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Abstract

Parallelization and optimization of the MATLAB ® programming language presents several

challenges due to the dynamic nature of MATLAB . Since MATLAB does not have static

type declarations, neither the shape and size of arrays, northe loop bounds are known at

compile-time. This means that many standard array dependence tests and associated trans-

formations cannot be applied straight-forwardly. On the other hand, many MATLAB pro-

grams operate on arrays using loops and thus are ideal candidates for loop transformations

and possibly loop vectorization/parallelization.

This thesis presents a new framework, McFLAT , which uses profile-based training runs to

determine likely loop-bounds ranges for which specializedversions of the loops may be

generated. The main idea is to collect information about observed loop bounds and hot

loops using training data which is then used to heuristically decide upon which loops and

which ranges are worth specializing using a variety of loop transformations.

Our McFLAT framework has been implemented as part of the McLAB extensible compiler

toolkit. Currently, McFLAT is used to automatically transform ordinary MATLAB code into

specialized MATLAB code with transformations applied to it. This specialized code can be

executed on any MATLAB system, and we report results for four execution engines, Math-

work’s proprietary MATLAB system, the GNU Octave open-source interpreter, McLAB ’s

McVM interpreter and the McVM JIT. For several benchmarks, we observed significant

speedups for the specialized versions, and noted that loop transformations had different

impacts depending on the loop range and execution engine.

This thesis reports on the design and implementation of McFLAT, a framework that is

designed to study the effect of various loop transformations on different loop-bound ranges
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by introducing loop-level specializations in MATLAB programs.
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Résum é

La parallelisation et l′optimisation du langage de programmation informatique MATLAB ®

repŕesente plusieurs défis compte tenu du caractère dynamique de ce dernier.

Puisque MATLAB ne poss̀ede pas de d́eclaration de type statique, ni son profil et la taille

des matrices ni les boucles limites, sont connus au temps de compilation. Cela signifie

que plusieurs tests standardisés de la d́ependance des matrices et de ses transformations

assocíees ne peuvent pas ˆetre appliqúes dans une manière directe. D′autre part, plusieurs

programmes MATLAB sont oṕeŕes sur les matrices en utilisant les boucles et donc sont

des candidats id́eals pour la transformation en boucle et possiblement la vectorisation en

boucle/parallelisation.

Cette hypoth̀ese pŕesente un nouveau cadre, McFLAT , qui ex́ecute des entrainements bases

sur des profils afin de déterminer la port́ee deśeventuelles boucles-limites pour qui des ver-

sions sṕecialiśees des boucles pourraient ˆetre ǵeńeŕees. L′idée principale est de faire une

collecte d′information concernant les boucles en observation ainsi que les boucles chauds

en capitalisant sur les données d′entrainement qui sont ensuite utilisées pour d́ecider heu-

ristiquement sur quels boucles et limites il faut se spécialiser en utilisant une variét́e de

transformateurs de boucles.

Notre cadre McFLAT a ét́e impĺement́e en tant que composant de McLAB extensible com-

piler toolkit. Actuellement, McFLAT , est utiliśe pour transformer automatiquement le code

ordinaire MATLAB en code sṕecialiśe MATLAB avec des transformations appliquéesà ce

dernier. Ce code spécialiśe pourrait ensuite ˆetre ex́ecut́e sur tout syst́eme matlab et nous

livrons les ŕesultats de quatre moteurs d′exécution, Mathwork’s proprietary MATLAB sys-

tem, le GNU Octave source-libre interprète, l′interpr̀ete McVM de mclab et le McVM
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JIT. Pour plusieurs repères, nous observons une rapidité significative pour les versions

sṕecialiśees, et on note que les transformations en boucle ont eu différents impacts qui

dépendent de la limite des boucles et du moteur d′ exécution.

Ce ḿemoire se focalise sur le dessin et l′implémentation de McFLAT , un cadre qui est

désigńe pourétudier les effets de plusieurs transformations en boucle sur plusieurs niveaux

de boucles-limites en introduisant des spécialisations au niveau des boucles dans les pro-

grammes MATLAB .
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Chapter 1

Introduction

MATLAB is a high-level, untyped and interpreted language which is commonly used by

scientists and engineers because of its ease of use, high-level syntax for arrays, and a rich

collection of built-in library functions. Scientific programs often use a collection of loops,

which may be in sequence and/or nested to perform tasks multiple times. Most execution

time in scientific programs is spent in loops [Moo06]. M ATLAB is not necessarily opti-

mized for the use of loops and some of the slowest blocks of code that inflate MATLAB

program execution time arefor/while loops. Therefore, compiler analysis and loop

optimization techniques are required to make the executionof loops faster and to intro-

duce parallelism so as to take advantage of multi-core CPUs and GPGPU(General Purpose

Graphic Processing Unit) computing capabilities.

Recently, there has been a tremendous increase in the popularity of dynamic languages

such as Python, Ruby, PHP, JavaScript and MATLAB . These languages are developed

with programmer convenience in mind. This ease of use comes with a price, which is,

poor execution performance as compared to statically-compiled languages (e.g.: C, C++,

Fortran, etc.).

McFLAT , A framework for loop Analysis and Transformations is a component of a larger

effort known as the McLAB project1, being developed by Sable Lab at McGill Univer-

1www.sable.mcgill.ca/mclab

1
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Introduction

sity. The overall goal of McLAB is to find ways to improve the performance, usefulness

and accessibility of current scientific programming languages. The McLAB team currently

focuses its efforts on the MATLAB programming language and its extensions e.g. Aspect-

Matlab [TAH10].

Tuning a critical loop in a scientific program can lead to a significant reduction in its exe-

cution time. The dynamic nature of MATLAB programming language poses several chal-

lenges for optimizations including loop transformations and loop vectorization/paralleliza-

tion. Since MATLAB does not have static type declarations, neither the shape and size of

arrays, nor the loop bounds are known at compile-time. This means that many standard ar-

ray dependence tests and associated transformations cannot be applied straight-forwardly.

This thesis presents a new framework, McFLAT , which uses profile-based training runs to

determine likely loop-bounds ranges for which specializedversions of the loops may be

generated. The main idea is to collect information requiredfor loop optimizations using

training data and then decide heuristically which loop bounds are important. The resulting

output is a set of programs with valid loop transformations applied for important predicted

loop-bounds ranges.

1.1 Contributions

The McFLAT project makes the following contributions:

• Design and implementation of theProfiler which instruments the MATLAB programs

and collects information about the loop bounds and program features.

• Design and implementation of theRange Estimatorthat predicts important loop-

bound ranges based on profiled information.

• Implementation of a set of efficient dependence testers to determine dependence be-

tween same array accesses for important predicted ranges. This component deter-

mines whether loop transformation(s) can be applied or not.

2



1.2. Thesis Outline

• Design and implementation of the legality tester that determines which loop trans-

formation(s) and in what order should be applied.

• Design and implementation of theLoop Transformerthat introduces legal or programmer-

suggested loop transformations into the MATLAB code for important predicted ranges.

• Design and implementation of an automatic parallelization detection mechanism in

the context of the MATLAB programming language.

• A detailed analysis of the impact of loop transformations on different loop-bounds

ranges and different execution engines. i.e. Mathwork’s proprietary MATLAB sys-

tem, the GNU Octave open-source interpreter, McLAB ’s McVM interpreter and the

McVM JIT(McJIT).

The McFLAT framework, has been implemented as part of the McLAB extensible compiler

toolkit. Currently, McFLAT is used to automatically transform ordinary MATLAB code into

specialized MATLAB code with valid loop transformations applied for importantpredicted

loop-bounds ranges. This specialized code can be executed on any MATLAB system, and

we report results for four execution engines, Mathwork’s proprietary MATLAB system,

the GNU Octave open-source interpreter, McLAB ’s McVM interpreter and the McVM

JIT(McJIT). For several benchmarks, we observed significant performance speedups for

the specialized versions, and noted that loop transformations had different impacts depend-

ing on the loop range, execution engine and the source program features.

1.2 Thesis Outline

This thesis is divided into 6 chapters (including this introduction chapter).Chapter2 gives

a general overview of MATLAB programming language, its features and execution model.

It then discusses the McLAB project, its various components and how McFLAT fits into

the overall picture. InChapter3 we present the overall architecture of the McFLAT frame-

work and its different phases in detail.Chapter4 reports results for four execution en-

gines, Mathwork’s proprietary MATLAB system, the GNU Octave open-source interpreter,

3
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McLAB ’s McVM interpreter and the McVM JIT(McJIT) and discusses the impact of loop

transformations on different loop-bound ranges and different execution engine.Chapter5

discusses related work done in the context of this thesis which helped us to form the base

of our research, and the ways in which our approach differs with them. Finally,Chapter6

presents our conclusions and outlines some possible futureresearch work in this domain.

4



Chapter 2

Background

In this chapter we present background information helpful to the understanding of this

thesis. We begin with a brief overview of the MATLAB programming language, its impor-

tance for the scientific and engineering community, and its execution environment. This

is followed by a discussion on MATLAB for loop construct, arrays indexing and array

operations, and a programming code example.

This is followed by a discussion of dynamic languages and theassociated optimization

challenges particularly in the context of loop transformations. We then present an overview

of the McLAB project talking about its various components and where doesMcFLAT fits

into the overall picture.

2.1 The MATLAB Language

MATLAB is a numerical computing environment, originally inventedin the late 1970s by

Cleve Moler, then a professor of computer science at the University of New Mexico. He

designed the language to give his students access to some of the power of FORTRAN,

without having to learn the FORTRAN language itself [Matb]. Developed for providing an

easier numerical computing environment to students, MATLAB offered flexible syntactic

constructs, which also made it popular amongst other computationally-intensive research

5
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areas. Since then, MATLAB is widely used in the academic, scientific and engineering

communities.

MATLAB is a very popular technical computing environment and a fourth generation pro-

gramming language. It is dynamically-typed, weakly-typedprocedural language. The

name MATLAB stands forMATrix LABoratory, because its basic data element is a matrix.

MATLAB provides a large library of common matrix operations (e.g.:addition, inversion,

multiplication). In addition to its matrix orientation MATLAB incorporates many features

found in other dynamic languages, such as the runtime creation of closures. It also allows

implementation of algorithms, plotting of functions and data, creation of user interfaces,

and interfacing with programs written in other languages, including C, C++, and Fortran.

2.1.1 MATLAB ’s Execution Environment

In the MATLAB environment, we can write and execute programs, or scripts,that contain

MATLAB commands, observe the results, and then execute another MATLAB command

that interacts with the information already in the workspace. This interactive environment

does not requires a formal compilation, linking/loading and execution process. However,

errors in the syntax of MATLAB commands are detected when the MATLAB environment

attempts to translate the command, and logical errors lead to execution errors when the

MATLAB environment attempts to execute the command.

2.1.2 Supported Features

The Mathworks implementation of MATLAB offers a very rich feature set. The short list

below enumerates some of its most used features [Mata, CB09]:

• Uniform treatment of all basic types as matrices

• Optimized built-in matrix operations

• Advanced graphic capabilities.

6



2.1. The MATLAB Language

• Function handles, inline functions, feval (for function evaluation)

• Support for variety of industry standard file formats and other custom file formats

• Extensive library of numerical algorithms

• Creation of custom tool boxes

• Interactive mode with read-eval-print loop

• Code editor and debugging environment

• Effective documentation search system

• Built-in support for complex-numbers

• Repetition structuresfor and while loops

• Range expressions and array slicing/reshaping

• Nested function definitions

• Creation of closures from nested functions

• Creation of closures from lambda expressions

• Graphical 2D and 3D plotting tools

• C and FORTRAN function wrapping

MATLAB has evolved tremendously over the years. In addition to having added or modi-

fied several internal algorithms [Moo06], the MATLAB command interpreter now includes

acceleration features, collectively calledTheMATLAB JIT-Accelerator[Mat02]. The ac-

celerator has increased the speed of loop operations by interpreting and executing code

within a loop as a whole, rather than line by line. However, tomake use of JIT Accelerator,

loop operation code must follow specific guidelines, if these guidelines are not followed,

loop operation code is interpreted at a much slower line-by-line rate [Moo06].

7
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MATLAB code having loops, benefit from MATLAB ’s JIT-Accelerator, if it has the follow-

ing properties [DB05].

• Only for loops are optimized.

• The loop should contain specific logical, character string, double-precision, and less

than 64-bit integer data types.

• The loops can only use arrays having three or less dimensions.

• All variables used within a loop must be defined prior to loopexecution.

• Memory for all variables within a loop is preallocated, andall the variables should

maintain constant size and data type throughout the execution of the loop.

• Loop indices must be scalar quantities.

• Only built-in MATLAB functions can be called with-in a loop.

• Conditional statements withif-then-elseorswitch-caseconstructions should complex

conditions, only scalar comparisons are optimized.

2.1.3 MATLAB’s Control Flow

Computer programming languages offer features that allow you to control the flow of com-

mand execution using decision making structures. Control flow is very important since it

lets past computations influence future operations. MATLAB offers five decision making or

control flow structures.

• for Loops.

• while Loops.

• if-else-end construction.

• switch-case construction.

• try-catch block.

8



2.1. The MATLAB Language

2.1.4 For Loops

In for loops the execution of a command or a group of commands is repeated a pre-

determined number of times. MATLAB provides following different syntax forfor loop

which are as follows.

2.1.5 Syntax

for y= initval: endval, statements,end

for y= initval: stepval: endval, statements,end

for y= arr, loop statements,end

2.1.6 Description

The construct “for y=initval: endval, statements,end ”, repeatedly executes one or more

MATLAB statements in a loop. The loop counter variabley is initialized to valueinitval

at the start of the first pass through the loop, and automatically increments by 1 each time

through the loop. The program repeatedly iterates through statements until eithery has

incremented to the valueendval, or MATLAB encounters abreak, or return instruction,

thus forcing an immediate exit of the loop. If MATLAB encounters acontinuestatement

in the loop body, it immediately exits the current iterationat the location of thecontinue

statement, skipping any remaining code in that iteration, and begins another iteration at the

start of the loop statements with the value of the loop counter incremented by one.

The “ for y= arr loop statements,end ”, this for statement on each iteration creates a

column vectorindex from subsequent columns of arrayarr. For example, on the first

iteration, the first column of arrayarr would be assigned to column vector indexindex =

array(:,1). The loop executes for a maximum ofn times, wheren is the number of columns

of arr. In the case ofListing 2.2, where a row-vector is assigned to the index variable, the

loop would iterate 6 times, as there are six columns in the row-vector and each time one

column would be assigned to column vector indexindexand each column in thisListing

9
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2.2has one element.

The valuesinitval and endvalmust be real numbers as inListing 2.1, or arrays of real

numbers as inListing 2.2, or can also be calls to functions that return the same. The value

assigned toy is often used in the code within the loop, however it is recommended that you

do not assign toy in the loop code as inListing2.3.

The construct “for y= initval: stepval: endval, statements,end ”, is the same as the above

syntax, except that loop countery is incremented (or decremented whenstepvalis negative)

by the valuestepvalon each iteration through the loop. The valuestepvalmust be a real

number or can also be a call to a function that returns a real number.

1 for i=1:3:10

2 y=iˆ2;

3 end

Listing 2.1 A MATLAB for Loop Example

1 for i= [7,9,-1,3,3,5]

2 y=i * i;

3 end

Listing 2.2 A MATLAB for Loop Example with Specific Values Assigned from a Vector

1 for i=1:2

2 y=iˆ2;

3 i = 10;

4 end

Listing 2.3 A MATLAB for Loop Example with Loop Index Variable Re-assigned

McFLAT , handles the case where thefor loop has a range expression defined, as the upper

and lower bounds of the loop index variables are required to compute the dependence tests

and apply transformations as inListing2.1.

10
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2.1.7 Array and Array Operations in MATLAB

Arrays are a fundamental data structure that MATLAB uses to store and manipulate data.

An array in the context of the MATLAB programming language is the same as in any other

programming language, a list of numbers arranged in rows and/or columns. The simplest

array(one-dimensional) is a row, or a column of numbers alsocalled avector. A more com-

plex array (two-dimensional) is a collection of numbers arranged in rows and columns also

called amatrix. There are also two container data types calledcell arraysandstructures

which unlike arrays, allow grouping of dissimilar, but related, arrays into a single variable.

Elements in an array can be addressed individually or in subgroups using subscripts. This

is useful when there is a need to redefine only some of the elements of the array, to use

specific elements in calculations, or when a subgroup of the elements is used to define a

new variable, this capability is referred to asslicing. The colon operator is used to address

a range of elements in arrays.

Listing 2.4shows sample output of MATLAB being run in interactive mode. In this exam-

ple, we show that the matrix variableMat can be indexed by using subscripts, similar to

the way two dimensional arrays are indexed in languages likeJava (except that arrays in

MATLAB are stored in column-major order).

1 >> % Here a matrix is being assigned to variable "Mat"

2 >> Mat = [10 20 30 40; 50 60 70 80; 90 100 110 120; 130 140 150 160]

3

4 Mat =

5

6 10 20 30 40

7 50 60 70 80

8 90 100 110 120

9 130 140 150 160

10

11 >> % Mat is accessed using scalar indexing, the last element of t he

first row is read

12 >> Mat(1,4)

11
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13

14 ans =

15

16 40

17

18 >> % An entire row or column of Mat can be read by specifying a rang e

of indices with the colon operator

19 >> Mat(:,1)

20

21 ans =

22

23 10

24 50

25 90

26 130

27

28 % One can also write to a sub-array (or slice) of Mat using rang es of

indices

29 >> Mat(1, 2:3) = [7 7]

30

31 Mat =

32

33 10 7 7 4

34 50 60 70 80

35 90 100 110 120

36 130 140 150 160

Listing 2.4 Array Addressing or Indexing in MATLAB

2.1.8 MATLAB Code Examples

The example shown inListing2.5shows a MATLAB function that finds the Crank-Nicholson

solution to the one-dimensional heat equation. This function could be invoked by inputting

theU = crnich(2.5, 1.5, 2, 321, 321); command at the prompt, or it could be called

from another function. This example demonstrates the use ofa for loop, matrix multipli-

12
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cation and exponentiation operators on line 72, array indexing using subscripts on lines

78 and 93 and array indexing using colon operator on line 96. Note that MATLAB array

indices start from 1 instead of 0. Line 96 demonstrates the use of apostrophe transpose

operator, which performs a complex conjugate transposition. MATLAB has two transpose

operators. The apostrophe operator (e.g.,B′) performs a complex conjugate transposition.

It flips a matrix about its main diagonal, and also changes thesign of the imaginary com-

ponent of any complex elements of the matrix. The dot-apostrophe operator (e.g.,B.′),

transposes without affecting the sign of complex elements.The Vd = s1* ones(1, n);

statement creates a row vector of size 1×n initialized with all ones. The row vector is then

multiplied with a scalars1.

1 function U = crnich(a, b, c, n, m)

2 %-------------------------------------------------- ---------------------

3 %

4 % This function M-file finds the Crank-Nicholson solution

5 % to the one-dimensional heat equation

6 %

7 % 2

8 % u (x, t) = c u (x, t).

9 % t xx

10 %

11 % Invocation:

12 % >> U = crnich(a, b, c, n, m)

13 %

14 % where

15 %

16 % i. a is the length of the metal rod,

17 %

18 % i. b is the time duration,

19 %

20 % i. c is the square root of the thermal

21 % conductivity constant in the heat equation,

22 %

23 % i. n is the number of grid points over [0, a],

13
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24 %

25 % i. m is the number of grid points over [0, b],

26 %

27 % o. U is the solution matrix.

28 %

29 % Source:

30 % Numerical Methods: MATLAB Programs,

31 % (c) John H. Mathews, 1995.

32 %

33 % Author:

34 % John H. Mathews (mathews@fullerton.edu).

35 %

36 % Date:

37 % March 1995.

38 %

39 %-------------------------------------------------- ---------------------

40

41 h = a/(n-1);

42 k = b/(m-1);

43 r = cˆ2 * k/hˆ2;

44 s1 = 2+2/r;

45 s2 = 2/r-2;

46 U = zeros(n, m); % initialize an n x m dimensional array U

47 for i1 = 2:(n-1)

48 % call the built-in function sin and assigns the value to arra y U

49 U(i1, 1) = sin(pi * h* (i1-1))+sin(3 * pi * h* (i1-1));

50 end;

51

52 % creates a vector Vd with all of the values initialized to 1

53 Vd = s1* ones(1, n);

54 Vd(1) = 1;

55 Vd(n) = 1;

56 Va = -ones(1, n-1);

57 Va(n-1) = 0;

58 % creates a vector Vc with all the values initialized to -1

59 Vc = -ones(1, n-1);

60 Vc(1) = 0;

14
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61 Vb(1) = 0;

62 Vb(n) = 0;

63

64 for j1 = 2:m

65 for i1 = 2:(n-1),

66 Vb(i1) = U(i1-1, j1-1)+U(i1+1, j1-1)+s2 * U(i1, j1-1);

67 end;

68 % calls a user-defined function tridiagonal that returns a

row-vector X

69 X = tridiagonal(Va, Vd, Vc, Vb);

70 % Takes a transpose of vector X and assigns the values to a subs et

of array U.

71 U(1:n, j1) = X ';

72 end;

Listing 2.5 A MATLAB program example

2.1.9 Loop Optimization Challenges

Dynamic languages pose several optimization challenges due to their semantics. They are

typically harder to optimize than their statically-compiled counterparts due to their dynamic

nature. That is, the semantics of dynamic languages make it harder to predict their exact

behavior at run-time.

MATLAB programs operate on arrays using loops and thus are good candidates for loop

transformations and possible loop vectorization/parallelization. One of the challenges in-

volved in applying loop optimizations in dynamic languageslike MATLAB is that neither

the shape and size of arrays, nor the loop bounds are known at compile-time [AH10]. This

means that many standard array dependence tests, a pre-requisite, for applying loop trans-

formations cannot be computed at compile-time.

To efficiently apply loop transformations in dynamic languages, optimizing compilers must

find ways to improve performance of these languages without compromising the flexibility

that they offer to the programmer. Profile-based techniqueshave been used in the past to

suggest recompilation with additional optimizations.
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2.2 The McLAB Framework

Dynamic languages are becoming increasingly popular. Common dynamic languages in-

clude Python, Perl, PHP, Ruby, Scheme, Smalltalk and MATLAB . These languages do

not have static-type declarations, the variable types and their values, the size and shape of

arrays and the loop bounds are unknown at compile time.

Recently, dynamic languages have started becoming more widely used due to the ease of

use and flexibility, that these offer to programmers as compared to statically-compiled lan-

guages. Dynamic languages put fewer constraints on the programmer and they achieve

more “work” per line of code and thus allow programmers to be more productive. Simi-

larly, MATLAB , another dynamic language is widely used for computation intensive tasks.

The combination of computational and visualization power makes it particularly useful for

scientists and engineers.

MATLAB is a very popular programming language for technical computing used by stu-

dents, engineers, and scientists in universities, research institutes, and industries all over

the world. It was designed for sophisticated matrix and vector operations, which are com-

mon in scientific and engineering applications. It also offers a simple syntax that is familiar

to most engineers and scientists. However, this ease of use comes with a price, MATLAB ap-

plications are generally slower than those programmed withstatically-compiled languages.

Keeping in mind the ease and fast development time that theselanguages offer, there is a

strong desire in the compiler community to improve their performance.

The work presented in this thesis is a component of the McLAB framework1. The McLAB

framework provides an extensible set of compilation, analysis and execution tools built

around the core MATLAB programming language. One goal of the McLAB project is to

provide an open-source set of tools for the programming languages and compiler commu-

nity so that researchers (including our group) can develop new domain-specific language

extensions and new compiler optimizations. A second goal isto provide engineers and

scientists with these new languages and compilers which aremore tailored to their needs

1www.sable.mcgill.ca/mclab
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and also give better performance.

2.2.1 Overview

The overall structure of the McLAB framework is outlined inFigure2.1.

The framework comprises of an extensible front-end, a high-level analyses engine, array

dependence analysis and loop transformation framework (McFLAT , the topic of this thesis

is represented with a shaded box) and three back-ends.

Currently, there is support for the core MATLAB language and also a complete extension

supporting AspectMatlab[TAH10]. The front-end and the extensions are built using our

group’s extensible lexer, Metalexer[Cas09] and JastAdd [EH07]. There are three back-

ends: McFor, a FORTRAN code generator [Li09]; a MATLAB generator (to use McLAB as

a source-to-source compiler); and McVM, a virtual machine that includes a simple inter-

preter and a sophisticated type-specialization based JIT compiler(McJIT), which generates

LLVM code [CBHV10].

In this chapter, we talked about the MATLAB programming language, its features, execution

model and code example. We also discussed the McLAB framework and how McFLAT fits

in the overall picture.

In Chapter3, we discuss different components of the McFLAT framework in detail, in

Chapter4, we present experimental results obtained after applying our framework on a

selection of benchmarks.
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Chapter 3

McFLAT: A Framework for Loop Analysis and

Transformations for MATLAB

3.1 Introduction

In this chapter, we provide a detailed overview of the key components of our McFLAT

framework, and we also discuss parallel loop detection in the context of MATLAB pro-

gramming language and some current limitations of the framework.

3.2 Overall Architecture

The overall structure of the McFLAT framework is outlined inFigure 3.1. Our ultimate

goal is to embed this framework in our McJIT system, however currently it is a stand-alone

source-to-source framework which uses the McLAB front-end. The user provides both the

MATLAB program which they wish to optimize and a collection of representative inputs

(top of Figure 3.1). The output of the system is a collection of specialized programs (bot-

tom of Figure 3.1), where each specialized program has a different set of transformations
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applied. The system also outputs a dependence summary for each loop, which is useful for

compiler developers.

The design of the system is centered around the idea that a MATLAB program is likely to be

used on very different sized inputs, and hence at run-time loops will have very different loop

bounds. Thus, our objective is to find important ranges for each loop nest, and to specialize

the code for those ranges. Knowing the ranges for each specialization also enables us to

use very fast and simple dependence testers.

The important phases of McFLAT , as illustrated inFigure 3.1, are theInstrumenter, which

injects the profiling code, theRange Estimatorwhich decides which ranges are important,

and theDependence Analyzer and Loop Transformer Engine. In the next section we look

at each of these components in more detail.

3.3 Profiler

As illustrated in the phase labeledInstrument and Profile in Figure 3.1, the Instrumenter

component is used to automatically inject instrumentationand profiling code into a MAT-

LAB source file. This injection is done on the high-level structured IR produced by the

McLAB front-end. In particular, we inject instrumentation to associate a unique loop num-

ber to each loop, and to gather following information for each loop.

• The lower bound of the iteration.

• The loop increment.

• The upper bound of the iteration.

• The nesting level of the loop.

• The time spent executing the loop.

• List of variables that are written to in the loop body. During the parallelism detection

phase, this list of variables is required to ensure that within the list of indices for
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the arrays, exactly one index involves the loop variable andother variables used with

loop index variable to index an array should remain constantover the entire execution

of the loop.

The MATLAB program resulting from this instrumentation is functionally equivalent to the

original code, but emits additional information that generates training data required for the

next phase.Listing 3.1 shows the instrumented source code file of ourFiff benchmark.

When a source file is passed to theInstrumentercomponent of McFLAT , it traverses the

AST(Abstract Syntax Tree) of the program. During traversal, when it encounters an AST

node which is an instance ofForStmt, the instrumenter inserts a function callxmlDataGen-

erator after the loop body.

The inserted function callxmlDataGeneratoris shown on lines 36 and 44. The first argu-

ment of the call is the name of .xml file which is generated and it has the same prefix as the

source file. The second argument indicates the loop index variable name, in case of nested

loop there are two loop index variables which are passed as a concatenated string using the

MATLAB concatenation operator([]). The third argument to the call is lower bound of the

loop which in case of single loop is an integer value or the variable name but for a nested

loop it is an array of integers created by concatenation operator. The fourth argument indi-

cates the upper bound of the loop which is the variable name for single loops and an array

of strings in case of a nested loop. The loop increment factorwhich is the fifth argument to

xmlDataGeneratorfunction is passed either as integer or an array of integers depending on

the nesting level of the loop. The sixth argument indicates the loop number which uniquely

identifies the loop in the program. The seventh argument indicates the maximum number

of loops in the instrumented program. The eighth argument represents the list of variables

that are written in the loop body. This is required for the parallelism detection phase. In the

example fromListing3.1, variables used to index the array are not rewritten within the loop

body, thus theVariablesUsedargument to the call is empty. In cases where variables are

written to within the loop body, the function call looks likeas inListing 3.2. In Listing 3.2

j is assigned a value on line 6, so the last argument of the function call xmlDataGenerator

is the name of the variable written in the loop body which in this case isj.
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1

2 function U = finediff(a, b, c, n, m)

3 %-------------------------------------------------- ---------------------

4 %

5 % This function M-file finds the finite-difference solutio n

6 % to the wave equation

7 %

8 % 2

9 % u (x, t) = c u (x, t),

10 % tt xx

11 %

12 % with the boundary conditions

13 %

14 % u(0, t) = 0, u(a, t) = 0 for all 0 ≤t ≤b,

15 %

16 % u(x, 0) = sin(pi * x)+sin(2 * pi * x), for all 0 < x < a,

17 %

18 % u (x, 0) = 0 for all 0 < x < a.

19 %

20 %-------------------------------------------------- ---------------------

21

22 h = a/(n-1);

23 k = b/(m-1);

24 r = c * k/h;

25 r2 = rˆ2;

26 r22 = rˆ2/2;

27 s1 = 1-rˆ2;

28 s2 = 2-2 * rˆ2;

29 U = zeros(n, m);

30 for i1 = 2:n-1,

31 U(i1, 1) = sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1));

32 U(i1, 2) = s1 * (sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1)))+ ...

33 r22 * (sin(pi * h* i1)+sin(2 * pi * h* i1)+ ...

34 sin(pi * h* (i1-2))+sin(2 * pi * h* (i1-2)));

35 end;

36 xmlDataGenerator( 'finediff' , 'i1' , 2, (n - 1), 1, 0, 1, 2, ' ' );
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37

38 for i1 = 2:n-1,

39 for j1 = 3:m,

40 U(i1, j1) = s2 * U(i1, j1-1)+r2 * (U(i1-1, j1-1)+ ...

41 U(i1+1, j1-1))-U(i1, j1-2);

42 end;

43 end;

44 xmlDataGenerator( 'finediff' , [ 'i1' , ':' , 'j1' ], ([2, 3] '), ([n, m]' ),

([1, 1] '), 1, 2, 2,' ');

Listing 3.1 Instrumented Source File

1 for i1 = 2:n-1,

2 U(i1, 1) = sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1));

3 U(i1, 2) = s1 * (sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1)))+ ...

4 r22 * (sin(pi * h* i1)+sin(2 * pi * h* i1)+ ...

5 sin(pi * h* (i1-2))+sin(2 * pi * h* (i1-2)));

6 j=i1;

7 end;

8 xmlDataGenerator( 'finediff' , 'i1' , 2, (n - 1), 1, 0, 1, 2, 'j' );

Listing 3.2 Instrumented Source File with Variables Written in Loop Body

The xmlDataGeneratoris a function that is called once the loop finishes its execution.

Within this function various tags are created as shown inListing 3.3, and loop data is

written to the .xml file. ThexmlDataGeneratoris optimized for write operations. It writes

once to the .xml file when the number of loops is equal to the maximum number of loops

in the program.

When the instrumented program is executed using a MATLAB virtual machine, the profile

information is written to an .xml file. This .xml file is persistent, and so multiple runs

can be made, and each run will add new information to the .xml file. Listing 3.3 indicates

the structure and the profiled information generated after the MATLAB source code file

injected with instrumentation code is run. The .xml file starts with RunNotag that indicate

the Date and TimeStamp of the run.Listing 3.3shows there are two loops in the program,
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and one of which is a nested loop. TheLoopNotag indicates the loop number that uniquely

identifies the loop andNestingLevelindicate the level of the nested loop. For a loop with no

nesting there is just oneNestedLooptag that contains the tagsLowerBound, UpperBound

andLoopIncrementFactor. TheLowerBoundtag is comprised of the loop index variable

nameVariableNameand the value of lower bound. Similarly, theUpperBoundcontains

the value that loop’s upper bound is assigned during the execution of the program. The tag

LoopIncrementFactorcontains the factor by which the loop is incremented or decremented.

For the case, where we have a nested loop with one level of nesting, there will be two counts

of the tagNestedLoop.

1 <?xml version="1.0" encoding="utf-8"?>

2 <AD>

3 <RunNo TimeStamp="28-Jun-2010 19:08:10">

4 <LoopNo LoopNumber="1" NestingLevel="0" VariablesUsed= "">

5 <NestedLoop Number="1.0">

6 <LowerBound>

7 <VariableName>i1</VariableName>

8 <start>2</start>

9 </LowerBound>

10 <UpperBound>

11 <start>22</start>

12 </UpperBound>

13 <LoopIncrementFactor>

14 <start>1</start>

15 </LoopIncrementFactor>

16 </NestedLoop>

17 </LoopNo>

18 <LoopNo LoopNumber="2" NestingLevel="1" VariablesUsed= "">

19 <NestedLoop Number="2.0">

20 <LowerBound>

21 <VariableName>j1</VariableName>

22 <start>2</start>

23 </LowerBound>

24 <UpperBound>
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25 <start>23</start>

26 </UpperBound>

27 <LoopIncrementFactor>

28 <start>1</start>

29 </LoopIncrementFactor>

30 </NestedLoop>

31 <NestedLoop Number="2.1">

32 <LowerBound>

33 <VariableName>i1</VariableName>

34 <start>2</start>

35 </LowerBound>

36 <UpperBound>

37 <start>22</start>

38 </UpperBound>

39 <LoopIncrementFactor>

40 <start>1</start>

41 </LoopIncrementFactor>

42 </NestedLoop>

43 </LoopNo>

44 </RunNo>

45 </AD>

Listing 3.3 Loop Profiling Information(.xml)

The loop profiling information .xml file is then used as an input to the next component

which is theRange Estimator.

3.4 Range Estimator

The Range Estimatoris the first important component of the main part of McFLAT , the

Analysis and Transformations phase inFigure 3.1. The Range Estimator reads the loop

profiling information and determines which are the important ranges for each loop. The

important ranges are identified using Algorithm1. The input to this algorithm is a hash

table containing all the observed values for all the loops and the output is a list of important
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ranges. The basic idea is that for each loop, we extract the observed values for that loop,

partition the value space into regions and subregions, and then identify subregions which

contain more values than a threshold.

3.4.1 Algorithm of Range Estimator

Algorithm 1 Algorithm for range estimation
Data Items
H (K,V) : Hash table with loop numbers as keys and list of observed values
ProcedureprocessLoopData(LoopID)
l ← lookup(LoopID, H)// get all observed values for loop with LoopID
sort(l)
importantRanges← empty
R← computeRegions(min(l), max(l))
// for each large region
for all r in R do

// for each subregion (divide R into 10 equal parts)
for all sR in Rdo

if numInRegion(l,sR)≥ threshold then
PredVal←maxval(sR)
add PredVal to importantRanges

end if
end for

end for
return(importantRanges)

We determine the regions and subregions as illustrated inFigure3.2. The regions are pow-

ers of 10, starting with the largest power of 10 that is less than the smallest observed value,

and ending with the smallest power of 10 that is greater than the highest observed value.

For example, if the observed upper bounds were in the range 120 to 80000, then we would

choose regions of size 100, 1000, 10000 and 100000. Each region is further subdivided into

10 subregions. A subregion is considered important if the number of observed values are

above a threshold, which can be set by the user. For our experiments we used a threshold

of 30 % . When an important region is identified, the the maximumobserved value from

the region is added to the list of important ranges.
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1000−10000

Region Observed values arranged in sub−regions

1         100    200      300     400      500      600    700    800     900    1000

1000     2000   3000    4000   5000    6000    7000     8000     9000   10000

100−1000

Figure 3.2 Pictorial Example of Ranges and Subranges

Listing 3.4 shows the format of .xml file which is generated as the Algorithm 1 is applied

on the profiled information. The .xml file generated during this phase is persistent, and so

multiple runs can be made, and each run will add new information under theHD tag of

the .xml file. The .xml file starts withRunNotag that indicates the Date and TimeStamp

of the run. Listing 3.4 shows the important loop-bound ranges for loops in the program,

one of which is a single loop and the other one is a nested loop.There are two instances

of the tagLoopNofor loop 1.0 which indicates that there are two important loop-bound

ranges predicted for loop 1.0. The tagLoopNohas two elementsLoopNumberthat indi-

cates the number that uniquely identifies the loop in the program andLoopVariableName

which represents the name of the loop index variable. The tagsPredictedLowerBound, Pre-

dictedUpperBoundandPredictedLoopIncFactorwithin theLoopNotag indicate important

values observed for the lower bound, upper bound and loop increment factor of loop 1.0

respectively. Since loop 2 is a doubly-nested loop, so thereare twoLoopNotags with dif-

ferent value forLoopNumberelement. Which means there is one important value predicted

for the outer loop 2.0 and one important value observed for the inner loop 2.1.

1 <HD>

2 <RunNo TimeStamp="2010-08-12 22:29:39">

3 <LoopNo LoopNumber="1.0" LoopVariableName="i1">

4 <PredictedLowerBound Value="2"/>

5 <PredictedLoopIncFactor Value="1"/>

6 <PredictedUpperBound Value="22"/>

7 </LoopNo>
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8 <LoopNo LoopNumber="1.0" LoopVariableName="i1">

9 <PredictedLowerBound Value="2"/>

10 <PredictedLoopIncFactor Value="1"/>

11 <PredictedUpperBound Value="320"/>

12 </LoopNo>

13 <LoopNo LoopNumber="2.0" LoopVariableName="j1">

14 <PredictedLowerBound Value="2"/>

15 <PredictedLoopIncFactor Value="1"/>

16 <PredictedUpperBound Value="23"/>

17 </LoopNo>

18 <LoopNo LoopNumber="2.1" LoopVariableName="i1">

19 <PredictedLowerBound Value="2"/>

20 <PredictedLoopIncFactor Value="1"/>

21 <PredictedUpperBound Value="22"/>

22 </LoopNo>

23 </RunNo>

24 </HD>

Listing 3.4 Format of Predicted Loop-Bounds Ranges (.xml) File

3.5 Dependence Analysis

The data dependence testing problem is that of determining whether two references to

the same array within a nest of loops may reference to the sameelement of that array

[Wol90, ASU85].

Since we identify the upper loop bounds via our profiling phase, we have chosen very

simple and efficient dependence testers: theextended GCD testand thesingle variable per

constraint test. Currently, we have found these sufficient for our small set ofbenchmarks,

but we can easily add further tests as needed. In proceeding sections, we will explain the

theoretical aspects of above mentioned dependence tests with examples.
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3.5.1 Extended GCD Test

We use Banerjee’s Extended GCD Test [ASU85, Wol90] as a pre-processing step for our

other tests. While the test itself is not exact, it allows us totransform our problem into a

simpler and smaller form. This test solves the very simple question: Ignoring the bounds,

is there an integral solution to a system of equations? If thesystem of equations is in-

dependent then the original system of equations is also independent. If this test returns

dependence then the total system may be either dependent or independent. For example

1 for i=1:10

2 a(i+11)=a(i);

3 end

Listing 3.5 Extended GCD Example

The initial dependence problem is to find integers suchi, i ′ such thati+11= i′ and

1≤ i, i′ ≤ 11

The Extended GCD test tells us that(i, i′) = (t1, t1+11). Transforming the constraints to

be in terms oft1 gives us:

does there exist integert1 such that

1≤ t1≤ 11

1≤ t1+11≤ 11

This transformation is valuable for several reasons. First, the number of variables are re-

duced. Second, number of constraints have been reduced. Before this transformation, each

lower and upper loop bound generated one constraint, while each dimension of the array

generated one equality constraint. The equality constraint a~x= b had to be converted into

two inequality constraintsa~x≤ b anda~x≥ b. Therefore, there were 2∗ l +2∗d (where l is

the number of enclosing loops and d is the number of array dimensions) constraints. Now

all the equality constraints are converted into bounds constraints. Thus there are only 2∗ l

constraints left [MHL91].
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3.5.2 SVPC: Single Variable Per Constraint Test

If the Extended GCD test returns dependence, then we apply SVPC test on each constraint

comparing the upper and lower bounds. If after iterating over all the constraints, the lower

bound(lb) is greater than the upper bound(ub) for any variable, then the test returns “inde-

pendent”. Otherwise the system of equations is dependent. This test also applies to many

common multi-dimensional cases [MHL91]. To demonstrate the algorithm, we cover the

following example in detail.

1

2 for i=1:10

3 for j=1:10

4 a(i,j) = a(i+10,j-9);

5 end

6 end

Listing 3.6 SVPC Example

The GCD test will seti1 = t1, i′1 = t2, i2 = t2+9 andi′2 = t1−10. Substituting the variables

t1 andt2 into the above linear inequalities we get the following:

1≤ t1≤ 10

1≤ t2≤ 10

1≤ t2+9≤ 10

1≤ t1−10≤ 10

The first equation sets the lower bound oft1 to 1 and the upper bound to 10. The second

constraint also does the same fort2. Thus combining the lower bounds from the last two

inequalities with the upper bounds from the first two, we deduce

10≤ t1≤ 10

11≤ t2≤ 10
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Since the lower bound ont2 is greater than its upper bound, the system is independent.

This algorithm is very efficient. It requiresO(numconstraints+numvars) steps with

many operations per step [MHL91].

During this phase of analysis and transformation, McFLAT , calculates dependencies be-

tween all the statements in the loop body against all the predicted important ranges for that

loop using above mentioned dependence tests. It maintains various data structures support-

ing dependence analysis. This information is used in subsequent loop transformation phase.

The output of this phase is .xml file whose structure is shown in Listing 3.7. The main tag

of .xml file of Dependence Summary isAD which containsLoopNotag having elements

LoopNumberandNestingLevel. TheLoopNotag contains sub-tagsRangehaving elements

Start, End indicating the predicted lower bound and upper bound of the loop, whether a

loop is parallelizable or not indicated by elementParallelizableand last elementValid-

Transformationwhich indicates the type of loop transformation applicableon the loop. In

Listing3.7 there is only one sub-tagRangefor loop 1.0 as there is only one range predicted

for this loop. The number of instances ofRangetag is equivalent to the number of loop

bound ranges predicted for the loop. Within theRangetag, there is aLoopStmtstag that

has elements calledAccessthat represents the actual loop statement for which dependence

information is calculated, and aStmtNumberstag, that indicates the statements between

which the dependence is calculated. InListing 3.7, there are two statements within the

loop body, so there are fourLoopStmtstags which indicate the dependency between read(r)

and write(w) of all statements in the loop body. InListing 3.7 the value ofStmtNumbers

element is “S1:S1” which shows the dependence information between r - w of the same

statement which is S1. Similarly, the value of elementStmtNumbers“S1:S2” shows de-

pendence information between write of Statement1 and read of Statement 2. Likewise,

the value of elementStmtNumbers“S1:S2” shows the dependence information between

write of Statement1 and write of Statement 2. TheDependenceelement indicates whether

there is “dependence” or no “dependence” between the accessed statements. In case of

loop number 2 which is a nested loop, a sub-tagNestedLoopis added to theRangetag to

represent the dependence information for the nested loop.
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1

2 <AD>

3 <LoopNo LoopNumber="1.0" NestingLevel="0">

4 <Range Start="2" End="22" Parallelizable="Yes"

ValidTransformation="LoopReversal">

5 <LoopStmts Access="U(i1, 1)=(sin(((pi * h) * (i1 - 1))) + sin((((3

* pi) * h) * (i1 - 1))))" StmtNumbers="S1:S1" Dependence="n" />

6 <LoopStmts Access="U(i1, 1) = sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1));"

StmtNumbers="S1:S2" Dependence="n"/>

7 <LoopStmts Access="U(i1, 1) = V(i1,1)" StmtNumbers="S1:S 2"

Dependence="n"/>

8 <LoopStmts Access="V(i1, 1) = sin(pi * h* (i1-1))+sin(2 * pi * h* (i1-1));"

StmtNumbers="S2:S2" Dependence="n"/>

9 </Range>

10 </LoopNo>

11 <LoopNo LoopNumber="2.0" NestingLevel="1">

12 <Range Start="2" End="23" Parallelizable="No"

ValidTransformation="LoopInterchange">

13 <NestedLoop Number="2.1">

14 <Range Start="2" End="22.0" Parallelizable="Yes">

15 <LoopStmts Access="Vb(i1) =((U((i1 - 1), (j1 - 1)) + U((i1 + 1 ),

(j1 - 1))) + (s2 * U(i1, (j1 - 1))))" StmtNumbers="S1:S1"

Dependence="n"/>

16 </Range>

17 </NestedLoop>

18 </Range>

19 </LoopNo>

20 </AD>

Listing 3.7 Format of Dependence Summary (.xml) File

3.6 Loop Transformations

In our framework programmers can either suggest the type of transformation that they need

to apply through optional loop annotations, or it will automatically determine and apply a
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transformation or a combination of transformations which are legal for a loop.

McFLAT implements the following loop transformations that have been shown to be use-

ful for two important goals parallelism and efficient use of memory hierarchy [LW04]:

loop interchangeand loop reversal. For automatic detection and application of the above

mentioned loop transformations we use the unimodular transformation model presented in

[WL91].

3.6.1 Distance Vector

Currently, McFLAT handles those loops whose dependences can be summarized by dis-

tance vectors. Adependence distancefor a data dependence relation can be computed by

finding the vector difference between the iteration vectorsof the source and target itera-

tions. The dependence distance will itself be a vectord, called thedistance vector, defined

asd = iT− iS

iS+d = iT

whereiS is the source iteration vector for the dependence relation,iT is the target iteration

vector.

Listing 3.8shows an example of distance vector calculation. Are there iteration vectors i1

and i2, such that 2≤ i1≤ i2≤ 4 andi1 = i2−1?. The distance vector isi2− i1 = 1

1 for i = 2:4

2 a(i) = b(i) + c(i);

3 d(i) = a(i-1);

4 end

Listing 3.8 Distance Vector Example
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3.6.2 Loop Reversal

Loop reversal reverses the order in which values are assigned to the index variable of a

loop. This subtle optimization can pave way for other optimizations and can eliminate

dependencies. Our experimental resultsChapter4, have shown that this transformation

can improve the performance of a MATLAB program, when applied tofor loops that

execute over a fairly large upper bound.

Figure 3.3 shows a code snippet withLoop Reversalapplied on it. The original loop runs

from 1 to 10 whereasLoop Reversalreverses the order in which values are assigned to the

index variable, and the reversed loop runs down from 10 to 1.

for i = 1: 10
  a(i)= i +i;
end

              for i = 10:−1:1
 a(i) = i+i;

end

Loop Reversal

Figure 3.3 Example of Loop Reversal.

McFLAT , uses a unimodular transformations model for the application of Loop Reversal.

In the context of unimodular transformations framework, loop reversal is represented by

an identity matrix. Reversal of ith loop is represented by the identity matrix, but with the

ith diagonal element equal to−1 rather than 1. For example, the matrix representing loop

reversal of the outermost loop of a two-deep loop nest is

[

−1 0

0 1

]

.

3.6.3 Loop Interchange

Loop Interchangeexchanges inner loops with outer loops. This transformation can improve

the locality of reference, depending on how arrays are stored i.e. column-major orderor

row-major orderin the programming language. This transformation is also known asloop

permutation.

Figure3.4shows a code snippet withLoop Interchangeapplied on it.
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  end

for i = 1 : 10                                   for j = 1 : 5
  for j = 1: 5                                      for i = 1: 10  
    a(i,j) = a(i,j) +1;                             a(i,j) = a(i,j) +1;

                                                 end
end                                                 end   

Loop Interchange

Figure 3.4 Example of Loop Interchange.

A loop interchange transformation maps iteration (i,j) to iteration(j,i). In matrix notation,

we can write this as

[

0 1

1 0

][

i

j

]

=

[

j

i

]

The elementary transformation matrix thus performs the loop interchange transformation

on the iteration space.

3.6.4 Legality of Unimodular Transformations

It has been proved that a loop transformation or a combination of loop transformations isle-

gal if the transformed dependence vectors are all lexicographically positive. McFLAT uses

the same legality test to determine whether a transformation or a group of transformation

is valid for a loop or not [WL91].

Theorem 1 : Let D be the set of distance vectors of a loop nest. A unimodular trans-

formation T is legal if and only if ∀dεD : Td≻ 0

Using the above theorem1, we can evaluate if a compound transformation is legal directly

or not. Consider the following example:

1

2 for i=1:N

3 for j=1:N

4 a(i,j) = a(i,j) + a(i+1,j-1);

5 end

6 end
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Listing 3.9 Legality Test Example

The dependence vector of above code snippet is (1, -1). The loop interchange transforma-

tion, represented by

[

0 1

1 0

]

, is illegal, since the resulting dependence vectorT(1,−1) =

(−1,1) is lexicographically negative. However, applying loop interchange followed by re-

versal, represented by the transformation matrix

T′ =

[

−1 0

0 1

][

0 1

1 0

]

=

[

0 −1

1 0

]

is legal since it leaves the resulting dependencesT(1,−1) = (1,1) lexicographically posi-

tive.

3.7 McFLAT: As a T est-Bed for Loop Transformations

Application

Apart from automatically testing the legality of loop interchange and reversal or their com-

bination, our framework supports a larger set of transformations which can be specified by

the user. This allows us to use our system as a testbed for programmers with which they

can suggest different transformations and observe the effect of different transformations on

different loops. Programmers just have to annotate the loopbody with the type of transfor-

mation that they need to apply on the loop. InListing3.10programmer asks the framework

to applyLoop Reversalby annotating the loop body as mentioned in line 2. Our frame-

work checks for the presence of annotations, if a loop annotation is present it computes

the dependence information using the predicted loop boundsfor that loop and applies the

transformations if there is no dependency between the loop statements. The current set of

transformations supported by annotations is:

• Loop fission: This transformation attempts to break a loop into multiple loops over

the same index range. The fissioned loops will take only a partof the loop’s body.
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This transformation can reducecache misses, as the most relevant data would be

present in the cache for the split loops.

Figure3.5shows a code snippet withLoop Fissionapplied on it. This transformation

breaks a loop into two loops, and each executing one statement of the previous loop

which had two statements.

    end

     for i =1 : 10                           for i = 1: 10                             

                                 
                                        for i = 1 : 10
                                            b(i) = i*i;
                                        end

       a(i) = i+i;                               a(i) = i+i;
       b(i) = i*i;                             end Loop Fission

Figure 3.5 Example of Loop Fission.

• Loop fusion: A type of loop transformation that attempts toreduce code size and

loop overhead by coalescing bodies of two loops into one. Whentwo adjacent loops

iterate the same number of times, their bodies can be fused aslong as there is no

dependency between the data items that these loops access.

Figure3.6shows a code snippet withLoop Fusionapplied on it. This transformation

fuses two loops which iterate the same number of times into one loop.

• Loop interchange.

• Loop reversal.

1 for i1 = 2:(n-1),

2 ( * LoopReversal; * )

3 U(i1, 1) = sin(pi * h* (i1-1))+sin(3 * pi * h* (i1-1));

4 end;

Listing 3.10 A MATLAB loop with Annotated Loop Body
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 a(i) = i + i;

end

for k = 1 : 10
  b(k)= k*k;

end

 for i = 1 : 10                              

for i = 1 : 10
 a(i) = i+i;
b(i) = i*i;

end

Loop Fusion

Figure 3.6 Example of Loop Fusion.

The above mentioned set of loop transformations are chosen because they have proved

to improve the locality of reference and uncover parallelism opportunities[LW04]. The

framework is extensible and any loop transformation can be implemented and their effects

on different loop-bounds ranges can be studied.

McFLAT , is a useful tool that attempts to study the impact of different loop transforma-

tions on different loop-bound ranges. This knowledge is helpful for the application of loop

transformations, as all legal transformations are not always beneficial for a loop. Our ul-

timate goal is to use the information provided by McFLAT in developing a self-learning

system that will select optimal loop transformations basedon the program features and

loop-bounds that have been beneficial in the past for a transformation or a combination of

transformations.

3.8 Output of Mc FLAT

McFLAT is a source-to-source framework which uses the McLAB front-end and outputs

MATLAB code with loop-level specializations added for the important predicted ranges for

that particular loop.Listing3.11shows a code snippet from ourCrnichbenchmark.Listing
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3.11shows a single loop with no loop transformation applied.

1 function U = crnich(a, b, c, n, m)

2

3 h = a/(n-1);

4 k = b/(m-1);

5 r = cˆ2 * k/hˆ2;

6 s1 = 2+2/r;

7 s2 = 2/r-2;

8 U = zeros(n, m);

9 t1=clock;

10 for i1 = 2:(n-1),

11 U(i1, 1) = sin(pi * h* (i1-1))+sin(3 * pi * h* (i1-1));

12 end;

13 t2=clock;

14 fprintf(1, 'Time spent in loop: total = %f\n' , (t2-t1) * [0 0 86400 3600

60 1] ');

15 end

Listing 3.11 Original Code

Listing 3.12shows a code snippet from theCrnich benchmark, after it has passed through

McFLAT . In the Listing 3.12 the loop is guarded by a conditional check (line 9), that

tests during the execution of the program that the value thatis dynamically assigned to

the upper bound variablen is equivalent to an already important predicted value, which

in the example is 220. If the condition is satisfied, then a specialized version with loop

transformation applied, which in this case isLoop Reversalis executed (lines 10−12). If

the condition is not met then original loop with no loop transformation applied is executed

(lines 13−16).

1 function [U] = crnich(a, b, c, n, m)

2 h = (a / (n - 1));

3 k = (b / (m - 1));

4 r = (((c ˆ 2) * k) / (h ˆ 2));
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5 s1 = (2 + (2 / r));

6 s2 = ((2 / r) - 2);

7 U = zeros(n, m);

8 t1 = clock;

9 if (n ≤220)

10 for i1 = ((n - 1) : -1 : 2)

11 U(i1, 1) = (sin(((pi * h) * (i1 - 1))) + sin((((3 * pi) * h) * (i1

- 1))));

12 end

13 else

14 for i1 = (2 : (n - 1))

15 U(i1, 1) = (sin(((pi * h) * (i1 - 1))) + sin((((3 * pi) * h) * (i1

- 1))));

16 end

17 end

18 t2=clock;

19 fprintf(1, 'Total Time spent = %f\n' , (t2 - t1) * [0 0 86400 3600 60 1] ');

20 end

Listing 3.12 Specialized Code

3.9 Parallelism Detection

Compiler-based auto-parallelization is an area which has still not found wide-spread appli-

cation [TWFO09]. This is due to the poor exploitation of application parallelism, which

results in performance levels far below those obtained whenoriginal code is parallelized

manually.

Recently, GPGPU and multi-core computing systems are widelyseen as the most promis-

ing means of delivering performance with increasing transistor densities [Hof04]. However,

this potential cannot be realized unless the application iswell-parallelized, and the parallel

constructs provided by the language takes advantage of the under-lying architecture effi-

ciently.

Unfortunately, efficient automatic parallelization of a sequential program is a daunting and
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complex task which needs to be done judiciously [TWFO09]. It is generally, agreed that

manual code parallelization by expert programmers gives better performance and more

streamlined parallel implementation, but at the same time the approach is most costly and

time-consuming. Parallelizing compiler technology, on the other hand, can greatly reduce

cost and time-to-market while ensuring semantic correctness of the resulting parallel code.

Automatic parallelism detection is a much studied researcharea [Lam74]. Progress was

achieved in early 1980s and 1990s on restrictedDOALL andDOACROSSloops [BC04,

LL97]. In fact, this research has resulted in a whole range of parallelizing compilers, e.g.

Polaris [PEH+93], SUIF [HAA+96] and Open64 [AL].

MATLAB is a popular programming language for numerical applications. Recently, compil-

ers have been designed for MATLAB that attempt to improve its speed of execution and aim

at exploiting parallelism opportunities either automatically or interactively [AP01, CB98,

CB09].

3.9.1 Types of Dependency

Parallel computing is a form of computation that lets you do several calculations simulta-

neously, operating on the principle that large problems canoften be divided into smaller

tasks, which are then handled concurrently (“in parallel”)[Par90]. There are several differ-

ent forms of parallel computing:bit-level, instruction-level, data, andtask parallelism.

Parallel computer programs are more difficult to write than sequential ones [PH05], because

data dependencies in the programs introduce several new classes of potential software bugs.

Communication and synchronization between the different smaller tasks are typically one

of the greatest obstacles to getting good parallel programswhich give better performance

as compared to their sequential counterparts.

Understanding data dependencies is fundamental in applying loop transformations and

writing parallel programs. There are four types of data dependencies.

• Flow Dependence: Also known as true dependence, statementi precedes statementj,

andi computes a value thatj uses. InListing 3.13there is a flow dependence or true
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dependence represented as 2→t 3. The dependence flows between instances of the

statements in different iterations. This is a loop-carrieddependence. The dependence

distance is 1.

1 for i = 2:4

2 a[i] = b[i] + c[i];

3 d[i] = a[i-1];

4 end

Listing 3.13 Flow Dependency Example

• Anti Dependence: Statement i precedes j, and i uses a value that j computes. In

Listing 3.14there is an anti-dependence, 2→a 2. This is a loop-carried dependence.

The dependence distance is 1.

1 for i = 2:4

2 a[i] = b[i] + c[i];

3 d[i] = a[i+1];

4 end

Listing 3.14 Anti Dependency Example

• Input Dependence: Statement i precedes j, and i uses a valuethat j also uses. In

Listing 3.15 there is an input dependence between statements 3 and 4 denoted by

3→i 4.

1 x = 1;

2 y = x + 2;

3 x = z - w;

4 x = y / z;

Listing 3.15 Input Dependency Example

43



McFLAT: A Framework for Loop Analysis and Transformations for MATLAB

• Output Dependence: Statement i precedes j, and i computes avalue that j also com-

putes. InListing3.16, there is an output dependency between statements represented

as 1→o 3 and 3→o 4.

1 x = 1;

2 y = x + 2;

3 x = z - w;

4 x = y / z;

Listing 3.16 Output Dependency Example

We refer to these dependency types in theExperimental Resultschapter, where we list the

type of dependencies present between loop statements of ourbenchmarks. McFLAT tests

for the presence of flow dependency to determine whether a loop can be converted to a

parfor loop or not.

McFLAT , which is the topic of this thesis is a source-to-source framework which uses

McLAB front-end and outputs MATLAB code with loop-level specializations and automat-

ically detects whether a loop can be converted to aparfor loop or not. The framework

performs a parallelization test on the loops based on the dependence information calcu-

lated in the dependence analysis and instrumentation phase. Listing 3.17shows the syntax

of the parallel for-loop represented by the keywordparfor in MATLAB . parfor has the

same syntax for the range expression as the sequentialfor loop except the keywordparfor

is used instead offor as shown on line number 1.

1 parfor i1 = 2:(n-1),

2 U(i1, 1) = sin(pi * h* (i1-1))+sin(3 * pi * h* (i1-1));

3 end;

Listing 3.17 Syntax of Par-for loop in MATLAB

A loop is classified as a parallel loop in McFLAT , according to MATLAB ’s semantics

[Mata], since the generated code is targeted for MATLAB system. Thus, a loop is clas-
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sified as a parallel for-loop if it satisfies the following conditions.

• There should be no flow dependency between the same array access within the loop

body. i.e. Distance vectors for all the same array accesses should be zero, e.g.for

loop shown inListing3.18is not parallelizable due to the way variablef is used. This

loop doesn’t satisfy the flow dependency requirement of MATLAB ’s parfor loop.

1 for ii = 2:n

2 for jj = 2:m,

3 f(ii, jj) = f(ii, jj)+mask(ii, jj) * ...

4 (0.25 * (f(ii-1, jj)+f(ii+1, jj)+f(ii, jj-1)+ ...

5 f(ii, jj+1))-f(ii, jj));

6 end;

7 end

Listing 3.18 Example of Non-Parallelizable for Loop

The for loop shown inListing 3.19satisfies the constraint of flow dependency for

MATLAB ’s parfor loop.

1 for ii = 1:n,

2 q = q+(f(ii, m)+f(ii+1, m)) * 0.5;

3 end;

Listing 3.19 Example of Parallelizable for Loop

• Within the list of indices for the variable, exactly one index involves the loop variable

• Other variables used with loop index variable to index an array should remain con-

stant over the entire execution of the loop.

• The loop variable should not be modified in the body of the loop. This restriction is

required, because changing loop variable in the parfor bodyinvalidates the assump-

tions MATLAB makes about communication between the client and workers. The

45



McFLAT: A Framework for Loop Analysis and Transformations for MATLAB

for loop shown inListing3.20attempts to modify the value of the loop variable i in

the body of the loop, and thus is invalid:

1 parfor i = 1:n

2 i = i + 1;

3 a(i) = i;

4 end

Listing 3.20 Example of Invalid parfor Loop

• The loop index variables must have consecutive increasingintegers.

parfor loopvar = initval:endval, statements, end

allows you to write loops for a statement or block of code thatexecutes in parallel on

a cluster of workers, which are identified and reserved with the matlabpool command.

initval and endval must evaluate to finite integer values, orthe range must evaluate to

a value that can be obtained by such an expression, that is, anascending row vector of

consecutive integers. Theparfor loop shown inListing 3.21 fails the parfor range

check.

1

2 parfor i = n:-1:1

3 a(i) = i;

4 end

Listing 3.21 Example of Invalid parfor Loop

3.10 Limitations of Mc FLAT

At present, our framework implements a limited set of loop transformations. It only handles

perfectly nested loops which have affine accesses and whose dependences can be summa-

rized by distance vectors. As we develop the framework we will add further dependence
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tests and transformations, as well as transformations to enable more parallelization. How-

ever, since we also wish to put this framework into our JIT compiler, we must be careful

not to include overly expensive analyses.
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Chapter 4

Experimental Results

In this chapter we demonstrate the use of McFLAT through two exploratory performance

studies on a set of MATLAB benchmarks. We begin with a description of our benchmarks,

their source, benchmark size, the versions of software usedin performance measurements.

We then present the types of dependence each loop carries within its statements and the

number of statements within the loop body. This is followed by a comparison of perfor-

mance numbers and speedups on Mathworks MATLAB, our McVM, McJIT and GNU

Octave of transformed programs, applying our dependence testers and standard loop trans-

formations for a variety of input ranges. The second study looks at the performance of

benchmarks when we introduceparfor constructs on transformed loops and original loops.

We then examine the factors that explain the performance numbers on different execution

engines.

Our ultimate goal is to integrate McFLAT with a self-learning system that decides an opti-

mal transformation for a loop based on its features, loop-bounds and system’s past experi-

ence. However these example studies provide some interesting data and insight into how

different loop-bound ranges, loop features impact variousloop transformations. These ex-

ploratory studies provide an evidence that always applyingloop transformations is not ben-

eficial. At times loop transformations give no performance speedups and at times degrades

the performance of the program.
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4.1 Benchmarks and Static Information

Table4.1summarizes our collection of 10 benchmarks, taken from the McLab and Univer-

sity of Stuttgart benchmark suites. These benchmarks have amodest size, but yet perform

interesting calculations and demonstrate some interesting behaviors. For each benchmark

we give the name, description, source of the benchmark.Table 4.2 lists the number of

functions, number of loop nests and number of loops that can be automatically converted

to parallel for loops.

We have chosen our benchmarks such that we can study the effect of loop transformations

on the execution time of a program where loop body is representative of different features.

In some of our benchmark loops computation is done on the samearray within the loop

body. Whereas for others there are no array dependencies. We have also included a bench-

mark in our suite which has loop that invokes a function and writes its return value to an

array.

In Table4.3, we report on the type of dependences that we observed withinthe statements

in the loop body. The column labeledDep Typeindicates the type of dependences that exist

within the loop body. In our benchmark suite the maximum number of loops that we have

is five. The columnsLoop1, Loop2, Loop3, Loop4 indicate the number of statements in

the loop body, for example, our benchmarkCrni has four loops and the columnsLoop1,

Loop2, Loop3, Loop4 indicate the number of statements in the loop body of each loop in

Crni benchmark.

4.2 Performance Study for Standard Loop Transforma-

tions

For our initial study, we ran the benchmarks on an AMD Athlon™64 X2 Dual Core Pro-

cessor 3800+, 4GB RAM computer running the Linux operating system; GNU Octave,

version 3.2.4; MATLAB , version 7.9.0.529 (R2009b) and McVM/McJIT, version 0.5.
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Benchmark Source of Benchmark
Name Benchmark Description

Crni McLab Finds the
Benchmarks Crank-Nicholson Sol.

Mbrt McLab Generates the mandelbrot set.
Benchmarks

Fiff McLab Finds the finite-difference solution
Benchmarks to the wave equation.

Hnormal McLab Normalises array of
Benchmarks homogeneous coordinates.

Nb1d McLab Simulates the gravitational
Benchmarks movement of a set of objects.

Interpol Uni of Stutt Compares the stability
and complexity of Lagrange interpolation.

Lagrcheb Uni of Stutt Computes Lagrangian and Chebyshev
polynomial for comparison.

Fourier Uni of Stutt Compute the Fourier transform
with the trapezoidal integration rule.

Linear Uni of Stutt Computes the linear iterator.
EigenValue Uni of Stutt Computes the eigenvalues

of the transition matrix.

Table 4.1 Description and Source of Benchmarks

For each benchmark we ran a number of training runs through the instrumenter and profiler

and then we used our range estimator to predict ranges for theprofile data. The Dependence

analyzer and loop transformer use these ranges to generate aset of output files, one out-

put file for each combination of possible transformations. For example, if the file had two

loops, and loop reversal could be applied to both loops, thenwe would produce four differ-

ent output files corresponding to: (1) no reversals, (2) reversing only loop 1, (3) reversing

only loop 2, and (4) reversing both loops.

Each output file has a specialized section for each predictedimportant range, plus a dy-

namic guard around each specialized section to ensure that the correct version is run for a

given input.
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Benchmark Name # Lines Code # Funcs # Loops # Par Loops.

Crni 65 2 4 1

Mbrt 26 2 1 0

Fiff 40 1 2 0

Hnormal 30 1 1 1

Nb1d 73 1 1 0

Interpol 187 5 5 0

Lagrcheb 70 1 2 2

Fourier 81 3 3 2

Linear 56 1 2 1

EigenValue 50 2 1 0

Table 4.2 Characteristics of Benchmarks

We report the results for four different MATLAB execution engines, the Mathworks’ MAT-

LAB (which contains a JIT) (Table4.4), the GNU Octave interpreter (Table4.5), the McVM

interpreter(Table4.7), and the McVM JIT(McJIT) (Table4.6). Execution time of bench-

marks were averaged on three runs for all the four execution engines.

In each table, the column labeledTrans. Appliedindicates which transformations are ap-

plied to the loops in the benchmark, whereN indicates that no transformation is applied,

R indicates Loop Reversal is applied,F represents Loop fusion andI is representative of

Loop Interchange.NN indicates that there are two loops in the benchmark and no transfor-

mation is applied on any of them. Similarly,IR shows there are two loops, Interchange is

applied on the first loop and reversal on the second loop.I+R indicates one loop nest on

which interchange is applied and then reversal.
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Benchmark # Stmts in Loop Body
Name Loop1 Dep Type Loop2 Dep Type Loop3 Dep Type Loop4 Dep Type

Crni 1 Nil 3 Nil 3 anti 1 anti
flow

Mbrt 1 Nil
Fiff 2 Nil 1 anti

flow
Hnormal 1 Nil
Nb1d 18 output

input
Interpol 5 Nil 2 anti 2 anti 1 Nil
Lagrcheb 1 Nil 1 Nil
Fourier 1 Nil 1 Nil 1 Nil
Linear 1 flow 1 Nil
EigenValue 1 Nil

Table 4.3 Characteristics of Loops in Benchmarks

Depending on the benchmark we had two or three different ranges that were identified by

the range predictor. The ranges appear in the tables in increasing value, soPred. Range 1

corresponds to the smallest range andPred Range 3corresponds to the largest range. We

chose one input for each identified range and timed it for eachloop transformation version.

In each table we give the speedup (positive) or slowdown (negative) achieved as compared

to the version with no transformations. We indicate in bold the version that gave the best

performance for each range.

Let us consider first the execution time for Mathworks’ MATLAB , as given inTable4.4.

Somewhat surprisingly to us, it turns out that loop reversalalone always gives performance

speed-up on the higher ranges. Whereas, on lower ranges thereis either no speed up or

performance de-gradation in some of the benchmarks. This implies that it may be worth

having a specialized version of the loops, with important loops reversed for larger data

ranges.

However, reversing one of the two loops having the same bounds and operating on the
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 60ms 3.41s
R 60ms 0.0 % 3.21s 5.8%

Mbrt N 1.91s 9.40s
I 1.98s -3.6 % 9.55s -1.6%
R 1.91s 0.0 % 9.25s 1.5%
(I+R) 1.97s -3.4% 9.32s 0.8%

Fiff NN 400ms 880ms
RN 405ms -1.25% 830ms 5.6%

Hnormal N 1.85s 4.52s
R 1.84s 0.5% 4.48s 0.8%

Nb1d N 40ms 2.53s
Interpol N 44.70s 60.35s
Lagrcheb NN 140ms 280ms 450ms

RR 138ms 1.4% 270ms 3.5% 420ms 6.6%
RN 143ms -2.1% 280ms 0.0% 450ms 0.0%
NR 143ms -2.1% 280ms 0.0% 430ms 4.4%

Fourier NNN 50ms 1.31s
FN 40ms 20.0% 1.49s -13.7%
RRN 50ms 0.0% 1.25s 4.5%
(F+R)N 60ms -20.0% 1.31s 0.0%
RNN 50ms 0.0% 1.21s 7.6%
NRN 50ms 0.0% 1.25s 4.5%

Linear NN 336ms 640ms 2.60s
IN 566ms -68.4% 890ms -39.0% 3.67s -38.4%
IR 610ms -81.5% 850ms -32.8% 3.42s -31.5%

EigenValue N 80ms 310ms 1.10s
I 100ms -25.0% 370ms -19.3% 1.18s -7.27%
R 90ms -12.5% 290ms 6.4% 1.10s 0.0%
(I+R) 90ms -12.5% 280ms 9.6% 1.08s 1.81%

Table 4.4 Mathworks’ MATLAB Execution Times and Speedups
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 5.46s 1102s
R 5.46s 0 % 1101s 0.09%

Mbrt N 289.8s 2000s
I 300s -3.5 % 2000s 0%
R 289.8s 0 % 2000s 0%
(I+R) 300s -3.5% 2000s 0%

Fiff NN 6.44s 251s
RN 6.41s 0.46% 253s -0.7%

Hnormal N 7.34s 13.4s
R 7.48s -1.9% 13.6s -1.4%

Nb1d N 2.56s 7.89s
Interpol N 3524s 5238s
Lagrcheb NN 630ms 1.28s 1.95s

RR 630ms 0% 1.27s 0.7% 1.94s 0.51%
RN 630ms 0% 1.27s 0.7% 1.94s 0.51%
NR 630ms 0% 1.27s 0.7% 1.94s 0.51%

Fourier NNN 120ms 4.24s
FFN 120ms 0% 4.28s -0.9%
RRN 120ms 0% 4.31s -1.6%
FRN 120ms 0% 4.19s 1.1%
RNN 110ms 8.3% 4.26s -0.4%
NRN 120ms 0% 4.25s -0.2%

Linear NN 6.58s 352s 1496s
IN 6.65s -1.0% 381s -8.2% 1443s 3.5%
IR 6.65s -1.0% 382s -8.5% 1422s 4.9%
NR 6.56s 0.3% 369s -4.8% 1389s 7.1%

EigenValue N 240ms 106s 460s
I 230ms 4.1% 127s -19.8% 502s -9.1%
R 230ms 4.1% 116s -9.4% 486s -5.6%
(I+R) 230ms 4.1% 126s -18.8% 507s -10.2%

Table 4.5 Octave Execution Times and Speedups
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McVm(JIT)
Benchmark Trans Pred. Range 1 Pred. Range 2
Name Applied Time % Speedup Time % Speedup

Crni N 4.00s 1074s
R 4.00s 0.0 % 820s 23.6%

Mbrt N 98.37s 675s
I 101s -3.3 % 714s -5.8%
R 110s -12.6 % 781s -15.6%
(I+R) 106s -8.16% 738s -9.35%

Fiff NN 260ms 500ms
RN 260ms -1.95% 460ms 8%

Hnormal N 5.00s 8.93s
R 4.96s 0.8% 8.05s 10.9%

Nb1d N 850ms 4.10s

Table 4.6 McVM(JIT) Execution Times and Speedups

McVM(Interpreter)
Benchmark Trans Pred. Range 1 Pred. Range 2
Name Applied Time % Speedup Time % Speedup

Crni N 7.12s 1386.2s
R 6.35s 10.8% 1341.5s 3.2%

Mbrt N 384s 2491s
I 344s 10.4 % 2286s 8.2%
R 342s 10.9% 2370s 4.8%
(I+R) 346s 9.8% 2375s 4.6%

Fiff NN 7.38s 7.46s
RN 6.95s 5.8% 7.25s 2.8%

Hnormal N 7.23s 11.6s
R 7.11s 1.6% 12.24s -5.5%

Nb1d N 1.41s 4.24s

Table 4.7 McVM(Interpreter) Execution Times and Speedups
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same data item results in performance degradation at lower ranges, but has no impact as

the bounds increase, for example, Lagrcheb, this is perhapsreversing one of the two loops

results in more cache misses. InListing 4.1 benchmark, vector operations are performed

within the loop body. A vector in MATLAB is defined as an array which has only one

dimension with a size greater than one. For example, the array [1,2,3] counts as a vector.

The following four vectors are worked on.

• lag

• x

• x plot

• y plot

for each value of j, it computes the difference(d1) between the elementx plot( j) andlag;

similarly, it computes the difference(d2) between the elementx i andlag. It then computes

an element-wise division by dividing(d1) with the(d2) to obtain a vector. The product of

this vector is then assigned to the elementy plot( j).

1 function lebesgue = lagrcheb(n, i,scale)

2 % LAGRCHEB Compute and Plot Lagrangian and Chebyshev polyno mial for

comparison

3

4 lebesgue = 0;

5 n = fix(n);

6 i = fix(i);

7 if(n < 2), error( 'n<1' ); end

8 if(i < 1 | i > n), error( 'i < 1 or i > n' ); end

9

10 a = -1; % plot between a and b

11 b = 1;

12 m = 1e2; % default number of plot points between two nodes

13 clf;

14
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15 x = linspace(a,b,n);

16 x_plot = linspace(a,b,m * n);

17 length(x_plot);

18 y_plot = zeros(1, length(x_plot));

19 lag = x([1:i-1 i+1:n]);

20 t1=clock;

21

22 for time=1:scale

23

24 for j=1:length(x_plot);

25 y_plot(j) = prod((x_plot(j)-lag)./(x(i)-lag));

26 end

27

28 x = cos((2 * [n-1:-1:0]+1)./ (2 * (n-1) + 2) * pi);

29 lag = x([1:i-1 i+1:n]);

30

31 for j=1:length(x_plot);

32 y_plot(j) = prod((x_plot(j)-lag)./(x(i)-lag));

33 end

34

35 end

36 t2=clock;

37 fprintf(1, 'total = %f\n' , (t2-t1) * [0 0 86400 3600 60 1] ');

Listing 4.1 Lagrcheb Benchmark

MATLAB accesses arrays in column-major order, and MATLAB programmers normally

write their loops in that fashion, so always applying loop interchange degrades the perfor-

mance of the program. Performance degrades more for loops which involve array depen-

dencies. However, the degradation impact is lower at higherranges perhaps due to cache

misses in both the cases, that is transformed and original loop. The loop interchange degra-

dation impact is less for loops that invoke a function whose value is written to an array,

for example, Mbrt. InListing 4.2, the loop on lines from 10−14 is a candidate for loop

interchange transformation. Within the loop body, a function namediteration is called and

its return value is written to an array namedset
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1 function set=mandelbrot(N, Nmax)

2 side = round(sqrt(N));

3 ya = -1;

4 yb = 1;

5 xa = -1.5;

6 xb = .5;

7 dx = (xb-xa)/(side-1);

8 dy = (yb-ya)/(side-1);

9 set = zeros(side,side);

10 for x=0:side-1

11 for y=0:side-1

12 set(y+1,x+1) = iterations(xa+x * dx+i * (ya+y * dy),Nmax);

13 end

14 end

15 end

16

17 function out = iterations(x,max)

18 c = x;

19 i = 0;

20 while(abs(x) < 2 & i < max)

21 x = x * x + c;

22 i = i+1;

23 end

24 out = i;

25 end

Listing 4.2 Mbrt Benchmark

Loop fusion was only applied once (in Fourier) where it givesa performance speed-up on

lower ranges. However, as the loop bounds and accessed arrayget bigger then performance

degrades.

Now consider the execution time for Octave, given inTable4.5. Octave is a pure interpreter

and you will note that the absolute execution times are oftenan order of magnitude slower

than Mathworks’ system, which has a JIT accelerator. The applied transformations also

seem to have very little impact on performance, particularly on the lower ranges. For
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higher ranges, no fixed behavior is observed, for some benchmarks there is a performance

improvement whereas for others performance degrades.

We were also interested in how the transformations would impact our group’s McVM, both

in pure interpreter mode, and with the JIT. We couldn’t run all the benchmarks on McVM

because the benchmarks use some library functions which arenot currently supported.

However,Table4.6 andTable4.7 lists the results on the subset of benchmarks currently

supported. Once again loop reversal can make a significant impact on the larger ranges for

the JIT, and actually also seems beneficial for the McVM(interpreter).

4.3 Performance study for Parallel For Loops

In Table4.8we report the execution time and speedups with MATLAB ’s parfor looping

construct. We ran the benchmarks on an Intel ™Core(TM) i7 Processor (4 cores), 5.8GB

RAM computer running a Linux operating system; MATLAB , version 7.9.0.529 (R2009b).

For these experiments we initialized the MATLAB worker pool to size 4.

The term pN indicates that there is one loop in the benchmark,which is parallelized and

no loop transformation is applied on it. (pF) means two loopsare fused and then the fused

loop is parallelized. Note that it is not possible to combineloop reversal and parallelization

with the MATLAB parfor construct as the MATLAB specifications require that the loop

index expression must increase.

We have reported execution times of various combinations ofparallel and sequential loops,

to study the effect of parallelizing a loop in the context of MATLAB programming language.

For most of the benchmarks we observed that MATLAB ’s parfor loop does not often give

significant performance benefits, and in some cases causes severe performance degradation.

This is likely due to the parallel execution model supportedby MATLAB which requires

significant data copying to and from worker threads that overshadows the gain achieved by

executing the tasks in parallel.

MATLAB ’s parfor loop has its advantages and disadvantages, so automatically converting
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Benchmark Trans Pred. Range 1 Pred. Range 2 Pred. Range 3
Name Applied Time % Speedup Time % Speedup Time % Speedup

Crni N 280ms 13.41s
pN 1.03s -257% 14.20s -5.9%
R 290ms -3.5 % 13.30s 0.8%

Hnormal N 800ms 1.70s
pN 70.5s -8712 % 71.3s -4094%
R 780ms 2.5% 1.68s 1.1%

Lagrcheb NN 120ms 200ms 280ms
(pN)(pN) 140ms -16.6% 180ms 10.0% 250ms 10.7%
N(pN) 110ms 8.3% 180ms 10.0% 250ms 10.7%
(pN)N 120ms 0.0% 180ms 10.0% 260ms 7.1%
R(pN) 120ms 0.0% 180ms 10.0% 250ms 10.7%
(pN)R 120ms 0.0% 180ms 10.0% 250ms 10.7%
RR 120ms 0.0% 200ms 0.0% 270ms 3.5%
RN 130ms -8.3% 200ms 0.0% 270ms 3.5%
NR 130ms -8.3% 200ms 0.0% 270ms 3.5%

Fourier NNN 170ms 680ms
(pN)NN 50ms 70% 720ms -5.8%
(pN)(pN)N 200ms -17.6% 720ms -5.8%
N(pN)N 50ms 70% 720s -5.8%
(pF)N 50ms 70% 720ms -5.8%
R(pN)N 50ms 70% 710ms -4.4%
(pN)RN 50ms 70% 680ms 0.0%
FN 20ms 88.2% 690ms -1.4%
RRN 170ms 0.0% 680ms 0.0%
(F+R)N 170ms 0.0% 680ms 0.0%
RNN 170ms 0.0% 680ms 0.0%
NRN 170ms 0.0% 680ms 0.0%

Linear NN 150ms 7.40s 29.8s
N(pN) 150ms 0.0% 7.20s 2.7% 30.2s -1.3%
I(pN) 390ms 0.0% 10.30s -39.1% 40.2s -34.8%
IN 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
IR 370ms -146.6% 10.30s -39.1% 37.6s -26.1%
NR 160ms -6.6% 7.20s 2.7% 29.4s 1.34%

Table 4.8 Mathworks’ MATLAB Execution Times and Speedups with Parallel Loops
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a sequential loop into aparfor loop would not always be beneficial.
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Chapter 5

Related Work

In this chapter, we discuss various compilers that have beendesigned to compile dynamic

languages like MATLAB , to compile either ahead of time or just-in-time to avoid theover-

head of interpreting. Then we discuss various dependence testing algorithms that are being

used to compute dependence between same array references. Then we talk about vari-

ous approaches that have been used previously to determine optimal loop transformations

based on their impact on the program. McFLAT , introduces loop-level specializations for

important predicted ranges in MATLAB programs, so we talk about program specialization

techniques used previously for different languages to gainperformance speedups. Then

we discuss previous approaches used to detect automatically parallelization opportunities

in programs. The last section discusses techniques used foradaptive compilation in the

context of different programming languages.

Previous compilers have tried to gain performance speedupsby translating MATLAB code

to other static languages, such as C [JB07] or Fortran 90 [RGG+96, DRP96]. This ap-

proach allows other optimizations and parallelization that can be done on static languages,

as more information is available about the translated program. Lately, code restructuring is

performed for MATLAB programs to take advantage of language optimized operations e.g.

Vectorization of loops [BLA07].

Falcon [RGG+96]: A M ATLAB Interactive Restructuring Compiler, provides a program-
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ming environment that uses an existing high-level array language MATLAB as a source

language and generates Fortran 90 programs with directivesfor parallelism. Falcon per-

forms static, dynamic and interactive analysis to generatethe output code. It includes

capabilities for interactive and automatic transformations at both the operational-level and

the functional-level which results in better performance.

Menhir: An environment for high-performance MATLAB [CB98] . It is a compiler for gen-

erating sequential or parallel code from the MATLAB language. The compiler is designed

such that it takes MATLAB as a specification language and generates parallel and sequential

C or Fortran code.

McLAB, [mcl] an endeavor of Sable lab at McGill University aims to provide languages,

compilers and virtual machine for dynamic scientific languages. Starting with the MAT-

LAB language, and extensions of the MATLAB language such as Aspect Matlab [TAH10].

McLAB also has a compiler for generating Fortran 95 code called McFor [Li09]. The

McLAB virtual machine (McVM) currently integrates an interpreter and an optimizing

JIT compiler(McJIT) supporting a non-trivial subset of theMATLAB programming lan-

guage. McFLAT , the topic of this thesis is part of analysis and transformation engine of

McLAB having a dependence analyzer, a basic parallelization detection mechanism and a

loop transformer component. McFLAT , uses profile-based training runs to collect informa-

tion about loop bounds and ranges, and then applies a range estimator to estimate which

ranges are most important. Specialized versions of the loops are then generated for each

predicated range. Our ultimate goal is to embed this framework in our McJIT system,

where it will work as an adaption system invoking the compiler to recompile a method for

performance speedups based on what it has seen in the past.

5.1 Efficient And Exact Dependence Analysis

There is a rich body of research on the topics of dependence analysis, loop transformations

and parallelization. In our related work, we attempt to cover a representative subset that, to

the best of our knowledge, covers the prior work in the area ofthis thesis.
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Data dependence testing is the first step in detecting loop level parallelism in numerical

computation. “The problem is equivalent to integer linear programming and thus in gen-

eral cannot be solved efficiently” [MHL91]. The most efficient known dependence testing

algorithms either depend on the value of the loop bounds or are orderO(no(n)) where n

is the number of loop variables [Kan87, Len83, Sch86]. Many algorithms have been pro-

posed for this (dependence testing) problem, each one selecting different tradeoffs between

accuracy and efficiency. Traditional algorithms attempt toprove independence, but in case

of failure they assume dependence [AK87, Ban88, Wal88, Wol90]. If such an algorithm

returns dependent, we are not sure if an approximation was made or the set of constraints

are actually dependent.

Some work has been done on algorithms which are guaranteed tobe exact for special case

inputs [Sho81]. However, [MHL91] uses a series of special case exact tests. If the input is

not of the appropriate form for an algorithm, then they try the other next one. Using a series

of tests allows them to be exact for a wider range of inputs. Cascading exact tests can also

be much more efficient than cascading inexact ones. By attempting the most applicable

and least expensive test first, in most cases they return a definitive answer using just one

exact test. McFLAT , uses the same approach as in [MHL91], we have implemented a set of

dependence tests, which we have tested on our benchmark suite and found the algorithms

efficient and exact for our input set.

Several other well-known dependence tests are

• ITest: [PP94] is an optimized test which combines the GCD and the Banerjee tests.

Whenever either of the GCD test or the Banerjee test produces a “no” answer, the

ITest gives the same answer. In a number of cases where the GCD and the Banerjee

tests produce a “maybe” answer the I test, produces a no. In addition it is able to

produce a definite “yes” answer when the GCD and Banerjee tests produce only a

“maybe”.

• Fourier−Motzkin Test: solves the general non-integer linear programming case ex-

actly. If the result of this test is independent, the integercase is also independent

[DE73]. In case this test returns dependent, it also returns a sample solution. If this
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sample solution is integral, then the integral case is dependent. Otherwise, this test is

not exact.

• Omega Test: is based on Fourier-Motzkin variable elimination to integer program-

ming. However, the Omega test is more promising as compared to Fourier-Motzkin

test as it, combines new methods for eliminating equality constraints with an exten-

sion of Fourier-Motzkin variable elimination to integer programming [Pug91]. The

Omega test determines whether there is an integer solution to a problem which in its

case is a set of linear equalities and inequalities. The input to the Omega test is a set

of linear equalities and inequalities.

5.2 Loop Transformations

Several techniques are used to decide the order of loop transformations. A technique com-

monly used in parallelizing compilers is to decidea priori the order in which the com-

piler should attempt to apply transformations. This technique is inadequate and inefficient

because the choice and ordering of loop optimizations are highly dependent on program

semantics, and the optimality of a transform cannot be evaluated locally, one step at a time

[WL91].

Another used technique is to “generate and test”, that is, toexhaustively explore all different

possible combinations of transformations. This “generateand test” approach is expensive

and also cannot search the entire space of transformations that have potentially infinite

instantiations. Another disadvantage of this approach is that differently transformed ver-

sions of the same program may trivially have the same behavior and need not be explored

[WL91].

Linear transformations are widely used to vectorize and parallelize loops. A smaller set of

these transformations are unimodular transformations. Unimodular loop transformations

have been widely used since they reduce the problem of applying and testing the legality of

loop transformations to matrix operations, thereby, allowing the application of many useful

loop transformations efficiently[FLVG95].
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Loop interchange, reversal and skewing transformations are modeled as unimodular trans-

formations in the iteration space [FM85, Qui84, DS90, WL91]. A compound transforma-

tion is just another linear transformation, being a productof several elementary transforma-

tions. This model provides a general legality test for a single or a compound transformation,

as opposed to a specific legality test for an individual elementary transformations. The loop

transformer component of our McFLAT framework also uses a unimodular transformations

model to apply and test the legality of a loop transformationor a combination of loop

transformations, but our intent is to specialize for different predicted loop bounds.

5.3 Impact of Loop Transformations

Optimizations are applied at various levels to gain performance speedups.

High-order transformations are optimizations that specifically improve the performance of

loops through techniques such as loop interchange, loop fusion, and loop unrolling. The

goals of these loop optimizations include reducing the costs of memory access through the

effective use of caches, overlapping computation and memory access through effective uti-

lization of the data prefetching capabilities provided by the hardware. Improperly selected

high-order transformations can degrade the performance toan extent worst than the same

unoptimized code [Sar97]. Hence, automatic selection of high-order transformations has

to be done judiciously to get the desired benefit.

Pre-processors have been designed that apply various transformations on the source code or

intermediate representation of the source code, which whencompiled by the native com-

piler generates better and optimized code. Kuck and Associates Pre-processor (KAP) is

an optimizing pre-processor that applies various transformations on the source code (e.g.

temporary variables induction). This pre-processor is an integral part of HP’s Fortran com-

piling systems, and if used with proper pre-processing directives have given a performance

improvement on computationally intensive tasks. VAST, also a pre-processor, operates

through a compiler driver on either intermediate representations of the program (such as

Edison Design Group IR) or directly on source code to perform high-level optimizations,
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which includes loop nest optimizations and automatic vectorization and parallelization.

Optimizing compilers use either profiled information of previous runs or compiler analysis

to estimate the execution time cost, memory cost, semanticsof underlying architecture and

execution frequencies. Individual program transformations are used in different ways to

satisfy different optimization goals. Quantitative models based on memory cost analysis

have also been used to select optimal loop transformations.Memory cost analysis chooses

a beneficial transformation based on the number of distinct cache lines and the number of

distinct pages accessed by the iterations of a loop [Sar97].

Locality optimization in the SUIF (Stanford University Intermediate Format) 1.x compiler

performs unimodular + tiling transformations. Selection of unimodular transformation is

based on identifying reusability of vector space [LW04]. Schreiber and Dongarra addressed

problem of selecting optimal tile sizes to minimize communication traffic and cache misses.

But their analysis is restricted to isomorphic iteration anddata spaces [DS90].

Another framework presented in [ZCS03] predicts the impact of optimizations for some

objective (e.g., performance, code size or energy). The framework consists of three types

of models: optimization models, code models and resource models. By integrating these

models, a benefit value is calculated that represents the benefit of applying an optimization

in the context of given code for the objective represented bythe resources.

Our framework, McFLAT , is a preliminary step towards building a self-learning system that

selects optimal transformations based on loop bounds and profiled program features that

have been beneficial in the past for a transformation or a combination of transformations.

5.4 Program Specializations

Procedure cloning is an interprocedural optimization technique by which a compiler can

create specialized versions of function bodies called “clones”. Each clone expects different

set of parameters on the entry to the procedure. This paves way for further optimizations

of the procedure body. The call sites are then modified to callthe appropriately optimized

version of the procedure [CHK93].
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Dynamic dispatching is a major performance bottle-neck forprograms written in object-

oriented style. The cost of performing method look-up makesdynamically dispatched calls

(also known as virtual function calls and message sends) expensive. To avoid this cost,

optimizing compilers for object-oriented languages try tostatically-bind as many message

sends as possible to called methods. Static binding requires class information, so that set of

possible invocable methods can be determined and message sends can be bound statically.

One way of improving the precision of class information, andindirectly to support more

static binding, is to compile multiple specialized versions of a method, and each method

operates on a different input arguments [DCG95]. Another program specialization tech-

nique called “customization” is also used to compile a specialized version of a method for

each possible receiver class, and methods are never specialized for arguments other than

the receiver [CU89].

[DCG95] have designed a goal-directed algorithm, that uses dynamic profile data to spe-

cialize hot methods rather than specializing exhaustively. Selective method specialization

approach takes into account the cost and benefits of generating a specialized version of a

method using profile data. Therefore, this technique does not suffer from serious code ex-

plosion and also does not generate identical multiple specialized versions which could be

coalesced into one without a significant impact on program performance.

The semantics of dynamic programming languages make them a good candidate for a va-

riety of optimizations including program specialization not only at the function level, but

also at the loop level. In case of dynamic languages, the loopbody will be interpreted and

executed line-by-line which degrades the performance of programs written in these lan-

guages. To reduce the interpretive overhead various techniques like vectorization [BLA07]

and use of profiled data to gather more information about the original program [AH10]

have been employed.

McFLAT , generates multiple versions of the original source code which are specialized

at the loop level. The main idea is to collect information about loop-bounds and then

decide heuristically which loop-bound ranges are worth specializing using a variety of loop

transformations. We observed significant speedups for the specialized versions, and noted

that loop transformations had different impacts dependingon the loop range and execution
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engine. Our ultimate goal is to embed this framework in our McJIT system.

5.5 Automatic Parallelism Detection and Vectorization

Static automatic parallelism extraction has been achievedin the past[BC04, LL97]. Unfor-

tunately, many parallelization opportunities could stillnot be discovered by a static analysis

approach due to lack of information at the source code level.Tournavitis et. al. have used

a profiling-based parallelism detection method that enhances static data dependence anal-

ysis with dynamic information, resulting in larger amountsof parallelism uncovered from

sequential programs [TWFO09]. McFLAT , also uses profiling-based parallelism detection

but in the context of MATLAB programming language and within the constraints of MAT-

LAB parallel loops.

[KPW+07] argue that current implementations of optimistic techniques such as thread-

level speculation cannot uncover all opportunities of parallelism because they do not use

the proper abstractions for the data structures in the programs. Kulkarni et. al. [KPW+07]

suggested an object-based optimistic parallelization system for irregular applications that

manipulate pointer-based data structures. “The Galois system” is an object-based shared-

memory model, which allows concurrent accesses and updatesto shared objects by exploit-

ing the high level semantics of abstract data types.

A dimension abstraction approach for vectorization in MATLAB presented in [BLA07] dis-

covers whether dimensions of an expression will be legal if vectorization occurs. The

dimensionality abstraction provides a representation of the shape of an expression if a loop

containing the expression was vectorized. To improve vectorization in cases which have in-

compatible vectorized dimensionality, a loop pattern database is provided which is capable

of resolving obstructing dimensionality disagreements.
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5.6 Adaptive Compilation

Heuristics and statistical methods have already been used in determining compiler opti-

mization sequences. For example, Cooper et. al. [CSS99] developed a technique using

genetic algorithms to find “good” compiler optimization sequences for code size reduction.

Previous adaptive virtual machines have used method invocation counters to identify hotspots

in the program and optimize them. Holzle and Unger [HU96] describe SELF-93 system,

an adaptive optimization system for SELF language. The goalof the project is to avoid

long pauses in interactive applications by optimizing onlyperformance-critical parts of the

application. Method invocation counters with an exponential decay mechanism are used to

identify candidates for optimization.

Whaley [Wha00], implemented sample based calling-context-sensitive profiling in a pro-

duction JIT compiler. They have empirically demonstrated that their profiling technique

has low overhead and can give performance gain at startup andsteady-state.

[Wha00, GDGC95] have explored off-line profile directed compilation techniques that use

one or more profiles from previous runs of an application as a feedback into a compiler to

make improved optimization decisions for future executions. Such systems include Digital

FX ! 32 [HH97], Morph [ZWG+97], and DCPI [ABD+97]. Jalapeo JVM [AFG+00] uses

an adaption system that can invoke a compiler when profiling data suggests that recompil-

ing a method with additional optimization will be more beneficial. Our work is a first step

towards developing an adaptive system that will be embeddedin our McVM, that applies

loop transformations based on predicted data from previousexecution runs and profiled

information about the programs.

Previously work has been done on JIT compilation for MATLAB . MaJIC [AP01], combines

JIT-compilation with an offline code cache maintained through speculative compilation

of Matlab code into C/Fortran. It derives the most benefit fromoptimizations such as

array bounds check removals and register allocation. Mathworks introduced the MATLAB

JIT-Accelerator [Mat02] in M ATLAB 6.5 that has accelerated the execution of MATLAB

code. McVM [CBHV10, CB09] is also an effort towards JIT compilation for MATLAB , it
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uses function specializations based on run-time type of their arguments. McVM(JIT) has

shown performance speed-ups against MATLAB for some of our benchmarks. McFLAT , the

framework which is the topic of this thesis uses profiled program features and heuristically

determines loop bounds ranges to generate specialized versions of loops in the program.
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Conclusions and Future Work

6.1 Conclusions

In this chapter, we start with an overview of the driving principle in the designing of a

framework for MATLAB loop analysis and transformations the McFLAT . We then discuss

the contributions made by this thesis. Then, we briefly, discuss different phases of McFLAT .

We conclude with a discussion of results on four different execution engines. In the future

work section, we discuss possible enhancements that can be done in McFLAT .

Parallelization and optimization of the MATLAB programming language presents several

challenges due to the dynamic nature of MATLAB . Since MATLAB does not have static

type declarations, neither the shape and size of arrays, northe loop bounds are known

at compile-time. This means that many standard array dependence tests and associated

transformations cannot be applied straight-forwardly. Onthe other hand, many MATLAB

programs operate on arrays using loops and thus are ideal candidates for loop transfor-

mations and possibly loop vectorization/parallelization. McFLAT , was designed to gain

performance speedups by applying loop transformations. The main hurdle in achieving

this goal was the lack of information about loop bounds whichare required for dependence

testing.
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We have described a new framework, McFLAT , which uses profile-based training runs

to collect information about loop bounds and ranges, and then applies a range estimator

to estimate which ranges are most important. Specialized versions of the loops are then

generated for each predicated range. The MATLAB code generated from McFLAT can be

run on any MATLAB virtual machine or interpreter.

Results obtained on four execution engines (Matlab, GNU Octave, McVM(JIT) and

McVM(interpreter) suggest that the impact of different loop transformations on different

loop bounds is different and also depends on the execution engine. We were somewhat sur-

prised that loop reversal was fairly useful for several execution engines, especially on large

ranges. The framework also detects whether a loop is parallelizable or not. It detected quite

a few parallel loops and transformed them to MATLAB ’s parfor construct, the execution

benefit was very limited and sometimes very detrimental. Thus our McJIT compiler will

likely support a different parallel implementation which has lower overheads.

6.2 Future Work

In this section we look into possible improvements to different components of McFLAT .

McFLAT has the potential to be further evaluated and its functionality can be enhanced

which can make it an important component of our McVM.

Although McFLAT is already a useful stand-alone tool, in our overall plan it is a preliminary

step towards developing a self-learning system that will bepart of our McJIT. This adaptive

system will decide on whether to apply a loop transformationor not depending on the

benefits that the system has seen in the past and will suggest recompilation of code to gain

performance speedups.

As for Instrumenter is concerned, it can be extended to extract more features about program

loops, which can be useful for dependence analyzer and loop transformer. Information

like whether loop body invokes a function or operates on arrays can be useful for loop

transformer. This is because impact of different loop transformations varies according to

the computation done in the loop body. When deciding on which ranges to specialize, it
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could be beneficial to focus on ranges which are likely to exhibit different cache behavior.

Many of the integer linear programs from the data dependenceconsists of inequalities that

involve only one unknown [ASU85]. The programs can be solved simply by testing if there

are integers between the constant upper bounds and constantlower bounds independently.

Currently, McFLAT implements a few dependence tests that have proved to be exact for our

benchmark suite. Other dependence tests like theAcyclic Test, theThe Loop Residue Test

can be implemented fairly easily in our framework.

Currently, McFLAT supports a limited set of loop transformations. Other loop transforma-

tions likeLoop SkewingandTiling can be added to increase parallelism opportunities.

Our initial exploratory experiments validate that different loop transformations are benefi-

cial for different ranges. Future work will focus on extracting more information about the

program features from profiling, maintaining a mapping between loop bounds, program

features and effective loop transformations and making useof past experience to make

future decisions on whether to apply transformations or not.
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Appendix A

User Manual

McFLAT , is executed using the “Main” entry point of the McLAB project. “-danalysis” flag

indicates to run McFLAT .

A.1 Flags

McFLAT supports the following list of flags:

• -m -danalysis -dir -prof crni

Above mentioned flag ”-prof” is used to instrument original MATLAB code which

when executed ejects additional information. ”-dir” indicates that the starting point

is a directory structure. If the ”-dir” flag is not there, thenMcFLAT expects a ”.m” file

as an input. As a result of this phase a directory with the nameDep〈 BenchmarkName

〉 is created.

• -m -danalysis -dir -heur crni

”-heur” flag indicates to runRange Estimatoron the Loop profiling Information

(.xml).
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• -m -danalysis -dir -auto crni

”-auto” flag indicates to apply loop transformations automatically on the input ”.m”

files.

• -m -danalysis -dir -anno crni

”-anno” flag indicates to apply only those loop transformations that are annotated in

the loop body.

languages/Natlab/src/natlab/toolkits/DependenceAnalysis - McFLAT

source Java files, which includes the complete McFLAT system.

Specialized versions of ”.m” file will be generated inDep〈 BenchmarkName〉 and they can

be executed on any MATLAB systems.
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