the range value

analysis support symbolic values. In this way, we may remove more run-time array bounds

checking code in the transformed program. Moreover, we may also want to translate

MATLAB code into parallel FORTRAN code, in order to achieve this, we need a valid

dependency analysis to determine which MATLAB code block is free from dependency

and safe to be transformed to parallel code. We also hope that others will build upon

our tool, which has been implemented in an extensible manner, and is freely available at

www.sable.mcgill.ca/mc2for.html.

112

www.sable.mcgill.ca/mc2for.html

Appendix A

Shape Propagation Equation Language

A.1 Tokens

LineTerminator = \r|\n|\r\n

WhiteSpace = {LineTerminator} | [\t\f]

Number = -? [:digit:] [:digit:]*

Identifier = [:jletter:] [:jletterdigit:]+

Uppercase = [A-Z]

Lowercase = [a-z]

{Number} -> Terminals.NUMBER

{Identifier} -> Terminals.ID

{Uppercase} -> Terminals.UPPERCASE

{Lowercase} -> Terminals.LOWERCASE

"$" -> Terminals.SCALAR

"#" -> Terminals.ANY=

"||" -> Terminals.OROR

"->" -> Terminals.ARROW

"," -> Terminals.COMMA

"(" -> Terminals.LRPAREN

113

Shape Propagation Equation Language

")" -> Terminals.RRPAREN

"?" -> Terminals.QUESTION

"*" -> Terminals.MULT

"+" -> Terminals.PLUS

"=" -> Terminals.EQUAL

"[" -> Terminals.LSPAREN

"]" -> Terminals.RSPAREN

"|" -> Terminals.OR

"’" -> Terminals.SQUOTATION

A.2 Grammar

caselist

= case.c

| case.c OROR caselist.l

;

case

= patternlist.p ARROW outputlist.o

;

outputlist

= vectorExpr.v

| vectorExpr.v COMMA outputlist.o

;

patternlist

= pattern.e

| pattern.e COMMA patternlist.p

;

114

A.2. Grammar

pattern

= matchExpr.m

| assignExpr.a

| assertExpr.a

;

matchExpr

= basicMatchExpr.m OR basicMatchExpr.n

| basicMatchExpr.m QUESTION

| basicMatchExpr.m MULT

| basicMatchExpr.m PLUS

| basicMatchExpr.m

;

basicMatchExpr

= LRPAREN patternlist.p RRPAREN

| SQUOTATION ID.i SQUOTATION

| SQUOTATION LOWERCASE.i SQUOTATION

| vectorExpr.v

;

vectorExpr

= SCALAR.d

/* used to match a scalar input argument,

whose shape is [1,1]. */

| UPPERCASE.u

| vertcatExpr.v

/* used to match a vertcat vector,

something like [m,n], [1,k] or even []. */

| ANY.a

;

115

Shape Propagation Equation Language

vertcatExpr

= LSPAREN RSPAREN

| LSPAREN arglist.al RSPAREN

;

arglist

= arg.a

| arg.a COMMA arglist.al

;

arg

= scalarExpr.s

| vectorExpr.v

;

scalarExpr

= NUMBER.n

| LOWERCASE.l

;

assignExpr

= assignmentLHS.l EQUAL assignmentRHS.r

;

assignmentLHS

= LOWERCASE.l

| UPPERCASE.u

| UPPERCASE.u LRPAREN scalarExpr.s RRPAREN

| ANY.a LRPAREN scalarExpr.s RRPAREN

;

116

A.3. Some Shape Equation Examples

assignmentRHS

= scalarExpr.s

| vectorExpr.v

| fnCall.f

;

fnCall

= ID.i LRPAREN RRPAREN

| ID.i LRPAREN arglist.al RRPAREN

;

assertExpr

= fnCall.f

;

A.3 Some Shape Equation Examples

The equation for the built-in functions pi, i and j:

[] -> $

The equation for the built-in functions tril and triu:

M,$? -> M

The equation for the built-in function diag:

[m,n],k=minimum(m,n) -> [k,1]

The equation for the built-in functions plus, minus and times:

$|M,$|M -> M

The equation for the built-in function mtimes:

117

Shape Propagation Equation Language

$|M,$|M -> M || [m,n],[n,k] -> [m,k]

The equation for the built-in function mpower:

$,$|M -> M || $|M,$ -> M

The equation for the built-in function mldivide:

$,M->M||[m,k],[m,n]->[k,n]

The equation for the built-in function mrdivide:

M,$->M||[m,k],[n,k]->[m,n]

The equation for the built-in functions min and max:

[1,n]|[n,1] -> $

|| M,M(1)=1 -> M

|| M,M -> M

|| M,[],$,n=previousScalar(),M(n)=1 -> M

The equation for the built-in function median:

[1,n]|[n,1] -> $

|| M,M(1)=1 -> M

|| M,M -> M

|| M,$,n=previousScalar(),M(n)=1 -> M

The equation for the built-in functions sin, cos, tan, cot and so on:

$|M -> M

Note that the equation for above functions can also be written as:

$ -> $ || M -> M

The equation for the built-in functions eq, ne, lt, gt, le and qe:

$|M,$|M -> M

118

A.4. Implementation Details

The equation for the built-in function colon:

$,n=previousScalar(),$,m=previousScalar(),k=minus(m,n) -> [1,k]

|| $,n=previousScalar(),$,i=previousScalar(),

$,m=previousScalar(),k=minus(m,n),d=div(k,i) -> [1,d]

The equation for the built-in functions ones, zeros, magic and eye:

[] -> $

|| ($,n=previousScalar(),add())+ -> M

A.4 Implementation Details

Based on the grammar of the shape equation language, every correct shape equation can be

parsed into a parsing tree. Matching process is achieved by implementing a traversal object

to walk through the parsing tree applying the matching algorithm which is introduced in

Subsection 3.1.4. Following are some major information or data members a traversal object

must equip in order to accomplish this task.

• The input arguments’ string names of current encountered built-in function;

• All the value information achieved before this function. If the input arguments are

some variables, assuming the program is correct, those variables should be defined

before this function call, and their value information should be already stored. If the

input arguments are integer literals, according to the tamer simplified transformation,

all those integer literals will be replaced by assigning the literals to some temporary

variables and then using the temporaries as the input arguments. In this case, the

temporary assignments will be analyzed prior to the built-ins, and when the propaga-

tor goes to the built-ins, the value information of the input temporary arguments will

be already known;

• A pointer1 which is used to index the current matching input argument. While the

matching for the current input argument is successful, the pointer should point to the
1Which is MatchingPosition in our pseudocode for the matching algorithm.

119

Shape Propagation Equation Language

next input argument if there is any left. Each time we start matching for a new case,

the pointer will reset to point to the first input argument;

• A boolean value. Since there can be shape matching expressions on both pattern list

and shape output list side, there should be a boolean value which is used as a flag

to help the traversal object to choose different operations when it encounters shape

matching expression nodes on different sides.

According to the shape matching algorithm, when a traversal object traverses the parsing

tree, in the pattern list side, a shape matching expression node will try to match the shape

of current pointed input argument, an assignment expression node will try to get extra

information more than shape of previous matched argument or do some preparation for the

final shape result emission, and an assert expression node will try to determine whether the

matching progress should carry on based on some status examination. After the traversal

object succeeds walking through the pattern list side, the shape output list side will produce

the shape information of the output argument(s) using all the information collected during

the traversal object traversing the tree.

Here is an example in Figure A.1 to illustrate how a traversal object produces shape

information of the output argument(s) by traversing the shape equation parsing tree. In

a given program, a shape propagator is walking through the program to estimate shape

information of all the variables. When the propagator encounters a built-in function call,

in this example, true(3,3)2, first, it will look up this built-in function’s shape propagation

equation in a sort of built-in function dictionary where we put all the shape and other value

propagation equations for MATLAB built-ins. In the dictionary, the propagator get the shape

propagation equation for this function as:

($,m=previousScalar(),add(m))* -> M

This equation will be parsed into a corresponding parsing tree, as it is in Figure A.1. Then

the shape propagator will generate a traversal object to traverse the tree with the input

argument list, (3,3). The traversal object will go through the whole tree to complete

the matching process. In Figure A.1, we can see that the first input argument, constant

2Built-in function true will return a matrix of logical 1s.

120

A.4. Implementation Details

Figure A.1 Example to illustrate shape matching process

scalar 3 will be matched by the $ symbol, and then its value will be stored into the lower-

case m by an assignment expression m=previousScalar(). The function call expression

add(m) will add m into the default return shape array. The ()* compound operator will test

whether there are still remaining input arguments, if there is, repeat the matching process

again with the pattern expressions inside () operator. In this example, the enclosed pattern

expressions will repeat the matching process again on the second input argument, 3. After

the pattern list side matches the input argument list successfully, the traversal object goes

to the shape output list side. In the parsing tree, the shape output list side is the right hand

side subtree of the node ->. The traversal object will produce shape propagation result

by looking up the shape information stored in M, and we know that since M doesn’t appear

in the pattern expression matching side, this M represents the default return shape array,

which is [m,m]. And by look up the associated value of m, the final shape propagation

result will be [3,3]. After the traversal object return the shape propagation result, [3,3],

to the shape propagator, the shape propagator will associate the shape information with the

corresponding output argument(s), and then continue walking through the rest of the given

program.

121

Shape Propagation Equation Language

The code implementation of the shape propagation through MATLAB built-in functions

is written in Java and other two compiler-compilers3, JFlex and Beaver.

• The scanner file is generated by JFlex and the parser file is generated by Beaver.

• We wrote all the CST nodes files by ourselves in which we implement the shape

matching algorithm in the corresponding CST nodes.

• There is another class, named ShapePropMatch, which is regarded as the traver-

sal object. It contains all the data members and operations which are essential to

accomplishing the shape matching process.

• There is also a class, named ShapePropTool, which is regarded as the interface

connecting the shape analysis in programs and shape propagation through MATLAB

built-ins. The scenario is simple, when the shape analysis encounters a built-in func-

tion during its analysis in a given MATLAB program, it will invoke the shape prop-

agation for built-ins component through ShapePropTool class, and when the shape

propagation for the built-in is done, the result will be returned to the shape analysis

through this class again.

3A compiler-compiler or compiler generator is a tool that creates a parser, interpreter, or compiler from
some form of formal description of a language and machine.

122

A.5. The Aspect File to Detect Array Growth

A.5 The Aspect File to Detect Array Growth

1 aspect grow

2

3 properties

4 % this aspect catches every set and records data that should be useful

in

5 % determining which operations increase or decrease the array size.

6 % to that effect the size of every variable during the run of the

7 % program is checked. In the end, the line number of the operation at

8 % which the size of each array was maximum, is printed out along with

the size.

9

10

11 variables = struct(); % creates the mapping ’variable’ -> index

12

13 changeShape = {}; % how often the dimensions of the array changed (has

to exist previously)

14 decreaseSize = {}; % how often the size decreased (i.e. a previously

nonzero element was set)

15 increaseSize = {}; % how often the size increased

16

17 arraySize = {}; % size of the array

18 maxSize = {}; % maximum size of the array

19 lineNum = {}; % at line number

20 arraySet = {}; % the number of ’set’ operations

21 arrayShapePrevious = {}; % the string representation of array size,

like [2,2]

22 arrayShapeCurrent = {}; % the same as above

23

24 nextId = 1; % next available index

25 end

26

27

28 methods

29 function b = sameShape(this,a,b)

123

Shape Propagation Equation Language

30 % returns true if a and b have the same shape

31 if (ndims(a) ˜= ndims(b))

32 b = false;

33 elseif (size(a) == size(b))

34 b = true;

35 else

36 b = false;

37 end

38 end

39

40 function id = getVarId(this,var,line)

41 % get id of variable by string-name, update ’variables’ if necessary

42

43 % find id of variable and put it in the variables structure if not

present

44 if (˜isfield(this.variables,var))

45 this.variables = setfield(this.variables,var,this.nextId);

46 id = this.nextId;

47 this.nextId = this.nextId+1;

48 % initialze entry <id> for all the cell arays

49 this.arraySet {id} = 0; % the number of ’set’ operations

50 this.changeShape{id} = 0; % how often the dimensions of the array

changed (has to exist previously)

51 this.decreaseSize{id} = 0; % how often the size decreased (i.e. a

previously nonzero element was set)

52 this.increaseSize{id} = 0; % how often the size increased

53 this.arraySize{id} = 0;

54 this.maxSize{id} = 0;

55 this.lineNum{id} = line;

56 this.arrayShapePrevious{id} = ’’;

57 this.arrayShapeCurrent{id} = ’’;

58 else

59 id = getfield(this.variables,var);

60 end

61 end

62

63 end

124

A.5. The Aspect File to Detect Array Growth

64

65 patterns

66 arraySet : set(*);

67 execMain : mainexecution();

68 end

69

70 actions

71 message : before execMain

72 disp(’tracking the operations that grow arrays in the following

program...’);

73 end

74

75

76 displayResults : after execMain

77 % will display the results

78 vars = fieldnames(this.variables);

79 result = {’var’, ’arraySet’, ’shape changes’, ’decrease’, ’increase’,

’max size’, ’previous shape’, ’current shape’};

80 pm = [’ ’, char(0177)];

81 for i=1:length(vars) %iterate over variables

82 result{i+1,1} = vars{i};

83 result{i+1,2} = this.arraySet{i};

84 result{i+1,3} = this.changeShape{i};

85 result{i+1,4} = this.decreaseSize{i};

86 result{i+1,5} = this.increaseSize{i};

87 result{i+1,6} = this.maxSize{i};

88 result{i+1,7} = this.arrayShapePrevious{i};

89 result{i+1,8} = this.arrayShapeCurrent{i};

90 end

91 disp(result);

92 end

93

94

95 bset : before arraySet : (newVal,obj,name,line,args)

96 t = obj;

97 t(args{1:numel(args)}) = newVal;

98 newVal = t;

125

Shape Propagation Equation Language

99

100 % we will exit if the newval is not a matrix

101 if (˜isnumeric(newVal))

102 return;

103 end;

104

105 % get id of variable by string-name, update ’variables’ if necessary

106 id = this.getVarId(name,line);

107

108 % get var infor

109 newSize = numel(newVal);

110 oldSize = this.arraySize{id};

111

112 this.arraySize{id} = newSize;

113

114 % update the number of ’set’ operations

115 this.arraySet{id} = this.arraySet{id}+1;

116

117 % set shape/sparsity changes

118 if (˜this.sameShape(newVal,obj))

119 this.arrayShapePrevious{id} = num2str(size(obj));

120 this.changeShape{id} = this.changeShape{id}+1; % how often the

dimensions of the array changed (has to exist previously)

121 end

122 if (newSize < oldSize)

123 this.decreaseSize{id} = this.decreaseSize{id}+1; % how often the

size decreased

124 end;

125 if (newSize > oldSize)

126 this.increaseSize{id} = this.increaseSize{id}+1; % how often the

size increased

127 this.lineNum{id} = line;

128 this.maxSize{id} = newSize;

129 end

130 end

131

132 aset : after arraySet : (newVal,obj,name,line)

126

A.5. The Aspect File to Detect Array Growth

133 id = this.getVarId(name,line);

134 this.arrayShapeCurrent{id} = num2str(size(obj));

135 end

136

137 end

138 end

Listing A.1 The aspect file to detect array growth

127

Shape Propagation Equation Language

128

Bibliography

[DH12a] Jesse Doherty and Laurie Hendren. McSAF: A Static Analysis Framework for

MATLAB. In Proceedings of ECOOP 2012, 2012, pages 132–155.

[DH12b] Anton Dubrau and Laurie Hendren. Taming MATLAB. In Proceedings of OOP-

SLA 2012, 2012, pages 503–522.

[DHR11] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind Analysis for MAT-

LAB. In In Proceedings of OOPSLA 2011, 2011, pages 99–118.

[Doh11] Jesse Doherty. McSAF: An Extensible Static Analysis Framework for the MAT-

LAB Language. Master’s thesis, McGill University, December 2011.

[Dub12] Anton Dubrau. Taming matlab. Technical report, School of Computer Science,

McGill University, April 2012.

[GNU13] GNU. GNU Fortran Home Page, 2013. http://gcc.gnu.org/

fortran/.

[IBM12] IBM. X10 programming language. http://x10-lang.org, February

2012.

[KH13] Vineet Kumar and Laurie Hendren. First Steps to Compile MATLAB to X10.

In Proceedings of the third ACM SIGPLAN X10 Workshop, 2013, pages 2–11.

129

http://gcc.gnu.org/fortran/
http://gcc.gnu.org/fortran/
http://x10-lang.org

Bibliography

[Li09] Jun Li. McFOR: A MATLAB to FORTRAN 95 compiler. Master’s thesis,

August 2009.

[Mata] MathWorks. MATLAB Coder. http://www.mathworks.com/

products/matlab-coder/.

[Matb] Matlab. The Language Of Technical Computing. Home page http://www.

mathworks.com/products/matlab/.

[McL] McLab. Mclab home page. Home page http://www.sable.mcgill.

ca/mclab/.

[Mola] Cleve Moler. MATLAB Incorporates LAPACK. http://

www.mathworks.com/company/newsletters/articles/

matlab-incorporates-lapack.html.

[Molb] Cleve Moler. The Origins of MATLAB. http://www.mathworks.com/

company/newsletters/articles/the-origins-of-matlab.

html.

[oct] GNU Octave. http://www.gnu.org/software/octave/index.

html.

[RP99] Luiz De Rose and David Padua. Techniques for the Translation of MATLAB

Programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2):286–323,

1999.

[TAH10] Anton Dubrau Toheed Aslam, Jesse Doherty and Laurie Hendren. Aspectmat-

lab: An aspect-oriented scientific programming language. In AOSD ’10: Pro-

ceedings of the 9th international conference on Aspect-oriented software devel-

opment, Rennes and St. Malo, France, 2010, pages 181–192. ACM, New York,

NY, USA.

[VCH96] Clark Verbrugge, Phong Co, and Laurie Hendren. Generalized Constant Prop-

agation A Study in C. In Proceedings of the 1996 International Conference on

Compiler Construction, 1996, CC ’96.

130

http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/matlab-incorporates-lapack.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
http://www.gnu.org/software/octave/index.html
http://www.gnu.org/software/octave/index.html
http://doi.acm.org/10.1145/316686.316693
http://doi.acm.org/10.1145/316686.316693

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background and Overview
	Potential Challenges
	Overview of Mc2for
	Components in Mc2for

	Shape Analysis
	Propagating Shapes through Matlab Built-in Functions
	Typical Behaviors of Built-in Functions on Shapes
	Features of the Language
	Shape Propagation Equation Language
	Shape Matching Algorithm
	Summary

	Merging Different Shapes
	Merging Strategy
	Merging Shapes in Loop Statements

	Shape Analysis Result Verification

	Range Value Analysis
	Propagating Ranges through Built-in Functions
	Merging Different Range Values
	Propagating Shapes through Array Indexing
	Brief Introduction of Array Indexing in Matlab
	For Array Set Statement
	For Array Get Statement

	Transforming Matlab to Fortran 95
	Introduction
	Why Fortran 95?
	Potential Problems

	Basic Transformations
	Types
	Variable Declarations
	Built-in Functions
	Control Flow Statements
	User-defined Functions

	Advanced Problems in Mapping Types
	For Subscripts in Array Indexing
	For Loop Range Expressions
	Assigning Multiple Types to the Same Variable

	Array Indexing Transformation
	For Array Get Statements
	For Array Set Statements
	Shortcut Linear Indexing Transformation

	Run-time Array Bounds Checking and Variable Resizing
	For Array Get statements
	For Array Set statements
	For Assignment Statements

	Experimental Results
	Description of the Benchmarks
	Experimental Results
	Analysis of Results
	Mc2for and Matlab Coder vs. Matlab
	Mc2for vs. Matlab Coder
	Mc2for without Checks vs. with Checks

	Summary

	Related Work
	Conclusions and Future Work
	Shape Propagation Equation Language
	Tokens
	Grammar
	Some Shape Equation Examples
	Implementation Details
	The Aspect File to Detect Array Growth

	Bibliography

