
INFORMATION FLOW IN A JAVA INTERMEDIATE LANGUAGE

by

Ahmer Ahmedani

School of Computer Science

McGill University, Montréal

August 2006

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2006 by Ahmer Ahmedani

Abstract

It is a common practice to retrieve code from an outside source, execute it and return

the result to the user. During execution secure data can enter the program by user input or

access of a data resource. It is important to track the secure data once it enters the program

to identify possible information flows to unwanted regions of the code which would permit

undesirable data output to a user. Most approaches to restrict information flow in programs

have fallen short of providing a practical solution for mainstream programming languages.

To address this issue, this thesis presents two context-sensitive inter-procedural analyses

which analyze an intermediate representation of Java Bytecode for secure information flow.

The first analysis assumes that there is only one instance of all class fields where as the

second analysis uses points-to information to differentiate between instance fields which

belong to different instances of the same class. The analyses track secure information in

the program by maintaining sets of secure data. The analyses resolve dynamic method

resolution in Java statically by analyzing all possible methods which may be invoked at a

call site and merging the secure data sets. We were able to define rules to analyze all the

statements in the intermediate representation and also accounted for Java libraries. The

analyses do not expect any security annotations in the program.

Type information is useful in debugging, guiding optimizations, and specifying and

providing safety proofs for programs. A type system for a subset of the Java Bytecode

intermediate representation is also formulated in this thesis. An operational semantics is

specified and a type preservation proof assures the soundness of the type system.

Non-trivial benchmarks were analyzed and explicit and implicit information flows were

counted for both analyses. The empirical data collected suggests secure data is used in

many statements of programs and output of data to a user at several places in a program

i

can lead to information flow if the user does not have the right permission to observe the

data.

ii

Résumé

Il est commun d’obtenir du code d’une source externe, de l’exécuter et de retourner le

résultat à l’utilisateur. Pendant l’exécution, des données sensibles peuvent êtres entrées le

programme par l’utilisateur ou l’accès à une autre source de donnée. Il est important de faire

un suivi des données sensibles lorsqu’elles entrent dans le programme pour garder la trace

du flot de l’information et ainsi identifier la circulation possible de données sensibles vers

des régions du code qui pourraient permettre à ces données d’êtres vues par des utilisateurs

non concernés. Les approches communes pour restreindre le flot de l’information dans les

programmes n’ont pas été a la hauteur pour ce qui est de fournir une solution pratique pour

les langages de programmation les plus utilisés.

Pour adresser ce problème, cette thèse présente deux analyses inter procédurales sen-

sibles au contexte qui analysent une représentation intermédiaire du code compilé Java pour

le flot sécuritaire de l’information. La première analyse assume qu’il n’y a qu’une instance

de tous les champs des classes alors que la seconde utilisent une analyse des références a

fin de différencier entre les champs d’instance qui appartiennent à différentes instances de

la même classe. L’analyse conserve la trace de l’information sensible dans le programme

en maintenant des groupes d’information sensible. L’analyse résout les appels de méthodes

dynamique en Java de faon statique en analysant toutes les méthodes qui pourraient être in-

voquées en un site d’appel et en combinant les groupes d’information sensible. Nous avons

défini des règles pour analyser toutes les expressions dans la représentation intermédiaire

et pris en compte les librairies Java. Les analyses n’ont pas besoin d’annotations de sécurité

dans le programme.

L’information sur les types est utile pour le débogage, pour guider les optimisations, et

pour spécifier et fournir des preuves de la sécurité de programmes. Un système de type pour

iii

un sous-ensemble du code compilé Java est aussi formulé dans cette thèse. Une sémantique

opérationnelle est spécifiée et une preuve de préservation des types assure la consistance

du système de type.

Des tests non triviaux ont étés analysés et le flot implicite et explicite de l’information

a été compté pour les deux analyses. Les données empiriques collectées suggèrent que les

données sensibles sont utilisées dans plusieurs expressions des programmes et les sorties

de données peuvent mener à des brèches de sécurité si l’utilisateur n’a pas les permissions

correctes pour observer les données.

iv

Acknowledgements

I am grateful to my thesis supervisors for their help, support, and encouragement. Clark

Verbrugge was always eager to discuss my work and suggest improvements. He was very

kind and patient, and I have a lot of respect for him as a teacher. Brigitte Pientka introduced

me to the challenging area of logic and type systems.

A very warm thanks to Laurie Hendren, the head of the Sable Research Group. She

was always ready to share her experience with me and suggest ideas on my work. I started

my thesis work as a project in the Optimizing Compilers class I took with her.

I would also like to thank the teachers with whom I took classes at McGill: Bettina

Kemme, Doina Precup, Godfried Toussaint, Martin Robillard and Sue Whitesides.

I had a very good time in the Sable Research Group and would like to thank all the

members who were always eager to brainstorm ideas. In particular, I would like to thank

Ondřej and Jennifer Lhoták, Christopher Goard, Patrick Lam, Sokhom Pheng, Dayong Gu,

Michael Batchelder, Greg Prokopsky, and Feng Qian for the discussions and Christopher J

F Pickett for letting me use his Backward Control Flow analysis in my thesis work. Thank

you Maxime Chevalier-Boisvert for translating the thesis abstract into French.

My time at McGill was made memorable because of the very special friends I made

while studying at McGill and I will always remember their help, guidance and companion-

ship. In particular, I would like to thank Ahmad Shawky El-Behery, Ahmed Shehada, Hani

Ezzadeen and Waqqas Khokhar.

I would like to specially mention Nomair Ahmed Naeem with whom I spent a lot of

time working on assignments and projects ever since my undergraduate days at McGill. It

was fun discussing our work for hours. Good luck with your PhD at Waterloo.

My family has always been close to me even though they were far away in Pakistan. I

v

would like to thank my brother, sister-in-law, fiancée and specially my parents for believing

in me and encouraging me during my studies at McGill.

vi

All praise is due to God.

viii

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Information Flow 5
2.1 Problem Statement . 5

2.2 The Model . 6

2.3 Jimple Intermediate Representation . 11

3 Related Work 19
3.1 Early Work on Information Flow . 19

ix

3.2 Analyses for Information Flow . 20

3.3 Information Flow Work on Java Related Languages 22

3.4 Typed Low-Level Languages and Formalization of the Compilation Process 23

4 MINI-JIMPLE 25
4.1 Typed Intermediate Languages . 25

4.2 Abstract Syntax . 27

4.3 Operational Semantics . 28

4.4 Type System . 31

4.5 Type Preservation . 37

4.6 Summary . 42

5 Data-Flow Analysis for Secure Information Flow 43
5.1 The Analysis . 43

5.2 Analysis Rules for Each Statement . 47

5.3 Proof of Monotonicity . 60

5.4 Summary . 60

6 Data-Flow Analysis Using Spark Information 61
6.1 Spark Points-to Information . 62

6.2 Incorporating Points-to Information . 64

6.3 Summary . 75

7 Experimental Results 77
7.1 Experimental Model . 77

7.2 Sample Run and Viewing Results in Eclipse 79

7.3 Metrics . 79

7.4 Experimental Results . 83

7.5 Summary of Results . 92

8 Conclusions and Future Work 95
8.1 Conclusions . 95

x

8.2 Future Work . 96

A User guide 99

Bibliography 101

xi

xii

List of Figures

2.1 Information Flow Problem . 6

2.2 Example Method . 6

2.3 Lattice Model . 8

2.4 Code and Data Visibility Model . 9

2.5 Safe Examples . 10

2.6 Unsafe Examples . 11

2.7 Overview of Soot . 13

2.8 Example - Java . 17

2.9 Example - Jimple . 18

4.1 MINI-JIMPLE Abstract Syntax . 27

4.2 Running Example of MINI-JIMPLE . 28

4.3 Abstract Machine Syntax . 29

4.4 Operational Semantics for Declarations 30

4.5 Operational Semantics for MINI-JIMPLE 30

4.6 Store Behaviour in the Abstract Machine 31

4.7 Typing Rules for MINI-JIMPLE . 35

4.8 Typing Rules for MINI-JIMPLE Local Variable Store 36

4.9 Type Proof Trees for the Runnning Example 36

5.1 Call Site . 44

5.2 Simple Assignment Statement . 48

5.3 Simple Assignment Statement with Invocation on RHS 49

5.4 Array Declaration and Use . 50

xiii

5.5 Control-flow Graph . 53

5.6 Return Statement Example . 54

5.7 Throw statement . 55

5.8 Catch statement . 56

5.9 Identity Assignment . 58

6.1 Example Highlighting Usefulness of Spark 63

6.2 More Than One Allocation Site . 64

6.3 Allocation Site in a While Loop . 65

6.4 Array Initialization . 66

6.5 Example of Instance Field Read in Jimple 67

6.6 Example of Instance Field Write in Jimple 68

6.7 Example of Array Initialization in Jimple 69

6.8 Example of Array Length Expression in Jimple 70

6.9 Example of Array Read in Jimple . 71

6.10 Example of Array Location Write in Jimple 72

6.11 Main Method String Array Argument . 74

7.1 Experimental Model . 78

7.2 Example Run of Analysis . 80

7.3 Analysis Results in Eclipse . 81

xiv

List of Tables

7.1 Library Safe without Recursion . 86

7.2 Library Safe with Recursion . 87

7.3 Library Unsafe without Recursion . 87

7.4 Library Unsafe without Recursion . 88

7.5 Library Unsafe with Recursion . 89

7.6 Library Unsafe with Recursion . 89

7.7 Points-To Library Safe without Recursion 90

7.8 Points-To Library Safe with Recursion . 90

7.9 Points-To Library Unsafe without Recursion 91

7.10 Points-To Library Unsafe without Recursion 92

7.11 Points-To Library Unsafe with Recursion 92

7.12 Points-To Library Unsafe with Recursion 93

xv

xvi

List of Algorithms

1 Analyzing an Assignment Statement Not in a High Context 49

2 Assignment Statement with Array Expression on RHS 51

3 Assignment Statement with Array Expression on LHS 51

4 Analyzing an If-statement in Jimple . 54

5 Analyzing a Return Statement . 54

6 Analyzing an Assignment Statement in a High Context 57

7 Analyzing an Invoke Statement . 58

8 Analyzing Instance Field Read . 67

9 Analyzing Instance Field Write . 68

10 Analyzing Array Initialization . 69

11 Analyzing Array Length Expression . 70

12 Analyzing Array Location Read . 72

13 Analyzing Array Location Write . 73

14 Analyzing Identity Statement of Main Method 74

xvii

Chapter 1

Introduction

1.1 Motivation

Data security is of utmost importance in todays global computing world. Programs which

are executed on machines are obtained from various sources and mechanisms are employed

to enforce specific security policies as per the need of the computing system. One security

related issue is information flow of secure data to areas in the program source which give

out information to users. The output given out to users has to be controlled in order to make

sure that information regarding secure data is not given out to unwanted users.

Information flow leaks are present in code due to the fact that data resources (such

as databases) only check for permission to access data from them. They perform access

control by giving out data after making sure the user has the required permission to obtain

the data. Once the data has been retrieved from the resource by the program source, the

data resource does not control the propagation of data in the program which can result in

data flowing to insecure areas in the program, which may be read by users without the right

permissions. Secure information may leak to variables which do not have a security level

equal to or more than that of the data by way of explicit or implicit flows.

Medical and military are two important areas where secrecy and privacy are very im-

portant. Confidential medical data about a patient or military plans are restricted for use by

relevant people. In such cases it is important that the flow of information is tracked and the

1

Introduction

leaks are identified and corrected. This ensures the integrity and correctness of the program

using the secure data.

Data, at different security levels, flows through programs and we need mechanisms

which enforce information flow security in program code. The Java programming lan-

guage, in recent years, has gained in popularity and its Bytecode can be executed on any

machine with a Java Virtual Machine. It is very common for users to obtain Bytecode from

an outside source and execute it on their machine. The program may access secure data on

the machine and so the code must be analyzed to ascertain if it can leak any secure data.

This thesis aims to address the problem of information flow in Java. We investigate

information flow for single-threaded programs written in Java by defining context-sensitive

inter-procedural data-flow analyses on a Java intermediate language called the JIMPLE

Intermediate Representation (IR) of Java Bytecode in the Soot Bytecode analysis and opti-

mization framework [VRGH+00, Soo]. All of the Java language features are considered in

our analyses. The analyses examine all JIMPLE statements according to the defined rules

which are designed to conservatively protect secure data. We present the data sets which

are maintained by the each analysis and the algorithms which manipulate them.

Recently there has been a lot of interest in formalizing intermediate languages to pre-

serve types after compilation of high-level code to low-level code. Typed intermediate

languages also provide a platform to reason about the correctness of code transformations

and optimizations. We formalize a small subset of the JIMPLE IR and formulate a type

preservation proof for its type system. Thus we approach the problem from two directions:

practical (data-flow) and theoretical (type systems).

In addition to the design and implementation of the data-flow analyses on JIMPLE and

formalization of a subset of JIMPLE, this thesis presents the results of the experiments

that were carried out for the data-flow analyses on moderate size, although non-trivial,

benchmarks. The experimental data suggests that many program statements use secure

data due to the conservative assumptions of the analyses. We consider several practical

issues in this respect, illustrating some major sources of conservative imprecision.

2

1.2. Contributions

1.2 Contributions

This thesis presents work that can be grouped into two categories: one in the area of infor-

mation flow and the other in the area of formalizing an intermediate representation of Java.

The contributions for each part are reported in the following two subsections.

1.2.1 Information Flow

Zdancewic [Zda04] pointed out that ”the real challenge in information flow is to make use

of all the work to apply to real applications and understand what are the real issues stopping

us from achieving that goal”. Keeping this goal in mind of having a practical solution for

a widely used programming language we designed information flow analyses (described in

detail in Chapter 5 and Chapter 6) for the Java programming language. The analyses have

several noteworthy features.

• Our design provides a practical solution. Unlike other approaches we do not neces-

sarily require user annotations for security level of variables.

• We provide a complete solution including all the statements in our program repre-

sentation, as well as complex issues such as recursion and use of library code.

• This is a fine-grained approach since security is enforced at the level of the fields in

objects and not the objects themselves.

• The rules for each statement are implemented in a modular fashion and allow for

refinement easily.

• We consider both explicit and implicit information flows that occur due to conditional

branching on secure data.

• Information leaks due to explicit exceptions are also tracked.

• As well as analyzing programs we provide a warning mechanism that alerts users to

specific sites where secure data may leak.

3

Introduction

• Our design builds on a sophisticated program analysis framework. As far as we know

this is the first time points-to analysis has been used in a practical information flow

analysis.

• We define and provide several metrics for measuring the quality of information flow

results.

1.2.2 Formalizing an Intermediate Representation of Java

Type information is useful in debugging, guiding optimizations and specifying and proving

safety proofs for programs. In order to achieve these properties in an optimizing compiler

we need a typed intermediate representation. This thesis work describes a small typed

intermediate representation of Java (described in detail in Chapter 4). The following is

presented:

• formalization of a non-trivial subset of JIMPLEwith if-statements, assignments state-

ments and goto statements;

• operational semantics and type system for the subset; and

• a soundness proof for the type system.

1.3 Thesis Organization

The rest of this thesis is organized as follows. The next chapter defines the problem of

information flow clearly and also presents the JIMPLE IR. Chapter 3 is a survey of related

work. Chapter 4 presents the formalization of a subset of JIMPLE. The data-flow anal-

ysis design and details of implementation including data structures and algorithms used

is presented in Chapter 5. Chapter 6 describes alternative approaches that improve upon

type-based analysis, giving more precise information. The empirical results on the infor-

mation leaks and metric calculations for several programs are given in Chapter 7. Finally,

Chapter 8 concludes this work along with a description of ways to extend this work.

4

Chapter 2

Information Flow

It was pointed out in Chapter 1 that there are confidentiality issues with respect to

information flow in programs. This chapter will explain the problem highlighting the core

issue at hand in the first section. The second section presents the problem model and how

security level of variables are considered in program code where as the last section defines

the JIMPLE IR on which we carry out our investigations in this thesis.

2.1 Problem Statement

The problem occurs due to the execution of unverified code which is obtained from some

outside source on a computer. Figure 2.1 captures this phenomenon in a diagram. The

unverified program code is received by a user and then executed. During execution it is

possible that there are inputs of secure data or accesses of secure data residing in some data

resource. The program completes execution and then gives an output. It might be possible

that partial information about secure data can be inferred by observing the program code

and the output.

Figure 2.2 presents an example method which retrieves a student’s record from a database

to find out the faculty in which the student is enrolled. The student’s faculty information is

likely not confidential data but the method also retrieves the gpa of the student and uses the

value to decide on the font of the result. Clearly the font will give away partial informa-

tion about a student’s gpa to the one executing the method. If we consider the gpa to be a

5

Information Flow

Unverified code

secure information

Output may

Code is
executed

User Computer

by user

Code obtained

data input
Secure

Secure data used
in programgiven

Output
give out

Outside World

Figure 2.1: Information Flow Problem

confidential value which only approved people can see, there is a need to analyze code and

check for possible information leaks.

String getStudentFaculty(int StudentID){
 StudentRecord rec := database[StudentID];
 String result := rec.faculty;

}
 if rec.gpa > 3.0 then result.font := "bold"

Figure 2.2: Example Method

In Java, Bytecode is commonly obtained from an outside source and executed on the

local machine. Secure data may be used in the program and the output can give away

information about the secure data.

2.2 The Model

The previous section gives an overview of the information flow problem. In this section

the problem model is explained in detail along with the security levels description and the

different kinds of information flows.

6

2.2. The Model

2.2.1 Security Levels Lattice

In order to ensure security of data in programs the variables which store data are assigned

security levels and variables can only be assigned data which has a security level equal or

less than their own. However, first we need to define a policy with a set of security levels

and indicate what is more secure than the other. The security level policy used in most

information flow work over the years was specified by Denning [Den76]. Security policies

are defined by a complete lattice of security levels and information is permitted to flow

from variables of a given security level to variables of the same or higher security levels

only.

The set of security levels could have a linear or hierarchical structure but in both cases

it should satisfy the lattice properties. In this research we use a linear security level model

consisting of two levels of security: one is a high H security level and the other is a low L

security level as shown in Figure 2.3. The linear model conforms to the properties required

of a lattice. Our model is a trivial one but even more complex models specify a domain of

security levels which is finite and the security levels are partially ordered. The models also

have a lower bound, an upper bound and defintions for the least upper bound (LUB) and

greatest lower bound (GLB) operators.

Lattice Properties for Our Model:

• The domain of security levels D = {L,H}.

• It is partially ordered - L is at a lower security level than H.

• It is finite with only two security levels.

• It has a lower bound L, where L ⊆ A ∀ A ∈ D.

• It has an upper bound which is H.

• The LUB and GLB operators are defined easily for a linear lattice.

– LUB{i,j} = max(i,j). In our case LUB{H,L} = max(H,L) = H.

– GLB{i,j} = min(i,j). In our case GLB{H,L} = min(H,L) = L.

7

Information Flow

H

L

Figure 2.3: Lattice Model

2.2.2 Explicit and Implicit Information Flows

An explicit flow occurs when a variable containing confidential data at a certain security is

assigned to a variable whose security level is less than the security level of the data. In the

example below we consider two security levels: restricted and unrestricted (corresponding

to high and low respectively). The assignment of j to i is a clear leak of information since

i’s security level is lower then that of variable j.

int i,j; //i is unrestricted, j is a restricted variable

//variable j contains secure data and i is an

//unrestricted variable

i = j;

Implicit flow arises from the control structure of a program like in the case of an if-

statement. In the example below the program branches depending upon the restricted data

value stored in variable H. In the true branch variable L is assigned 1 whereas in the false

branch variable L is assigned 2. Partial information about the value of variable H can be

inferred by observing variable L. In this case it can be inferred whether or not H is equal to

4.

int L,H; //L is unrestricted, H has restricted data

if(H == 4){

L = 1;

8

2.2. The Model

}else{

L = 2;

}

In order to be certain that a program does not leak confidential data, the secure data

must only flow to variables in programs which are not publicly read. The property which

we are trying to enforce is noninterference and it is formally described as follows:

Definition of noninterference: One group of users, using a certain set of data, is non-

interfering with another group of users if what the first group does with that data has no

effect on what the second group of users can see [GM82].

2.2.3 Code and Data Visibility Model

The model we use in our work is presented in Figure 2.4 1. The attacker has access to the

program source and is providing or can observe the insecure or publicly observable input

which we call Low in corresponding to L in in Figure 2.4. The attacker can also see the

publicly observable output Low out produced by the program after execution corresponding

to L out in the figure. The attacker does not read the secure data High in corresponding to H

in in the figure which enters the program if the program accesses some secure data resource.

Program source

H out

L out

H in

L in

Figure 2.4: Code and Data Visibility Model

The value of the secure data may be used by the program source in computations. The

attacker can figure out the secure value if for the same L in changing the H in causes the
1The model is inspired by a talk given by Anindya Banerjee

9

Information Flow

L out to change. In the following examples, in Figure 2.5 and Figure 2.6, we assume that

variable h contains secure data where as variable l is publicly readable.

Figure 2.5 shows two cases in which no information leaks to the attacker. In example

(a), no matter which branch of the if-statement is executed depending on the conditional

expression, the same value will be observed at L out. Similarly in example (b) the difference

of the secure value ”h - h” will always result in the same value observed at L out.

if h > 0
then l := 4
else l := 4

l := h − h

H in H out

L in L outL in

H in H out

(a) (b)

L out

Figure 2.5: Safe Examples

Figure 2.6 consists of two examples which violate secure information flow. In example

(a), the then and else branches of the if-statement generate different results. Since the

conditional expression is dependant on the value of the secure variable h, the attacker can

make out partial information about the value of h by observing the L out. Consider a simple

case in which L in is 3 and H in is 0. Since variable h is 0, the else branch is executed and

the statement l := l + 2 gives a L out result of 5. Suppose the H in changes to 1 now. In this

case, the then branch statement l := l + 3 gets executed producing a L out result of 6. Clearly

a change in the value of H in with L in remaining the same produces a different result which

can be observed and partial information can be obtained about the secure value. This is a

case of an implicit flow.

In example (b), the result of an addition involving a secure data value is assigned to an

insecure variable which can be viewed at L out. In this case consider L in fixed at 2. Now

for two different values (3 and 4) of H in, the addition will produce different results (5 and

6 respectively). This is a case of an explicit flow.

10

2.3. Jimple Intermediate Representation

if h > 0
H in H out

L in L outL in

H in H out

(a) (b)

L out

l := l + h
else l := l + 2
then l := l + 3

Figure 2.6: Unsafe Examples

2.3 Jimple Intermediate Representation

The problem model was presented in the previous section. In this section we describe the

grammar of the JIMPLE IR that we base our investigations on in this research. We formalize

a subset of JIMPLE (details in Chapter 4) and our information flow analyses based on the

Code and Data Visibility Model given in Section 2.2.3 are defined for full JIMPLE (details

in Chapter 5 and Chapter 6).

2.3.1 Jimple in the Context of Soot

Java is compiled into Bytecode which is executed by the Java Virtual Machine (JVM). The

Bytecode generated can be optimized to achieve faster runtime efficiency. Sable Object-

Oriented Toolkit (Soot) [VRGH+00, Soo] is a framework which processes the Java Byte-

code to improve the code output by performing transformations, run optimizations and

now also generates high-quality decompiled code. The code optimizations and transfor-

mations are carried out on intermediate representations of Java Bytecode. SOOT has four

IRs namely: BAF, JIMPLE, SHIMPLE and GRIMP. In this research, we chose JIMPLE to

formalize and write our flow analyses on.

Figure 2.7 presents an overview of the Soot framework. It accepts Java class files and

translates the code into JIMPLE IR on which analyses, optimizations and code transforma-

tions are carried out. The analyses make use of the call graph and Spark points-to informa-

tion available in Soot. After performing the analyses and optimizations the optimized code

11

Information Flow

is translated back into Bytecode which is executed by the JVM.

2.3.2 Advantages of Jimple

JIMPLE is a 3-address IR of the Java Bytecode. It is a compact, stackless representation

and provides considerable ease for writing compiler optimizations and analyses. Each 3-

address instruction can be described as a quadruple (operator, operand1, operand2, result)

and each statement has the general form of: x := y op z. The key feature of three address

code is that every instruction implements exactly one fundamental operation. The main

advantages of JIMPLE over Bytecode and other Soot IRs are:

• The expressions are directly available and there is no need to build an expression

from the Bytecode instructions.

• An expression’s code may not be available in continuous Bytecodes and so the anal-

yses become very complex.

• In an IR with an operand stack, removing or changing the position of Bytecodes is

cumbersome due to the fact that the stack height must be of a particular height across

control flow boundaries.

• JIMPLE has very few instructions (19 in all) compared to the 200 different Bytecode

instructions.

• All local variables (the declared as well as the operand stack ones) are typed which

allows accurate and complex analyses to be written.

2.3.3 Jimple Grammar

We introduce the JIMPLE grammar [VR00] in this section and give part of it to illustrate

how JIMPLE code looks like. Additionally the grammar for some JIMPLE constructs which

have have no affect on the security of variables and are not part of the information flow

analyses is not given here.

12

2.3. Jimple Intermediate Representation

Java
source

SML
source

Scheme
source

Eiffel
source

Class
files

Jimple

Optimized
Jimple

Optimized Class files

Run by JVM

Jimplify Jimplify

Optimize

Via Grimp or Baf

SOOT

Analyses

performed
Analyses

performed

Figure 2.7: Overview of Soot

13

Information Flow

assignStmt ::= local= rvalue; |
field= imm; |
local.field= imm; |
local[imm] = imm;

The most commonly occurring statements in JIMPLE are the assignment statements

since JIMPLE is a 3-address code and a variable is never assigned to more than once. All

declarations occur at the beginning of a class and at the beginning of each method in the

class. The assignment statement (assignStmt) has four variations. The first one assigns an

expression value to a local, the second assigns a local or constant value to a static field,

the third assigns a local or a constant value to an instance field and the last assignment

statement assigns a local or a constant value to an array location. Field references or array

references never occur in the same statement.

identityStmt ::= local := @this.type; |
local := @parametern : type; |
local := @exception;

The first two identity statements occur at the beginning of each method and they are

necessary because there is no array of local variables in JIMPLE which has the information

for the this and the parameters. The first one assigns the instance of the current class to a

local variable of the class type. This statement is the first statement in all instance methods

and constructors. The next one assigns all the parameters to locals of the appropriate type.

Each method has a number of these statements equal to the number of parameters. The

last identity statement may occur anywhere in a method and it assigns a caught exception

object to a local of the exact same type.

gotoStmt ::= goto label; |
i f Stmt ::= if conditionExpr goto label;

The above two statements are control-flow statements in JIMPLE. The gotoStmt is an

unconditional jump where as the ifStmt is a conditional jump on the conditionExpr. The

switch statement is similar to the ifStmt but has several branches.

14

2.3. Jimple Intermediate Representation

invokeStmt ::= invoke invokeExpr;

The invoke statement invokes a method and the result of the invocation is not assigned

to a local. In the case of a non-void method, the result is lost as described by the Java

semantics.

returnStmt ::= return imm; |
return;

The two kinds of return statements correspond to the return statements in methods with

some return type and methods with void return type. In the first return statement, a local or

a constant specify the return value.

throwStmt ::= throw local;

At a throw statement an exception is thrown and a local specifies the class of the excep-

tion that is thrown.

imm ::= local|
constant

The immediates are the local variables in a method or constant values.

conditionalExpr ::= imm1 condop imm2

The conditional expression occurs in the if-statement and has two operators. There are

six conditional operators in JIMPLE.

rvalue ::= concreteRe f |imm|expr

concreteRe f ::= field|
local.field|
local[imm]

The rvalues are the right-hand side of an assignment statement. They could be any

of the concrete references which are the static fields, instance fields or array accesses, the

immediate values or the various expressions.

15

Information Flow

invokeExpr ::= specialinvoke local.m(imm1, . . . , immn)|
interfaceinvoke local.m(imm1, . . . , immn)|
virtualinvoke local.m(imm1, . . . , immn)|
staticinvoke m(imm1, . . . , immn)

There are four kinds of invoke expressions in JIMPLE. The specialinvoke expressions

are specific to init methods which are the constructor calls in JIMPLE. The interfaceinvoke

and virtualinvoke expressions are the method invocations of instance objects where as the

staticinvoke expressions invoke static methods. Note that m is the method signature, local

points to the instance of the object and immi are the method arguments.

expr ::= imm1 binop imm2|
(type) imm|
imm instanceof type|
invokeExpr|
new refType|
newarray (type) [imm]|
newmultiarray (type) [imm1] . . . [immn] []? |
length imm|
neg imm

The grammar for all the expressions in JIMPLE is as above. They occur on the right

hand side of the assignment statement and the result of the expressions is assigned to a

local variable.

Figure 2.8 presents the code of a Java program. The corresponding JIMPLE code is

given in Figure 2.9. The static initializations (initialization of field i in the example) are in

a clinit method in JIMPLE. The init method in JIMPLE corresponds to the class constructor.

The important differences to observe between the main method code in Java and JIMPLE

are that the structured if-statement in Java corresponds to the if-statement with goto in

JIMPLE and the statements in JIMPLE are simple with no field references in conditional

expressions. In the Java code we have a field access in the conditional expression where

as in the JIMPLE code the field is first assigned to a local variable which is then used in

16

2.3. Jimple Intermediate Representation

the conditional expression. In JIMPLE all declarations are at the beginning of the method,

followed by the identity statements assigning parameters to local variables and then the

other statements.

public class Example{
private static int i = 10;

public static void main(String[] args){
int[] myArray = new int[12];

int k=0;

myArray[k] = 5;

k = myArray.length;

if(i < k) //field i used in conditional expression

i = 1;

else
i = 2;

}
}

Figure 2.8: Example - Java

17

Information Flow

public class Example extends java.lang.Object{
private static int i;

public void <init>(){
Example r0;

r0 := @this: Example;

specialinvoke r0.<java.lang.Object: void <init>()>();

return;

}
public static void main(java.lang.String[]){

java.lang.String[] r0;

int[] r1;

int i0, i1, $i2;

r0 := @parameter0: java.lang.String[];

r1 = newarray (int)[12];

i0 = 0;

r1[i0] = 5;

i1 = lengthof r1;

$i2 = <Example: int i>; //field i assigned to a local variable

if $i2 >= i1 goto label0;

<Example: int i> = 1;

goto label1;

label0:

<Example: int i> = 2;

label1:

return;

}
static void <clinit>(){

<Example: int i> = 10;

return;

}
}

Figure 2.9: Example - Jimple

18

Chapter 3

Related Work

This chapter presents work previously done on information flow analysis. The first

section is an overview of the early work leading to information flow analysis. The second

section covers the compile-time analyses and techniques to check flow of information in

a program. The third section explains several approaches that have been tried to enforce

non-interference in Java related languages. The fourth section discusses prior work on

typing low-level languages and formalizing the compilation process. An extensive survey

of research on information flow, highlighting all the open areas of research, is given by

Sabelfeld and Myers [SM03].

3.1 Early Work on Information Flow

The earliest work in the area of information flow can be attributed to Denning and Den-

ning [DD77] where they define a simple language in which a security class is attached to all

user-defined variables in a program. Denning also defined the concept of a set of security

classes in the form of a lattice structure which defined the permissible and impermissible

flows in a program statement [Den76]. A compile time check analyzes the statements in

the program and ensures that information does not flow into objects whose security class

will permit unauthorized data leaks. This was the first time that the actual program was

analyzed for information flow since previous work concentrated on the input/output of data

into a program. The language they consider is procedural with assignments, simple control

19

Related Work

structures such as if-statements and while-statements, procedure calls, and explicit excep-

tions. In their work the exception handler has to be within the same procedure in which the

exception may be generated.

One area of work concentrated on limiting access rights for a program. This means

that it cannot read outside data or write the data outside the program unless the security

classes of all the data read can be given out on any output in the program. The Case

System [WSO+75] and the MITRE system [BL75, Mil76] are examples of such research

attempts.

The second area of work analyzes programs to determine flows from the reads to the

writes external to the program. The mechanism transforms the programs such that the

flows are checked at run time accurately. Fenton’s data mark machine [Fen74] and the

surveillance protection mechanism of Jones and Lipton [JL75] employ this technique.

3.2 Analyses for Information Flow

Denning and Denning’s compiler [Den76, DD77] only produced a pass or fail message for

the program code and they gave no formal proofs of their approach. Volpano, Smith and

Irvine’s [VSI96] work centered around giving soundness proofs of Denning and Denning’s

language. They only took a subset of the language including assignments, if-statements,

while-statements and the let-statement to better explain their proof technique of type sound-

ness which they relate to noninterference. They leave out method calls and exceptions.

They define two rules, no read up and no write down, and their type system rejects pro-

grams which do not observe the rules.

Heintze and Riecke [HR98] enriched the λ -calculus for information flow security and

prove a noninterference theorem. They enhanced the type system by adding security prop-

erties to each type and they named it Secure Lambda Calculus (or SLam calculus). They

cover the basic λ -calculus along with assignments and also include concurrency. While

their work can be adapted for more high-level languages with complex type systems, there

is a need to find a way to reduce the amount of type specifications that a user has to provide.

Miyamoto and Igarashi [MI04] proposed a typed lambda calculus λ2
s as a foundation

for information flow analysis. Their type system corresponds to a proof system of an in-

20

3.2. Analyses for Information Flow

tuitionistic modal logic of validity by the Curry-Howard isomorphism. Their type system

is designed for a functional language with three new constructs in the grammar of a func-

tional language. They are: u corresponding to the modal variables, boxl M which envelopes

a secure statement M and let boxl u = M in M which only permits reading a secure state-

ment which is boxed at the right security level. l are the security levels which are partially

ordered. The type system successfully types only those programs which will not leak infor-

mation. The rules enforce that a modal variable is only used when the level of the variable

is lower than or equal to the level in which it is type checked. This prevents confidential

information from flowing into insecure levels.

Pottier and Simonet [PS02] gave a type-based information flow analysis for a realistic

sequential programming language. They call it Core ML since it consists of λ -calculus

with references, exceptions and let-polymorphism. Their type system is based on type

reconstruction and it is constraint-based since they allow for subtyping.

The type systems for information flow are normally conservative and sometimes even

reject programs that would otherwise be safe to execute. In order to make sure that the

type system correctly rejects a program Unno, Kobayashi and Yonezawa [UKY06] sug-

gest combining model checking with type based analysis to find counterexamples that the

program will indeed leak information. However, their method does not guarantee that a

program does satisfy noninterference.

Amtoft, Bandhakavi and Banerjee [ABB06] presented a flow sensitive inter-procedural

information flow analysis in object-oriented programs using a Hoare-like logic. They de-

scribe possible aliasing by region assertions and information flow properties by indepen-

dence assertions. Method summaries are used to specify the assertions that must hold

before and after a method call.

Noticing that most type systems were flow insensitive and that Denning and Denning’s

original analysis was also flow insensitive, Hunt and Sands [HS06] proposed flow sensitive

security types; this increased the accuracy by it providing a snapshot of the security level of

a variable at each program point. They presented flow sensitive typing for a simple While

language which could be extended to more complex programming languages.

Most of the approaches are rigorously proven and assure that there is no leak of secure

data in well-typed programs but the languages are either very restrictive and writing mean-

21

Related Work

ingful programs of even moderate size is not easy like λ2
s , or require a lot of programming

effort like the SLam calculus.

3.3 Information Flow Work on Java Related Languages

The work on information flow presented in the previous subsections were not on Java or

Java related languages. Enforcing information flow security in Java is hard due to its object-

oriented model. However, a lot of attempts have been made to enforce information flow

security in Java related languages.

Banerjee and Naumann [BN02] gave a noninterference proof for secure information

flow in a sequential object-oriented language with pointers and mutable state, private fields

and class-based visibility, dynamic binding and inheritance, casts and type tests, and mu-

tually recursive classes and methods. They ensure pointers are safe by disallowing assign-

ment of a high security object instance to a low security variable. They also present an

access control mechanism [BN03] to enforce secure information flow for the same lan-

guage which specifies that a system call to retrieve classified data can only be made with

the right permission. However, they do not consider exceptions.

JFlow [Mye99] is an extension of Java and it supports the decentralized label model [ML98].

It allows security policy labels to be assigned to data values and the security policies can

be changed to suit the program needs. JFlow requires static annotations in the Java code.

The JFlow compiler certifies the programs and produces Java code which can be compiled

by a Java compiler and then executed. Our work compares to the solution presented by

Myers [Mye99]. However, JFlow focuses on Java source and it does not account for Java

Bytecode that can be obtained from an outside source and then executed on the local ma-

chine by a user.

Avvenuti, Barnardeschi and Francesco [ABF03] presented an idea of performing infor-

mation flow analysis on Java Bytecode. They only consider a very small subset of Java

Bytecode with security levels assigned to classes, methods parameters and return values.

It is a very restricted language because data from a class with a high security level cannot

be assigned to fields of a class with low security level. Genaim and Spoto [GS05] gave

information flow analysis for the full set of Java Bytecodes. They defined an abstract in-

22

3.4. Typed Low-Level Languages and Formalization of the Compilation Process

terpretation model of information flow which formally defines explicit and implicit flows

possible at the Bytecode level. They do not assign any security levels and their analysis

only informs the user if a value can affect some other value. They give experimental results

which only mention the size of the program and the time it took to analyze the program. We

extend their concept in our experiments and design more meaningful metrics for measuring

quality of information flow results.

3.4 Typed Low-Level Languages and Formalization of

the Compilation Process

High-level languages are typed to enforce some desirable properties and they are checked

by the compiler when the source is compiled. The resulting intermediate languages and

low-level languages usually lose all the type information, properties which hold at the

source level may no longer be valid. Researchers have tried to associate types with the

low-level code in search of ways to ensure important properties hold after compilation.

Barthe, Rezk and Naumann’s [BRN06] proposed a type preserving compilation tech-

nique for a subset of Java with exceptions. They show that the information flow security

policy is observed by the high level source code as well as the Bytecode.

Chen and Tarditi [CT05] formulated a typed intermediate language for object-oriented

languages which supports translation of Featherweight Java (FJ) [IPW01] with assignments

and one dimensional arrays of objects added. They prove soundness for the intermediate

language. League, Shao and Trifonov [LST02] also formalize a typed intermediate lan-

guage which supports compilation of FJ and it also preserves types.

Callahan [O’C99] proposed a type system to formalize Java Bytecode and prove its

safety since earlier attempts were only successful for subsets of Java Bytecode. Morrisett et

al. [MCG+99] formulated a generic and realistic Typed Assembly Language (TAL) which

can support several source languages. Our work on formalization of a subset of JIMPLE is

similar to a subset of TAL which is called TAL-0 [Pie05]

Other work in this area includes a strongly typed intermediate language to compile

richly typed source languages such as ML [SLM98] and a typed intermediate language to

23

Related Work

represent Java classes [LST99].

24

Chapter 4

MINI-JIMPLE

This chapter presents the formal specification of a subset of JIMPLE IR with a sound-

ness proof of type preservation for the type system. In the next section we highlight the

importance of typed intermediate languages. Section 4.2 describes the grammar of the sub-

set we picked to formalize. Section 4.3 and Section 4.4 give the operational semantics and

type system respectively. In Section 4.5 the type preservation proof is explained along with

some lemmas.

4.1 Typed Intermediate Languages

Invariably all compilers employ techniques to optimize the code written by a programmer.

In order to maximize the runtime efficiency of the generated code the compilers use several

mechanisms to improve the code. Analyses are performed and code is transformed at

the source level, at several highly specific intermediate languages, at the Bytecode level

or at the native code level in order to achieve speedups in execution time. Traditional

analyses such as dead code elimination etcetera are common and can be performed on every

representation of the code but other advanced analyses such as virtual method resolution in

Java are easier to perform on specific representations such as the JIMPLE IR. In the case

of Java, source code is compiled into Bytecode and various intermediate languages which

are more suitable for program understanding and to perform optimizations and analyses

25

MINI-JIMPLE

on. The SOOT framework performs several analyses on the intermediate representations

including JIMPLE.

During compilation from source into Bytecode the type information is lost. A type

inference algorithm [GHM00] analyzes JIMPLE and generates static types for the vari-

ables. The types are useful in debugging, guiding optimizations and specifying and proving

safety proofs for programs. The following benefits are achieved as a result of having typed

JIMPLE :

• we get a refined call graph built using the class hierarchy analysis [DGC95];

• it can be ascertained when an invokeinterface can be replaced by an invokevirtual

call (meaning that we can tell that the receiver of a class even though the instruction

is an invokeinterface);

• a decision on method inlining can be made;

• variable types are known and it simplifies the decompilation process;

• variables can be grouped by type which can be useful for run-time type analyses.

The correctness of Bytecode is verified by the Java Virtual Machine (JVM). The only

correctness measure in SOOT for the optimizations and transformations is to generate Byte-

code after transformations on the IRs and that should be verifiable by the JVM. This ver-

ified code executes safely but in order to be absolutely sure about the correctness of the

code translations and each individual analysis and the portability of the model to different

languages and platforms we need to be able to reason about the whole compilation strategy

and procedure.

Prior to this work, no property of the SOOT framework was carefully proven to be

correct. It would be ideal to have a formal specification of all the intermediate languages

and all the translations in Soot. We formalized part of the JIMPLE IR and our work is

explained in the following sections. Our type system is similar to the one for TAL-0 [Pie05]

given by Morrisett.

26

4.2. Abstract Syntax

4.2 Abstract Syntax

In this work we concentrate on the key elements of JIMPLE. The subset of JIMPLE (here

after referred to as MINI-JIMPLE) we chose to formalize includes the if-statement, assign-

ment statement and the goto statement. The subset grammar of JIMPLE is presented in a

different format than in Section 2.3 which allows for the operational semantics and type

system to be defined in an elegant manner. The abstract syntax for MINI-JIMPLE is given

in Figure 4.1.

Program:

p ::= sdec ; s seq ;

s dec ::= τ x | s dec ; τ y

s seq ::= () | s ; s seq

s ::= goto label | if (exp) goto label | x = exp

exp ::= exp1 + exp2 | exp1 < exp2 | x | n | true | false

Declared Types:

τ ::= int | bool

Figure 4.1: MINI-JIMPLE Abstract Syntax

A program in MINI-JIMPLE is a sequence of declarations followed by no statements

or a sequence of statements. All declarations are at the beginning of the program before

any other statement. A declaration defines a local variable, ranged over by x, y and z, along

with its type τ which may be int or bool in MINI-JIMPLE. There are three statements:

if-statement, assignment statement, and the goto statement. An if-statement branches on

the value of an expression. An assignment statement stores the value of an expression in a

local variable and the goto statement is an unconditional jump to a sequence of statements

pointed to by the label.

Expressions occur in the if-statement and assignment statement. We keep the expres-

27

MINI-JIMPLE

sions limited to binary additions, binary less than comparisons and values v. The values

v in MINI-JIMPLE are local variables (represented by x in the syntax), integer constants

(represented by n in the syntax), and the boolean constants true and false. More ex-

pressions may be added but they would add no special meaning to the language and its

formal reasoning. The running example for MINI-JIMPLE is given in the Figure 4.2. We

often abbreviate the variable declarations int x; int y; as int x,y;. Line (1) in the running

example uses the abbreviation. We give type proof trees for the example’s statements in

Section 4.4.

int x,y; (1)

label_1: x = 2 + 2; (2)

if (x < 4) goto label_2; (3)

y = 3 + 3; (4)

goto label3; (5)

label_2: y = 2 + 3; (6)

label_3: <continue executing the code> (7)

Figure 4.2: Running Example of MINI-JIMPLE

4.3 Operational Semantics

The operational semantics of MINI-JIMPLE specifies the behaviour of the language. We

define an abstract machine and its description is given in this section.

4.3.1 The Abstract Machine

The abstract machine (M) has three components which describe a state in the machine:

1. a finite heap (H) which maps the labels to statement sequences;

2. a sequence of instructions (s); and

28

4.3. Operational Semantics

3. a store (represented by metavariable µ) which is a partial function which maps local

variables to values.

The syntax of the abstract machine is given in Figure 4.3. The evaluation of MINI-JIMPLE

is defined by a transition function from one state to another:

(H, s | µ)→ (H, s′ | µ ′)

The transition function is defined for each statement except for () which is the final

value returned at the end of evaluating a program. The machine has a small step opera-

tional semantics. The heap (H) is initialized with the labels pointing to the corresponding

statement sequences before the program is executed and it does not change during execu-

tion. Explicitly carrying H during evaluation is not necessary since it doesn’t change. We

will however be explicit about it for clarity. The variable declarations are at the beginning

of the program and so µ is initialized by the first few statements of the program. The eval-

uation rule for variable declarations is presented in Figure 4.4 and the six evaluation rules

for statements are given in Figure 4.5.

Abstract Machine:

M ::= (H, s seq, µ)

Heap:

H ::= {label1 = s seq1, . . . , labelm = s seqm}

Store:

µ ::= . | µ,(x,v) | µ,x

Figure 4.3: Abstract Machine Syntax

29

MINI-JIMPLE

∀i yi /∈ µ µ ′ = µ,yi

(H,(τ1y1, . . . ,τnyn); s seq | µ)→ (H,s seq | µ ′)
(E-Dec)

Figure 4.4: Operational Semantics for Declarations

In the case of a goto statement evaluation rule (E-Goto) applies. The evaluation

continues with the sequence of statements the label points to is given by the heap H.

We have three rules for the evaluation of an if-statement. If the conditional expression

is not a value it is evaluated by the machine according to the rule (E-IfCond). When the

conditional value is known, the evaluation jumps to the sequence of statements s2 pointed

to by the label according to rule (E-IfTrue). On the other hand if the conditional value

is false the evaluation continues with the statement s1 after the if-statement according to

the rule (E-IfFalse).

H(label) = s seq2

(H,(goto label);s seq1 | µ)→ (H,s seq2 | µ)
(E-Goto)

exp→ v
(H,(if (exp) goto label;s seq) | µ)→ (H,(if v goto label;s seq) | µ)

(E-IfCond)

H(label) = s seq2

(H,(if true goto label;s seq1) | µ)→ (H,s seq2 | µ)
(E-IfTrue)

(H,(if false goto label;s seq1) | µ)→ (H,s seq1 | µ)
(E-IfFalse)

exp→ v
(H,(x = exp;s seq) | µ)→ (H,(x = v;s seq) | µ)

(E-AssignExp)

(H,(x = v;s seq) | µ)→ (H,s seq | [x 7→ v]µ)
(E-AssignV)

Figure 4.5: Operational Semantics for MINI-JIMPLE

The assignment statements has two evaluation rules. If the expression is not a value it is

evaluated by the machine according to the rule (E-AssignExp). When the expression

30

4.4. Type System

is a value the local variable x is updated in the store by the rule (E-AssignV).

The evaluation for addition (+) and less than (<) expressions (exp→ v) is assumed to

be provided by the machine and is correct. Store lookup is incorporated in the expressions

since local variables are dereferenced in expressions. We do not include expressions in our

soundness proof.

The store behaviour to update the value stored in a local variable is presented in Fig-

ure 4.6 by four rules. Rule (4.1) and (4.2) state that if a previously assigned local variable x

is being assigned a value v it does not change the contents of variable y. According to rule

(4.3) if variable x is assigned a value v, it replaces any previous value v′ stored in x. The

last rule (4.4) defines that a value may be assigned to a previously defined local variable

which had not been assigned a value before.

[x 7→ v](µ,(y,v′)) = [x 7→ v]µ,(y,v′) (4.1)

[x 7→ v](µ,y) = ([x 7→ v]µ),y (4.2)

[x 7→ v](µ,(x,v′)) = (µ,(x,v)) (4.3)

[x 7→ v](µ,x) = (µ,(x,v)) (4.4)

Figure 4.6: Store Behaviour in the Abstract Machine

4.4 Type System

In this section we present a type system for MINI-JIMPLE along with the environments,

judgments, types and typing rules. The type system is a type checker and does not infer

types for expressions.

4.4.1 Environments

We have variables in MINI-JIMPLE which need a typing environment and labels which

require a general environment since the typing judgments will verify if the labels are valid.

31

MINI-JIMPLE

In order to fulfil these requirements we define the following two environments:

Local Variable Environment (Γ)

Γ is a typing environment for local variables in the store µ and is defined as follows:

Γ ::= . | Γ, x : τ

Labels Environment (Ψ)

Ψ is an environment for labels. It is defined as follows:

Ψ ::= . | Ψ, label i

4.4.2 Typing Judgments

The typing judgments in MINI-JIMPLE are defined for the store, the heap, the program,

the statements in the program, the expressions and the values. An ok is assigned for the

environments, program and statements if they are well-typed.

The store has to be well-typed and the type of the variables in the store and the value

mapped to the variable should match.

Γ ` µ : ok

The heap (H) has to be well formed by the environment Ψ for valid labels. In order to

type check H in Ψ we erase all labels in the program and type check the erased program.

Ψ ` H : ok

The program p is well-typed under Ψ if it returns an ok.

32

4.4. Type System

Ψ ` p : ok

The statement sequences are well-typed if the type checker returns an ok under the

environments Ψ and Γ.

Ψ;Γ ` s seq : ok

The expressions are well-typed if they have a type τ under Ψ and Γ.

Ψ;Γ ` exp : τ

4.4.3 Types in MINI-JIMPLE

There are two program types INT and BOOL corresponding to the declared types int and

bool in MINI-JIMPLE. τ is defined as follow:

τ ::= INT | BOOL

4.4.4 Typing Rules

The typing rules which assign types to terms for MINI-JIMPLE are presented in Figure 4.7.

The typing rule for declarations (T-Program) states that all local variables are added

to the Γ environment and the program statements are type checked under the Ψ and Γ

environments.

There are two typing rules for sequence of statements: the first one (T-NoStmt)

assigns an ok for no statement where as (T-Stmts) assigns an ok based on the fact that

both the first statement and the remaining sequence of statements type check to ok.

The typing rule (T-GotoStmt) assigns an ok to a goto statement if the label is in

environment Ψ. (T-IfStmt) rule assigns an ok to the if-statement after checking that

the expression type checks to BOOL and the label is in environment Ψ.

33

MINI-JIMPLE

Typing rule (T-AssignStmt) for the assignment statement assigns an ok based on

the types of the variable x and the expression in the premise. x and the expression must

evaluate to the same type.

According to the type rules for the conditional expression (rule (T-Condexp)) and

the addition expression (rule (T-AddExp)) they are assigned type BOOL and type INT

respectively based on types of the operands. In both cases the operands exp1 and exp2

must have type INT.

The typing rule (T-Var) assigns a type τ to variable x if the variable along with its

type τ is present in the local variable typing environment Γ. The constant n (representing

integer values) is given type INT by the rule (T-Int) where as the constants true and

false are assigned type BOOL by rules (T-True) and (T-False) respectively.

While we present typing rules for expressions, we will assume that evaluation of ex-

pressions preserves types. This lemma will be heavily used in the overall type preservation

proof given later. There is no typing rule for labels since label lookup is incorporated in the

rules (T-GotoStmt) and (T-IfStmt) for typing the goto statement and if-statement

respectively.

The environment Γ describes the store and gives the store typing for each location ac-

cording to the rules in Figure 4.8. An empty is assigned ok by the rule (T-StoreEmpty).

Rule (T-StoreVar) states that (µ,y) is well-typed under Γ if µ is well-typed under Γ

and the declared but unassigned variable y has a type τ in Γ. In the case when a store loca-

tion has been assigned a value (for example (µ,(y,v))) rule (T-StoreVarVal) assigns

the store an ok if µ is well-typed under Γ, variable y has type τ and the value v assigned to

y also type checks to τ under Γ.

We give the type proof trees for our running example in Figure 4.9 presented earlier

in Figure 4.2 to illustrate how our type system would check MINI-JIMPLE programs. All

labels are added to Ψ at the beginning of execution before a statement is actually executed

and the environment is available while type checking the rest of the program. Proof trees

of statements (2),(3) and (5) are given. Proof trees for statements (4) and (6) will be the

same as the one for statement (2).

34

4.4. Type System

Ψ;y1 : τ1, . . . ,yn ` s : ok
Ψ ` τ1y1; . . . ;τnyn : τn;s : ok

(T-Program)

Ψ;Γ ` () : ok
(T-NoStmt)

Ψ;Γ ` s : ok Ψ;Γ ` s seq : ok
Ψ;Γ ` s;s seq : ok

(T-Stmts)

label ∈Ψ

Ψ;Γ ` goto label : ok
(T-GotoStmt)

Ψ;Γ ` exp : BOOL label ∈Ψ

Ψ;Γ ` if (exp) goto label : ok
(T-IfStmt)

Ψ;Γ ` x : τ Ψ;Γ ` exp : τ

Ψ;Γ ` x = exp : ok
(T-AssignStmt)

Ψ;Γ ` exp1 : INT Ψ;Γ ` exp2 : INT

Ψ;Γ ` exp1 < exp2 : BOOL
(T-Condexp)

Ψ;Γ ` exp1 : INT Ψ;Γ ` exp2 : INT

Ψ;Γ ` exp1 + exp2 : INT
(T-AddExp)

x : τ ∈ Γ

Ψ;Γ ` x : τ
(T-Var)

Ψ;Γ ` n : INT
(T-Int)

Ψ;Γ ` true : BOOL
(T-True)

Ψ;Γ ` false : BOOL
(T-False)

Figure 4.7: Typing Rules for MINI-JIMPLE

35

MINI-JIMPLE

Γ ` . : ok
(T-StoreEmpty)

Γ ` µ Γ(y) = τ

Γ ` (µ,y) : ok
(T-StoreVar)

Γ ` µ Γ(y) = τ Γ ` v : τ

Γ ` (µ,(y,v)) : ok
(T-StoreVarVal)

Figure 4.8: Typing Rules for MINI-JIMPLE Local Variable Store

Ψ = {label 1,label 2,label 3}

Proo f tree f or statement (2) :

x : INT ∈ . . .
Ψ; . . . ` x : INT

(T-Var)
Ψ; . . . ` 2 : INT

(T-Int)
Ψ; . . . ` 2 : INT

(T-Int)

Ψ; . . . ` 2+2 : INT
Ψ;x : INT;y : INT;` x = 2+2 : ok

(T-AssignStmt)

Ψ ` int x,y; x = 2+2 : ok
(T-Program)

Proo f tree f or statement (3) :
label 3 ∈Ψ

Ψ;x : INT;y : INT;` goto label 3 : ok
(T-GotoStmt)

Ψ ` int x,y; goto label 3 : ok
(T-Program)

Proo f tree f or statement (5) :
....

Ψ; . . . ` x : INT

....
Ψ; . . . ` 4 : INT

Ψ; . . . ` (x < 4) : BOOL
(T-Condexp)

....
Ψ; . . . ` goto label 2 : ok

Ψ;x : INT;y : INT;` if(x < 4) goto label 2 : ok
(T-IfStmt)

Ψ ` int x,y; if(x < 4) goto label 2 : ok
(T-Program)

Figure 4.9: Type Proof Trees for the Runnning Example

36

4.5. Type Preservation

4.5 Type Preservation

The type preservation proof gives an assurance that the program will be well-typed after

each step of the abstract machine. It is important to prove the soundness of the type system

in order to be sure that well-typed statements will not get stuck during evaluation until all

statements have been evaluated and we reach the no statement marker. We present the proof

and the required lemmas in this section.

Lemma 4.5.1 Updating a store preserves store typing.

This lemma states that if a store µ is well-typed under Γ, local variable x has type τ and

value v also having type τ is assigned to x, the store still remains well-typed.

If

D :Γ ` µ:ok

E :Γ(x) = τ

F :Ψ;Γ ` v:τ

then

G :Γ ` [x 7→ v] µ:ok.

Proof: By induction on the derivation D . In the proof i.h. stands for induction hypoth-

esis.

Case: x 6= y

D =
D1

Γ ` µ Γ(y) = τ Γ ` v′ : τ

Γ ` (µ,(y,v′)) : ok
(T-StoreVarVal)

by i.h. on D1 Γ ` [x 7→ v]µ : ok

by rule (T-StoreVarVal) Γ ` ([x 7→ v]µ,(y,v′)) : ok

by de f inition o f update Γ ` [x 7→ v](µ,(y,v′)) : ok

D =
D1

Γ ` µ Γ(y) = τ

Γ ` (µ,y) : ok
(T-StoreVar)

37

MINI-JIMPLE

by i.h. on D1 Γ ` [x 7→ v]µ : ok

by rule (T-StoreVar) Γ ` ([x 7→ v]µ),y : ok

by de f inition o f update Γ ` [x 7→ v](µ,y) : ok

Case: x = y

D =

D1
Γ ` µ Γ(x) = τ Γ ` v′ : τ

Γ ` (µ,(x,v′)) : ok
(T-StoreVarVal)

by assumption Ψ;Γ ` v : τ

by rule (T-StoreVarVal) Γ ` (µ,(x,v)) : ok

by de f inition o f update Γ ` [x 7→ v](µ,(x,v′)) : ok

D =

D1
Γ ` µ Γ(x) = τ

Γ ` (µ,x) : ok
(T-StoreVar)

by assumption Ψ;Γ ` v : τ

by rule (T-StoreVarVal) Γ ` (µ,(x,v)) : ok

by de f inition o f update Γ ` [x 7→ v](µ,x) : ok

Lemma 4.5.2 Statements are well-typed if the store typing environment (Γ) is extended.

This lemma states that a statement which is well-typed under the local variable typing

environment Γ and is assigned ok will also be well-typed in Γ′ which types all variables in

Γ and possibly more. s will be assigned ok in Γ′ as well.

If

D : Ψ;Γ ` s:ok

E : Γ′ ⊇ Γ

38

4.5. Type Preservation

then

F : Ψ;Γ′ ` s:ok.

Proof: By structural induction on the derivation D . Only two cases are given here.

Case: D =

D1
Ψ;Γ ` exp : BOOL label ∈Ψ

Ψ;Γ ` if (exp) goto label : ok
(T-IfStmt)

by i.h on D1 Ψ;Γ′ ` exp : BOOL

by rule (T-IfStmt) Ψ;Γ′ ` if (exp) goto label : ok

Case: D =

D1
Ψ;Γ ` x : τ

D2
Ψ;Γ ` exp : τ

Ψ;Γ ` x = exp : ok
(T-AssignStmt)

by i.h on D1 Ψ;Γ′ ` x : τ

by rule (T-AssignStmt) Ψ;Γ′ ` x = exp : ok

Theorem 4.5.3 A well-typed sequence of statements (if it is not the end of statements

marker) will take a step according to the evaluation rules and the resulting sequence of

statements will also be well-typed.

The theorem states that if a sequence of statements is well-typed, the store is well-typed,

and the machine can take a step as specified by one of the evaluation rules, then the resulting

sequence of statements will be well-typed and the resulting store will be well-typed. For

this proof we consider the heap as well formed under Ψ.

If

Γ ` µ:ok

Ψ ` H:ok

D :Ψ;Γ ` s seq:ok

E :(H,s) | µ → (H,s′) | µ ′

39

MINI-JIMPLE

then

F :Ψ;Γ ` s seq′:ok

Γ ` µ ′:ok.

Proof: By following the evaluation rules for all possible sequences of statement.

Case: D =
D1

Ψ;Γ ` goto label : ok
D2

Ψ;Γ ` s seq : ok
Ψ;Γ ` goto label;s seq : ok

(T-Stmts)

E =
E1

H(label) = s seq2

(H,(goto label);s seq | µ)→ (H,s seq2 | µ)
(E-Goto)

by inversion on D1 label ∈Ψ

by E1 H(label) = s seq2

by Ψ ` H : ok, heap is well f ormed Ψ;Γ ` s seq2 : ok

by assumption Γ ` µ : ok

Case: D =
D1

Ψ;Γ ` if (exp) goto label : ok
D2

Ψ;Γ ` s seq : ok
Ψ;Γ ` if (exp) goto label;s seq : ok

(T-Stmts)

Subcase 1: E =

E1
exp→ v

(H,(if (exp) goto label;s seq) | µ)→ (H,(if v goto label;s seq) | µ)
(E-IfCond)

by inversion on D1 Ψ;Γ ` exp : BOOL and label ∈Ψ

by type preservation lemma f or expressions :

i f Ψ;Γ ` exp : τ and exp→ v, then Ψ;Γ ` v : τ

there f ore Ψ;Γ ` v : BOOL

by rule (T-IfStmt) Ψ;Γ ` if v goto label : ok

by rule (T-Stmts) Ψ;Γ ` (if v goto label;s seq) : ok

by assumption Γ ` µ : ok

40

4.5. Type Preservation

Subcase 2: E =
E1

H(label) = s seq2

(H,(if true goto label;s seq) | µ)→ (H,s seq2 | µ)
(E-IfTrue)

by inversion on D1 Ψ;Γ ` true : BOOL and label ∈Ψ

by E1 H(label) = s seq2

by Ψ ` H : ok, heap is well f ormed Ψ;Γ ` s seq2 : ok

by assumption Γ ` µ : ok

Subcase 3: E =

(H,(if false goto label;s seq) | µ)→ (H,s seq | µ)
(E-IfFalse)

by D2 Ψ;Γ ` s seq : ok

by assumption Γ ` µ : ok

Case: D =
D1

Γ ` x = exp : ok
D2

Ψ;Γ ` s seq : ok
Ψ;Γ ` Γ ` x = exp;s seq : ok

(T-Stmts)

Subcase 1: E =
E1

exp→ v
(H,(x = exp;s seq) | µ)→ (H,(x = v;s seq) | µ)

(E-AssignExp)

by inversion on D1 Ψ;Γ ` x : τ and Ψ;Γ ` exp : τ

by type preservation lemma f or expressions :

i f Ψ;Γ ` exp : τ and exp→ v, then Ψ;Γ ` v : τ

by rule (T-AssignStmt) Ψ;Γ ` x = v : ok

by rule (T-Stmts) Ψ;Γ ` (x = v;s seq) : ok

by assumption Γ ` µ : ok

Subcase 2: E =

(H,(x = v;s seq) | µ)→ (H,s seq | [x 7→ v]µ)
(E-AssignV)

by D2 Ψ;Γ ` s seq : ok

by lemma 4.5.1 store update is valid

41

MINI-JIMPLE

4.6 Summary

We explained the type system for MINI-JIMPLE in this chpater. The type system has

two types, INT and BOOL, which do not carry any security information for the data in

MINI-JIMPLE programs. In order to represent the security level of data we need a richer

type system with security types. The security types consist of the type of the data and a se-

curity label indicating the security level at which the data may be used. Secure information

flow can only be proven for programs with security types and such a type system can be

built by extending the type system given in this chapter.

42

Chapter 5

Data-Flow Analysis for Secure Information

Flow

This chapter describes a context-sensitive inter-procedural data-flow analysis which

tracks information flow. The context-sensitive analysis was chosen even though it is very

expensive because it is the most accurate of the inter-procedural analyses. This analysis

demonstrates the best results we can possibly get from a data-flow analysis for informa-

tion flow. It was implemented in Soot by extending the flow-analysis framework which

facilitates the implementation of code analyses and optimizations.

A data-flow analysis analyzes each statement in a program and ascertains how data is

being used by the statement [Muc97]. The rules for analyzing each statement depends on

the kind of analysis and they vary from analysis to analysis. Data-flow analyses provide

meaningful information regarding the code to the programmers and the information is also

helpful in guiding optimizations. The details of the data-flow anlaysis work in this research

are presented in this chapter and the next chapter (Chapter 6).

5.1 The Analysis

The information flow analysis has been implemented at the level of the JIMPLE IR (gram-

mar given in Section 2.3). JIMPLE has fewer statements than actual Java and we specify

rules to analyze each one. Our analysis successfully analyzes all statements in JIMPLE

43

Data-Flow Analysis for Secure Information Flow

including the ones that are in the clinit methods (which initialize the static fields). The

flow analysis framework in Soot simplified the implementation of the analysis a great deal.

The information flow analysis makes use of the control-flow information and the points-to

information which is available in Soot. We designed and implemented two analyses: the

first one is class-based explained in this chapter and the second one considers instances of

classes (explained in Chapter 6).

The context-sensitive inter-procedural analysis starts at the main method of the appli-

cation that is being analyzed. It analyzes the statements one after the other and being a

context-sensitive analysis it considers the affect a method call would have on the data that

is collected in the analysis. At a method-invocation the analysis follows the call and com-

pletely analyzes the invoked method statements before continuing to analyze the callee’s

remaining statements. In order to statically approximate the target methods of a call site

the call graph has to be constructed by analyzing the receiver variable at each call site.

Figure 5.1 gives an example of a call site in which variable o is the receiver whose type

suggests the possible methods that could be invoked.

o.foo(arg 1,...,arg n) //Example call site

Figure 5.1: Call Site

Soot computes a call graph which the analysis uses in determining the invoked methods

statically. A precise call graph reduces the number of possible target methods and reduces

the cost of the analysis. Therefore we use the most precise call graph available in Soot

which is constructed by the class hierarchy analysis [DGC95] and is refined by the points-

to information computed by Spark [LH03, Lho02]. The points-to analysis returns a set

of objects to which a variable may point to which is useful in accurately determining the

possibly types of the receiver variable.

The analysis makes use of the control-flow graph information available in Soot in or-

der to know the continuous blocks of statements without any jumps or jump targets. The

44

5.1. The Analysis

mechanism for merging information at the beginning or end of a basic block of statements

together with the rules for analyzing each statement defines a data-flow analysis.

5.1.1 General Rules for Jimple Constructs

The analysis is a data-flow analysis and its specification is presented by the following six

rules.

1. Collects sets of secure (high) data. The high data may be local variables, static or

instance fields, array variables or class names of exceptions in Soot.

2. A variable (local variables or fields) is considered high at a program point p if it is

assigned a value which was computed using at least one secure variable or it was

assigned any value in a high context on any path before p. An exception is high if

the variable in the throw statement is high or the throw statement happens to be in a

high context. In the case of local variable another condition is that it is not assigned

a low value in between the assignment statement and point p and in the case of an

exception is that it is not caught before the statement.

3. It is a forward analysis

4. The confluence operator is union which means that at a control-flow join the variables

in the two joining paths are merged together by the union operator. This means that

variables belonging to either path become part of the set after the join.

5. The following affect the high information set:

• assignment statements with method invocation expressions, field references,

array references and local variables;

• throw statements for exceptions;

• identity statements which assign parameter values to local variables at the be-

ginning of methods and those which catch exceptions;

• control flow statements: if and switch; and

45

Data-Flow Analysis for Secure Information Flow

• method invocation statements.

The data-flow equation for JIMPLE statements is as follows:

out(s) = gen(s) ∪ (in(s) - kill(s))

• out(s) is the set of highs after the statement

• gen(s) contains the data to be made high in the current statement

• in(s) is the set of highs before the statement

• kill(s) contains the data which is no longer high after the statement

We explain the rules for computing the gen and kill sets for JIMPLE statements and

details of the algorithms which have been implemented to enforce the rules in Sec-

tion 5.2.

6. Starting approximations are as follows:

• out(start) = {}. This is a safe approximation because at start no secure data has

entered the application program.

• out(all other statements) = {}. This is an unsafe approximation because it

would have been safe to say that all variables, fields, arrays and exceptions are

at a high security level.

We are computing a least fixed point in this analysis.

5.1.2 Secure Information in the Program

Programming languages have different mechanisms for specifying secure data in programs.

In this work we consider two security levels: a high H security level and a low L security

level as given in Section 2.2.1. We have to make a choice to specify the source of secure

data for our analysis. This will affect the output (that is the information flows and warnings)

but it does not affect the basic running of the analysis.

46

5.2. Analysis Rules for Each Statement

We consider the main argument array as high. The return value of library calls is also

considered high. The library call can be thought of as a possible high user input or a

database access which returns a high data value.

5.2 Analysis Rules for Each Statement

In this section we present how the constructs are analyzed. The analysis takes into con-

sideration the uses and definitions in each statement. Depending on the type of statement,

variables, fields or classes in the case of exceptions are added to the set of highs, and local

variables and classes of exceptions are removed from the set of highs. The fields of all

application (user-defined) classes are considered globals. Even though the instance fields

which belong to different instances of the same class are independent, this analysis makes

no differentiation between them. A field is analyzed based on its name and class in which

it is defined. Therefore static and instance fields are handled in the same manner.

The inSet is the set of high data before a statement. When a statement is analyzed

according to the rule specified for the kind of statement the data that is to be added to the

set of highs are added to the gen set and the data to be removed from the set of highs are

added to the kill set. Once the statement has been analyzed the general flow equation:

out(s) = gen(s) ∪ (in(s) - kill(s))
is applied to compute the outSet which is the set of highs after analyzing the statement.

All the sets in the implementations are flow sets which store Java objects just as Lists. Flow

sets provide useful operations such as add, remove, union of two sets and intersections of

two sets which are used in the analysis.

5.2.1 Analyzing an Assignment Statement

The analysis of the assignment statement can be broken down into three parts depending

on what occurs on the left hand side and right hand side of the assignment statement.

The three parts are dependent on the occurrence or lack of of invocation expressions on

the right-hand side of the assignment statement and array lookups on either side of the

assignment statement. The general rule applies to majority of the assignment statements.

47

Data-Flow Analysis for Secure Information Flow

Simple Assignment Statement

The simple assignment statement has neither an invoke expression nor an array expres-

sion. Some examples are given in Figure 5.2.

The gen set of an assignment statement consists of the variable (local or a instance or

static field) which is assigned the value which is computed using a high variable. The kill

set of an assignment statement is the variable (local or static field) which is assigned a value

computed from variables which are not high before the statement.

The general rule to analyze the assignment statement is as follows:

a = b

In this case, if b is a secure variable, then a will be added to the gen set or if b is an

insecure variable or constant value, then a will be added to the kill set.

a = b + c

In this case, if b or c or both are secure variables, then a will be in the gen set. If both

b and c are insecure variables, then a will be in the kill set.

i2 = <Test: int j>;

i0 = 0;

i1 = lengthof r1;

Figure 5.2: Simple Assignment Statement

In the analysis, at each such assignment statement the variables used (they can be local

variables or fields) are checked if they are present in the set of highs before the statement.

Depending on the security level of the used variables, it is decided whether to add the

defined variable (local variable or field) to the set of the high variables or not. Algorithm 1

presents the pseudocode of the algorithm employed in the implementation of the analysis.

A flag is set if any of the uses in the statement is high and depending on that the variable

being assigned is added to the gen or kill set. Only local variables or static fields can be

48

5.2. Analysis Rules for Each Statement

added to the kill set since we are not sure if there is only one instance of a class.
Algorithm 1: Analyzing an Assignment Statement Not in a High Context

input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Uses← AssignStatement.GetUses ;1

if any use is high then2

set a flag;3

end4

Defs← AssignStatement.GetDefs ;5

if flag is set then6

GenSet.Add (Defs);7

else8

KillSet.Add (Defs);9

end10

Assignment Statement with Invocation on the Right Hand Side

The details of how an invocation is handled are presented in Section 5.2.6. An example

of such a statement is given in Figure 5.3. The only difference between a simple assignment

statement and this statement is that the right hand side is high if the return value of a non-

void method is high or the receiver variable (variable $r5 in Figure 5.3) is high.

virtualinvoke $r5.<my: int setKK(int[],int)>(r3, $i10);

Figure 5.3: Simple Assignment Statement with Invocation on RHS

49

Data-Flow Analysis for Secure Information Flow

Assignment Statement with an Array Expression

According to the JIMPLE grammar, the array expression can be on the left hand side

of an assignment statement in which an array location is being assigned a value of a local

or a constant or it can be on the right-hand side of an assignment statement in which the

value of an array location is assigned to local variable. In the case of arrays in JIMPLE, we

use the base variable information of the array. The security level is enforced on the whole

array because the index values in array reads and writes can not be ascertained statically if

they are not constants. The use of any high value to initialize the array or assignment of a

high value to any of the array’s locations makes the array high. The array can never return

to a low security value since assignment of a low value to one of the array locations can not

be generalized to make the whole array low. In the code snippet in Figure 5.4, when a new

array is initialized, the local variable r1 that first references it becomes the base variable.

Further on when r2 also references the same array (after statement r2 = r1), any use of r2

will have the base variable as r2. r2 will be added to the set of high variables if r1 was high

by the analysis of the simple assignment statement.

r1 = newarray (int)[8];

r2 = r1;

i3 = r2[0];

r2[5] = i5;

Figure 5.4: Array Declaration and Use

If an array expression occurs on the right-hand side (i3 = r2[0]; in Figure 5.4), the

security level of the array index variable or the base variable is ascertained. If either of

them is high, then a flag is set. Algorithm 2 presents the pseudocode of the analysis. On

the other hand if an array expression occurs on the left-hand side (r2[5] = i5; in Figure 5.4),

the security level of the uses are checked. If the uses are high or the array index variable

of the array is high, then the base variable is added to the gen set. The pseudocode for the

50

5.2. Analysis Rules for Each Statement

analysis is presented in Algorithm 3.
Algorithm 2: Assignment Statement with Array Expression on RHS

input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Uses← AssignStatement.GetArrayExp ;1

if array index is high or array base variable is high then2

set a flag;3

end4

Defs← AssignStatement.GetDefs ;5

if flag is set then6

GenSet.Add (Defs);7

else8

KillSet.Add (Defs);9

end10

Algorithm 3: Assignment Statement with Array Expression on LHS
input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Uses← AssignStatement.GetUses ;1

if any use is high then2

set a flag;3

end4

Defs← AssignStatement.GetArrayExp ;5

if flag is set or array index is high then6

GenSet.Add (ArrayBaseVar);7

else8

DoNothing ;9

end10

51

Data-Flow Analysis for Secure Information Flow

5.2.2 Conditional Statements

Statements which have branch conditions and affect the control-flow are potential places

where an implicit flow might occur. In order to successfully identify an information leak

that might occur in the branch of conditionals we need to point out which statements are

in the branch. The conditional expression is analyzed and it is ascertained as to whether a

variable used in the conditional expression is high. If it is found that the conditional ex-

pression uses a secure variable, then all the statements in the branches need to be analyzed

in a high context. In a high context any variable that is assigned to will be added to the set

of highs even if a low value is being assigned to it in order to prevent implicit flows. The

conditional statements encountered at the JIMPLE level are if-statements and switch-case

statements. We explain in detail about how the analysis works for the if-statement and

the switch-case statement is exactly the same except for the fact that it may have several

branches depending on the number of cases.

Consider the program segment:

if (a > b)

then

(1) x = 1;

else

(2) x = 2;

In order to analyze the if-statement given above we require information that both state-

ments (1) and (2) belong to the branches of the if-statement. The control-flow graph used

in the analysis does not give this information directly. Therefore another analysis was

used for the information. The relationship between branch-dependant statements and the

conditional statement can be defined in terms of a postdominance relationship 1. All the

statements which do not post-dominate the conditional statement are branch-dependant

excluding the statements in the program before the conditional statement and the state-

ments which are in the program after the merge. We used the Backward Control Flow

1Statement s1 postdominates statement s2 if every possible execution path from s2 to exit includes s1.

52

5.2. Analysis Rules for Each Statement

Analysis [PV04] which gives exactly the information required. It gives a set of all branch-

dependant statements of a conditional statement.

Figure 5.5 presents a control-flow graph with 10 nodes each representing a statement.

Node 1 is a conditional-statement. Statements 6 and 9 are the only statements which post-

dominate statement 1 since all paths through node 1 will definitely pass through nodes 6

and 9. The control-flow may or may not execute statements in nodes 2 thru 5 or 7 and 8.

The statements 2 thru 5 are branch-dependant on node 1 but 7 and 8 are not since they are

after the merge node 6 and node s is not branch-dependent since it is before the conditional

statement.

1

2

3

4

5

6

9

S

7

8

Figure 5.5: Control-flow Graph

Algorithm 4 gives the pseudocode of the analysis at a conditional statement of the kind

if (a > b). The analysis will first check if any of the used variables is in the set of high

variables. If any one of them is, then the Backward Control Flow Analysis gives a set of

all the branch-dependant statements which is stored in a global Hashtable. The statements

in the set will be analyzed in a high context.

5.2.3 Tracking the Return Value of Non-void Methods

Non-void methods return some value which could also be at a high or low security level.

Therefore the return statements (example in Figure 5.6) in JIMPLE are also analyzed. Al-

gorithm 5 gives the pseudocode of how a return statement is analyzed in a non-void method.

A flag is set if the return expression (i0 in Figure 5.6) in a return statement is found to be

53

Data-Flow Analysis for Secure Information Flow

Algorithm 4: Analyzing an If-statement in Jimple
input : IfStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Uses← IfStatement.GetUses ;1

if any use is high then2

Stmts← IfStatement.GetBranchDependantStmts ;3

Store Stmts set in a global Hashtable;4

end5

at a high security level or the statement is analyzed in a high context. The information set

in the flag is used by the callee method if the result of a non-void method is assigned to a

local variable.

return i0;

Figure 5.6: Return Statement Example

Algorithm 5: Analyzing a Return Statement
input : ReturnStatement, Gen Set, Kill Set

output: Gen and Kill Sets

Uses← AssignStatement.GetUses ;1

if use is high or statement in high context then2

set a flag indicating returned value is high;3

end4

54

5.2. Analysis Rules for Each Statement

5.2.4 Exceptions

In Java there are two kinds of exceptions: explicit and implicit. The implicit ones are

generated by the JVM when there is some specific runtime problem in the execution of the

code. Class Cast Exception is an example of an implicit exception. Implicit exceptions are

potential places where an information leak might occur. Such exceptions are not handled

in our analysis due to the resulting excessive conservativeness in the call graph. Every

Bytecode instruction has the potential of throwing implicit exceptions and this would imply

exception edges from pretty much every Bytecode.

There are two constructs in JIMPLE which are specific to explicit exceptions. The

first is the throw statement which throws exceptions where as the second one is the catch

statement. A catch statement is a kind of identity statement and they are the first statement

in an exception handler code block.

Throw statement

In JIMPLE, exceptions are generated and then thrown by the statements as shown in

Figure 5.7. The third statement in the figure, throw $r10, actually throws the exception. At

such a statement, the analysis checks if the variable used (in this case $r10) is in the set

of high variables, or the statement is being analyzed in a high context. If any of the two

conditions is true, then the class of the exception is added to the set of highs.

$r10 = new java.lang.NumberFormatException;

specialinvoke $r10.<java.lang.NumberFormatException:

void <init>()>();

throw $r10;

Figure 5.7: Throw statement

55

Data-Flow Analysis for Secure Information Flow

Catch Statement

The catch statement is the first statement of a block of code that handles the exception.

The statement before the caught exception identity statement is a label since all statements

in the try statement that the catch covers jump to the label if an exception is generated. In

Figure 5.8, an example of an identity statement with a caught exception is presented. At

such a statement, the analysis finds out what is the class of the exception being caught. If

the set of highs contains an exception that is the same or a subclass of the exception being

caught at the identity statement, then the class of the exception is added to the kill set of

the statement.

The merge operator of the analysis is union so if an exception is not caught along all

branches of a control-flow with several branches, then it stays in the set after the join of

all the branches. Some exceptions may be thrown in a method but not caught in the same

method. They go beyond the boundary of the method and can be caught in the callee

method and so they remain in the set of highs that are passed back to the callee method.

label2:

$r12 := @caughtexception;

Figure 5.8: Catch statement

5.2.5 Assignment Statement in a High Context

It is possible for an assignment statement to be in the branch of a high-conditional and so

it will be analyzed in a high context. The analysis rule of an assignment statement needs to

be amended to take this into consideration. The statements which are branch-dependant on

a high conditional expression will be analyzed in a high context as follows:

Case: a = b

In this case, a will be added to the gen set even if b is not in the set of highs.

Case: a = b + c

In this case, a will be added to the gen set even if both b and c are not in the set of highs.

56

5.2. Analysis Rules for Each Statement

Variable a could be a local variable, field (instance or static) or an array write ex-

pression. The right hand side of the assignment statement could be a local variable, field

(instance or static), an array read expression, an invoke expression or any other expression.

The pseudocode of the improved analysis which takes a high context into consideration is

presented in Algorithm 6. The only change required is that it is also now checked if the

statement belongs to a set of statements which need to be analyzed in a high context.

Algorithm 6: Analyzing an Assignment Statement in a High Context
input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Uses← AssignStatement.GetUses ;1

if any use is high or statement is in a high context then2

set a flag;3

end4

Defs← AssignStatement.GetDefs ;5

if flag is set then6

GenSet.Add (Defs);7

else8

KillSet.Add (Defs);9

end10

5.2.6 Method Invocations

The analysis follows the call graph at a method invocation. At each call site, the receiver

suggests the type of the object and the method name identifies the method invoked. It

is possible that the receiver can be of more than one type. The call graph provides this

information and in the case where more than one type is possible at runtime both methods

are statically analyzed. The sets of highs after analyzing each method are merged. An

example invocation statement is given in Figure 5.3.

Algorithm 7 presents the pseudocode to analyze method calls. The possible methods

which could be called at a call site are obtained from the call graph. It is possible for

57

Data-Flow Analysis for Secure Information Flow

information passed through parameters of a call to be at a high security level. Therefore

security level information for parameters is passed when the analysis is called on the in-

voked method. This information is utilized at the identity statements which are present at

the beginning of each method in JIMPLE. These statements assign the value of the param-

eters to the locals. One identity statement is present for each parameter of a method. At

each such statement, the security level information of the parameters is used to decide if

the local should be added to the set of high variables. An example identity statement is

given in Figure 5.9 which assigns the value of parameter 1 to local variable i.

Algorithm 7: Analyzing an Invoke Statement
input : InvokeStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

MethodsInvoked← InvokeStatement.GetMethodsInvoked from call graph;1

Set security level of parameters;2

Pass set of high fields as initial set of highs;3

Analyze all MethodsInvoked ;4

Merge Results of all methods possibly called;5

GenSet.Add (All high fields and exception classes returned);6

KillSet.Add (All high fields before call);7

i0 := @parameter1: int;

Figure 5.9: Identity Assignment

In the analysis the fields are considered globals and so the high fields before the call

are present in the initial set of highs for the analysis of the invoked method. The returned

set of highs contains the fields which are high after the method has been analyzed and any

uncaught high exception classes. The returned set of high fields is merged with the locals

variables which were high before the call.

58

5.2. Analysis Rules for Each Statement

5.2.7 Method Call in a High Context

Invoke statements or assignment statements containing an invoke expression may occur

in the branch of a conditional statement which branches on a high variable value or they

might be in a high context. In such a case the invoked method is analyzed in a high context

to prevent any implicit leak of information. In our analysis the receiver variable (variable

$r5 in Figure 5.3) being present in the set of highs is not a reason to analyze the invoked

method in a high context.

5.2.8 Limitations of the Analysis

Instance fields cannot be removed from the set of highs because we are not certain that we

only have a single instance of a class. An instance field represents the field in all instances

of the class in which it is defined and all the subclasses of that class. Therefore the first

assignment of a high data to the field makes the field high for the rest of the analysis. In

the analysis explained in the next chapter we make a distinction between fields of different

instances of a class.

Arrays, once in the set of high information, are not removed from the set of highs

because we cannot statically determine the index values in array references if they are not

constant values. We consider each array as a single entity with regards to information flow.

In the current implementation of the analysis we handle recursion by pushing all the

globals (fields of all application classes) to high when the analysis encounters recursion. A

better approximation would be to compute a fixed point.

Library methods are not analyzed since the analysis did not run to completion when

very small applications with library calls were analyzed. We include the libraries in our

analysis by considering the return values from libraries as high and the high arguments to

library methods are counted as warnings since library methods can possibly output high

data to a user.

59

Data-Flow Analysis for Secure Information Flow

5.3 Proof of Monotonicity

The statement rules update the set of data collected monotonically in order to make sure that

the data-flow analysis terminates. We get monotonicity because the rules deterministically

analyze the statement depending on the inSet values. If we have sets of highs S1 and S2

where S1 is a subset of S2 and we analyze the same statement (for example a = b + c) with

S1 as inSet and then S2 as inSet we end up with outSets S1′ and S2′ respectively. According

to the analysis rule variable a will be added to the set of highs if either variable b or variable

c is high. S1′ will still be a subset of S2′ after analyzing the statement because if variable a

is added to S1 it will also be added to S2 but not necessarily the other way round. This is

accurate because if variable b or c are in S1 they will also be in S2. However, it is possible

that either b or c are in S2 but not in S1. In this case set a will be added to S2 but not to S1

when the statement is analyzed.

5.4 Summary

We have presented the details of the information flow analysis which considers all fields

as globals in this chapter and the security level of fields belonging to different instances of

an object is merged together. The next chapter describes the analysis which uses points-

to information to differentiate between fields belonging to different instances of the same

class.

60

Chapter 6

Data-Flow Analysis Using Spark Information

Spark [LH03, Lho02] is a package in Soot which measures the context-insensitive 1

points-to information for variables in a JIMPLE program. If a local variable used anywhere

in JIMPLE code points to an object Spark gives the allocation site (one or many) whose

instance the variable may be pointing to. This way we can differentiate between data

for two different instances of the same class. In the code snippet given below the two

statements instantiate two instances of the Object class in Java and are assigned to variables

o1 and o2. The instance fields in o1 and o2 will be independent. Spark will provide

information that o1 and o2 have different allocation sites.

Object o1 = new Object();

Object o2 = new Object();

The analysis described in Chapter 5 considered a single instance for all fields of a class.

Essentially we made no differentiation between a static field and an instance field; we

considered different instances of a field for the same class or its subclasses as the same.

In this chapter we present the second analysis which uses Spark points-to information in

order to differentiate between instance fields of different objects and between different

array objects.

1In a context-insensitive analysis the analysis approximates the side-effects of the method invoked at a
call site [Muc97]

61

Data-Flow Analysis Using Spark Information

6.1 Spark Points-to Information

The alias information from Spark is used to make a distinction between data of different

instances of objects. This will impact the information flow analysis because now the first

assignment of a high data to an instance field of a class will not make it high for the

rest of the analysis. In fact now we only need to make the instance field of particular

instance(s) high depending upon the information obtained from Spark. The code presented

in Figure 6.1 has two allocation sites (labelled Allocation Site 1 and Allocation Site 2) for

initializing instances of class Two. The instance field i for the class Two will be independent

for object instances obj1 and obj2 and so the security level of field i in obj1 does not affect

the security level of field i in obj2. In the previous analysis at statement S1 (obj1.i = x),

if x is high then field i also becomes high. When the statement S2 is analyzed, field i

remains high even though it is assigned a constant value 4. At statement S3, even though

myInt is assigned the value of instance obj2’s field i, it will still become high because the

analysis cannot tell the difference between instance field i of obj1 and obj2. Spark can

differentiate between the two instances obj1 and obj2. The Spark points-to analysis is used

in the analysis to obtain the allocation sites of the objects pointed-to by variables obj1 and

obj2. At statement S3 (myInt = obj2.i), Spark will give information that obj2’s allocation

site is Allocation Site 2 and since field i of obj2 is low, myInt will remain low. This helps in

reducing the number of statements in the program where secure data is used. Assignment of

field i of obj2 is actually safe but due to the conservative approximation of the first analysis

it was considered unsafe.

Spark cannot always deterministically tell that a local points to a specific allocation

site. In the code given in Figure 6.2, at statement S1 (obj1.i = x), obj1 may point to the

Allocation Site 1 before the if-statement or the Allocation Site 2 in the branch of the if-

statement. It cannot be confirmed which allocation site obj1 points to if boolean value of

the conditional expression of the if-statement cannot be ascertained statically. In this case,

the instance field i for both allocation sites would be made high if x is high.

Similar to the analysis in Chapter 5 a high field cannot be made low since we have a

may points-to analysis and not a must points-to analysis in Spark. A may points-to analysis

cannot tell that a local definitely points-to only one instance of a class. Such information

62

6.1. Spark Points-to Information

public class FirstTest{
public static int x = 100;

public static void main (String[] args){
int myInt, myInt2;

myInt2 = Two.j;

Two obj1, obj2;

obj1 = new Two(); //Allocation Site 1

obj2 = new Two(); //Allocation Site 2

obj1.i = x; //S1

obj2.i = 4; //S2

myInt = obj2.i; //S3

}
}
class Two{

public int i;

public static int j = 50;

public Two(){
}

}

Figure 6.1: Example Highlighting Usefulness of Spark

comes from a must points-to analysis. Consider the example in Figure 6.3 in which we

have Allocation Site 1 which is the only allocation site for initializing objects of class Two.

Assume statement S1 assigns a high data value x to field i of obj1. At statement S2 field

i is assigned a constant value which is at a low security level. Even though a low value is

assigned to field i we cannot change the security level of the field to low. The points-to

analysis will return just one allocation site (Allocation Site 1) for obj1 but we can observe

that the allocation site is in a while loop and we do not have the information that it will be

executed only once.

63

Data-Flow Analysis Using Spark Information

public class SecondTest{
public static int x = 100;

public static void main (String[] args){
int myInt, myInt2;

myInt2 = Two.j;

Two obj1;

obj1 = new Two(); //Allocation Site 1

if(myInt2 > 100)

obj1 = new Two(); //Allocation Site 2

obj1.i = x; //S1

}
}

class Two{
public int i;

public static int j = 50;

public Two(){
}

}

Figure 6.2: More Than One Allocation Site

6.2 Incorporating Points-to Information

In order to incorporate points-to information into the basic analysis described in Chapter 5

a number of changes had to be made to both the initial data structures and to the analysis

rules.

6.2.1 Changes in the Data Structures Used

Changes to the domain of high data collected in the analysis necessitates some changes

to initial data structures used. The flow sets from the previous analysis now contain high

64

6.2. Incorporating Points-to Information

public class SecondTest{
public static int x = 100;

public static void main (String[] args){
int myInt, myInt2;

myInt2 = 120;;

Two obj1;

while(myInt2 > 100){
obj1 = new Two(); //Allocation Site 1

myInt2−−;

}
obj1.i = x; //S1

obj1.i = 5; //S2

}
}

class Two{
public Two(){}

}

Figure 6.3: Allocation Site in a While Loop

static fields, local variables and classes of high exceptions.

In order to track high instance fields we added a global Hashtable into the analysis.

In our case since we need to differentiate between instance fields of objects instantiated at

different allocation sites, the fields are the natural choice for the key and a List of allocation

nodes (corresponding to allocation sites) for which the key (field) is high are the values.

We had to introduce another global data structure to keep a record of high instances of

arrays. A List data structure was sufficient. Arrays are objects and they have allocation

nodes for the statement where they were initialized. An array initialization statement in

Java code (labelled ”Array initialization”) is presented in Figure 6.4. We only need to keep

track of the allocation sites for the high arrays which can be stored in a List.

65

Data-Flow Analysis Using Spark Information

public class FirstTest{
public static void main (String[] args){

int[] myArray = new int[10]; //Array initialization

myArray[1] = 5;

}
}

Figure 6.4: Array Initialization

6.2.2 Analysis Rules For Expressions

The analysis rules for statements that have fields and arrays had to be adjusted to make

use of the points-to information from Spark. We explain how each of the expressions is

handled by our analysis in the following sections with the aid of example code snippets

and algorithm descriptions.

Instance Field Read

Field accesses in JIMPLE occur on the right hand side of an assignment statement (example

in Figure 6.5). In order to ascertain the security level of the field that is being accessed

the we have to find out which allocation site r1 points-to. Once we have obtained the

information about the allocation site(s) that r1 points to, we matched it with the allocation

sites (instances of class Two) for which field i is high. If any of the allocation sites that r1

points-to has field i high, then a flag is set. If the flag is set, the local variable (in this case

i2) is added to the gen set, otherwise, i2 is added to the kill set. The algorithm for analyzing

instance field read is presented in Algorithm 8.

Instance Field Write

Instance field writes occur on the left hand side of the assignment statement in JIMPLE.

The right hand side of the same assignment statement will have a local variable (as shown

66

6.2. Incorporating Points-to Information

i2 = r1.<Two: int i>;

Figure 6.5: Example of Instance Field Read in Jimple

Algorithm 8: Analyzing Instance Field Read
input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

InstanceField← AssignStatement.GetInstanceField ;1

LocalVariable← AssignStatement.GetLocalVariable ;2

AllocationNodes← PointsToAnalysis.GetAllocNodes (LocalVariable);3

if InstanceField is high for any AllocationNode that LocalVariable points-to4

then
set a flag;5

end6

Defs← AssignStatement.GetDefs ;7

if flag is set then8

GenSet.Add (Defs);9

else10

KillSet.Add (Defs);11

end12

in Figure 6.6) or a constant. The decision to mark field j high will depend on the security

level of variable i3. If i3 is high then field j will be marked high for all the instances of class

Two which the variable r1 points-to. In the analysis the allocation sites of the instances are

ascertained and they are added to the global Hashtable which records the high instance

fields. The procedure is presented in Algorithm 9. If variable i3 is not in the set of highs

nothing is done since we cannot move a field to low due to the fact that we are working

with a may points-to analysis.

67

Data-Flow Analysis Using Spark Information

r1.<Two: int j> = i3;

Figure 6.6: Example of Instance Field Write in Jimple

Algorithm 9: Analyzing Instance Field Write
input : AssignStatement, Gen Set, Kill Set

output: Changed Global High Instance Field Hashtable

Uses← AssignStatement.GetUses ;1

if any use is high then2

set a flag;3

end4

InstanceField← AssignStatement.GetInstanceField ;5

LocalVariable← AssignStatement.GetLocalVariable ;6

AllocationNodes← PointsToAnalysis.GetAllocNodes (LocalVariable);7

if flag is set then8

mark InstanceField high for all AllocationNodes LocalVariable may9

point-to in global Hashtable;
end10

Array Initialization

Arrays are just like objects and are treated as such by the points-to analysis. All variables

which reference an array point to one or more allocation sites where the array being ref-

erenced was initialized. Array initialization expressions are present on the right hand side

of assignment statements. The expressions use a local in the case of a single dimensional

array or several locals in the case of multi-dimensional array initializations. In the example

in Figure 6.7, a single dimensional array is initialized and the length is specified by the

local variable i5. If i5 is found to be high then the allocation node for the array pointed to

by local variable r1 is added to the List which contains the allocation sites of all the arrays

68

6.2. Incorporating Points-to Information

which are high. The left hand side of an array initialization expression is always assigned

to a local. The functioning of the analysis for array initialization expressions is presented

as pseudocode in Algorithm 10.

r1 = newarray (int)[i5];

Figure 6.7: Example of Array Initialization in Jimple

Algorithm 10: Analyzing Array Initialization
input : AssignStatement, Gen Set, Kill Set

output: Changed High Array Instances’ List

Uses← AssignStatement.GetUses ;1

if any use is high then2

set a flag;3

end4

LocalVariable← AssignStatement.GetDef ;5

if flag is set then6

AllocationNode← PointsToAnalysis.GetAllocNode (LocalVariable);7

Add AllocationNode to List of High Array Instances;8

end9

Array Length Operation

This case is similar to the array initialization. The length expression occurs on the right

hand side of an assignment statement and the result is assigned to a local variable. An

example statement is presented in Figure 6.8. In order to ascertain the security level of the

array referenced by variable r2 the allocation nodes which r2 may point-to are obtained by

using the points-to analysis. If any of the allocation nodes are present in the List of high

69

Data-Flow Analysis Using Spark Information

array instances a flag is set and using the information from the flag the local variable (i5 in

the example) is added to the gen set (if flag is true) or to the kill set (if flag is false). The

procedure is described in Algorithm 11.

r2 = newarray (int)[i3];

i5 = lengthof r2;

Figure 6.8: Example of Array Length Expression in Jimple

Algorithm 11: Analyzing Array Length Expression
input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

Use← AssignStatement.GetUse ;1

if Use instanceof LengthExpr then2

LocalVariable← LengthExpr.GetLocalVariable ;3

AllocationNodes← PointsToAnalysis.GetAllocNodes (LocalVariable);4

end5

if any AllocationNode is in List for high Arrays then6

set a flag;7

end8

Defs← AssignStatement.GetDefs ;9

if flag is set then10

GenSet.Add (Defs);11

else12

KillSet.Add (Defs);13

end14

70

6.2. Incorporating Points-to Information

Array Read

The array location access expression is always on the right hand side of an assignment

statement and the location value is assigned to a local variable as shown in Figure 6.9.

In such an expression there is a base variable (r2 in Figure 6.9) which points-to the array

object and an index variable (i8 in Figure 6.9) or constant which gives the index of the array

location to access. The analysis has to check the security level of the array object as well

as the index variable to decide whether to add i3 to the gen set or the kill set. If either the

array object is high or the index variable is high then i3 will be added to the gen set. The

security level of the array object is ascertained by using the points-to analysis to find out to

which allocation node(s) r2 points-to. If any of the allocation node(s) is in the High List of

arrays or the index variable is high before the statement the flag is set to true. This method

for analyzing the statement is presented in Algorithm 12.

i3 = r2[i8];

Figure 6.9: Example of Array Read in Jimple

Array Write

The array location write expression is on the left hand side of an assignment statement and

it is assigned the value of a local variable or a constant. i4 is the local variable whose

value is assigned to the array r2 at index i0 in the example in Figure 6.10. The analysis

decides to add the array allocation node pointed to by the base variable to the High List

of arrays if either the value on the right hand side (i4 in Figure 6.10) of the assignment

statement is high or the index variable (i0 in Figure 6.10) is high. If either or both of values

is high a flag is set and then the allocation node(s) pointed-to by the array base variable (r2

in Figure 6.10) is added to the global List marking all high array instances. The analysis

procedure is presented in Algorithm 13.

71

Data-Flow Analysis Using Spark Information

Algorithm 12: Analyzing Array Location Read
input : AssignStatement, Gen Set, Kill Set

output: Changed Gen and Kill Sets

ArrayExp← AssignStatement.GetArrayExp ;1

BaseVariable← ArrayExp.GetBaseVariable ;2

IndexVariable← ArrayExp.GetIndexVariable ;3

AllocationNodes← PointsToAnalysis.GetAllocNodes (BaseVariable);4

if ArrayInstance is high for any AllocationNode that BaseVariable points-to or5

IndexVariable is high then
set a flag;6

end7

Defs← AssignStatement.GetDefs ;8

if flag is set then9

GenSet.Add (Defs);10

else11

KillSet.Add (Defs);12

end13

r2[i0] = i4;

Figure 6.10: Example of Array Location Write in Jimple

72

6.2. Incorporating Points-to Information

Algorithm 13: Analyzing Array Location Write
input : AssignStatement, Gen Set, Kill Set

output: Changed Global High Instance Array List

Use← AssignStatement.GetUse ;1

ArrayExp← AssignStatement.GetArrayExp ;2

IndexVariable← ArrayExp.GetIndexVariable ;3

if any use is high or IndexVariable is high then4

set a flag;5

end6

BaseVariable← ArrayExp.GetBaseVariable ;7

AllocationNodes← PointsToAnalysis.GetAllocNodes (BaseVariable);8

if flag is set then9

add all AllocationNodes BaseVariable may point-to in the global List;10

end11

Special Case for Main Method String Array Argument

The command-line arguments to the main method are considered high security in our anal-

ysis. We had to specify a special rule to analyze the identity statement which assigns the

string array argument of the main method to a local variable. The only argument to a main

method is the string array and so when the analysis encounters an identity statement with

a parameter reference (example shown in Figure 6.11) while analyzing the main method it

has to be the assignment of the string array argument to a local variable. The local variable

on the left hand side of the identity statement (r0 in Figure 6.11) points-to the allocation

node of the string array. The points-to analysis gives the information about the allocation

node which is added to the List of high array instances. The pseudocode is presented in

Algorithm 14. The initialization statement for the string array is in a method which is

executed before the main method. We did not have to analyze that method with the initial-

ization statement because the local variable on the left hand side of the identity statement in

the main method points-to the allocation site and the identity statement is analyzed before

any other statement in JIMPLE code.

73

Data-Flow Analysis Using Spark Information

public static void main(java.lang.String[])

{
java.lang.String[] r0;

r0 := @parameter0: java.lang.String[];

}

Figure 6.11: Main Method String Array Argument

Algorithm 14: Analyzing Identity Statement of Main Method
input : IdentityStatement, Gen Set, Kill Set

output: Changed High Array Instances’ List

if main method is being analyzed and identity statement has a parameter1

reference then
LocalVariable← IdentityStatement.GetDef ;2

AllocationNode← PointsToAnalysis.GetAllocNode (LocalVariable);3

Add AllocationNode to List of High Array Instances;4

end5

6.2.3 Statements in High Contexts

It is possible that assignment statements that have an instance field reference or an array

reference occur in the branch of a high conditional or a method which is analyzed in a

high context. The algorithms in Section 6.2.2 will adjust accordingly if the statements are

analyzed in a high context since now even if the right hand side data is not high the left

hand side data will be added to the set of highs. The local variable of a primitive type on

left hand side will be added to the gen set. In the case when the local variable references

an object, then:

• for a field reference, the field is marked high for all the allocation node(s) that the

local variable may point-to in the global Hashtable which tracks high instance fields;

74

6.3. Summary

and

• for an array reference, all allocation node(s) that the local variable may point-to are

added to the global List which tracks the high array instances.

6.3 Summary

We explained the analysis which uses information obtained from the Spark points-to anal-

ysis in this chapter. First we gave the benefit of using points-to information in an informa-

tion flow analysis and then we described the changes that we had to make in terms of the

data structures used and the statement analysis rules to adapt the first analysis explained in

Chapter 5. In the next chapter we present our experimental findings on the two analyses.

75

Data-Flow Analysis Using Spark Information

76

Chapter 7

Experimental Results

This chapter reports an empirical study on the information flow analyses. The first

section describes the experimental model, the second section presents a view of the high

data in a program in the Soot Eclipse Plug-in, the third section describes the metrics and

the last section gives a brief overview of the benchmarks and the tabulated data with a

discussion on the values calculated. A user guide is given in Appendix A where information

on where to obtain Soot and the analysis code can be found.

7.1 Experimental Model

The goal of an information flow analysis is to track secure data in a program and identify

places in the program where the data may leak to unwanted users. Figure 7.1 presents

this idea. Before the assignment statement (a = b + c) variable b is high and it is used as

an operand in the addition expression and the result is assigned to variable a. Since a is

assigned the result of a computation which uses a secure data it is also added to the set of

high data. The print statement after the assignment statement gives out the value stored in

variable a to a user. a stores a high data value and it should only be given out to a user

who has the right permission to observe secure data. Our analyses track the secure data and

generate a warning if there is a possibility of giving out the data to a user.

In Java data is given out to a user in many ways some of which are standard output,

graphical user interface or database writes. These all invoke a Java library method which

77

Experimental Results

HIGH VARS.CODE

<snip> {b}
a = b + c;
print (a);

Warning must be generated
Secure data given out to the user

{a,b}

Figure 7.1: Experimental Model

calls a native method on the machine in the call chain to eventually give out the data to a

user. Pursuing our goal of providing a practical solution to the information flow problem

we tried to analyze all of Java library code and generate a warning when an actual native

method is called with an argument which is high. We ran the simplest benchmark on the

library but our analysis could not to completion due to lack of memory. Since the number

of possible calling sequences are exponentially big in the range of 1011 we had to mark

out the library code in our tests. In our tests we analyze the Java application classes and

generate warnings whenever a Java library method is invoked and it is passed a high data

value as argument. The analyses also count the number of information flows possible in a

program either implicitly or explicitly at assignment statements.

The analyses keep track of the set of high data at each statement in a program during

the inter-procedural analysis. If a statement is encountered more than once in the analysis

the merge (union) set of the high data is stored each time. Once the analysis completes

analyzing the program we have a set of highs associated with each statement in the program.

We use the high set of data to calculate values for our metrics presented in Section 7.3. The

metrics provide the following information about secure data:

• in the case of assignment statements whether they read or write secure data;

• in the case of catch statements for exceptions if they catch a high exception in a low

context; and

78

7.2. Sample Run and Viewing Results in Eclipse

• in the case of a library method invocations if high data is passed as argument.

7.2 Sample Run and Viewing Results in Eclipse

Eclipse [Ecl] is an open-source, extensible integrated development environment (IDE).

Eclipse was designed as a plug-in framework where one can easily add new functional-

ity. Soot has a plug-in [Lho05] for Eclipse and the result of the analysis can be viewed in it.

Figure 7.2 presents a sample program. The code presented is Java and it only reflects how

the analysis manages the set of high data at each statement. The set of secure variables is

given after each statement in the code. The initial set is assumed to contain the private field

i of the class Test. At each statement it can be seen that the set of high variables changes

depending on the security level of the variables used and defined in the statement and the

set of secure variables before the statement. The conditional expression in the if-statement

is a high conditional since the variable y is high when it is evaluated. Therefore variable x

in the assignment statement, which is in the branch of the if-statement, is added to the set

of high data even though it is assigned a value of a constant which is at a low security level.

The same program’s JIMPLE code is analyzed using our analysis assuming field i as the

initial secure data value. The analysis collected the high data sets for each statement and

the variables which can store a high data value are tagged. The tagged variables are given

a dark background in the JIMPLE output which is viewed in the Soot Eclipse plug-in. A

sample screen shot is given for the tagged JIMPLE code in Figure 7.3. The variables which

are high at each statement in the JIMPLE code can be identified clearly.

7.3 Metrics

The two categories of the kinds of information flows are: explicit flows and implicit flows.

Besides the explicit and implicit flows there are possible information flows due to excep-

tions and secure data being passed to libraries in our analyses. We define metrics which

give numerical values for the kind of information flows and warnings which can occur in a

program. There are no well known metrics to evaluate information flow in programs.

79

Experimental Results

//The set of high data is given after each statement in curly brackets

public class Test {
private static int i; Initial set: {i}
public static void main(String[] args){ {i}

int x,y,z; {i}
x = i; {i,x}
x = 1; {i}
y = i; {i,y}
z = 8; {i,y}
if(y == z){ {i,y}

x = 5; {i,y,x}
}

}
}

Figure 7.2: Example Run of Analysis

We specified eight metrics: six of which are specific to assignment statements in JIMPLE

and one each counts an important aspect about exceptions and secure data leaking to library

code. Numbers for the same metrics were counted for both our analyses, the first one ex-

plained in Chapter 5 and the second one explained in Chapter 6, to find out the affect of

using points-to information to differentiate between instance data of two instances of a

class has on the different kinds of information flows and warnings. Each of the defined

metrics are now explained in turn.

Explicit Flow from a High to Low (H ↪→ L)

This metric gives the number of statements which assign secure data to variables in a

program which previously did not store secure data. Such statements allow secure data to

spread in the program.

80

7.3. Metrics

Figure 7.3: Analysis Results in Eclipse

Explicit Flow from a High to High (H ↪→ H)

This flow occurs when the right hand side of an assignment statement has a high use

but the left hand side is also high. A high numerical value for this flow suggests that secure

data is present in most of the statements in a program.

81

Experimental Results

Explicit Flow from a Low to High (L ↪→ H)

In the case when the right hand side of an assignment has no high use it is not required

to push the left hand side to high. When it is found to be high even though the right hand

side is low a flow from a low to a high is added. This statement is safe and does not spread

secure data in the program.

Explicit Flow from a Low to Low (L ↪→ L)

This metric is quite straight forward. A safe assignment is counted in this case when

there is no secure data on the left hand side or the right hand side of the assignment. High

number of these statements in a program is a good sign as it suggests that most of the data

in the program is not confidential.

Implicit Flow from a High to Low (H ; L)

When an assignment statement is in the branch of a high conditional statement or the

method is being analyzed in a high context all assignments are considered secure since

partial information about a secure conditional expression can be possibly known by an

unwanted user. Therefore the left hand side of an assignment is always marked secure.

This metric counts the number of times the left hand side was low before the statement was

analyzed and is pushed to high at the particular statement. A large number of these implicit

flows suggest many conditional statements in the program which use secure data.

Implicit Flow from a High to High (H ; H)

This metric counts those instances when the left hand side of an assignment statement,

which happens to occur in the branch of a high conditional or a high context, is already

high. High numbers of this flow in a program suggests that there is widespread use of

secure data in the program.

82

7.4. Experimental Results

Catch Exception in a Low Context

Explicit exceptions are not used commonly used by programs in a program to define

control flow. They are used at specific places when it is important to catch an exception or

reason about a certain condition in the code. However, they do occur and in our analyses

we handle exceptions by adding the class of the exception to the set of high variables when

a high exception is thrown. When an exception is caught in a low context it is possible that

information may leak implicitly. This metric counts the number of times a high exception

is caught in a low context.

Secure Data to Library Code

Library code is executed by way of a method invocation. Since our analyses only

analyze application methods and data can be given out to a user by some library methods

we make a note of all high data values that are passed to a library method. Every time a

library method is invoked this metric counts the number of arguments which are high.

7.4 Experimental Results

This section presents the benchmarks on which the analyses were run and the results. These

experiments were performed to ascertain the kind of information which is present in pro-

grams. They suggest how secure data flows through a program and how widespread is

secure data throughout the program.

The different options which were tried on the analyses are as follows: library safe and

unsafe, recursion taken into consideration or not and whether points-to information is used

or not. In the remainder of this section we refer to the data-flow analysis which does not use

points-to information (explained in Chapter 5) as the first analysis and the analysis which

uses the points-to information provided by Spark (explained in Chapter 6) as the second

analysis.

83

Experimental Results

Library Safe and Unsafe Option

When the library is considered safe the return value of a library method call is assumed

at a low security level whereas when the library is assumed to be unsafe the return value

is considered high. If the return of an invocation is assigned to a local in the case when

the library is assumed unsafe, the local which is assigned to becomes secure and this is a

source of secure data coming into the program. We count the number of high data values

which are passed as argument to library methods only when the libraries are considered

unsafe.

Recursion Accounted for or Not

When recursion is encountered and it is accounted for in the first analysis all fields

belonging to the application classes are made secure because we are not certain which

fields might be touched in the recursive call. When recursion is accounted for in the second

analysis all static and instance fields are pushed to high. In the case when it is not accounted

for in both the analyses no fields are made high at a recursive call.

Points-To Information Used or Not

The second analysis uses the points-to information provided by Spark and is tested with

either library safe or unsafe options. For both cases, in one run recursion is not accounted

for and in the second it is. When the points-to information is utilized we are able to differ-

entiate between the data stored in the instance fields for different objects.

7.4.1 Benchmarks

The benchmarks used to test our analyses are from the Optimizing Compilers class at

McGill University. The benchmarks are moderate in size and the numbers generated for

the metrics described in the previous section demonstrate the kind of data which is present

in the programs. We ran our tests on six benchmarks which have varying properties. Some

of them are intensive on object allocations while some have a lot of conditional statements.

Three of them have recursive calls. The following are the benchmarks used:

84

7.4. Experimental Results

• PointsToGraph: generates a points-to graph for some arbitrary variables and their

allocation sites;

• DFT: performs Discrete Fourier Transform on sequences;

• Coefficients: is a library for matrix operations;

• Froggy: is an interpreter for a language called Froggy, which is a small but useful

subset of Scheme;

• Puzzle: finds a solution to the sliding block puzzle problem by applying A-star

search algorithm; and

• Mersenne Prime: takes a number n as input and provides the nth Mersenne Prime

in the Mersenne Prime List.

7.4.2 Tabulated Results and Discussion

We tested a total of eight combinations of the three options and the results are given in this

section. The tables give the percentage for each kind of explicit and implicit flow and a total

count of the number of information flows which corresponds to the number of assignment

statements in the program. The warnings table is given for the experiments in which the

library was considered unsafe. None of the benchmarks has a catch statement which catches

a high exception in a low context. The information on the machine specifications on which

the tests were carried out can be found in Appendix A.

Library Safe without Recursion

Table 7.1 lists the results for the case of testing the data-flow analysis with the library safe

option and skipping recursion without doing anything. All flows in all the benchmarks are

explicit ones from low to low because there is no high data in the program other than the

main string array which is not used in any benchmark other than Puzzle. In Puzzle the main

argument introduces high data which is assigned to local variables and so it has 5% explicit

flows other than low to low.

85

Experimental Results

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 0% 0% 0% 100% 0% 0% 289

DFT 0% 0% 0% 100% 0% 0% 1672

Coefficients 0% 0% 0% 100% 0% 0% 410

Froggy 0% 0% 0% 100% 0% 0% 272

Puzzle 4% 0% 1% 95% 0% 0% 246

MersennePrime 0% 0% 0% 100% 0% 0% 436

Table 7.1: Library Safe without Recursion

Library Safe with Recursion

Table 7.2 gives the result for the option when we considered library safe but at recursion all

the fields belonging to the application classes were added to the high set. Now that there is

another source of secure data in the programs we have several more flows in this case than

the previous case in which we did not introduce any new high fields at a recursive method

call. The results for DFT, Puzzle and MersennePrime remain the same since they have no

recursion. Froggy has a lot of implicit flows (H ; L) since it is an interpreter and has

switch-case statements with several cases. This causes many statements to be in the branch

of a conditional expression which branches on a high value. The presence of high data

in the three benchmarks with recursion shows that there is a very large input of high data

when we consider the conservative assumption that all fields become high at a recursive

method call. This also highlights the need to deal with recursion in a better manner.

Library Unsafe without Recursion

The results for this option are presented in Table 7.3 and Table 7.4. In this case we consider

the main string array as high and all returns from the library calls as high. Compared

to the case with Library safe without Recursion all benchmarks report that high data is

present in some statements. Most of the programs written in Java access library code

86

7.4. Experimental Results

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 3% 4% 1% 61% 17% 14% 289

DFT 0% 0% 0% 100% 0% 0% 1672

Coefficients 9% 2% 4% 57% 22% 6% 410

Froggy 9% 6% 1% 34% 42% 8% 272

Puzzle 4% 0% 1% 95% 0% 0% 246

MersennePrime 0% 0% 0% 100% 0% 0% 436

Table 7.2: Library Safe with Recursion

which introduces high data in this case. DFT reports the highest percent of implicit flows.

This is due to the fact that it has many method calls in the branch statements of conditional

expressions and the branch condition could have a high data value. Again Froggy has a high

percentage of implicit flows. It is not surprising because Froggy is a subset of Scheme and

interpreters for functional languages have a large number of switch-case statements. We

also report warnings for data leaks to libraries for this case since the libraries are considered

unsafe. Explicit exceptions are scarcely used and no benchmark reports the catch of a high

exception in a low context.

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 7% 8% 1% 37% 22% 25% 289

DFT 11% 4% 0% 24% 21% 40% 1672

Coefficients 10% 2% 1% 42% 23% 22% 410

Froggy 5% 3% 0% 45% 42% 5% 272

Puzzle 27% 7% 1% 42% 13% 10% 246

MersennePrime 6% 0% 0% 79% 10% 5% 436

Table 7.3: Library Unsafe without Recursion

87

Experimental Results

Warnings Warnings

Benchmarks Exceptions Data to Library

PointsToGraph 0 24

DFT 0 32

Coefficients 0 4

Froggy 0 8

Puzzle 0 15

MersennePrime 0 16

Table 7.4: Library Unsafe without Recursion

Library Unsafe with Recursion

Table 7.5 and Table 7.6 give the results for the case where high data is introduced by library

calls as well as recursive calls. Compared to the previous case in which only library calls

returned high data, the number of explicit flows L ↪→ L values goes down or stays the

same for all benchmarks. In the case of PointsToGraph, Coefficients and Froggy it goes

down by a big percent where as in the case of the other three benchmarks it stays the same

since they have no recursive method call. Since more high data is entering the program

when recursion is encountered more statements process high data and so the explicit flows

L ↪→ L count decreases. In the case of Froggy the count for the number of warnings for

high data given out to library increases from 8 in the previous case to 17 since Froggy is

an interpreter for a functional language and has a lot of recursive calls to the evaluation

function.

Points-To Library Safe without Recursion

The results for this option are presented in Table 7.7. As expected we find that most flows

are explicit ones from low to low since there is no high data in the programs except the

main string array argument. Puzzle has 4% explicit flows H ↪→ L since it uses the main

88

7.4. Experimental Results

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 10% 8% 1% 22% 23% 36% 289

DFT 11% 4% 0% 24% 21% 40% 1672

Coefficients 13% 2% 3% 36% 23% 23% 410

Froggy 10% 6% 1% 29% 44% 10% 272

Puzzle 27% 7% 1% 42% 13% 10% 246

MersennePrime 6% 0% 0% 78% 11% 5% 436

Table 7.5: Library Unsafe with Recursion

Warnings Warnings

Benchmarks Exceptions Data to Library

PointsToGraph 0 24

DFT 0 32

Coefficients 0 4

Froggy 0 17

Puzzle 0 15

MersennePrime 0 16

Table 7.6: Library Unsafe with Recursion

string array argument at several places where as the other benchmarks have a 100% count

for explicit flows L ↪→ L.

Points-To Library Safe with Recursion

The results for this option are presented in Table 7.8. As expected the benchmarks with

recursive method calls PointsToGraph, Coefficients and Froggy now have a drop in the

explicit flows L ↪→ L since all fields become high at a recursive method call. An intersting

thing to note in these results is that DFT also has flows other than explicit flows L ↪→ L.

89

Experimental Results

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 0% 0% 0% 100% 0% 0% 289

DFT 0% 0% 0% 100% 0% 0% 1672

Coefficients 0% 0% 0% 100% 0% 0% 410

Froggy 0% 0% 0% 100% 0% 0% 272

Puzzle 4% 0% 0% 96% 0% 0% 246

MersennePrime 0% 0% 0% 100% 0% 0% 436

Table 7.7: Points-To Library Safe without Recursion

This is due to the fact that recursion in the library calls caused high data to enter into the

program.

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 3% 4% 1% 61% 17% 14% 289

DFT 10% 3% 2% 30% 19% 36% 1672

Coefficients 9% 3% 4% 56% 12% 16% 410

Froggy 9% 6% 1% 34% 42% 8% 272

Puzzle 4% 0% 0% 96% 0% 0% 246

MersennePrime 0% 0% 0% 100% 0% 0% 436

Table 7.8: Points-To Library Safe with Recursion

Points-To Library Unsafe without Recursion

Table 7.9 and Table 7.10 give the results for this case. The results have a variety of flows

but they are comparable to the results of the first analysis considering library unsafe and

not accounting for recursion. We see a drop in the high data present in the program for

90

7.4. Experimental Results

benchmarks which allocate many object instances. Froggy and DFT have a high percentage

of implicit information flows. Coefficients generates a lot of array instances and it has 6%

more explicit flows L ↪→ L than the first analysis. We also see that in the case of Coefficients

the warnings for high data leaking to library have also gone down from 4 to 3. Puzzle also

generates a lot of objects in the Astar search and so we see 4% more explicit flows L ↪→ L

than in the case of the first analysis. The results suggest that tracking data for different

instances of fields and arrays helps in reducing high data in the program and number of

possible information leaks to library for specific benchmarks.

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 7% 7% 0% 34% 23% 29% 289

DFT 10% 3% 0% 27% 32% 28% 1672

Coefficients 9% 2% 1% 48% 19% 21% 410

Froggy 5% 4% 0% 44% 42% 5% 272

Puzzle 24% 7% 1% 46% 13% 9% 246

MersennePrime 6% 0% 0% 78% 11% 5% 436

Table 7.9: Points-To Library Unsafe without Recursion

Points-To Library Unsafe with Recursion

Table 7.11 and Table 7.12 give the results for this case. As expected, the percentage for

explicit flows L ↪→ L drops in all cases compared to the previous case with points-to li-

brary unsafe and not accounting for recursion since high data also enters the program at a

recursive method call. The results in this case have a variety of flows but they highlight

an important point when compared with the results of the first analysis considering library

unsafe and accounting for recursion. Two benchmarks Coefficients and Puzzle which have

a lot of object instances have an increase in the percentage of explicit flows L ↪→ L. This

also highlights the benefit of tracking data for different instances of fields and arrays.

91

Experimental Results

Warnings Warnings

Benchmarks Exceptions Data to Library

PointsToGraph 0 24

DFT 0 36

Coefficients 0 3

Froggy 0 8

Puzzle 0 15

MersennePrime 0 16

Table 7.10: Points-To Library Unsafe without Recursion

H ↪→ L H ↪→ H L ↪→ H L ↪→ L H ; L H ; H Total

Benchmarks Flows

PointsToGraph 10% 8% 1% 22% 23% 36% 289

DFT 13% 3% 1% 22% 19% 42% 1672

Coefficients 12% 3% 4% 41% 19% 21% 410

Froggy 10% 6% 1% 29% 44% 10% 272

Puzzle 24% 7% 1% 46% 13% 9% 246

MersennePrime 6% 0% 0% 78% 11% 5% 436

Table 7.11: Points-To Library Unsafe with Recursion

7.5 Summary of Results

We present a novel way of quantitatively evaluating information flow in programs. We

define metrics which are helpful in ascertaining the kind of data present in programs with

respect to security. The only prior quantitative analysis for information flow on Java Byte-

code by Genaim and Spoto [GS05] only measured the time it took for their analysis to

examine the benchmarks.

In our study the numbers counted for the different kinds of information flows in the

92

7.5. Summary of Results

Warnings Warnings

Benchmarks Exceptions Data to Library

PointsToGraph 0 24

DFT 0 40

Coefficients 0 4

Froggy 0 17

Puzzle 0 15

MersennePrime 0 16

Table 7.12: Points-To Library Unsafe with Recursion

benchmark programs indicate that high data is present in many statements of programs.

Points-to analysis information does impact the kind of data that is present in programs.

The results suggest that tracking data with respect to different instances of objects does

reduce high data in benchmarks with lots of array and object instances.

93

Experimental Results

94

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented the ground work for a context-sensitive inter-procedural analysis for

information flow on JIMPLE intermediate representation (IR) of Java Bytecode. We cover

all of the single-threaded Java language at the level of the JIMPLE IR and give rules to

analyze every statement. Algorithm design to implement the respective rules and choice

of data structures is described. We gave two analyses: the first one considers all instances

of classes’ fields as the same in the analysis whereas the second analysis differentiates

between the instance fields that belong to different instances of a class using the points-to

information provided by Spark.

The implementation is modular and allows modifications to be easily introduced. The

analyses require no programming overhead since no security annotations are required. The

starting set of secure variables or the choice of secure data can be easily changed.

The thesis also gave an operational semantics and type system for MINI-JIMPLE and

a type preservation proof for the type system. This work can be extended to formulate

type preserving compilation for Java into JIMPLE intermediate representation. This is an

important step in developing more formal but still practical models for information flow.

The primary aim of this work was to investigate the kind of information that can be

obtained by practical, state-of-the-art techniques in program analysis. We measure success

by counting the different kinds of possible information flows in a program. Using points-to

95

Conclusions and Future Work

information improves information flow results, reducing the effect of conservative approx-

imations necessary in a practical design.

We have demonstrated that information flow analysis on JIMPLE intermediate represen-

tation can be refined and further research can be based on it using more features available

in the Soot framework. Similarly the subset of JIMPLE that we formalized can be extended

to include more constructs in the JIMPLE language.

8.2 Future Work

This thesis presented two ideas and both can be improved upon in various ways. We sug-

gest some possible avenues to take in the next two sections: first for the information flow

analysis on JIMPLE and then for formalizing JIMPLE.

8.2.1 Information flow analysis

The current analysis includes rules to analyze all statements in the Jimple IR. However,

several improvements are possible and the way a statement is examined and the method for

marking secure data can be refined.

Context-sensitive points-to analysis

Spark computes context-insensitive points-to analysis. More accurate points-to analysis

can be used in our analyses to see how it affects the information flows. The Paddle [Lho06]

framework provides context-sensitive points-to and call graph analyses for Java. The re-

fined call graph will also improve the information we get for the receiver in a virtual call.

Impact of compiler optimization on information flow counts

In a practical sense a program may have many expressions depending on the stage of

compilation. It is common to optimize programs using a variety of complex techniques and

it would be interesting to see the effect that some of them have on information flow.

96

8.2. Future Work

Java Libraries

In the analyses described in this thesis the Java libraries are not directly analyzed and

we consider the effects of assuming the library calls to be either safe or unsafe. A deeper

investigation of the use of library code, as well as other issues such as use of native methods

would be useful.

Programmer help

We have provided a simple mechanism for warning the user of information leaks. A

direct Java to JIMPLE translation [Lho05] is now available in Soot which keeps the original

variable names in Java for variables in JIMPLE. This can be used to give user-friendly

warning messages to the user.

Recursion

Recursion is only handled in the first analysis in a very crude manner. Analyzing re-

cursion in the analysis would require an inter-procedural fixed point to be computed. This

is not a conceptually complicated notion, but was not implemented in this thesis due to

technical complexity.

8.2.2 Formalizing Jimple

The subset of the JIMPLE IR we have chosen to formalize consists of the very basic state-

ments in JIMPLE. Extension to all the object-oriented features of Java is highly desirable.

A fully developed and formally proven type system for JIMPLE would enable further in-

vestigation from the perspective of security type systems.

97

Conclusions and Future Work

98

Appendix A

User guide

• The benchmarks used to test the analyses can be found at: http://www.cs.

mcgill.ca/∼cs621/621benchmarks-2002.jar

• The Soot Framework code and documentation is available at: http://www.sable.

mcgill.ca/soot/

• The analysis package is availabe at: http://www.sable.mcgill.ca/∼aahmed12/

analysis.tar. Download the analysis code and untar it in a folder. If Soot is

setup the following command will run the analysis:

> java -Xmx400m informationflowanalysis/Main -w -p cg.spark on -f jimple -inf

sim -main-class <mainClass> -process-dir <directory name>

There is one added option ”-inf” to run the information flow analysis:

– ”-inf sim” runs the class based analysis.

– ”-inf spa” runs the instance object based analysis.

• The machine on which the benchmarks were run had a dual processor. The complete

specifications are as follows:

> cat /proc/cpuinfo

99

http://www.cs.mcgill.ca/~cs621/621benchmarks-2002.jar
http://www.cs.mcgill.ca/~cs621/621benchmarks-2002.jar
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/~aahmed12/analysis.tar
http://www.sable.mcgill.ca/~aahmed12/analysis.tar

User guide

processor : 0

model name : AMD Athlon(tm) 64 X2 Dual Core Processor 3800+

cpu MHz : 2010.314

cache size : 512 KB

processor : 1

model name : AMD Athlon(tm) 64 X2 Dual Core Processor 3800+

cpu MHz : 2010.314

cache size : 512 KB

• The memory in the system was:

> grep MemTotal /proc/meminfo

MemTotal: 4046572 kB

100

Bibliography

[ABB06] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for infor-

mation flow in object-oriented programs. In POPL ’06: Conference record of

the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, Charleston, South Carolina, USA, 2006, pages 91–102. ACM

Press, New York, NY, USA.

[ABF03] Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta De Francesco. Java

bytecode verification for secure information flow. SIGPLAN Not.,

38(12):20–27, 2003.

[BL75] D. Bell and L. LaPadula. Secure computer systems: Mathematical founda-

tions and model. Technical report, Technical Report M74-244, Mitre Corpo-

ration, Belford, MA, 1975.

[BN02] Anindya Banerjee and David A. Naumann. Secure information flow and

pointer confinement in a java-like language. In Proceedings of the 15th

IEEE Computer Security Foundations Workshop (CSFW’02), 2002, page

253. IEEE Computer Society, Washington, DC, USA.

[BN03] Anindya Banerjee and David A. Naumann. Using access control for secure

information flow in a java-like language. In Proc. 16th IEEE Computer Se-

curity Foundations Workshop, 2003, pages 155–169.

101

http://doi.acm.org/10.1145/1111037.1111046
http://doi.acm.org/10.1145/1111037.1111046
http://doi.acm.org/10.1145/966051.966055
http://doi.acm.org/10.1145/966051.966055

Bibliography

[BRN06] Gilles Barthe, Tamara Rezk, and David Naumann. Deriving an information

flow checker and certifying compiler for java. In SP ’06: Proceedings of

the 2006 IEEE Symposium on Security and Privacy (S&P’06), 2006, pages

230–242. IEEE Computer Society, Washington, DC, USA.

[CT05] Juan Chen and David Tarditi. A simple typed intermediate language for

object-oriented languages. In POPL ’05: Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

Long Beach, California, USA, 2005, pages 38–49. ACM Press, New York,

NY, USA.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for

secure information flow. Commun. ACM, 20(7):504–513, 1977.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Commun.

ACM, 19(5):236–243, 1976.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-

oriented programs using static class hierarchy analysis. In ECOOP ’95: Pro-

ceedings of the 9th European Conference on Object-Oriented Programming,

1995, pages 77–101. Springer-Verlag, London, UK.

[Ecl] Eclipse. Platform Technical Overview, Technical Report, Object Technology

International, 2003. http://www.eclipse.org/.

[Fen74] J. S. Fenton. Memoryless subsystems. Computing Journal, 17(2):143–147,

May 1974.

[GHM00] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient in-

ference of static types for java bytecode. In SAS ’00: Proceedings of the 7th

International Symposium on Static Analysis, 2000, pages 199–219. Springer-

Verlag, London, UK.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In

Proc. IEEE Symp. on Security and Privacy, 1982, pages 11–20.

102

http://dx.doi.org/10.1109/sp.2006.13
http://dx.doi.org/10.1109/sp.2006.13
http://doi.acm.org/10.1145/1040305.1040309
http://doi.acm.org/10.1145/1040305.1040309
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/360051.360056
http://www.eclipse.org/

Bibliography

[GS05] Samir Genaim and Fausto Spoto. Information flow analysis for java byte-

code. In Proc. of the Sixth International Conference on Verification, Model

Checking and Abstract Interpretation (VMCAI’05), 2005.

[HR98] Nevin Heintze and Jon G. Riecke. The slam calculus: programming with

secrecy and integrity. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, San Diego,

California, United States, 1998, pages 365–377. ACM Press, New York, NY,

USA.

[HS06] Sebastian Hunt and David Sands. On flow-sensitive security types. In POPL

’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, Charleston, South Carolina, USA,

2006, pages 79–90. ACM Press, New York, NY, USA.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:

a minimal core calculus for java and gj. ACM Trans. Program. Lang. Syst.,

23(3):396–450, 2001.

[JL75] Anita K. Jones and Richard J. Lipton. The enforcement of security policies

for computation. In SOSP ’75: Proceedings of the fifth ACM symposium

on Operating systems principles, Austin, Texas, United States, 1975, pages

197–206. ACM Press, New York, NY, USA.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International Con-

ference, April 2003, volume 2622 of LNCS, pages 153–169. Springer, War-

saw, Poland.

[Lho02] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java.

Master’s thesis, McGill University, December 2002.

[Lho05] Jennifer Lhoták. Visualization tools for optimizing compilers. Master’s the-

sis, McGill University, August 2005.

103

http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/1111037.1111045
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/800213.806538
http://doi.acm.org/10.1145/800213.806538

Bibliography

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams. PhD

thesis, McGill University, Jan 2006.

[LST99] Christopher League, Zhong Shao, and Valery Trifonov. Representing java

classes in a typed intermediate language. In ICFP ’99: Proceedings of the

fourth ACM SIGPLAN international conference on Functional programming,

Paris, France, 1999, pages 183–196. ACM Press, New York, NY, USA.

[LST02] Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving

compilation of featherweight java. ACM Trans. Program. Lang. Syst.,

24(2):112–152, 2002.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels,

Frederick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic.

Talx86: A realistic typed assembly language. In the 1999 ACM SIGPLAN

Workshop on Compiler Support for System Software, May 1999, pages 25–

35.

[MI04] Kenji Miyamoto and Atsushi Igarashi. A modal foundation for secure in-

formation flow. In Proceedings of Workshop on Foundations of Computer

Security (FCS’04), July 2004, pages 187–203.

[Mil76] Jonathan K. Millen. Security kernel validation in practice. Communications

of the ACM, 19(5):243–250, 1976.

[ML98] Andrew C. Myers and Barbara Liskov. Complete, safe information flow with

decentralized labels. In 14’th IEEE Symp. Security and Privacy, 1998, pages

186–197.

[Muc97] Steven S. Muchnick. Advanced compiler design and implementation. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control.

In Symposium on Principles of Programming Languages, 1999, pages 228–

241.

104

http://doi.acm.org/10.1145/317636.317798
http://doi.acm.org/10.1145/317636.317798
http://doi.acm.org/10.1145/514952.514954
http://doi.acm.org/10.1145/514952.514954
http://doi.acm.org/10.1145/360051.360059

Bibliography

[O’C99] Robert O’Callahan. A simple, comprehensive type system for java bytecode

subroutines. In POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, San Antonio, Texas,

United States, 1999, pages 70–78. ACM Press, New York, NY, USA.

[Pie05] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming

Languages. The MIT Press, 2005.

[PS02] François Pottier and Vincent Simonet. Information flow inference for ml. In

POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, Portland, Oregon, 2002, pages 319–

330. ACM Press, New York, NY, USA.

[PV04] Christopher J. F. Pickett and Clark Verbrugge. Compiler analyses for im-

proved return value prediction. Technical Report SABLE-TR-2004-6, Sable

Research Group, McGill University, Oct. 2004.

[SLM98] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed

intermediate languages. In ICFP ’98: Proceedings of the third ACM

SIGPLAN international conference on Functional programming, Baltimore,

Maryland, United States, 1998, pages 313–323. ACM Press, New York, NY,

USA.

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1), 2003.

[Soo] Soot. a Java Optimization Framework. http://www.sable.mcgill.

ca/soot/.

[UKY06] Hiroshi Unno, Naoki Kobayashi, and Akinori Yonezawa. Combining type-

based analysis and model checking for finding counterexamples against non-

interference. In PLAS ’06: Proceedings of the 2006 workshop on Program-

ming languages and analysis for security, Ottawa, Ontario, Canada, 2006,

pages 17–26. ACM Press, New York, NY, USA.

105

http://doi.acm.org/10.1145/292540.292549
http://doi.acm.org/10.1145/292540.292549
http://doi.acm.org/10.1145/503272.503302
http://doi.acm.org/10.1145/289423.289460
http://doi.acm.org/10.1145/289423.289460
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://doi.acm.org/10.1145/1134744.1134750
http://doi.acm.org/10.1145/1134744.1134750
http://doi.acm.org/10.1145/1134744.1134750

Bibliography

[VR00] Raja Vallée-Rai. Soot: A Java bytecode optimization framework. Master’s

thesis, McGill University, October 2000.

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice

Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot

framework: Is it feasible? In Proceedings of the International Conference

on Compiler Construction, 2000, pages 18–34.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system

for secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[WSO+75] K. G. Walter, S. I. Schaen, W. F. Ogden, W. C. Rounds, D. G. Shumway,

D. D. Schaeffer, K. J. Biba, F. T. Bradshaw, S. R. Ames, and J. M. Gilligan.

Structured specification of a security kernel. In Proceedings of the interna-

tional conference on Reliable software, Los Angeles, California, 1975, pages

285–293. ACM Press, New York, NY, USA.

[Zda04] Steve Zdancewic. Challenges for information-flow security. In Proceedings

of the 1st International Workshop on the Programming Language Interfer-

ence and Dependence (PLID’04), 2004.

106

file:citeseer.ist.psu.edu/volpano96sound.html
file:citeseer.ist.psu.edu/volpano96sound.html
http://doi.acm.org/10.1145/800027.808450

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Information Flow
	Problem Statement
	The Model
	Jimple Intermediate Representation

	Related Work
	Early Work on Information Flow
	Analyses for Information Flow
	Information Flow Work on Java Related Languages
	Typed Low-Level Languages and Formalization of the Compilation Process

	MINI-JIMPLE
	Typed Intermediate Languages
	Abstract Syntax
	Operational Semantics
	Type System
	Type Preservation
	Summary

	Data-Flow Analysis for Secure Information Flow
	The Analysis
	Analysis Rules for Each Statement
	Proof of Monotonicity
	Summary

	Data-Flow Analysis Using Spark Information
	Spark Points-to Information
	Incorporating Points-to Information
	Summary

	Experimental Results
	Experimental Model
	Sample Run and Viewing Results in Eclipse
	Metrics
	Experimental Results
	Summary of Results

	Conclusions and Future Work
	Conclusions
	Future Work

	User guide
	Bibliography

