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Abstract

Side-effect analysis gives information about the set of locations that a statement may

read or modify. This analysis can provide information useful in a compiler for performing

aggressive optimizations. The impact of the use of side-effect analysis in compiler opti-

mizations has been studied for programming languages such as Modula-3 and C, but no

thorough investigation for Java has been done. We present a study of whether side-effect

information improves performance in Java just-in-time (JIT) compilers, and if so, what

level of analysis precision is needed. We also analyze the optimizations and benchmarks

that benefit most from side-effect analysis.

We used SPARK, the inter-procedural analysis component of the SOOT Java analysis

and optimization framework, to compute side-effect information and encode it in class files.

We modified Jikes RVM, a research JIT, to make use of side-effect analysis in various local

and global analyses and optimizations such as local common sub-expression elimination,

heap SSA, redundant load elimination and loop-invariant code motion. On the SpecJVM98

benchmarks, we measured the static number of memory operations removed, the dynamic

counts of memory reads eliminated, and the execution time.

Our results show that the use of side-effect analysis increases the number of static op-

portunities for load elimination by up to 98%, and reduces dynamic field read instructions

by up to 27%. Side-effect information enabled speedups of upto 20% for some bench-

marks. The main cause of the speedups is the use of side-effect information in load elimi-

nation. Finally, among the different levels of precision ofside-effect information, a simple

side-effect analysis is usually sufficient to obtain most ofthese speedups.
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Résum é

Les analyses inter-procédures tel que l’analyse d’effets secondairespeuvent fournir de

l’information utile pour effectuer des optimisations agressives. Nous présentons une étude

qui a pour but de vérifier si l’utilisation de l’analyse d’effets secondaires peut améliorer

les performances de compilateur juste-à-temps (JIT), et si tel est le cas, quel niveau de

précision de l’analyse est requiert.

Nous avons utilisé SPARK, la composante d’analyse inter-procédure de SOOT, un cadre

d’analyse et d’optimisation pour Java, pour faire l’analyse d’effets secondaires et l’encoder

dans les fichiersclassJava. Nous avons modifié Jikes RVM, un JIT de recherche, afin que

l’analyse d’effets secondaires soit utilisée dans l’élimination de sous-expression commune,

dans leheap SSA, dans l’élimination de charge redondante et dans le déplacement de code

boucle-invariable. Sur les programmes standards de SpecJVM98, nous avons mesuré le

nombre statique d’opérations de mémoire diminué, les comptes dynamiques d’instructions

de lecture de mémoire éliminés, et le temps d’exécution.

Nos résultats démontrent que l’utilisation de l’analysed’effets secondaires augmente

jusqu’à 98% le nombre statique d’opportunité d’élimination d’opérations de charge, et

réduit jusqu’à 27% le nombre dynamique d’instructions delecture de champ. L’utilisation

d’information sur les effets secondaires a produit une montée en vitesse de jusqu’à 20%

pour certain programmes. La cause principale de ce résultat est l’utilisation de l’analyse

d’effets secondaires dans l’optimisation de l’élimination de charge. Finalement, parmi les

différents niveaux de précision de l’information sur leseffets secondaires, une analyse rela-

tivement simple est habituellement suffisante pour obtenirla plupart des montées en vitesse.
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Chapter 1

Introduction

1.1 Motivation

Over the past several years, just-in-time (JIT) compilers have enabled impressive improve-

ments in the execution of Java code, mainly through local andintra-procedural optimiza-

tions, speculative inter-procedural optimizations, and efficient implementation techniques.

However, JITs do not generally make use of whole-program analysis information, such as

conservative call graphs, points-to information, or side-effect information, because it is too

costly to compute it each time a program is executed.

Side-effect analysis provides an approximation of the set of memory locations that each

instruction may read or write. This analysis can optimize code by eliminating redundant

loads and stores in the presence of method calls. It can also improve precision of other

intra-procedural analyses, which in turn may enable various other optimizations. Since all

non-trivial data types in Java are objects which are always accessed through indirect ref-

erences (pointers), one would expect optimizations using side-effect information to enable

significant further improvements in the performance of Javaprograms.

The purpose of the study presented in this thesis is to answerthree key questions. First,

is side-effect information useful for the optimizations performed in a modern JIT, and can

it significantly improve performance? Second, what level ofprecision of the side-effect

information and the underlying analyses used to compute it is required to obtain these per-

formance improvements? Third, which optimizations benefitmost from side-effect analysis

1



Introduction

and where in the code does it make a difference?

To study these questions, we used the SOOT [VRGH+00] bytecode analysis, opti-

mization, and annotation framework, which implements a system consisting of various

ahead-of-time inter-procedural side-effect analyses. SOOT supports three intermediate rep-

resentations that can be used for transforming bytecode at different abstraction levels. The

side-effect analyses computed in SOOT uses Jimple as its intermediate representation. The

simplest, least precise side-effect analysis computed in Soot uses Class Hierarchy Anal-

ysis (CHA) [DGC95] for an approximation of the call graph andmethod summaries of

fields read and written. More precise (though more expensive) side-effect analyses make

use of call graph and points-to information computed by SPARK [Lho02, LH03]. SPARK

is the points-to analysis framework component of SOOT that is used to estimate the set of

locations in memory that a Java reference variable can pointto.

The SOOT framework also supports the embedding of user-defined attributes in Java

class files through its annotation framework [PQVR+01]. These attributes are used to en-

code optimization information that is determined during a static analysis of the program.

JIT compilers have in the past used such information in optimizations such as array bounds

check elimination and null pointer check elimination. In this thesis, we are interested in

encoding side-effect information in class file attributes,and apply it in various optimiza-

tions of a JIT compiler. We chose the Jikes Research Virtual Machine (RVM) [AAB+00],

an open source research software written in Java that can execute Java programs, as the JIT

for our study.

1.2 Contributions

The contributions of this thesis are the following:

• We review in detail the different side-effect analyses implemented in SOOT, and

the call graph and points-to analyses computed by SPARK that a side-effect analysis

relies on.

• To our knowledge, this is the first study of the run-time performance improvements

obtainable by taking advantage of side-effect informationin a range of optimizations

2



1.2. Contributions

in a Java JIT.

• We present empirical evidence that the availability of side-effect information in a

Java JIT can enable significant performance improvements ofup to 20%.

• We present an analysis of the speedups obtained by pointing out the optimizations

that benefit most from side-effect information and where in the code these optimiza-

tions achieve speedups.

In the following subsections, we describe in more detail each of these contributions.

1.2.1 Side-Effect Analysis in Soot

We first review the two inter-procedural analyses that a side-effect analysis depends on in

SOOT :

• Call Graph Construction (Section 3.1)

• Points-to Analysis (Section 3.2)

We then explain how Soot computes side-effect analysis in Section 3.3. We present

how side-effect information is encoded in class file attributes and the method it uses to

reduce the attribute’s size in Section 3.4. We describe the different side-effect variations

and their relative precision, and show examples of optimizations that can be performed

with the different analyses in Section 3.5.

1.2.2 Implementation

To take advantage of side-effect analysis, we made several modifications to Jikes RVM. We

added code to read in the side-effect information produced in our analysis. We then modi-

fied the following analyses and optimizations to take advantage of side-effect information:

• Local Common Sub-Expression Elimination (Section 4.1)

• Heap Array SSA Construction (Section 4.2)

3
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• Redundant Load Elimination (Section 4.2)

• Loop-Invariant Code Motion (Section 4.3)

We provide a description of each of these analyses and optimizations in Sections 4.1

to 4.3, and explain how these can benefit from side-effect analysis. We describe the modifi-

cations that we made and show examples of improvements enabled by the use of side-effect

information in the optimizations adapted. We explain how wedealt with method inlining

when using side-effect information in Section 4.4. Finally, to measure the effect of the

availability of side-effect analysis in these optimizations, we inserted instrumentation code

in Jikes RVM both to count the static opportunities for performing optimizations, and the

dynamic effects on the improved optimizations.

1.2.3 Experiments

We performed experiments on the use of side-effect information in local and global opti-

mizations on three different architectures (Intel, AMD andPowerPC). The different sys-

tems and benchmarks used in our experiments are described indetail in Chapter 5.

The results for local optimizations (only local CSE makes use of side-effect analysis)

are presented in Section 6.1. Our experiments show that static opportunities for load elim-

ination increased by up to 41%, but only resulted in a decrease of up to 0.87% of dynamic

loads. This produced speedups inmpegaudioof 1.08x and 1.06x on our Intel and AMD sys-

tems, and 1.02x forraytraceon both of these systems. On PowerPC, the use of side-effect

information did not enable speedups. Finally, the different side-effect variations produced

identical static and dynamic counts, and as expected, similar execution times. A simple,

inexpensive side-effect analysis thus appears sufficient in local optimizations.

For global optimizations (Section 6.2), all of the optimizations that we modified make

use of side-effect information. The results of the experiments show that the use of side-

effect analysis increased the number of static opportunities for load elimination by up to

98%, and reduces dynamic field read instructions by up to 27%.Side-effect information

enabled speedups of up to 20% for benchmarkscompress, raytrace/mtrtandmpegaudio.

4



1.2. Contributions

Our results also show that although precise analyses provide significantly more optimiza-

tion opportunities when counted statically, most of the dynamic improvement is obtainable

even with relatively simple, imprecise analyses. In particular, a side-effect analysis based

on a call graph constructed using an inexpensive Class Hierarchy Analysis (CHA) already

provides a very significant improvement over not having any side-effect information at

all. This confirms what has been discovered for other languages such as Modula-3 or

C [GH98,DMM98].

1.2.4 Analysis of Speedups

For local optimizations where only local CSE makes use of side-effect analysis, a signifi-

cant speedup was obtained only for benchmarkmpegaudioon our Intel and AMD systems.

We show in which method the additional loads eliminated using side-effect information

improved execution times.

For global optimizations, we show that the availability of side-effect information was

mostly beneficial in the redundant load elimination optimization for the speedups obtained

for benchmarkscompress, raytrace/mtrtandmpegaudio. For each of these benchmarks, we

report the methods in which the use of side-effect analysis made a difference. We present

static and dynamic counts, and execution times of runs when not using side-effect infor-

mation in these methods, and compare them with our results inChapter 6. For benchmarks

compressandmpegaudio, more precise side-effect analyses improved speedups overour

simple (CHA) side-effect analysis. We point out where in thecode the redundant load elim-

ination optimization took advantage of more precise side-effect information. We show that

the additional loads eliminated is due to an improved precision of side-effect information

on array elements. Finally, we note that adding a type-basedanalysis on array elements in

our simple, inexpensive, side-effect analysis would find these load removal opportunities,

and as a result, would produce speedups similar to our most precise side-effect analysis.

5



Introduction

1.3 Thesis Organization

The remainder of this thesis is organized as follows. The next chapter discusses related

work. Chapter 3 is devoted to our side-effect analysis in SOOT, the call graph and points-

to analyses that it depends on, issues with encoding its result in class file attributes, and

the precision variations that we experimented with. In Chapter 4, we describe how we

modified the optimizations in Jikes RVM to take advantage of side-effect information. We

present in Chapter 5 the benchmarks that we used, propertiesabout the benchmarks, and

the environment in which we conducted our experiments. We report our empirical results,

including static and dynamic effects of side-effect information usage in the optimizations

that we modified, and execution times improvements for localand global optimizations in

Chapter 6. We provide an analysis of the speedups obtained inChapter 7, showing which

optimizations benefited most from side-effect informationand where in the code it made a

difference. We conclude with Chapter 8 and discuss future work.

6



Chapter 2

Related Work

In this chapter, we present a survey of the previous work on side-effect analysis. The

first section discusses the computation of summary information for method calls for lan-

guages without pointers, covering the early algorithms of the 1970’s and Banning’s solution

to the side-effect problem which became the conventional framework on which other re-

searchers worked on to improve in the 1980’s. The second section presents recent work

done in the 1990’s and 2000’s on side-effect analysis for languages with general-purpose

pointer usage. This section also discusses the use of side-effect information as a metric in

comparing points-to analyses, and the impact it has statically and dynamically in program

optimizations.

2.1 Summary Information of Procedures

2.1.1 Early Algorithms

Early summary information algorithms for procedure calls dates back to the 1970’s [Spi71,

All74,Ros75,Bar78] and were mainly targeted for the FORTRAN programming language.

This analysis was defined as an inter-procedural dataflow analysis used to summarize the

semantic effects associated with subroutine calls and permitting global flow analysis to

more effectively propagate information through programs.Each statements in a program

was annotated withMOD andREFsets defined as:
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• MOD (s): set containing those variables whose values can bechangedas a result of

executing s.

• REF(s): set containing those variables whose values can beusedas a result of exe-

cuting s.

Summary information was used in various intra-procedural transformations, optimiza-

tions and parallelization. The early algorithms for computing this information differed on

the language features they supported, the information thatthey computed, the precision

of the analysis, their complexity, and whether they used oneor multiple passes over the

program. Some analyses ignored recursion or parameter aliasing [Spi71,All74], were inef-

ficient [Ros75], or did not support the nesting of procedures[HS75,AU77]. The most pow-

erful techniques worked with languages with recursion and sharing of variables through

reference parameters, and was precise up to symbolic computation [Bar78]. The use of

pointers was not supported. All of these techniques were based on some form of transitive

closures of various relationship. A comparison of these algorithms for computing summary

information can be found in Barth’s PhD dissertation [Bar77].

2.1.2 Banning’s Decomposition of the MOD Problem

Several researchers worked on the improvements of the earlyalgorithms for computing

summary information in both complexity and precision [Lom77, Ros79, Ban79]. Ban-

ning [Ban79] presented basic methods, using one pass, to findflow-insensitive side-effects

and possible aliases of variables. He represented the MOD problem as a dataflow prob-

lem over the program’s call multi-graph, which could be solved by efficient techniques

developed for global dataflow analysis. His algorithm was more efficient than previous

work, handled recursion and reference parameters, and was precise up to symbolic com-

putation. The basic methods for computing MOD could also be extended to summarize

flow-sensitive side-effects and cover other features and constructs present in programming

languages. The extensions are covered in Banning’s PhD thesis [Ban78].

To perform the MOD analysis, Banning decomposed the probleminto two separate

components:
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• alias analysis, and

• side-effect computation.

To compute MOD, Banning first computed a set GMOD(p) for everyprocedure or func-

tion p representing the generalized MOD ofp. Secondly, he calculated a set DMOD(s) for

every statements representing the direct MOD ofs. Thus, GMOD sets applied to proce-

dures, and DMOD sets to statements. MOD was then computed using the combination of

these two sets. MOD(s) was simply derived from DMOD(s) by considering the potential

aliases1 due to reference parameters.

2.1.3 Improving Banning’s Framework

Banning’s work on MOD analysis became the conventional framework on which other re-

searchers have worked on its improvements in the 1980’s [Mye80, Mye81, Bur84, Bur90,

CK84,BC86,CR87,CK88b]. Cooper and Kennedy [CK84] presented improvements in the

complexity of computing flow-insensitive summary information by breaking the problem

into two subproblems, a computation for global variables and one for call-by-reference

formal parameters. Combining the solutions to these subproblems solved the original

MOD problem. Using known efficient techniques to solve each of these subproblems,

the MOD analysis could be computed in almost linear time. A few years later, Cooper and

Kennedy [CK88b], again, presented new methods to solve eachof the two subproblems by

using a data structure, known as thebinding multi-graph, to achieve a linear time complex-

ity. Burke [Bur90] then showed that the two subproblems on globals and formals could be

solved more effectively by a similar problem decomposition.

Burke and Cytron [BC86], Triolet, Irgoin, and Feautrier [TIF86], and Callahan and

Kennedy [CK88a] were interested in automatically restructuring sequential programs on

parallel architectures to improve performance, mainly by scheduling loop iterations con-

currently on multiple processors. When an array element wasmodified by a procedure

call, current inter-procedural side-effect analyses conservatively assumed that the entire

1Two variables are potentially aliased to each other if the analysis considers that they could access the
same memory location through a reference to either of them ata given point in the execution of a program.
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array could be modified by the call. Within a loop, in this case, all elements of an array ap-

peared to be referenced in each iteration. This much restricted the parallelization of loops

containing calls. Studies were thus conducted to integratesubscript analysis with alias-

ing and to implement inter-procedural dataflow analysis to compute side-effects of method

calls on subscripted references (individual array elements).

Ryder and Carroll [CR87] studied incremental algorithms for large, complex, and dy-

namically evolving systems. They presented an incrementalinterval algorithm for MOD

analysis that could compute an updated side-effects solution in response to a change in the

system rather than recalculating it in its entirety.

2.2 Side-Effects for Languages with Pointers

Existing techniques for the computation of side-effect information could handle call-by-

reference induced aliasing but did not support the use of pointers. This was insufficient to

perform aggressive transformations and optimizations in languages with general-purpose

pointer usage. Choi, Burke and Carini [CBC93] were the first to show that conventional

methods for side-effect analysis based on the decomposition in Banning’s framework could

not handle the presence of pointers correctly. They illustrated with examples that side-

effect analysis could not be performed separately from alias analysis for languages with

pointers. They mentioned an algorithm that could compute side-effects and that supported

pointers, including passing of pointers as reference or value parameters. However, they did

not provide a description of the algorithm or present implementation results. Landi, Ryder

and Zhang [LRZ93] were the first to present a complete design and implementation of an

inter-procedural modification side-effects algorithm forC programs that could handle the

presence of general-purpose pointers.

Early side-effect analyses for languages with pointers by Choi, Burke and Carini [CBC93]

and Landi, Ryder and Zhang [LRZ93] made use of may-alias analysis to distinguish reads

and writes to locations known to be different. These analyses were mainly targeted at anal-

ysis of C, so the call graph was assumed to be mostly static. Therefore, in comparison with

our work, in that setting, the information about pointers was most important, while the call
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graph was much easier to compute.

While prior work used the notion of alias-pairs analysis, Hendrenet al. took a different

approach and introduced thepoints-toabstraction in their McCAT C Compiler [HDE+93,

EGH94]. This method computes relationships between abstract memory locations. This

analysis can provide points-to information based on the reads and writes abstract locations

computed, and can be used directly in other transformationsand optimizations. The fol-

lowing section discusses previous work on points-to analyses that used side-effect analysis

to evaluate its precision and effectiveness.

2.2.1 Evaluating Points-to Analyses

To evaluate and compare the precision of various point-to analyses, researchers measured

its effect on the precision of side-effect information, a client analysis, by reporting the size

of the points-to sets at indirect memory access instructions (i.e. *p= ) [EGH94, Ruf95,

RR01, RMR01, MRR02]. Other points-to analysis work [LRZ93,Oli97, MSH97, SRLZ98,

HP00, RLS+01] takes this evaluation one step further, by also computing read and write

sets summarizing the effects of entire methods, rather thanjust individual statements, and

propagating this information along the call graph. This is similar to the read and write set

computation we mention in Section 3.3.

Landi, Ryder and Zhang [LRZ93] measured the average and maximum number of side-

effects found per assignment through pointer dereference (*p= ), per procedure and per

call site. They found that for their set of C programs, the number of locations assigned

values per assignment statement through dereference pointer variable was on average 1.2.

Thus, in most cases, there was only one alias for such variable at a given program point.

However, their analysis excluded certain features of the C programming language such

as union types, casting, pointers to functions, exception handling,setjumpand longjump.

In our experiments, we found that performing a context-insensitive points-to analysis to

distinguish differentobjectsin our set of Java benchmarks provided little benefit. This

result also leads us to believe that on average, the number ofpossible aliases for a given

variable is low.
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Emami, Ghiya and Hendren [EGH94] presented thepoints-toabstraction implemen-

tation and results in the McCAT C Compiler framework [HGMS91]. They also showed

how to compute the program’s call graph and points-to analysis together. Their points-to

analysis was context-sensitive, including recursive and mutually-recursive calling contexts,

and handled general function pointers in C. They measured possible and definite points-to

information at indirect references. For their set of benchmarks, their results showed that

the overall average number of locations pointed to by a dereference pointer was 1.13, indi-

cating that their points-to analysis was very precise.

Ruf [Ruf95] studied the empirical benefits of context-sensitive points-to analyses over

context-insensitive ones. He calculated points-to pairs reaching the location of inputs of

indirect memory reads or stores. His results showed that context-sensitivity offered no

benefit or improved precision on his set of C benchmarks programs. However, Ruf warned

that this result, somewhat surprising, might only apply to his set of benchmarks and that

for larger programs, context-sensitive analyses may be beneficial.

Olivar [Oli97] implemented a side-effect analysis based onthe type inference points-to

algorithm by Steensgaard [Ste96] in the McCAT C compiler framework [HGMS91]. She

compared the read and write sets computed using this algorithm with the context-sensitive

points-to analysis [EGH94] implemented in McCAT. Her results showed that having a sim-

ple side-effect analysis over having none was very beneficial. The benefits of having a more

precise side-effect analysis over a simple one were smaller. This result agrees with our run-

time measurements, where we found that our simple side-effect analysis was sufficient to

obtain most of the speedups.

Shapiro and Horwitz [MSH97] studied the effects of the relative accuracies of different

points-to analysis algorithms on various subsequent analyses including MOD analysis. To

determine whether and how much the choice of points-to analysis affects MOD analysis,

they measured the sum of the sizes of the MOD sets for each function and the time to

perform the MOD analysis. Their results showed that the sizeof MOD sets increased by

about 70% when the size of points-to sets doubled on average.They also observed that a

more precise points-to analysis leads to a faster MOD computation (since points-to sets are

smaller). Still, the total time to perform both points-to analysis and side-effect computation

was smaller using an imprecise but fast points-to algorithm.
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Stocks, Ryder, Landi and Zhang [SRLZ98,RLS+01] reported comparative experiments

on the effectiveness of a context-sensitive flow-sensitivepoints-to analysis versus a context-

insensitive flow-insensitive one with respect to precisionand scalability on the modification

side-effects problem for C. On a large set of C programs, theygathered empirical mea-

surements of the precision of the analysis at pointer dereference statements (*p= ) and at

function call statements. They noted that although the lossin accuracy of using a context-

insensitive flow-insensitive analysis is a strong concern,the analysis provides a significant

gain over worst-case assumptions and can be adequate for certain applications. Our run-

time measurements confirm this result. They also concluded that a context-sensitive flow-

sensitive analysis yields significant precision improvements at the expense of much greater

complexity.

Hind and Pioli [HP00] compared the effectiveness of five pointer analysis algorithms on

C programs. The analyses were context-insensitive and varied in their use of control flow

and alias data structures. They measured the precision of the analyses and how the com-

puted solution affects various client analyses of pointer information including side-effect

analysis. Their empirical experiments reported the average MOD and REF size sets at each

nodes in the control flow graph. Their results showed that thedifference in precision of the

side-effect information resulting from the various context-insensitive analyses was mini-

mal. In our experiments, we also found that the various context-insensitive flow-insensitive

points-to analyses used to compute side-effect information were about equivalent.

More recent work on the Java programming language also measured the precision of

points-to analyses by reporting the size of the points-to sets at field read and write instruc-

tions [RMR01,MRR02]. Rountev and Ryder [RR01] evaluated their points-to analysis for

precompiled libraries in this way. Rountev, Milanova and Ryder [RMR01] presented a

points-to analysis for Java based on Andersen’s points-to analysis for C [And94] using an-

notated inclusion constraints. Their results on a large setof Java programs showed that the

points-to analysis solution has a significant impact on which objects may be read or writ-

ten by program statements (object read-write information). Later, they performed similar

measurements to evaluate object-sensitivity, a new form ofcontext-sensitivity for flow-

insensitive points-to analysis for Java [MRR02]. The precision improvements of object-

sensitivity analysis over context-insensitive analysis significantly improved the precision
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of MOD information by reducing the number of modified objectsper statement. The im-

pact on execution time of using context-sensitive side-effect analysis in JIT optimizations

is one of our areas for future work.

2.2.2 Impact of Side-Effect Analysis in Optimizations

When evaluating the effectiveness of points-to analyses, most researchers have used the

common metric of average points-to set size at indirect reador write statements or at func-

tion calls. This metric only provides static results. This measure is thus not sufficient to

understand the impact of using these analyses in optimizations has on achievable run-time

performance improvements. Studies measuring the actual run-time impact of code opti-

mized using side-effect information are surprisingly rare. We discuss them below.

Clausen’s [Cla97] side-effect analysis for Java was based on a call graph constructed

with a CHA-like analysis, but it did not use any pointer information. This analysis com-

puted read and write information for each field, ignoring which specific object contained

the field read or written. In comparison with our work, Clausen’s analysis is most similar

to our CHA-based side-effect analysis. Clausen applied hisanalysis results in an ahead-

of-time early Java bytecode optimizer to a similar set of optimizations as we did: dead

code removal, loop invariant removal, constant propagation, and common sub-expression

elimination. For one benchmark, he obtained a speedup of 25%. However, his experiments

were run using JDK 1.0.2, one of the earliest Java virtual machines which did not have a

just-in-time compiler to perform aggressive optimizations like modern JVMs have today.

Ghiya and Hendren [GH98] measured the effectiveness of side-effect information on

the run-time efficiency of code produced by an optimizing compiler for C. They used

side-effect analysis in traditional analyses like common sub-expression elimination, loop-

invariant removal, location-invariant removal (similar to the scalar replacement technique

for array references), and array dependence testing. On a set of pointer intensive C bench-

marks, they obtained up to 10% speedups. They observed that areduction in memory

references and instructions executed always translated into a speedup, but that there was

no direct correlation between this reduction and the percentage of performance improve-

ments. Our results also showed that the speedups obtained for our set of benchmarks is not
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in proportion with the percentage of dynamic loads eliminated.

Diwan, McKinley and Moss [DMM98] studied a version of redundant load elimination

(RLE) which combines loop-invariant code motion and commonsub-expression elimina-

tion of memory references in Modula-3. They used declared types to conservatively ap-

proximate aliasing relationships, and method read/write set summaries. They obtained up

to 8% speedups when using their most precise type-based alias analysis. They noted that

they expect RLE to be a profitable optimization since loads are expensive on modern ma-

chines and architects expect they will only get more expensive [HP95]. In our experiments,

we found that using side-effect information in RLE had the largest impact on benchmarks

with high load densities. The results of Diwanet al. on Modula-3 and Ghiyaet al. on C are

comparable to ours on Java. In particular, all three studiesshow that significant run-time

improvements are possible, and that even simple, imprecisealias information enables many

of the improvements. They show that for a type-safe languages like Modula-3 and Java, a

fast and simple alias analysis may be sufficient for many applications.

Debray, Muth and Weippert [DMW98] presented an alias analysis and evaluated their

algorithm by measuring the percentage reduction in dynamicloads when using this analy-

sis in a redundant load elimination optimization. However,they did not provide execution

time measurements. Their results showed that local alias analysis provided none to small

improvements, but for global alias analysis, it produced a reduction of up to 7% of dy-

namic loads. Similarly, we concluded that side-effect analysis has little impact on local

optimizations, but improves significantly global optimizations.

Razafimahefa [Raz99] performed loop invariant code motion using side-effect infor-

mation on Java in an ahead-of-time bytecode optimizer, and reported run-time speedups

comparable with ours on an early-generation Java VM (up to 20%). He observed that

many invariant expressions were not moved due to the context-insensitive nature of the

analysis, and that a context-sensitive side-effect analysis would be beneficial.

Cheng and Hwu [CH00] performed a study of the impact of memorydisambiguation

on optimizations such as redundant load and store elimination, loop-invariant memory ac-

cess migration, and load and store scheduling. They performed experiments on numerous

C benchmarks using fully resolved pointers and function side-effects. Their empirical re-

sults using the SPECcint92 and SPECcint95 benchmarks suiteproduced a reduction of up
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to 40% of dynamic loads, and speedups of 42% on average (in large part due to the load

and store scheduling optimization). The performance gainsthat they obtained were over

programs compiled without pointer analysis, side-effect analysis and memory access op-

timizations. Although we obtained smaller speedups on our set of Java programs (up to

20%), we note that the base that they used for comparison is much more conservative than

ours. Our base includes some form of memory disambiguation using types and global value

numbering.

Ghiya, Lavery and Sehr [GLS01] evaluated the benefits of a complete memory dis-

ambiguation framework in transformations and optimizations, and its impact on program

performance. Their framework includes numerous techniques including pointer analysis,

and MOD and REF analyses for function calls. They compared performance improve-

ments achievable using several memory disambiguation techniques and obtained up to 26%

speedups on the SPECcint2000 C benchmarks. They also concluded that there was no di-

rect correlation between the static improvements and the performance gains.

Pechtchanski and Sarkar [PS02] presented a preliminary study of a framework which

allows programmers to provide annotations indicating absence of side-effects. Like our

side-effect information, these annotations are communicated to Jikes RVM in class file at-

tributes and used to improve the redundant load eliminationand loop-invariant code motion

optimizations. Only limited, preliminary, empirical results of the effect of these annotations

are provided, and verification of the correctness of the programmer-provided annotations

has yet to be done.

Chowdhury, Djeu, Cahoon, Burrill and McKinley [CDC+04] studied the effect of alias

analysis precision on the number of optimization opportunities for a range of scalar op-

timizations. However, they only measured the static numberof optimizations performed

(rather than their run-time effect), and their benchmarks are mostly pointer-free C pro-

grams, some translated directly from FORTRAN, so they found, unsurprisingly, that alias

analysis precision had little effect. Other work studying the effect of alias analysis on

scalar optimizations also suggests that a simple alias analysis may be sufficient [DLFR01,

DMM01].

In summary, existing work on other languages largely agreeswith our findings on Java.
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Some side-effect information is useful for real run-time improvements from compiler op-

timizations. Although precision of the underlying analyses tends to have large effects on

static counts of optimization opportunities, the effects on dynamic behaviour are much

smaller; even simple analyses provide most of the improvement. Distinctions of our work

from previous work are that we provide a study of run-time effects of side-effect infor-

mation on Java, and that we show how to communicate analysis results from an off-line

analyzer to a JIT.
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Chapter 3

Background

In this chapter, we review the implementation of side-effect analysis in SOOT [VRGH+00],

a framework for analyzing, optimizing, and annotating Javabytecode. The side-effect anal-

ysis depends on two other inter-procedural analyses, call graph construction and points-to

analysis. We describe the construction of the call graph in SOOT in Section 3.1. An im-

portant difference from most other work on call graph construction is that to obtain a con-

servative side-effect analysis, the call graph must include all methods invoked, including

those invoked implicitly by the Java VM. In Section 3.2, we briefly explain the output of

the SPARK points-to analysis framework [Lho02, LH03]. Section 3.3 explains how the

information from these two analyses is put together to produce side-effect information.

In Section 3.4, we briefly note some issues with encoding the side-effect analysis results

in class file attributes to communicate them to the JIT. Finally, in Section 3.5, we describe

how variations in the precision of the call graph and points-to analyses affect the side-effect

information.

3.1 Call Graph Construction

To perform an inter-procedural analysis on a Java program, information about the possible

targets of method calls is required. This information is approximated by a call graph, which

maps each statements to a setcg(s) containing every method that may be called froms.

Constructing a call graph for a Java program is complicated by the fact that most calls in
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Java are virtual, so the target method of the call depends on the run-time type of the receiver

object.

In our study, we compared two different methods in SPARK of computing call graphs.

First, we used call graphs computed using Class Hierarchy Analysis (CHA) [DGC95],

an inexpensive method which considers only the static type of each receiver object, and

does not require any inter-procedural analysis. Second, weused SPARK points-to analysis

(discussed in the next section) to compute the run-time types of the objects that the receiver

of each call site could point to, and to determine the target method that would be invoked

for each run-time receiver type.

Several important, but subtle, details of the Java virtual machine (VM) complicate the

construction of a conservative call graph suitable for side-effect analysis. In a Java program,

methods may be invoked not only due to explicit invoke instructions, but also implicitly due

to various events in the VM. Whenever a new class is first used,the VM implicitly calls its

static initialization method. The set of events that may cause a static initialization method

to be called is specified in [LY99, Section 2.17.4]. The SPARK analysis assumes that any of

these events could cause the corresponding static initialization method to be invoked. Each

static initialization method is executed at most once in a given run of a Java program. There-

fore, SPARK uses an intra-procedural flow-sensitive analysis to eliminate spurious calls to

static initialization methods which must have already beencalled on every path from the be-

ginning of the method. In addition, the standard class library often invokes methods using

the doPrivileged methods ofjava.security.AccessController . SPARK

models these with calls of therun method of the argument passed todoPrivileged .

Methods may also be invoked using reflection. In general, it is not possible to determine

statically which methods will be invoked reflectively, and SPARK’s analysis only issues a

warning if it finds a reachable call to one of the reflection methods. However, calls to the

newInstance method ofjava.lang.Class are so common that they merit special

treatment. This method creates a new object and calls its constructor. SPARK conser-

vatively assumes that any object could be created, and therefore any constructor with no

parameters could be invoked.

To partially verify the correctness of the computed call graph by SPARK, we instru-

mented the code to ensure that all methods that are executed at run time were included in
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the call graph and reachable from the entry points. To do this, we computed the set of

methods that are not reachable from the entry points throughthe call graph, and modified

them to abort the execution of the benchmark if they do get invoked at run time. Although

this does not prove that every possible run-time call edge isincluded in the computed call

graph, it does guarantee that every executed method is considered in call graph construc-

tion. To further check that our overall optimizations were conservative on the benchmarks

studied, we verified that the benchmarks produced identicaloutput in all configurations,

including with the optimizations disabled.

3.2 Points-to Analysis

We use the SPARK [Lho02, LH03] points-to analysis framework to compute points-to in-

formation. For eachpointer p in the program, SPARK computes a setpt(p) of objectsto

which it may point. The most common kind ofpointer is a local variable of reference type

in the Jimple representation of the code. Local variables appear in field read and write

instructions as pointers to the object whose field is to be read or written, and in method

invocation instructions as the receiver of the method call,which determines the method to

be invoked. In addition,pointersare introduced to represent method arguments and return

values, static fields, and special values needed in simulating the effects on pointers of na-

tive methods in the standard class library. Typically, anobjectis an allocation site; SPARK

models all run-time objects created at a given allocation site as a single entity. In addition,

specialobjectsmust be included for run-time objects without an allocationsite, such as

objects created by the VM (the argument array to the main method, the main thread, the

default class loader) and objects created using reflection.For some of these specialobjects,

the exact run-time type may not be known. Therefore, SPARK conservatively assumes that

their run-time type may be any subtype of their declared type.

SPARK performs a flow-insensitive, context-insensitive, subset-based points-to analysis

by propagatingobjectsfrom their allocation sites through allpointersthrough which they

may flow. SPARK has many parameters for experimenting with variations of the analy-

sis that affect analysis efficiency and precision. In this study, we experimented with four
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points-to analysis variations. We explain the variations in more detail in Section 3.5.

3.3 Side-Effect Analysis

SOOT’s side-effect analysis consists of two steps, which are discussed in this section. First,

a read and write set for each statement is computed. Second, the read and write sets are

used to compute dependencies between all pairs of statements within each method.

For each statements, SPARK computes setsread(s) andwrite(s) containing every static

field s f read (written) bys, and a pair(o, f ) for every field f of object othat may be read

(written) by s. These sets also include fields read (written) by all code executed during

execution ofs, including any other methods that may be called, directly ortransitively. The

read and write sets are computed in two steps. In the first step, only the direct read and write

sets for each statement in the program are computed, ignoring any code that may be called

from the statement. The result of the points-to analysis is used to determine the possible

objects being pointed to by the pointer in each field read or write instruction. In the second

step, the read and write sets of each method are continually aggregated and propagated to

all call sites of the method, until a fixed-point is reached. During the propagation, the call

graph is used to determine the call sites of each method.

Once the read and write sets for all statements have been computed, for each method,

an interference relation between all the read and write setsin the method is computed:

int(m) = {(set1,set2) | set1∩ set2 6= /0}. The interference relation is mapped on read and

write sets to four dependence relations between statements(read-read dependence, read-

write dependence, write-read dependence, write-write dependence). For example, there is

a read-write dependence between statementss1 ands2 if (read(s1),write(s2)) ∈ int(m). It

is the dependences between statements that are encoded in class files for the JIT to use in

performing optimizations.
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3.4 Encoding Side-Effects in Class File Attributes

All of the SPARK analyses described in the preceding sections are performedon Jimple,

the three-address intermediate representation (IR) used in SOOT. In order to communicate

the analysis results to a JIT, SPARK must convert them to refer to bytecode instructions

during the translation of Jimple to bytecode. SOOT includes a universal tagging frame-

work [PQVR+01] that propagates analysis information through its various IRs, and en-

codes it in class file attributes. An important complicationin this process is that one Jimple

statement may be converted to multiple bytecode instructions. However, Jimple is low-

level enough that whenever a Jimple instruction has side-effects, exactly one of the byte-

code instructions generated for it has those side-effects.Therefore, for each type of Jimple

instruction, SPARK identifies the relevant bytecode instruction to the taggingframework,

and it attaches the side-effect information to that instruction.

Another complication in communicating the side-effect information is that some meth-

ods have a large number of statements with side-effects. Since the dependence relations

may have size quadratic in the number of instructions with side-effects, a naive encoding

of the dependence relations is sometimes unacceptably large. However, many of the read

and write sets in the method are identical. Therefore, a level of indirection is added. In-

stead of expressing the dependence relations in terms of statements, SPARK enumerates all

distinct read and write sets, and expresses the dependence relations between those sets. For

each statement, SPARK indicates which set it reads and writes. The resulting encoding has

sizeΘ(m2 +n), wheren is the number of statements, andm is the number of unique sets.

In his M.Sc. thesis [Lho02, Sections 6.2.2 and 6.2.6], Lhot´ak observed that this encoding

limits the annotation size to acceptable levels.

Figure 3.1 shows the side-effect attribute format in class files. Each method is asso-

ciated with two attributes. The first one,SideEffectAttribute , maps each byte-

code that has side-effects to a read and write set. The extra byte contains a bit that indi-

cates whether a bytecode explicitly or implicitly invokes anative method, and other bits

for future use. For our purpose, we did not use this extra byte. The second attribute,

DependenceGraph , denotes which sets interfere.
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SideEffectAttribute:

BytecodeOffset ReadSet WriteSet ExtraByte

(2 bytes) (2 bytes) (2 bytes) (1 byte)

DependenceGraph:

Set Set

(2 bytes) (2 bytes)

Figure 3.1: Side-Effect Attribute Format

In Figure 3.2, we show sample code and the resulting encodingof side-effect infor-

mation. Methodfoo contains instructions that, once compiled, would be represented

by a putfieldand twoinvokevirtualbytecodes at offset 2, 6 and 10. Since only theput-

field and invokevirtualbytecodes at offset 2 and 6 have side-effects (a.nothing() has

none), only two entries appear in theSideEffectAttribute of methodfoo . For

both of these, the read set value is -1 (they do not read anything), and their write set values

are 0 and 1 respectively. Since these two write sets interfere (both contain fieldf ), the

DependenceGraph attribute denotes a write-write dependence between sets 0 and 1.

3.5 Analysis Variations

In our empirical study presented in Chapter 6, we compare theeffectiveness of six

variations of side-effect analyses in Soot. In this section, we explain the differences be-

tween these variations. In Figure 3.3, we present examples of code that distinguishes the

variations: it may be optimized only if the information provided by specific variations is

available. In line 28, the code writes a constant to the fieldb.f . In line 30, the constant is

read out again. Our goal is to optimize away the constant fieldread. If we substitute each

of the code snippets(a) through(e)on the right of Figure 3.3 for line 29, the resulting code

will never change the value (4) loaded in line 30. However, analyses of different precision

are required to prove that the code snippets do not have side-effects affecting the value of
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class A {

int f;

void setF( int n ) { this.f = n; }

void nothing() {}

void foo( A a ) {

a.f = 4; // Offset 2: putfield

a.setF( 3 ); // Offset 6: invokevirtual

a.nothing(); // Offset 10: invokevirtual

}

}

SideEffectAttribute (method foo):

Offset ReadSet WriteSet

2 -1 0

6 -1 1

DependenceGraph (method foo):

Set Set

0 1

Figure 3.2: Example of Side-Effect Attribute
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1 class Box {

2 A a;

3 }

4 abstract class A {

5 int f;

6 abstract void nothing();

7 abstract void maybe();

8 abstract void setF();

9 abstract A id();

10 }

11 class B extends A {

12 void nothing() {}

13 void maybe() { this.f = 1; }

14 void setF() { this.f = 2; }

15 A id() { return this; }

16 }

17 class C extends A {

18 void nothing() {}

19 void maybe() {}

20 void setF() { this.f = 3; }

21 A id() { return this; }

22 }

23 class Main {

24 public static void main(String[] args) {

25 new Main().run(new B(), new C());

26 }

27 void run(A b, A c) {

28 b.f = 4;

29 // insert possible side-effect here

30 int n = b.f; // eliminate this load

31 }

32 }

(a)

1

(b)

1 c.nothing();

(c)

1 c.maybe();

(d)

1 Box b1 = new Box();

2 Box b2 = new Box();

3

4 b1.a = c;

5 b2.a = b;

6

7 c = b1.a;

8 c.setF();

(e)

1 c = c.id();

2 b = b.id();

3 c.maybe();

Figure 3.3: Code Examples
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b.f . Figure 3.4 gives an overview of the relative precision of the variations, with precision

increasing from bottom to top. After each variation, we listthe subset of the code snippets

that can be optimized using the information provided by the variation.

otf-fs {abcde}

otf-fb {abcd} aot-fs {abce}

aot-fb {abc}

CHA {ab}

none {a}

Figure 3.4: Relative Precision of Analysis Variations

For the first variation,none, we compute no side-effect information at all, and rely only

on the internal analysis in the Jikes RVM JIT for optimizations. In this case, Jikes RVM is

able to remove the read in line 30 only when the empty snippet (a) is inserted at line 29.

The JIT determines that the field being loaded is the same as the field to which the constant

was written, and since no statements have been executed since the write, the value could

not have been affected. However, as soon as we insert any method call between the write

and read (in each of the code snippets (b) through (e)), the JIT cannot optimize the read,

because it knows nothing about the side-effects of the method called.

Our second variation,CHA, is to compute side-effects using a call graph, but without

performing any points-to analysis. We construct the call graph using CHA, as described in

Section 3.1. In this case, we can optimize code snippet (b), because the analysis determines

that the callc.nothing() calls the methodnothing() in either classB or C, and

neither of these methods write to fieldf . However, for the call tomaybe() in snippet (c),

CHA cannot tell which of the twomaybe() methods will be invoked. SinceB.maybe()

writes to fieldf , the analysis conservatively assumes thatb.f may be overwritten, and

prevents the optimization.

The remaining variations all take advantage of points-to analysis information to com-

pute side-effects. The differences between them are whether the points-to analysis is
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field-based (fb) or field-sensitive (fs), and whether it uses a call graph computed ahead-of-

time (aot), or whether it computes its own call graph on-the-fly (otf). All of the points-to

analysis variations determine thatc can only be of run-time typeB. Therefore, the call to

c.maybe() does not write to fieldf , so the read in line 30 can be optimized when code

snippet (c) is inserted into line 29.

The distinction between a field-based and field-sensitive analysis defines how the points-

to analysis treats pointer flow through fields of heap objects. In a field-based analysis, each

field is treated as apointerwith a single points-to set, i.e. the object to which a field belongs

to is not considered. Thus, it is assumed that anyob ject stored into a fieldf (regardless

of the object it is part of) may be retrieved from fieldf of any object. On the other hand,

a field-sensitive analysis computes a separate points-to set for each pair(ob ject, f ield).

Therefore, if anob ject is written tob1.a and a different object is written tob2.a , and if

b1 andb2 are known to not be aliases, then a field-sensitive analysis determines thatb1.a

andb2.a point to different objects. In contrast, a field-based analysis does not make this

distinction because it considers only the fielda, and ignores theobjects(b1 andb2). This

is illustrated by code snippet (d). In the code,c is stored and later on read out ofb1.a , and

b is stored intob2.a . A field-based points-to analysis cannot distinguish between the field

a of the two different boxesb1 andb2 , and therefore assumes thatc andb could point to

the same object, sob.f could be written to at the end of the code snippet. A field-sensitive

analysis, on the other hand, proves that whenc read out of fielda of box b1 , it is distinct

from b, and so the call toc.setF() does not affect the value ofb.f .

In order to propagate points-to sets inter-procedurally, apoints-to analysis requires an

approximation of the call graph. However, the points-to analysis can be used to build the

call graph. One solution to this circular dependency is to build an imprecise call graph

ahead-of-time using CHA, only for the use of the points-to analysis. After the points-to

analysis completes, the points-to information is used to construct a more precise call graph

to be used in the side-effect analysis. The other alternative is to build the call graph on-

the-fly as the points-to analysis proceeds: as points-to sets grow, edges are added to the

call graph. Results from prior work [LH03] show the latter approach to be more costly, but

to produce more precise results. The difference in precision is illustrated by code snippet

(e). In the code,c andb are passed through identity methods that return themselves. An
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ahead-of-time CHA-based call graph says that eachid() method calls may call either

of the two id() methods, so both objects end up in the points-to sets of bothc andb.

Therefore, the analysis cannot determine that the call toc.maybe() will not change

b.f . However, if the analysis builds the call graph on-the-fly, the call graph only contains

the single correct target method for each of theid() method calls, and the object pointed

to byb does not flow into the points-to set ofc . The analysis therefore determines that the

call toc.maybe() does not write tob.f , and the load may be eliminated.
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Chapter 4

Optimizations Enabled in Jikes RVM

The JIT compiler that we modified to make use of side-effect information is the Jikes

Research Virtual Machine (RVM) [AAB+00]. Jikes RVM is an open source research plat-

form for executing Java bytecode. It includes three levels of JIT optimizations: level 0

(dataflow basics), level 1 (flow-insensitive, inlining, commoning) and level 2 (advanced).

We adapted three optimizations in Jikes RVM to make use of side-effect information. The

first one is local common sub-expression elimination (CSE),a level 1 optimization, and the

other two are redundant load elimination (RLE) and loop-invariant code motion (LICM),

both level 2 optimizations. Sections 4.1 to 4.3 describe each of these optimizations and

the changes that we made. Because side-effect information refers to the original bytecode

of a method, bytecodes that come from an inlined method need to be treated specially.

Section 4.4 describes how we dealt with this case.

4.1 Local Common Sub-Expression Elimination

The first optimization in Jikes RVM that we modified to make useof side-effect information

is local CSE. This optimization is only performed within a basic block. The algorithm

for performing CSE on fields is described in Figure 4.1. A cache is used to store the

available field expressions. The algorithm iterates over all instructions in a basic block,

and processes them. There are two parts in this process. The first is to try to replace

eachgetfieldor getstaticinstructions encountered by an available expression. If one is
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available, it is assigned to a temporary variable and thegetfieldor getstaticinstruction is

replaced by a copy of the temporary. If none is available, a field expression is added to the

cache for thegetfieldor getstaticinstruction. For everyputfieldandputstaticinstruction,

an associated field expression is also added to the cache. Thesecond part is to update the

cache according to which expressions the current instruction kills. A putfieldor putstatic

instruction of a field, say X, will remove any expression in the cache associated with field

X (the algorithm conservatively assumes that any object references may be aliased). A call

or synchronization instruction kills all expressions in the cache.

In this algorithm, we used side-effect information to reduce the set of expressions killed

(lines 20 and 22 in Figure 4.1). When the current instructionis aputfield, putstaticor a call,

we only remove from the cache entries that have a read-write or write-write dependence

with the current instruction in the side-effect analysis.

An example is shown in Figure 4.2. Without side-effect information, the compiler

would conservatively assume that statementobj2.x = 10 could write to memory loca-

tion obj1.x and that the call tonothing() could write to any memory location. In

contrast, the side-effect analysis would specify that there is no dependence between these

instructions, and thus enable the replacement of the load ofobj1.x on line 7 by an avail-

able expression (line 4).

4.2 Redundant Load Elimination

The redundant load elimination algorithm relies on extended Array SSA (also known as

Heap Array SSA or Heap SSA) [FKS00] and Global Value Numbering [AWZ88]. We

explain the general idea of the algorithm below. For a detailed description, please refer

to [FKS00].

The algorithm transforms the IR into heap SSA form. A heap array is created for each

object field. The object reference is used as the index into this heap array. For example, in

the code of Figure 4.3, there are two heap arrays, X and Y. On line 4, ”heap Array X [a] =

exp1” means that a store is performed in heap array X at indexa (the object reference).

After the transformation to heap SSA form is completed, global value numbers are
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1: for each basic block bbdo

2: cache = createNewEmptyCache();

3:

4: for each instruction s in bbdo

5: if isVolatileFieldLoadOrStore( s )then

6: continue

7:

8: // Part 1: try to replace s by an available expression, and update cache

9: if isGetField( s ) or isGetStatic( s )then

10: if cache.availableExpression( s )then

11: T = findOrCreateTemporary( expression( s ) )

12: replace s by copyTemporaryInstruction( T )

13: else

14: add expression( s ) to cache

15: else if isPutField( s ) or isPutStatic( s )then

16: add expression( s ) to cache

17:

18: // Part 2: remove cache entries that s kills

19: if isPutField( s ) or isPutStatic( s ) of some field Xthen

20: remove all expressions with field X from cache (excluding expression( s ))

21: else ifs is a call or synchronizationthen

22: remove all expressions from cache

23:

Figure 4.1: Original Local Common Sub-Expression Algorithm in Jikes RVM
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1 A obj1 = new A();

2 A obj2 = new A();

3

4 i = obj1.x;

5 obj2.x = 10;

6 nothing();

7 j = obj1.x;

Figure 4.2: Local Common Sub-Expression Example

1 a = new A();

2 b = new A();

3

4 a.x = exp1 -> heap Array X [a] = exp1

5 a.y = exp2 -> heap Array Y [a] = exp2

6 b.x = exp3 -> heap Array X [b] = exp3

7 n = a.x -> n = heap Array X [a]

Figure 4.3: Before Scalar Replacement
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computed. The global value numbering algorithm computes definitely-different (DD) and

definitely-same (DS) relations for object references. TheDD relation distinguishes two

object references coming from different allocation sites,or when one is a method parameter

and the other one is the result of anewstatement. TheDS relation returns true when two

object references have the same value number (one is a copy ofthe other). In Figure 4.3,

sincea andb are the results of different allocation sites (lines 1 and 2), DD(a, b) = true

andDS(a, b) = false.

Once global value numbers are computed, index propagation is performed. The index

propagation solution holds the available indices into heaparrays at each use of a heap

array. Scalar replacement is performed using the sets of available indices. Note that in the

algorithm, these sets actually contain value numbers of available indices. For simplicity,

we consider sets of available indices.

In Figure 4.3, aftera.x is assigned on line 4, the set of available indices for heap Array

X is {a}. Similarly,{a} is available for heap Array Y after the assignment toa.y on line 5.

For the store ofb.x on line 6, since global value numbering tells us thatDD(a, b) = true,

we have{a, b} available for heap Array X after line 6. IfDD(a, b) had returned false, we

would have conservatively assumed that a store to heap ArrayX [b] could have overwritten

heap Array X [a], and thus, only{b} would have been available after line 6. On line 7,

heap Array X is used at indexa. Sincea is available, a new temporary is introduced and

scalar replacement is performed. Figure 4.4 shows the resulting code.

1 a = new A();

2 b = new A();

3

4 T = exp1

5 a.x = T -> heap Array X [a] = T

6 a.y = exp2 -> heap Array Y [a] = exp2

7 b.x = exp3 -> heap Array X [b] = exp3

8 n = T

Figure 4.4: After Scalar Replacement
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For increasing the number of opportunities for load elimination, we used side-effect

information during the heap SSA transformation and in theDD relation. During the heap

SSA construction, without side-effect information, each call instruction is annotated with

a definition and a use of every heap array. With side-effect information we annotate a

call with a definition of a heap array, say X, only if there is a write-read or write-write

dependence between the call and the instruction using heap array X. Similarly we annotate

a call with a use of a heap array if there is a read-read or read-write dependence. We also

use side-effect information when theDD relation returns false. Two instructions having no

data dependence is equivalent toDD(a, b) = true, wherea andb are the object references

used in the instructions.

In Figure 4.5, without side-effect information, sincea andb are both method param-

eters,DD(a, b) = false. Thus, only{b} is available after line 3. This allows the load of

b.x on line 9 to be eliminated. Since it is conservatively assumed that calls can write to

any memory location, the available index set afternothing() on line 10 is the empty

set. Line 13 represents a merge point of the available index sets after lines 7 and 10. The

intersection of these two sets is the empty set. After the load of a.x on line 16,{a} is

available. SinceDS(a, b) = false, the load ofb.x on line 17 cannot be eliminated. Thus,

without side-effect analysis, the algorithm only finds one opportunity for load elimination

in this example.

Using side-effect analysis, sincea.x has no dependence withb.x (lines 2 and 3) the

available index set after line 3 is{a, b}. Thus, loads ofa.x andb.x on line 7 and 9 can

be eliminated. The available index set after line 7 is{a, b}, and after line 10, it is also

{a, b}, sincenothing() has no side-effect. The intersection at the merge point (line 13)

results in the set{a, b}. The load ofa.x can then be removed on line 16. The available

index set after line 16 is{a, b}, allowing load elimination ofb.x on line 17. Thus, having

side-effect information allowed three additional loads tobe eliminated. The resulting code

after performing load elimination is shown in Figure 4.6.
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1 int foo( A a, A b, int n ) {

2 a.x = 2;

3 b.x = 3;

4

5 int i;

6 if( n > 0 ) {

7 i = a.x;

8 } else {

9 i = b.x;

10 nothing();

11 }

12

13 // Merging point: a phi is

14 // placed here in heap SSA

15

16 int j = a.x;

17 int k = b.x;

18

19 return i + j + k;

20 }

21

22 public static void main( String[] args ) {

23 foo( new A(), new A(), 1 );

24 }

Figure 4.5: Before Redundant Load Elimination
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1 int foo( A a, A b, int n ) {

2 t1 = 2;

3 a.x = t1;

4

5 t2 = 3;

6 b.x = t2;

7

8 int i;

9 if( n > 0 ) {

10 i = t1;

11 } else {

12 i = t2;

13 nothing();

14 }

15

16 // Merging point: a phi is

17 // placed here in heap SSA

18

19 int j = t1;

20 int k = t2;

21

22 return i + j + k;

23 }

24

25 public static void main( String[] args ) {

26 foo( new A(), new A(), 1 );

27 }

Figure 4.6: After Redundant Load Elimination
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4.3 Loop-Invariant Code Motion

The LICM algorithm in Jikes RVM is an implementation of the Global Code Motion algo-

rithm introduced by Click [Cli95] and is adapted to handle memory operations. As such, it

requires the IR to be in heap SSA form. We provide the basic idea of the algorithm below.

For more details, see [Cli95].

The algorithm schedules each instruction early, i.e. finds the earliest legal basic block

that an instruction could be moved to (all of the instruction’s inputs must dominate this

basic block). Similarly, it finds the latest legal basic block for each instruction (this block

must dominate all uses of the instruction’s result). Instructions such asphi , branch or

return cannot be moved due to control dependences. Between the earliest and latest legal

basic blocks, the heuristic to choose which basic block to place instructions is to pick the

one with the smallest loop depth. Global Code Motion differsfrom standard loop-invariant

code motion techniques in that it moves instructions after,as well as before, loops.

1 do {

2 i = i + a.x;

3 j = i + a.y;

4 nothing();

5 } while( i < n );

Figure 4.7: Before Loop-Invariant Code Motion

In Figure 4.7, the compiler first transforms the code into heap SSA form and without

side-effect information assumes that methodnothing() can read and write any memory

location. As a result, the compiler will be unable to move theloads ofa.x anda.y outside

of the loop. With side-effect information, knowing that methodnothing() does not read

or write toa.x or a.y , the loads ofa.x anda.y will be moved before and after the loop

respectively, resulting in the code in Figure 4.8.
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1 t = a.x;

2 do {

3 i = i + t;

4 nothing();

5 } while( i < n );

6 j = i + a.y;

Figure 4.8: After Loop-Invariant Code Motion

4.4 Using Side-Effect Information for Inlined Byte-

code

The side-effect attribute of each method provides information about data dependences be-

tween instructions. The attribute refers to a bytecode instruction by using its offset in the

method it is part of. When a method is inlined, bytecodes are added in the current compiled

method. Since the side-effect analysis is computed ahead-of-time, and thus is not aware of

the JIT inlining decisions, the side-effect attribute doesnot have entries for inlined byte-

codes. In this section, we show an example and explain how we dealt with this special

case.

In Figure 4.9, let’s assume that calls tofoo() andbar() are inlined, resulting in the

code in Figure 4.10. Since an inlined bytecode is associatedwith its original offset in the

IR, it is in general incorrect to retrieve side-effect information for an inlined bytecode in the

current method. For example, in the side-effect attribute of methodmain() in Figure 4.10,

information about offset0 is associated with bytecodeb0 , notb1 or b2 .

To handle this case, we keep track of inlining sequences for each instruction. When

comparing two bytecodes, we retrieve the least common method ancestor of the two byte-

code inlining sequences, and use the side-effect information associated with that method.

If a bytecode originally comes from that common method, we use its offset. Otherwise, we

retrieve theinvokebytecode that it comes from in the common method, and use the offset

associated with thisinvokebytecode.

For example, in Figure 4.10, the least common method ancestor for bytecodesb0 and
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1 Offset main() {

2 0 main b0

3 1 main invoke foo

4 }

5

6 foo() {

7 0 foo b1

8 1 foo invoke bar

9 }

10

11 bar() {

12 0 bar b2

13 1 bar b3

14 }

Figure 4.9: Before Inlining
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b1 is main() . Sinceb0 originally comes frommain() , we use its offset (i.e. 0). Since

b1 was not originally part ofmain() , we retrieve theinvokebytecode that it comes from

in main() , i.e. invokefoo . We then use the offset associated with thisinvokebytecode

(i.e. 1). Thus, when inquiring about data dependences between bytecodesb0 andb1 ,

we lookup information for offsets0 and1 in the side-effect attribute of methodmain() .

Similarly, for bytecodesb1 andb2 , we lookup offsets0 and1 in the side-effect attribute of

methodfoo() , the least common method ancestor ofb1 andb2 . The same result holds

for b1 andb3 . For bytecodesb2 andb3 , since they both come from methodbar() , we

lookup their original offsets,0 and1 respectively, in the side-effect attribute of method

bar() .

1 Offset

2 main() {

3 0 main b0 // inlining sequence: main

4 0 foo b1 // inlining sequence: main->foo

5 0 bar b2 // inlining sequence: main->foo->bar

6 1 bar b3 // inlining sequence: main->foo->bar

7 }

Figure 4.10: After Inlining
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Chapter 5

Experimental Framework

This chapter gives a description of the environment, the systems, and the various tools

that were used in our experiments, and the measurements thatwe computed. The next

section describes the different systems used for our experiments. Section 5.2 describes

the Jikes RVM configuration and related tools that it relies on. In Section 5.3, we specify

the benchmarks that we used, and provide some properties foreach benchmark. Finally,

Section 5.4 discusses our static and dynamic measurements.

5.1 Systems

We used three systems with different architectures in our experiments to see whether we

would get similar trends in our results. All three systems run Linux Debian Stable (kernel

2.4.20). The three systems are listed below:

• Intel system

– Pentium 4 1.80GHz CPU

– 512Mb of RAM.

• AMD system

– Athlon MP 2000+ 1.66GHz CPU (dual-processor)
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– 2Gb of RAM

• PowerPC system

– 533MHz CPU

– 1152Mb of RAM

5.2 Jikes RVM and Related Tools

We used the development version of SOOT (revision 1621) to perform the side-effect anal-

ysis and annotate class files. We modified Jikes RVM version 2.3.0.1 to read in the side-

effect attributes and use it in the optimizations describedin the previous chapter. We used

the production configuration (namely FastAdaptiveCopyMS)in Jikes RVM with the JIT-

only option (every method is compiled on first invocation andno recompilation occurs

thereafter). For our experiments, Jikes RVM was configured to run on a single processor

machine.

To build Jikes RVM, various third-party tools are required.Below is a list of the ver-

sions that we used:

• classpath 0.06

• Sun JDK 1.4.2-b28 (for Intel and AMD systems)

• JRE Blackdown-1.3.1-02b-FCS (for PowerPC system)

• jikes 1.15

• gcc 2.95.4

• g++ 2.95.4
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Benchmark Description

compress Lempel-Ziv compressor/uncompressor

jess A Java expert shell system based on NASA’s CLIPS system

raytrace Ray tracer application

db Performs several database functions on a memory-resident database

javac JDK 1.0.2 Java compiler

mpegaudio MPEG-3 audio file compression application

mtrt Dual-threaded version of raytrace

jack A Java parser generator with lexical analyzers (now Java CC)

Table 5.1: Benchmark Description

5.3 Benchmarks

For our experiments, we used the SpecJVM98 [spe] benchmarks. A description of the

benchmarks is given in Table 5.1.

We ran each benchmark using size 100 with Jikes RVM at optimization level 1 and 2

using the six side-effect variations described in Section 3.5. Tables 5.2 and 5.3 show, for

each benchmark at optimization level 1 and 2 respectively, the load density measure (num-

ber of memory reads performed per second). This metric showshow important memory

operations are for each benchmark. We expect the benchmarkswith high load densities,

compress, raytrace, mtrt andmpegaudio, to benefit most from side-effect analysis. For

these benchmarks, we also show profiling information gathered using Jikes RVM profiling

option on our Intel system in Tables 5.4 to 5.8. We see in Table5.4 that forcompress, the

first two methods account for over 70% of the execution time for both level 1 and 2. For

raytraceandmtrt (Tables 5.5 and 5.6), the four methods shown account for about half of

the runtime. Profiling information formpegaudioat level 1 and 2 is split into two tables

since the methods are different (Tables 5.7 and 5.8).
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Load density in 1000’s

Level 1

Benchmark AMD Intel PowerPC

compress 207383 206708 95041

jess 56371 46199 21226

raytrace 106271 67351 41054

db 7140 7273 5394

javac 21645 13906 8792

mpegaudio 82137 57285 30721

mtrt 92599 61446 36338

jack 14632 8460 5506

Table 5.2: Benchmarks Load Density Property at Level 1

Load density in 1000’s

Level 2

Benchmark AMD Intel PowerPC

compress 138570 126339 86146

jess 68353 55210 26617

raytrace 127806 79806 49914

db 11776 12081 9161

javac 19208 12532 7738

mpegaudio 179070 114851 79647

mtrt 122821 75566 47422

jack 15240 8761 5761

Table 5.3: Benchmarks Load Density Property at Level 2
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% of Execution

Method Level 1 Level 2

void Compressor.compress()53.8 % 50.5 %

void Decompressor.decompress()20.7 % 20.8 %

void Compressor.output(int) 7.4 % 7.4 %

int Decompressor.getcode() 6.0 % 6.0 %

Table 5.4: Profiling Information for Benchmark Compress on Intel System

% of Execution

Method Level 1 Level 2

OctNode OctNode.Intersect(Ray, Point, float)21.5 % 18.4 %

boolean PolyTypeObj.Intersect(Ray, IntersectPt)20.8 % 17.5 %

OctNode OctNode.FindTreeNode(Point)15.4 % 11.1 %

boolean IntersectPt.FindNearestIsect(OctNode, Ray, int, int, OctNode) 3.2 % 2.9 %

Table 5.5: Profiling Information for Benchmark Raytrace on Intel System

% of Execution

Method Level 1 Level 2

OctNode OctNode.Intersect(Ray, Point, float)19.9 % 17.2 %

boolean PolyTypeObj.Intersect(Ray, IntersectPt)19.8 % 17.2 %

OctNode OctNode.FindTreeNode(Point)13.9 % 11.1 %

boolean IntersectPt.FindNearestIsect(OctNode, Ray, int, int, OctNode) 2.5 % 2.3 %

Table 5.6: Profiling Information for Benchmark Mtrt on IntelSystem
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% of Execution

Method Level 1

void q.m(float[], float[]) 29.6 %

boolean ub.(g) 4.7 %

void p.e(int[], g, short[][], int) 3.2 %

boolean cb.(g) 2.8 %

void tb. T(float[], float[], float[]) 2.4 %

void d.I(int[], int, int, float[], int) 2.2 %

int lb.read(byte[], int, int) 1.7 %

Table 5.7: Profiling Information for Mpegaudio on Intel System at Level 1

% of Execution

Method Level 2

int q.l(short[], int) 27.8 %

void tb. T(float[], float[], float[]) 13.3 %

void q.m(float[], float[]) 12.3 %

void p.e(int[], g, short[][], int) 3.2 %

boolean cb.(g) 3.0 %

boolean ub.(g) 2.7 %

void tb. S(float[], float[]) 2.7 %

void tb. W(float[], float[]) 2.3 %

int lb.read(byte[], int, int) 2.1 %

void d.I(int[], int, int, float[], int) 1.8 %

void p.g(int[], g, int[], cb[]) 1.4 %

int q.o(short[], int, float[][], float[][]) 1.2 %

Table 5.8: Profiling Information for Mpegaudio on Intel System at Level 2
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5.4 Measurements

Our primary goal for this study was to see whether side-effect information could improve

performance in JITs, and if so, our secondary objective was to determine the level of preci-

sion of side-effect information required. To obtain accurate answers to these questions, we

measured for each run the static number of loads removed in local CSE and in the redun-

dant load elimination optimization, and the static number of instructions moved in the loop-

invariant code motion phase. These numbers provide us details on how much improvement

each optimization achieves statically using side-effect information. We also measured dy-

namic counts of memory load operations eliminated and execution times (best of four runs,

not including compilation time). The architecture-independent dynamic counts help us see

whether a direct correlation exists between a reduction in memory operations performed

and speedups. Our third objective was to find out in the code where side-effect analysis

makes a difference. We thus looked at the benchmarks that benefited from side-effect anal-

ysis, and in the methods that account for a high percentage ofthe execution time (given

by the profiling information in the previous section), we disabled the use of side-effect

information in those methods only and computed running times. We analyzed the differ-

ence in speedups, as well as static and dynamic counts, and looked at the methods and

optimizations that made a difference. Chapter 7 provides a detailed analysis.

It should be noted that although we used the JIT-only option in Jikes RVM where no

method recompilation is expected, some optimizations suchas inlining can cause invalida-

tion and recompilation. In this case, for our static numbers, we only counted the number of

static loads eliminated (in local CSE or load elimination) or instructions moved (in LICM)

in the last method compilation before execution.

To examine the effect of side-effect analysis in both local and global optimizations, we

ran our benchmarks using Jikes RVM at optimization level 1 and 2. For level 1, only local

CSE uses side-effect information. For level 2, local CSE, redundant load elimination and

loop-invariant code motion use side-effect analysis. In the next two chapters, we present

our results for local and global optimizations.
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Chapter 6

Impact on Optimizations

In this Chapter, we show our static and dynamic measurementsof the use of side-effect

information in JIT optimizations. Sections 6.1 and 6.2 discuss our results for local and

global optimizations.

6.1 Local Optimizations

Level 1 optimizations in Jikes RVM include standard optimizations such as local copy

propagation, local constant propagation, local common sub-expression elimination, null

check elimination, type propagation, constant folding, dead code elimination, inlining, etc.

Among these, only local CSE uses our side-effect analysis for eliminating redundantget-

fieldandgetstaticinstructions.

When running our benchmarks with Jikes RVM at optimization level 1 (which also in-

cludes all level 0 optimizations), the use of the five side-effect variations (CHA, aot-fb,

aot-fs, otf-fb andotf-fs) produced identical static and dynamic counts, and similarrun-

times. To avoid repeating identical results, we grouped these five side-effect variations

under the nameany in the side-effect column of Tables 6.1 to 6.3. As expected, the exe-

cution times of runs using these five side-effect variationswere almost identical. We thus

also grouped them underany in the second column of Tables 6.4 and 6.5, and reported

the average execution times of runs using these five side-effect variations. The values in

brackets in these tables denote the percentage increase in static opportunities (Table 6.1) or
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the percentage decrease in dynamic counts (Tables 6.2 and 6.3) when compared with the

none side-effect variation.

The last column of Table 6.1 shows that using side-effect information in local CSE

increased the total number of static opportunities for loadelimination by 2% to 41%. We

note that most of these eliminated loads aregetfields. Except formpegaudio, there is only

0 or 1 getstaticinstructions eliminated for each benchmark using the original local CSE

algorithm, and 1 to 3 additional ones eliminated using side-effect information. Local CSE

thus affects mostlygetfieldinstructions. Since it has little impact ongetstaticinstructions,

not surprisingly, the use of side-effect analysis had little effect on these instructions as well.

In Table 6.2, we see that the additional loads eliminated using side-effect analysis in

local CSE resulted in a decrease of up to 0.90% of dynamicgetfields, 0.0% ofgetstatic

instructions, and 0.87% in total (Table 6.3). As a result, most benchmarks have similar

execution times with or without side-effect analysis. However, the use of side-effect in-

formation produced speedups of 1.08x and 1.06x formpegaudioon our Intel and AMD

systems, and 1.02x forraytraceon both of these systems (Tables 6.4 and 6.5). Although

the dynamic counts show a reduction in load instructions, wenote small slowdowns for

compressandjesson our Intel system, andjavacon both Intel and AMD machines. These

slowdowns were reproducible, and are possibly due to secondary effects such as register

pressure or cache behaviour. On our PowerPC system, the use of side-effect information

had no effect on runtime (Table 6.6). We note from Table 5.2 that the load density property

on our PowerPC system is significantly smaller than on our AMDand Intel systems, and

thus we conclude that the removal of loads is less beneficial on this slower machine.

These results show that the simplest side-effect analysis,CHA, is sufficient for level 1

optimizations in Jikes RVM. Only local CSE uses side-effectanalysis, and since it is only

performed on basic blocks (typically small in Java programs), the effect is minimal.
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Benchmark Side-effect
Local CSE Performed

getfield getstatic Total

compress
none

any

108 1 109

112 ( 3.70 % ) 2 ( 100.00 % ) 114 ( 4.59 % )

jess
none

any

229 0 229

245 ( 6.99 % ) 1 246 ( 7.42 % )

raytrace
none

any

166 0 166

188 ( 13.25 % ) 1 189 ( 13.86 % )

db
none

any

130 0 130

133 ( 2.31 % ) 3 136 ( 4.62 % )

javac
none

any

415 0 415

431 ( 3.86 % ) 1 432 ( 4.10 % )

mpegaudio
none

any

340 174 514

347 ( 2.06 % ) 176 ( 1.15 % ) 523 ( 1.75 % )

mtrt
none

any

166 0 166

188 ( 13.25 % ) 1 189 ( 13.86 % )

jack
none

any

470 1 471

663 ( 41.06 % ) 2 ( 100.00 % ) 665 ( 41.19 % )

Table 6.1: Level 1 Static Counts for Local CSE with % IncreaseUsing Side-Effects
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Benchmark Side-effect getfield getstatic

compress
none

any

1871398009

1871397929 ( 0.00 % )

33418641

33418641

jess
none

any

209404162

209402840 ( 0.00 % )

2326905

2326905

raytrace
none

any

287993152

287979508 ( 0.00 % )

1359

1359

db
none

any

160088294

160087709 ( 0.00 % )

96012

96012

javac
none

any

149595624

149407295 ( 0.13 % )

4028976

4028946 ( 0.00 % )

mpegaudio
none

any

456136442

455026631 ( 0.24 % )

52215347

52215346 ( 0.00 % )

mtrt
none

any

291501667

291474379 ( 0.01 % )

2063

2063

jack
none

any

50029731

49579043 ( 0.90 % )

1534965

1534977 ( 0.00 % )

Table 6.2: Level 1 Dynamic Load Counts with % Reduction UsingSide-Effects
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Benchmark Side-effect Total

compress
none

any

1904816650

1904816570 ( 0.00 % )

jess
none

any

211731067

211729745 ( 0.00 % )

raytrace
none

any

287994511

287980867 ( 0.00 % )

db
none

any

160184306

160183721 ( 0.00 % )

javac
none

any

153624600

153436241 ( 0.12 % )

mpegaudio
none

any

508351789

507241977 ( 0.22 % )

mtrt
none

any

291503730

291476442 ( 0.01 % )

jack
none

any

51564696

51114020 ( 0.87 % )

Table 6.3: Level 1 Dynamic Total Counts with % Reduction Using Side-Effects
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Benchmark Side-effect Time (s) Speedup

compress
none

any

9.215

9.395 0.98x

jess
none

any

4.583

4.615 0.99x

raytrace
none

any

4.276

4.198 1.02x

db
none

any

22.023

22.054 1.00x

javac
none

any

11.047

11.215 0.99x

mpegaudio
none

any

8.874

8.219 1.08x

mtrt
none

any

4.744

4.727 1.00x

jack
none

any

6.095

6.108 1.00x

Table 6.4: Level 1 Running Time on Intel
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Benchmark Side-effect Time (s) Speedup

compress
none

any

9.185

9.184 1.00x

jess
none

any

3.756

3.77 1.00x

raytrace
none

any

2.71

2.662 1.02x

db
none

any

22.434

22.453 1.00x

javac
none

any

7.097

7.177 0.99x

mpegaudio
none

any

6.189

5.85 1.06x

mtrt
none

any

3.148

3.087 1.02x

jack
none

any

3.524

3.509 1.00x

Table 6.5: Level 1 Running Time on AMD
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Benchmark Side-effect Time (s) Speedup

compress
none

any

20.069

20.089 1.00x

jess
none

any

9.975

9.974 1.00x

raytrace
none

any

6.985

6.991 1.00x

db
none

any

29.851

29.762 1.00x

javac
none

any

17.537

17.467 1.00x

mpegaudio
none

any

16.552

16.557 1.00x

mtrt
none

any

7.454

7.446 1.00x

jack
none

any

9.397

9.387 1.00x

Table 6.6: Level 1 Running Time on PowerPC
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6.2 Global Optimizations

The more advanced and expensive analyses and optimizationsin Jikes RVM are level 2 op-

timizations. They include redundant branch elimination, heap SSA construction, redundant

load elimination, coalescing after heap SSA, expression folding, loop-invariant code mo-

tion, global CSE, transformingwhile into until loops, and loop unrolling. As described in

Chapter 4, we used side-effect information in the heap SSA construction, RLE and LICM.

Our benchmarks were run at optimization level 2 in Jikes RVM (all level 0 and 1 op-

timizations are also performed), and produced identical counts and similar runtimes for

the side-effect variationsaot-fb, aot-fs, otf-fb andotf-fs (except for one case incompress

where the static number of loads eliminated is 388 foraot-fb andaot-fs, and 389 forotf-fb

andotf-fs). Thus, we grouped these four variations of side-effect analysis that are based on

points-to analysis under the namePTA in Tables 6.7 to 6.16 of this chapter. In Tables 6.7

to 6.10, the value in brackets represents the percentage increase in static opportunities (the

base is the value for thenone side-effect variation). For Tables 6.11 to 6.13, it is the per-

centage reduction in dynamic loads. In Tables 6.14 to 6.16, the reported time forPTA is

the average runtime of the four variations above.

The following three sections present our static and dynamicmeasurements. Sections 6.2.1

and 6.2.2 discuss the static counts for the RLE and LICM optimizations. In Section 6.2.3,

we present our dynamic results which include the speedups obtained.

6.2.1 Redundant Load Elimination (RLE)

Table 6.7 shows that the use of side-effect information improved the removal ofgetfield

instructions by up to 79% statically. It also significantly increased the static number of

opportunities for eliminatingaload (array load) bytecodes for benchmarksjess, raytrace,

javac, mpegaudioandmtrt. However, as was the case for local optimizations, RLE does

not affect manygetstaticinstructions, and thus there were very few improvements forre-

moving these operations using side-effect analysis. Table6.8 shows that using side-effect

information in RLE increased the total number of load eliminations performed by 7% to

98%. Interestingly,PTA improved overCHA for all benchmarks exceptjack.
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Benchmark Side-effect
Load elimination performed

getfield getstatic aload

compress

none

CHA

PTA

359 4 0

386 ( 7.52 % ) 5 ( 25.00 % ) 0

388 ( 8.08 % ) 5 ( 25.00 % ) 0

jess

none

CHA

PTA

722 1 129

1050 ( 45.43 % ) 2 ( 100.00 % ) 149 ( 15.50 % )

1106 ( 53.19 % ) 3 ( 200.00 % ) 196 ( 51.94 % )

raytrace

none

CHA

PTA

342 1 32

613 ( 79.24 % ) 2 ( 100.00 % ) 84 ( 162.50 % )

613 ( 79.24 % ) 2 ( 100.00 % ) 127 ( 296.88 % )

db

none

CHA

PTA

243 1 2

274 ( 12.76 % ) 4 ( 300.00 % ) 2

274 ( 12.76 % ) 4 ( 300.00 % ) 3 ( 50.00 % )

javac

none

CHA

PTA

1519 26 90

1842 ( 21.26 % ) 30 ( 15.38 % ) 101 ( 12.22 % )

1847 ( 21.59 % ) 30 ( 15.38 % ) 108 ( 20.00 % )

mpegaudio

none

CHA

PTA

706 212 367

804 ( 13.88 % ) 216 ( 1.89 % ) 370 ( 0.82 % )

804 ( 13.88 % ) 216 ( 1.89 % ) 426 ( 16.08 % )

mtrt

none

CHA

PTA

342 1 32

613 ( 79.24 % ) 2 ( 100.00 % ) 84 ( 162.50 % )

613 ( 79.24 % ) 2 ( 100.00 % ) 127 ( 296.88 % )

jack

none

CHA

PTA

678 2 69

999 ( 47.35 % ) 16 ( 700.00 % ) 69

999 ( 47.35 % ) 16 ( 700.00 % ) 69

Table 6.7: Level 2 Static Counts for RLE with % Increase UsingSide-Effects
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Benchmark Side-effect
Load elimination performed

Total

compress

none

CHA

PTA

363

391 ( 7.71 % )

393 ( 8.26 % )

jess

none

CHA

PTA

852

1201 ( 40.96 % )

1305 ( 53.17 % )

raytrace

none

CHA

PTA

375

699 ( 86.40 % )

742 ( 97.87 % )

db

none

CHA

PTA

246

280 ( 13.82 % )

281 ( 14.23 % )

javac

none

CHA

PTA

1635

1973 ( 20.67 % )

1985 ( 21.41 % )

mpegaudio

none

CHA

PTA

1285

1390 ( 8.17 % )

1446 ( 12.53 % )

mtrt

none

CHA

PTA

375

699 ( 86.40 % )

742 ( 97.87 % )

jack

none

CHA

PTA

749

1084 ( 44.73 % )

1084 ( 44.73 % )

Table 6.8: Level 2 Static Total Count for RLE with % Increase Using Side-Effects
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6.2.2 Loop-Invariant Code Motion (LICM)

In Tables 6.9 and 6.10, we show static counts of instructionsmoved during LICM. In Ta-

ble 6.9, we have counts forgetfield, getstaticand putfield instructions. The table does

not contain information forputstatic, aloador astorebytecodes since none of these were

moved during LICM. We see that the use of side-effect analysis enabled an increase in the

number of movedgetfieldsby up to 19%, and in one case of aputfield. Table 6.10 shows

the total number of instructions moved when LICM is performed on high-level (HIR) and

low-level (LIR) intermediate representation in Jikes RVM.The table illustrates that using

side-effect analysis increased the total number of HIR instructions moved by up to 14%.

For one benchmark (jess), usingPTA side-effect analysis allowed more instructions to be

moved thanCHA. Since memory instructions are not moved during LICM on LIR,and

that in some cases we see an increased in LIR instructions moved, this suggests that, in-

terestingly, the use of side-effect information in HIR optimizations enabled some other

transformations that allowed some instructions to be movedduring LICM on LIR.

We note that since RLE is performed before LICM, improved side-effect information

can cause loads that would have been moved in LICM to be removed in RLE. Therefore, to

measure the impact of side-effect information on LICM, we disabled RLE when collecting

the static LICM counts. We do not show static counts for localCSE, which are minimal

because redundant load elimination is performed before local CSE.
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Benchmark Side-effect getfield getstatic putfield

compress
none

any

87

90 ( 3.45 % )

0

0

1

1

jess

none

CHA

PTA

139

144 ( 3.60 % )

161 ( 15.83 % )

0

0

0

0

0

0

raytrace
none

any

87

96 ( 10.34 % )

0

0

47

47

db
none

any

61

64 ( 4.92 % )

0

0

0

0

javac
none

any

44

48 ( 9.09 % )

0

0

5

6 ( 20.00 % )

mpegaudio
none

any

128

152 ( 18.75 % )

27

27

1

1

mtrt
none

any

87

96 ( 10.34 % )

0

0

47

47

jack
none

any

23

23

0

0

2

2

Table 6.9: Level 2 Static Counts for LICM with % Increase Using Side-Effects
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Benchmark Side-effect Total HIR Total LIR

compress
none

any

118

122 ( 3.39 % )

29

29

jess

none

CHA

PTA

280

287 ( 2.50 % )

309 ( 10.36 % )

250

251 ( 0.40 % )

255 ( 2.00 % )

raytrace
none

any

184

210 ( 14.13 % )

54

56 ( 3.70 % )

db
none

any

88

92 ( 4.55 % )

31

32 ( 3.23 % )

javac
none

any

116

121 ( 4.31 % )

479

479

mpegaudio
none

any

299

327 ( 9.36 % )

98

102 ( 4.08 % )

mtrt
none

any

184

210 ( 14.13 % )

55

57 ( 3.64 % )

jack
none

any

39

39

58

58

Table 6.10: Level 2 Static Total Count for LICM with % Increase Using Side-Effects
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6.2.3 Dynamic Measurements

Tables 6.11 and 6.12 show that side-effect analysis enableda reduction in dynamicgetfield

operations by up to 27%, but only reducedgetstaticandaload instructions by up to 3%.

Level 2 optimizations using side-effect information reduced total dynamic load operations

in the range of 1% to 19% (Table 6.13). For most benchmarks, using PTA side-effect

information allowed a larger reduction of dynamic loads than CHA.

Tables 6.14 and 6.15 show speedups achieved forcompress, raytrace, mtrt andmpegau-

dio. For these benchmarks, the speedups vary from 1.08x to 1.17xon our Intel system, and

from 1.02x to 1.20x on our AMD machine. On both systems,mpegaudiohas the largest

speedup. These benchmarks are also the ones with the highestload densities (Table 5.3),

and the ones that we expected would benefit the most from side-effect information. For our

PowerPC system, we did not obtain any speedup (Table 6.16). However, we note that the

load density value of each benchmark (Table 5.3) is much smaller for our PowerPC ma-

chine than for our AMD and Intel systems, and thus the removalof loads has less impact

for this slower machine.

A higher level of precision of side-effect information madea difference in perfor-

mance forcompressandmpegaudio. Using PTA side-effect analysis vsCHA increased

the speedup ofcompressfrom 1.08x to 1.11x on our Intel system, and 1.02x to 1.05x on

our AMD one. Formpegaudio, it went from 1.11x to 1.17x on our Intel machine and from

1.15x to 1.20x on our AMD machine.

These results show that using side-effect analysis in global optimizations improved op-

portunities for load elimination and moving instructions,reduced dynamic load operations,

and improved performance in runtimes. Benchmarks with higher load densities benefited

most from side-effect information. The results also show that points-to analysis improves

side-effect information and produced in some cases improvements in runtime performance

compared to only usingCHA, our simple side-effect analysis variation that does not make

use of points-to information. Finally, the differences between points-to analysis variations

are negligible.
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Benchmark Side-effect getfield getstatic

compress

none

CHA

PTA

836681238

713879612 ( 14.68 % )

694156483 ( 17.03 % )

29585886

29585886

29585886

jess

none

CHA

PTA

193400124

177280681 ( 8.33 % )

141340271 ( 26.92 % )

2326905

2326905

2326572 ( 0.01 % )

raytrace

none

CHA

PTA

278990954

217369769 ( 22.09 % )

217369769 ( 22.09 % )

1359

1359

1359

db

none

CHA

PTA

160085986

154814883 ( 3.29 % )

154814883 ( 3.29 % )

96012

96012

96012

javac

none

CHA

PTA

129704466

123962720 ( 4.43 % )

123962933 ( 4.43 % )

3728755

3726381 ( 0.06 % )

3726306 ( 0.07 % )

mpegaudio

none

CHA

PTA

258084245

254421559 ( 1.42 % )

254421559 ( 1.42 % )

16092989

16075411 ( 0.11 % )

16075411 ( 0.11 % )

mtrt

none

CHA

PTA

282145314

220136202 ( 21.98 % )

220136202 ( 21.98 % )

2063

2063

2063

jack

none

CHA

PTA

46154208

42805654 ( 7.26 % )

42805654 ( 7.26 % )

1534965

1530924 ( 0.26 % )

1530924 ( 0.26 % )

Table 6.11: Level 2 Dynamic Counts forgetfieldandgetstaticInstructions with % Reduc-

tion Using Side-Effects
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Benchmark Side-effect aload

compress

none

CHA

PTA

450569851

450569851

450569851

jess

none

CHA

PTA

74199530

74197591 ( 0.00 % )

74188965 ( 0.01 % )

raytrace

none

CHA

PTA

70558731

70189162 ( 0.52 % )

70125938 ( 0.61 % )

db

none

CHA

PTA

113165950

113165950

113165950

javac

none

CHA

PTA

3947221

3947158 ( 0.00 % )

3947133 ( 0.00 % )

mpegaudio

none

CHA

PTA

796126083

794492856 ( 0.21 % )

773557981 ( 2.83 % )

mtrt

none

CHA

PTA

71578275

71124467 ( 0.63 % )

70998019 ( 0.81 % )

jack

none

CHA

PTA

5727775

5727775

5727775

Table 6.12: Level 2 Dynamic Count foraload Instructions with % Reduction Using Side-

Effects
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Benchmark Side-effect Total

compress

none

CHA

PTA

1316836975

1194035349 ( 9.33 % )

1174312220 ( 10.82 % )

jess

none

CHA

PTA

269926559

253805177 ( 5.97 % )

217855808 ( 19.29 % )

raytrace

none

CHA

PTA

349551044

287560290 ( 17.73 % )

287497066 ( 17.75 % )

db

none

CHA

PTA

273347948

268076845 ( 1.93 % )

268076845 ( 1.93 % )

javac

none

CHA

PTA

137380442

131636259 ( 4.18 % )

131636372 ( 4.18 % )

mpegaudio

none

CHA

PTA

1070303317

1064989826 ( 0.50 % )

1044054951 ( 2.45 % )

mtrt

none

CHA

PTA

353725652

291262732 ( 17.66 % )

291136284 ( 17.69 % )

jack

none

CHA

PTA

53416948

50064353 ( 6.28 % )

50064353 ( 6.28 % )

Table 6.13: Level 2 Dynamic Loads Total Count with % Reduction Using Side-Effects
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Benchmark Side-effect Time (s) Speedup

compress

none

CHA

PTA

10.423

9.635

9.386

1.08x

1.11x

jess

none

CHA

PTA

4.889

4.945

4.872

0.99x

1.00x

raytrace

none

CHA

PTA

4.38

3.93

3.905

1.11x

1.12x

db

none

CHA

PTA

22.625

22.605

22.471

1.00x

1.01x

javac

none

CHA

PTA

10.962

11.138

11.142

0.98x

0.98x

mpegaudio

none

CHA

PTA

9.319

8.41

7.932

1.11x

1.17x

mtrt

none

CHA

PTA

4.681

4.201

4.208

1.11x

1.11x

jack

none

CHA

PTA

6.097

6.122

6.101

1.00x

1.00x

Table 6.14: Level 2 Running Time on Intel
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Benchmark Side-effect Time (s) Speedup

compress

none

CHA

PTA

9.503

9.316

9.03

1.02x

1.05x

jess

none

CHA

PTA

3.949

3.962

4.002

1.00x

0.99x

raytrace

none

CHA

PTA

2.735

2.607

2.615

1.05x

1.05x

db

none

CHA

PTA

23.212

23.222

23.141

1.00x

1.00x

javac

none

CHA

PTA

7.154

7.21

7.231

0.99x

0.99x

mpegaudio

none

CHA

PTA

5.977

5.175

4.987

1.15x

1.20x

mtrt

none

CHA

PTA

2.88

2.788

2.796

1.03x

1.03x

jack

none

CHA

PTA

3.505

3.47

3.51

1.01x

1.00x

Table 6.15: Level 2 Running Time on AMD

70



6.2. Global Optimizations

Benchmark Side-effect Time (s) Speedup

compress

none

CHA

PTA

15.446

15.53

15.375

0.99x

1.00x

jess

none

CHA

PTA

9.829

9.817

9.841

1.00x

1.00x

raytrace

none

CHA

PTA

6.878

6.916

6.914

0.99x

0.99x

db

none

CHA

PTA

29.695

29.649

29.668

1.00x

1.00x

javac

none

CHA

PTA

17.69

17.887

17.729

0.99x

1.00x

mpegaudio

none

CHA

PTA

13.503

13.485

13.464

1.00x

1.00x

mtrt

none

CHA

PTA

7.325

7.333

7.362

1.00x

0.99x

jack

none

CHA

PTA

9.795

9.811

9.788

1.00x

1.00x

Table 6.16: Level 2 Running Time on PowerPC
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Chapter 7

Analysis of Speedups

In this chapter, we analyze the benchmarks where significantspeedups were obtained in

local and global optimizations (Chapter 6). We look at the methods causing these speedups

and where in the optimizations the use of side-effect information benefited. The following

three sections discuss speedups obtained for the benchmarks compress, mpegaudioand

raytrace/mtrt.

7.1 Compress

In Section 6.2, we saw that the use of side-effect information resulted in speedups of up to

1.11x for benchmarkcompress. The following section provides an analysis of the meth-

ods and optimizations producing these speedups. Section 7.1.2 shows the changes in the

original code that caused these runtime improvements.

7.1.1 Methods and Optimizations Causing Speedups

In Table 5.4 of Chapter 5, profiling information is shown for the benchmarkcompress.

From this table, we see that for level 2 optimizations, methodsCompressor.compress()

and Decompressor.decompress() account for more than 70% of the execution

time. To find out where in the code the use of side-effect information produced speedups for

compressin the range of 1.08x to 1.11x on Intel and 1.02x to 1.05x on AMD(Tables 6.14
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and 6.15), we disabled the use of side-effect analysis in these two methods and computed

runtime.

Table 7.1 shows that when the use of side-effect analysis is disabled in both methods

Compressor.compress() andDecompressor.decompress() , the speedups on

Intel go down from 1.08x to 1.01x and 1.11x to 1.01x for theCHA andPTA side-effect vari-

ations respectively (first row compared with second row). OnAMD, the speedups decrease

from 1.02x to 1.00x and 1.05x to 1.00x (Table 7.2). Thus, as expected by the profiling in-

formation, using side-effect information in these two methods is responsible for most of the

speedups. When side-effect analysis is disabled only in methodCompressor.compress() ,

we get speedups of 1.01x and 1.02x on Intel, and 0.99x and 1.02x on AMD (third row in Ta-

bles 7.1 and 7.2). When it is disabled only in methodDecompressor.decompress() ,

the speedups are 1.08x on Intel and 1.04x on AMD (fourth row).These results show

that having side-effects in methodCompressor.compress() is the main cause of the

speedups. Since the speedups are the same for theCHA andPTA side-effect variations

when they are disabled in methodDecompressor.decompress() , this method is re-

sponsible for the difference in speedups between these two side-effect variations (1.08x

versus 1.11x on Intel, 1.02x versus 1.05x on AMD).

Local CSE, redundant load elimination and LICM are the threeoptimizations that were

modified to take advantage of side-effect information. To find out which ones are responsi-

ble for the speedups, we disabled the use of side-effect analysis in these optimizations sepa-

rately for methodsCompressor.compress() andDecompressor.decompress() .

For LICM, our results showed that the speedups stayed about the same1. Thus, having

side-effect information in LICM does not affect the speedups obtained forcompress. This

is also confirmed by the static and dynamic counts that were unchanged. Tables 7.3 and 7.4

show the speedups when not using side-effect analysis in both local CSE and RLE. In this

case, we see from these two tables that the loads eliminated using side-effect analysis in

local CSE and RLE affect significantly the speedups. Comparing the first row with the third

row in these two tables shows that having side-effect information in local CSE and RLE

for methodCompressor.compress() caused most of the speedups. The fourth row

1full results are in Appendix A, Tables A.1 and A.2
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Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none

none

CHA

PTA

9.751

9.049

8.769

1.08x

1.11x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.747

9.678

9.654

1.01x

1.01x

void Compressor.compress()

none

CHA

PTA

9.742

9.657

9.544

1.01x

1.02x

void Decompressor.decompress()

none

CHA

PTA

9.757

9.01

9.05

1.08x

1.08x

Table 7.1: Level 2 Runtime without Side-Effects in SelectedMethods of Compress on Intel

75



Analysis of Speedups

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none

none

CHA

PTA

9.514

9.312

9.026

1.02x

1.05x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.516

9.505

9.491

1.00x

1.00x

void Compressor.compress()

none

CHA

PTA

9.532

9.64

9.356

0.99x

1.02x

void Decompressor.decompress()

none

CHA

PTA

9.504

9.144

9.137

1.04x

1.04x

Table 7.2: Level 2 Runtime without Side-Effects in SelectedMethods of Compress on

AMD
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of these tables shows that the difference in speedups between theCHA andPTA side-effect

variations is due to loads eliminated in methodDecompressor.decompress() (since

when the use of side-effects is disabled in local CSE and RLE for this method, speedups

for these two variations are the same).

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none

none

CHA

PTA

9.751

9.049

8.769

1.08x

1.11x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.797

9.776

9.759

1.00x

1.00x

void Compressor.compress()

none

CHA

PTA

9.811

9.722

9.536

1.01x

1.03x

void Decompressor.decompress()

none

CHA

PTA

9.805

9.05

9.042

1.08x

1.08x

Table 7.3: Level 2 Runtime without Side-Effects in LCSE and RLE for Compress on Intel

In Tables 7.5 and 7.6, we show the effect of disabling side-effect analysis on the static

counts of loads eliminated in the redundant load elimination optimization and on the dy-

namic counts ofgetfieldsperformed. Counts forgetstaticandaload instructions are not

shown since they are not affected. The third row compared with the first row in Table 7.5

shows that when side-effect information is disabled in methodCompressor.compress() ,

there is a reduction of fivegetfieldseliminated statically (381 versus 386 forCHA and

383 versus 388 forPTA). This results in a decrease of dynamicgetfieldseliminated from

14.68% to 6.80% and 17.03% to 9.16% for theCHA andPTA side-effect variations (Ta-

ble 7.6, row 1 and 3). Since we saw that the effect on speedups is a decrease from 1.08x

to 1.01x and from 1.11x to 1.03x forCHA andPTA on Intel (Table 7.3, row 1 and 3) , and
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Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none

none

CHA

PTA

9.514

9.312

9.026

1.02x

1.05x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.459

9.544

9.532

0.99x

0.99x

void Compressor.compress()

none

CHA

PTA

9.461

9.726

9.427

0.97x

1.00x

void Decompressor.decompress()

none

CHA

PTA

9.467

9.113

9.105

1.04x

1.04x

Table 7.4: Level 2 Runtime without Side-Effects in LCSE and RLE for Compress on AMD
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1.02x to 0.97x and 1.05x to 1.00x on AMD (Table 7.4, row 1 and 3), the removal of only

few additionalgetfields(five statically) is responsible for almost all of the speedups.

In Table 7.5, we note that, when comparing row 1 and 4, using side-effect information

in methodDecompressor.decompress() allowed the elimination of 1 and 3 more

loads for theCHA andPTA variations respectively. The two additional loads eliminated

using the more precise side-effect variation (PTA) resulted in a larger reduction of dynamic

getfieldinstructions from 14.68% to 17.03% (Table 7.6, row 1), and produced an increase

in speedups from 1.08x to 1.11x on Intel (Table 7.3, row 1), and from 1.02x to 1.05x on

AMD (Table 7.4, row 1).

Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield getstatic aload

none

none

CHA

PTA

359

386

388

4

5

5

0

0

0

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

359

380

380

4

5

5

0

0

0

void Compressor.compress()

none

CHA

PTA

359

381

383

4

5

5

0

0

0

void Decompressor.decompress()

none

CHA

PTA

359

385

385

4

5

5

0

0

0

Table 7.5: Level 2 Static Counts without Side-Effects in LCSE and RLE for Compress
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Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield

none

none

CHA

PTA

836681238

713879612 ( 14.68 % )

694156483 ( 17.03 % )

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

836681238

789621577 ( 5.62 % )

789621577 ( 5.62 % )

void Compressor.compress()

none

CHA

PTA

836681238

779760012 ( 6.80 % )

760036882 ( 9.16 % )

void Decompressor.decompress()

none

CHA

PTA

836681238

723741182 ( 13.50 % )

723741182 ( 13.50 % )

Table 7.6: Level 2 Dynamic Counts without Side-Effects in LCSE and RLE for Compress
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7.1.2 Original Code

In Figure 7.1, we show part of the original code of methodCompressor.compress() .

In the previous section, we saw that there were five additional loads eliminated using side-

effect information in this method that was the main cause of the speedups. We list them

below:

• getfieldto Input at line 12 is eliminated by a copy of theInput getfieldat line 3

• getfieldto htab at line 16 is eliminated by a copy of thehtab getfieldat line 9

• getfieldto htab at line 20 is eliminated by a copy of thehtab getfieldat line 16

• methodshtab.of(i) andhtab.set(i, fcode) (lines 16 and 20) are both

inlined and contain agetfieldto a tab field; the second load (inhtab.set(i,

fcode) ) is eliminated by a copy of the first one (inhtab.of(i) )

• getfieldto in count at line 22 is eliminated by a copy of thein count getfield

at line 13

Figure 7.2 shows part of methodDecompressor.decompress() . We saw that

having side-effects in this method allowed one more load to be eliminated usingCHA and

three more withPTA:

• getfieldto Output at line 24 is eliminated by a copy of theOutput getfieldat line 3

(any side-effect variation finds this)

• both calls to methodOutput.putbyte(..) at lines 3 and 24 are inlined and

containgetfieldsto OutBuff andOutCnt fields, both of which are eliminated in

the second occurrence of the call (onlyPTA finds this)

In our side-effect analysis, the elements of an array are considered a (special) field.

Without points-to analysis, it is not possible to distinguish different methods writing to dif-

ferent arrays. Since methodsOutput.putbyte(..) (line 3) andde stack.push(..)

(line 14) both write to arrays, theCHA side-effect analysis thus conservatively assumes that
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there is a write-write dependence between these two calls. Thus, the loads toOutBuff

andOutCnt fields can only be eliminated using thePTA variation. However, we note that

these two calls write to arrays of different and unrelated types. The write-write dependence

could thus be removed if a type analysis on arrays would be added to theCHA side-effect

computation. In this case, it would makeCHA as good asPTA in finding load removal

opportunities.
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7.1. Compress

1 public void compress() {

2 ...

3 ent = Input.getbyte () ;

4 hshift = 0;

5 for ( fcode = htab.hsize(); fcode < 65536; fcode *= 2 )

6 hshift++;

7 hshift = 8 - hshift;

8 hsize_reg = htab.hsize();

9 htab.clear();

10

11 next_byte:

12 while ( (c = Input.getbyte()) != -1) {

13 in_count++;

14 fcode = (((int) c << maxbits) + ent);

15 i = ((c << hshift) ˆ ent);

16 int temphtab = htab.of (i);

17 ...

18 if ( free_ent < maxmaxcode ) {

19 codetab.set(i, free_ent++);

20 htab.set(i, fcode);

21 }

22 else if ( (in_count >= checkpoint) && (block_compress != 0) )

23 cl_block ();

24 }

25 ...

26 }

Figure 7.1: Part of MethodCompressor.compress()
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1 public void decompress() {

2 ...

3 Output.putbyte( (byte)finchar );

4 while ( (code = getcode()) > -1 ) {

5 if ( (code == Compress.CLEAR) && (block_compress != 0) ) {

6 tab_prefix.clear(256);

7 clear_flg = 1;

8 free_ent = Compress.FIRST - 1;

9 if ( (code = getcode ()) == -1 )

10 break;

11 }

12 incode = code;

13 if ( code >= free_ent ) {

14 de_stack.push((byte)finchar);

15 code = oldcode;

16 }

17 while ( code >= 256 ) {

18 de_stack.push(tab_suffix.of(code));

19 code = tab_prefix.of(code);

20 }

21 de_stack.push((byte)(finchar = tab_suffix.of(code)));

22

23 do

24 Output.putbyte ( de_stack.pop());

25 while ( !de_stack.is_empty());

26 ...

27 }

28 }

Figure 7.2: Part of MethodDecompressor.decompress()
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7.2 Mpegaudio

In Section 6.1, we saw that we obtained speedups of up to 1.08xfor mpegaudioin local

optimizations. For global optimizations, the use of side-effect information in local CSE,

RLE and LICM enabled speedups of up to 1.20x. The following two sections discuss these

speedups. Section 7.2.1 provides an analysis of the methodscausing speedups in local

CSE. Section 7.2.2 discusses which methods and which optimizations benefited from side-

effect analysis, and where in the code the use of the most precise side-effect analysis (PTA)

produced better runtime improvement over the basic side-effect analysis (CHA).

7.2.1 Local Optimizations

In Section 6.1, we saw that having side-effect information in local optimizations resulted in

speedups of 1.08x and 1.06x on our Intel and AMD systems (Tables 6.4 and 6.5). To

find out where the use of side-effect analysis in local CSE produced these results, we

disabled side-effects in the most frequently executed methods. Table 5.7 shows profil-

ing information for the seven methods that account for the highest percentage of the ex-

ecution time. Surprisingly, disabling side-effect analysis in these methods did not affect

speedups. We thus disabled side-effects in more methods incrementally and found that

methodq.o(short[], int, float[][], float[][]) , which account for less

than 1% of the execution time, is responsible for all of the speedups. We see in Tables 7.7

and 7.8 (second row) that the speedups on Intel and AMD becomenull without side-effects

in local CSE for methodq.o(..) . The static counts in Table 7.9 show that this behaviour

is due to a singlegetfieldthat is not eliminated (346 without side-effects versus 347with).

This causes a reduction of dynamicgetfieldinstructions by 0.18% compared to 0.24% orig-

inally (Table 7.10). Thus, the changes in static and dynamiccounts are very minimal, but

the impact on runtime is quite large. This is likely due to secondary effects such as cache

behaviour or register pressure. Finally, for legal reasons, we are unable to show the original

code.
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Methods without Side-effect used

side-effects in LCSE in other methods Time(s) Speedup

none
none

any

8.874

8.219 1.08x

int q.o(short[], int, float[][], float[][])
none

any

8.878

8.839 1.00x

Table 7.7: Level 1 Runtime without Side-Effects in Local CSEfor Mpegaudio on Intel

Methods without Side-effect used

side-effects in LCSE in other methods Time(s) Speedup

none
none

any

6.189

5.85 1.06x

int q.o(short[], int, float[][], float[][])
none

any

6.208

6.187 1.00x

Table 7.8: Level 1 Runtime without Side-Effects in Local CSEfor Mpegaudio on AMD

Side-effect

Methods without in other

side-effects in LCSE methods getfield getstatic

none
none

any

340

347 ( 2.06 % )

174

176 ( 1.15 % )

int q.o(short[], int, float[][], float[][])
none

any

340

346 ( 1.76 % )

174

176 ( 1.15 % )

Table 7.9: Level 1 Static Counts without Side-Effects in Local CSE for Mpegaudio
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Side-effect

Methods without in other

side-effects in LCSE methods getfield

none
none

any

456136442

455026631 ( 0.24 % )

int q.o(short[], int, float[][], float[][])
none

any

456136442

455307827 ( 0.18 % )

Table 7.10: Level 1 Dynamic Counts Using Side-Effects in Local CSE for Mpegaudio

7.2.2 Global Optimizations

In Section 6.2, we saw that we obtained speedups formpegaudioin the range of 1.11x to

1.17x on Intel and 1.15x to 1.20x on AMD using side-effect analysis. In a similar manner to

the previous section, we incrementally disabled side-effects in the most frequently executed

methods, and found that the two methods that caused the speedups areq.o(short[],

int, float[][], float[][]) andq.m(float[], float[]) . The profiling

information in Table 5.8 shows thatq.m(float[], float[]) account for 12.3% of

the execution time, butq.o(short[], int, float[][], float[][]) , account

for less than 1% (not shown in the table).

Analysis of Method q.o(short[], int, float[][], float[][])

We see in the second row of Table 7.11 that on Intel, disablingside-effects inq.o(..)

results in a slowdown of 0.70x and 0.66x for theCHA andPTA side-effect variations re-

spectively. On our AMD system, the speedups decrease from 1.15x to 1.02x and from

1.20x to 1.01x (Table 7.12, row 1 and 2). The impact of not using side-effect information

in q.o(..) is thus much larger on the Intel architecture. To see whetherthis behaviour

was caused by LICM or load elimination, we disabled side-effects in each of these opti-

mizations separately. Doing so in LICM made no difference since speedups stayed about

the same2. However, Tables 7.13 and 7.14 (second row) show that disabling side-effects in

2full results are in Appendix A, Tables A.3 and A.4
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local CSE and RLE resulted in the same large slowdowns that was obtained in Tables 7.11

and 7.12. Thus, it is the load elimination optimization thatis responsible for the slow-

downs. Comparing the first and second rows in the static results of Table 7.15 show that

only 778getfieldsare eliminated without using side-effect information inq.o(..) versus

804 with side-effects. Note thatgetstaticandaload instructions are unaffected. Note that

there is no column forgetstaticsince the counts did not change for any rows. The effect on

dynamic counts is a reduction by 0.79% ofgetfieldsversus 1.42% originally (Table 7.16,

row 1 and 2). Thus, the removal of additional loads using side-effect analysis inq.o(..)

has a large impact on runtime. Since the changes statically and dynamically are small, this

is likely due to secondary effects such as register pressureor cache behaviour.

Analysis of Method q.m(float[], float[])

Tables 7.11 and 7.12 (third row) show that for methodq.m(float[], float[]) , the

speedups forCHA andPTA on Intel are 1.11x and 1.10x respectively, and on AMD they are

1.15x and 1.16x. Since the speedups are about the same forCHA andPTA when the use of

side-effects is disabled inq.m(float[], float[]) , having more precise side-effect

information in this method is responsible for the better runtime improvement byPTA (1.17x

on Intel, 1.20x on AMD) versusCHA (1.11x on Intel, 1.15x on AMD). To see whether

this is due to LICM or load elimination, we disabled side-effects in these optimizations

separately and computed runtime. Our results show that having or not having side-effects

in LICM did not affect the speedups3. However, when disabling side-effects in local CSE

and RLE, the speedups are 1.10x on Intel and 1.16x on AMD (Tables 7.13 and 7.14, third

row). It is thus the load elimination optimization inq.m(float[], float[]) that

caused the difference in the original speedups betweenCHA andPTA. In Table 7.15 (row

3), the static results show that thegetfieldinstruction counts are unaffected by not using

side-effects inq.m(float[], float[]) (same counts as original ones). Though, for

aload instructions, there are 407 eliminated versus 426 originally with PTA (row 1 and

3). ForCHA, having or not having side-effects inq.m(float[], float[]) did not

affect theaload counts (370 in both cases). Thus, not using the most precise side-effect

3full results are in Appendix A, Tables A.3 and A.4
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analysisPTA in q.m(float[], float[]) reduced by 19 statically the number of

aloadseliminated. As a result, the reduction dynamically is 1.49%versus 2.83% originally

(Table 7.16, row 1 and 3 forPTA). Since the speedups are about the same forCHA andPTA

when the use of side-effects is disabled inq.m(float[], float[]) , and originally

it was 1.11x versus 1.17x on Intel and 1.15x versus 1.20x on AMD, the use of most precise

side-effect analysis (PTA) in this method is responsible for this difference.

Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none

none

CHA

PTA

9.319

8.41

7.932

1.11x

1.17x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

9.22

13.177

13.917

0.70x

0.66x

void q.m(float[], float[])

none

CHA

PTA

9.224

8.303

8.411

1.11x

1.10x

Table 7.11: Level 2 Runtime without Side-Effects in Selected Methods of Mpegaudio on

Intel
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Methods without Side-effect used

side-effects in other methods Time(s) Speedup

none

none

CHA

PTA

5.977

5.175

4.987

1.15x

1.20x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

5.976

5.882

5.895

1.02x

1.01x

void q.m(float[], float[])

none

CHA

PTA

5.977

5.201

5.131

1.15x

1.16x

Table 7.12: Level 2 Runtime without Side-Effects in Selected Methods of Mpegaudio on

AMD

Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none

none

CHA

PTA

9.319

8.41

7.932

1.11x

1.17x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

9.223

13.182

13.914

0.70x

0.66x

void q.m(float[], float[])

none

CHA

PTA

9.222

8.412

8.402

1.10x

1.10x

Table 7.13: Level 2 Runtime without Side-Effects in LCSE andRLE for Mpegaudio on

Intel
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Methods without Side-effect used

side-effects in LCSE & RLE in other methods Time(s) Speedup

none

none

CHA

PTA

5.977

5.175

4.987

1.15x

1.20x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

5.977

5.88

5.886

1.02x

1.02x

void q.m(float[], float[])

none

CHA

PTA

5.974

5.153

5.139

1.16x

1.16x

Table 7.14: Level 2 Runtime without Side-Effects in LCSE andRLE for Mpegaudio on

AMD

Side-effect

Methods without in other

side-effects in LCSE & RLE methods getfield aload

none

none

CHA

PTA

706

804 ( 13.88 % )

804 ( 13.88 % )

367

370 ( 0.82 % )

426 ( 16.08% )

int q.o(short[], int,

float[][], float[][])

none

CHA

PTA

706

778 ( 10.20 % )

778 ( 10.20 % )

367

370 ( 0.82 % )

426 ( 16.08% )

void q.m(float[], float[])

none

CHA

PTA

706

804 ( 13.88 % )

804 ( 13.88 % )

367

370 ( 0.82 % )

407 ( 10.90 % )

Table 7.15: Level 2 Static Counts without Side-Effects in LCSE and RLE for Mpegaudio
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Methods without Side-effect

side-effects in other

in LCSE & RLE methods getfield aload

none

none

CHA

PTA

258084245

254421559 ( 1.42 % )

254421559 ( 1.42 % )

796126083

794492856 ( 0.21 % )

773557981 ( 2.83 % )

int q.o(short[], int,

float[][], float[][])

none

CHA

PTA

258084245

256046247 ( 0.79 % )

256046247 ( 0.79 % )

796126083

794492856 ( 0.21 % )

773557981 ( 2.83 % )

void q.m(float[], float[])

none

CHA

PTA

258084245

254421559 ( 1.42 % )

254421559 ( 1.42 % )

796126083

794492856 ( 0.21 % )

784243429 ( 1.49 % )

Table 7.16: Level 2 Dynamic Counts without Side-Effects in LCSE and RLE for Mpegau-

dio

7.3 Raytrace/Mtrt

In this section, we analyze where side-effect information produced speedups for the bench-

marksraytraceandmtrt. Sincemtrt is a multi-threaded version ofraytrace, and that we

found that the cause of the speedups was the same for both benchmarks, we will only

discussraytracehere. The same analysis applies formtrt.

In Section 6.2, we saw that using side-effect information improved runtime forraytrace

in the range of 1.11x to 1.12x on Intel and 1.05x on AMD (Tables6.14 and 6.15). To

find out where the use of side-effect information resulted inthese speedups, we disabled

it in the hot methods given by the profiling information of Table 5.5. To our surprise, the

speedups stayed the same. We thus incrementally added methods with side-effects disabled

and narrowed our search to methodrun() , which is part of theRunner class in the file

RayTracer.java. We note thatRunner is a thread, and that for benchmarkraytrace, only

oneRunner thread is created to render the scene, whereas two threads are used formtrt.

The code of theRunner class is shown in Figure 7.3. When we disabled side-effect

information in methodrun() , we found that the main cause of the speedups was the
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removal of thegetfieldto theparent field on line 17. (Theparent.threadCount--

statement on line 17, when transformed to bytecode, performs agetfieldto aRayTracer

object, parent , in order to decrement thethreadCount counter.) With side-effect

analysis, this load toparent can be eliminated by a copy of this field (line 13). When

leaving thisgetfieldinstruction on line 17 (i.e. not replacing it with a cached copy) and

applying side-effect analysis everywhere else as originally, the speedups went down from

1.11x to 1.02x on Intel and 1.05x to 1.00x on AMD. We also obtained similar results

when removing the entire statementparent.threadCount-- (line 17). Although we

cannot explain this behaviour, we note that thisgetfieldinstruction is performed to retrieve

an object and decrement thethreadCount counter, which can be manipulated by both

theRunner and the main threads. This behaviour may thus be due to the wayJikes RVM

handles shared objects.

7.4 Summary

In this chapter, we analyzed the methods of the benchmarks where significant speedups

were obtained. We found that forcompress, only five additional loads eliminated using

side-effect information was the main cause of the speedups.For mpegaudio, we noted

that the removal of few additional loads likely caused secondary effects such as register

pressure and/or cache behaviour to produce the performanceimprovements. Finally, for

raytrace/mtrt, we found that the cause of the speedups was mainly due to an additional

load eliminated to a shared object.
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1 class Runner extends Thread {

2 RayTracer parent;

3 int section;

4 int nsections;

5

6 public Runner(RayTracer parent, int section, int nsection s) {

7 this.parent = parent;

8 this.section = section;

9 this.nsections = nsections;

10 }

11

12 public void run() {

13 new Scene(parent.name).RenderScene(parent.canvas,

14 parent.width,

15 section,

16 nsections);

17 parent.threadCount--;

18 }

19 }

Figure 7.3: Code of ClassRunner in Benchmark Raytrace
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This research presented a study of whether the use of inter-procedural side-effect analy-

sis in Java just-in-time (JIT) compilers improves performance. Our experiments showed

that relatively simple analyses are sufficient for significant improvements. Our results also

showed that the benchmarks with high load densities benefited the most from side-effect

information. Among the optimizations adapted to use side-effects, load elimination was

the one causing the speedups.

In this thesis, we first reviewed how side-effect analysis iscomputed ahead-of-time

in SOOT, based on different call graph constructions and various points-to analyses. We

explained the difference in precision of the various side-effect analyses that we experi-

mented with, and how they can be communicated to JIT compilers through Java class files

attributes.

The three optimizations in Jikes RVM that were modified to take advantage of side-

effect information are local common-sub-expression, redundant load elimination and loop-

invariant code motion. The last two optimizations use the Heap SSA construction [FKS00],

which we also adapted to use side-effect analysis. For each of these optimizations, we ex-

plained the algorithms, the changes that were made, and showed examples of improvements

that are possible with the knowledge of side-effects. We also discussed how JIT inlining

decisions affect the use of ahead-of-time side-effect information.
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In our experiments, we ran the SpecJVM98 benchmarks on threedifferent architec-

tures (Intel, AMD and PowerPC). In local and global optimizations, we gathered various

measurements including static counts of instructions moved during LICM, and the static

number of loads eliminated in local CSE and RLE. We also measured the dynamic effects

of using side-effect information by computing the reduction in memory reads operations

and execution times.

For local optimizations, side-effect analyses had little impact on the static and dynamic

counts. Except for one benchmark, the effect on performancewas negligible. Since local

optimizations are only performed within basic blocks, typically small in Java programs,

this behaviour was expected.

In global optimizations, our results showed an increase of up to 98% of static opportu-

nities for load removal and up to 18% of memory reads moved, a reduction of up to 27% of

the dynamic fields reads, and execution time speedups of up to17% on our Intel system and

up to 20% on our AMD machine. On PowerPC, no speedups were obtained. However, we

noted that our PowerPC machine is significantly slower than our Intel and AMD systems.

The load density property of the benchmarks on PowerPC is thus considerably smaller than

on Intel and AMD, making the use of side-effect analysis lesseffective.

Finally, we analyzed the methods and optimizations that were the cause of the speedups

obtained forcompress, mpegaudioandraytrace/mtrt. We found that for all of these bench-

marks, the optimization that was responsible for the speedups was load elimination (LICM

had little effect on runtime). We noted that only few additional important loads eliminated

(statically) using side-effect analysis was the main causeof the runtime improvements. We

also found that the difference in speedups between theCHA andPTA side-effect variations

was due to the analysis precision on array reads and writes. For our set of benchmarks,

adding a type analysis on arrays would makeCHA as good asPTA in finding load removal

opportunities.
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8.2 Future Work

8.2.1 Experimenting with a Fast PowerPC Machine

The first step in continuing this work would be to perform our experiments and gather

measurements on a fast PowerPC machine to see whether we would get speedups compa-

rable to the ones obtained on our Intel and AMD systems. Obtaining significant runtime

improvements would strengthen the belief that the use of side-effect information is more

effective on fast machines, and thus for benchmarks with high load densities.

8.2.2 Using Context-Sensitive Analyses

In this thesis, the side-effect analyses used were computedusing a flow-insensitive, context-

insensitive, subset-based points-to analysis. Context-sensitive points-to analyses can pro-

duce much more precise information than context-insensitive ones. In an object-oriented

language that encourages encapsulation, such as Java, the information lost due to context-

insensitivity is especially significant [Lho02]. Context-sensitive points-to analysis is planned

to be included in the SOOT framework in the near future [Lho05]. An area for future re-

search would be to perform a similar set of measurements using context-sensitive points-to

analyses to compute side-effect information, which would be more precise than ourPTA

analysis. In the analysis of speedups, we saw that only few additional loads eliminated was

responsible for the runtime improvements. Thus, a more precise side-effect analysis may

enable the removal of further key loads, leading to even bigger performance gains.

8.2.3 Computing Side-Effects at Runtime

The feasibility of performing side-effect analysis insidethe JIT is also a topic for future

research. The dynamic call graph construction presented in[QH04,QH05] is a first step in

this work. A simple side-effect analysis, similar to ourCHA analysis, could be computed

using this dynamic call graph to build method summaries of fields read and written. A

simple type analysis could be implemented to distinguish reads and writes to unrelated

arrays.
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8.2.4 Investigating Secondary Effects

In Chapter 7, we found that for benchmarkmpegaudio, secondary effects such as register

pressure and/or cache behaviour likely was the main cause ofthe performance gains us-

ing side-effect information. Studying whether and how the impact of load elimination on

caches and register allocation contributed to performancevariations is a topic for further

investigation.
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Appendix A

Miscellaneous Tables

In the following tables, full results are shown for benchmarks that do not make use of

side-effects in LICM. Since the speedups stay about the same, side-effect information in

LICM has little effect.

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none

none

CHA

PTA

9.751

9.049

8.769

1.08x

1.11x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.815

9.196

8.954

1.07x

1.10x

void Compressor.compress()

none

CHA

PTA

9.822

9.109

8.967

1.08x

1.10x

void Decompressor.decompress()

none

CHA

PTA

9.807

9.131

8.93

1.07x

1.10x

Table A.1: Level 2 Runtime without Side-Effects in LICM for Compress on Intel
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Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none

none

CHA

PTA

9.514

9.312

9.026

1.02x

1.05x

void Compressor.compress()

void Decompressor.decompress()

none

CHA

PTA

9.471

9.301

9.004

1.02x

1.05x

void Compressor.compress()

none

CHA

PTA

9.485

9.309

9.03

1.02x

1.05x

void Decompressor.decompress()

none

CHA

PTA

9.487

9.298

9.023

1.02x

1.05x

Table A.2: Level 2 Runtime without Side-Effects in LICM for Compress on AMD

Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none

none

CHA

PTA

9.319

8.41

7.932

1.11x

1.17x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

9.222

8.329

7.984

1.11x

1.16x

void q.m(float[], float[])

none

CHA

PTA

9.221

8.32

7.897

1.11x

1.17x

Table A.3: Level 2 Runtime without Side-Effects in LICM for Mpegaudio on Intel
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Methods without Side-effect used

side-effects in LICM in other methods Time(s) Speedup

none

none

CHA

PTA

5.977

5.175

4.987

1.15x

1.20x

int q.o(short[], int, float[][], float[][])

none

CHA

PTA

5.978

5.16

4.963

1.16x

1.20x

void q.m(float[], float[])

none

CHA

PTA

5.976

5.155

4.924

1.16x

1.21x

Table A.4: Level 2 Runtime without Side-Effects in LICM for Mpegaudio on AMD
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