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Abstract

Side-effect analysis gives information about the set oéfions that a statement may
read or modify. This analysis can provide information usefa compiler for performing
aggressive optimizations. The impact of the use of sideeefinalysis in compiler opti-
mizations has been studied for programming languages sutkodula-3 and C, but no
thorough investigation for Java has been done. We presdntig sf whether side-effect
information improves performance in Java just-in-timel{Jtompilers, and if so, what
level of analysis precision is needed. We also analyze thengations and benchmarks
that benefit most from side-effect analysis.

We used BARK, the inter-procedural analysis component of ttwo$ Java analysis
and optimization framework, to compute side-effect infation and encode it in class files.
We modified Jikes RVM, a research JIT, to make use of sidestedigalysis in various local
and global analyses and optimizations such as local comuio@spression elimination,
heap SSA, redundant load elimination and loop-invariadeaootion. On the SpecJVM98
benchmarks, we measured the static number of memory opesagmoved, the dynamic
counts of memory reads eliminated, and the execution time.

Our results show that the use of side-effect analysis isethe number of static op-
portunities for load elimination by up to 98%, and reducesaiyic field read instructions
by up to 27%. Side-effect information enabled speedups abug0% for some bench-
marks. The main cause of the speedups is the use of sid¢-efi@enation in load elimi-
nation. Finally, among the different levels of precisiorsafe-effect information, a simple
side-effect analysis is usually sufficient to obtain mogheflse speedups.






Résum é

Les analyses inter-procédures tel qunblyse d’effets secondairpsuvent fournir de
l'information utile pour effectuer des optimisations aggiwes. Nous présentons une étude
qui a pour but de vérifier si l'utilisation de I'analyse defs secondaires peut améliorer
les performances de compilateur juste-a-temps (JIT)i &l ®st le cas, quel niveau de
précision de I'analyse est requiert.

Nous avons utilisé BARK, la composante d’analyse inter-procédure d®$§ un cadre
d’analyse et d’optimisation pour Java, pour faire I'analg&ffets secondaires et I'encoder
dans les fichierslassJava. Nous avons modifié Jikes RVM, un JIT de recherche, aén g
'analyse d’effets secondaires soit utilisée dansi@tiation de sous-expression commune,
dans leheap SSAdans I'élimination de charge redondante et dans le dépiant de code
boucle-invariable. Sur les programmes standards de Sp23Vnous avons mesuré le
nombre statique d’opérations de mémoire diminué, lesptes dynamiques d’instructions
de lecture de mémoire éliminés, et le temps d’exécution

Nos résultats demontrent que l'utilisation de I'analgseffets secondaires augmente
jusqu'a 98% le nombre statiqgue d’opportunité d’élimioa d’'opérations de charge, et
réduit jusqu’a 27% le nombre dynamique d’instructiondetture de champ. L'utilisation
d’'information sur les effets secondaires a produit une @@ vitesse de jusqu’a 20%
pour certain programmes. La cause principale de ce résgtd'utilisation de I'analyse
d’effets secondaires dans I'optimisation de I'élimioatide charge. Finalement, parmi les
differents niveaux de précision de I'information surédfets secondaires, une analyse rela-
tivement simple est habituellement suffisante pour obtampiupart des montées en vitesse.
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Chapter 1
Introduction

1.1 Motivation

Over the past several years, just-in-time (JIT) compilergetenabled impressive improve-
ments in the execution of Java code, mainly through localiatnd-procedural optimiza-
tions, speculative inter-procedural optimizations, affidient implementation techniques.
However, JITs do not generally make use of whole-progranyaisanformation, such as
conservative call graphs, points-to information, or seffect information, because it is too
costly to compute it each time a program is executed.

Side-effect analysis provides an approximation of the Seteamory locations that each
instruction may read or write. This analysis can optimizdecby eliminating redundant
loads and stores in the presence of method calls. It can migmve precision of other
intra-procedural analyses, which in turn may enable varaher optimizations. Since all
non-trivial data types in Java are objects which are alwagessed through indirect ref-
erences (pointers), one would expect optimizations usaeaffect information to enable
significant further improvements in the performance of Jaegrams.

The purpose of the study presented in this thesis is to artbwness key questions. First,
is side-effect information useful for the optimizationsfpemed in a modern JIT, and can
it significantly improve performance? Second, what levepicision of the side-effect
information and the underlying analyses used to compuseréquired to obtain these per-
formance improvements? Third, which optimizations bemedist from side-effect analysis

1



Introduction

and where in the code does it make a difference?

To study these questions, we used th@o$ [VRGH"00] bytecode analysis, opti-
mization, and annotation framework, which implements aeysconsisting of various
ahead-of-time inter-procedural side-effect analyses>1Ssupports three intermediate rep-
resentations that can be used for transforming bytecodéextesht abstraction levels. The
side-effect analyses computed in@&rt uses Jimple as its intermediate representation. The
simplest, least precise side-effect analysis computedot 8ses Class Hierarchy Anal-
ysis (CHA) [DGC95] for an approximation of the call graph améthod summaries of
fields read and written. More precise (though more expehside-effect analyses make
use of call graph and points-to information computed IPpRX [Lho02, LHO3]. SPARK
is the points-to analysis framework component oicS that is used to estimate the set of
locations in memory that a Java reference variable can pmint

The SoT framework also supports the embedding of user-definedatés in Java
class files through its annotation framework [PQMR]. These attributes are used to en-
code optimization information that is determined duringatie analysis of the program.
JIT compilers have in the past used such information in agtitions such as array bounds
check elimination and null pointer check elimination. Imstthesis, we are interested in
encoding side-effect information in class file attributasd apply it in various optimiza-
tions of a JIT compiler. We chose the Jikes Research Virtuathvhe (RVM) [AABT00],
an open source research software written in Java that cantexéava programs, as the JIT
for our study.

1.2 Contributions

The contributions of this thesis are the following:

e We review in detail the different side-effect analyses iempénted in 80T, and
the call graph and points-to analyses computed byRE that a side-effect analysis
relies on.

e To our knowledge, this is the first study of the run-time perfance improvements
obtainable by taking advantage of side-effect informaitoa range of optimizations

2



1.2. Contributions

in a Java JIT.

e We present empirical evidence that the availability of stffect information in a
Java JIT can enable significant performance improvementp t§ 20%.

e We present an analysis of the speedups obtained by pointinthe optimizations
that benefit most from side-effect information and wherénadode these optimiza-
tions achieve speedups.

In the following subsections, we describe in more detaihezfdhese contributions.

1.2.1 Side-Effect Analysis in Soot

We first review the two inter-procedural analyses that a-seitkct analysis depends on in
SooT:

e Call Graph Construction (Section 3.1)

¢ Points-to Analysis (Section 3.2)

We then explain how Soot computes side-effect analysis ati@e3.3. We present
how side-effect information is encoded in class file attiéisuand the method it uses to
reduce the attribute’s size in Section 3.4. We describe ifferent side-effect variations
and their relative precision, and show examples of optitiuna that can be performed
with the different analyses in Section 3.5.

1.2.2 Implementation

To take advantage of side-effect analysis, we made sevedifisations to Jikes RVM. We
added code to read in the side-effect information produsedir analysis. We then modi-
fied the following analyses and optimizations to take adsg@bf side-effect information:

e Local Common Sub-Expression Elimination (Section 4.1)
e Heap Array SSA Construction (Section 4.2)

3
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e Redundant Load Elimination (Section 4.2)

e Loop-Invariant Code Motion (Section 4.3)

We provide a description of each of these analyses and @gatiions in Sections 4.1
to 4.3, and explain how these can benefit from side-effedyaisa We describe the modifi-
cations that we made and show examples of improvementsazhiapthe use of side-effect
information in the optimizations adapted. We explain howdealt with method inlining
when using side-effect information in Section 4.4. Finalty measure the effect of the
availability of side-effect analysis in these optimizagowe inserted instrumentation code
in Jikes RVM both to count the static opportunities for periong optimizations, and the
dynamic effects on the improved optimizations.

1.2.3 Experiments

We performed experiments on the use of side-effect infaonan local and global opti-
mizations on three different architectures (Intel, AMD dnalwerPC). The different sys-
tems and benchmarks used in our experiments are describlethihin Chapter 5.

The results for local optimizations (only local CSE makes aEside-effect analysis)
are presented in Section 6.1. Our experiments show that sfgiortunities for load elim-
ination increased by up to 41%, but only resulted in a deere&sp to 0.87% of dynamic
loads. This produced speedupsipegaudiaf 1.08x and 1.06x on our Intel and AMD sys-
tems, and 1.02x faraytraceon both of these systems. On PowerPC, the use of side-effect
information did not enable speedups. Finally, the difféede-effect variations produced
identical static and dynamic counts, and as expected, aimdecution times. A simple,
inexpensive side-effect analysis thus appears suffiagocial optimizations.

For global optimizations (Section 6.2), all of the optintiras that we modified make
use of side-effect information. The results of the expentaeshow that the use of side-
effect analysis increased the number of static opporesior load elimination by up to
98%, and reduces dynamic field read instructions by up to 23ke-effect information
enabled speedups of up to 20% for benchmak®pressraytrace/mtrtand mpegaudio

4



1.2. Contributions

Our results also show that although precise analyses g®wiphificantly more optimiza-
tion opportunities when counted statically, most of theaiyc improvement is obtainable
even with relatively simple, imprecise analyses. In paftig a side-effect analysis based
on a call graph constructed using an inexpensive Class tdlgra\nalysis (CHA) already
provides a very significant improvement over not having aidg-gffect information at
all. This confirms what has been discovered for other langsiayich as Modula-3 or
C [GH98,DMM98].

1.2.4 Analysis of Speedups

For local optimizations where only local CSE makes use dcd-gfflect analysis, a signifi-
cant speedup was obtained only for benchnmapgegaudian our Intel and AMD systems.
We show in which method the additional loads eliminated gisinle-effect information
improved execution times.

For global optimizations, we show that the availability afeseffect information was
mostly beneficial in the redundant load elimination optiatian for the speedups obtained
for benchmarksompressraytrace/mtrtandmpegaudioFor each of these benchmarks, we
report the methods in which the use of side-effect analysidera difference. We present
static and dynamic counts, and execution times of runs wio¢nsing side-effect infor-
mation in these methods, and compare them with our resuthapter 6. For benchmarks
compressand mpegaudipmore precise side-effect analyses improved speedupsoover
simple (CHA) side-effect analysis. We point out where incbde the redundant load elim-
ination optimization took advantage of more precise sifieceinformation. We show that
the additional loads eliminated is due to an improved precisf side-effect information
on array elements. Finally, we note that adding a type-basealysis on array elements in
our simple, inexpensive, side-effect analysis would firesthload removal opportunities,
and as a result, would produce speedups similar to our mesiserside-effect analysis.

5
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1.3 Thesis Organization

The remainder of this thesis is organized as follows. The okapter discusses related
work. Chapter 3 is devoted to our side-effect analysis@§ the call graph and points-
to analyses that it depends on, issues with encoding itdt iesciass file attributes, and
the precision variations that we experimented with. In Ghiag, we describe how we
modified the optimizations in Jikes RVM to take advantagaag-ffect information. We
present in Chapter 5 the benchmarks that we used, propalteeg the benchmarks, and
the environment in which we conducted our experiments. \Werteour empirical results,
including static and dynamic effects of side-effect infatman usage in the optimizations
that we modified, and execution times improvements for lacal global optimizations in
Chapter 6. We provide an analysis of the speedups obtain€dapter 7, showing which
optimizations benefited most from side-effect informatior where in the code it made a
difference. We conclude with Chapter 8 and discuss futun&wo



Chapter 2
Related Work

In this chapter, we present a survey of the previous work de-sifect analysis. The
first section discusses the computation of summary infaondor method calls for lan-
guages without pointers, covering the early algorithm&efit970’s and Banning’s solution
to the side-effect problem which became the conventiomah&éwork on which other re-
searchers worked on to improve in the 1980’s. The secondsgatesents recent work
done in the 1990’s and 2000’s on side-effect analysis foguages with general-purpose
pointer usage. This section also discusses the use of $eatg-@formation as a metric in
comparing points-to analyses, and the impact it has sligtemad dynamically in program
optimizations.

2.1 Summary Information of Procedures

2.1.1 Early Algorithms

Early summary information algorithms for procedure calised back to the 1970's [Spi71,
All74,Ros75,Bar78] and were mainly targeted for the FORTNR#&ogramming language.
This analysis was defined as an inter-procedural dataflolysinaised to summarize the
semantic effects associated with subroutine calls and igerghglobal flow analysis to
more effectively propagate information through prografach statemergin a program
was annotated witMOD andREFsets defined as:

7



Related Work

e MOD(s): set containing those variables whose values carthbrgedas a result of
executing s.

e REF(s): set containing those variables whose values carsbdas a result of exe-
cuting s.

Summary information was used in various intra-proceduealgformations, optimiza-
tions and parallelization. The early algorithms for compgithis information differed on
the language features they supported, the informationtkttegt computed, the precision
of the analysis, their complexity, and whether they used @aneultiple passes over the
program. Some analyses ignored recursion or parametsirgigspi71, All74], were inef-
ficient [Ros75], or did not support the nesting of proced(is75, AU77]. The most pow-
erful techniques worked with languages with recursion dmatiag of variables through
reference parameters, and was precise up to symbolic catipu{Bar78]. The use of
pointers was not supported. All of these techniques weredas some form of transitive
closures of various relationship. A comparison of theseraigms for computing summary
information can be found in Barth’s PhD dissertation [B3r77

2.1.2 Banning’s Decomposition of the MOD Problem

Several researchers worked on the improvements of the akytyithms for computing
summary information in both complexity and precision [LofmRos79, Ban79]. Ban-
ning [Ban79] presented basic methods, using one pass, tdidnsensitive side-effects
and possible aliases of variables. He represented the MOBlgmn as a dataflow prob-
lem over the program’s call multi-graph, which could be sdhby efficient techniques
developed for global dataflow analysis. His algorithm wagermefficient than previous
work, handled recursion and reference parameters, and reas® up to symbolic com-
putation. The basic methods for computing MOD could alsotiersled to summarize
flow-sensitive side-effects and cover other features andtoacts present in programming
languages. The extensions are covered in Banning’s Phi3 {igz78].

To perform the MOD analysis, Banning decomposed the prolgmtwo separate
components:



2.1. Summary Information of Procedures

e alias analysis, and
¢ side-effect computation.

To compute MOD, Banning first computed a set GMOD(p) for eygocedure or func-
tion p representing the generalized MODmfSecondly, he calculated a set DMOD(s) for
every statemers representing the direct MOD &f Thus, GMOD sets applied to proce-
dures, and DMOD sets to statements. MOD was then computed tie combination of
these two sets. MOD(s) was simply derived from DMOD(s) bystdering the potential
aliase$ due to reference parameters.

2.1.3 Improving Banning's Framework

Banning’s work on MOD analysis became the conventional &aork on which other re-
searchers have worked on its improvements in the 1980’s §dydye81, Bur84, Bur90,
CK84,BC86,CR87,CK88b]. Cooper and Kennedy [CK84] presgihprovements in the
complexity of computing flow-insensitive summary informoat by breaking the problem
into two subproblems, a computation for global variabled ane for call-by-reference
formal parameters. Combining the solutions to these suibpmos solved the original
MOD problem. Using known efficient techniques to solve eatlthese subproblems,
the MOD analysis could be computed in almost linear time. & years later, Cooper and
Kennedy [CK88Db], again, presented new methods to solve@dtie two subproblems by
using a data structure, known as thieding multi-graphto achieve a linear time complex-
ity. Burke [Bur90] then showed that the two subproblems abgls and formals could be
solved more effectively by a similar problem decomposition

Burke and Cytron [BC86], Triolet, Irgoin, and Feautrier [FB6], and Callahan and
Kennedy [CK88a] were interested in automatically restriting sequential programs on
parallel architectures to improve performance, mainly tlyesluling loop iterations con-
currently on multiple processors. When an array elementmadified by a procedure
call, current inter-procedural side-effect analyses eoradively assumed that the entire

Two variables are potentially aliased to each other if thalysis considers that they could access the
same memory location through a reference to either of theargaten point in the execution of a program.

9
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array could be modified by the call. Within a loop, in this gadkelements of an array ap-
peared to be referenced in each iteration. This much resdrtbe parallelization of loops
containing calls. Studies were thus conducted to integrabescript analysis with alias-
ing and to implement inter-procedural dataflow analysisimpute side-effects of method
calls on subscripted references (individual array eles)ent

Ryder and Carroll [CR87] studied incremental algorithmslémge, complex, and dy-
namically evolving systems. They presented an incremeamtiival algorithm for MOD
analysis that could compute an updated side-effects salutiresponse to a change in the
system rather than recalculating it in its entirety.

2.2 Side-Effects for Languages with Pointers

Existing techniques for the computation of side-effecoinfation could handle call-by-
reference induced aliasing but did not support the use oftes. This was insufficient to
perform aggressive transformations and optimizationsurgliages with general-purpose
pointer usage. Choi, Burke and Carini [CBC93] were the fosshiow that conventional
methods for side-effect analysis based on the decompogiti®anning’s framework could
not handle the presence of pointers correctly. They ilaastt with examples that side-
effect analysis could not be performed separately fronsaizalysis for languages with
pointers. They mentioned an algorithm that could compute-sffects and that supported
pointers, including passing of pointers as reference aresphrameters. However, they did
not provide a description of the algorithm or present immatation results. Landi, Ryder
and Zhang [LRZ93] were the first to present a complete designiraplementation of an
inter-procedural modification side-effects algorithm @programs that could handle the
presence of general-purpose pointers.

Early side-effect analyses for languages with pointerstoyi Burke and Carini [CBC93]
and Landi, Ryder and Zhang [LRZ93] made use of may-aliasyarsaio distinguish reads
and writes to locations known to be different. These analysere mainly targeted at anal-
ysis of C, so the call graph was assumed to be mostly staterefdre, in comparison with
our work, in that setting, the information about pointerswaost important, while the call
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graph was much easier to compute.

While prior work used the notion of alias-pairs analysisntienet al. took a different
approach and introduced tpeints-toabstraction in their McCAT C Compiler [HDES3,
EGH94]. This method computes relationships between attstramory locations. This
analysis can provide points-to information based on thdsead writes abstract locations
computed, and can be used directly in other transformafamdsoptimizations. The fol-
lowing section discusses previous work on points-to amalyisat used side-effect analysis
to evaluate its precision and effectiveness.

2.2.1 Evaluating Points-to Analyses

To evaluate and compare the precision of various point-&byaes, researchers measured
its effect on the precision of side-effect information, et analysis, by reporting the size
of the points-to sets at indirect memory access instrust{oe. *p=) [EGH94, Ruf95,
RRO01,RMRO01, MRRO02]. Other points-to analysis work [LRZQ897, MSH97, SRLZ98,
HPOO, RLS 01] takes this evaluation one step further, by also comgutiad and write
sets summarizing the effects of entire methods, ratherjtiinndividual statements, and
propagating this information along the call graph. Thisimikar to the read and write set
computation we mention in Section 3.3.

Landi, Ryder and Zhang [LRZ93] measured the average andmeminumber of side-
effects found per assignment through pointer dereferetye )( per procedure and per
call site. They found that for their set of C programs, the hanof locations assigned
values per assignment statement through dereferencespwariable was on average 1.2.
Thus, in most cases, there was only one alias for such var&ta given program point.
However, their analysis excluded certain features of therd@ramming language such
as union types, casting, pointers to functions, exceptamdhng,setjumpandlongjump
In our experiments, we found that performing a contextiisgié/e points-to analysis to
distinguish differentobjectsin our set of Java benchmarks provided little benefit. This
result also leads us to believe that on average, the numhmyssible aliases for a given
variable is low.

11



Related Work

Emami, Ghiya and Hendren [EGH94] presented ploents-toabstraction implemen-
tation and results in the McCAT C Compiler framework [HGM$9They also showed
how to compute the program’s call graph and points-to amatggether. Their points-to
analysis was context-sensitive, including recursive antually-recursive calling contexts,
and handled general function pointers in C. They measurssilple and definite points-to
information at indirect references. For their set of benatks, their results showed that
the overall average number of locations pointed to by a dezate pointer was 1.13, indi-
cating that their points-to analysis was very precise.

Ruf [Ruf95] studied the empirical benefits of context-séwsipoints-to analyses over
context-insensitive ones. He calculated points-to p&eashing the location of inputs of
indirect memory reads or stores. His results showed thategrtsensitivity offered no
benefit or improved precision on his set of C benchmarks progr However, Ruf warned
that this result, somewhat surprising, might only apply i det of benchmarks and that
for larger programs, context-sensitive analyses may beflugsl.

Olivar [Oli97] implemented a side-effect analysis basedhantype inference points-to
algorithm by Steensgaard [Ste96] in the McCAT C compilemiesvork [HGMS91]. She
compared the read and write sets computed using this digovitith the context-sensitive
points-to analysis [EGH94] implemented in McCAT. Her résshowed that having a sim-
ple side-effect analysis over having none was very benéfitie benefits of having a more
precise side-effect analysis over a simple one were smalhés result agrees with our run-
time measurements, where we found that our simple sideteffealysis was sufficient to
obtain most of the speedups.

Shapiro and Horwitz [MSH97] studied the effects of the ieaaccuracies of different
points-to analysis algorithms on various subsequent aealincluding MOD analysis. To
determine whether and how much the choice of points-to arsabffects MOD analysis,
they measured the sum of the sizes of the MOD sets for eachidanand the time to
perform the MOD analysis. Their results showed that the gf2dOD sets increased by
about 70% when the size of points-to sets doubled on aveidgsy also observed that a
more precise points-to analysis leads to a faster MOD coatiput(since points-to sets are
smaller). Still, the total time to perform both points-taa#ysis and side-effect computation
was smaller using an imprecise but fast points-to algorithm
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Stocks, Ryder, Landi and Zhang [SRLZ98, R1(®] reported comparative experiments
on the effectiveness of a context-sensitive flow-sensitoiats-to analysis versus a context-
insensitive flow-insensitive one with respect to precisiod scalability on the modification
side-effects problem for C. On a large set of C programs, tegliered empirical mea-
surements of the precision of the analysis at pointer deyete statementdfd=) and at
function call statements. They noted that although theiloascuracy of using a context-
insensitive flow-insensitive analysis is a strong conctira,analysis provides a significant
gain over worst-case assumptions and can be adequate faincgpplications. Our run-
time measurements confirm this result. They also concluulidet context-sensitive flow-
sensitive analysis yields significant precision improvataat the expense of much greater
complexity.

Hind and Pioli [HPOO] compared the effectiveness of five paianalysis algorithms on
C programs. The analyses were context-insensitive anddvaritheir use of control flow
and alias data structures. They measured the precisiore afrthlyses and how the com-
puted solution affects various client analyses of poimérmation including side-effect
analysis. Their empirical experiments reported the avwwehM@D and REF size sets at each
nodes in the control flow graph. Their results showed thatlifierence in precision of the
side-effect information resulting from the various comnt@sensitive analyses was mini-
mal. In our experiments, we also found that the various ctxitesensitive flow-insensitive
points-to analyses used to compute side-effect informatiere about equivalent.

More recent work on the Java programming language also mesh#iue precision of
points-to analyses by reporting the size of the points4® a&field read and write instruc-
tions [RMRO1, MRR02]. Rountev and Ryder [RR0O1] evaluatesirthoints-to analysis for
precompiled libraries in this way. Rountev, Milanova anddBy[RMRO01] presented a
points-to analysis for Java based on Andersen’s pointsdtyais for C [And94] using an-
notated inclusion constraints. Their results on a largekéiva programs showed that the
points-to analysis solution has a significant impact on Wlaibjects may be read or writ-
ten by program statements (object read-write informatidm}er, they performed similar
measurements to evaluate object-sensitivity, a new forrooatext-sensitivity for flow-
insensitive points-to analysis for Java [MRR02]. The m®&ri improvements of object-
sensitivity analysis over context-insensitive analygimicantly improved the precision
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of MOD information by reducing the number of modified objepés statement. The im-
pact on execution time of using context-sensitive sideetfhnalysis in JIT optimizations
is one of our areas for future work.

2.2.2 Impact of Side-Effect Analysis in Optimizations

When evaluating the effectiveness of points-to analysesst mesearchers have used the
common metric of average points-to set size at indirect ogadite statements or at func-
tion calls. This metric only provides static results. Thieasure is thus not sufficient to
understand the impact of using these analyses in optiroizatias on achievable run-time
performance improvements. Studies measuring the actoaime impact of code opti-
mized using side-effect information are surprisingly rafe discuss them below.
Clausen’s [Cla97] side-effect analysis for Java was basea call graph constructed
with a CHA-like analysis, but it did not use any pointer infation. This analysis com-
puted read and write information for each field, ignoring ethspecific object contained
the field read or written. In comparison with our work, Claniseanalysis is most similar
to our CHA-based side-effect analysis. Clausen appliechaysis results in an ahead-
of-time early Java bytecode optimizer to a similar set ofirojtations as we did: dead
code removal, loop invariant removal, constant propagagnd common sub-expression
elimination. For one benchmark, he obtained a speedup of Bifrever, his experiments
were run using JDK 1.0.2, one of the earliest Java virtualhimas which did not have a
just-in-time compiler to perform aggressive optimizatidike modern JVMs have today.
Ghiya and Hendren [GH98] measured the effectiveness ofeffdet information on
the run-time efficiency of code produced by an optimizing pden for C. They used
side-effect analysis in traditional analyses like commuaio-expression elimination, loop-
invariant removal, location-invariant removal (similarthe scalar replacement technique
for array references), and array dependence testing. Oro& geinter intensive C bench-
marks, they obtained up to 10% speedups. They observed tregluation in memory
references and instructions executed always translatedhispeedup, but that there was
no direct correlation between this reduction and the péacgnof performance improve-
ments. Our results also showed that the speedups obtainedrfeet of benchmarks is not
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in proportion with the percentage of dynamic loads elimedat

Diwan, McKinley and Moss [DMM98] studied a version of redandload elimination
(RLE) which combines loop-invariant code motion and comraob-expression elimina-
tion of memory references in Modula-3. They used declarpeédyto conservatively ap-
proximate aliasing relationships, and method read/wetesammaries. They obtained up
to 8% speedups when using their most precise type-basedaaladysis. They noted that
they expect RLE to be a profitable optimization since loagseapensive on modern ma-
chines and architects expect they will only get more exper{$1P95]. In our experiments,
we found that using side-effect information in RLE had thgdst impact on benchmarks
with high load densities. The results of Diwahal. on Modula-3 and Ghiyat al. on C are
comparable to ours on Java. In particular, all three stushesv that significant run-time
improvements are possible, and that even simple, impratiseinformation enables many
of the improvements. They show that for a type-safe languéige Modula-3 and Java, a
fast and simple alias analysis may be sufficient for manyieajbns.

Debray, Muth and Weippert [DMW298] presented an alias amsalysd evaluated their
algorithm by measuring the percentage reduction in dynémaids when using this analy-
sis in a redundant load elimination optimization. Howeteey did not provide execution
time measurements. Their results showed that local alialysia provided none to small
improvements, but for global alias analysis, it produce@duction of up to 7% of dy-
namic loads. Similarly, we concluded that side-effect gsialhas little impact on local
optimizations, but improves significantly global optintioas.

Razafimahefa [Raz99] performed loop invariant code motisingiside-effect infor-
mation on Java in an ahead-of-time bytecode optimizer, apdrted run-time speedups
comparable with ours on an early-generation Java VM (up #$)20He observed that
many invariant expressions were not moved due to the coeims&hsitive nature of the
analysis, and that a context-sensitive side-effect arsalysuld be beneficial.

Cheng and Hwu [CHOO] performed a study of the impact of menadisgmbiguation
on optimizations such as redundant load and store elinoimgtop-invariant memory ac-
cess migration, and load and store scheduling. They peegdmrperiments on numerous
C benchmarks using fully resolved pointers and functioe-gtfects. Their empirical re-
sults using the SPECcint92 and SPECcint95 benchmarkssoitieiced a reduction of up
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to 40% of dynamic loads, and speedups of 42% on average ¢e fzart due to the load

and store scheduling optimization). The performance géiasthey obtained were over
programs compiled without pointer analysis, side-effewlgsis and memory access op-
timizations. Although we obtained smaller speedups on etiokJava programs (up to

20%), we note that the base that they used for comparisonéb more conservative than

ours. Our base includes some form of memory disambiguatimyuypes and global value

numbering.

Ghiya, Lavery and Sehr [GLS01] evaluated the benefits of apbete memory dis-
ambiguation framework in transformations and optimizagicand its impact on program
performance. Their framework includes numerous techmigueuding pointer analysis,
and MOD and REF analyses for function calls. They comparetbpeance improve-
ments achievable using several memory disambiguatiomiggbs and obtained up to 26%
speedups on the SPECcint2000 C benchmarks. They also deddlat there was no di-
rect correlation between the static improvements and tHenpeance gains.

Pechtchanski and Sarkar [PS02] presented a preliminady stua framework which
allows programmers to provide annotations indicating abseof side-effects. Like our
side-effect information, these annotations are commuict Jikes RVM in class file at-
tributes and used to improve the redundant load eliminati@hloop-invariant code motion
optimizations. Only limited, preliminary, empirical rdtiof the effect of these annotations
are provided, and verification of the correctness of the rnogner-provided annotations
has yet to be done.

Chowdhury, Djeu, Cahoon, Burrill and McKinley [CD©4] studied the effect of alias
analysis precision on the number of optimization oppottesifor a range of scalar op-
timizations. However, they only measured the static nunolb@ptimizations performed
(rather than their run-time effect), and their benchmaniesraostly pointer-free C pro-
grams, some translated directly from FORTRAN, so they foumgurprisingly, that alias
analysis precision had little effect. Other work studyihg effect of alias analysis on
scalar optimizations also suggests that a simple aliaysisahay be sufficient [DLFRO1,
DMMO1].

In summary, existing work on other languages largely agnetissour findings on Java.
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Some side-effect information is useful for real run-timgonmvements from compiler op-
timizations. Although precision of the underlying anakysends to have large effects on
static counts of optimization opportunities, the effeatsdynamic behaviour are much
smaller; even simple analyses provide most of the improweni&istinctions of our work
from previous work are that we provide a study of run-timeeetf§ of side-effect infor-
mation on Java, and that we show how to communicate analysists from an off-line
analyzer to a JIT.
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Chapter 3
Background

In this chapter, we review the implementation of side-éffelysis in ®0T[VRGH'00],
a framework for analyzing, optimizing, and annotating Jaytecode. The side-effect anal-
ysis depends on two other inter-procedural analyses, ghhgconstruction and points-to
analysis. We describe the construction of the call graphanSin Section 3.1. An im-
portant difference from most other work on call graph cangton is that to obtain a con-
servative side-effect analysis, the call graph must irelall methods invoked, including
those invoked implicitly by the Java VM. In Section 3.2, weelly explain the output of
the SPARK points-to analysis framework [Lho02, LHO3]. Section 3.3lkins how the
information from these two analyses is put together to pcedside-effect information.
In Section 3.4, we briefly note some issues with encoding ithe-affect analysis results
in class file attributes to communicate them to the JIT. Bnad Section 3.5, we describe
how variations in the precision of the call graph and pototanalyses affect the side-effect
information.

3.1 Call Graph Construction

To perform an inter-procedural analysis on a Java prognafiormation about the possible
targets of method calls is required. This information isragpnated by a call graph, which
maps each statemesto a setcg(s) containing every method that may be called frem
Constructing a call graph for a Java program is complicatethb fact that most calls in
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Java are virtual, so the target method of the call dependsaounh-time type of the receiver
object.

In our study, we compared two different methods #n8k of computing call graphs.
First, we used call graphs computed using Class Hierarctalyais (CHA) [DGC95],
an inexpensive method which considers only the static typsaoh receiver object, and
does not require any inter-procedural analysis. Secondised $ARK points-to analysis
(discussed in the next section) to compute the run-timestgpéhe objects that the receiver
of each call site could point to, and to determine the targethod that would be invoked
for each run-time receiver type.

Several important, but subtle, details of the Java virtuatihine (VM) complicate the
construction of a conservative call graph suitable for-@ftlect analysis. In a Java program,
methods may be invoked not only due to explicit invoke ingians, but also implicitly due
to various events in the VM. Whenever a new class is first ubedyM implicitly calls its
static initialization method. The set of events that mayseaa static initialization method
to be called is specified in [LY99, Section 2.17.4]. TImaBK analysis assumes that any of
these events could cause the corresponding static imétadn method to be invoked. Each
static initialization method is executed at most once irvagrun of a Java program. There-
fore, SPARK uses an intra-procedural flow-sensitive analysis to ekt@rspurious calls to
static initialization methods which must have already besdled on every path from the be-
ginning of the method. In addition, the standard class libodten invokes methods using
the doPrivileged methods ofjava.security.AccessController . SPARK
models these with calls of thein method of the argument passeddoPrivileged
Methods may also be invoked using reflection. In generas itat possible to determine
statically which methods will be invoked reflectively, anda&K’s analysis only issues a
warning if it finds a reachable call to one of the reflection moels. However, calls to the
newlnstance method ofjava.lang.Class are so common that they merit special
treatment. This method creates a new object and calls itstrwartor. $ARK conser-
vatively assumes that any object could be created, andftinerany constructor with no
parameters could be invoked.

To partially verify the correctness of the computed callprdy SPARK, we instru-
mented the code to ensure that all methods that are exedutew #me were included in
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the call graph and reachable from the entry points. To dq théscomputed the set of
methods that are not reachable from the entry points thrthglall graph, and modified
them to abort the execution of the benchmark if they do getkad at run time. Although
this does not prove that every possible run-time call edgecisded in the computed call
graph, it does guarantee that every executed method isdewediin call graph construc-
tion. To further check that our overall optimizations weoaservative on the benchmarks
studied, we verified that the benchmarks produced identiggdut in all configurations,
including with the optimizations disabled.

3.2 Points-to Analysis

We use the BARK [Lho02, LHO3] points-to analysis framework to compute gsito in-
formation. For eaclpointer pin the program, S8ARK computes a sqbt(p) of objectsto
which it may point. The most common kind pbinteris a local variable of reference type
in the Jimple representation of the code. Local variablgseapin field read and write
instructions as pointers to the object whose field is to bd mrawritten, and in method
invocation instructions as the receiver of the method eadlich determines the method to
be invoked. In additionpointersare introduced to represent method arguments and return
values, static fields, and special values needed in simgl#tie effects on pointers of na-
tive methods in the standard class library. Typicallypaiectis an allocation site; BARK
models all run-time objects created at a given allocatitsas a single entity. In addition,
specialobjectsmust be included for run-time objects without an allocatsite, such as
objects created by the VM (the argument array to the main ogettihe main thread, the
default class loader) and objects created using refledionsome of these speciatbjects
the exact run-time type may not be known. ThereforeyFK conservatively assumes that
their run-time type may be any subtype of their declared.type

SPARK performs a flow-insensitive, context-insensitive, suliseted points-to analysis
by propagatingbjectsfrom their allocation sites through gibintersthrough which they
may flow. SPARK has many parameters for experimenting with variations efahaly-
sis that affect analysis efficiency and precision. In thiglgt we experimented with four
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points-to analysis variations. We explain the variationsiore detail in Section 3.5.

3.3 Side-Effect Analysis

Soo0T's side-effect analysis consists of two steps, which areusised in this section. First,
a read and write set for each statement is computed. Sedmndead and write sets are
used to compute dependencies between all pairs of statemvihin each method.

For each statement SPARK computes set®ad(s) andwrite(s) containing every static
field sf read (written) bys, and a pair(o, f) for every field f of object othat may be read
(written) by s. These sets also include fields read (written) by all codeweel during
execution of, including any other methods that may be called, directlyanmsitively. The
read and write sets are computed in two steps. In the firstetdpthe direct read and write
sets for each statement in the program are computed, ignaniy code that may be called
from the statement. The result of the points-to analysiseuo determine the possible
objects being pointed to by the pointer in each field read dewrstruction. In the second
step, the read and write sets of each method are continugdhggated and propagated to
all call sites of the method, until a fixed-point is reachedwriBg the propagation, the call
graph is used to determine the call sites of each method.

Once the read and write sets for all statements have beenutedyfor each method,
an interference relation between all the read and write igetise method is computed:
int(m) = {(set,seb) | set Nseb # 0}. The interference relation is mapped on read and
write sets to four dependence relations between stater(reaid-read dependence, read-
write dependence, write-read dependence, write-writeni@gnce). For example, there is
a read-write dependence between statengrasds; if (read(s;),write(sp)) € int(m). It
is the dependences between statements that are encodeaddriiles for the JIT to use in
performing optimizations.
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3.4 Encoding Side-Effects in Class File Attributes

All of the SPARK analyses described in the preceding sections are perfoomddnple,
the three-address intermediate representation (IR) ms8dadT. In order to communicate
the analysis results to a JITPSRK must convert them to refer to bytecode instructions
during the translation of Jimple to bytecodeo&r includes a universal tagging frame-
work [PQVR"01] that propagates analysis information through its waitRs, and en-
codes itin class file attributes. An important complicatiimthis process is that one Jimple
statement may be converted to multiple bytecode instrustidHowever, Jimple is low-
level enough that whenever a Jimple instruction has sifketsf exactly one of the byte-
code instructions generated for it has those side-efféttstefore, for each type of Jimple
instruction, $ARK identifies the relevant bytecode instruction to the tagdraghework,
and it attaches the side-effect information to that ingtounc

Another complication in communicating the side-effecbmmation is that some meth-
ods have a large number of statements with side-effecteSive dependence relations
may have size quadratic in the number of instructions witle-gffects, a naive encoding
of the dependence relations is sometimes unacceptably. latgwever, many of the read
and write sets in the method are identical. Therefore, d l&vimdirection is added. In-
stead of expressing the dependence relations in termstefrstats, 8ARK enumerates all
distinct read and write sets, and expresses the dependdatens between those sets. For
each statement,FARK indicates which set it reads and writes. The resulting eimcploas
size®(n? +n), wheren is the number of statements, amds the number of unique sets.
In his M.Sc. thesis [Lho02, Sections 6.2.2 and 6.2.6], Bkaibserved that this encoding
limits the annotation size to acceptable levels.

Figure 3.1 shows the side-effect attribute format in cldes.fiEach method is asso-
ciated with two attributes. The first on8jdeEffectAttribute , maps each byte-
code that has side-effects to a read and write set. The exteacbntains a bit that indi-
cates whether a bytecode explicitly or implicitly invokesative method, and other bits
for future use. For our purpose, we did not use this extra.bylee second attribute,
DependenceGraph , denotes which sets interfere.
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SideEffectAttribute:
BytecodeOffset ReadSet  WriteSet  ExtraByte
(2 bytes) (2 bytes) (2 bytes) (1 byte)
DependenceGraph:
Set Set
(2 bytes) (2 bytes)

Figure 3.1: Side-Effect Attribute Format

In Figure 3.2, we show sample code and the resulting encaafisipe-effect infor-
mation. Methodfoo contains instructions that, once compiled, would be repres
by aputfieldand twoinvokevirtualbytecodes at offset 2, 6 and 10. Since only plg-
field andinvokevirtualbytecodes at offset 2 and 6 have side-effeatadthing() has
none), only two entries appear in tisedeEffectAttribute of methodfoo . For
both of these, the read set value is -1 (they do not read amg)thrand their write set values
are 0 and 1 respectively. Since these two write sets inte(faoth contain field ), the
DependenceGraph attribute denotes a write-write dependence between setd 0.a

3.5 Analysis Variations

In our empirical study presented in Chapter 6, we comparestteetiveness of six
variations of side-effect analyses in Soot. In this sectiwa explain the differences be-
tween these variations. In Figure 3.3, we present examplesdz that distinguishes the
variations: it may be optimized only if the information prded by specific variations is
available. In line 28, the code writes a constant to the tield. In line 30, the constant is
read out again. Our goal is to optimize away the constant fed. If we substitute each
of the code snippei&) through(e) on the right of Figure 3.3 for line 29, the resulting code
will never change the value (4) loaded in line 30. Howevealgses of different precision
are required to prove that the code snippets do not haveefiiglets affecting the value of
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class A {
int f;
void setF( int n ) { this.f = n; }
void nothing() {}

void foo( A a ) {
af = 4; /I Offset 2: putfield
a.setF( 3 ); // Offset 6: invokevirtual
a.nothing(); // Offset 10: invokevirtual

SideEffectAttribute (method foo):
Offset ReadSet WriteSet
2 -1
6 -1 1

DependenceGraph (method foo):
Set Set
0 1

Figure 3.2: Example of Side-Effect Attribute
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class Box {
A a;
}
abstract class A {
int f;
abstract void nothing();
abstract void maybe();
abstract void setF();
abstract A id();
}
class B extends A {
void nothing() {}
void maybe() { this.f = 1,
void setF() { this.f = 2; }
A id() { return this; }
}
class C extends A {
void nothing() {}
void maybe() {}
void setF() { this.f = 3; }
A id() { return this; }
}

class Main {

public static void main(String[] args) {
new Main().run(new B(), new C());

}
void run(A b, A ¢) {

b.f = 4;

‘// insert possible side-effect here

int n = b.f; // eliminate this load

Figure 3.3: Code Examples
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(@)

(b)

c.nothing()

()

c.maybe();

(d)

Box bl
Box b2

bl.a
b2.a b;

I
Qo

c = bl.a
c.setF();

new Box();
new Box();

(e)

c = c.id();
b = b.id();
c.maybe();
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b.f . Figure 3.4 gives an overview of the relative precision efthariations, with precision
increasing from bottom to top. After each variation, we tist subset of the code snippets
that can be optimized using the information provided by teation.

otf-fs {abcde

otf-fh {abcd ot-fs {abcég
Kao%—féc}

CHA {ab}

none {a}

Figure 3.4: Relative Precision of Analysis Variations

For the first variationpone, we compute no side-effect information at all, and rely only
on the internal analysis in the Jikes RVM JIT for optimizagoIn this case, Jikes RVM is
able to remove the read in line 30 only when the empty snippeis(inserted at line 29.
The JIT determines that the field being loaded is the samesdiett to which the constant
was written, and since no statements have been executedtbmavrite, the value could
not have been affected. However, as soon as we insert anypdedii between the write
and read (in each of the code snippets (b) through (e)), theathnot optimize the read,
because it knows nothing about the side-effects of the ndethtbed.

Our second variatiorCHA, is to compute side-effects using a call graph, but without
performing any points-to analysis. We construct the calpbrusing CHA, as described in
Section 3.1. In this case, we can optimize code snippet @zgise the analysis determines
that the callc.nothing() calls the methodothing() in either classB or C, and
neither of these methods write to fidld However, for the call tenaybe() in snippet (c),
CHA cannot tell which of the twanaybe() methods will be invoked. Sindg.maybe()
writes to fieldf , the analysis conservatively assumes th&at may be overwritten, and
prevents the optimization.

The remaining variations all take advantage of points-tyesis information to com-
pute side-effects. The differences between them are whétleepoints-to analysis is
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field-basedfp) or field-sensitivefs), and whether it uses a call graph computed ahead-of-
time (aot), or whether it computes its own call graph on-the-tiyfY. All of the points-to
analysis variations determine thaican only be of run-time typB. Therefore, the call to
c.maybe() does not write to field , so the read in line 30 can be optimized when code
snippet (c) is inserted into line 29.

The distinction between a field-based and field-sensitiaéyars defines how the points-
to analysis treats pointer flow through fields of heap objdata field-based analysis, each
field is treated as pointerwith a single points-to set, i.e. the object to which a fieltbhgs
to is not considered. Thus, it is assumed that @inyect stored into a field (regardless
of the object it is part of) may be retrieved from fidldof any object. On the other hand,
a field-sensitive analysis computes a separate pointsttimiseach pair(ob ject field).
Therefore, if arob jectis written tobl.a and a different object is written to2.a , and if
b1l andb2 are known to not be aliases, then a field-sensitive analg$eshines thabl.a
andb2.a point to different objects. In contrast, a field-based asialgoes not make this
distinction because it considers only the fialdand ignores thebjects(b1l andb2). This
is illustrated by code snippet (d). In the codas stored and later on read outluf.a , and
b is stored intdh2.a . A field-based points-to analysis cannot distinguish betwtbe field
a of the two different boxeb1l andb2, and therefore assumes tltadandb could point to
the same object, dof could be written to at the end of the code snippet. A field-beBs
analysis, on the other hand, proves that wbheead out of fielda of box b1, it is distinct
from b, and so the call to.setF()  does not affect the value bff .

In order to propagate points-to sets inter-proceduralfypiats-to analysis requires an
approximation of the call graph. However, the points-tolasia can be used to build the
call graph. One solution to this circular dependency is tiddban imprecise call graph
ahead-of-time using CHA, only for the use of the points-talgsis. After the points-to
analysis completes, the points-to information is used tstract a more precise call graph
to be used in the side-effect analysis. The other altermagivo build the call graph on-
the-fly as the points-to analysis proceeds: as points-togetv, edges are added to the
call graph. Results from prior work [LHO3] show the lattepapach to be more costly, but
to produce more precise results. The difference in pratisidlustrated by code snippet
(e). In the code¢ andb are passed through identity methods that return themseies
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ahead-of-time CHA-based call graph says that ad¢h method calls may call either
of the twoid() methods, so both objects end up in the points-to sets of b@hdb.
Therefore, the analysis cannot determine that the catl.twaybe() will not change
b.f . However, if the analysis builds the call graph on-the-fig tall graph only contains
the single correct target method for each ofith¢ method calls, and the object pointed
to by b does not flow into the points-to set of The analysis therefore determines that the
calltoc.maybe() does not write td.f , and the load may be eliminated.
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Chapter 4
Optimizations Enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effefddrmation is the Jikes
Research Virtual Machine (RVM) [AABOQ]. Jikes RVM is an open source research plat-
form for executing Java bytecode. It includes three levél3I® optimizations: level 0
(dataflow basics), level 1 (flow-insensitive, inlining, coraning) and level 2 (advanced).
We adapted three optimizations in Jikes RVM to make use @feftect information. The
first one is local common sub-expression elimination (C&Hgyel 1 optimization, and the
other two are redundant load elimination (RLE) and loommant code motion (LICM),
both level 2 optimizations. Sections 4.1 to 4.3 describédneddhese optimizations and
the changes that we made. Because side-effect informagdfersrto the original bytecode
of a method, bytecodes that come from an inlined method nedxst ttreated specially.
Section 4.4 describes how we dealt with this case.

4.1 Local Common Sub-Expression Elimination

The first optimization in Jikes RVM that we modified to make akside-effect information
is local CSE. This optimization is only performed within aslzablock. The algorithm
for performing CSE on fields is described in Figure 4.1. A @dchused to store the
available field expressions. The algorithm iterates ovieinatructions in a basic block,
and processes them. There are two parts in this process. rfhésfio try to replace
eachgetfieldor getstaticinstructions encountered by an available expression. éfisn
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available, it is assigned to a temporary variable andgetéieldor getstaticinstruction is
replaced by a copy of the temporary. If none is available,ld &gpression is added to the
cache for thegetfieldor getstaticinstruction. For everputfieldand putstaticinstruction,
an associated field expression is also added to the cachesetbad part is to update the
cache according to which expressions the current instnudills. A putfieldor putstatic
instruction of a field, say X, will remove any expression ie ttache associated with field
X (the algorithm conservatively assumes that any objeeresices may be aliased). A call
or synchronization instruction kills all expressions ie ttache.

In this algorithm, we used side-effect information to regltite set of expressions killed
(lines 20 and 22 in Figure 4.1). When the current instruasaputfield putstaticor a call,
we only remove from the cache entries that have a read-writerite-write dependence
with the current instruction in the side-effect analysis.

An example is shown in Figure 4.2. Without side-effect infiation, the compiler
would conservatively assume that statenw)2.x = 10 could write to memory loca-
tion obj1.x and that the call taothing() could write to any memory location. In
contrast, the side-effect analysis would specify thatdhgmno dependence between these
instructions, and thus enable the replacement of the loabjafx on line 7 by an avail-
able expression (line 4).

4.2 Redundant Load Elimination

The redundant load elimination algorithm relies on extendeay SSA (also known as
Heap Array SSA or Heap SSA) [FKS00] and Global Value Numleif®WzZ88]. We
explain the general idea of the algorithm below. For a dedadescription, please refer
to [FKSO0Q].

The algorithm transforms the IR into heap SSA form. A heapyais created for each
object field. The object reference is used as the index inschap array. For example, in
the code of Figure 4.3, there are two heap arrays, X and Y.r@lj "heap Array X4] =
expI means that a store is performed in heap array X at iraléke object reference).

After the transformation to heap SSA form is completed, glomalue numbers are
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4.2. Redundant Load Elimination

10:
11:
12:
13:
14:
15:
16:

© o N o g kh w DR

. for each basic block bdo
cache = createNewEmptyCache();

for each instruction s in bto
if isVolatileFieldLoadOrStore( sthen
continue

// Part 1: try to replace s by an available expression, andtepchche
if isGetField( s ) or isGetStatic( ghen
if cache.availableExpression( ggn
T = findOrCreateTemporary( expression(s))
replace s by copyTemporarylnstruction( T )
else
add expression( s ) to cache
else ifisPutField( s ) or isPutStatic( g€hen
add expression( s ) to cache

17:

18:
19:
20:
21:
22:

// Part 2: remove cache entries that s kills
if isPutField( s ) or isPutStatic( s ) of some fieldbén

remove all expressions with field X from cache (excludingregpion( s ))
else ifs is a call or synchronizatiahen

remove all expressions from cache

23:

Figure 4.1: Original Local Common Sub-Expression Algaritim Jikes RVM
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1 A objl = new A();
2 A obj2 = new A();
4 i = objl.x;

5 obj2.x = 10;

6 nothing();

7 ] = objl.x;

Figure 4.2: Local Common Sub-Expression Example

a = new A();

b = new A();

ax = expl -> heap Array X [a] = expl
ay = exp2 -> heap Array Y [a] = exp2
b.x = exp3 -> heap Array X [b] = exp3
n = ax -> n = heap Array X [a]

Figure 4.3: Before Scalar Replacement
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4.2. Redundant Load Elimination

computed. The global value numbering algorithm computésitidy-different ©D) and
definitely-same DS) relations for object references. TIDD relation distinguishes two
object references coming from different allocation sitgsyhen one is a method parameter
and the other one is the result ohawstatement. Th®Srelation returns true when two
object references have the same value number (one is a capg other). In Figure 4.3,
sincea andb are the results of different allocation sites (lines 1 andd@)(a, b) = true
andDS(a, b) = false.

Once global value numbers are computed, index propagatiparformed. The index
propagation solution holds the available indices into heapys at each use of a heap
array. Scalar replacement is performed using the sets débleaindices. Note that in the
algorithm, these sets actually contain value numbers dfadola indices. For simplicity,
we consider sets of available indices.

In Figure 4.3, aftea.x is assigned on line 4, the set of available indices for heapyAr
Xis {a}. Similarly,{a} is available for heap Array Y after the assignmerdatp online 5.
For the store ob.x on line 6, since global value numbering tells us tha&t(a, b) = true,
we have{a, b} available for heap Array X after line 6. DD(a, b) had returned false, we
would have conservatively assumed that a store to heap Xrfaycould have overwritten
heap Array X f], and thus, only{b} would have been available after line 6. On line 7,
heap Array X is used at index. Sincea is available, a new temporary is introduced and
scalar replacement is performed. Figure 4.4 shows thetiegabde.

1 a = new A();
2 b = new A();

4 T = expl

5 ax =T -> heap Array X [a] = T

6 ay = exp2 -> heap Array Y [a] = exp2
7 b.x = exp3 -> heap Array X [b] = exp3
8 n=T

Figure 4.4: After Scalar Replacement
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For increasing the number of opportunities for load elirtiora we used side-effect
information during the heap SSA transformation and inDerelation. During the heap
SSA construction, without side-effect information, eaali mstruction is annotated with
a definition and a use of every heap array. With side-effdfcrimation we annotate a
call with a definition of a heap array, say X, only if there is datetsread or write-write
dependence between the call and the instruction using lmemp>a Similarly we annotate
a call with a use of a heap array if there is a read-read orwedd-dependence. We also
use side-effect information when tB® relation returns false. Two instructions having no
data dependence is equivalenib(a, b) = true, wherea andb are the object references
used in the instructions.

In Figure 4.5, without side-effect information, sinaeandb are both method param-
eters,DD(a, b) = false. Thus, only{b} is available after line 3. This allows the load of
b.x on line 9 to be eliminated. Since it is conservatively asslithat calls can write to
any memory location, the available index set aftething() on line 10 is the empty
set. Line 13 represents a merge point of the available indexadter lines 7 and 10. The
intersection of these two sets is the empty set. After thd wfea.x on line 16,{a} is
available. SincdS(a, b) = false, the load 0ob.x on line 17 cannot be eliminated. Thus,
without side-effect analysis, the algorithm only finds oppartunity for load elimination
in this example.

Using side-effect analysis, sineex has no dependence withx (lines 2 and 3) the
available index set after line 3 {®&, b}. Thus, loads o&.x andb.x online 7 and 9 can
be eliminated. The available index set after line {as b}, and after line 10, it is also
{a, b}, sincenothing()  has no side-effect. The intersection at the merge poire (3)
results in the sefa, b}. The load ofa.x can then be removed on line 16. The available
index set after line 16 i§a, b}, allowing load elimination ob.x on line 17. Thus, having
side-effect information allowed three additional loadb¢oeliminated. The resulting code
after performing load elimination is shown in Figure 4.6.
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1 int fool A a, A b, int n) {
2 ax = 2,

3 bx = 3;

s

5 int i;

6 iftn >0 ) {

7 i = ax;

8 } else {

9 i = b.x;

10 nothing();

1 }

12

13 /[ Merging point: a phi is
1 /I placed here in heap SSA
16 int j = a.x;

17 int kK = b.x;

19 return i + j + k;

20 }

21

2 public static void main( String[] args ) {
23 foo( new A(), new A(), 1 );
w |}

Figure 4.5: Before Redundant Load Elimination
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

int fool A a, A b, int n) {

tl = 2;
ax = ti;
t2 = 3;
b.x = t2;
int i;
ift n >0 ) {
i = t1;
} else {
i = t2;
nothing();
}

/[ Merging point: a phi is
/I placed here in heap SSA

int j = t1;
int k = t2;

return i + j + k;

public static void main( String[] args ) {
foo( new A(), new A(), 1 );

Figure 4.6: After Redundant Load Elimination
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4.3 Loop-Invariant Code Motion

The LICM algorithm in Jikes RVM is an implementation of theoB&l Code Motion algo-
rithm introduced by Click [Cli95] and is adapted to handlemnoey operations. As such, it
requires the IR to be in heap SSA form. We provide the basi ad¢he algorithm below.
For more details, see [CIi95].

The algorithm schedules each instruction early, i.e. fihdsgarliest legal basic block
that an instruction could be moved to (all of the instrucsanputs must dominate this
basic block). Similarly, it finds the latest legal basic ddor each instruction (this block
must dominate all uses of the instruction’s result). Ingions such aghi , branch or
return cannot be moved due to control dependences. Between tieseard latest legal
basic blocks, the heuristic to choose which basic block &oginstructions is to pick the
one with the smallest loop depth. Global Code Motion diffeosn standard loop-invariant
code motion techniques in that it moves instructions a#teryvell as before, loops.

1 do {

2 =1+ ax

3 j =1+ ay;

4 nothing();

5 } while( i < n);

Figure 4.7: Before Loop-Invariant Code Motion

In Figure 4.7, the compiler first transforms the code intoph88A form and without
side-effect information assumes that methothing()  can read and write any memory
location. As aresult, the compiler will be unable to moveltasls ofa.x anda.y outside
of the loop. With side-effect information, knowing that thetinothing()  does not read
or write toa.x ora.y ,theloads ofi.x anda.y will be moved before and after the loop
respectively, resulting in the code in Figure 4.8.
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1 t = a.x;

2 do {

3 =1+t

4 nothing();

5 } while( i < n);
6 ] =1+ ay;

Figure 4.8: After Loop-Invariant Code Motion

4.4 Using Side-Effect Information for Inlined Byte-

code

The side-effect attribute of each method provides inforomedbout data dependences be-
tween instructions. The attribute refers to a bytecodeustibn by using its offset in the
method it is part of. When a method is inlined, bytecodes dded in the current compiled
method. Since the side-effect analysis is computed ahktdhe, and thus is not aware of
the JIT inlining decisions, the side-effect attribute daes have entries for inlined byte-
codes. In this section, we show an example and explain howeaé dith this special
case.

In Figure 4.9, let’'s assume that callsfam() andbar() are inlined, resulting in the
code in Figure 4.10. Since an inlined bytecode is associaitrits original offset in the
IR, itis in general incorrect to retrieve side-effect infation for an inlined bytecode in the
current method. For example, in the side-effect attribfiteethodmain() in Figure 4.10,
information about offsed is associated with bytecod®, notbl or b2.

To handle this case, we keep track of inlining sequencesdon enstruction. When
comparing two bytecodes, we retrieve the least common rdethoestor of the two byte-
code inlining sequences, and use the side-effect infoomatssociated with that method.
If a bytecode originally comes from that common method, weitssoffset. Otherwise, we
retrieve theinvokebytecode that it comes from in the common method, and useftéet o
associated with thiswokebytecode.

For example, in Figure 4.10, the least common method anckstbytecode$0 and
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10

11

12

13

14

Offset
0 main
1 main

0 foo
1 foo

0 bar
1 bar

main() {
o]0)
invoke foo

foo() {
bl

invoke bar

}

bar() {
b2

b3
}

Figure 4.9: Before Inlining
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bl ismain() . SincebO originally comes fronmain() , we use its offset (i.e. 0). Since
b1l was not originally part ofmain() , we retrieve thenvokebytecode that it comes from
in main() , i.e. invokefoo . We then use the offset associated with thisokebytecode
(i,e. 1). Thus, when inquiring about data dependences betweerdngeb0 andbl,
we lookup information for offset® and1 in the side-effect attribute of methadain() .
Similarly, for bytecoded1 andb2, we lookup offset® andl in the side-effect attribute of
methodfoo() , the least common method ancestob&fandb2. The same result holds
for b1 andb3. For bytecodeb2 andb3, since they both come from methbdr() , we
lookup their original offsetsQ and1 respectively, in the side-effect attribute of method
bar()

Offset
main() {
0 main b0 /I inlining sequence: main
0 foo bl /I inlining sequence: main->foo
0 bar b2 /I inlining sequence: main->foo->bar
1 bar b3 /I inlining sequence: main->foo->bar
}

Figure 4.10: After Inlining
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Chapter 5
Experimental Framework

This chapter gives a description of the environment, théesys, and the various tools
that were used in our experiments, and the measurements/¢hedbmputed. The next
section describes the different systems used for our expets. Section 5.2 describes
the Jikes RVM configuration and related tools that it relies Im Section 5.3, we specify
the benchmarks that we used, and provide some propertiesaébr benchmark. Finally,
Section 5.4 discusses our static and dynamic measurements.

5.1 Systems

We used three systems with different architectures in opeements to see whether we
would get similar trends in our results. All three systems kkinux Debian Stable (kernel
2.4.20). The three systems are listed below:

e Intel system

— Pentium 4 1.80GHz CPU
— 512Mb of RAM.

e AMD system
— Athlon MP 2000+ 1.66GHz CPU (dual-processor)
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— 2Gb of RAM
e PowerPC system

— 533MHz CPU

— 1152Mb of RAM

5.2 Jikes RVM and Related Tools

We used the development version @@ (revision 1621) to perform the side-effect anal-
ysis and annotate class files. We modified Jikes RVM versi8A. to read in the side-
effect attributes and use it in the optimizations describetie previous chapter. We used
the production configuration (namely FastAdaptiveCopyiiS)ikes RVM with the JIT-
only option (every method is compiled on first invocation ararecompilation occurs
thereafter). For our experiments, Jikes RVM was configuoedih on a single processor
machine.

To build Jikes RVM, various third-party tools are requirdgelow is a list of the ver-
sions that we used:

classpath 0.06

Sun JDK 1.4.2-b28 (for Intel and AMD systems)

JRE Blackdown-1.3.1-02b-FCS (for PowerPC system)

jikes 1.15

gcc 2.95.4

g++ 2.95.4
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Benchmark| Description

compress | Lempel-Ziv compressor/uncompressor

jess A Java expert shell system based on NASAs CLIPS system
raytrace Ray tracer application

db Performs several database functions on a memory-resideatiase
javac JDK 1.0.2 Java compiler

mpegaudio|| MPEG-3 audio file compression application

mtrt Dual-threaded version of raytrace

jack A Java parser generator with lexical analyzers (now Java CC)

Table 5.1: Benchmark Description

5.3 Benchmarks

For our experiments, we used the SpecJVM98 [spe] benchmakkdescription of the
benchmarks is given in Table 5.1.

We ran each benchmark using size 100 with Jikes RVM at optitioiz level 1 and 2
using the six side-effect variations described in Secti@n Jables 5.2 and 5.3 show, for
each benchmark at optimization level 1 and 2 respectivedyldad density measure (hnum-
ber of memory reads performed per second). This metric slhowsimportant memory
operations are for each benchmark. We expect the benchmwitkfigh load densities,
compressraytrace mtrt and mpegaudip to benefit most from side-effect analysis. For
these benchmarks, we also show profiling information gathesing Jikes RVM profiling
option on our Intel system in Tables 5.4 to 5.8. We see in Tallghat forcompressthe
first two methods account for over 70% of the execution timrebfuth level 1 and 2. For
raytraceandmtrt (Tables 5.5 and 5.6), the four methods shown account fortaiaifiof
the runtime. Profiling information fompegaudiaat level 1 and 2 is split into two tables
since the methods are different (Tables 5.7 and 5.8).
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Load density in 1000’s
Level 1
Benchmark| AMD Intel | PowerPC

compress || 207383| 206708 95041

jess 56371| 46199 21226
raytrace | 106271| 67351 41054
db 7140 7273 5394

javac 21645| 13906 8792
mpegaudio| 82137| 57285 30721
mtrt 92599| 61446 36338
jack 14632 8460 5506

Table 5.2: Benchmarks Load Density Property at Level 1

Load density in 1000’s
Level 2
Benchmark| AMD Intel | PowerPC

compress || 138570| 126339 86146

jess 68353| 55210 26617
raytrace | 127806 79806 49914
db 11776| 12081 9161

javac 19208| 12532 7738
mpegaudio| 179070| 114851 79647
mtrt 122821| 75566 47422
jack 15240 8761 5761

Table 5.3: Benchmarks Load Density Property at Level 2
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% of Execution
Method | Level 1| Level 2

void Compressor.compress()53.8 % | 50.5 %
void Decompressor.decompress(20.7 %| 20.8 %
void Compressor.output(int) 7.4% | 7.4%

int Decompressor.getcode() 6.0% | 6.0%

Table 5.4: Profiling Information for Benchmark Compress el System

% of Execution
Method | Level 1| Level 2

OctNode OctNode.Intersect(Ray, Point, float21.5 %| 18.4 %

boolean PolyTypeObij.Intersect(Ray, IntersectP?0.8 %| 17.5 %

OctNode OctNode.FindTreeNode(Point15.4 % | 11.1 %

boolean IntersectPt.FindNearestlsect(OctNode, RaynintOctNode)| 3.2% | 2.9%

Table 5.5: Profiling Information for Benchmark Raytrace otel System

% of Execution
Method | Level 1| Level 2

OctNode OctNode.Intersect(Ray, Point, float)}9.9 %| 17.2 %

boolean PolyTypeObij.Intersect(Ray, IntersectP1)9.8 %| 17.2 %

OctNode OctNode.FindTreeNode(Point13.9 % | 11.1 %

boolean IntersectPt.FindNearestlsect(OctNode, RaynintOctNode)| 2.5%| 2.3%

Table 5.6: Profiling Information for Benchmark Mtrt on In®®ystem
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% of Execution

Method Level 1

void g.m(float[], float[]) 29.6 %
boolean ub.(g 4.7 %

void p.e(int[], g, short[][], int) 3.2%
boolean cb.(g 2.8%

void tb. T(float[], float[], float[]) 2.4 %
void d.I(int[], int, int, float[], int) 2.2%
int Ib.read(byte[], int, int) 1.7%

Table 5.7: Profiling Information for Mpegaudio on Intel Sgtst at Level 1

% of Execution

Method Level 2

int g.I(short[], int) 27.8%

void th. T(float[], float[], float[]) 13.3%
void g.m(float[], float[]) 12.3%

void p.e(int[], g, short[][], int) 3.2%
boolean cb.(g 3.0%

boolean ub.(g 2.7%

void th. S(float[], float[]) 2.7%

void th. W(float[], float[]) 2.3%

int Ib.read(byte[], int, int) 21%

void d.I(int[], int, int, float[], int) 1.8%
void p.g(int[], g, int[], cbl]) 1.4%

int g.o(short(], int, float[][], float[][]) 1.2%

Table 5.8: Profiling Information for Mpegaudio on Intel Sgtst at Level 2
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5.4 Measurements

Our primary goal for this study was to see whether side-effdormation could improve
performance in JITs, and if so, our secondary objective wagtermine the level of preci-
sion of side-effect information required. To obtain acter@swers to these questions, we
measured for each run the static number of loads removedah @SE and in the redun-
dantload elimination optimization, and the static numbdeénstructions moved in the loop-
invariant code motion phase. These numbers provide udgsletahow much improvement
each optimization achieves statically using side-effefdrmation. We also measured dy-
namic counts of memory load operations eliminated and ai@ttimes (best of four runs,
not including compilation time). The architecture-indegent dynamic counts help us see
whether a direct correlation exists between a reductionemory operations performed
and speedups. Our third objective was to find out in the coderevhide-effect analysis
makes a difference. We thus looked at the benchmarks thefiteghfrom side-effect anal-
ysis, and in the methods that account for a high percentaffeeaéxecution time (given
by the profiling information in the previous section), weatted the use of side-effect
information in those methods only and computed running sim&e analyzed the differ-
ence in speedups, as well as static and dynamic counts, akddat the methods and
optimizations that made a difference. Chapter 7 providestailéd analysis.

It should be noted that although we used the JIT-only optiodikes RVM where no
method recompilation is expected, some optimizations asdhlining can cause invalida-
tion and recompilation. In this case, for our static numpe&esonly counted the number of
static loads eliminated (in local CSE or load elimination)restructions moved (in LICM)
in the last method compilation before execution.

To examine the effect of side-effect analysis in both local global optimizations, we
ran our benchmarks using Jikes RVM at optimization leveld 2nFor level 1, only local
CSE uses side-effect information. For level 2, local CSHunelant load elimination and
loop-invariant code motion use side-effect analysis. rkxt two chapters, we present
our results for local and global optimizations.
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Chapter 6
Impact on Optimizations

In this Chapter, we show our static and dynamic measurernoétiie use of side-effect
information in JIT optimizations. Sections 6.1 and 6.2 dgcour results for local and
global optimizations.

6.1 Local Optimizations

Level 1 optimizations in Jikes RVM include standard optiatians such as local copy
propagation, local constant propagation, local commonexdression elimination, null
check elimination, type propagation, constant foldingaleode elimination, inlining, etc.
Among these, only local CSE uses our side-effect analysisliminating redundanget-
field andgetstaticinstructions.

When running our benchmarks with Jikes RVM at optimizatiewel 1 (which also in-
cludes all level O optimizations), the use of the five sideatfvariations CHA, aot-fb,
aot-fs, otf-fb andotf-fs) produced identical static and dynamic counts, and sinnilar
times. To avoid repeating identical results, we groupeddhe/e side-effect variations
under the namany in the side-effect column of Tables 6.1 to 6.3. As expected etxe-
cution times of runs using these five side-effect variatiese almost identical. We thus
also grouped them undany in the second column of Tables 6.4 and 6.5, and reported
the average execution times of runs using these five sigeteffiriations. The values in
brackets in these tables denote the percentage increasgéicropportunities (Table 6.1) or
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the percentage decrease in dynamic counts (Tables 6.2 &)dviten compared with the
none side-effect variation.

The last column of Table 6.1 shows that using side-effearmétion in local CSE
increased the total number of static opportunities for lela@ination by 2% to 41%. We
note that most of these eliminated loads getfields Except formpegaudipthere is only
0 or 1 getstaticinstructions eliminated for each benchmark using the pabjiocal CSE
algorithm, and 1 to 3 additional ones eliminated using sffeet information. Local CSE
thus affects mostlgetfieldinstructions. Since it has little impact @etstaticinstructions,
not surprisingly, the use of side-effect analysis hackligffect on these instructions as well.

In Table 6.2, we see that the additional loads eliminatedguside-effect analysis in
local CSE resulted in a decrease of up to 0.90% of dynagettields 0.0% ofgetstatic
instructions, and 0.87% in total (Table 6.3). As a resultstrtienchmarks have similar
execution times with or without side-effect analysis. Hoere the use of side-effect in-
formation produced speedups of 1.08x and 1.06xnfigegaudicon our Intel and AMD
systems, and 1.02x faaytraceon both of these systems (Tables 6.4 and 6.5). Although
the dynamic counts show a reduction in load instructionsnate small slowdowns for
compresandjesson our Intel system, an@dvacon both Intel and AMD machines. These
slowdowns were reproducible, and are possibly due to secyredfects such as register
pressure or cache behaviour. On our PowerPC system, the gskeeeffect information
had no effect on runtime (Table 6.6). We note from Table 5a2 titre load density property
on our PowerPC system is significantly smaller than on our AMhd Intel systems, and
thus we conclude that the removal of loads is less benefinigis slower machine.

These results show that the simplest side-effect anal@sig,, is sufficient for level 1
optimizations in Jikes RVM. Only local CSE uses side-effatlysis, and since it is only
performed on basic blocks (typically small in Java prograitie effect is minimal.
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, Local CSE Performed
Benchmark|| Side-effect . _
getfield getstatic Total
none 108 1 109
compress
any 112 (3.70%) | 2(100.00%) |114(4.59%)
. none 229 0 229
jess
any 245(6.99%) |1 246 (7.42%)
none 166 0 166
raytrace
any 188 (13.25%)| 1 189 (13.86 %)
db none 130 0 130
any 133(2.31%) |3 136 (4.62 %)
. none 415 0 415
javac
any 431 (3.86%) |1 432 (4.10%)
. none 340 174 514
mpegaudio
any 347 (2.06%) | 176(1.15%) |523(1.75%)
none 166 0 166
mtrt
any 188(13.25%) | 1 189 (13.86 %)
jack none 470 1 471
any 663 (41.06% )| 2(100.00%) | 665(41.19%)

Table 6.1: Level 1 Static Counts for Local CSE with % Increldseng Side-Effects
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Benchmark| Side-effect| getfield getstatic
none 1871398009 33418641
compress

any 1871397929 (0.00% )| 33418641

jess none 209404162 2326905
any 209402840 (0.00 %) 2326905
none 287993152 1359

raytrace
any 287979508 (0.00 %) 1359
db none 160088294 96012

any 160087709 (0.00 % ) 96012

javac none 149595624 4028976
any 149407295 (0.13%) 4028946 (0.00 %)

. none 456136442 52215347
mpegaudio

any 455026631 (0.24 %) 52215346 (0.00 %)

mirt none 291501667 2063
any 291474379 (0.01 %) 2063

jack none 50029731 1534965
any 49579043 (0.90 %) 1534977 (0.00 %)

Table 6.2: Level 1 Dynamic Load Counts with % Reduction Usside-Effects
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Benchmark|| Side-effect Total
none 1904816650
compress
any 1904816570 (0.00 %)
. none 211731067
jess
any 211729745 (0.00 %)
none 287994511
raytrace
any 287980867 (0.00 %)
db none 160184306
any 160183721 (0.00 %)
. none 153624600
javac
any 153436241 (0.12 %)
. none 508351789
mpegaudio
any 507241977 (0.22 %)
none 291503730
mtrt
any 291476442 (0.01 %)
) none 51564696
jack
any 51114020 (0.87 %)

Table 6.3: Level 1 Dynamic Total Counts with % Reduction gs8ide-Effects
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Benchmark|| Side-effect| Time (s) | Speedup
none 9.215
compress
any 9.395 0.98x
_ none 4.583
jess
any 4.615 0.99x
none 4.276
raytrace
any 4,198 1.02x
db none 22.023
any 22.054 1.00x
. none 11.047
javac
any 11.215 0.99x
. none 8.874
mpegaudio
any 8.219 1.08x
none 4.744
mtrt
any 4,727 1.00x
_ none 6.095
jack
any 6.108 1.00x

Table 6.4: Level 1 Running Time on Intel
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Benchmark|| Side-effect| Time (s) | Speedup
none 9.185
compress
any 9.184 1.00x
_ none 3.756
jess
any 3.77 1.00x
none 2.71
raytrace
any 2.662 1.02x
db none 22.434
any 22.453 1.00x
. none 7.097
javac
any 7.177 0.99x
. none 6.189
mpegaudio
any 5.85 1.06x
none 3.148
mtrt
any 3.087 1.02x
. none 3.524
jack
any 3.509 1.00x

Table 6.5: Level 1 Running Time on AMD
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Benchmark|| Side-effect| Time (s) | Speedup
none 20.069
compress
any 20.089 1.00x
) none 9.975
jess
any 9.974 1.00x
none 6.985
raytrace
any 6.991 1.00x
db none 29.851
any 29.762 1.00x
. none 17.537
javac
any 17.467 1.00x
. none 16.552
mpegaudio
any 16.557 1.00x
none 7.454
mtrt
any 7.446 1.00x
) none 9.397
jack
any 9.387 1.00x

Table 6.6: Level 1 Running Time on PowerPC
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6.2 Global Optimizations

The more advanced and expensive analyses and optimizatidikes RVM are level 2 op-
timizations. They include redundant branch eliminatiagi SSA construction, redundant
load elimination, coalescing after heap SSA, expressitiirfg, loop-invariant code mo-
tion, global CSE, transforminghile into until loops, and loop unrolling. As described in
Chapter 4, we used side-effect information in the heap SS&tcaction, RLE and LICM.

Our benchmarks were run at optimization level 2 in Jikes R\AWIével 0 and 1 op-
timizations are also performed), and produced identicaht®and similar runtimes for
the side-effect variationgot-fb, aot-fs, otf-fb andotf-fs (except for one case icompress
where the static number of loads eliminated is 38&iutrfb andaot-fs, and 389 footf-fb
andotf-fs). Thus, we grouped these four variations of side-effeclyasigmthat are based on
points-to analysis under the narR&A in Tables 6.7 to 6.16 of this chapter. In Tables 6.7
to 6.10, the value in brackets represents the percentaggasein static opportunities (the
base is the value for th@one side-effect variation). For Tables 6.11 to 6.13, it is the pe
centage reduction in dynamic loads. In Tables 6.14 to 6Heéreported time foPTA is
the average runtime of the four variations above.

The following three sections present our static and dynamei@surements. Sections 6.2.1
and 6.2.2 discuss the static counts for the RLE and LICM agttions. In Section 6.2.3,
we present our dynamic results which include the speedujsnel.

6.2.1 Redundant Load Elimination (RLE)

Table 6.7 shows that the use of side-effect information owed the removal ofetfield
instructions by up to 79% statically. It also significanthcieased the static number of
opportunities for eliminatingload (array load) bytecodes for benchmaykss raytrace
javac mpegaudicandmtrt. However, as was the case for local optimizations, RLE does
not affect manygetstaticinstructions, and thus there were very few improvementsder
moving these operations using side-effect analysis. Tal@ehows that using side-effect
information in RLE increased the total number of load eliations performed by 7% to
98%. InterestinglyPTA improved ovelCHA for all benchmarks excejpck.
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Load elimination performed

Benchmark|| Side-effect
getfield getstatic aload
none 359 4 0
compress CHA 386 (7.52%) | 5(25.00%) 0
PTA 388(8.08%) | 5(25.00%) 0
none 722 1 129
jess CHA 1050 (45.43% ) 2(100.00% ) | 149 (15.50%)
PTA 1106 (53.19% ) 3(200.00% ) | 196 (51.94 %)
none 342 1 32
raytrace CHA 613 (79.24% )| 2(100.00% ) | 84(162.50% )
PTA 613(79.24% )| 2(100.00% ) | 127 (296.88%)
none 243 1 2
db CHA 274 (12.76 %) | 4(300.00%) |2
PTA 274 (12.76 %) | 4 (300.00% ) | 3(50.00% )
none 1519 26 90
javac CHA 1842 (21.26% ) 30(15.38% ) |101(12.22%)
PTA 1847 (21.59%) 30(15.38% ) | 108 (20.00 %)
none 706 212 367
mpegaudio CHA 804 (13.88% )| 216(1.89%) |370(0.82%)
PTA 804 (13.88%)|216(1.89%) | 426 (16.08%)
none 342 1 32
mtrt CHA 613(79.24% )| 2(100.00%) | 84(162.50% )
PTA 613 (79.24% )| 2(100.00% ) | 127 (296.88%)
none 678 2 69
jack CHA 999 (47.35% )| 16 (700.00% ) | 69
PTA 999 (47.35% )| 16 (700.00% ) | 69

Table 6.7: Level 2 Static Counts for RLE with % Increase Usside-Effects
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, Load elimination performed
Benchmark|| Side-effect
Total
none 363
compress CHA 391(7.71%)
PTA 393 (8.26 %)
none 852
jess CHA 1201 (40.96 %)
PTA 1305 (53.17 %)
none 375
raytrace CHA 699 (86.40 % )
PTA 742 (97.87 %)
none 246
db CHA 280(13.82%)
PTA 281(14.23%)
none 1635
javac CHA 1973 (20.67 %)
PTA 1985 (21.41%)
none 1285
mpegaudio CHA 1390 (8.17%)
PTA 1446 (12.53 %)
none 375
mtrt CHA 699 (86.40 %)
PTA 742 (97.87 %)
none 749
jack CHA 1084 (44.73 %)
PTA 1084 (44.73 %)

Table 6.8: Level 2 Static Total Count for RLE with % Increassng Side-Effects
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6.2.2 Loop-Invariant Code Motion (LICM)

In Tables 6.9 and 6.10, we show static counts of instructmaged during LICM. In Ta-
ble 6.9, we have counts faetfield getstaticand putfield instructions. The table does
not contain information foputstatic aload or astorebytecodes since none of these were
moved during LICM. We see that the use of side-effect analgsabled an increase in the
number of movedetfieldsby up to 19%, and in one case opatfield Table 6.10 shows
the total number of instructions moved when LICM is perfodnoa high-level (HIR) and
low-level (LIR) intermediate representation in Jikes RVMhe table illustrates that using
side-effect analysis increased the total number of HIRuresibns moved by up to 14%.
For one benchmarkes9, usingPTA side-effect analysis allowed more instructions to be
moved thanCHA. Since memory instructions are not moved during LICM on L3Rd
that in some cases we see an increased in LIR instructiongandivis suggests that, in-
terestingly, the use of side-effect information in HIR optzations enabled some other
transformations that allowed some instructions to be makeohg LICM on LIR.

We note that since RLE is performed before LICM, improvedsidfect information
can cause loads that would have been moved in LICM to be redrio\RLE. Therefore, to
measure the impact of side-effect information on LICM, wsathled RLE when collecting
the static LICM counts. We do not show static counts for I&€8E, which are minimal
because redundant load elimination is performed befoi IOSE.
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Benchmark|| Side-effect| getfield getstatic| putfield
none 87 0 1
compress
any 90 (3.45%) 0 1
none 139 0 0
jess CHA 144 (3.60 %) 0 0
PTA 161 (1583%) | O 0
none 87 0 47
raytrace
any 96 (10.34 %) 0 a7
db none 61 0 0
any 64 (4.92%) 0 0
. none 44 0 5
javac
any 48 (9.09 %) 0 6 (20.00% )
. none 128 27 1
mpegaudio
any 152 (18.75%) | 27 1
none 87 0 a7
mtrt
any 96 (10.34 %) 0 47
. none 23 0 2
jack
any 23 0 2

Table 6.9: Level 2 Static Counts for LICM with % Increase UsBide-Effects
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Benchmark|| Side-effect| Total HIR Total LIR
none 118 29
compress
any 122 (3.39%) 29
none 280 250
jess CHA 287 (2.50%) 251 (0.40%)
PTA 309(10.36% ) | 255(2.00%)
none 184 54
raytrace
any 210(14.13%) | 56(3.70%)
db none 88 31
any 92 (4.55%) 32(3.23%)
. none 116 479
javac
any 121 (4.31%) 479
) none 299 98
mpegaudio
any 327 (9.36 %) 102 (4.08 %)
none 184 55
mtrt
any 210(14.13%) | 57(3.64%)
) none 39 58
jack
any 39 58

Table 6.10: Level 2 Static Total Count for LICM with % Increadsing Side-Effects
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6.2.3 Dynamic Measurements

Tables 6.11 and 6.12 show that side-effect analysis enabileduction in dynamigetfield
operations by up to 27%, but only reducgeltstaticand aload instructions by up to 3%.
Level 2 optimizations using side-effect information redddotal dynamic load operations
in the range of 1% to 19% (Table 6.13). For most benchmarkegu®TA side-effect
information allowed a larger reduction of dynamic loadgitadA.

Tables 6.14 and 6.15 show speedups achievecbimpressraytrace mtrt andmpegau-
dio. For these benchmarks, the speedups vary from 1.08x to bri@ur Intel system, and
from 1.02x to 1.20x on our AMD machine. On both systemgegaudichas the largest
speedup. These benchmarks are also the ones with the higaestensities (Table 5.3),
and the ones that we expected would benefit the most fromesidet information. For our
PowerPC system, we did not obtain any speedup (Table 6.1@yeter, we note that the
load density value of each benchmark (Table 5.3) is muchlenfalr our PowerPC ma-
chine than for our AMD and Intel systems, and thus the remof/dads has less impact
for this slower machine.

A higher level of precision of side-effect information madedifference in perfor-
mance forcompressand mpegaudio Using PTA side-effect analysis vV€HA increased
the speedup ofompressrom 1.08x to 1.11x on our Intel system, and 1.02x to 1.05x on
our AMD one. Formpegaudigit went from 1.11x to 1.17x on our Intel machine and from
1.15x to 1.20x on our AMD machine.

These results show that using side-effect analysis in gtitanizations improved op-
portunities for load elimination and moving instructiorsguced dynamic load operations,
and improved performance in runtimes. Benchmarks withérdbad densities benefited
most from side-effect information. The results also shoat ffoints-to analysis improves
side-effect information and produced in some cases impnews in runtime performance
compared to only usinGHA, our simple side-effect analysis variation that does ndtana
use of points-to information. Finally, the differencesvibe¢n points-to analysis variations
are negligible.
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Benchmark| Side-effect| getfield getstatic
none 836681238 29585886
compress CHA 713879612 (14.68 % )| 29585886
PTA 694156483 (17.03% )| 29585886
none 193400124 2326905
jess CHA 177280681 (8.33% ) | 2326905
PTA 141340271 (26.92% )| 2326572 (0.01%)
none 278990954 1359
raytrace CHA 217369769 (22.09% )| 1359
PTA 217369769 (22.09% )| 1359
none 160085986 96012
db CHA 154814883 (3.29% ) | 96012
PTA 154814883 (3.29% ) | 96012
none 129704466 3728755
javac CHA 123962720 (4.43% ) | 3726381 (0.06 %)
PTA 123962933 (4.43% ) | 3726306 (0.07 %)
none 258084245 16092989
mpegaudio CHA 254421559 (1.42% ) | 16075411 (0.11%)
PTA 254421559 (1.42% ) | 16075411 (0.11%)
none 282145314 2063
mtrt CHA 220136202 (21.98 % )| 2063
PTA 220136202 (21.98 % )| 2063
none 46154208 1534965
jack CHA 42805654 (7.26 %) 1530924 (0.26 %)
PTA 42805654 (7.26 %) 1530924 (0.26 %)

Table 6.11: Level 2 Dynamic Counts fgetfieldandgetstaticinstructions with % Reduc-

tion Using Side-Effects
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Table 6.12: Level 2 Dynamic Count fatoad Instructions with % Reduction Using Side-

Effects

Benchmark|| Side-effect| aload
none 450569851
compress CHA 450569851
PTA 450569851
none 74199530
jess CHA 74197591 (0.00 %)
PTA 74188965 (0.01 %)
none 70558731
raytrace CHA 70189162 (0.52 %)
PTA 70125938 (0.61 %)
none 113165950
db CHA 113165950
PTA 113165950
none 3947221
javac CHA 3947158 (0.00 %)
PTA 3947133 (0.00 %)
none 796126083
mpegaudio CHA 794492856 (0.21 %)
PTA 773557981 (2.83 %)
none 71578275
mtrt CHA 71124467 (0.63 %)
PTA 70998019 (0.81 %)
none 5727775
jack CHA 5727775
PTA 5727775
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Benchmark|| Side-effect| Total
none 1316836975
compress CHA 1194035349 (9.33%)
PTA 1174312220 (10.82 %)
none 269926559
jess CHA 253805177 (5.97 %)
PTA 217855808 (119.29 %)
none 349551044
raytrace CHA 287560290 (17.73%)
PTA 287497066 (17.75%)
none 273347948
db CHA 268076845 (1.93 %)
PTA 268076845 (1.93 %)
none 137380442
javac CHA 131636259 (4.18 %)
PTA 131636372 (4.18 %)
none 1070303317
mpegaudio CHA 1064989826 (0.50 %)
PTA 1044054951 (2.45%)
none 353725652
mtrt CHA 291262732 (17.66 %)
PTA 291136284 (17.69%)
none 53416948
jack CHA 50064353 (6.28 %)
PTA 50064353 (6.28 %)

Table 6.13: Level 2 Dynamic Loads Total Count with % Redutctitsing Side-Effects
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Benchmark|| Side-effect| Time (s) | Speedup
none 10.423
compress CHA 9.635 1.08x
PTA 9.386 1.11x
none 4.889
jess CHA 4,945 0.99x
PTA 4.872 1.00x
none 4.38
raytrace CHA 3.93 1.11x
PTA 3.905 1.12x
none 22.625
db CHA 22.605 | 1.00x
PTA 22.471 1.01x
none 10.962
javac CHA 11.138 | 0.98x
PTA 11.142 | 0.98x
none 9.319
mpegaudio CHA 8.41 1.11x
PTA 7.932 1.17x
none 4.681
mtrt CHA 4.201 1.11x
PTA 4.208 1.11x
none 6.097
jack CHA 6.122 1.00x
PTA 6.101 1.00x

Table 6.14: Level 2 Running Time on Intel
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Benchmark|| Side-effect| Time (s) | Speedup
none 9.503
compress CHA 9.316 1.02x
PTA 9.03 1.05x
none 3.949
jess CHA 3.962 1.00x
PTA 4.002 0.99x
none 2.735
raytrace CHA 2.607 1.05x
PTA 2.615 1.05x
none 23.212
db CHA 23.222 1.00x
PTA 23.141 1.00x
none 7.154
javac CHA 7.21 0.99x
PTA 7.231 0.99x
none 5.977
mpegaudio CHA 5.175 1.15x
PTA 4.987 1.20x
none 2.88
mtrt CHA 2.788 1.03x
PTA 2.796 1.03x
none 3.505
jack CHA 3.47 1.01x
PTA 3.51 1.00x

Table 6.15: Level 2 Running Time on AMD
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Benchmark|| Side-effect| Time (s) | Speedup

none 15.446
compress CHA 15.53 0.99x

PTA 15.375 1.00x

none 9.829
jess CHA 9.817 1.00x
PTA 9.841 1.00x

none 6.878
raytrace CHA 6.916 0.99x
PTA 6.914 0.99x

none 29.695

db CHA 29.649 1.00x
PTA 29.668 1.00x

none 17.69
javac CHA 17.887 0.99x
PTA 17.729 1.00x

none 13.503
mpegaudio CHA 13.485 | 1.00x

PTA 13.464 1.00x
none 7.325

mtrt CHA 7.333 1.00x
PTA 7.362 0.99x
none 9.795

jack CHA 9.811 1.00x
PTA 9.788 1.00x

Table 6.16: Level 2 Running Time on PowerPC
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Chapter 7
Analysis of Speedups

In this chapter, we analyze the benchmarks where signifsgaedups were obtained in
local and global optimizations (Chapter 6). We look at theétrods causing these speedups
and where in the optimizations the use of side-effect infdram benefited. The following
three sections discuss speedups obtained for the benchio@mripress mpegaudicand
raytrace/mtrt

7.1 Compress

In Section 6.2, we saw that the use of side-effect infornmatésulted in speedups of up to
1.11x for benchmarkompress The following section provides an analysis of the meth-
ods and optimizations producing these speedups. Sectlod shows the changes in the
original code that caused these runtime improvements.

7.1.1 Methods and Optimizations Causing Speedups

In Table 5.4 of Chapter 5, profiling information is shown fbetbenchmarlcompress
From this table, we see that for level 2 optimizations, mé#@ompressor.compress()

and Decompressor.decompress() account for more than 70% of the execution
time. To find out where in the code the use of side-effect mition produced speedups for
compressn the range of 1.08x to 1.11x on Intel and 1.02x to 1.05x on AMRBRbles 6.14
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and 6.15), we disabled the use of side-effect analysis iseth@®o methods and computed
runtime.

Table 7.1 shows that when the use of side-effect analysisablbd in both methods
Compressor.compress() andDecompressor.decompress() ,the speedups on
Intel go down from 1.08xto 1.01x and 1.11x to 1.01x for @d¢A andPTA side-effect vari-
ations respectively (first row compared with second row) AMD, the speedups decrease
from 1.02x to 1.00x and 1.05x to 1.00x (Table 7.2). Thus, gmeeted by the profiling in-
formation, using side-effect information in these two noetkiis responsible for most of the
speedups. When side-effect analysis is disabled only ino&tompressor.compress() ,
we get speedups of 1.01x and 1.02x on Intel, and 0.99x ana &rOAMD (third row in Ta-
bles 7.1 and 7.2). Wheniitis disabled only in metibmtompressor.decompress() ,
the speedups are 1.08x on Intel and 1.04x on AMD (fourth rowhese results show
that having side-effects in meth@bmpressor.compress() is the main cause of the
speedups. Since the speedups are the same f@HAeand PTA side-effect variations
when they are disabled in methB&compressor.decompress() , this method is re-
sponsible for the difference in speedups between these itleeeffect variations (1.08x
versus 1.11x on Intel, 1.02x versus 1.05x on AMD).

Local CSE, redundant load elimination and LICM are the tloetmizations that were
modified to take advantage of side-effect information. Td bat which ones are responsi-
ble for the speedups, we disabled the use of side-effecisinah these optimizations sepa-
rately for method€ompressor.compress() andDecompressor.decompress()

For LICM, our results showed that the speedups stayed ahewame. Thus, having
side-effect information in LICM does not affect the speesloptained focompress This

is also confirmed by the static and dynamic counts that wetkamged. Tables 7.3 and 7.4
show the speedups when not using side-effect analysis mlbcal CSE and RLE. In this
case, we see from these two tables that the loads eliminated side-effect analysis in
local CSE and RLE affect significantly the speedups. Compgdhe first row with the third
row in these two tables shows that having side-effect inégrom in local CSE and RLE
for methodCompressor.compress() caused most of the speedups. The fourth row

Hull results are in Appendix A, Tables A.1 and A.2
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Methods without| Side-effect used
side-effects| in other methods Time(s) | Speedup

none 9.751
none CHA 9.049 1.08x
PTA 8.769 1.11x

) none 9.747

void Compressor.compress(
) CHA 9.678 1.01x
void Decompressor.decompress()

PTA 9.654 1.01x

none 9.742
void Compressor.compresg() CHA 9.657 1.01x
PTA 9.544 1.02x

none 9.757
void Decompressor.decompress() CHA 9.01 1.08x
PTA 9.05 1.08x

Table 7.1: Level 2 Runtime without Side-Effects in Seled#thods of Compress on Intel

75



Analysis of Speedups

Methods without| Side-effect used
side-effects| in other methods Time(s) | Speedup

none 9.514
none CHA 9.312 1.02x
PTA 9.026 1.05x

) none 9.516

void Compressor.compress(
. CHA 9.505 1.00x
void Decompressor.decompress()

PTA 9.491 1.00x

none 9.532
void Compressor.compress|) CHA 9.64 0.99x
PTA 9.356 1.02x

none 9.504
void Decompressor.decompress() CHA 9.144 1.04x
PTA 9.137 1.04x

Table 7.2: Level 2 Runtime without Side-Effects in Seleckéethods of Compress on
AMD
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of these tables shows that the difference in speedups betiwe€HA andPTA side-effect
variations is due to loads eliminated in methidelcompressor.decompress() (since
when the use of side-effects is disabled in local CSE and RicEhis method, speedups
for these two variations are the same).

Methods without| Side-effect used
side-effects in LCSE & RLHE| in other methods Time(s) | Speedup

none 9.751
none CHA 9.049 1.08x
PTA 8.769 1.11x

) none 9.797

void Compressor.compress(
) CHA 9.776 1.00x
void Decompressor.decompress()

PTA 9.759 1.00x

none 9.811
void Compressor.compresg() CHA 9.722 1.01x
PTA 9.536 1.03x

none 9.805
void Decompressor.decompress() CHA 9.05 1.08x
PTA 9.042 1.08x

Table 7.3: Level 2 Runtime without Side-Effects in LCSE anideERor Compress on Intel

In Tables 7.5 and 7.6, we show the effect of disabling sidecefinalysis on the static
counts of loads eliminated in the redundant load elimimatiptimization and on the dy-
namic counts ofjetfieldsperformed. Counts fogetstaticand aload instructions are not
shown since they are not affected. The third row comparel thi first row in Table 7.5
shows that when side-effect information is disabled in mé@ompressor.compress() ,
there is a reduction of fivgetfieldseliminated statically (381 versus 386 f&HA and
383 versus 388 foPTA). This results in a decrease of dynamgetfieldseliminated from
14.68% to 6.80% and 17.03% to 9.16% for tBEIA andPTA side-effect variations (Ta-
ble 7.6, row 1 and 3). Since we saw that the effect on speedupsiécrease from 1.08x
to 1.01x and from 1.11x to 1.03x f@HA andPTA on Intel (Table 7.3, row 1 and 3) , and
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Methods without| Side-effect used
side-effects in LCSE & RLHE| in other methods Time(s) | Speedup

none 9.514
none CHA 9.312 1.02x
PTA 9.026 1.05x

) none 9.459

void Compressor.compress(
) CHA 9.544 0.99x
void Decompressor.decompress()

PTA 9.532 0.99x

none 9.461
void Compressor.compresg() CHA 9.726 0.97x
PTA 9.427 1.00x

none 9.467
void Decompressor.decompress() CHA 9.113 1.04x
PTA 9.105 1.04x

Table 7.4: Level 2 Runtime without Side-Effects in LCSE arideRor Compress on AMD
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1.02x to 0.97x and 1.05x to 1.00x on AMD (Table 7.4, row 1 anal3} removal of only

few additionalgetfield(five statically) is responsible for almost all of the spegsiu

In Table 7.5, we note that, when comparing row 1 and 4, usihgreffect information
in methodDecompressor.decompress()
loads for theCHA and PTA variations respectively. The two additional loads elinb@aa
using the more precise side-effect variati®TA) resulted in a larger reduction of dynamic
getfieldinstructions from 14.68% to 17.03% (Table 7.6, row 1), amabpced an increase
in speedups from 1.08x to 1.11x on Intel (Table 7.3, row 1§ fam 1.02x to 1.05x on

AMD (Table 7.4, row 1).

allowed the elimination of 1 and 3 more

Side-effect
Methods without|| in other
side-effects in LCSE & RLE| methods | getfield| getstatic| aload
none 359 4 0
none CHA 386 5 0
PTA 388 5 0
void Compressor.compress( none 359 4 0
void Decompressor.decompress() cHA 380 > 0
PTA 380 5 0
none 359 4 0
void Compressor.compress() CHA 381 5 0
PTA 383 5 0
none 359 4 0
void Decompressor.decompress() CHA 385 5 0
PTA 385 5 0

Table 7.5: Level 2 Static Counts without Side-Effects in IEC&hd RLE for Compress
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Side-effect
Methods without| in other

side-effects in LCSE & RLE| methods getfield

none 836681238

none CHA 713879612 (14.68 %)

PTA 694156483 (17.03 %)

) none 836681238

void Compressor.compress(
_ CHA 789621577 (5.62 %)
void Decompressor.decompress()

PTA 789621577 (5.62 %)

none 836681238
void Compressor.compresg() CHA 779760012 (6.80 %)
PTA 760036882 (9.16 %)

none 836681238
void Decompressor.decompress() CHA 723741182 (13.50 %)
PTA 723741182 (13.50 %)

Table 7.6: Level 2 Dynamic Counts without Side-Effects inSECand RLE for Compress
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7.1.2 Original Code

In Figure 7.1, we show part of the original code of meti@mnpressor.compress()

In the previous section, we saw that there were five additioads eliminated using side-
effect information in this method that was the main causéhefdpeedups. We list them
below:

e getfieldto Input atline 12 is eliminated by a copy of theput getfieldat line 3
e getfieldto htab atline 16 is eliminated by a copy of teab getfieldat line 9
e getfieldto htab at line 20 is eliminated by a copy of tiab getfieldat line 16

e methodshtab.of(i) and htab.set(i, fcode) (lines 16 and 20) are both
inlined and contain getfieldto atab field; the second load (ihtab.set(i,
fcode) ) is eliminated by a copy of the first one (mab.of(i) )

e getfieldtoin _count atline 22 is eliminated by a copy of the _count getfield
at line 13

Figure 7.2 shows part of methddecompressor.decompress() . We saw that
having side-effects in this method allowed one more loacetelbninated using¢HA and
three more witlPTA:

e getfieldto Output atline 24 is eliminated by a copy of ti@utput getfieldat line 3
(any side-effect variation finds this)

e both calls to methodutput.putbyte(..) at lines 3 and 24 are inlined and
containgetfieldsto OutBuff andOutCnt fields, both of which are eliminated in
the second occurrence of the call (oRIYA finds this)

In our side-effect analysis, the elements of an array arsidered a (special) field.
Without points-to analysis, it is not possible to distirghudifferent methods writing to dif-
ferent arrays. Since metho@sitput.putbyte(..) (line 3) andde _stack.push(..)

(line 14) both write to arrays, tHeHA side-effect analysis thus conservatively assumes that
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there is a write-write dependence between these two callss,Tthe loads t@utBuff
andOutCnt fields can only be eliminated using tR&A variation. However, we note that
these two calls write to arrays of different and unrelatgubsy The write-write dependence
could thus be removed if a type analysis on arrays would beatitheCHA side-effect
computation. In this case, it would mak#HA as good a$TA in finding load removal
opportunities.
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7.1. Compress

public void compress() {

ent = Input.getbyte () ;

hshift = 0;

for ( fcode = htab.hsize(); fcode < 65536; fcode *= 2 )
hshift++;

hshift = 8 - hshift;

hsize _reg = htab.hsize();

htab.clear();

next_byte:

while ( (c = Input.getbyte()) !'= -1) {
in_count++;
fcode = (((int) ¢ << maxbits) + ent);
i = ((c << hshift) © ent);
int temphtab = htab.of (i);

if ( free_ent < maxmaxcode ) {
codetab.set(i, free_ent++);
htab.set(i, fcode);

}

else if ( (in_count >= checkpoint) && (block_compress != 0) )
cl_block ();

Figure 7.1: Part of Metho@ompressor.compress()
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Analysis of Speedups

public void decompress() {

Output.putbyte( (byte)finchar );
while ( (code = getcode()) > -1 ) {
if ( (code == Compress.CLEAR) && (block_compress = 0) ) {
tab_prefix.clear(256);
clear flg = 1;
free_ent = Compress.FIRST - 1;
if ( (code = getcode ()) == -1)
break;
}
incode = code;
if ( code >= free_ent ) {
de_stack.push((byte)finchar);
code = oldcode;
}
while ( code >= 256 ) {
de_stack.push(tab_suffix.of(code));
code = tab_prefix.of(code);

}
de_stack.push((byte)(finchar = tab_suffix.of(code)));

do
Output.putbyte ( de_stack.pop());
while ( !de_stack.is_empty());

Figure 7.2: Part of MethoBecompressor.decompress()
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7.2 Mpegaudio

In Section 6.1, we saw that we obtained speedups of up to Idd8rpegaudian local
optimizations. For global optimizations, the use of siffea information in local CSE,
RLE and LICM enabled speedups of up to 1.20x. The following $&ctions discuss these
speedups. Section 7.2.1 provides an analysis of the mettaadsng speedups in local
CSE. Section 7.2.2 discusses which methods and which @gatifons benefited from side-
effect analysis, and where in the code the use of the mossprside-effect analysi®{A)
produced better runtime improvement over the basic sidstednalysisCHA).

7.2.1 Local Optimizations

In Section 6.1, we saw that having side-effect informatiolocal optimizations resulted in
speedups of 1.08x and 1.06x on our Intel and AMD systems €8abl4 and 6.5). To
find out where the use of side-effect analysis in local CSEHpced these results, we
disabled side-effects in the most frequently executed austh Table 5.7 shows profil-
ing information for the seven methods that account for tlghést percentage of the ex-
ecution time. Surprisingly, disabling side-effect anayis these methods did not affect
speedups. We thus disabled side-effects in more methodsnmieatally and found that
methodq.o(short[], int, float[][], float[][]) , which account for less
than 1% of the execution time, is responsible for all of theeslups. We see in Tables 7.7
and 7.8 (second row) that the speedups on Intel and AMD beoaotherithout side-effects
in local CSE for method.o(..) . The static counts in Table 7.9 show that this behaviour
is due to a singlgetfieldthat is not eliminated (346 without side-effects versus R41).
This causes a reduction of dynangeetfieldinstructions by 0.18% compared to 0.24% orig-
inally (Table 7.10). Thus, the changes in static and dynamimts are very minimal, but
the impact on runtime is quite large. This is likely due tometary effects such as cache
behaviour or register pressure. Finally, for legal reasaesare unable to show the original
code.
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Methods without| Side-effect used
side-effects in LCSH| in other methods Time(s) | Speedup
none 8.874
none
any 8.219 1.08x
int g.o(short(], int, float[][], float[][]) none 8.878
int Q. , int, ,
q any 8.839 1.00x

Table 7.7: Level 1 Runtime without Side-Effects in Local ClSEMpegaudio on Intel

Methods without]| Side-effect used
side-effects in LCSH| in other methods Time(s) | Speedup
none 6.189
none

any 5.85 1.06x

int q.o(short(, int, float{J, float][) none. | 5.2

int g.o(short[], int, float[][], floa

a any 6.187 1.00x

Table 7.8: Level 1 Runtime without Side-Effects in Local Cl8EMpegaudio on AMD

Side-effect
Methods without|| in other
side-effects in LCSH| methods getfield getstatic
none 340 174
none
any 347 (2.06%) | 176 (1.15%)
none 340 174
int g.o(short(], int, float[][], float[][])
any 346 (1.76 %) | 176 (1.15%)

Table 7.9: Level 1 Static Counts without Side-Effects in &lo€SE for Mpegaudio
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Side-effect
Methods without| in other
side-effects in LCSH methods getfield
none 456136442
none
any 455026631 (0.24 %)
int (shortf], int, float[J], float[J) none 456136442
int g.o(short[], int, float[][], floa
d any 455307827 (0.18 %)

Table 7.10: Level 1 Dynamic Counts Using Side-Effects indld€SE for Mpegaudio

7.2.2 Global Optimizations

In Section 6.2, we saw that we obtained speedupsioegaudidn the range of 1.11x to
1.17xon Intel and 1.15x to 1.20x on AMD using side-effectlgsia. In a similar manner to
the previous section, we incrementally disabled sidectsfimn the most frequently executed
methods, and found that the two methods that caused thegpeadeg.o(short][],

int, float[][], float[][]) andg.m(float[], float(]) . The profiling
information in Table 5.8 shows thgtm(float[], float[]) account for 12.3% of
the execution time, but.o(short[], int, float[][], float[][]) , account

for less than 1% (not shown in the table).

Analysis of Method g.o(short[], int, float[][], float[][])

We see in the second row of Table 7.11 that on Intel, disaldidg-effects im.o(..)
results in a slowdown of 0.70x and 0.66x for tG&lA andPTA side-effect variations re-
spectively. On our AMD system, the speedups decrease fradxxo 1.02x and from
1.20x to 1.01x (Table 7.12, row 1 and 2). The impact of not giside-effect information
in g.o(..) is thus much larger on the Intel architecture. To see whethebehaviour
was caused by LICM or load elimination, we disabled sideaf in each of these opti-
mizations separately. Doing so in LICM made no differencesispeedups stayed about
the samé. However, Tables 7.13 and 7.14 (second row) show that digpbide-effects in

2full results are in Appendix A, Tables A.3 and A.4
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local CSE and RLE resulted in the same large slowdowns theibbtained in Tables 7.11
and 7.12. Thus, it is the load elimination optimization tigatesponsible for the slow-
downs. Comparing the first and second rows in the statictestilTable 7.15 show that
only 778getfieldsare eliminated without using side-effect informatiorgin(..) versus
804 with side-effects. Note thgetstaticandaloadinstructions are unaffected. Note that
there is no column fogetstaticsince the counts did not change for any rows. The effect on
dynamic counts is a reduction by 0.79%g#tfieldsversus 1.42% originally (Table 7.16,
row 1 and 2). Thus, the removal of additional loads using-siifiect analysis img.o(..)

has a large impact on runtime. Since the changes staticadlglgnamically are small, this

is likely due to secondary effects such as register pressuwache behaviour.

Analysis of Method g.m(float[], float[])

Tables 7.11 and 7.12 (third row) show that for metigoat(float[], float[]) , the
speedups foEHA andPTA on Intel are 1.11x and 1.10x respectively, and on AMD they are
1.15x and 1.16x. Since the speedups are about the sar@élfosandPTA when the use of
side-effects is disabled . m(float[], float[]) , having more precise side-effect
information in this method is responsible for the bettetime improvement by?TA (1.17x

on Intel, 1.20x on AMD) versu€HA (1.11x on Intel, 1.15x on AMD). To see whether
this is due to LICM or load elimination, we disabled sideeett in these optimizations
separately and computed runtime. Our results show thaharinot having side-effects
in LICM did not affect the speedup’s However, when disabling side-effects in local CSE
and RLE, the speedups are 1.10x on Intel and 1.16x on AMD €8abl13 and 7.14, third
row). It is thus the load elimination optimization qam(float[], float[]) that
caused the difference in the original speedups betvwaéA andPTA. In Table 7.15 (row
3), the static results show that tgetfieldinstruction counts are unaffected by not using
side-effects ing.m(float[], float[]) (same counts as original ones). Though, for
aloadinstructions, there are 407 eliminated versus 426 orifyingith PTA (row 1 and
3). ForCHA, having or not having side-effects qam(float[], float[]) did not
affect theaload counts (370 in both cases). Thus, not using the most preidsecffect

3full results are in Appendix A, Tables A.3 and A.4
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analysisPTA in g.m(float[], float[])

reduced by 19 statically the number of
aloadseliminated. As a result, the reduction dynamically is 1.48sus 2.83% originally
(Table 7.16, row 1 and 3 f&®TA). Since the speedups are about the sam€lfoh andPTA

when the use of side-effects is disabledjyim(float[], float[])

itwas 1.11x versus 1.17x on Intel and 1.15x versus 1.20x oDAttle use of most precise

, and originally

side-effect analysidqTA) in this method is responsible for this difference.

Methods without|| Side-effect used
side-effects| in other methods Time(s) | Speedup

none 9.319
none CHA 8.41 1.11x
PTA 7.932 1.17x

none 9.22

int g.o(short[], int, float[][], float[][]) CHA 13.177 | 0.70x
PTA 13.917 | 0.66x

none 9.224
void g.m(float[], float[]) CHA 8.303 1.11x
PTA 8.411 1.10x

Table 7.11: Level 2 Runtime without Side-Effects in Selddiéethods of Mpegaudio on

Intel
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Methods without|| Side-effect used
side-effectg| in other methods Time(s) | Speedup

none 5.977
none CHA 5.175 1.15x
PTA 4.987 1.20x

none 5.976
int g.o(short(], int, float[][], float[][]) CHA 5.882 1.02x
PTA 5.895 1.01x

none 5.977
void g.m(float(], float[]) CHA 5.201 1.15x
PTA 5.131 1.16x

Table 7.12: Level 2 Runtime without Side-Effects in Selddiéethods of Mpegaudio on
AMD

Methods without|| Side-effect used
side-effects in LCSE & RLE]| in other methods Time(s) | Speedup

none 9.319
none CHA 8.41 1.11x
PTA 7.932 1.17x

none 9.223
int g.o(short[], int, float[][], float[][]) CHA 13.182 | 0.70x
PTA 13.914 | 0.66x

none 9.222
void g.m(float[], float[]) CHA 8.412 1.10x
PTA 8.402 1.10x

Table 7.13: Level 2 Runtime without Side-Effects in LCSE &ldE for Mpegaudio on
Intel
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Methods without|| Side-effect used
side-effects in LCSE & RLE]| in other methods Time(s) | Speedup

none 5.977
none CHA 5.175 1.15x
PTA 4.987 1.20x

none 5.977
int g.o(short(], int, float[][], float[][]) CHA 5.88 1.02x
PTA 5.886 1.02x

none 5.974
void g.m(float[], float[]) CHA 5.153 1.16x
PTA 5.139 1.16x

Table 7.14: Level 2 Runtime without Side-Effects in LCSE &ldE for Mpegaudio on
AMD

Side-effect
Methods without]| in other
side-effects in LCSE & RLEH methods getfield aload
none 706 367
none CHA 804 (13.88%) 370(0.82%)
PTA 804 (13.88% ) | 426(16.08%)
) ) none 706 367
int g.o(short[], int,
CHA 778 (10.20%) 370(0.82%)
float[][], float[][])
PTA 778 (10.20% ) | 426(16.08%)
none 706 367
void g.m(float[], float[]) CHA 804 (13.88% )| 370(0.82%)
PTA 804 (13.88% ) | 407 (10.90%)

Table 7.15: Level 2 Static Counts without Side-Effects irSECand RLE for Mpegaudio
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Methods without| Side-effect
side-effects| in other

in LCSE & RLE | methods getfield aload

none 258084245 796126083
none CHA 254421559 (1.42% )| 794492856 (0.21 %)
PTA 254421559 (1.42% )| 773557981 (2.83%)

, , none 258084245 796126083

int g.o(short(], int,

floatf]], floatf) CHA 256046247 (0.79% )| 794492856 (0.21 %)
PTA 256046247 (0.79% )| 773557981 (2.83%)

none 258084245 796126083
void g.m(float[], float])| CHA 254421559 (1.42 % )| 794492856 (0.21 %)
PTA 254421559 (1.42% )| 784243429 (1.49%)

Table 7.16: Level 2 Dynamic Counts without Side-Effects @3E and RLE for Mpegau-
dio

7.3 Raytrace/Mtrt

In this section, we analyze where side-effect informatimdpced speedups for the bench-
marksraytraceandmtrt. Sincemtrt is a multi-threaded version saytrace and that we
found that the cause of the speedups was the same for bothrbaries, we will only
discusgaytracehere. The same analysis applies iart.

In Section 6.2, we saw that using side-effect informatioproved runtime foraytrace
in the range of 1.11x to 1.12x on Intel and 1.05x on AMD (Taldes4 and 6.15). To
find out where the use of side-effect information resultethese speedups, we disabled
it in the hot methods given by the profiling information of T@b.5. To our surprise, the
speedups stayed the same. We thus incrementally addeddssetith side-effects disabled
and narrowed our search to methroh() , which is part of theRunner class in the file
RayTracer.java. We note thRunner is a thread, and that for benchmasgytrace only
oneRunner thread is created to render the scene, whereas two threadsed fomtrt.

The code of thdRunner class is shown in Figure 7.3. When we disabled side-effect
information in methodun() , we found that the main cause of the speedups was the
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removal of thegetfieldto theparent field on line 17. (Thearent.threadCount--
statement on line 17, when transformed to bytecode, pesamgetfieldto aRayTracer
object, parent , in order to decrement thiareadCount  counter.) With side-effect
analysis, this load tparent can be eliminated by a copy of this field (line 13). When
leaving thisgetfieldinstruction on line 17 (i.e. not replacing it with a cachegbygpand
applying side-effect analysis everywhere else as oriyindle speedups went down from
1.11x to 1.02x on Intel and 1.05x to 1.00x on AMD. We also aledi similar results
when removing the entire statemeguatrent.threadCount-- (line 17). Although we
cannot explain this behaviour, we note that tjegfieldinstruction is performed to retrieve
an object and decrement tti@eadCount  counter, which can be manipulated by both
theRunner and the main threads. This behaviour may thus be due to thdikey RVM
handles shared objects.

7.4 Summary

In this chapter, we analyzed the methods of the benchmarksendignificant speedups
were obtained. We found that fa@ompressonly five additional loads eliminated using
side-effect information was the main cause of the speedijos.mpegaudio we noted
that the removal of few additional loads likely caused seleoy effects such as register
pressure and/or cache behaviour to produce the performamevements. Finally, for
raytrace/mtrt we found that the cause of the speedups was mainly due todatoadl
load eliminated to a shared object.
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class Runner extends Thread {

RayTracer parent;
int section;
int nsections;

public Runner(RayTracer parent, int section, int nsection
this.parent = parent;
this.section = section;
this.nsections = nsections;

public void run() {
new Scene(parent.name).RenderScene(parent.canvas,

parent.width,

section,

nsections);

parent.threadCount--;

s) {

Figure 7.3: Code of ClasRunner in Benchmark Raytrace
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Chapter 8
Conclusions and Future Work

8.1 Conclusions

This research presented a study of whether the use of imeegural side-effect analy-
sis in Java just-in-time (JIT) compilers improves perfonte Our experiments showed
that relatively simple analyses are sufficient for signiitdenprovements. Our results also
showed that the benchmarks with high load densities beddfie most from side-effect

information. Among the optimizations adapted to use siflects, load elimination was

the one causing the speedups.

In this thesis, we first reviewed how side-effect analysisamputed ahead-of-time
in SO0T, based on different call graph constructions and variouistp@o analyses. We
explained the difference in precision of the various siffeet analyses that we experi-
mented with, and how they can be communicated to JIT congtiteough Java class files
attributes.

The three optimizations in Jikes RVM that were modified tcetaklvantage of side-
effect information are local common-sub-expression, neldint load elimination and loop-
invariant code motion. The last two optimizations use thepH8SA construction [FKS00],
which we also adapted to use side-effect analysis. For eatlese optimizations, we ex-
plained the algorithms, the changes that were made, andeshewamples of improvements
that are possible with the knowledge of side-effects. We dlscussed how JIT inlining
decisions affect the use of ahead-of-time side-effectrmédion.
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In our experiments, we ran the SpecJVM98 benchmarks on thfiseent architec-
tures (Intel, AMD and PowerPC). In local and global optintiaas, we gathered various
measurements including static counts of instructions makeing LICM, and the static
number of loads eliminated in local CSE and RLE. We also nreasiine dynamic effects
of using side-effect information by computing the reduetio memory reads operations
and execution times.

For local optimizations, side-effect analyses had litii@act on the static and dynamic
counts. Except for one benchmark, the effect on performarasenegligible. Since local
optimizations are only performed within basic blocks, tgtly small in Java programs,
this behaviour was expected.

In global optimizations, our results showed an increasgdbi®8% of static opportu-
nities for load removal and up to 18% of memory reads moveedaation of up to 27% of
the dynamic fields reads, and execution time speedups of1if#toon our Intel system and
up to 20% on our AMD machine. On PowerPC, no speedups wergnebtaHowever, we
noted that our PowerPC machine is significantly slower thanmtel and AMD systems.
The load density property of the benchmarks on PowerPC ssdbnsiderably smaller than
on Intel and AMD, making the use of side-effect analysis &ftective.

Finally, we analyzed the methods and optimizations thaéwss cause of the speedups
obtained forcompressmpegaudiandraytrace/mtrt We found that for all of these bench-
marks, the optimization that was responsible for the speed@s load elimination (LICM
had little effect on runtime). We noted that only few addiaimportant loads eliminated
(statically) using side-effect analysis was the main cadisiee runtime improvements. We
also found that the difference in speedups betweelth& andPTA side-effect variations
was due to the analysis precision on array reads and writeisou¥ set of benchmarks,
adding a type analysis on arrays would mé&i¢A as good a®TA in finding load removal
opportunities.
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8.2 Future Work

8.2.1 Experimenting with a Fast PowerPC Machine

The first step in continuing this work would be to perform ouperiments and gather
measurements on a fast PowerPC machine to see whether we geitdpeedups compa-
rable to the ones obtained on our Intel and AMD systems. @ioigisignificant runtime
improvements would strengthen the belief that the use @-eftect information is more
effective on fast machines, and thus for benchmarks with tigd densities.

8.2.2 Using Context-Sensitive Analyses

In this thesis, the side-effect analyses used were compsiad a flow-insensitive, context-
insensitive, subset-based points-to analysis. Contndive points-to analyses can pro-
duce much more precise information than context-insefmsitnes. In an object-oriented
language that encourages encapsulation, such as Javafdirmeation lost due to context-
insensitivity is especially significant [Lho02]. Contesensitive points-to analysis is planned
to be included in the 80T framework in the near future [Lho05]. An area for future re-
search would be to perform a similar set of measurementg gsintext-sensitive points-to
analyses to compute side-effect information, which wowddhimore precise than olTA
analysis. In the analysis of speedups, we saw that only feltiadal loads eliminated was
responsible for the runtime improvements. Thus, a moreiggesde-effect analysis may
enable the removal of further key loads, leading to evendyiggrformance gains.

8.2.3 Computing Side-Effects at Runtime

The feasibility of performing side-effect analysis insithe JIT is also a topic for future
research. The dynamic call graph construction presentgH®4, QHO5] is a first step in

this work. A simple side-effect analysis, similar to dCiHA analysis, could be computed
using this dynamic call graph to build method summaries ddisieead and written. A

simple type analysis could be implemented to distinguistdseand writes to unrelated
arrays.
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8.2.4 Investigating Secondary Effects

In Chapter 7, we found that for benchmaripegaudipsecondary effects such as register
pressure and/or cache behaviour likely was the main caueegderformance gains us-
ing side-effect information. Studying whether and how timpact of load elimination on
caches and register allocation contributed to performaadations is a topic for further
investigation.
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Appendix A
Miscellaneous Tables

In the following tables, full results are shown for benchksathat do not make use of
side-effects in LICM. Since the speedups stay about the ssiake-effect information in
LICM has little effect.

Methods without|| Side-effect used
side-effects in LICM| in other methods Time(s) | Speedup

none 9.751
none CHA 9.049 1.08x
PTA 8.769 1.11x

) none 9.815

void Compressor.compress(
. CHA 9.196 1.07x
void Decompressor.decompress()

PTA 8.954 1.10x

none 9.822
void Compressor.compress|) CHA 9.109 1.08x
PTA 8.967 1.10x

none 9.807
void Decompressor.decompress() CHA 9.131 1.07x
PTA 8.93 1.10x

Table A.1: Level 2 Runtime without Side-Effects in LICM foo@press on Intel
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Methods without| Side-effect used
side-effects in LICM| in other methods Time(s) | Speedup

none 9.514
none CHA 9.312 1.02x
PTA 9.026 1.05x

) none 9.471

void Compressor.compress(
_ CHA 9.301 1.02x
void Decompressor.decompress()

PTA 9.004 1.05x

none 9.485
void Compressor.compresg() CHA 9.309 1.02x
PTA 9.03 1.05x

none 9.487
void Decompressor.decompress() CHA 9.298 1.02x
PTA 9.023 1.05x

Table A.2: Level 2 Runtime without Side-Effects in LICM foo@press on AMD

Methods without|| Side-effect used
side-effects in LICM|| in other methods Time(s) | Speedup

none 9.319
none CHA 8.41 1.11x
PTA 7.932 1.17x

none 9.222
int g.o(short(], int, float[][], float[][]) CHA 8.329 1.11x
PTA 7.984 1.16x

none 9.221
void g.m(float(], float[]) CHA 8.32 1.11x
PTA 7.897 1.17x

Table A.3: Level 2 Runtime without Side-Effects in LICM forgdgaudio on Intel
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Methods without|| Side-effect used
side-effects in LICM|| in other methods Time(s) | Speedup

none 5.977
none CHA 5.175 1.15x
PTA 4,987 1.20x

none 5.978
int g.o(short(], int, float[][], float[][]) CHA 5.16 1.16x
PTA 4.963 1.20x

none 5.976
void g.m(float[], float[]) CHA 5.155 1.16x
PTA 4.924 1.21x

Table A.4: Level 2 Runtime without Side-Effects in LICM forpégaudio on AMD
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