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Abstract

MATLAB is a dynamic scientific language used by scientists, engineers and students

worldwide. Although MATLAB is very suitable for rapid prototyping and development,

MATLAB users often want to convert their final MATLAB programs to a static language

such as FORTRAN, to integrate them into already existing programs of that language,

to leverage the performance of powerful static compilers, or to ease the distribution of

executables.

This thesis presents an extensible object-oriented toolkit to help facilitate the generation

of static programs from dynamic MATLAB programs. Our open source toolkit, called the

MATLAB Tamer, targets a large subset of MATLAB . Given information about the entry

point of the program, the MATLAB Tamer builds a complete callgraph, transforms every

function into a reduced intermediate representation, and provides typing information to aid

the generation of static code.

In order to provide this functionality, we need to handle a large number of MATLAB

builtin functions. Part of the Tamer framework is the builtin framework, an extensible

toolkit which provides a principled approach to handle a large number of builtin func-

tions. To build the callgraph, we provide an interprocedural analysis framework, which

can be used to implement full-program analyses. Using this interprocedural framework, we

have developed value analysis, an extensible interprocedural analysis to estimate MATLAB

types, which helps discover the call edges needed to build the call graph.

In order to make the static analyses even possible, we disallow a small number of MAT-

LAB constructs and features, but attempt to support as large a subset of MATLAB as possi-

ble. Thus, by both slightly restricting MATLAB , and by providing a framework with pow-

erful analyses and simplifying transformations, we can “Tame MATLAB ”.
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Résumé

MATLAB est un langage scientifique utilisé par des ingénieurs, scientifiques, et étudi-

ants à travers le monde. Bien que MATLAB soit très approprié pour les prototypages et les

développements rapides, les usagers veulent souvent convertir leurs programmes MATLAB

finaux vers un langage statique tel FORTRAN, dans le but de les intégrer à des programmes

existants dans ce langage, de tirer avantage des performances des compilateurs statiques

plus puissants, ou de faciliter la distribution des fichiersexécutables.

Cette thèse présente un toolkit extensible orienté objet pour faciliter la production de

programmes statiques à partir de programmes MATLAB dynamiques. Notre toolkit à code

source libre, appelé MATLAB Tamer («dompteur MATLAB »), vise un large sous-ensemble

de MATLAB . À partir d’informations sur le point d’entrée du programme, le MATLAB

Tamer construit un graphe d’appels complet, transforme chaque fonction en une représen-

tation réduite intermédiaire et fournit l’information surle typage pour faciliter la production

du code statique.

Pour fournir cette fonctionnalité, nous devons manipuler une grand nombre de fonctions

MATLAB intégrées. Une partie du cadre du Tamer est le cadre intégré,un toolkit extensi-

ble fournissant une approche de principe pour manipuler un grand nombre de fonctions

intégrées. Pour construire le graphe d’appels, nous fournissons un cadre d’analyse inter-

procédural pouvant être utilisé pour implanter des analyses de programmes complets. En

utilisant ce cadre inter-procédural, nous avons développél’analyse des valeurs, une anal-

yse inter-procédurale extensible pour estimer les types MATLAB , pour aider à découvrir les

arrêtes d’appels nécessaires pour construire le graphe d’appels.

Pour pouvoir rendre faisable une analyse statique, nous interdisons un petit nombre de

concepts et caractéristiques de MATLAB , mais nous tentons de supporter un sous-ensemble
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de MATLAB aussi grand que possible. Conséquemment, en restreignant légèrement MAT-

LAB , en fournissant un puissant cadre d’analyse et en simplifiant les transformations, nous

pouvons «dompter MATLAB ».
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Chapter 1

Introduction

MATLAB is a popular numeric programming language, used by millionsof scientists,

engineers and students worldwide[Mola]. M ATLAB programmers appreciate the high-level

matrix operators, the fact that variables and types do not need to be declared, the large

number of library and builtin functions available, and the interactive style of program de-

velopment available through the IDE and the interpreter-style read-eval-print loop. How-

ever, even though MATLAB programmers appreciate all of the features that enable rapid

prototyping, they often have other ultimate goals. Frequently their computations are quite

computationally intensive and they really want an efficientimplementation. Programmers

also often want to integrate their MATLAB program into existing static systems. As just one

example, one of our users wanted to generate FORTRAN code that can be plugged into a

weather simulation environment.

This thesis addresses the problem of how to provide the bridge between the dynamic

realities of MATLAB and the ultimate goal of wanting efficient and static programs in lan-

guages like FORTRAN. It is not realistic to support all the MATLAB features, but our goal

is to define and provide support for a very large subset of MATLAB which includes dynamic

typing, support of the MATLAB function lookup semantics, variable numbers of input and

output arguments, support for a variety of MATLAB data types including arrays, cell arrays

and structs, and support for function handles and lambda expressions.

Providing this bridge presents two main challenges. The first is that MATLAB is actually

quite a complex language which has evolved over many years and which has non-standard
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Introduction

type rules and function lookup semantics. The second major challenge is properly dealing

with the large number of builtin and library functions, which have also been developed over

time and which sometimes have unexpected or irregular behavior.

McLAB Front−end

.m

McAST

Tame IR

FORTRAN
Generator Generator

X10

TOO
WILD!!

Refactor

McSAF 

Function Lookup
Kind Analysis

Taming 
Transformations 

(Chapter 4)

Built−in
Framework

(Chapter 3)

Interprocedural

(Chapter 5)

(Chapter 6)

Interprocedural 
Value Analysis

Analysis Framework

Tame IR + classes + types + call graph

(Chapter 2)

Figure 1.1 Overview of our MATLAB Tamer. The shaded boxes indicate the components pre-
sented in this thesis. The other solid boxes correspond to existing McL AB tools
we use, and the dashed boxes correspond to ongoing projects which are using the
results of this thesis.

Our solution is an open-source extensible objected-oriented framework, implemented in

Java, as presented inFigure 1.1. The overall goal of the system is to take MATLAB programs

as input and produce output which is suitable for static compilation, a process that we call

Taming MATLAB . Given a.m file as input, which is the entry point, the MATLAB Tamer

produces as output: (1) a Tame IR (intermediate representation) for all functions (both user

and library) which are reachable from the entry point, (2) a complete call graph, and (3) an

estimation of classes/types for all variables.

There are some features in MATLAB that are simply too wild to handle, and so our

2



1.1. Contributions

system will reject programs using those features, and the user will need to refactor their

program to eliminate that feature. Thus, another importantgoal in our work is to define as

large as possible subset of MATLAB that can be tamed without user intervention.

1.1 Contributions

The main contributions of this thesis are as follows.

– We present an overall design and implementation for the MATLAB Tamer, an ex-

tensible object-oriented framework which provides the bridge between the dynamic

MATLAB language and a static back-end compiler.

– We describe the key features of MATLAB necessary for compiler developers and for

tool writers to understand MATLAB and the analyses in this thesis. We hope that

by carefully explaining these ideas, we can enable other researchers to also work

on static tools for MATLAB . Our discussion of MATLAB features also motivates our

choice of the subset of MATLAB that we aim to tame.

– We provide a principled approach to understanding, grouping, and analyzing the

large number of MATLAB builtin functions.

– We developed extensions to the MCSAF [Doh11] framework to support a lower-level

and more specialized Tame IR, suitable for back-end static code generation.

– We present an interprocedural flow analysis framework thatallows extending in-

traprocedural analysis written for the MCSAF framework to analyze whole programs.

– We present an interprocedural flow analysis framework thatcomputes both abstract

values and the complete call graph. This flow analysis provides an object-oriented

approach which allows for extension and refinement of the abstract value represen-

tations.

1.2 Thesis Outline

This thesis is divided into8chapters, including this one, which are structured as follows.

Chapter 2 introduces key MATLAB features, showing some of the challenges of static

compilation.Chapter 3 describes our approach to dealing with MATLAB builtin functions,

3



Introduction

starting with some examination of which builtin functions are relevant, and how they be-

have.Chapter 4 presents the Tame IR and transformations, including how these were in-

tegrated with the existing analysis framework.Chapter 5 describes our interprocedural

analysis framework.Chapter 6 explains our extensible and modular interprocedural value

analysis and how it constructs complete callgraphs. We alsoshow some results of running

this analysis on a set of benchmarks.Chapter 7 provides an overview of related work and

Chapter 8 concludes.

4



Chapter 2

MATLAB - a Dynamic Language

In this chapter we describe key MATLAB semantics and features to provide necessary

background for compiler writers and tool developers to understand MATLAB and its chal-

lenges, and to motivate our approach of constructing a “tame" intermediate representation

and MATLAB callgraph. In each section we give a description followed byannotated ex-

amples using the MATLAB read-eval-print loop. In the examples, “>>" indicates a line of

user input, and the following line(s) give the printed output.

2.1 Basics

MATLAB was originally designed in the 1970s to give access to features of FORTRAN

(like L INPACK, EISPACK) without having to learn FORTRAN[Molb]. As the name MAT-

LAB (MATrix LABoratory) suggests, MATLAB is centered around numerical computation.

Floating point matrices are the core of the language. However, the language has evolved be-

yond just simple matrices and now has a type system includingmatrices of different types,

compound types including cell arrays and structs, and function references.

Given its origins, MATLAB is a language that is built around matrices. Every value is

a Matrix with some number of dimensions, so every value has an associated array shape.

Even scalar values are 1×1 matrices. Vectors are either 1×n or n×1 matrices and strings

are just vectors of characters.

5



MATLAB - a Dynamic Language

MATLAB supports imaginary components for all numerical values, and almost all op-

erators and library functions support complex inputs.

>> a = [1, 2, 3; 4, 5, 6] % defining a matrix ...

a =

1 2 3

4 5 6

>> size(a) % ... which is a 2x3 matrix

2 3

>> size(3) % the scalar 3 is a 1x1 matrix

1 1

>> size([1 2 3]) % a 1x3 vector − note how the MATLAB syntax does not require a comma

1 3

>> size([5; 6; 7; 8; 9]) % a 5x1 vector

5 1

>> size('hello world') % a string, which is a 1x11 vector

1 11

>> ['a' 'b'; 'e' 'f'] % a 2−dimensional matrix of characters

ab

ef

>> 3 + 2i % the imaginary part of a complex number is defined using i or j

3.0000 + 2.0000i

2.2 MATLAB Operators

MATLAB includes a set of builtin operators. Besides the usual comparison (==, >, ≥,

etc.) and logical (&, &&, etc.) operators, MATLAB includes a set of numerical operations,

most of which are defined for matrices.

>> true | false % a scalar logical operation − the result 'true' is shown as '1'

1

>> [2 3 5] > [3 4 2] % comparison operators operate on matrices

0 0 1

6



2.2. MATLAB Operators

>> [1 2; 0 3] & [2 3; 4 0] % logical operators operate on matrices

1 1

0 0

MATLAB ’s operators work on matrices, but are overloaded to operatewith scalar ar-

guments as well. In that case, operations are performed element-wise. This means that

although MATLAB treats scalars just as 1×1 matrices, their semantics with respect to op-

erations are actually different from non-scalar matrices.

2.2.1 Array vs Matrix Operators

MATLAB has two kinds of numerical operators, matrix operators and array operators.

Matrix operators operate on whole matrices at once (unless an argument is a scalar). These

include the matrix multiplication (* ), and matrix division (\ , / ).

Array operators always operate on matrices in an element-wise way. For example the

array multiply operator. * will multiply two matrices element by element. Generally, if

there exists an matrix and an array version of an operator, then the array version will have

a . -prefix (e.g* vs . * ).

An exception to this is the conjugate transpose operator' . Here, the corresponding

.' -operator will compute the non-conjugate transpose.

>> [1 1; 2 2] * [1 0; 0 2] % the multiplication operator performs matrix multiplication

1 2

2 4

>> [1 1; 2 2] * 2 % with a scalar argument, it will perform an element−wise multiplication

2 2

4 4

>> [1 1; 2 2] == 2 % comparison/logical operators also support mixing of matrices and scalars

0 0

1 1

>> [1 1; 2 2] . * [1 0; 0 2] % the same matrices as above, but using array multiply

1 0

0 4

>> [3 i; 0 1+i]' % conjugate transpose

7
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3 0

-1i 1-1i

>> [3 i; 0 1+i].' % non−conjugate transpose

3 0

1i 1+1i

2.2.2 The Colon Operator

A special operator is the colon-operator. It allows the creation of vectors containing

numeric ranges:

>> 2:10 % the colon operator creates numerical ranges

2 3 4 5 6 7 8 9 10

>> 2:3:10 % an optional middle operand defines a stepsize

2 5 8

>> 5:-1:0 % the stepsize can also be negative

5 4 3 2 1 0

The colon operator is most often used in for loops to iterate over numerical ranges.

This means that a MATLAB for loop is actually a for-each loop, using a colon operator will

semantically create the range as an array:

>> for i = 1:3; disp(i); end % iterate over a range−vector

1

2

3

>> for i = 'foo'; disp(i); end % iterate over the characters of a string

f

o

o
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2.2.3 Indexing Operators

MATLAB includes three indexing operators, ’() ’, ’ {} ’ and ’. ’. The () -operator is

used for array indexing of variables, and for calling functions. Some of the implications

of this ambiguity is further discussed in section Sec.2.10. The {} indexing operator is

used to index into cell arrays, which are discussed in Sec.2.7.1. The dot operator is used

to reference structures (see Sec.2.7.2) and user-defined classes using the new syntax (see

Sec.2.9.3)

The MATLAB indexing operators are versatile. They support indexing using scalars, and

indexing using arrays. Multi-dimensional arrays can be indexed using fewer dimensions

than the array actually has, in which case the last dimensionwill combine all remaining

dimensions. It is also possible to index using logical values. Using a colon (: ) will expand

the whole dimension. The special keywordend is an expression that returns the last index

of a dimension.

>> a = [1 2 3; 4 5 6]; % creating a matrix

>> a(2,2) % indexing using scalar indices

5

>> a(4) % indexing using fewer dimensions − the dimensions get collapsed

5

>> a(1:2,1) % indexing using an array − created using the colon−operator

1

4

>> a(2,[3 2 1]) % indexing using an explicit array

6 5 4

>> a(1,:) % a colon will expand the whole dimension

1 2 3

>> a(a > 2) % indexing using a logical array − created by the expression a > 2

4

5

3

6

>> a(2, end-1) % using end to refer to the last but one element of a dimension

5

9
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2.2.4 Operators vs Builtin Functions

MATLAB ’s operators are naturally builtin to the language. Besides the operators, MAT-

LAB provides additional builtin operations as functions. There are a large number of builtin

functions, going into the hundreds, that are intrinsic to MATLAB . For scientists and engi-

neers these are part of the appeal of MATLAB as a language.

Besides the syntax, there is little difference between operators and builtin functions. In

fact, operators are just syntactic sugar for functions thatdenote the same operation, every

operator has a corresponding function. For example, using the operator+ is equivalent to

calling the functionplus .

Even the indexing operations are represented by builtin functions. All three indexing

operators (() , {} and. ) are represented by the functionsubsref andsubsasgn , where

the former one is used to represent indexing operations on the left-hand side, and the latter

is used to represent indexing operations on the right-hand side. Because each function

can represent different kinds of indexing operations, MATLAB will internally add more

arguments to the indexing functions to represent the extra information required. This is

transparent to the user, unless one wishes to overload indexing operations. Overloading is

introduced in Sec.2.4.

2.3 MATLAB Type System

MATLAB is dynamically typed - variables need not be declared, they will take on any

value that is assigned to them. Every MATLAB value has an associated MATLAB class

(henceforth we will use the namemclass when referring to a MATLAB class, in order to

avoid confusion with the usual notion of a class). The mclassgenerally denotes the type

of the elements of a value. For example, the mclass of an arrayof doubles isdouble .

The default numeric mclass isdouble . While MATLAB also includes integer types, all

numeric literals are doubles.

>> n = 1 % the input literal and the output look like an integer

1
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>> class(n) % however the mclass is is really double, the default

double

>> class(1:100) % the mclass of the vector [1, 2, ..., 100] is double

double

MATLAB has a set of builtin mclasses, which can be summarized as follows:

– double , single : floating point values

– uint8 , uint16 , uint32 , uint64 , int8 , int16 , in32 , int64 : integer values

– logical : boolean values

– char : character values (strings)

– cell : inhomogeneous arrays

– struct : structures

– function handle : references to functions

Given that by default any numerical value in MATLAB is adouble , all values that are

intended to be of a different numeric type have to be specifically converted. This also means

that when combining a value of some non-double mclass with a value that is adouble , the

result will be of the non-double mclass. This leads to the surprising semantics that adding

an integer and adouble results in aninteger , because that is the more specialized

type.

>> x = 3; y = int8(5); % assign to x and y, y is explicitly an integer

>> class(x) % the class of x is double

double

>> class(y) % the class of y is int8

int8

>> class(x+y) % the result of x+y is int8, not double

int8

11
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2.4 MATLAB Functions and Overloading

A M ATLAB function is defined in a.m file which has the same name as the function.1

So, for example, a function namedfoo would be defined in a filefoo.m , and that file

needs to be placed either in the current directory, or in a directory on the MATLAB path.

A function thus defined is called aprimary function . A .m file can also definesubfunc-

tions following the main (primary) function definition in a file, but those subfunctions are

only visible to the functions within the file. Inside functions it is possible to definenested

functions, which are visible only to the parent function. Functions may also be defined in a

private/ directory. Theseprivate functions are visible only to functions defined in the

parent directory.

MATLAB allows overriding operations and functions to operate on specific mclasses.

This is accomplished by defining the function in a file inside aspecially named directory

which starts with the character@followed by the name of the mclass. For example, one

could create a specialized functionfirstWord defined for Strings, by creating a file

@char/firstWord.m somewhere on the MATLAB path. Functions that are specialized

in such a way are calledoverloaded functions.

Overloaded functions have precedence over non-overloadedfunctions, but they do not

have precedence over nested functions, subfunctions (defined in the same file) or pri-

vate functions (defined in the/private directory). So, in our example, if there ex-

isted two definitions offirstWord.m , one general implementation somewhere on the

MATLAB path, and one overloaded implementation in a directory@char on the MAT-

LAB path, then a call tofirstWord with a char argument will result in a call to

@char/firstWord.m , whereas a call with an argument with any other mclass, will re-

sult in a call to the generalfirstWord.m definition. The lookup semantics are discussed

in detail in Sec.2.10.

When calling a function that has overloaded versions with multiple arguments of differ-

ent mclasses, MATLAB has to resolve which version of the function to call. There doesn’t

exist a standard inheritance relationship between the builtin mclasses. Rather, MATLAB

1. In the case where the name of the file and the function do not match, the name of the file takes prece-
dence.
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has the notion of asuperior or inferior class. We were unable to find a succinct summary

of these relationships, so we generated a MATLAB program which exercised all cases and

which produced a.dot file describing all relationships, with all transitive relationships

removed.Figure 2.1 shows the relationships between different builtin mclasses, showing

superior classes above inferior classes. Note that some mclasses have no defined relation-

ship. For example, there are no defined inferior/superior relationships between the different

integer mclasses. Further, note thatdouble , being the default mclass, is inferior to inte-

ger mclasses. Also, the compound mclasses (struct andcell ), are superior to all matrix

mclasses.

single

double char

logical

in t8 in t16 in t32 in t64 u in t8 u in t16u in t32 u in t64

funct ion_handle

s t ruc t cell

anObject

Figure 2.1 Superior/inferior class relationships for MATLAB

When resolving a call with multiple arguments, MATLAB finds the most superior ar-

gument, and uses its mclass to resolve the call. If multiple arguments have no defined su-

perior/inferior relationships, MATLAB uses the leftmost superior argument. The argument

which is used to resolve an overloaded function is called thedominant argument. For

example, if a function is called with three arguments with the mclasses (double , int8 ,

uint32 ), in that order, then the second argument is the dominant argument, and MAT-
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LAB attempts to find an overloaded version for mclassint8 . If none is found, MATLAB

attempts to find a non-overloaded version.

As previously mentioned, using an operator (like+) is equivalent to calling the corre-

sponding function (plus in this case). So if the function corresponding to an operator is

overloaded, it also means that the operator will be overloaded. This allows overloading of

MATLAB operators.

The overloading semantics for MATLAB means that if one intends to build a complete

callgraph, i.e. resolve all possible call edges, one has to find all possible MATLAB classes

for all arguments, and one must safely approximate the lookup semantics of functions,

including the correct lookup of overloaded functions usingthe mclass and the superior/in-

ferior mclass relationships fromFigure 2.1.

2.5 MATLAB Classes

It is important to note that the mclass of a value does not completely define its type.

For example, numeric MATLAB values may be real or complex, and all values have an

array shape. Both of these properties are defined orthogonally to the notion of its mclass.

Although a computation can ask whether a value is complex or real, and can ask for the

shape of an array, the lookup semantics solely depend on the mclass, which is effectively

just a name. Within the MATLAB language, there is no dedicated class of values to rep-

resent mclasses. Usually, strings (char vectors) are used to denote mclasses. For example,

ones(3,2,'single') , will call the builtin function ’ones’ and create a 3×2 array of unit

values of mclasssingle .

2.6 Function Handles

MATLAB values with mclassfunction_handle store a reference to a function.

This allows passing functions as arguments to other functions. Function handles can either

be created to refer to an existing function, or an anonymous function created by a lambda

expression. Lambda expressions may also encapsulate statefrom the current workspace via

free variables in the lambda expression.
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>> f = @sin % a function handle to a named function

f = @sin

>> g = @(x) exp(a * x) % a lambda with a free variable "a"

g = @(x)exp(a * x)

Function handles, and especially lambdas, are useful in numerical computing, for ex-

ample when calling numerical solvers, as illustrated below.

f = @(t,y) D * t + c; % set up derivative function

span = [0 1]; % set interval

y0 = [0:0.1:10]'; % set initial value

result = ode23s(f,span,y0); % use MATLAB library function t o solve ODE

When building a callgraph of a program that includes functionhandles, one needs

to propagate function handles through the program interprocedurally in order to find out

which variables may refer to function handles, and to find associated call edges.

2.7 Compound Types

MATLAB has two builtin compound types. These are of mclassstruct andcell , re-

spectively.

2.7.1 Cell Arrays

In MATLAB , every value of an array needs to have the same mclass. A cell array is an

array of values that do not necessarily need to have the same mclass, allowing inhomoge-

neous arrays. Also note that for a numerical array, every element is necessarily a scalar. So

cell arrays allows creating arrays of matrices with different sizes.

>> {1, 'hello world'} % cell arrays allows bundling values with different types

[1] 'hello world'

>> {[1 2 3], [3; 4; 5]} % ...or values with just different shapes
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[1x3 double] [3x1 double]

>> {[1 2 3], 3, [3 4; 3 5]} % cell arrays may contain any value,

[1x3 double] [3] [2x2 double]

>> {[1 2 3], 3, {1, 'hello world'}} % ...including other cell arrays

[1x3 double] [3] {1x2 cell}

A cell array is semantically an array of cells (everything isan array). A cell is a scalar

value of classcell that contains some MATLAB value. Array indexing (using() ) will give

back cells, cell indexing (using{} ), will return the values contained in the cells.

>> c = {1, [1 2 3], 'hello world'} % when creating a cell array

c =

[1] [1x3 double] 'hello world'

>> c(1) % array indexing will return the cell

[1]

>> c{1} % whereas cell indexing will return the contained value

1

>> [c; {0}, {2, 'foo'}] % cells and cell arrays can be combined with array operators

[1] [1x3 double] 'hello world'

[0] [ 2] 'foo'

2.7.2 Structures

Structures are MATLAB values of mclassstruct , and allow bundling of different

MATLAB values. But unlike cell arrays, which are indexed by numbers,structures are in-

dexed by field names (i.e. Strings). Structures can be created simply by accessing them

using the dot-operator. elements can be read or written using he dot-operator. Nested struc-

tures are allowed. MATLAB also allows accessing structs using strings - so the field names

of a struct may not be know statically.

>> s.a = 4 % structs are created by assigning into them

s =

a: 4
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>> s.b = 'hello world' % new fields are created on the fly

s =

a: 4

b: 'hello world'

>> s.a % elements are read and written using the dot−operator

4

>> s.t.v = 4 % structs may contain any value, including other structs

s =

a: 4

b: 'hello world'

t: [1x1 struct]

>> s.t

v: 4

>> s.('foo') = true % it is possible to use strings as fieldnames

s =

a: 4

b: 'hello world'

t: [1x1 struct]

foo: 1

If one wants to build a complete callgraph, which requires the resolution of overloaded

functions, one needs to know any possible mclass for all values. This means that for struc-

tures and cell arrays, we need to know what possible values are contained in them. Since

both structures and cell arrays can be accessed with index-values (numbers of cell arrays,

strings for structures) that are not statically known, and since both of them may contain

values of different mclasses, we may not be able to estimate one exact mclass when a pro-

gram retrieves a value out of a structure or cell array. A static compiler has to either be

able to deal with incompletely typed programs (i.e. union types), or restrict the semantics

of MATLAB to disallow such cases.
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2.8 Function Parameters and Arguments

MATLAB uses call-by-value semantics, so that each parameter denotes a fresh copy

of a variable.2 This simplifies interprocedural analyses for static compilation as calling a

function cannot directly modify local variables in the caller.

In MATLAB , function arguments are optional. That is, when calling a function one

may provide fewer arguments than the function is declared with. However, MATLAB does

not have a declarative way of specifying default values, nordoes it automatically provide

default values. That is, a parameter corresponding to an argument that was not provided

will simply be unassigned and a runtime error will be thrown if an unassigned variable is

read.

MATLAB does provide the functionnargin to query how many arguments have been

provided to the currently executing function. This allows the programmer to use the value

of nargin to explicitly assign values to the missing parameters, as illustrated below.

function [result1, result2] = myFunction(arg1,arg2)

if (nargin < 1)

arg1 = 0;

end

if (nargin < 2)

arg2 = 1;

end;

...

end

As shown above, MATLAB also supports assigning multiple return variables. A function

call may request any number of return values simply by assigning the call into a vector of

lvalues. Just like the function arguments, the return values don’t all need to be assigned,

and a runtime error is thrown if a requested return value is not assigned. MATLAB provides

thenargout function to query how many results need to be returned.

2. Actual MATLAB implementations only make copies where actually necessary, using either lazy copy-
ing when writing to an array with reference count greater than 1, or by using static analyses to determine
where to insert copies[LH11].
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Clearly a static compiler for MATLAB must deal with optional arguments in a sound

fashion.

2.9 MATLAB User-Defined Classes

A combination of the notion of overloaded functions and structures directly leads to

MATLAB ’s user-defined mclasses. User defined mclasses are structures which have a user-

defined mclass attribute defining the class name. Overloadedfunctions for that class name

act as methods. Members are accessed like a structure.

Using the function overloading semantics, mclasses are defined in a directory whose

name is the class name, with a prefixed @-symbol. For example,we may want to define a

mclasspolynom to represent polynomials. We would define it in a directory@polynom/

somewhere on the path.

2.9.1 Constructors

Similar to other object-oriented languages, a constructoris a function that returns an

object of some class. In MATLAB , constructors are defined in the directory where the class

resides and have the same name as the class. So in our example,the constructor would be

defined in some file@polynom/polynom.m . Note that in order to lookup this function,

MATLAB does not use overloading semantics -polynom can be called with arbitrary argu-

ments, and will refer to the constructor (unless some other function has higher precedence),

even though the arguments may not be of classpolynom .

The constructor itself has to call the functionclass on some structure and some

mclass name (String), which will turn the structure into an object of that mclass; this name

has to match the name of the constructor. For the polynom example, the constructor might

look like this:

function p = polynom(coefficients)

s.c = coefficients; % set up structure with coefficients

p = class(s,'polynom'); % create object with mclass 'polynom'

end
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2.9.2 Methods, Attributes and Operators

The attributes of the user-defined mclass correspond to the fields of the structure that

was used to create the object of the class. It is not possible to add new attributes to an object

once it is created, unlike structures, which allow adding new fields.

The methods of the user-defined mclass are the functions thatare overloaded for that

mclass. Being an overloaded method, the first argument is the object the function operates

on. For example, for the polynom example, one could have an evaluation function that may

look like this:

function y = eval(this,x)

y = x * 0; % set up result

for i = 1:numel(this.c) % iterate through terms

y = y + this.c(i) * x^(numel(this.c) - i); % add term for ith component

end

end

This method could be used like this:

>> p = polynom([1 -1 0]) % create polynom object

p =

polynom object: 1-by-1

>> eval(p,2) % call eval method

2

It is possible to define private methods, by placing them in aprivate directory inside

the class directory. To create a private method for the polynom example, it would have to

be in the directory@polynom/private/ .

Note that MATLAB values are copied when assigning, and parameters are passedby

value. So in order to modify an object, a mutator method wouldhave to return the modified

object.

As mentioned in Sec.2.2.4, MATLAB operators (like* , +) are just syntactic sugar

for calling corresponding functions (mtimes , plus ). So overloading the functions that
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correspond to operators will also overload the operators themselves. Thus it is possible to

override operations for user-defined mclasses; including all index referencing operations

({} , () , . ) by overriding the functionsubsref , and index assignment operations by

overriding the functionsubsasgn .

2.9.3 New Syntax after version 7.6

With version 7.6, MATLAB introduced a new syntax for defining mclasses within one

.m-file. Besides this new syntax, there were several object-oriented features added, for

example the usage of the dot-operator to access methods. There was also a new kind of

MATLAB class introduced, called ahandle class. It allows the creation of objects that are

call-by-reference.

The basic ideas regarding MATLAB classes, introduced in the previous sections, remain

largely the same; and this ’old’ way of defining mclasses is still fully supported.

2.10 MATLAB Lookup Semantics

When MATLAB encounters a name, it has to decide whether this name is a variable

or a function, and if it is a function, which exact function itrefers to. Note that MATLAB

evolved as an interpreted language, so variables are not declared. Additionally, MATLAB

uses the same syntax for function calls and indexing - parentheses - so just finding out

whether a name refers to a function is non-trivial. Take the following example:

x = a(i,j)

Here,a may refer to a variable, making this an indexing operation, or it may refer to

a function, making it a function call. Depending on the mclass of i and j , it may refer to

some overloaded function. But alsoi , andj may possibly refer to functions as well - and

in fact they are MATLAB builtin functions, which both refer to the imaginary unit.

When a name is identified as a function, it has to be found out what exact function it

refers to. As introduced in Sec.2.4, there exist different kind of functions (primary func-
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tions, subfunctions, nested functions, private functions, overloaded functions, builtin func-

tions). It is possible to have multiple such functions, all with the same name. The following

shows the lookup order of MATLAB , together with the required information to perform the

lookup. To implement the MATLAB lookup semantics statically, we need estimates of this

information.

1. Variables

First MATLAB will check whether an encountered name is the same as a defined

variable. If it is, the name will be interpreted as that variable. Otherwise, MATLAB

assumes the name refers to a function, and performs the lookup in steps 2 through 8.

2. Nested Functions

Functions contained inside the currently executing function have the highest prece-

dence among the functions.

3. Subfunctions

If there is no nested function with the correct name, MATLAB will search among the

other functions contained in the same .m-file. Note that thisincludes the currently

executing function, i.e. recursive calls.

4. Private Functions

If the function is not found among the nested and subfunctions, MATLAB will attempt

to find it among the private functions, i.e. in a directory/private relative to the

directory where the .m-file is located.

5. Class Constructors

Class constructors, i.e. a function whose name is the same as its folder plus a prefixed

@, are found either relative to the current execution directory or the MATLAB path.

For example, a functionpolynom in a file@polynom/polynom is a constructor.

6. Overloaded Methods

Overloaded functions are found relative to the path or the current execution direc-

tory, and are in a directory whose name equals the mclass for which it is defined,

plus a prefixed @. Note that the check for overloaded methods is made only for the

dominant argument of a call.
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The path itself is just a set of directories containing.m-files or overloading directo-

ries.

7. Functions in the current execution directory

Functions can be found in the current execution folder. Notethat this may be differ-

ent than the folder in which the current.m-file resides, because the current.m-file

may have been found somewhere on the path or in a private directory. The current

execution directory does not change unless the program calls the functioncd .

8. Functions on the path

If M ATLAB has not found the function so far, it will search the completepath for an

.m-file with the desired name.

We see that in order to do a complete function lookup, we need to know

– in which function and in which file the call was made

– all nested functions and subfunctions that are visible from the executing function

– the private directory relative to the directory of the currently executing function

– the complete path (the list of all directories of the path environment) and its contents

– the current execution directory

– the mclass of the dominant argument, in order to resolve overloaded calls

To do the lookup statically, we may assume that the the current execution directory is

just the directory where the entry point is, so we will use that as an approximation. MAT-

LAB allows changing the current execution directory, just likeother scripting languages,

using thecd (change directory) function. We have to restrictcd , for example to not change

the current lookup directory, in order to be able to provide the correct lookup semantics stat-

ically. MATLAB also allows changing of the path environment using theaddpath method.

This function may have to be restricted as well.

In order to build a complete callgraph, we need to correctly estimate the function lookup

semantics. We may simplify this by restricting functions like cd andaddpath , but we

cannot restrict overloading semantics, especially if we have the goal to eventually support

MATLAB classes. Thus we need estimates for all mclasses, which means we need an inter-

procedural flow analysis to propagate mclass estimates, as presented inChapter 6.
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2.11 Wild Dynamic Features

Whereas features like dynamic typing, function handles, andvariable numbers of in-

put arguments are both widely used and possible to tame, there are other truly wild dy-

namic features in MATLAB that are not as heavily used, are sometimes abused, and are not

amenable for static compilation.

These features include the use of scripts (instead of functions), arbitrary dynamic eval-

uation (eval ), dynamic calls to functions usingfeval , deletion of workspace variables

(clear ), assigning variables at runtime in the caller scope of a function (assignin ),

changing the function lookup directories during runtime (cd , addpath ) and certain intro-

spective features. Some of these can destroy all available static information, even informa-

tion associated with different function scopes.

Our approach to these features is to detect them and help programmers to remove them

via refactorings. Some refactorings can be automated. For example,McL AB already sup-

ports refactorings to convert scripts to functions and somecalls tofeval to direct function

calls[Rad12]. Other refactorings may need to be done by the programmer. For example, the

programmer may usecd to change directory to access some data file, not being aware that

this also changes the function lookup order. The solution inthis case is to use a path to

access the data file, and not to perform a dynamic call tocd . We have also observed many

cases where dynamiceval or feval calls are used because the programmer was not

aware of the correct direct syntax or programming feature touse.3 For example,feval is

often used to evaluate a function name passed as a String, where a more correct program-

ming idiom would be to use a function handle.

2.12 Summary

In this section we have outlined key MATLAB features and semantics, especially con-

centrating on the definition of mclass and function lookup. Our approach is to tame as

much of MATLAB as possible, including support for function handles and lambda defini-

3. This is at least partly due to the fact that older versions of M ATLAB did not support all of the modern
features.
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tions. User-defined classes are not supported as part of thisthesis, but the whole framework

is explicitly designed with classes in mind, starting with support of the notion of mclasses

and correct semantics for overloading, as well as support for structures.

Capturing as much as possible of the evolved language is not just useful to allow access

to a wider set of MATLAB features for user code. Also, a significant portion of MATLAB ’s

extensive libraries are written in MATLAB itself, and make extensive use of some of the

features discussed above. Since we implement the MATLAB lookup semantics, and allow

the inclusion of the MATLAB path, our callgraph will automatically include available MAT-

LAB library functions. Thus, implementing more features will also benefit users who do not

make direct use of advanced features.
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Chapter 3

Framework for MATLAB Builtin Functions

One of the strengths of MATLAB is in its large library, which doesn’t only provide ac-

cess to a large number of matrix computation functions, but packages for other scientific

fields. Even relatively simple programs tend to use a fair number of library functions. Many

library functions are actually implemented in MATLAB code. Thus, to provide their func-

tionality, the callgraph construction needs to include anyMATLAB function on the MAT-

LAB path, if it is available. In this way we can provide access to alarge number of library

functions as long as we can support the language features they use. However, hundreds

of MATLAB functions are actually implemented in native code. We call these functions

builtins or builtin functions.

Every MATLAB operator (such as+, ∗) is also a builtin function; the operations are

merely syntactic sugar for calling the functions that represent the operations (likeplus for

+, mtimes for * ).

For an accurate static analysis of MATLAB programs one requires an accurate model

of the builtins. In this section we describe how we have modelled the builtins and how we

integrate the analysis into the static interprocedural analysis framework.

3.1 Learning about Builtins

As a first step to build a framework of builtin functions, we need to identify builtins,

and need to find out about their behavior, especially with respect to mclasses.
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3.1.1 Identifying Builtins

To make the task of building a framework for builtins manageable, we wanted to iden-

tify the most commonly used builtin functions and organize those into a framework. Other

builtins can be added incrementally, but this initial set was useful to find a good structure.

To identify commonly used builtins we used the MCBENCH framework[Rad12] to find

all references to functions that occur in a large corpus of over three thousand MATLAB

programs.1 We recorded the frequency of use for every function and then,using the MAT-

LAB functionexist , which returns whether a name is a variable, user-defined function or

builtin, we identified which of these functions is a builtin.This provided us with a list of

builtin functions used in real MATLAB programs, with their associated frequency of use.

The complete list can be found inAppendix A.

We selected approximately three hundred of the most frequent functions, excluding

dynamic functions likeeval and graphical user interface functions as our initial set of

builtin functions. We also included all the functions that correspond to MATLAB operators,

as well as some functions that are closely related to functions in the list.

3.1.2 Finding Builtin Behaviors

In order to build a call graph it is very important to be able toapproximate the behavior

of builtins. More precisely, given the mclass of the input arguments, one needs to know a

safe approximation of the mclass of the output arguments. This behavior is actually quite

complex, and since the behavior of MATLAB 7 is the defacto specification of the behavior

we decided to take a programmatic approach to determining the the behaviors.

We developed a set of scripts that generate random MATLAB values of all combinations

of builtin mclasses, and called selected builtins using these arguments. If different random

values of the same mclass result in consistent resulting mclasses over many trials, the scripts

record the associated mclass propagation for builtins in a table, and collect functions with

the same mclass propagation tables together. Examples of three such tables are given in

1. This is the same set of projects that are used in [DHR11]. The benchmarks come from a wide variety
of application areas including Computational Physics, Statistics, Computational Biology, Geometry, Linear
Algebra, Signal Processing and Image Processing.
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Figure 3.1. The complete list of result tables can be found inAppendix B

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -
i16 - i16 - - - i16 i16 -
i32 - - i32 - - i32 i32 -
i64 - - - i64 - i64 i64 -
f32 - - - - f32 f32 f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 f64

(a)plus , minus , mtimes , times , kron

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - - i8 -
i16 - i16 - - - - i16 -
i32 - - i32 - - - i32 -
i64 - - - i64 - - i64 -
f32 - - - - f32 - f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 -

(b) mpower, power

i8 i16 i32 i64 f32 f64 c b

i8 i8 - - - - i8 i8 -
i16 - i16 - - - i16 i16 -
i32 - - i32 - - i32 i32 -
i64 - - - i64 - i64 i64 -
f32 - - - - f32 f32 f32 f32
f64 i8 i16 i32 i64 f32 f64 f64 f64
c i8 i16 i32 i64 f32 f64 f64 f64
b - - - - f32 f64 f64 -

(c) mldivide , mrdivide , ldivide , rdivide , mod, rem, mod

Figure 3.1 Example mclass results for groups of builtin binary operators. Rows correspond
to the mclass of the left operand, columns correspond to the mclass of the right
operand, and the table entries give the mclass of the result. The labels i8 through
i64 represent the mclasses int8 through int64 , f32 is single , f64 is
double , c is char , and b is logical . Entries of the form “-" indicate that this
combination is not allowed and will result in a runtime error.
To save space we have not included the complete generated table, we have left out
the columns and rows for unsigned integer mclasses and for handles.

As compared with type rules in other languages, these results may seem a bit strange.

For example, the “-" entry forplus(int16,int32) in Figure 3.1(a) shows that it is

an error to add anint16 to and int32 . However adding anint64 to a double is

allowed and results in anint64 . Also, note that although the three tables inFigure 3.1

are similar, they are not identical. For example, inFigure 3.1(a), multiplying alogical

with a logical results in adouble , but using the power operator with twological
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arguments throws an error. Finally, note that the tables arenot always symmetrical. In

particular, thef64 column and row inFigure 3.1(b) are not the same.

The reader may have noticed how the superior/inferior m-class relationships as shown

in figureFigure 2.1 seem to resemble the implicit type conversion rules for MATLAB builtin

functions. For example, when adding an integer and a double,the result will be double.

However, it is not sufficient to model the implicit MATLAB class conversion semantics by

just using class-specialized functions and their relationships. Many MATLAB builtins per-

form explicit checks on the actual runtime types and shapes of the arguments and perform

different computations or raise errors based on those checks.

Through the collection of a large number of tables we found that many builtins have

similar high-level behavior. We found that some functions work on any matrix, some work

on numeric data, some only work on floats, and some work on arbitrary builtin values,

including cell arrays or function handles.

3.2 Specifying Builtins

To capture the regularities in the builtin behavior, we arranged all of the builtins in a

hierarchy - a part of the hierarchy is given inFigure 3.2. Leaves of the hierarchy correspond

to actual builtins and internal nodes correspond to abstract builtins or a grouping of builtins

which share some similar behavior.

To specify the builtins and their tree-structure, we developed a simple domain-specific

language. A builtin is specified by values on one line. Valueson every line are separated by

semicolons. To specify a builtin, the first value has to be thename of the builtin.

If the builtin is abstract, i.e. it refers to a group of builtins, the parent group has to

be specified as a second value. If no parent is specified, the specified builtin is a concrete

builtin, belonging to the group of the most recently specified abstract builtin. This leads to

a very compact representation, a snippet of which is shown inFigure 3.3.

Values after the second are used to specify properties or attributes of builtins. Attributes

can be specified for abstract builtins, meaning that all children nodes will have that attribute.

This motivates structuring all builtins in a tree - if similar builtin functions have the same

attributes, then we may only have to specify properties once.
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FloatFn

ProperFloatFn

ImproperFloatFn

UnaryFloatFn

BinaryFloatFn

ElementalUnaryFloatFn

ArrayUnaryFloatFn

sqr t
realsqrt

erf
erf inv
erfc

erfcinv
g a m m a

g a m m a l n
e x p
log

log2
log10

ForwardTrigonometricFn

InverseTrigonmetricFn

RadianTrigonometricFn

DegreeTrigonometricFn

HyperbolicTrigonometricFn

sin
cos
tan
cot
sec
csc

sind
cosd
tand
cotd
secd
cscd

sinh
cosh
tanh
coth
sech
csch

RadianInverseTrigonmetricFn

DegreeInverseTrigonmetricFn

HyperbolicInverseTrigonmetricFn

asin
acos
a t a n
acot
asec
acsc

as ind
acosd
a tand
acotd
asecd
acscd

asinh
acosh
a tanh
acoth
asech
acsch

SquareArrayUnaryFloatFn

logm
sqr tm
e x p m

inv

ElementalBinaryFloatFn

ArrayBinaryFloatFn

a tan2

hypot

eps

DimensionSensit iveFloatFn

MatrixLibaryFn

FacotorizationFn

c u m s u m
cumprod

DimensionCollapsingFloatFn

m o d e
prod
s u m

m e a n
eig

n o r m
rank
cond
de t

rcond
linsolve

schur
ordschur

lu
chol
svd
qr

Figure 3.2 Subtree of the builtin tree, showing all defined floating point builtins of MAT-
LAB . All internal nodes are abstract builtins, the names inside the boxes re-
fer to actual functions. The full tree showing all defined builtins is available at
http://www.sable.mcgill.ca/mclab/tamer.html .

31

http://www.sable.mcgill.ca/mclab/tamer.html


Framework for MATLAB Builtin Functions

...

# operates on floating point matrizes
floatFunction; matrixFunction

# proper float functions have a fixed arity, and all operands are floats
properFloatFunction; floatFunction

# unary functions operating on floating point matrizes
unaryFloatFunction; properFloatFunction

# elemental unary functions operating on floating point matrizes
elementalUnaryFloatFunction; unaryFloatFunction
sqrt
realsqrt
erf

...

# float functions with optional arguments or variable number of arguments
improperFloatFunction; floatFunction

...

Figure 3.3 Excerpt of the builtin specification, showing definitions for some of the floating point
functions shown in Figure 3.2. The lines starting with a #-symbol are comments.

The builtin framework takes a specification like shown inFigure 3.3 as input, and gen-

erates a set of Java classes, one for each builtin function, whose inheritance relationship

reflects the specified tree. For an abstract builtin, the generated Java class is abstract as

well. The builtin framework (the code that generates Java files from the builtin specifica-

tion) is written in Python.

3.2.1 Builtin Visitor Class

Besides the builtin classes, the builtin framework also generates a visitor class in Java.

It allows adding methods to builtins and thus to define flow equations for them using

the visitor pattern - a pattern that is already extensively used in the MCSAF analysis

framework[Doh11]. In fact, flow analyses themselves are written using the visitor pattern.
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The generated visitor class (seeFigure 3.4) can be used to make flow analyses imple-

ment flow equations for all builtins. In order to do so, one hasto derive from the visitor

class and fill in the class variables used as argument and return values for the case methods.

Overriding case methods allows specifying desired flow equations for the corresponding

builtin.

Note that the default case for every builtin is to call the parent case - this means that

to specify behavior for similar builtins, one only needs to specify the abstract behavior

of a group, and the flow analysis framework will automatically apply the correct (most

specialized) behavior for a specific builtin. This further motivates the structuring of builtin

functions into a tree.

For example, we may find that for some flow analysis, all the flowequations for all func-

tions that are in the group ‘UnaryFloatFunction’ are the same. So we just need to override

the caseAbstractUnaryFloatFunction() method, shown inFigure 3.4. When

executing any case-method of a builtin in that group, its default implementation will call the

parent’s implementation until reachingcaseAbstractUnaryFloatFunction() .

The analysis framework allows specification of flow equations for all AST-nodes. Since

all the MATLAB operators have associated AST-nodes, one can specify flow equations for

operators using the analysis framework. Our set of builtin functions includes all the MAT-

LAB operators, so analysis writer may alternatively define flow equations for operators us-

ing the builtin framework, rather than the analysis framework. For the analyses presented

in this thesis we have opted to do so, to have fewer flow equations for AST-nodes, and have

all the behavior of builtin functions in one place.

Using this approach, an intraprocedural analysis that is aware of builtins will consist

of a flow analysis class defining flow equations for AST-nodes,and a class defining flow

equations for builtin functions. Both are defined as extensions of visitor classes - the flow

analysis is a visitor class for the AST-node hierarchy, and the builtin visitor for the hierarchy

of builtins.
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public abstract class BuiltinVisitor<A,R> {
public abstract R caseBuiltin(Builtin builtin,A arg);

...

//operates on floating point matrizes
public R caseAbstractFloatFunction(Builtin builtin,A arg){
return caseAbstractMatrixFunction(builtin,arg);

}

//proper float functions have a fixed arity, and all operands are floats
public R caseAbstractProperFloatFunction(Builtin builtin,A ar g){
return caseAbstractFloatFunction(builtin,arg);

}

//unary functions operating on floating point matrizes
public R caseAbstractUnaryFloatFunction(Builtin builtin,A arg ){
return caseAbstractProperFloatFunction(builtin,arg);

}

//elemental unary functions operating on floating point matrizes
public R caseAbstractElementalUnaryFloatFunction(Builtin bui ltin,A arg){
return caseAbstractUnaryFloatFunction(builtin,arg); }

public R caseSqrt(Builtin builtin,A arg){
return caseAbstractElementalUnaryFloatFunction(builtin,arg ); }

public R caseRealsqrt(Builtin builtin,A arg){
return caseAbstractElementalUnaryFloatFunction(builtin,arg ); }

public R caseErf(Builtin builtin,A arg){
return caseAbstractElementalUnaryFloatFunction(builtin,arg ); }

...

//float function with optional arguments or variable number of arguments
public R caseAbstractImproperFloatFunction(Builtin builtin,A arg){
return caseAbstractFloatFunction(builtin,arg); }

...

}

Figure 3.4 Excerpt of the visitor class BuiltinVisitor that is generated by the builtin frame-
work using the specification shown in Figure 3.3. The comments are copied from the
specification file by the builtin framework.
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3.3 Builtin Function Categories

We categorize the MATLAB builtin functions according to many properties, such as

mclass, arity, shape, semantics. To minimize the number of flow equations that need to be

specified for analyses and properties, they may require different kinds of groupings for the

builtins, based on the semantics of the analyses or property. Ideally, for every analysis there

should be categories grouping builtins, so that the fewest possible flow equations have to

be specified.

In general this is not possible, because we are using a tree tocategorize builtins. Never-

theless we attempted to find as many useful categories as possible, which are partly inspired

by potential needs for analysis, and partly by the similarities of existing builtin functions,

and the categories we found.

Another motivation for the heavy use of categories is that our framework does not yet

implement all MATLAB builtin functions, and we want to minimize the amount of work

required to add a builtin. When adding builtins that fit in already existing categories, one

can reuse the attributes and flow equations specified for these categories.

Effectively, we have made a survey of all the builtins, learning about their semantics,

interfaces and mclass-behavior, and have retrofitted them with an object-hierarchy. This

approach seems natural because we do generate object-oriented Java code for the builtins,

which uses that same hierarchy.

In the following we list the categories we have used to group functions. We present

every category along with their alternatives; the alternatives are mutually exclusive. We use

naming conventions that attempt to follow MATLAB terminology, but some may only be

valid for the builtin framework.

pure, impure

Pure functions have no side effects, change no state, internal or otherwise, and always

return the same result when called with the same arguments.

matrix, cell, struct, object, versatile

Matrix functions operate on MATLAB values that are numerical,logical or char .

all arguments, operands and results should have these mclasses. For example, numer-
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ical functions are matrix functions.

Cell functions operate on cell arrays, struct functions operate on structures, object

functions operate on objects.

Versatile functions operate on multiple kinds of the above categories. Some may op-

erate on any MATLAB value. For example, query functions likenumel only depend

on the shape of the argument - since every MATLAB value has a shape, the function

works on all arguments.

anyMatrix, numeric, float

These categories are sub-categories of the matrix category.

A function belonging to the anyMatrix category operates on numerical,logical or

char arrays. Numeric Functions operate on numbers. They may alsoacceptchar

or logical values, but these values will be coerced todouble , so the actual op-

eration and the result will be numerical.

Float functions only operate on floats, i.e.single or double values. Some of the

functions in this category may also accept different arguments and coerce them to

double .

proper/improper

Proper functions have strict arity, and the arguments are operands. As can be seen

in Figure 3.5, a lot of numeric functions are proper. Almost all operatorsare proper

functions (an exception is the colon operator).

Improper functions may operate on a variable number of operands, or allow optional

parameters. Some may accept (optional) parameters specifying options for the com-

putation to be performed - these option parameters are not operands and may be of a

type that functions within its category do not accept as operands.

For example, the float functioneps (machine epsilon) is improper: it allows zero

arguments or one floating point argument, but it also supports the char values

'single' and 'double' as a sole argument. The function will always return

a float value.

unary, binary

A unary function requires exactly one argument, a binary function requires exactly
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two.

elemental, array

The elemental category refers to element-wise functions, i.e. functions which operate

on every element in an array independently. The result will have the same shape as the

inputs. The array functions operate on the whole array at once. For example matrix

multiplication belongs to the array category.

The notion of elemental and array functions corresponds to MATLAB ’s notion of

array vs matrix operators, introduced in Sec.2.2.1. Note the different terminology to

avoid re-using the term ‘matrix’.

dimensionSensitive Dimension-sensitive functions are

of the form f (M, [dim]), i.e. they take some array as the first argument, and allow a

second optional argumentdim . This argument specifies the dimension along which

to operate. By default the dimension will be the first non-singleton dimension.

dimensionCollapsing

A dimension-collapsing function is a dimension-sensitivefunction which will col-

lapse every value along the operated dimension into one value, and return a new

matrix with a corresponding shape. For example thesum function sums all values

along the dimension it operates, turning them into single values. Other examples are

the functionsprod , mean, mode, min andmax.

query

A query is a function that given some arguments, will return ascalar or a vector

containing information about the argument(s). The computation summarizes the in-

formation contained in the arguments in some fashion.

toLogical, toDouble

These categories refer to the mclass of the result of the computation. We use these

as sub-categories of query. functions in the toDouble category will always return a

double result, functions in the toLogical category will returnlogical results.

Besides the above general categories, we use ad hoc ones that attempt to group builtin

functions according to their semantics, i.e. functions performing similar computation should
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be grouped together. For example inFigure 3.5, there are categories like ‘trigonometric

function’ or ‘factorization function’.

Within the tree-structure, categories are combined, creating more and more refined cat-

egories. For example, going down the tree one can reach the combination of categories

termedElementalBinaryToLogicalMatrixQuery . Functions in this combined

category refer to query functions operating on matrices only, which take exactly two argu-

ments, operate element-wise and will return values of mclass logical. The proliferation of

these long names may explain some of our naming conventions,which are largely moti-

vated by the desire for brevity, to keep combined categoriesmanageable.

An example of a complete path along the builtin tree, showingfurther and further re-

finement of categories, is shown inFigure 3.5. It also shows alternative categories along

the path.

3.4 Specifying Builtin attributes

It is not sufficient to just specify the existence of builtins; their behavior needs to be

specified as well. In particular, we need flow equations for the propagation of mclasses.

Thus the builtin specification language allows the additionof attributes.

In the builtin specification language, an attribute is just aname, with a set of arguments

that follow it. In the specification language the attributesare defined on the same line as the

builtin itself. Starting with the third value, every value specifies an attribute. Internally we

call attributes to builtins ’tags’.

A specific attribute can be defined for any builtin, and it willtrigger the addition of

more methods in the generated Java code as well as the inclusion of interfaces. In this way,

any property defined for an abstract builtin group is defined for any builtin inside that group

as well, unless it gets overridden.

It is possible to add new kinds of attributes to the builtin specification language. One

merely has to provide a function2 with a specific function interface that provides informa-

tion about the specified builtin and the argument string for the attribute. The function has

2. attribute functions are defined in processTags.py in the builtin framework
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Builtin

PureFn ImpureFn

ObjectFn MatrixFn CellFn StructFn Versati leFn

Cons tan t AnyMatrixFn NumericFn FloatFn BitFn Matr ixQuery MatrixCreation Matr ixConstructor

ProperNumericFn ImproperNumericFn

UnaryNumericFn BinaryNumericFn

ElementalBinaryNumericFn ArrayBinaryNumericFn

complex ElementalBinaryArithmetic

plus
minus
t imes
power

DividingElementalArithmetic

ldivide
rdivide

mod
r e m

Figure 3.5 An example showing all ancestors of a group of builtins, and all siblings for all these
ancestors. This shows the refinement of categories from the top category of ’builtin’
going to a specific builtin, and what the alternative categories are along the way.
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to return Java code that will be inserted in the generated Builtin class. The function may

also update a list of interfaces that the generated builtin class implements. The name of

that function is the name of the attribute as used in the builtin specification language. The

argument to the attribute is an arbitrary string. It may, however, not contain a semicolon,

because it is used to match the end of the attribute.

3.5 The Class and MatlabClass attribute

In order to build a complete callgraph, we need to know of whatmclass a variable

may be during runtime, due to the overloading lookup semantics introduced in Sec.2.4. To

have complete knowledge of all possible mclasses for all variables at all times, we need to

know how they behave with respect to mclasses. We opted to define all this information as

attributes to builtins, defined in the builtin specificationalong with builtins themselves.

We defined an attribute calledClass . When specified for a builtin, it forces the in-

clusion of the Java interfaceClassPropagationDefined in the generated Java code,

and will add a method that returns an mclass flow equation object.

The mclass flow equation object itself is defined in the builtin specification as an argu-

ment to theClass attribute, using a small domain specific language that allows matching

argument mclasses. It returns result mclasses based on matches. We have decided to build

this little domain specific language because of the complexity of some builtins, and our

desire to define mclass flow equations in a compact way.

We have noticed some irregularities in the pure MATLAB semantics, and our specifi-

cation sometimes removes those. In order to keep a record of the differences, we added

the MatlabClass attribute. It allows us to specify the exact MATLAB semantics - and

thus provides an exact definition and documentation of MATLAB class semantics. Refer to

Figure 3.6 for an example usage of both aClass attribute and aMatlabClass attribute

showing slightly different behavior.

A detailed description of the domain-specific language usedto represent mclass flow

equations is presented inAppendix C.
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...

unaryNumericFunction; properNumericFunction; Class(nu meric>0,
char|logical>double)

elementalUnaryNumericFunction; unaryNumericFunction; abstract
real
imag
abs
conj;; MatlabClass(logical>error,natlab)
sign;; MatlabClass(logical>error,natlab)

...

Figure 3.6 Excerpt of the builtin specification with the Class and MatlabClass attributes added
in. The Class attribute for unaryNumericFunction defines the mclass flow
equations for unary functions taking numeric arguments, and applies for all builtins
in the group. It specifies that given a numeric argument, the result will have the same
mclass (numeric>0 ). For char and double the result will be a double.
Note the MatlabClass attribute defined for conj and sign . These functions
have exact MATLAB semantics that differ from the default used by the builtin frame-
work: they disallow logical arguments (but not char arguments), using them will
result in an error.

3.6 Summary

We have performed an extensive analysis of the behavior of MATLAB builtin functions.

Based on that we developed a framework that allows to specify MATLAB builtin functions,

their relationships and properties such as flow equations ina compact way. We have used

our analysis of the builtins to organize builtin functions into a tree structure, making it

easier to work with builtin functions.

This builtin framework is extensible both by allowing the quick addition of more builtin

functions; and by allowing to specify more information and behavior for builtin functions.

This can be done either adding new properties to the framework itself; or by implementing

visitor classes.

The compact representation of builtins also allows changing the organization of builtins.
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This means that the whole framework may evolve as our understanding of builtin functions

and our requirements for analyses evolve.3

3. The complete specification of builtins, documentation ofthe specification and diagrams of all builtins
is available at www.sable.mcgill.ca/mclab/tamer.html.
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Chapter 4

Tame IR

As indicated inFigure 1.1, we build upon the MCSAF framework by adding taming

transformations and by producing a more specialized Tame IR.The MCSAF framework

provides us with a three-address form of the AST, reducing many complicated MATLAB

constructs. We further reduce the AST to build the Tame IR. Themain contributions of the

Tame IR, beyond the three address form previously provided byMCSAF are:

– Rather than providing a reduced form of the AST, as provided by MCSAF, we im-

plement the Tame IR as a complete set of new nodes. The interfaces of these nodes

enforce the constraints of the IR.

– The Tame IR reduces the total number of possible AST nodes. In particular, we

remove all expression nodes, and express their operations in terms of statements and

function calls.

– The Tame IR reduces some complexity of MATLAB . Some of these reductions would

not have been possible to be provided by the MCSAF framework, because it is com-

pletely semantics preserving. Because the tamer framework does impose constraints

on MATLAB to make it amenable to static compilation, it is possible to further reduce

the AST in ways that is not possible with semantics-preserving transformations. In

particular, we simplify lambda expressions and remove switch statements; we also

place all comments into empty statements, rather than have them annotated to state-

ment nodes.

– The Tame IR specialize nodes according to their semantics,and provides nodes that
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signify the operation performed.

– The Tame IR provides information that is not available in the AST. In particular, it

separates functions and variables, utilizing the kind analysis [DHR11].

Rather than implementing completely new nodes, all Tame IR nodes are extensions of

existing AST nodes. This means that any Tame IR program tree is a valid AST as well. A

program in the Tame IR is also a valid MATLAB program, with one exception, which is

discussed in Sec.4.1.1. This difference is removed when the Tame is pretty printed,which

will produce valid MATLAB again.

The intention of the Tame IR is to make it easier to implement analyses, by reducing the

number of nodes, by specializing nodes to signify their operation, and by providing some

static information. By keeping the Tame IR an almost valid AST, any analysis written for

the AST should work for the Tame IR as well; by keeping it validMATLAB (at least when

pretty printed), it should be easier to debug analyses and transformations. One goal for our

overall Taming framework is to produce an IR whose operations are low-level enough to

map fairly naturally to static languages like FORTRAN.

Besides providing the IR nodes and the transformations to build the Tame IR, we have

also extended the visitor classes and flow analyses of the MCSAF framework so that it can

be used to implement flow analyses that explicitly use the IR.

In the following sections we first introduce the Tame IR and its nodes, and then provide

an overview of some of the transformations used to arrive at the Tame IR.

4.1 The Tame IR

The Tame IR consists of nodes that extend existing AST nodes.Some of these nodes

extend the AST and merely enforce constraints that correspond to the three-address form

semantics of the Tame IR. Some nodes are extensions of the AST nodes that do not change

the interface at all, they merely exist to complete the Tame IR, so that a program may

consist only of IR Statements.

For assignment nodes, however, we provide several specializations that correspond to

many different operations that can be performed by an assignment statement. The AST

only provides a single assignment statement with an expression on the lhs and rhs. This
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is what the three-address form of MCSAF provides as well, even when the three-address

transformations will have reduced the actual structure of an assignment.

In the following sections, we present all the Nodes of the Tame IR. A complete grammar

is given in appendixAppendix D.

4.1.1 Assignment Statements

For the Tame IR, we have extended the AST’s assignment statement into several spe-

cialized versions, as seen inFigure 4.1. These all represent different operations in terms

of assignment statements. Note in particular that we have different nodes for the syntac-

tically identical array accesses and calls, given that the Tame IR differentiates between

them, unlike the AST. In the following we describe all the different kinds of extensions of

the assignment statement that are part of the Tame IR.

TIRAbs t rac tAss ignS tmt

Ass ignS tmt

T IRAbs t rac tAss ignFromVarS tmt

T IRAr raySe tS tm t T IRCe l lA r raySe tS tmt T IRDo tSe tS tmt

T IRAsb t rac tAss ignToL is tS tmt

T IRAr rayGe tS tmt T IRCe l lA r rayGetS tmt T IRDotGe tS tmt T IRCa l lS tmt

T IRAss ignL i te ra lS tmt

TIRAbst rac tAss ignToVarStmt

T IRCopyStmt T IRAbs t rac tCrea teFunc t ionHand leS tmt

TIRCreateFunc t ionReferenceStmt T IRCrea teLambdaStmt

Figure 4.1 Specializations of an assignment statement

TIRAbstractAssignStmt

An abstract class representing all assignment nodes of the Tame IR. This class ex-

tends the AST nodeAssignStmt . The analysis framework allows specifying flow

equations for every node, including all the abstract nodes.

TIRAbstractAssignFromVarStmt

Assignments from variables are of the form

... = x
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i.e. they have a rhs which is a name referring to a variable. This is an abstract node

class representing the following nodes:

TIRArraySetStmt, TIRDotSetStmt, TIRCellArraySetStmt

The ‘set’-assignments represent AssignFromVarStmts whose lhs are indexing

operations, i.e. they represent assignment indexing operations that correspond

to the MATLAB builtin function subsasgn . For example, they represent the

following operations:

a(i,j)= x, a.s = x, a{i,j} = x

TIRAbstractAssignToListStmt

Assignments to lists are assignments with multiple possible target variables. I.e. they

are assignments of the form

[v1, v2, v3, ... , vn] = ...

Within the Tame IR, it is allowed that the list of result variables is empty, which is

not valid in MATLAB . This is the only deviation of the Tame IR from being valid

MATLAB (the AST does not enforce this restriction). Empty lhs listsare used to

represent expression statements. For example, within the Tame IR, a statement like

foo(3);

is represented as

[] = foo(3);

This allows us to represent all expressions in terms of statements, while having IR

nodes that are merely extended AST nodes (in this caseAssignmentStmt ), while

also not having multiple versions for statements, either asassignment or expression

statements.

When pretty-printed, an assignment with an empty lhs list will return an expression

statement.

TIRArrayGetStmt, TIRCellArrayGetStmt, TIRDotGetStmt

The ‘get’-assignments are assignments to lists that are represented by the MAT-

LAB builtin functionsubsref , i.e. they have indexing operations on the rhs.
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Note that structure-referencing and cell-indexing may result in multiple return

values that can be assigned, while array-indexing producesonly one value.

However, array-indexing is also used when calling a value ofmclassfunction_handle .

In that case, the referenced function gets called, possiblyresulting in multiple

return values. When any of the above operations is overloaded, the operation

may also result in multiple return values.

TIRCallStmt

Calls are assignments of the form

[r1, r2, ... , rn] = f(a1, a2, ..., an);

Whereri andai are variables. Note the similarity to the array-get statement. The

difference is thatf is a name that has to refer to a function.

TIRAbstractAssignToVarStmt

These represent assignments of the form,

x = ...

There is a name on the lhs representing a single variable. These are used for assign-

ments where there always is exactly one variable on the lhs. This makes them simpler

to analyze than the assignments to lists, because there don’t need to be any checks

for the existence of enough target variables, etc.

TIRAssignLiteralStmt

Literal assignments are used to assign numerical and stringliterals to a variable,

i.e. they may be used to represent the following statements:

x = 3, x = 'hi'

In MATLAB , true and false are not literals, but builtin functions. These

functions actually allow arguments specifying matrix dimensions to produce

logical matrices.

The assign-literal statements are the only place in the TameIR where literals

may occur; other statements usually operate on just variables.
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TIRCreateFunctionHandleStmt

These assign-to-var statements allow the creation of function handles, either

creating function pointers, or by creating an anonymous function using lambda.

They are thus of the form

t = @f;

or

t = @(x1,x2,...)f(a1,a2,..,an,x1,x2,...);

where f is a name referring to a function. The variablesai throughan encap-

sulate workspace variables within the anonymous function,there may be 0 or

more of such variables. The transformation from arbitrary lambda expressions

to statements of the above form is discussed in detail in Sec.4.3.

TIRCopyStmt

Copies are assignments of the form

x = y;

wherex andy are names referring to variables.

4.1.2 Control Flow Statements

TIRIfStmt, TIRWhileStmt

The if and while statements in the Tame IR are almost the same as the corresponding

statements in the AST. The only constraint, being a three-address form, is that the

condition-expressions have to be names referring to variables.

TIRForStmt

The for statement in the Tame IR is of the form

for i = low:inc:hi

...

end

wherei, low, inc andhi are names referring to variables.inc is optional.

TIRReturnStmt, TIRBreakStmt, TIRContinueStmt

These control flow statements are the same as their AST counterparts.
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4.1.3 Other Statements

TIRGlobalStmt, TIRPersistentSmt

These statements allow declaring variables to be global or persistent. The Tame IR

imposes the constraint on MATLAB that no variable may be used before a global

definition. MATLAB merely issues a warning in this case. MATLAB does not allow

using a persistent variable before the declaration.

TIRCommentStmt

In the AST, comments are annotated to AST-nodes. When replacing AST nodes with

other AST nodes, one would thus have to ensure that comments are copied as well. In

order to make transformations of the tree easier, we have opted to place all comments

into empty statements, so that no other statement may have annotated comments.

4.1.4 Non-Statement Nodes

Besides all the above statement nodes, the Tame IR includes the following nodes which

are not statements.

TIRNode, TIRStmt

These are interfaces. Any Tame IR node implementsTIRNode . Any Statement of

the Tame IR implementsTIRStmt .

TIRFunction

TIRFunction is an extension of the function node of the AST. It ensures that all

statements inside the body areTIRStmt nodes. The functions also include infor-

mation that is not readily available to AST function nodes, namely a simple symbol

table separating names into functions and variables (the result of the kind analysis).

It also provides the list of global and persistent variablesdeclared inside the function

body.

TIRStatementList

A simple extension of theStatementList that is part of the AST, to ensure that

all elements areTIRStmt nodes.
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TIRCommaSeparatedList

Used as a list of names for arguments to calls, and for indicesof indexing operations,

and targets in list-assignments. Besides names, indexing operations may include a

colon (:), for example as used in the indexing operation

a(:,3)

Here,:,3 would be represented as a comma-separated list.

As more of the MATLAB language is supported, more possible elements may get

added, for example MATLAB ’s tilde expression ‘~’, which allows discarding results

of calls.

4.2 Tame IR Transformations

The Tame IR of an AST is built by transforming the three-address form produced by

the MCSAF framework. Given this three-address form, most of the transformations pro-

duce equivalent nodes of the IR, merely checking constraints. To transform an incoming

assignment statement, the transformations have to check what kind of assignment it is, and

produce the appropriate IR assignment. All these transformations do not actually transform

the underlying MATLAB code, they merely change the representation of it.

Besides these node-representation transformations, the Tame IR transformations also

include some transformations that actually change the underlying MATLAB code. These

are presented below. Note how some of these transformationsimpose slight constraints on

the MATLAB code, which are thus part of the Tame MATLAB language subset.
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4.2.1 Reduction of Operations to Calls

The Tame IR has no operators. In order to transform to the TameIR, all operators have

to be transformed into calls to equivalent builtin functions. Note that users may already be

using builtin functions rather than operators, so after thetransformation, all operations are

expressed in the same way. The list of operators thus transformed in presented inTable 4.1.

The missing short circuit logical operations (&& and || ) are already reduced by the

MCSAF framework into equivalent if-then-else statements.

The transformation does not reduce the indexing operators ’() ’, ’ {} ’ and ’. ’. They do

correspond to the builtin functionssubsref andsubsasgn , for indexing operations on

the rhs and lhs, respectively. Note, however, that MATLAB uses the same indexing operator

for all indexing operations. Consequently, MATLAB internally has to add arguments to

specify the exact indexing operation used. This information is stored in a structure. For

example, an indexing operation like

x = a(i,j);

May look like the following, ifsubsref was used explicitly:

s.type = '()';

s.subs = {i,j};

x = subsref(a,s);

Note the structure that contains the type of indexing (as a string), and the indices, which

are themselves stored as a cell array. If the Tame IR reduced indexing operators, it would

actually generate more complex code, which may be harder to analyze.

x = a + b x = plus(a,b)

(a) operation (b) equivalent call

Figure 4.2 Transforming operations to calls
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With this in mind, analyses have to be aware that it is possible not only to overload

calls to functions, but also indexing operations. An accurate analysis thus has to check for

overloaded functions for calls, as well as all ‘get’-assignments and all ‘set’-assignments.

After the operator reduction, analyses written for the TameIR should utilize the builtin

framework. That is, analysis writers should provide a flow analysis of the AST nodes using

the MCSAF analysis framework, and flow equations for builtins using the builtin frame-

work. This simplifies the flow analysis of the AST nodes themselves, because there are

fewer nodes, and helps separating the definition of the flow equations of the AST-nodes

from the definition of flow equations for builtin operations and functions.

binary numerical operators
+ plus
- minus

* mtimes
/ mrdivide
\ mldivide
^ mpower

. * times

./ rdivide
. ldivide

.^ power

other binary operators
& and
| or
< lt
> gt

<= le
>= ge
== eq

= ne

unary operators
- uminus
+ uplus
.' transpose
' ctranspose
~ not

colon
: colon

: : colon

Table 4.1 MATLAB operators and their corresponding builtin functions.

52



4.3. Lambda Simplification

4.3 Lambda Simplification

MATLAB supports lambda expressions. In order to be compatible withthe Tame IR,

their bodies need to be converted to a three address form in some way. MATLAB lambda

expressions are single expression (rather than, say, statement lists), that the MCSAF frame-

work leaves intact in their original form, due to the difficulty of reducing a lambda ex-

pression while still maintaining the full MATLAB semantics. For the Tame IR we extract

the body of the lambda expression into an external function.The lambda expression still

remains, but will encapsulate only a single call, all whose arguments are variables. For

example, the lambda simplification will transform the expression inFigure 4.3(a) to the

code inFigure 4.3(b). The new lambda expression encapsulates a call to the newfunction

lambda1 . Note that the first two arguments are variables from the workspace, the remain-

ing ones are the parameters of the lambda expression. In the analyses, we can thus model

the lambda expression using partial evaluation of the function lambda1 . To make this

transformation work, the generated function must return exactly one value, and thus Tame

MATLAB makes the restriction that lambda expressions return a single value (of course that

value may be an array, struct or cell array).

function outer
...
f = @(t,y) D * t + c
...

end

function outer
...
f = @(t,y) lambda1(D,c,t,y)
...

end

function r = lambda1(D,c,t,y)
r = D * t + c

end

(a) lambda (b) transformed lambda

Figure 4.3 Transforming lambda expressions
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4.4 Switch simplification

As illustrated inFigure 4.4(a), MATLAB has support for very flexible switch statements.

Unlike in other languages, all case blocks have implicit breaks at the end. In order to specify

multiple case comparisons for the same case block, MATLAB allows using cell arrays of

case expressions, for example{2, 3} in Figure 4.4(a). Indeed, MATLAB allows arbitrary

case expressions, such asc in the example. Ifc refers to a cell array, then the case will

match if any element of the cell array matches. Without knowing the static type and size

of the case expressions, a simplification transformation isnot possible. Thus, to enable the

static simplification shown inFigure 4.4(b) we add the constraint for the Tame MATLAB

that case-expressions are only allowed to be syntactic cellarrays.

switch n
case 1

...
case {2, 3}

...
case c

...
otherwise

...
end

t = n
if (isequal(t,1))

...
elseif (isequal(t,2) ||

isequal(t,3))
...

elseif (isequal(t,c))
...

else
...

end

(a) switch (b) transformed switch

Figure 4.4 Transforming switch statements

4.5 Summary

We have provided a simplified IR that can be used to represent MATLAB , which enables

implementing more simplified flow analyses, working together with the builtin framework,

and which should help facilitate static compilation of MATLAB programs.
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Chapter 5

Interprocedural Analysis Framework and Call

Graph Framework

This chapter introduces the interprocedural analysis framework. We have previously

introduced the builtin framework and the Tame IR. In the next chapter we will introduce

the value analysis, an interprocedural analysis that uses all these tools to build a callgraph

with annotated type information. In order to implement thisinterprocedural analysis, we

have developed the interprocedural analysis framework.

The interprocedural analysis framework builds on top of theTame IR and the MCSAF

intraprocedural analysis framework. It allows the construction of interprocedural analyses

by extending an intraprocedural analysis built using the MCSAF framework. This frame-

work works together with a callgraph object implementing the correct MATLAB look up

semantics. An analysis can be run on an existing callgraph object, or it can be used to build

new callgraph objects, discovering new functions as the analysis runs.

In the following sections we will introduce the interprocedural analysis framework as

an extension of the intraprocedural analysis framework, and how it works in tandem with

callgraph objects and the lookup objects, as well as how the framework deals with recur-

sion. To help potential analysis writers, we have indicatedthe names of Java classes that

correspond to the contexts in bold.
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5.1 The Function Collection Object

In order to represent callgraphs we use an object which we call FunctionCollection.

It is, as the name suggests, a collection of nodes representing functions, indexed by so

function reference objects. Objects of typeFunctionReferenceact as unique identifiers

for functions. They store a function’s name, in which file it is contained if applicable, and

what kind of function it is (primary function, subfunction,nested function, builtin function,

constructor). For nested functions, it stores in which function it is contained. Function

reference objects give enough information to load a function from a file.

Nodes in the function collection not only store the code of the function and a function

reference; they also provide information about its environment. The node provides a MAT-

LAB function lookup object which is able to completely resolve any function call coming

from the function. It includes information about the MATLAB path environment and other

functions contained in the same file. The lookup informationis provided given a function

name, and optionally an mclass name (to find overloaded versions); and will return a func-

tion reference allowing the loading of functions.

The lookup information allows us to build a callgraph knowing only an entry point and

a path environment, and using semantics for finding functions that correspond to the way

MATLAB finds functions at runtime. This is bridging the gap between adynamic language

and static compilers, which usually require specifying what source code files are required

for compilation.

The simple function collection uses only the lookup information contained in its nodes

to built an approximation of a callgraph, which is naturallyincomplete. We have used it

for the development of the Tamer framework, as it provides a simple way to generate a

callgraph which excludes discovering overloaded calls andpropagation of function han-

dles. We have implemented slightly different versions of the function collection, which are

described in the table below.
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SimpleFunctionCollection A simple callgraph object built using MATLAB

lookup semantics excluding overloading. Function
Handles are loaded only in the functions where the
handle is created. Obviously this an incomplete call-
graph, but may be used by software tools that do not
need a complete callgraph, and where the simplicity
can be useful.

IncrementalFunctionCollection callgraph that does the same lookup as the Func-
tionCollection, but does not actually load functions
until they are requested. This is used to build the
callgraph

CompleteFunctionCollection callgraph that includes call sites for every function
node and correctly represents overloading can call-
ing function handles. This is produced by the Tamer
using interprocedural analyses. This callgraph can
be used to build further interprocedural analysis that
are not extensions of the value analysis. It can also
be used as a starting point for static backends.

Table 5.1 The different kinds of Function Collection objects.

5.2 The Interprocedural Analysis Framework

The interprocedural analysis framework is an extension of the intraprocedural flow

analyses provided by the MCSAF framework. It is context-sensitive to aid code generation

targeting static languages like FORTRAN. FORTRAN’s polymorphism features are quite

limited; every generated variable needs to have one specifictype. The backend may thus

require that every MATLAB variable has a specific known mclass at every program point.

Functions may need to be specialized for different kinds of arguments, which a context-

sensitive analysis provides at the analysis level.

An interprocedural analysis is a collection of interprocedural analysis nodes, calledIn-

terproceduralAnalysisNode, which represent a specific intraprocedural analysis for some

function and some context. The context is usually a flow representation of the passed argu-

ments. Every such interprocedural analysis node produces aresult set using the contained

intraprocedural analysis. An InterproceduralAnalysisNode is generic in the intraprocedural
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analysis, the context and the result - these have to be definedby an actual implementation

of an interprocedural analysis.

Every interprocedural analysis has an associated FunctionCollection object, which may

initially contain only one function acting as the entry point for the program (i.e. when

building a callgraph using an IncrementalFunctionCollection). The interprocedural analysis

requires a context (argument flow set) for the entry point to the program.

Algorithm

The analysis starts by creating an interprocedural analysis node for the entry point func-

tion and the associated context, which triggers the associated intraprocedural flow analysis.

As the intraprocedural flow analysis encounters calls to other functions, it has to create

context objects for those calls, and ask the interprocedural analysis to analyze the called

functions using the given context. The call also gets added to the set of call edges associ-

ated with the interprocedural analysis node.

As the interprocedural has to analyze newly encountered calls, the associated functions

are resolved, and loaded into the callgraph if necessary. The result is a complete callgraph,

and an interprocedural analysis.

5.2.1 Contexts

In order to implement an interprocedural analysis, one has to define a context object.

These may be the flow information of the arguments of a call; but it could be any informa-

tion. The analysis itself is context-sensitive, meaning that if there are multiple calls to one

function with different contexts, they are all representedby different interprocedural anal-

ysis nodes. The interprocedural analysis framework never merges contexts, which would

have to be done by the specific analysis if desired.

Interprocedural analysis nodes are cached. Thus if a function/context pair is called a

second time, the information will be readily available.

Note that in order to completely resolve calls, the flow information and the contexts

have to include mclass information for variables and arguments. In order to resolve calls to

function handles, the contexts have to store which arguments may refer to function handles
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(and which functions they refer to).

Once the complete callgraph is built, further analyses don’t need to flow mclass infor-

mation, because all possible calls are resolved. But this information may still be useful to

obtain more accurate analysis result, by knowing which information to flow into which

calls for ambiguous call sites (see Sec.5.2.3) - that is why the value analysis presented in

Chapter 6 allows extending the flow-sets, to allow flowing informationfor different analy-

ses together in one analysis, and get a more precise overall result.

5.2.2 Call Strings

When analyzing a functionf for a given contextc f , and encountering a call to some

other functiong, the interprocedural analysis framework suspends the analysis of f in order

to analyze the encountered call. The flow analysis has to provide a contextcg for the call to

g, and an intraprocedural analysis will be created that will analyzeg with cg.

main(cmain)

f(cf)

g(cg)

Figure 5.1 A small program where main calls f calls g. The call string for g(cg) in this example
may be main(cmain) : f (c f ) : g(cg).

The set of currently suspended functions (inFigure 5.3 main and f ), which are await-

ing results of encountered calls that need to be analyzed correspond to the callstack of

these functions at runtime, at least for non-recursive programs. We call the chain of these

functions, together with their contexts aCallString . Every function/context pair, i.e. the

associated interprocedural analysis node, has an associated call string, which corresponds

to one possible stack trace during runtime. Note that interprocedural analysis nodes are

cached, and may be reused. Thus in the above example, if the main function also callsg
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with contextcg, the results of the interprocedural analysis node created for the call encoun-

tered in functionf will be reused.

main(cmain)

f(cf)

g(cg)

Figure 5.2 Here, main also calls g, also with context cg. Since the interprocedural analysis node
for g(cg) is reused, the call string will be reused as well.

Since the interprocedural analysis node is reused, it will have the same call string. So

the call string is not an exact representation of a call stackfor every call, it is merely the

exact representation of one possible call stack that will reach a given function/context pair.

Note that for purposes of error reporting, the call string can be presented to the user as a

stack trace.

5.2.3 Callsite

Any statement representing a call may actually represent multiple possible calls. For

example a call to a functiong may be overloaded, so if arguments may have different

possible mclasses, different functions namedg may be called. Also, because it is up to

an actual analysis to define its notion of what a context is, itis possible that an analysis

may decide to produce multiple contexts for one call to a function f . This would create

specialized versions of a function from a single call (this is actually possible in the value

analysis presented inChapter 6). A third way in which a statement may represent multiple

possible calls is via function handles. An TIRArrayGet statement may trigger a call if the

represented array is actually found to be a function handle (we call the variable accessed in a

TIRArrayGet statement an ’array’ simply because it is used inan array-indexing operation,

but it could be any variable). If that function handle may refer to multiple possible functions

60



5.2. The Interprocedural Analysis Framework

at runtime, then the function handle access may refer to multiple possible calls.

f(cf)

g(cg) @char/g(cg)

f(cf)

g(c1) g(c2) g(c3)

f(cf)

foo(ch) bar(ch)

Figure 5.3 This figure shows examples how it is possible for one single call site to refer to
multiple possible calls. This may be due to overloading, creation of multiple contexts
for a single call, or function handles.

In order to be able to represent multiple possible call edgescoming out of a statement,

we associate any statement that includes any calls with aCallsite object. This callsite can

store multiple possible call edges as function/context pairs, which we call a “call” in the in-

terprocedural analysis framework. An intraprocedural analysis, in order to request the result

of a call, has to request a callsite object for a calling statement. It may then request arbitrary

calls from that callsite object, which will all get associated with the calling statement.

5.2.4 Recursion

The interprocedural analysis framework supports simple and mutual recursion by per-

forming a fixed point iteration within the first recursive interprocedural analysis node. In

order to identify recursive and mutually recursive calls weuse the call strings introduced

in Sec.5.2.2. While we established that there is no guarantee which stack trace the call

string represents, we know that it will always represent onepossible stack trace. Since the

call stacks of all recursive and mutual recursive calls mustinclude the function, we merely

need to check, for any call, whether it already exists in its call string.

If it does, we have identified a recursive call, and must perform a fixed point iteration.

To do so, we label the intraprocedural analysis node associated with the recursive call (i.e.

the call to f (c f ) in Figure 5.4) as recursive. This will trigger the fixed point iteration.

Because we need a result for the recursive call to continue analyzing, an actual analysis

implementation has to provide a default value as a first approximation, which may be just

bottom. Once the intraprocedural contained in the interprocedural analysis node associated
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main(cmain)

f(cf)

g(cg)

s(cg)

Figure 5.4 Example of a recursive program. The call in s(cs) to f (c f ) triggers the fixed point
iteration of f (c f ). f (c f ) is the first recursive interprocedural analysis node.

with the recursive call is completed, the result is stored asa new partial result. The analysis

is then recomputed, using this new partial result for the recursive call. When a new partial

result is the same as a previous partial result, we have completed the fixed point iteration.

Note that the computation resulting in the new partial result uses the previous partial result

for its recursive call - but since they are the same, we have made a complete analysis using

the final result for the recursive call.

Note that the while the fixed point iteration is being computed, all calls below the re-

cursive call (i.e. the callsg(cg) ands(cs) in Figure 5.4) always return partial results. Thus

we cannot cache the nodes and their results, and have to continuously invalidate all the

corresponding interprocedural analysis nodes.

Note that the analysis treats calls to the same function withdifferent contexts as differ-

ent functions. No fixed point iteration is performed to resolve recursive calls with different

contexts, because they represent different underlying intraprocedural analyses. Thus it is

possible to create infinite call strings, as shown inFigure 5.5. It is up to the actual analysis

implementation to ensure this does not happen. A simple strategy would be to ensure that

there are only a finite number of possible contexts for every function. Another strategy is

for the intraprocedural analysis to check the current call string before requesting a call,

to ensure that the function to be called does not already exist in the call string. If it does,
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main(cmain)

f(cf)

g(c1)

g(c2)

g(c3)

...

main(cmain)

f(cf)

g(c1)

g(c’)

Figure 5.5 Example of a recursive program, showing how recursive calls with different contexts
can create infinite chains of calls on the left. An interprocedural analysis implemen-
tation has to catch such cases and create a finite number of contexts, as shown on
the right, where the contexts c2 and onward are replaced with c′. In this case the
interprocedural analysis framework will perform a fixed point iteration on f (c′).

the intraprocedural analysis should push up the context to afinite representation (shown in

Figure 5.5).

5.3 Summary

We have presented an interprocedural analysis framework that we hope is flexible

enough to allow different kinds of full-program analyses, while powerful enough to deal

with issues such as recursion and ambiguous call sites. Thisanalysis framework is a key

component of our value analysis (presented in the next chapter), and the overall callgraph

construction of the Tamer.
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Chapter 6

Interprocedural Value Analysis and Call Graph

Construction

The core of the MATLAB Tamer is thevalue analysis. It’s an extensible monolithic

context-sensitive inter-procedural forward propagationof abstract MATLAB values. For

every program point, it estimates what possible values every variable can take on. Most

notably it finds the possible set of mclasses. It also propagates function handle values. This

allows resolution of all possible call edges, and the construction of a complete call graph

of a tame MATLAB program.

The value analysis is part of an extensible interproceduralanalysis framework. It con-

tains a set of modules, one building on top of the other. All ofthem can be used by users of

the framework to build analyses.

– Theabstract value analysis(section6.1), built using the interprocedural analysis

framework, is a generic analysis of abstract MATLAB values. The implementation

is agnostic to the actual representation of abstract values, but is aware of MATLAB

mclasses. It can thus build a callgraph using the correct function lookup semantics

including function specialization.

– We provide an implementation ofcomposite valueslike cell arrays, structures and

function handles, which is generic in the implementation ofabstract matrix values

(section6.3). This makes composite values completely transparent, allowing users to

implement very fine-grained abstract value analyses by onlyproviding an abstraction
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for MATLAB values which are matrices.

– Building on top of all the above modules and putting everything together, we provide

an abstraction for all MATLAB values, which we call simple values (section6.4).

Since it includes the function handle abstractions, this can be used by users to build

a complete tame MATLAB callgraph. This is theconcrete value analysis, whose

results are presented in section6.5.

6.1 Introducing the Value Analysis

The abstract value analysis is a forward propagation of generic abstract MATLAB val-

ues. The mclass of any abstract value is always known.

A specific instance of a value analysis may use different representations for values of

different mclasses. For example, function handle values may be represented in a different

way than numeric values. This in turn means that values of different Matlab classes can not

be merged (joined).

6.1.1 Mclasses, Values and Value Sets:

To define the value analysis independently of a specific representation of values, We

first define the set of all mclasses:

C = {double ,single , logical ,cell , . . .}

For each mclass, we need some lattice of values that represent estimations of MATLAB

values of that class:

Vmclass = {v : v represents a MATLAB value with mclassmclass},mclass ∈C

We require that merge operations are defined, so∀v1,v2 ∈Vmclass,v1∧ v2 ∈Vmclass.

We can not join values of different mclasses, because their actual representation may

be incompatible. In order to allow union values for variables, i.e. to allow variables to have

more than one possible mclass, we estimate the value of a MATLAB variable as a set of
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pairs of abstract values and their mclasses, where the mclasses are disjoint. We call this a

value set. More formally, we define a value set as:

ValueSet = {(mclass1,v1),(mclass2,v2), . . . ,(mclassn,vn) :

classi 6= class j,classi ∈C,vi ∈Vclassi}

Or the set of all possible value sets given a setV of lattices for every mclass.

SV = {{(mclassk,vk) : mclassi 6= mclass j,vi ∈Vmclassi,k ∈ 0..n} : 0≤ n ≤ |C|}}

This is a lattice, with the join operation which is the simpleset union of all the pairs, but

for any two pairs with matching mclasses, their values get joined, resulting in only one pair

in the result set.

While the notion of a value set allows the analysis to deal withambiguous variables,

still building a complete callgraph and giving a valid estimation of types, having ambiguous

variables is not conducive to code generation for a languagelike FORTRAN. So

if (...); t = 4; else; t = ’hi’; end

results int having the abstract value{(double ,4),(char , ’hi’ )}. This example is not

tame MATLAB .

6.1.2 Flow Sets:

We define a flow set as a set of pairs of variables and value sets,i.e.

f low = {(var1,s1),(var2,s2), ...,(varn,sn) : si ∈ SV ,vari 6= var j}

and we define an associated look-up operation

f low(var) = s if (var,s) ∈ f low

This is a lattice whose merge operation resembles that of thevalue sets.

Flow sets may benonviable, representing non-reachable code (for statements after er-
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rors, or non-viable branches). Joining any non-bottom flow set with thenonviable set results

in the viable flow set, joiningbottom andnonviable results innonviable.

6.1.3 Argument and Return sets:

The context or argument set for the interprocedural analysis is a vector of values rep-

resenting argument values. Arguments are not value sets, but simple valuesv ∈ Vc with a

single known mclassc. When encountering a call, the analysis has to construct all combi-

nations of possible argument sets, construct a context fromthat and analyze the call for all

such contexts. For example, if we reach a callr = foo(a,b) , with a flow set

{(a,{(double ,v1),(char ,v2)}),(b,{(logical ,v3)})},

the value analysis constructs two contexts, from(v1,v3) and(v2,v3), and analyzes function

foo with each context. Note how the dominant argument for the first context isdouble ,

whereas it ischar for the second. If there exist mclass specialized versions for foo , then

this results in call edges to, and analysis of, two differentfunctions.

More formally, for a callf unc(a1, a2, · · · , an) at program pointp, with the input flow

set fp, we have the set of all possible contexts

allargs = fp(a1)× fp(a2)×·· ·× fp(an) = ∏
1≤i≤n

fp(ai)

the interprocedural analysis needs to analyzef unc with all these contexts and merge

the result,

R =
∧

arg∈allargs

analyze( f unc,arg)

To construct a context, the value analysis may simplify (push up) values to a more

general representation. For example, if the value abstraction includes constants, the push

up operation may turn constants intotop. Otherwise, the number of contexts for any given

function may grow unnecessarily large.

The result of analyzing a function with an argument set is a vector of value sets, where
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every component represents a returned variable. They are joined by component-wise join-

ing of the value sets. In the value analysis we require that for a particular call, the number

of returned variables is the same for all possible contexts.

6.1.4 Builtin Propagators:

Every implementation of the value abstractions needs to provide a builtin propagator,

which provides flow equations for builtins. IfB is the set of all defined builtin functions

{plus ,minus ,sin , . . .}, then the builtin propagatorPV for some representation of values

VC is a function mapping a builtin and argument set to a result set.

PV : B×
⋃

n∈N

V n →
⋃

n∈N

(SV )
n

The builtin framework provides tools to help implement builtin propagators by providing

builtin visitor classes. The framework also provides attributes for builtin functions, for ex-

ample the class propagation information attributes.

6.2 Flow Equations

In the following subsection we will show a sample of flow equations to illustrate the

flow analysis. We assume a statement to be at program pointp, with incoming flow setfp.

The flow equation for program pointp results in the new flow setf ′p
– vart = vars: f ′p = fp \{(vart , fp(vart))}∪{(var, fp(vars))}

– var = l, wherel is a literal with mclasscl and value representationvl:

f ′p = fp \{(var, fp(var))}∪{(var,{(cl,vl)})}

– [ t1, t2, . . ., tm] = f unc( a1, a2, . . ., an) , a function call to some functionf unc:

with
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call f unc,arg =

{

PV (b,args) if f unc with args refers to a builtinb

analyze( f ,args) if f unc with args refers to a functionf

we set

R =
∧

args∈ fp(a1)× fp(a2)×···× fp(an)

call f unc,args

then

f ′p = fp \
m
⋃

i=1

{(ti, fp(ti))}∪
m
⋃

i=1

{(ti,Ri)}

Note that when analyzing a call to a function in an m-file, the argument values will

be pushed up. For calls to builtins, the actual argument values will be used, effectively

in-lining the behavior of builtin functions.

6.3 Structures, Cell Arrays and Function Handles

We implemented a value abstraction for structs, cell arraysand function handles (in-

ternally calledAggrValue ). This abstraction is again modular, this one with respect to

the representation of matrix values (i.e. values with mclass double , single , char ,

logical or one of the integer mclasses). Structures, cell arrays andfunction handles act

as containers for other values, making them effectively transparent. A user may provide a

fine-grained abstraction for just matrix values and combineit with the abstraction of com-

posite values to implement a concrete value analysis.

6.3.1 struct , cell :

For structures and cell arrays, there are two possible abstractions:

– tuple: The exact index set of thestruct /cell is known and every indexing op-

eration can be completely resolved statically. Then the value is represented as a set
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of pairs{(i1,s1),(i2,s2), ..,(in,sn) : ik ∈ I,sn ∈ SV}, where I is an index set - integer

vectors for cell arrays, and names for structs.

– collection: Not all indexing operations can be statically resolved, orthe set of indices

is unknown. In this case, all value sets contained in the struct or cell are merged

together, and the representation is a single value sets ∈ SV .

The usual representation for a structure is a tuple, becauseusually all accesses (dot-expressions)

are explicit in the code and known. Cell arrays are usually a collection, because the index

expressions are usually not constant. But cell arrays tend tohave homogeneous mclass val-

ues, so there is some expectation that any access of astruct or cell results in some

unambiguous mclass and thus allows static compilation.

6.3.2 function_handle :

As explained in section2.6, function handles can be created either by referring to an

existing function, or by using a lambda expression to generate an anonymous function using

a lambda expression. The lambda simplification (presented in section4.3) reduces lambda

expressions to single calls.

We model all function handles as sets of function handle pairs. A function handle pair

consists of a reference to a function and a vector of partial argument value sets. A function

handle value may thus refer to multiple possible function/partial argument pairs.

Given some flow setfp defined at the program pointp,

g = @sin results in

f ′p = fp \ (g, fp(g))∪{(g,{(function_handle ,{(sin ,())})})}

g = @(t,y) lambda1(D,c,t,y) results in

f ′p = fp \ (g, fp(g))∪{(g,{(function_handle ,{(lambda1 ,( fp(D), fp(c)))})})}

Note that function handles get invoked at array get statements, rather than calls. That is

because the tame IR is constructed without mclass information, and will correctly interpret

a function handle as a variable. When the target of an array getstatement is a function

handle, the analysis inserts one or more call edges at that program point, referring to the

functions contained in the function handle.
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6.4 The Simple Matrix Abstraction

Using the value abstraction for structures, cell arrays andfunction, we implemented

a concrete value abstraction by adding an abstraction for matrix values, which we call

simple matrix values. On top of the required mclass, this abstraction merely adds constant

propagation for scalar doubles, strings (char vectors), and scalar logicals.

This allows the analysis of MATLAB code utilizing optional function arguments us-

ing the builtin functionnargin , and some limited dynamic features utilizing strings. For

example, a call likeones(n,m,’int8’) can be considered tame.

This implementation represents the concrete value analysis that is used to construct

complete callgraphs.

6.5 Applying the Value Analysis

In order to exercise the framework, we applied it to the set ofbenchmarks we have

previously used for evaluating McVM/McJIT[LH11], a dynamic system. The benchmarks

and results are given inTable 6.1. About half of the benchmarks come from the FALCON

project[RP99] and are purely array-based computations. The other half ofthe benchmarks

were collected by theMcL AB team and cover a broader set of applications and use more

language features such as lambda expressions, cell arrays and recursion. The columns la-

beled #Fn correspond to the number of user functions, and thecolumn labeled #BFn cor-

responds to the number of builtin functions used by the benchmark. Note the high number

of builtins. The column labeled “Wild" indicates if our system rejected the program as too

wild. Only the sdku benchmark was rejected because it used the load library function

which loads arbitrary variables from a stored file. For functions like load , which can re-

turn arbitrary values, we may have to provide alternative, more "tame" versions in order to

produce a tamed program. The column labeled “Mclass" indicates “unique" if the interpro-

cedural value propagation found a unique mclass for every variable in the program. Only

three benchmarks had one or more variables with multiple different mclasses. We verified

that it was really the case that a variable had two different possible classes in those three

cases.
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Name Description Source #Fn #BFn Features Wild Mclass
adpt Adaptive quadrature Numerical Methods 1 17 no unique
beul Backward Euler McLAB 11 30 lambda no unique
capr Capacitance Chalmers EEK 170 4 12 no unique
clos Transitive Closure Otter 1 10 no unique
crni Tridiagonal Solver Numerical Methods 2 14 no unique
dich Dirichlet Solver Numerical Methods 1 14 no unique
diff Light Diffraction Appelbaum (MUC) 1 13 no unique
edit Edit Distance Castro (MUC) 1 6 no unique
fdtd Finite Distance Time Domain Chalmers EEK 170 1 8 no unique
fft Fast Fourier Transform Numerical Recipes 1 13 no multi
fiff Finite Difference Numerical Methods 1 8 no unique
mbrt Mandelbrot Set McLAB 2 12 no unique
mils Mixed Integer Least Squares Chang and Zhou 6 35 no unique
nb1d 1-D Nbody Otter 2 9 no unique
nb3d 3-D Nbody Otter 2 12 no unique
nfrc Newton Fractal McLAB 4 16 no unique
nne Neural Net McLAB 3 16 cell no unique
play Minimax Search McLAB 5 26 recursive, cell no multi
rayt Raytracer Aalborg (Jensen) 2 28 no unique
sch2 Sparse Schroed. Eqn Solver McLAB 8 32 cell, lambda no unique
schr Schroedinger Eqn Solver McLAB 8 31 cell, lambda no unique
sdku Sodoku Puzzle Solver McLAB 8 load yes
sga Vectorized Genetic Algorithm Burjorjee 4 30 no multi
svd SVD Factorization McLAB 11 26 no unique

Table 6.1 Results of Running Value Analysis

Although the main point of this experiment was just to exercise the framework, we

were very encouraged by the number of benchmarks that were not wild and the overall

accuracy of the basic interprocedural value analysis. We expect many other analyses to

be built using the framework, with different abstractions.By implementing them all in a

common framework we will be be able to compare the different approaches.
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Chapter 7

Related Work

There are several categories of related work. First, we havethe immediate work upon

which we are building. TheMcL AB project already provided the front-end and the MCSAF

[Doh11] analysis framework, which provided an important basis forthe Tamer. Then there

is MCFOR, a previous attempt to build a static compiler targeting FORTRAN95, that

is part of theMcL AB project. There are also other compilers for MATLAB , both static

ones and dynamic ones. There is also related work on statically analyzing and compiling

other dynamic languages, with some similar problems we havefaced, and some similar

approaches. Some of this work is presented in section Sec.7.4.

7.1 MCFOR

We learned a lot fromMcL AB ’s previous MCFOR project[Li09] which was a first pro-

totype MATLAB to FORTRAN95 compiler. MCFOR supported a smaller subset of the

language, and simply ignored unsupported features - leading to possibly undefined behav-

ior. MCFOR did also not have a comprehensive approach to the builtin functions, did not

support the MATLAB function lookup semantics, and had a much more ad hoc approach to

the analyses. However, it really showed that conversion of MATLAB to FORTRAN95 was

possible, and that FORTRAN95 is an excellent target language. In particular it showed

that the numerical and matrix features of FORTRAN95 are a good match for compiled
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MATLAB , and that the static nature of the language, together with powerful FORTRAN95

compilers provide the potential for high performance.

We have developed the Tamer with targeting FORTRAN95 in mind. In order to pro-

vide some extra flexibility for other potential backends we have restricted MATLAB less

than may be necessary for a MATLAB to FORTRAN compiler, i.e. it may have to restrict

the MATLAB language further. For example, FORTRAN95 has very limited polymor-

phism support, meaning that any polymorphic code can not be easily translated to compact

and readable FORTRAN. MCFOR does observe these limitations, but does have an inter-

esting way to deal with one polymorphic case: If an if-statement results in incompatible

types for a variable along both branches, the code followingthat if-statement gets copied

into both branches, so that there won’t be a confluence of incompatible types. For example,

if (...)

x = 3

else

x = 'Hi'

end

foo(x)

may be converted to

if (...)

x = 3

foo(x)

else

x = 'Hi'

foo(x)

end

This transformation is not possible in general for confluence points around loop statements,

and does also not work if values with ambiguous types are returned from a function.

Despite being a full compiler with many interesting ideas, MCFOR is a prototype, with

limited feature set and limited extensibility. For this thesis we have gone back to the ba-
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sics and defined a much larger subset of MATLAB , taken a more structured and extensible

approach to building a general toolkit, tackled the problemof a principled approach to the

builtins, and defined the interprocedural analyses in a morerigorous and extensible fashion.

The next generation of MCFOR can now be built upon these new foundations.

7.2 Other Static MATLAB compilers

Although we were not able to find publicly available versions, there have been several

excellent previous research projects on static compilation of MATLAB which focused par-

ticularly on the array-based subset of MATLAB and developed advanced static analyses for

determining shapes and sizes of arrays. For example, FALCON [RP99] is a MATLAB to

FORTRAN90 translator with sophisticated type inference algorithms. Our Tamer is tar-

geting a larger and more modern set of MATLAB that includes other types of data structures

such as cell arrays and structs, function handles and lambdaexpressions, and which obeys

the modern semantics of MATLAB 7. We should note that FALCON handled interproce-

dural issues by fully in-lining all of the the code. MaJIC[AP02], a MATLAB Just-In-Time

compiler, is patterned after FALCON. It uses similar type inference techniques to FAL-

CON, but are simplified to fit the JIT context. MAGICA [JB03, JB01] is a type inference

engine developed by Joisha and Banerjee of Northwestern University, and is written in

Mathematica and is designed as an add-on module used by MAT2Ccompiler [Joi03]. We

hope to learn from the advanced type inference approaches inthese projects and to imple-

ment similar approximations using our interprocedural value analysis.

There are also commercial compilers, which are not publiclyavailable, and for which

there are no research articles. One such product is theMATLABCoder recently released

by MathWorks[Mat]. This product produces C code for a subset of MATLAB . According

to our preliminary tests, this product does not appear to support cell arrays except in very

specific circumstances, nor does it support a general form oflambda expressions, and was

therefore unable to handle quite a few of our benchmarks. However, the key differences

with our work is that we are designing and providing an extensible and open source toolkit

for compiler and tool researchers. This is clearly not the main goal of proprietary compilers.
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7.3 Other MATLAB -like systems

There are other projects providing open source implementations of MATLAB -like lan-

guages, such as Octave[Oct] and Scilab[INR09]. Although these add valuable contributions

to the open source community, their focus is on providing interpreters and open library

support and they have not tackled the problems of static compilation. Thus, we believe that

our contributions are complementary. In particular Octavemay present opportunities to im-

prove the usefulness of our static compiler framework without requiring an actual MATLAB

installation. Octave, being an interpreter system, may notprovide very high performance,

but it does include a large library similar to MATLAB ’s library. Enabling our framework to

support Octave’s specific MATLAB flavor may help bring together Octave’s completeness

with the potential performance gains of a static compilation framework.

7.4 Static Approaches to other Dynamic Languages

Other dynamic languages have had very successful efforts indefining static subsets in

order to provide static analysis.

7.4.1 Python

Reduced Python (RPython)[AACM07] provided inspiration for our approach at deal-

ing with a dynamic language in a static way. Rather than attempting to support dynamic

features that are not amenable to static compilation, for example by providing interpreter-

like features as a fallback, RPython restricts (“reduces”) the set of allowable features such

that programs are statically typable. At the same time, it attempts to stay as expressive as

possible.

RPython was originally developed for PyPy, a Python interpreter written in Python, but

has evolved into be a general purpose language. It was not developed to compile programs

completely statically, but rather with the goal to speed up execution times in virtual ma-

chines like VM or CLI, which are themselves developed for static languages (Java and C#,

respectively).
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Besides disallowing dynamic features, RPython disallows a basic feature of many dy-

namic programing languages: at a confluence point, a variable may not be defined with two

incompatible types. This notion that a variable should haveone specific type at every pro-

gramming point is something that we expect for static backends of our framework as well,

in particular for FORTRAN, even if the Tamer Framework itselfactually supports union

types. Both RPython, as well as our own research have indicatedthat this restriction is not

a serious limitation in practice.

RPython restricts Python’s container types. In particular,it forces that dictionaries

(hash-tables) and arrays are homogeneous, i.e. all elements have the same type. Tuples

are allowed to be inhomogeneous. For the Tamer, we representthe two builtin container

types (structs, cells) in both possible ways: as a tuple or asa collection, which correspond

to inhomogeneous and homogeneous representations, respectively.

RPython does not directly support generic functions, i.e. ifa function is used multiple

times with incompatible arguments, the program gets rejected. The Tamer uses a context-

sensitive interprocedural analysis that creates copies offunctions when they are called with

incompatible arguments.

7.4.2 Ruby

DiamondbackRuby (DRuby) is a static type inference toolkit for Ruby [FAFH09],

mostly with the goal to gain the advantage of static languages to report potential errors

ahead of time. Ruby, like MATLAB , is a dynamic, interpreted language, but is used more in

web development. Some of the approaches of DRuby are similar to the Tamer framework.

Similar to MATLAB , the core library of Ruby is written in native code (i.e. in C), rather

than Ruby itself - which may also have different behaviors depending on the incoming

argument types. Thus DRuby has to provide type information for builtin functions. In order

to that, DRuby includes a type annotation language, which canalso be used to specify

types for functions with difficult behavior. Note that at this point, the focus of our builtin

framework is to organize the large number of builtins, but our work may lead to a proper

type annotation language as well.

DRuby also provides a type inference, but it is based on a constraint-based analysis.
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DRuby constrains the set of supported language features to enable the static analysis, but

allows some of them by inserting runtime checks to still be able to support them. These are

included in such a way as to help users identify where exactlythe error occurred.

Using the results of the static analyses provided by the MATLAB Tamer to provide in-

formation about potential runtime errors is one of the possible goals of continued research.
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Chapter 8

Conclusions and Future Work

This thesis has introduced the MATLAB Tamer, an extensible object-oriented frame-

work for supporting the translation from dynamic MATLAB programs to a Tame IR, call

graph and class/type information suitable for generating static code. We provided an intro-

duction to the features of MATLAB in a form that we believe helps expose the semantics of

mclasses and function lookup for compiler and tool writers,and should help motivate some

of the restrictions we impose on the language. We tackled thesomewhat daunting problem

of handling the large number of builtin functions in MATLAB by defining an extensible

hierarchy of builtins and a small domain-specific language to define their behavior. We de-

fined a Tame IR and added functionality to MCSAF to produce the IR and to extend the

analysis framework to handle the new IR nodes introduced. Weprovided an interprocedu-

ral analysis framework that allows creation of full-program analyses of MATLAB programs.

Finally, we developed an extensible value estimation analysis that we use to provide a call-

graph constructor for MATLAB programs, using the proper lookup semantics, starting with

some entry point.

8.1 Future Work

Our initial experiments with the framework are very encouraging and there are several

possible projects to continue the development of static compilers for MATLAB as part of the
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McL AB project. We also hope that others will also use Tamer the framework for a variety

of static MATLAB tools.

In the following we will present some ideas for the continueddevelopment of the static

portion of theMcL AB framework.

The major goal of the Tamer Framework is to provide a startingpoint for compiler

backends targeting static programming languages. In particular, we have developed our

toolkit with compilation targeting FORTRAN95 in mind. In order to actually be able to

compile, the abstract value representations need to be further refined, and the value analysis

extended. In particular, shape information for arrays is needed, which may be dealt with in

a similar way as the mclass information. Further refinement of the value representations can

improve the supported feature set and performance. For example, having exact knowledge

whether numerical values may be real, complex or imaginary allows using complex data

types only when necessary, rather than using complex numbers by default for all values.

Advanced analyses could be used to the relationships of array-shapes and values of vari-

ables, enabling the removal of run-time array bounds checks. This may provide significant

performance benefits.

Further work may focus around expanding the set of supportedMATLAB features. Inter-

esting may be the extension of the Tamer framework to fully support MATLAB user-defined

classes, including the “old” semantics, the “new” semantics since version 7.6, and possibly

handle-classes. The MATLAB Tamer already supports the notions of mclasses, and the over-

loading semantics necessary to implement class semantics are already supported. Note that

in order to support handle-classes, it is not sufficient to extend the value representations

- the machinery of the analysis also has to be extended to capture changes of arguments

that use the reference semantics of handle-classes. This isalso true if the Tame MATLAB

language subset was extended to support global and persistent variables.

The Tamer framework could work together withMcL AB ’s refactoring tools in two

ways. For one it would be possible to use the refactorings as code transformations in a

pre-processing step, to be able to reduce/refactor some unsupported dynamic feature of

MATLAB . For example, the refactoring toolkit allows transformingMATLAB scripts into

MATLAB functions. Another way the refactoring tools could work together with the Tamer

framework is in an interactive fashion. A user wishing to compile a program may find that
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the Tamer rejects it; the refactoring toolkit could then step in and suggest to refactor the

program in certain ways to make it possible to compile.

Future work may advance the static compilation framework and the notion of bridging

the gap between dynamic languages and static analyses and compilation. The builtin frame-

work with its approach to allow the explicit and compact definition of flow information for

functions may lead to a general type annotation language forMATLAB types, which could

be used both to type builtin functions, or to type user and library functions with complex

behavior. Static information provided by full-program analyses using these frameworks

could be used to find potential runtime errors, and aid programmers build better and more

correct programs.
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Appendix A

List of MATLAB Builtin Functions

In the following we provide a list of MATLAB builtin functions. The corresponding

numbers show how many callsites there are for the function within the large set of MATLAB

programs that can be analyzed by the MCBENCH framework.

When selecting the initial set of builtin functions for the builtin framework, we use

most of the below functions, excluding dynamic and GUI functions. We added functions

corresponding to MATLAB operators, as well as some functions that are very closely related

to functions in the list.

1 recycle
1 schur
1 gt
1 mislocked
1 acotd
1 more
1 acot
1 uminus
1 uitoolbar
1 dbclear
1 isjava
1 ordschur
1 munlock
1 superiorto
1 unicode2native
1 methods

1 dmperm
1 fileattrib
1 delaunay
1 isequalwithequalnans
1 javaMethod
1 functions
1 structfun
2 subsasgn
2 rehash
2 ne
2 linsolve
2 regexptranslate
2 memory
2 uitable
2 matlabpath
2 exit

2 ge
2 uint64
2 atanh
2 ishghandle
2 cotd
2 isdeployed
2 le
2 prefdir
3 isstrprop
3 dragrect
3 uitoggletool
3 ferror
3 javaArray
3 javaObject
3 sec
3 hgconvertunits

Table A.1 List of builtins and their frequency of occurrence (continued on the following pages)
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3 pack
3 sortrowsc
3 lt
3 echo
4 validatestring
4 tand
4 dbstop
4 int64
4 csc
4 hardcopy
4 uipushtool
4 asinh
4 asind
5 native2unicode
5 erf
5 who
5 hggroup
5 rbbox
5 bitor
5 erfinv
5 lu
5 colstyle
5 im2frame
6 frame2im
6 ifftn
6 hgtransform
6 diary
6 subsref
6 erfcinv
6 rcond
6 home
7 uicontextmenu
7 cot
7 reset
7 eq
7 sech
7 builtin
8 type
8 setstr
8 validateattributes
8 what
8 atand
9 issorted
9 acosh
9 int8
9 light
9 betainc
10 keyboard
11 rethrow
11 fftn
11 feof

11 rmdir
11 libisloaded
11 isletter
11 cast
11 unloadlibrary
11 evalc
12 waitfor
12 power
12 isvarname
12 loglog
12 pow2
13 convhull
13 mexext
13 speye
13 vertcat
13 int16
13 getenv
14 func2str
14 acosd
14 lasterror
14 movefile
15 isspace
15 isinteger
15 randi
15 horzcat
16 gammainc
16 regexpi
17 accumarray
17 dbstack
17 hypot
17 isappdata
17 or
18 whos
19 unix
19 tril
19 inputname
19 copyfile
19 qr
20 cell2struct
20 isobject
23 ancestor
23 handle
24 issparse
24 bitset
25 and
25 lastwarn
26 bitand
26 nonzeros
26 matlabroot
26 chol
27 typecast

27 rmappdata
27 cumprod
27 struct2cell
28 isfloat
29 nnz
29 bitget
29 uint32
29 ftell
29 cosh
30 surface
31 waitforbuttonpress
31 fgets
31 realsqrt
33 rectangle
33 arrayfun
34 tanh
34 bitshift
34 semilogy
34 nargoutchk
35 asin
35 mkdir
35 int32
36 textscan
36 svd
36 sinh
36 lasterr
36 computer
38 version
40 cosd
41 xor
43 sind
44 beep
45 triu
45 gammaln
47 copyobj
49 fill3
49 islogical
51 semilogx
51 histc
55 uint16
55 gamma
55 system
56 uipanel
60 dos
60 transpose
61 complex
62 format
66 acos
67 erfc
68 calllib
69 strncmpi
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70 strtrim
74 det
76 atan
76 import
82 isstruct
82 sscanf
85 isstr
86 not
90 full
91 strncmp
92 eig
93 log2
93 regexprep
94 permute
95 which
96 class
97 tan
101 isinf
103 bitxor
105 upper
105 ifft
105 isvector
106 fieldnames
109 fill
114 filter
117 cputime
119 fseek
124 assert
125 image
131 bsxfun
131 regexp
131 conv2
137 evalin
137 assignin
142 sparse
146 dir
154 clc
157 logical
158 isscalar
164 cat
166 patch
170 isfinite
171 deblank
173 plot3
174 atan2
176 cellfun
180 feval
183 fscanf
183 inv
193 save
199 strfind
204 fwrite
204 ndims

210 cumsum
213 ishandle
213 rem
214 nargchk
222 fft
228 sign
228 cd
235 j
240 str2func
245 input
256 prod
260 isreal
265 clock
272 randn
276 getappdata
281 uint8
284 iscell
286 eye
294 setappdata
303 uimenu
314 line
321 strrep
325 display
335 load
337 diag
344 log10
346 drawnow
349 fix
349 findstr
352 lower
352 nan
354 isnumeric
356 eps
356 pause
365 cell
376 struct
378 isfield
397 strcmpi
406 fopen
409 imag
410 all
419 conj
428 norm
445 tic
457 fclose
510 delete
524 isnan
547 mfilename
555 isa
559 inf
563 text
564 exist
583 diff

590 real
607 fread
623 toc
633 warning
682 ceil
683 axes
685 char
696 sort
703 clear
707 eval
757 ischar
766 mod
768 log
777 double
812 true
863 reshape
933 any
949 false
983 gca
1101 numel
1109 floor
1214 exp
1235 figure
1240 nargout
1265 round
1332 uicontrol
1471 isequal
1618 sprintf
1682 ones
1760 sin
1761 cos
1945 strcmp
2117 find
2237 plot
2337 sqrt
2405 min
2630 abs
2797 sum
3304 pi
3378 max
3539 fprintf
3866 isempty
4059 zeros
4131 nargin
4555 single
4965 error
6731 size
7031 disp
7768 length
8379 get
11460 set
13880 rand
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Appendix B

Class Propagation Tables for MATLAB Builtin

Functions

In this appendix we show the generated mclass propagation tables for builtins. We cate-

gorized the functions into sections grouping similar functions together. This categorization

helped us organize the builtin functions into a tree structure.

Rows in the tables correspond to the mclass of the first argument, columns correspond to

the mclass of the second argument, and the table entries givethe mclass of the result. The

labels i8 through i64 represent the mclassesint8 through int64 , f32 is single ,

f64 is double , c is char , andb is logical . h refers to function handles. Values

labelled{} refer to the empty cell array - we use this argument to check whether functions

support cell arrays at all. Some functions allow arbitrary cell arrays, others only operate on

cell arrays of strings (e.g. the string functions).

Entries of the form “-" indicate that this combination is notallowed and will result

in a runtime error.N/A signifies that the results were inconsistent across different trials,

meaning that there was no exact result found.
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B.1 Binary Arithmetic Operations

plus, minus, mtimes, times, kron, @(x,y)cross([x,x,x],[y,y,y]):
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - i8 i8 - - -

u8 - u8 - - - - - - - u8 u8 - - -

i16 - - i16 - - - - - - i16 i16 - - -

u16 - - - u16 - - - - - u16 u16 - - -

i32 - - - - i32 - - - - i32 i32 - - -

u32 - - - - - u32 - - - u32 u32 - - -

i64 - - - - - - i64 - - i64 i64 - - -

u64 - - - - - - - u64 - u64 u64 - - -

f32 - - - - - - - - f32 f32 f32 f32 - -

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

c i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

b - - - - - - - - f32 f64 f64 f64 - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

mldivide, mrdivide, ldivide, rdivide, mod, rem, mod:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - i8 i8 - - -

u8 - u8 - - - - - - - u8 u8 - - -

i16 - - i16 - - - - - - i16 i16 - - -

u16 - - - u16 - - - - - u16 u16 - - -

i32 - - - - i32 - - - - i32 i32 - - -

u32 - - - - - u32 - - - u32 u32 - - -

i64 - - - - - - i64 - - i64 i64 - - -

u64 - - - - - - - u64 - u64 u64 - - -

f32 - - - - - - - - f32 f32 f32 f32 - -

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

c i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

b - - - - - - - - f32 f64 f64 - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -
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B.2. Unary Arithmetic/Numeric Functions

mpower, power:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - - i8 - - -

u8 - u8 - - - - - - - - u8 - - -

i16 - - i16 - - - - - - - i16 - - -

u16 - - - u16 - - - - - - u16 - - -

i32 - - - - i32 - - - - - i32 - - -

u32 - - - - - u32 - - - - u32 - - -

i64 - - - - - - i64 - - - i64 - - -

u64 - - - - - - - u64 - - u64 - - -

f32 - - - - - - - - f32 f32 f32 f32 - -

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

c i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

b - - - - - - - - f32 f64 f64 - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

B.2 Unary Arithmetic/Numeric Functions

uplus, uminus, real, imag, abs, fix:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

conj, round, floor, ceil, sign:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 - - -

B.3 Operations Resulting in Logicals

not, any, all, isinf:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

b b b b b b b b b b b b - -

isempty, isobject, isfloat, isinteger, islogical, isstruct, iscell:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

b b b b b b b b b b b b b b
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eq, ne, lt, gt, le, ge, and, or, xor:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 b b b b b b b b b b b b - -

u8 b b b b b b b b b b b b - -

i16 b b b b b b b b b b b b - -

u16 b b b b b b b b b b b b - -

i32 b b b b b b b b b b b b - -

u32 b b b b b b b b b b b b - -

i64 b b b b b b b b b b b b - -

u64 b b b b b b b b b b b b - -

f32 b b b b b b b b b b b b - -

f64 b b b b b b b b b b b b - -

c b b b b b b b b b b b b - -

b b b b b b b b b b b b b - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

@(x,y)x&&y:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 b b b b b b b b b b b b - -

u8 b b b b b b b b b b b b - -

i16 b b b b b b b b b b b b - -

u16 b b b b b b b b b b b b - -

i32 b b b b b b b b b b b b - -

u32 b b b b b b b b b b b b - -

i64 b b b b b b b b b b b b - -

u64 b b b b b b b b b b b b - -

f32 b b b b b b b b b b b b - -

f64 b b b b b b b b b b b b - -

c b b b b b b b b b b b b - -

b b b b b b b b b b b b b - N/A

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -
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B.4. Matrix Constructors from Shape

@(x,y)x || y:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 b b b b b b b b b b b b b b

u8 b b b b b b b b b b b b b b

i16 b b b b b b b b b b b b b b

u16 b b b b b b b b b b b b b b

i32 b b b b b b b b b b b b b b

u32 b b b b b b b b b b b b b b

i64 b b b b b b b b b b b b b b

u64 b b b b b b b b b b b b b b

f32 b b b b b b b b b b b b b b

f64 b b b b b b b b b b b b b b

c b b b b b b b b b b b b b b

b b b b b b b b b b b b b N/A -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

isequalwithequalnans, isequal:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 b b b b b b b b b b b b b b

u8 b b b b b b b b b b b b b b

i16 b b b b b b b b b b b b b b

u16 b b b b b b b b b b b b b b

i32 b b b b b b b b b b b b b b

u32 b b b b b b b b b b b b b b

i64 b b b b b b b b b b b b b b

u64 b b b b b b b b b b b b b b

f32 b b b b b b b b b b b b b b

f64 b b b b b b b b b b b b b b

c b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b

h b b b b b b b b b b b b b b

{} b b b b b b b b b b b b b b

B.4 Matrix Constructors from Shape

ones, zeros, eye, inf, nan:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 - f64 - -

true, false:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

b b b b b b b b b b - b - -
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B.5 Query Functions Resulting in Numeric Values

find, find, nnz:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 - -

length, ndims, numel:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64 f64

rank:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f64 f64 - - - -

B.6 Dimension-Collapsing Operations

Functions of the formf (M, [dim]). cumprod , mode among the unary float functions,

andmedian in the in the general operators are also dimension-collapsing.
sum, mean:

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

f64 f64 f64 f64 f64 f64 f64 f64 f32 f64 f64 f64 - -

min, max:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 b - -

cumsum:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 - f64 - -

var, std:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 f64 f64 - -
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B.7 General Operators

transpose, ctranspose, sort, sort:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b - C-

unique, squeeze, unique, squeeze:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h C-

tril, triu, diag, diag, median:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b - -

horzcat, vertcat:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 i8 i8 i8 i8 i8 i8 i8 i8 i8 c i8 - Ci8

u8 u8 u8 u8 u8 u8 u8 u8 u8 u8 u8 c u8 - Cu8

i16 i16 i16 i16 i16 i16 i16 i16 i16 i16 i16 c i16 - Ci16

u16 u16 u16 u16 u16 u16 u16 u16 u16 u16 u16 c u16 - Cu16

i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 i32 c i32 - Ci32

u32 u32 u32 u32 u32 u32 u32 u32 u32 u32 u32 c u32 - Cu32

i64 i64 i64 i64 i64 i64 i64 i64 i64 i64 i64 c i64 - Ci64

u64 u64 u64 u64 u64 u64 u64 u64 u64 u64 u64 c u64 - Cu64

f32 i8 u8 i16 u16 i32 u32 i64 u64 f32 f32 c f32 - Cf32

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c f64 - Cf64

c c c c c c c c c c c c - - Cc

b i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 - b - Cb

h - - - - - - - - - - - - - h

{} Ci8 Cu8 Ci16 Cu16 Ci32 Cu32 Ci64 Cu64 Cf32 Cf64 Cc Cb h C-
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B.8 Bit Operations

bitand, bitor, bitxor:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 - u8 - - - - - - - u8 - - - -

i16 - - - - - - - - - - - - - -

u16 - - - u16 - - - - - u16 - - - -

i32 - - - - - - - - - - - - - -

u32 - - - - - u32 - - - u32 - - - -

i64 - - - - - - - - - - - - - -

u64 - - - - - - - u64 - u64 - - - -

f32 - - - - - - - - - - - - - -

f64 - u8 - u16 - u32 - u64 - - - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - b - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

bitcmp:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 - - - - N/A - - - - - - u8 - -

i16 - - - - - - - - - - - - - -

u16 - - - - N/A - N/A N/A - - - u16 - -

i32 - - - - - - - - - - - - - -

u32 - - N/A - - - - - - - - u32 - -

i64 - - - - - - - - - - - - - -

u64 - N/A N/A N/A N/A - N/A - - - - u64 - -

f32 - f32 - f32 - f32 - f32 - - - - - -

f64 - - - - - - - - - - - - - -

c - c - c - c - c - - - - - -

b - b - b - b - b - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -
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bitset:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 - - - - - - - - - - - - - -

i16 - - - - - - - - - - - - - -

u16 N/A - - - - - - - - - - - - -

i32 - - - - - - - - - - - - - -

u32 - - N/A N/A - N/A - - - - - - - -

i64 - - - - - - - - - - - - - -

u64 - - N/A N/A N/A - N/A N/A - - - - - -

f32 - - - - - - - - - - - - - -

f64 - - - - - - - - - - - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

bitget:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 - - - - - - N/A - - - - - - -

i16 - - - - - - - - - - - - - -

u16 N/A - - - N/A - - - - - - - - -

i32 - - - - - - - - - - - - - -

u32 N/A - - N/A - - - - - - - - - -

i64 - - - - - - - - - - - - - -

u64 - N/A N/A N/A N/A N/A - N/A - - - - - -

f32 - - - - - - - - - - - - - -

f64 - - - - - - - - - - - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -
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bitshift:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 u8 u8 u8 u8 u8 u8 u8 u8 - - - - - -

i16 - - - - - - - - - - - - - -

u16 u16 u16 u16 u16 u16 u16 u16 u16 - - - - - -

i32 - - - - - - - - - - - - - -

u32 u32 u32 u32 u32 u32 u32 u32 u32 - - - - - -

i64 - - - - - - - - - - - - - -

u64 u64 u64 u64 u64 u64 u64 u64 u64 - - - - - -

f32 - - - - - - - - - - - - - -

f64 - - - - - - - - - - - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

B.9 Floating Point Operations

expm, sqrtm, logm, sqrt, realsqrt, erf, erfinv, erfcinv, gamma, gammaln, exp, log,
log2, log10, sin, cos, tan, cot, sec, csc, sind, cosd, tand, cotd, secd, cscd, sinh, cosh, tanh,
coth, sech, csch, atan, acot, atand, acotd, asinh, acsch, inv, eig, norm, det, rcond, eps,
prod, inv, eig, norm, det, rcond, eps, schur, lu, chol, qr, svd, cumprod, mode:

i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 - - - -

asin, acos, asind, acosd, asecd, acscd, atanh, acoth, asech:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 - - - -

asec:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 - - - -

acsc, acosh:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - f32 f64 - - - -

98



B.10. Fourier Transform Functions

hypot, atan2, linsolve:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 - - - - - - - - - - - - - -

u8 - - - - - - - - - - - - - -

i16 - - - - - - - - - - - - - -

u16 - - - - - - - - - - - - - -

i32 - - - - - - - - - - - - - -

u32 - - - - - - - - - - - - - -

i64 - - - - - - - - - - - - - -

u64 - - - - - - - - - - - - - -

f32 - - - - - - - - f32 f32 - - - -

f64 - - - - - - - - f32 f64 - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

schar, ordschur:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- - - - - - - - - - - - - -

B.10 Fourier Transform Functions

ifftn, fftn, fft:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

- f64 - f64 - - - - f32 f64 - f64 - -
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B.11 Other Functions

@(x,y)colon(x,y), @(x,y)colon(x,y,x), @(x,y)colon(y,x,x), @(x,y)colon(x,x,y):
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - - - - - -

u8 - u8 - - - - - - - - - - - -

i16 - - i16 - - - - - - - - - - -

u16 - - - u16 - - - - - - - - - -

i32 - - - - i32 - - - - - - - - -

u32 - - - - - u32 - - - - - - - -

i64 - - - - - - i64 - - - - - - -

u64 - - - - - - - u64 - - - - - -

f32 - - - - - - - - f32 f32 - - - -

f64 - - - - - - - - f32 f64 - f64 - -

c - - - - - - - - - - c - - -

b - - - - - - - - - f64 - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

complex:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - i8 - - - -

u8 - u8 - - - - - - - u8 - - - -

i16 - - i16 - - - - - - i16 - - - -

u16 - - - u16 - - - - - u16 - - - -

i32 - - - - i32 - - - - i32 - - - -

u32 - - - - - u32 - - - u32 - - - -

i64 - - - - - - i64 - - i64 - - - -

u64 - - - - - - - u64 - u64 - - - -

f32 - - - - - - - - f32 f32 - - - -

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 - - - -

c - - - - - - - - - - - - - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -
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dot:
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 f64 - - - - - - - - f64 f64 - - -

u8 - f64 - - - - - - - f64 f64 - - -

i16 - - f64 - - - - - - f64 f64 - - -

u16 - - - f64 - - - - - f64 f64 - - -

i32 - - - - f64 - - - - f64 f64 - - -

u32 - - - - - f64 - - - f64 f64 - - -

i64 - - - - - - f64 - - f64 f64 - - -

u64 - - - - - - - f64 - f64 f64 - - -

f32 - - - - - - - - f32 f32 f32 f32 - -

f64 f64 f64 f64 f64 f64 f64 f64 f64 f32 f64 f64 f64 - -

c f64 f64 f64 f64 f64 f64 f64 f64 f32 f64 f64 f64 - -

b - - - - - - - - - - - - - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

@(x,y)min(x,y), @(x,y)max(x,y):
i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 c b h {}

i8 i8 - - - - - - - - i8 i8 - - -

u8 - u8 - - - - - - - u8 u8 - - -

i16 - - i16 - - - - - - i16 i16 - - -

u16 - - - u16 - - - - - u16 u16 - - -

i32 - - - - i32 - - - - i32 i32 - - -

u32 - - - - - u32 - - - u32 u32 - - -

i64 - - - - - - i64 - - i64 i64 - - -

u64 - - - - - - - u64 - u64 u64 - - -

f32 - - - - - - - - f32 f32 f32 f32 - -

f64 i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

c i8 u8 i16 u16 i32 u32 i64 u64 f32 f64 f64 f64 - -

b - - - - - - - - f32 f64 f64 b - -

h - - - - - - - - - - - - - -

{} - - - - - - - - - - - - - -

Note thatmin , max, using only one argument, are listed as dimension-collapsing functions.
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Appendix C

Mclass Propagation Language

C.1 Introduction

In the following, we define the tiny language used to define howmclasses propagate

through builtins. This is used in the builtin specification to specify mclass propagation,

using theClass attribute. To specify the mclass propagation for a builtin,or an abstract

builtin, it is specified as an attribute in the builtin specification, using the syntax

Class(< expr >)

or

Class(< expr1 >,< expr2 >,< expr3 >,. . . ,< exprn >)

where the expressions follow the syntax of the mclass propagation language. It is also

possible to separate the cases using the|| operator:

Class(< expr1 > ||< expr2 > ||< expr3 > || . . . ||< exprn >)

The language itself is somewhat similar to regular expressions in that it matches incoming

mclasses. But rather than having a match as a result, the language allows to explicitly state

what the result is.
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C.2 Class Specification

C.2.1 Basics

Every expression is interpreted either in LHS (left-hand side) or in RHS (right-hand

side) mode. In LHS mode it matches the mclasses of arguments to the expression, in RHS

it emits the mclasses as output. For example

double-> char

will attempt to match adouble argument, and if one is found, it will emit achar result. For

any expressioniff all input arguments have been consumed by matching, it will result in an

overall match, and the emitted results will be returned.

At any point there will be a partial match, which consists of the next input argument

index to be read, and the result mclasses emitted so far. For example, after the above ex-

pression, if one attempts to match the input arguments[double,double], the partial result

will refer to the 2nd argument, and will havechar as an output.

C.2.2 Language Features

In the following, we present the syntax and semantics of the language, showing the LHS

(matching) and RHS (emitting) semantics for every feature. Note that for some expressions,

the LHS and RHS semantics are the same, i.e. some expressions may ignore the current

mode.

Operators

expr1-> expr2

LHS, RHS: will attempt to matchexpr1 as a LHS, and if it is a match, will execute

expr2 as a RHS expression and emit the results.

expr1 expr2

LHS: will attempt to matchexpr1 as a LHS, and if it is a match, will attempt to match
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expr2.

RHS: will emit the results ofexpr1 in RHS mode, then will emit the results ofexpr2

in RHS mode.

expr1|expr2

LHS: will attempt to match bothexpr1 and expr2 independently, then will return

whichever successful match consumed the most arguments.

RHS: will emit the union of the emitted results ofexpr1 and expr2, run as RHS

expressions. Bothexpr1 andexpr2 must have the same number of emitted result. If

not, it will throw a runtime error.

expr?

expr? is equivalent tonone|expr

LHS: will attempt to match the expression. If does not match,? will still return a

match successfully, but it does so by matchingnone.

RHS: This will likely cause an error, because the union of two match results must

both result in the same number of emitted outputs.

expr∗

expr∗ is equivalent toexpr? expr? expr?. . .

The operators∗ and ? have the same, highest precedence,| has a lower precedence,

putting no symbol (i.e.expr1 expr2) has a lower precedence than that.-> has the lowest

precedence.
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Non-parametric Expressions

Builtin MClasses

The mclass propagation language supports the following builtin mclasses and groups

of mclasses:

double logical

f loat f unction_handle

char int8

uint8 int16

uint16 int32

uint32 int64

uint64

LHS: will attempt to match the builtin mclass

RHS: will emit the builtin mclass

Groups of Builtin Mclasses

Certain mclasses are grouped together using union:

f loat is the same as single|double

uint is the same asuint8|uint16|uint32|uint64

sint is the same as int8|int16|int32|int64

int is the same as uint|sint

numeric is the same as f loat|int

matrix is the same as numeric|char|logical

Non-parametric Language Features

none

LHS, RHS: matches without consuming inputs or emitting results

begin

LHS, RHS: will match if the next argument is the first argument (no arguments

have been matched)

end

LHS, RHS: will match if all arguments have been matched

any
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LHS: will match the next argument, no matter what it is, if there is an argument

left to match

RHS: error

parent

LHS, RHS: will substitute the expression that is defined for the abstract parent

builtin. If the parent builtin does not define mclass propagation information,

will substitutenone.

error

LHS, RHS: same as none, except that the result is flagged as erroneous. During

matchingerror is ignored (partial matching will continue), but if a resultis

erroneous overall, it will result in not a match overall.

natlab

LHS, RHS: Besides theClass attribute for builtins, one can define an alterna-

tive attributeMatlabClass which more closely resembles MATLAB seman-

tics, including some of the irregularities of the language.When defining such a

MatlabClass attribute, the keywordnatlab will refer to the expression de-

fined by theClass attribute. Note that one cannot define aMatlabClass

without defining aClass attribute, sonatlab should always be defined.

matlab

equivalent tonatlab, but this can be used insideClass attribute to refer to

whatever is defined for theMatlabClass attribute.

This does not verify whether theMatlabClass attribute has been defined;

therefore, undefined behavior may result if the attribute isnot defined.

scalar

LHS: If there is another argument to consume, matches if it isscalar, or if its

shape is unknown, without consuming the argument. This can be used to check

if the next argument is scalar. This should only be used if thescalar requirement

is directly related to mclass behavior. If shapes and types are independent, they

should be specified independently.

RHS: runtime error
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Functions

coerce(replaceExpr,expr)

will take every single argument, and executereplaceExpr on it individually and

independently. The replace expression must either not match, or a match and emit

a single result. If it does, this result gets replaced as a thenew argument.coerce

will then take the new set of arguments, and executeexpr with it, either as LHS or

RHS depending on whether thecoerce itself was executed in LHS or RHS mode, and

return the result of that.

This allows operand coercion. For example, a function may convert all incoming

char or logical arguments todouble, which would be done using

coerce(char|logical-> double,expr)

typeString(expr)

LHS, RHS: if the next element is achar, typeString will consume it. If its actual

runtime value is known, it will check whether the value of thestring is the name of

a mclass which is emitted byexpr (runningexpr in RHS mode). If it is,typeString

will emit that mclass.

If the char has another known value,typeString will return an error.

If the value is not known, will emit all results produced byexpr. expr should produce

one (union) result.

This can be used to match a last optional argument denoting a desired mclass for

the return value. This used, for example, by the functionsones andzeros , which

allow a last optional argument specifying that the result should have a numerical

mclass other than the defaultdouble.

Number

< number >

LHS, RHS: Equivalent to the input argument with the same indexas the given num-

ber. For example, 0 will match (LHS) or emit (RHS) the mclass ofthe first argument.

Negative numbers will match from the back, so -1 is the mclassof the last argument.
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C.3 Extra Notes on Semantics

C.3.1 RHS Can Have LHS Sub-expressions, and Vice Versa

An expression may emit results even if it is run as a LHS expression, and an expression

run as RHS may match more elements. For example for

double-> (char-> logical int16)

thechar expression will get matched, due to the second-> operation. Similarly,

(double char-> logical)-> int16

being an equivalent expression, will emit thelogical because of the second-> .

C.3.2 Overall Evaluation of Class Attribute Expressions

Overall, expressions are evaluated as LHS expressions, so the builtin attribute

Class(double)

will attempt to match a incomingdouble argument, and have no returns. Multiple argu-

ments to theClass attribute get transformed internally to their union, so

Class(expr1,expr2, ..,exprn)

is equivalent to

Class(expr1|expr2|..|exprn)

This only applies for arguments to theclass attribute , comma is not an operator equiva-

lent to| in general.
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C.3.3 Greedy Matching

While the language looks similar to regular expressions, it is in fact different: all match-

ing is done greedily. So the expression

(double|none) (double)

When run on a singledouble input, will not match. This is because the union will greedily

match the longest expression, which will consume the input argument.

C.4 Examples

Class(double|single double|single-> double)

will match two floats, and result in adouble.

Class(coerce(char|logical-> double,numeric-> 0))

will convert anychar and logical arguments todouble, then will match any single

numeric argument, and emit the type of that argument.

Class(char char-> char,numeric 0|double-> 0,double|1 numeric-> 1)

Either twochars will result in achar, or, if two arguments arenumeric, they should

either have the same mclass or at least one argument has to be adouble, in which

case it will return the mclass of the other argument.

Class(none-> double)

If there are no inputs, will result in adouble (i.e. this models a double constant).

Class(parent any?)

Matches whatever the parent builtin matches, but will allowfor one extra argument

with any mclass.

MatlabClass(char|logical1-> error,natlab)

This will define separate semantics for MATLAB , compared to natlab. The example

specifies that MATLAB will reject any input that is either twochars or two logicals,

but use the original natlab definition other than that.
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Class(numeric∗ (typeString(numeric)|(none-> double)))

Will match any number ofnumeric arguments. If the last argument is achar, will

attempt to interpret it as a string denoting a numeric type. if it is, return that numeric

type. if it is a string of unknown value, return allnumeric. if it’s another string, return

an error. if the last argument is not a string, return adouble. This can be used for

function calls likeones(3,3) or ones(2,2,4,4,'int8')
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C.4.1 Grammar
Below is the complete grammar of the class propagation language. The overall goal is

to produce a node ’cases’.
%terminals NUMBER, LPAREN, RPAREN, OROR, OR, COMMA, MULT, QUESTION, ARROW, ID;

%terminals COERCE, TYPESTRING;

%left RPAREN;

%left MULT, QUESTION;

%left OR;

%left CHAIN;

%left ARROW;

%left COMMA;

%left OROR;

cases

= list

;

list

= expr

| expr COMMA list

;

expr

= clause ARROW clause

| expr OROR expr

| clause

;

clause

= clause QUESTION

| clause MULT

| clause clause @ CHAIN

| clause OR clause

| NUMBER

| ID

| LPAREN expr RPAREN

| COERCE LPAREN expr COMMA expr RPAREN

| TYPESTRING LPAREN expr RPAREN

;

112



Appendix D

Tame IR Grammar

In this appendix we present a grammar for the Tame IR. We have listed all Tame IR

nodes, together with the parent class and the nodes they contain. An informal, but more

detailed, discussion can be found inChapter 4. All Tame IR nodes either extend AST

nodes, or other IR Nodes.

Note that all Tame IR nodes are effectively AST subtrees, because they are subclasses

of AST nodes. Users of the Tame IR should not modify IR Nodes, except the TIRState-

mentList. They should also only use the accessor methods provided by the Tame IR inter-

faces. The constructors of the Tame IR nodes enforce the constraints of the Tame IR.

All Tame IR nodes implement the interfaceTIRNode . Additionally, all the statement

nodes of the Tame IR implement the interfaceTIRStmt .
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D.1 Compound Structures

node extends contains

TIRFunction Function

List<Name> outputParams,

String name,

List<Name> inputParams,

List<HelpComment> helpComments,

TIRStmtList stmts,

List<TIRFunction> nestedFunctions

TIRStmtList List<Stmt> List<TIRStmt> statements

TIRIfStmt IfStmt

Name ConditionVar,

TIRStmtList IfStmts,

TIRStmtList ElseStmts

TIRWhileStmt WhileStmt Name condition, TIRStmtList body

TIRForStmt ForStmt
Name var, Name lower, (Name inc),

Name upper, TIRStmtList stmts

D.2 Non-Assignment Statements

node extends contains

TIRReturnStmt ReturnStmt −

TIRBreakStmt BreakStmt −

TIRContinueStmt ContinueStmt −

TIRGlobalStmt GlobalStmt List<Name> names

TIRPersistentStmtPersistentStmt List<Name> names

TIRCommentStmtEmptyStmt −
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D.3 Assignment Statements
node extends contains

TIRAbstractAssignStmt AssignStmt −

TIRAbstractAssignFromVarStmt TIRAbstractAssignStmt Name rhs

TIRArraySetStmt TIRAbstractAssignFromVarStmt

Name arrayVar,

TIRCommaSeparatedList indices,

Name rhs

TIRCellArraySetStmt TIRAbstractAssignFromVarStmt

Name arrayVar,

TIRCommaSeparatedList indices,

Name rhs

TIRDotSetStmt TIRAbstractAssignFromVarStmtName dotVar, Name field, Name rhs

TIRAbstractAssignToListStmt TIRAbstractAssignStmt IRCommaSeparatedList targets

TIRArrayGetStmt TIRAbstractAssignToListStmt
Name lhs, Name rhs,

TIRCommaSeparatedList indices

TIRCellArrayGetStmt TIRAbstractAssignToListStmt

Name cellVar,

TIRCommaSeparatedList targets,

TIRCommaSeparatedList indices

TIRDotGetStmt TIRAbstractAssignToListStmt
TIRCommaSeparatedList lhs,

Name dotVar, Name field

TIRCallStmt TIRAbstractAssignToListStmt

Name function,

TIRCommaSeparatedList targets,

TIRCommaSeparatedList args

TIRAbstractAssignToVarStmt TIRAbstractAssignStmt Name lhs

TIRAssignLiteralStmt TIRAbstractAssignToVarStmt Name lhs, LiteralExpr rhs

TIRCopyStmt TIRAbstractAssignToVarStmt Name lhs, Name rhs

TIRAbstract-

CreateFunctionHandleStmt
TIRAbstractAssignToVarStmt Name lhs, Name function

TIRCreateFunctionReferenceStmt
TIRAbstract-

CreateFunctionHandleStmt
Name lhs, Name function

TIRCreateLambdaStmt
TIRAbstract-

CreateFunctionHandleStmt

Name lhs, Name function

List<Name> lambdaParameters,

List<Name> enclosedVariables
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D.4 Other Tame IR Nodes
node extends contains

TIRCommaSeparatedListList<Expr> List<Expr> elements
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