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Abstract

AspectJ is a popular aspect-oriented extension to Java, providing powerful new

features for the modularizing of crosscutting concerns, promising improved code

quality. The runtime cost of these features, however, is currently not well under-

stood, and is a concern limiting even more wide-spread adoption of the language.

The crosscutting nature of AspectJ complicates the measurement of these costs.

This thesis presents a methodology for analyzing the runtime behaviour of As-

pectJ programs, with a particular emphasis on identifying runtime overheads re-

sulting from the implementation of AspectJ features. It presents a taxonomy of

overhead kinds and defines some new AspectJ-specific dynamic metrics. A toolset

for measuring these metrics is described, including both of the current AspectJ com-

pilers: ajc and abc , and results for a newly collected set of AspectJ benchmarks

are presented.

Significant overheads are found in some cases, suggesting improvements to the

code generation strategy of the AspectJ compilers. Initial implementations of some

improvements are presented, resulting, for some benchmarks, in order of magni-

tude improvements to execution time. These improvements have since been inte-

grated in abc and ajc .

Clearly understanding the runtime behaviour of AspectJ programs should result

in both better implementations of the language and more confident adoption by the

mainstream.
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Résumé

AspectJ est une populaire extension orientée aspect pour Java, offrant de nou-

veaux outils puissants pour la modularisation des préoccupations transverses, pro-

mettant une qualité de code source améliorée. Le coût d’exécution de ces outils n’est

pas encore bien compris, ce qui limite l’adoption à grande échelle du language. La

nature transverse d’AspectJ complique la mesure de ces coûts.

Ce mémoire présente une méthode permettant d’analyzer l’opération des pro-

grammes AspectJ, avec une emphase particulière sur l’identification des coûts d’ex-

écution résultants de l’implémentation des fonctionalités d’AspectJ. Il présente une

taxonomie des types de coûts d’exécution et défini un ensemble de nouvelles mes-

ures dynamiques spécifiques à AspectJ. D’es outils pour obtenir ces mesures sont

décrits, incluant les compilateurs AspectJ actuels : ajc et abc . Des résultats pour

un ensemble nouvellement assemblé de programmes-étalons son presentés.

Des coûts d’exécution significatifs ont étés trouvés dans certains cas, suggérant

des améliorations à la stratégie de génération de code des compilateurs AspectJ.

Des implémentations initiales de certaines améliorations sont présentées, résultant,

pour certains programmes-étalons, en une augmentation d’un ordre de grandeur de

la performance. Ces améliorations ont depuis étées intégrées aux compilateurs abc

et ajc .

Bien comprendre le comportement à l’exécution des programmes AspectJ de-

vrait résulter en de meilleures implémentations du language et une meilleure con-

fiance en son adoption de la part de la communauté des développeurs en général.
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Chapter 1

Introduction

1.1 Motivation

Aspect-oriented programming [KLM+97] shows much promise as an extension to

contemporary object-oriented modes of software construction. Of the various im-

plementations of aspect-oriented ideas, AspectJ [KHH+01b] is the most popular,

both within industry and within academia. Since its introduction, it has seen a

large and active community of developers and researchers grow up around it and

is now on the verge of genuine mainstream success and deployment in production

environments.

Much thought has been devoted to the ways in which the AspectJ language—

and in particular its join point model of pointcuts and advice—can improve the

modularity and quality of source code, beyond what is possible with pure Java; an

end goal of AspectJ, and of aspect-oriented programming in general, being the re-

duction of development costs for complex systems. Until recently, however, very

little work has been done on examining the runtime efficiency of AspectJ imple-

mentations. The corresponding runtime costs of these improvements has remained

unknown.

The AspectJ language has matured to the point that examining the runtime be-

haviour of compiled code has become pertinent. Assessing and establishing the run-

time efficiency of compiled AspectJ code, in comparison with its Java equivalents,
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Introduction

may be necessary before the language sees further adoption by the mainstream for

production systems. The very nature of AspectJ, however, in particular its use of

bytecode weaving to implement the join point model, impedes this examination.

The importance of runtime efficiency, and the difficulty of measuring it, are both

indicated in the AspectJ FAQ [Xer03]:

The issue of performance overhead is an important one. It is also quite

subtle, since knowing what to measure is at least as important as knowing

how to measure it, and neither is always apparent.

We aim for the performance of our implementation of AspectJ to be on

par with the same functionality hand-coded in Java. Anything significantly

less should be considered a bug.

In order to perform this examination, a representative set of AspectJ benchmarks

is required. Unfortunately, as affirmed by the FAQ, no such benchmark suite exists.

The analysis of the runtime behaviour of AspectJ, and the assembly of the req-

uisite AspectJ benchmark suite, are of current importance for the continued growth

of AspectJ, and consequent validation of aspect-oriented notions of software devel-

opment.

This thesis presents a framework for analyzing the dynamic behaviour of AspectJ

programs, and identifies some of the runtime costs incurred by the language.

1.2 Contributions

The specific contributions of this thesis are as follows:

• The two current AspectJ compilers, ajc and abc , have been augmented to

annotate the generated class files with additional metadata that enables a vari-

ety of measurements and analyses to be performed on the generated bytecode

and its execution.

• A set of AspectJ benchmarks has been collected from various public sources

and assembled into a benchmark suite.

2



1.2. Contributions

• A new set of of AspectJ-specific dynamic metrics, to explain the runtime be-

haviour of AspectJ programs, and in particular to identify and account for

runtime overhead induced by AspectJ language features, has been defined

and implemented in the *J [DDHV03] dynamic metrics framework.

• A taxonomy of runtime overhead kinds, consonant with the division of AspectJ

language features, has been defined.

• Contrary to conventional wisdom concerning AspectJ, some significant run-

time overheads have been found for certain benchmarks. The language fea-

tures and usage patterns resulting in these overheads are identified and ex-

plained.

• Improvements to the code generation strategy of ajc , which reduce the iden-

tified runtime overheads, are presented and implemented. Comparisons are

made to the stock version of ajc . The ideas behind these improvements have

since been incorporated in recent release versions of ajc . abc ’s development

has been informed by early versions of this work, and incorporates these and

other optimizations. Comparisons between these compiler versions are made.

These contributions should be of direct value to both AspectJ users and AspectJ

compiler writers. AspectJ users should benefit from these contributions as they pro-

vide guidance as to what language features and idioms may impose performance

penalties. Conversely, they also allow users to apply other features and idioms

with the confidence that significant performance penalties are not being incurred.

Compiler writers can benefit from this work as it provides a means of identifying

future improvements to the language’s compilers. It suggests improved code gen-

eration strategies and improved static analyses that should result in more efficient

bytecode.
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 is a brief introduction to

the AspectJ language, and the AspectJ concepts required to understand the rest of

this work. Those already conversant with the language can safely skip this chap-

ter. Chapter 3 describes the dynamic measurements that are made on the AspectJ

benchmark programs, including the definition of some new AspectJ-specific metrics.

Chapter 4 presents the toolset that was collected, written, and assembled to perform

these measurements. Chapter 5 describes the categorization of AspectJ overheads,

and the metadata that is required of the AspectJ-specific dynamic metrics and that is

attached to classfiles produced by the augmented compilers. Chapter 6 defines the

dynamic algorithms required of the metric analyses. Chapter 7 presents the exper-

imental results. The benchmarks measured are described, and the measurements

collected are analyzed. Comparisons are made between compiler implementations,

both between ajc and abc , and between ajc and a modified version of ajc that

implements some compiler optimizations presented in this chapter to reduce some

of the measured overheads. Chapter 8 is a survey of related work and chapter 9

concludes this work and suggests some avenues for future work.
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Chapter 2

AspectJ

This chapter provides a brief introduction to aspect-oriented programming and

the AspectJ language. Section 2.1 describes aspect-oriented programming in gen-

eral. It describes the problems aspect-oriented programming intends to solve, and

the basic strategy with which it attempts to do so. Section 2.2 provides a brief in-

troduction to the AspectJ language, focusing on those features most relevant to this

thesis. Section 2.3 presents a larger example of an aspect that incorporates many

of the features described in section 2.2 and which illutrates the value of aspect-

oriented programming and AspectJ.

2.1 Aspect-Oriented Programming

A software system, in general, is composed of multiple concerns. A concern is any

design-level notion—such as a feature or a requirement—that results in implemen-

tation at the source code level. In most software systems, it is very desirable to

achieve good separation of concerns. A system exhibits good separation of con-

cerns when, for each concern in a system, there is a direct correspondance between

the design-level idea and the implementation-level module expressing it. Ideally, a

single concern should be implemented in a single implementation unit, and a single

implementation unit should implement a single concern. This is related to the con-

cepts of cohesion and coupling. A system that shows good separation of concerns
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should show high cohesion and loose coupling amongst its modules.

Separation of concerns is a desirable property because a system that exhibits it

will, in general, be easier to read, understand, maintain, and evolve. Making these

qualities easier to achieve allows for the development of larger, more complex sys-

tems at lower costs. The desires to achieve improved code quality, and thus reduced

development costs, have motivated the evolution of programming paradigms. Each

new paradigm has provided the programmer with new tools with which to further

abstract and modularize the concerns being implemented.

The object-oriented paradigm, although providing the developer with many

techniques for improving code quality, is unable to achieve complete separation

of concerns. The constructs it provides for modularizing concerns—classes, objects,

and methods—are insufficient, as the implementations of many concerns end up

cutting across their boundaries. This results in the scattering of implementations

across multiple modules and the tangling of implementations within single mod-

ules, both detrimental to code quality. These concerns, whose implementations

span object-oriented modular units, are called crosscutting concerns [KLM+97].

Typically, the core concerns, or domain logic, of a well-written object-oriented

system are well-modularized. It is concerns such as logging, authentication, au-

thorization, persistence, transactional integrity, and so forth, that tend to be cross-

cutting in nature. Crosscutting concerns are not just an artifact of poorly-factored

code: even the best-designed and implemented programs may have crosscutting

concerns, and refactoring the code to modularize them will result in the scattering

and tangling of previously well modularized concerns.

Aspect-oriented programming is an extension of the object-oriented paradigm

that provides new constructs for the modularization of crosscutting concerns. It

provides new means for specifying concerns separately, and for composing them

together to produce a whole program. By achieving a more direct correspondence

between design-level and implementation-level constructs, it promises improved

code quality with a consequent reduction in the cost of designing, developing, and

maintaining complex software systems.

6



2.2. AspectJ

2.2 AspectJ

AspectJ [KHH+01b] is an aspect-oriented extension of the Java programming lan-

guage. It resulted from research into aspect-oriented programming at Xerox Parc in

the 80s and 90s [KLM+97] and saw its first release in 1998. It is now being devel-

oped as part of the Eclipse project [Asp]. Of the several different implementations

of aspect-oriented ideas, AspectJ is, as of this writing, by far the most popular, both

in industry and in academia.

One of the goals of the AspectJ project is for it to function as a large scale soft-

ware engineering experiment to validate the ideas of aspect-oriented programming

in real-world contexts. Consequently, its design has been driven by the desire to

develop a large and active developer community by making the language easy to

learn for current Java programmers and by making it easy to incorporate elements

of AspectJ into extant Java systems. As such, AspectJ is a strict extension to Java:

every valid Java program is a valid AspectJ program.1 Furthermore, AspectJ com-

piles to normal Java bytecode that can be executed in a standard JVM, not requiring

a specialized runtime environment.

AspectJ extends Java with a new top-level construct: the aspect. The aspect is

AspectJ’s unit of modularization for crosscutting concerns. A concern whose im-

plementation, in Java, was inevitably scattered across multiple classes or methods,

entangled with the implementations of other concerns, should, in AspectJ, be neatly

encapsulated within an aspect.

AspectJ is an asymmetric aspect-oriented language [HOT02] in that it distin-

guishes between core and crosscutting concerns, specifying them differently. Core

concerns continue to be implemented in pure Java, modularized within classes and

methods. Their implementation is referred to as the base program. Crosscutting

concerns are implemented in aspects, using an extended syntax of Java. The as-

pects and base program are composed together to produce the complete program.

1In some implementations of AspectJ there are some exceptions due to the introduction of several
new keywords to Java. Java programs that use these keywords as identifiers are not valid AspectJ
programs.
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The features AspectJ provides for implementing crosscutting concerns in aspects

can be classified into two groups: dynamic crosscutting features and static crosscut-

ting features. The dynamic crosscutting features are those that implement crosscut-

ting concerns by modifying the runtime behaviour of a program; static crosscutting

features modify the static type structure of a program. The following sections will

provide a brief introduction to these AspectJ features.

2.2.1 Dynamic Crosscutting

An aspect is analagous to a class in many ways. Like a class, it can have methods

and fields. It can extend another class or aspect and can itself be extended. It can be

concrete or abstract. An aspect, however, may also contain several special AspectJ

constructs: pointcuts, advice, and intertype declarations. The first two implement

dynamic crosscutting, and is discussed in this section; the latter implements static

crosscutting and is discussed in the next section.

The dynamic crosscutting features of AspectJ are those that implement crosscut-

ting concerns by means of modifying the dynamic behaviour of the program. The

nature of these features can be illustrated by analogy to the observer pattern. Con-

ceptually, an aspect may be considered an observer, with the execution of the whole

program the subject. The aspect observes the execution of the whole program, and

at particular points within the execution, modifies the behaviour of the program by

executing new code. The points at which new code can be injected are called join

points, and the code that is injected is called advice. A pointcut is a pattern that

selects join points of interest, and every piece of advice has an associated pointcut.

To actually implement AspectJ in this fashion would be terribly inefficient. It

would also require special VM support (which would conflict with AspectJ’s goal of

easy adoption by Java developers). Instead of a literal implementation of aspects

as observers, aspects and base program are composed statically in a form of partial

evaluation [MKD03]. This is known as weaving.

A join point shadow is the static counterpart of a join point. Or, equivalently,

a join point is a particualar execution of a join point shadow. The weaver inserts

8
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instructions at join point shadows to execute the advice that would apply to the

corresponding join points. Since a single join point shadow may correspond to

an arbitrary number of join points, and since not all of these join points may be

matched by a particular pointcut, the weaver often needs to add a runtime check

to the code inserted at the join point shadow. This is known as a dynamic residue.

If the dynamic residue specifically tests the applicability of advice at a given join

point, it is called an advice guard.

Figure 2.1 is a high-level illustration of this process. The base program, which

implements core concerns in Java, and the aspect, which implements crosscutting

concerns, are specified separately. The weaver composes the aspect and the base

program, resulting in a final program with advice woven into and across the mod-

ular units of the base program. The final program is equivalent to what could have

been produced with Java were one willing to accept the scattered implementation

of the functionality captured in the aspect.

A simple example of AspectJ source code is shown in Listing 2.1. It illustrates

several basic AspectJ features, and will be referred to later in this section.
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Figure 2.1: Weaving of base program and aspect
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public class Example {

public static void main(String[] args ) {

Example e = new Example();

e.bar();

e.foo();

}

public void foo() {

System.out.println("foo");

bar();

}

public void bar() {

System.out.println("bar");

}

}

aspect ExampleAspect {

pointcut barInFoo(): call ( void Example.bar())

&& cflow ( call ( void Example.foo()));

before (): barInFoo()

{

System.out.println("foo->bar");

}

}

Listing 2.1: Example AspectJ program with cflow
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Join Points

Join points are the most fundamental of the concepts AspectJ adds to Java. A join

point is a particular point in the execution of a program, a specific runtime event.

An aspect-oriented language’s join point model defines what runtime events are

exposed as join points. In AspectJ’s case, the following events are exposed as join

points:

• method call and execution

• constructor call and execution

• field get and set

• class initialization

• object initialization and pre-initialization

• exception handling

• advice execution

Not every possible join point is exposed. These particular events have been

chosen because they are relatively stable in the face of compiler optimizations and

some code refactorings. Other potential join points, such as entry into a loop or

other control flow structure [HG05], are much more volatile in the face of such

code transformations and so are not exposed.

It is important to realize that a join point is not an atomic point, but rather a

region of execution. A join point has a beginning, it has an end, and it can contain

other join points. Figure 2.2 is an annotated UML sequence diagram illustrating

this point with some example join points. The foo method execution join point

is contained by the corresponding call join point, and all of the join points are

contained by that for the execution of main .
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Figure 2.2: Several kinds of join point

Pointcuts

A pointcut is a pattern that matches join points. A pointcut may also specify some

context that should be exposed to advice at a join point—the target object or the

arguments of a method call join point, for example.

Pointcuts are specified by the programmer in the pointcut definition language,

whose syntax is distinct from that for the rest of AspectJ. A pointcut is either a prim-

itive pointcut or a compound expression composed of other pointcuts and boolean

operators.

Primitive pointcuts can be classified into three groups: those that match join

points by their kind; those that match join points based on their static context;
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and those that match join points based on their dynamic context. The first two

groups can be matched statically, while matching of the third may require dynamic

residues.

Matching by kind: Each kind of join point listed above (method call, method ex-

ecution, field get, etc.) has an associated primitive pointcut that selects join

points of that kind. Most of these pointcuts also take as argument a pattern

that matches type or signature. For example, call(* foo*()) would select

all method call join points for which the method signature matches the given

pattern (no parameters, name starts with “foo”.)

Matching by static context: The within and withincode pointcuts match join points

based on static context: if a join point’s shadow is lexically located within a

type or method matching the given pattern, it matches the pointcut.

Matching by dynamic context: The cflow pointcut takes as argument another point-

cut. If a join point is executing within the dynamic context of any join point

matching the argument pointcut, it matches.

For example, consider the program in Listing 2.1. The pointcut is call(void

Example.bar()) && cflow(call(void Example.foo())) . The cflow

fragment matches all join points within the dynamic context of a call to foo() —

that is, all join points for which a call to foo() exists on the call stack. This

includes the call to foo() itself. The whole thing selects calls to bar() that

occur below a call to foo() .2

The cflowbelow pointcut differs in that it would not match the call to foo()

itself, unless it was a recursive call.

target and this pointcuts match join points based on the runtime types of the

target and this objects, respectively. They can also be used to expose these

2In this simple example, withincode could be used instead to achieve the same semantics with
less runtime overhead, as it is a static pointcut that won’t require a dynamic residue. See section 2.3
for a more complex example with a use of cflow that cannot be replaced by withincode.
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objects to advice. The args pointcut is similar, matching on and exposing the

arguments at a join point.

The if pointcut can contain a boolean expression that may access any static

data in the running program. If it evaluates to true for a join point, then that

join point matches.

Advice

Advice is the construct that defines crosscutting behaviour. One way to think of it

is as the scattered implementation of a crosscutting concern extracted horizontally

from a system and packaged into a unit that is very much like a method. Equiv-

alently, advice is the code that is inserted into an executing program at particular

join points. Every advice declaration in an aspect is associated with a pointcut

identifying the join points at which it should be executed.

There are several kinds of advice:

• before advice

• after returning advice

• after throwing advice

• after advice

• around advice

before and after advice execute before and after the advised join points. after

advice is executed regardless of how a join point is exited, whether normally or

by exception. Specialized kinds of after advice, after returning and after throw-

ing, will execute only after a normal return or only after returning by exception,

respectively.

around advice might more easily be understood as “instead-of advice”. It exe-

cutes in place of the original join point, with the option to execute the original join

point any number of times from within the advice body. The proceed keyword in
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an around advice body indicates that the original join point should be executed at

that point.

Advice bodies have access to reflective information about the join points they

advise. The keywords thisJoinPoint and thisJoinPointStaticPart and thisEnclos-

ingJoinPointStaticPart each return objects containing this reflective information.

Aspects

Aspects, as described at the beginning of this chapter, are the basic modular units

of crosscutting concerns, and are very similar to classes in many ways. In addition

to the members a normal Java class can contain, an aspect can contain advice and

pointcut declarations. For example, the aspect in Listing 2.1 declares a single named

pointcut and a single piece of before advice that is associated with that pointcut.

Like classes, aspects are instantiated as objects. By default, an aspect is a single-

ton. Any fields used by advice defined in the aspect are shared by all executions of

the advice, at all join points. Aspect instances, however, can also be associated on

a per-object and a per-cflow basis. An aspect can be declared to be perthis or per-

target, in which case an instance will be associated with each this or target object

at join points matching a given pointcut. An aspect can also be declared percflow,

in which case an instance is associated with each matching control flow pattern.

In addition to pointcuts and advice, aspects can also contain intertype declara-

tions which modify the static structure of a program. These are explained in the

following subsection.

2.2.2 Static Crosscutting

The static crosscutting features of AspectJ are those that implement crosscutting

concerns by modifying the static type structure of a program. An aspect can do

this by introducing new members—fields, methods, or constructors—to a class or

interface. It can also declare new parents for any class or interface, making it extend

from a new supertype or implement a new interface. These features are also called

intertype declarations.
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For example, consider a class C which extends a class A. If class B also extends

class A, then an aspect may declare B to be the new superclass of C with the state-

ment declare parents: C extends B; .

An aspect can also perform exception softening, which is the conversion of checked

exceptions to unchecked exceptions. The declare soft statement takes two ar-

guments: the type of a checked exception and a pointcut. At all join points matching

the pointcut, any checked exceptions of the given type are caught, wrapped in an

unchecked exception of type org.aspectj.SoftException , and rethrown.

2.3 An AspectJ Example

This section presents a larger example of AspectJ, which makes use of a number of

the features described in the previous sections. It has been taken from Ramnivas

Laddad’s book, AspectJ in Action [Lad03], pages 346–350. It shows the implementa-

tion, as an abstract aspect, of a reusable protocol for authentication and authoriza-

tion based upon the Java Authentication and Authorization Service (JAAS) [Sun],

and the specialization of this protocol with a small concrete aspect for a particular

application. Authentication and authorization are concerns whose implementations

are typically scattered across an application, intruding into core domain logic. They

demonstrate clearly the potential improvements AspectJ can make to code quality.

The abstract aspect in Listing 2.2 defines the basic protocol for both authentica-

tion and authorization. It is intended to be extended by a concrete aspect, which

defines the pointcut identifying operations requiring authorization (authOpera-

tions ) and the function which codifies the authorization policy (getPermission ).

An example concrete aspect specializing this protocol for a simple banking applica-

tion is shown in Listing 2.3.

The first piece of before advice in the abstract aspect performs authentication.

If authentication has not yet been performed, the authenticatedSubject field

will be null, and an authentication function will be called. If it succeeds, a Subject

representing the authenticated user will be assigned to the field.
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Authentication is performed by the authenticate() function using a JAAS

LoginContext object. This object takes two parameters: a configuration name

(“Sample”) and callback function (TextCallBackHandler2() ). The callback

function acquires and returns the authentication data (e.g. user name and pass-

word) and the configuration name selects the authentication policy, which is de-

fined externally. When authentication succeeds, authenticatedSubject is set;

when it fails, a LoginException is thrown.

By using an aspect like this, just-in-time authentication can be implemented

without having to intrude upon the domain logic of the application.

Once authentication has been performed, actions must be authorized. Again,

the actions requiring authorization are specified by the pointcut. The permissions

required to execute each action are defined by the getPermission function. This

function takes as argument a JoinPoint.StaticPart object which provides re-

flective information about the advised join points (method name, for example),

which can be used to differentiate actions requiring different permissions. The con-

crete aspect in Listing 2.3 shows an example of specifying the getPermission

method for a particular application.

The next two pieces of advice implement the authorization checks. The around

advice executes first, and when its proceed statement (representing the actions

requiring authorization, and here wrapped in a JAAS action object) is executed, so

is the second piece of before advice.

It is possible for one action requiring authorization to be called from another.

The before advice checks permissions for each, but only the root action needs to

be called via Subject.doAsPrivileged by the around advice. The additional

cflowbelow pointcut on the around advice excludes all actions occuring within

another authorized action, thus eliminating unnecessary checks.

Understanding the details of the JAAS implementation in this example is not

vital to understanding the value provided by AspectJ. In brief, the around advice

executes an action requiring authorization on behalf of an authenticated subject,

and the before advice checks that the subject has the sufficient permission to exe-

cute that particular action, throwing an exception if it doesn’t.
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JAAS allows for the authentication and authorization policies of a system to be

defined external to the program, simplifying the implementation of access control.

In a standard Java implementation, however, the calls to check access would still be

scattered throughout the program. This is especially undesirable for a security con-

cern; if a developer forgets to add an authorization check in accordance with some

policy, the security of the whole system could be compromised. AspectJ, however,

complements the benefits provided by JAAS by modularizing the implementation

of access control and centralizing the implementation of a security policy.

This particular example illustrates another benefit of the increased separation of

concerns made possible by AspectJ: a developer who understands the domain logic

of the application may not be an expert in security, and an expert in security may

not understand the domain logic of the application. By separating the two, each

concern can be developed by people with the appropriate expertise.

public abstract aspect AbstractAuthAspect {

private Subject _authenticatedSubject;

public abstract pointcut authOperations();

before () : authOperations() {

if (_authenticatedSubject != null ) {

return ;

}

try {

authenticate();

} catch (LoginException ex) {

throw new AuthenticationException(ex);

}

}

public abstract Permission getPermission(

JoinPoint.StaticPart joinPointStaticPart);

Object around ()

: authOperations() && ! cflowbelow (authOperations()) {
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try {

return Subject

.doAsPrivileged(_authenticatedSubject,

new PrivilegedExceptionAction() {

public Object run() throws Exception {

return proceed ();

}}, null );

} catch (PrivilegedActionException ex) {

throw new AuthorizationException(ex.getException());

}

}

before () : authOperations() {

AccessController.checkPermission(

getPermission(thisJoinPointStaticPart));

}

private void authenticate() throws LoginException {

LoginContext lc = new LoginContext("Sample",

new TextCallbackHandler2());

lc.login();

_authenticatedSubject = lc.getSubject();

}

}

Listing 2.2: An abstract aspect defining an authentication and authorization protocol
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public aspect BankingAuthAspect extends AbstractAuthAspect {

public pointcut authOperations()

: execution ( public * banking.Account.*(..))

|| execution ( public * banking.InterAccountTransferSystem.*(..));

public Permission getPermission(

JoinPoint.StaticPart joinPointStaticPart) {

return new BankingPermission(

joinPointStaticPart.getSignature().getName());

}

}

Listing 2.3: A concrete instance of the abstract protocol defined in Listing 2.2
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Chapter 3

Metrics

As explained in chapter 1, the runtime cost of AspectJ’s features has remained

largely unknown, although it has generally been assumed to be negligible. How-

ever, the manner in which aspects and base program are composed statically by

the weaver, as described in chapter 2, suggests that some runtime overhead should

be present, at least in the form of dynamic residues. This chapter presents the

key measurements used in this work to assess this belief, providing a quantitative

means either to confirm that overhead is negligible or to identify its nature and

significance.

These measurements can be grouped into three categories: execution time,

Java-based dynamic metrics, and AspectJ-specific dynamic metrics. They are briefly

introduced below in this order. The AspectJ metrics are the most significant con-

tribution, and they, in particular, are considered in greater detail in subsequent

chapters.

3.1 Execution Time

Execution time is the most coarse-grained measurement made, but also the most

telling: the significance of runtime overhead is proportional to its impact on total

execution time. Execution time comparisons are made between several variations

on a benchmark, including:
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• Between an AspectJ benchmark and a Java version of equivalent functionality.

This measurement should indicate the presence of AspectJ overhead.

• Between a complete AspectJ program and its base (Java) program. This

should indicate whether a benchmark’s execution is aspect-heavy, or domi-

nated by its base code.

• Between a benchmark’s total execution time, the time spent in garbage collec-

tion, and the time spent in the JIT compiler.

• Between versions of a benchmark that differ slightly in implementation of the

aspect, in particular in the definition of pointcuts. This can identify costly

usage patterns if small changes result in large execution time differences.

• Between instances of a benchmark compiled with different compilers and

compiler configurations. ajc , abc , and a version of ajc modified to include

some simple optimizations are used. Furthermore, abc is used with different

optimizations enabled.

3.2 Dynamic Metrics

Comparisons of execution times, while capable of identifying the existence of per-

formance problems in generated code and of evaluating the effectiveness of im-

proved code generation strategies, cannot identify what particular AspectJ features

may result in performance penalties. Dynamic metrics are more specific measure-

ments of the dynamic behaviour of a program. They can be used to both identify

performance problems on their own, and to explain and isolate performance prob-

lems identified by execution time measurements.

In this work, the *J dynamic analysis framework [DDHV03] is used to calculate

dynamic metrics. It provides a number of stock Java-based dynamic metrics that

can be calculated for any program running in a JVM (and hence for both Java and

AspectJ programs). In addition to these general dynamic metrics, this work defines

some new AspectJ-specific dynamic metrics, implemented as extensions to *J.
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*J supports the concept of metric spaces. Dynamic metrics are calculated on

execution traces, which are sequences of runtime events. By default, they are cal-

culated for the entire execution of a program. It can be useful, however, to calculate

them for only a part of the execution, a subset of the runtime events. These subsets

are called metric spaces, and are defined by partitioning schemes. *J provides two

basic partitioning schemes, both used in this work:

Whole program: This is the default partitioning scheme. All runtime events for the

entire execution of the program contribute to the calculation of each metric.

Static Application/Library: This scheme distinguishes the code written by the user

and produced by the compiler (application code) from that in runtime li-

braries (library code). The distinction is made by matching package names,

and is configurable by adjusting the package name filters. For this thesis, code

executed in the Java standard library and in the AspectJ runtime library is

considered part of the library space.

The metrics described in the following sections are calculated and reported for

each of these spaces: whole program, application, and library.

3.3 General Metrics

*J provides implementations for a large number of general (Java-based) dynamic

metrics, not all of which are relevant to this work. The following general dynamic

metrics are used:

size.loadedClasses.value, size.load.value, size.run.value: These metrics give an

indication of the static size of the program measuring the number of loaded

classes, the number of loaded bytecode instructions, and the number of byte-

code instructions executed at least once. The latter two, together, can provide

a measure of code coverage, or dead code. A large difference in the first two

metrics between AspectJ and Java versions of a program indicates code bloat.

25



Metrics

base.instructions.value: This metric is a count of the total number of bytecode

executions. Its value is at least as large as that of size.run.value. It gives

a VM-neutral approximation of execution time, the unit of which being the

kilobytecode (kbc).

The relationship between the number of executed bytecode instructions and

execution time is, of course, somewhat tenuous, for several reasons. First, not

all bytecode instructions are of equivalent cost. Second, the JIT compiler can

significantly reduce the consequence of a large number of bytecode executions

in ways that are difficult to predict. Nevertheless, this metric is the basis for

several others that are particularly useful for assessing AspectJ overheads (the

tag mix metric, for example).

base.objects.value, base.bytes.value, memory.objectAllocationDensity: These

metrics describe the allocation behaviour of a program. base.objects.value

counts the number of heap allocations made, base.bytes.value counts the total

number of bytes allocated, and memory.objectAllocationDensity measures the

allocation rate, indicating the number of allocations made per kbc.

As mentioned above, not all bytecodes are of equal cost, and some may be

optimized away completely by the JIT. As such, it can be useful to restrict

the count of instruction executions to expensive instructions that tend not

to be optimized away. The base.objects.value metric is additionally useful in

this capacity because the executions it represents, object allocations, tend to

be expensive and tend not to be optimized away as readily as, for example,

invoke instructions, which can be inlined.

3.4 AspectJ Metrics

The general metrics, while useful, are still incapable of explaining any AspectJ over-

heads present, or of reporting on behaviour as it relates to specific AspectJ language

features. Therefore, in addition to these general metrics, a number of new AspectJ-

specific metrics have been defined and implemented in *J. These metrics make use
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of AspectJ-specific metadata attached to class files, and report values related to

specific AspectJ features. In this subsection, the key metrics are briefly defined.

Chapter 4 explains the tools used to calculate them, chapter 5 explains the meta-

data and overhead kinds in more detail, and chapter 6 presents some of the more

complicated computations required to calculate these metrics.

3.4.1 Instruction Kind Metrics

TagMix: The tagmix metric is a partition of bytecode executions into bins represent-

ing the different roles of the instructions in implementing AspectJ language

features. Each bin corresponds to an instruction kind. The different instruc-

tion kinds are described in detail in chapter 5. Each bin is reported as both

a percentage of total executions and as an absolute count. This metric is re-

ported in both an execution and an allocation flavour. The former reports

executions of any kind (that is, it partitions base.instructions.value,) while the

latter reports only executions that result in space being allocated on the heap

(that is, it partitions size.objects.value.)

As mentioned in section 3.3, this metric does not correspond directly to execu-

tion times, but is still quite useful, as is shown in chapter 7, especially in con-

junction with execution time comparisons. Section 9.1.1 suggests some ways

in which more accurate profiling of AspectJ overhead could be performed.

Aspect Overhead: The implementation of certain AspectJ language features re-

sults in some runtime overhead. The tagmix metric differentiates overhead

from non-overhead executions—this metric is a summary, reporting the ratio

of overhead executions to total executions. It is reported both for bytecode

executions of any kind and for allocations. It indicates the efficiency of the

AspectJ language implementation. A high value suggests that improvements

can be made to the compiler. A high value may also indicate that the runtime

cost of the AspectJ features could outweigh their benefits.

(A high value can, however, be misleading on its own, as it doesn’t necessarily
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imply a longer execution time, due to the effects of JIT compilation.)

Advice to Application Ratio: The advice to application metric indicates how much

of the program’s non-overhead execution is spent in advice. Benchmarks with

large advice bodies, or advice bodies that execute very frequently, may spend

the bulk of their time executing advice. This metric does not report on over-

head.

Advice to Overhead Ratio, Overhead to Advice Ratio: These metrics indicate the

ratio of non-overhead advice executions to overhead executions, and vice-

versa. In a sense, they identify the runtime cost of implementing behaviour in

advice.

Library Ratio: This metric indicates the percentage of executions made from within

the AspectJ runtime library.

3.4.2 Advice Guard Metrics

Advice Execution: The advice execution metric is a partition of advice guards into

three categories: those that always (for a run of the program) evaluate to true

and are succeeded by execution of their associated advice, those that always

evaluate to false, and those that sometimes evaluate to true and sometimes to

false.

If it is found that a particular guard always evaluates to true or always evalu-

ates to false, it may be true that the guard will always evaluate to true or false

across all inputs to the program, and suggests that more sophisticated static

analysis could completely remove this guard.

3.4.3 Shadow and Source Metrics

Advice Execution per Shadow: This metric reports the number of advice execu-

tions per join point shadow. It can be used to identify join point shadows at

which advice is very frequently executed, and shadows at which advice is very
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rarely executed. This metric, and the others in this subsection, could provide

useful profiling information to programmers.

Hot Shadows: The hot shadows metric indicates the minimum number of shadows

contributing to 80% of shadow executions. That is, it will indicate whether

a small number of join point shadows are dominating the execution of a pro-

gram or not.

Advice Execution per Source: A source, as further described in section 5.3, is an

instance of an AspectJ construct that can result in woven bytecode instruc-

tions. This metric reports the number of advice executions per source; that is,

the number of times each particular advice is executed.

Hot Advice: The hot advice metric indicates the minimum number of advice defi-

nitions contributing to 80% of advice executions. If the value is small, it indi-

cates that there are hot advice, that is, advice bodies that are being executed

with disproportionate frequency.

3.5 Summary

In summary, three kinds of measurements can be made: execution time, general dy-

namic metrics, and AspectJ-specific dynamic metrics. The AspectJ-specific dynamic

metrics primarily identify AspectJ overhead, but can also provide other useful infor-

mation, such as profiling information. They have been newly defined for this work,

and the next several chapters examine them in more detail.
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Tools

This chapter describes the tools that were collected, modified, and created in

order to study the dynamic behaviour of AspectJ programs and to perform the mea-

surements described in chapter 3. The relationship between these tools is illustrated

in Figure 4.1.

The toolchain consists of the following parts:

• An AspectJ benchmark suite consisting of representative AspectJ programs

collected from a variety of public sources.

• AspectJ compilers modified to annotate the generated classfiles with addi-

tional metadata required by the dynamic metrics described in chapter 3. The

compilers used are modified versions of ajc 1.2 and abc 1.0.2.

• A version of the *J dynamic analysis framework, extended to compute the

new AspectJ dynamic metrics.

• Various support tools for examining and manipulating the tagged classes, and

for managing the entire process of metric computation.

The AspectJ compilers, and the modifications made to them, are described in

more detail in section 4.1. The *J dynamic analysis framework is described in

section 4.2.
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Figure 4.1: Overview of metric collection tools

4.1 AspectJ Compilers

There are currently two compilers for the AspectJ language. The first, ajc [Asp],

is the original compiler, created by the language designers and now maintained as

part of the Eclipse project. The second is the Aspect Bench Compiler (abc ) [aG],

which has been developed at McGill and Oxford Universities.

In order to implement the dynamic metrics described in the previous chapter,

these compilers have been modified, as part of this thesis, to annotate the programs

they produce with necessary metadata. Both compilers have been used so that their

code generation strategies can be compared.
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Although the design and architecture of these two compilers differ in the details

(described further below), an important commonality is that they both have a dis-

tinct weaving phase in which aspects and base program are composed to produce

pure Java bytecode representing the whole program. As mentioned in section 2.2,

this is like a form of partial evaluation.

Both compilers distinguish between two forms of weaving: that which imple-

ments the static crosscutting features and modifies the static type structure of the

program, and that which implements the dynamic crosscutting features and mod-

ifies method bodies. In each case, new instructions or methods may be generated

in order to implement the required semantics—these are AspectJ overhead. It is

these overhead instructions that we tag with additional metadata, and the weavers

of both compilers have been augmented to do so.

This metadata is described in detail in chapter 5. The rest of this section de-

scribes in further detail the two compilers, and provides for each a tagging example.

4.1.1 ajc

ajc is the original AspectJ compiler and the reference implementation for the lan-

guage. Its design has focused on fast incremental compilation and integration with

the Eclipse suite of developer tools. Since version 1.1, it has performed aspect

weaving at the bytecode level. (Previous versions performed weaving at the source

code level.) The ajc architecture consists of a front-end compiler and a back-end

weaver. The front-end compiler is an extended version of Eclipse’s JDT compiler. It

takes as input AspectJ source code and produces as output standard Java class files

annotated with special attributes. These attributes contain all the aspect-specific

information (pointcut definitions, for example) required by the weaver.

The major changes made to the classes being woven are performed by two

kinds of munger. The first kind is the type munger, which changes the static type

structure of the program, implementing intertype declarations. The second kind

is the shadow munger, which manipulates join point shadows, implementing the

dynamic crosscutting features of aspects. Each source-level instance of an AspectJ
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construct requiring modification of the input bytecode has a corresponding munger

instance. For example, a particular advice declaration would correspond to a par-

ticular shadow munger instance.

The modified weaver tags instructions that are generated by mungers with three

pieces of metadata, as further described in chapter 5: instruction kind, shadow ID,

and source ID. These tags indicate the role of the instructions in implementing

AspectJ language features, identify which particular construct has resulted in their

generation, and identify the particular join point shadow into which they are being

woven.

Not all of the instructions that we wish to annotate with this metadata are gen-

erated by mungers during the weaving stage. Existing instructions in aspect classes,

generated during the front-end AspectJ compilation, may also represent overhead

that should be tagged. The front-end compiler could be modified to tag these in-

structions as they are generated, in the same manner that instructions are tagged

during weaving, but since ajc supports the weaving of binary aspects for which

the source may be unavailable, it is desirable to instead perform all tagging during

the weaving stage. Therefore, at the beginning of the weaving stage, a “pretag-

ging” operation is performed on all aspect classes, and instructions produced by the

front-end compiler that should be tagged are tagged. Since the front-end compiler

automatically generates special names for advice bodies and other methods imple-

menting special AspectJ constructs, this is accomplished by searching for bytecode

patterns in methods whose names match these naming conventions. An example

case is that of an around advice body. The advice body is implemented as a method

on the aspect class. For this method, we isolate the instructions implementing the

proceed call, which is implemented as a call to a specially-named method, and tag

them appropriately.

Tagging in ajc

Because ajc stores aspect information in classfile attributes so that it can support

the weaving of binary aspects, ajc already has some infrastructure in place for
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creating classfile attributes. This has been extended to support instruction tagging.

Several new classes have been added to the AjAttribute class: Instruction-

TagAttribute , InstructionKindAttribute , InstructionSourceAttri-

bute , and InstructionShadowAttribute . Tagging utility functions have been

added to weaver.bcel.Utility . Unique instance IDs have been added to the

Shadow and ShadowMunger classes, implementing shadow and source IDs, re-

spectively.

The following code listing illustrates a simple example: tagging the instruc-

tions added to implement per-object aspect instance binding. This is a method in

weaver.bcel.BcelShadow .

public void weavePerObjectEntry( final BcelAdvice munger,

final BcelVar onVar)

{

final InstructionFactory fact = getFactory();

InstructionList entryInstructions = new InstructionList();

InstructionList entrySuccessInstructions = new InstructionList();

onVar.appendLoad(entrySuccessInstructions, fact);

entrySuccessInstructions.append(

Utility.createInvoke(fact, world,

AjcMemberMaker.perObjectBind(munger.getConcreteAspect())));

InstructionList testInstructions =

munger.getTestInstructions(

this ,

entrySuccessInstructions.getStart(), range.getRealStart(),

entrySuccessInstructions.getStart());

// tag the dynamic residue:

Utility.tagInstructionList(

testInstructions,

AjAttribute.InstructionKindAttribute.PEROBJECT_ENTRY_TEST,

this ,
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munger,

true );

entryInstructions.append(testInstructions);

entryInstructions.append(entrySuccessInstructions);

// tag the aspect instance binding instructions:

Utility.tagInstructionList(

entryInstructions,

AjAttribute.InstructionKindAttribute.PEROBJECT_ENTRY,

this ,

munger);

List oldIl = Utility.instructionListToList(range.getBody());

range.insert(entryInstructions, Range.InsideBefore);

List newIl = Utility.instructionListToList(range.getBody());

// tag BCEL artifacts:

Utility.tagUntaggedNewInstructions(

oldIl,

newIl,

AjAttribute.InstructionKindAttribute.BCEL,

this ,

munger);

}

Listing 4.1: Tagging per-object aspect instance binding instructions in ajc

This code tags any dynamic residue generated with the PEROBJECT ENTRY TEST

tag, the instructions that bind the aspect instance with the PEROBJECT ENTRY tag,

and certain instructions that are artifacts of BCEL with the BCEL tag. In each case,

the shadow and munger are passed to the tagging function, from which the shadow

and source IDs are read.
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4.1.2 abc

Where ajc ’s primary design goals are fast incremental compilation and integration

with developer tools, abc ’s are extensibility [ACH+05a] and optimization [ACH+05b].

The motivation for its development is two-fold. First, research into aspect-oriented

languages and AspectJ is active and ongoing. Development of new language fea-

tures requires a suitable workbench, and integration with a “real-world” aspect-

oriented language, like AspectJ, is of great value. The abc compiler was developed

to be such a workbench, providing an extensible framework in which a wide-variety

of extensions can be made to AspectJ with a minimum of effort. Second, abc has

been designed as an optimizing implementation of AspectJ. It implements some ba-

sic optimizations for AspectJ code generation and provides a framework enabling

the development of new analyses and optimizations. This facet of abc is explained

further in chapter 7.

abc is built upon several existing tools [ACH+04]. Its front-end is based on

Polyglot [NCM03], an extensible compiler front-end framework, and its back-end

is based on SOOT [VRGH+00], a Java bytecode analysis and transformation frame-

work. Polyglot simplifies the development of language extensions, and SOOT sim-

plifies the development of new compiler analyses and optimizations.

The basic architecture of abc is illustrated in Figure 4.2. Some notable dif-

ferences between abc and ajc are as follows. The front-end produces a pure

(but possibly incomplete) Java AST with an associated AspectInfo data struc-

ture, which contains the information describing the AspectJ constructs. The AST

and AspectInfo data structure are input to the weaver, whose output is in the

Jimple intermediate representation used by SOOT. The weaver first performs static

weaving. The Jimple skeleton generated from the AST is modified as required by all

declare parents statements and all intertype member declarations: the inheri-

tence structure is changed and empty methods are added. This process is denoted

“skeleton weaving” in Figure 4.2.

Next, the Jimple skeleton is filled out with method bodies. AspectJ constructs

that contain code, such as advice bodies and if pointcuts, are implemented here as
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Figure 4.2: Overview of abc ’s architecture
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method bodies. Next, the weaving of dynamic features, such as advice, is performed

on the Jimple bodies. This is indicated as “advice weaving” in the figure.

As in ajc , in addition to tagging instructions generated by the weaver, some

instructions generated before advice weaving need to be tagged—the bodies of

“normal” methods on aspect classes, and the return statements of advice bodies,

for example.

Tagging in abc

In abc , much of the tagging functionality is defined in the package abc.weav-

ing.tagkit . The tagging is implemented using SOOT’s annotation framework,

and each type of tag to be attached to a bytecode instruction extends Instruct-

ionTag , which implements the SOOT interface Tag. The Tagger class contains a

number of utility functions for adding tags to Jimple statements.

What follows is a simple example illustrating how tagging is performed for some

of the bookkeeping code required to implement cflow pointcuts. In abc , the book-

keeping code is added by implementing it as a piece of synthetic advice. A data

structure, representing the validity of the pointcut and storing any bound context,

must be maintained. For any pointcut cflow (P), every entry to and exit from join

points matching P must trigger updates to this data structure. The bookkeeping

instructions are inserted at the entry points by constructing a piece of synthetic be-

fore advice and weaving it into the program. The abc.weaving.aspectinfo.-

CflowSetup class implements a synthetic advice declaration in this manner. The

makeAdviceExecutionStmts method generates the instructions to be inserted

at the relevant join point shadows, returning them as a Chain 1. The instructions

in this chain are tagged appropriately with instruction kind, shadow ID, and source

ID tags.

public Chain makeAdviceExecutionStmts(

AdviceApplication adviceappl,

LocalGeneratorEx localgen,

1A Chain is a SOOT data structure similar to a List .
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WeavingContext wc)

{

CflowSetupWeavingContext cswc=(CflowSetupWeavingContext) wc;

Chain c = new HashChain();

SootMethod m = localgen.getMethod();

Local cflowInstance = getMethodCflowLocal(localgen, m);

Local cflowLocal = getMethodCflowThreadLocal(localgen, m);

if (cswc.doBefore) {

// PUSH

Chain getInstance = codeGen()

.genInitLocalLazily(localgen, cflowLocal, cflowInstance);

c.addAll(getInstance);

List /∗<Value>∗/ values = new LinkedList();

Iterator it = cswc.bounds.iterator();

while (it.hasNext()) {

Value v = (Value)it.next();

values.add(v);

}

ChainStmtBox pushChain =

codeGen().genPush(localgen, cflowLocal, values);

c.addAll(pushChain.getChain());

pushStmts.put(adviceappl, pushChain.getStmt());

// tag the entry instructions with a kind tag:

Tagger.tagChain(c, InstructionKindTag.CFLOW_ENTRY);

} else {

// POP

ChainStmtBox popChain =

codeGen().genPop(localgen, cflowLocal);

c.addAll(popChain.getChain());

popStmts.put(adviceappl, popChain.getStmt());

// tag the exit instructions with a kind tag:

Tagger.tagChain(c, InstructionKindTag.CFLOW_EXIT);

}
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// tag the instructions with source and shadow IDs:

Tagger.tagChain(c,

new InstructionSourceTag(adviceappl.advice.sourceId));

Tagger.tagChain(c,

new InstructionShadowTag(adviceappl.shadowmatch.shadowId));

return c;

}

Listing 4.2: Tagging cflow bookkeeping instructions in abc

For both abc and ajc , accurate instruction tagging can require some more sig-

nificant changes to the code, such as passing necessary context information, but

these simple examples should give a basic idea of how tagging is performed in both

compilers.

4.2 *J Dynamic Analysis Framework

The *J framework is a tool for performing offline dynamic analyses of Java pro-

grams. It was originally intended for the calculation of dynamic metrics, but is also

capable of many other dynamic analyses. It consists of two main components: the

*J trace collection agent, and the *J analyzer. The trace collection agent interfaces

to a running JVM via the JVMPI, receiving runtime events, and encoding them in

an execution trace file. The analyzer is a Java program that processes the execution

trace produced by the agent, performing analyses and computing dynamic metrics.

It processes the execution trace sequentially, feeding each encoded event into its

pipeline of operations. Each operation in the pipeline is either a service, required

by subsequent operations, or a metric computation.

In order to implement the metrics defined in chapter 3, *J has been extended in

three ways:

1. The class file reader has been extended to read the metadata attached to class-

files produced by the modified AspectJ compilers.
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2. A tag-propagation analysis has been written to assign appropriate tags to

each instruction execution event. This algorithm takes as input the static

tags added to bytecode instructions by the compiler, described in the previ-

ous section, and “propagates” them to runtime instruction execution events

appropriately, so that the instruction executions can be properly accounted.

3. The AspectJ-specific dynamic metrics defined in chapter 3 have been imple-

mented as *J analayses.

The tag-propagation algorithm and the implementation of some of the dynamic

metrics (particularly in the presence of abc ’s advice inlining optimizations) are

fairly significant extensions to *J. These computations are described in detail in

chapter 6, as their understanding first requires an understanding of the static meta-

data attached to woven classes, which is described in chapter 5.
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Static Tags

This chapter details the metadata attached to code compiled with the modified

compilers described in chapter 4. There are three basic types of metadata tags at-

tached to instructions: instruction kind tags, described in section 5.1, which indicate

the role of instructions generated by the aspect weaver; instruction shadow tags, de-

scribed in section 5.2, which identify the join point shadow into which instructions

have been woven; and instruction source tags, described in section 5.3, which indi-

cate what particular instance of an AspectJ construct is responsible for the woven

instruction. Section 5.4 describes the inline count, inlined shadow/source list, and

proceed tag, which are added to the instructions of inlined advice and proceed bod-

ies. Finally, section 5.5 describes how all of these tags are encoded in the class

files.

5.1 Instruction Kind Tags

Each bytecode instruction in a compiled AspectJ program has a particular role with

relation to the implementation of AspectJ language features. An instruction may

correspond directly to Java code written by the user, or it may be overhead in-

troduced to support a specific AspectJ language feature, such as advice execution.

Hereafter, these roles are referred to as instruction kinds.
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During the weaving stage of compilation, many instructions are generated in or-

der to implement the semantics of AspectJ. These instructions are weaving-induced

overhead, the execution of which contributes to AspectJ’s runtime cost. For each

instruction, the nature of this overhead—that is, the instruction kind—is identified

by an instruction kind tag attached to the instruction by the weaver.

This section describes the various instruction kinds with which instructions are

associated. Instruction kinds can be categorized hierarchically, and the tags are

presented below, by category. Figure 5.1, at the end of this section, illustrates the

complete tree of instruction kind categories.

5.1.1 Instruction Kinds

Tags

Overhead Non-overhead�

Every instruction is either overhead or non-overhead. Overhead instructions

are those instructions generated and inserted by the weaver, used to implement

particular AspectJ features, such as advice, cflow pointcuts, intertype declarations,

etc. Non-overhead instructions are those corresponding directly to Java code written

by the user, either in the base program or in the aspect. (One can think of overhead

instructions as approximately those that can be traced back to the special AspectJ

syntax in the original source code, and non-overhead instructions those that trace

back to Java syntax.)
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5.1.2 Non-overhead tags

Non-overhead�

Base Code Aspect Code

There are two basic kinds of non-overhead instruction: BASE CODE and ASPECT -

CODE. BASE CODE instructions are those that would exist if compilation and weav-

ing of aspects were omitted completely, and represent all of the functionality de-

scribed by the programmer in normal Java classes. ASPECT CODE is that code which

is defined by the user in an aspect (in Java syntax), either in advice bodies, intro-

duced methods, or normal methods in an aspect class. ASPECT CODE instructions

are also all those instructions in the base program that execute within the dynamic

scope of an ASPECT CODE instruction. So, for example, any methods in the base

program called from advice bodies are considered ASPECT CODE.

In addition to these two basic kinds, there are special subkinds of each: IN-

LINED ADVICE and INLINED PROCEED. INLINED ADVICE represents the non-overhead

instructions that are part of an inlined advice body and INLINED PROCEED represents

the non-overhead instructions that are part of a proceed body. They are counted as

ASPECT CODE and BASE CODE, respectively.

This distinction between BASE CODE and ASPECT CODE is more arbitrary than

the distinction between overhead and non-overhead instructions, or the distinction

between each kind of overhead instruction. How to distinguish the two—how to

count “base code” executed below an advice body, for instance—depends on what

measurements one eventually wants to make. This policy is codified in the propa-

gation scheme described in section 6.1.

45



Static Tags

5.1.3 Overhead tags

+ ? s

Overhead

Static Crosscutting Dynamic Crosscutting Common

Overhead instruction kinds can be categorized into three groups: those that

implement the dynamic crosscutting features of AspectJ, those that implement the

static crosscutting features of AspectJ, and those that are common to the implemen-

tations of both.

5.1.4 Static overhead tags

= ~

Static Crosscutting

� j?

Exception Softening Intertype Declarations

Field Introduction Method Introduction
Constructor
Introduction
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The static crosscutting features of AspectJ, somewhat surprisingly, also incur

some runtime overhead. This overhead generally takes the form of dispatch meth-

ods introduced into the target classes of intertype declarations. The various over-

head kinds relating to static crosscutting are:

EXCEPTION SOFTENER The declare soft declaration in an aspect takes as pa-

rameters a type pattern and a pointcut. It causes any exceptions matching the

given type pattern that occur within join points matched by the given pointcut

to be wrapped in an unchecked org.aspectj.SoftException. The implementation

of this feature requires the addition of instructions to catch the checked ex-

ceptions matching the type pattern, at the appropriate join point shadows,

and the instantiation and throwing of the new unchecked exception. These

instructions are of this kind.

INTERMETHOD Intertype method declarations result in a dispatch method being

added to the target class. This dispatch method calls the actual body of the

introduced method, which is compiled in the aspect class. The instructions of

the dispatch method are of this kind.

INTERFIELDGET, INTERFIELDSET Intertype field declarations may result in accessor

methods being added to the target class. All references to the introduced

fields are, at the bytecode level, made through these accessor methods. The

instructions making up these accessors are of these kinds.

INTERFIELDINIT Intertype field declarations require initialization code to be added

to either the target class’s constructor or to its static initializer. This code may

invoke methods on the aspect class to initialize the values of introduced fields.

The initialization code is of this instruction kind.

INTERCONSTRUCTOR PRE, INTERCONSTRUCTOR POST If an aspect has an intertype

constructor declaration, two methods are compiled in the aspect class: pre-

InterConstructor and postInterConstructor . A new constructor,

invoking these two methods, is added to the target class. These methods, and

their invocation, are of this kind.
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INTERCONSTRUCTOR CONVERSION An introduced constructor may have instructions

used to wrap constructor arguments in an Object array and to box and un-

box primitive constructor arguments. These instructions are of this kind.

5.1.5 Dynamic overhead tags

+ ? s

Dynamic Crosscutting

Advice Execution CFlow Management Aspect Management

The overheads due to the dynamic features of AspectJ can be grouped into three

categories: those that implement the execution of advice, those that manage the

per-object and per-cflow instances of aspects, and those that maintain the abstrac-

tion of the call stack required for the implementation of cflow pointcuts.

5.1.6 Advice execution tags

ADVICE EXECUTE Advice bodies get compiled as methods in the aspect class. Dur-

ing weaving, invoke instructions calling these methods are added to the rele-

vant join point shadows. The invocations of these advice body methods, and

related instructions, are tagged as being of this kind.

ADVICE ARG SETUP Before an advice body method in an aspect can be executed,

the aspect instance must be acquired and put on the stack. Furthermore, local

state may need to be exposed to the advice body. The instructions that are

woven in to perform these tasks are of this kind, which is closely related to

ADVICE EXECUTE.
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ADVICE TEST When it cannot be statically determined whether an advice body

should be executed at all join points corresponding to the join point shadow

at which the advice invocation instructions have been added, then those invo-

cation instructions are wrapped in a test. This test is called an advice guard,

which is a kind of dynamic residue. The instructions comprising this guard

are of this kind.

AROUND PROCEED, AROUND CALLBACK The instructions required to implement the

execution of the advised join point from within the body of an around advice—

that is, the instructions required to implement the proceed call—are of these

kinds. (AROUND CALLBACK is basically synonymous with AROUND PROCEED,

but is only found in around closures.)

CLOSURE INIT There are currently several different ways around advice is imple-

mented, and a given compiler may choose from several different strategies

for weaving around advice. Some strategies involve the creation of closure

classes. This instruction kind represents the instantiation of these closure

classes.

AFTER RETURNING EXPOSURE after and after returning advice may expose the

value returned by the advised join point to the body of the advice. The in-

structions that implement this return value exposure are of this kind.

AFTER THROWING HANDLER The implementation of after throwing advice requires

the generation of exception handling code that catches any uncaught excep-

tions thrown in the advised join points, for the advice body to be executed,

and for the original exception to be rethrown after the execution of advice.

The instructions responsible for catching and rethrowing the exception are of

this kind.

AROUND CONVERSION The implementation of around advice may require the ar-

guments to and/or the return value from a proceed call to be stored within
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an object array. In this case, the instructions that store and retrieve the argu-

ments from this array, and that box and unbox arguments of primitive type,

are of this kind.

THISJOINPOINT Advice bodies can reflectively examine the join point at which they

are executing by examining a data structure representing it. A reference to this

data structure is made available by the thisJoinPoint and thisJoin-

PointStaticPart keywords. Instructions that create this data structure,

making it available to advice bodies, are generated by the weaver. These

instructions have this kind.

5.1.7 Aspect instance management tags

PEROBJECT ENTRY By default, aspect instances are singletons. They can, however,

be associated on a per-object basis—either with the current executing object,

or with the target object—at join points selected by a given pointcut. The in-

structions, inserted at join point shadows matched by the pointcut, to manage

these aspect instances, are of this kind.

PEROBJECT GET, PEROBJECT SET If an aspect instance can be associated with an

object, then that object needs accessor methods implementing the acquisition

and setting of the instance. The instructions comprising these methods are of

these kinds.

PERCFLOW ENTRY, PERCFLOW EXIT Aspect instances can also be associated with

cflow constructs. The instructions inserted to manage per-cflow aspect in-

stances have these kinds.

CFLOW TEST This kind is congruent to ADVICE TEST. It represents the dynamic

residue at a cflow update shadow consequent of another cflow pointcut. The

instructions implementing this residue are of this type.

PEROBJECT ENTRY TEST This kind is also congruent to ADVICE TEST. When not all

of the join points at a join point shadow match the pointcut associated with a
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per-object aspect declaration, then a runtime test is woven in at the join point

shadow. The instructions implementing this test are of this type.

5.1.8 Cflow management tags

CFLOW ENTRY, CFLOW EXIT The cflow and cflowbelow pointcuts require that a

representation of the call stack be managed during execution of the program.

If the cflow pointcut does not expose any state, then this representation may

be as simple as a counter per pointcut, otherwise it may be an actual stack;

the particular implementation depends on the compiler and the situation. The

instructions that update this representation (regardless of implementation) on

entering and leaving join points matching the associated pointcut, are of these

kinds.

5.1.9 Common dynamic tags

GET CFLOW LOCAL, GET CFLOW THREAD LOCAL A cflow pointcut may result in mul-

tiple tests being woven into a single method body. A naive implementation

may require the cflow state object be acquired at each test. An optimized im-

plementation, however, might acquire it a single time on entry to the method,

caching it to a local. Since a single pointcut may be used for both advice and

per-cflow tests, the instructions responsible for caching the stack to a local are

common to both kinds. They are of these kinds.
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5.1.10 Common tags

+ ? s

Common

BCEL Member Accessors Class Initialization

BCEL This kind is an artifact of the use of the BCEL (Bytecode Engineering Li-

brary) [Fou] within ajc . The insertion of instructions by the weaver occa-

sionally results in the addition of spurious nop instructions that are purely

artifacts of BCEL and do not implement AspectJ features. These spurious in-

structions are of this kind.

PRIV METHOD, PRIV FIELD GET, PRIV FIELD SET An aspect may be declared privi-

leged, in which case it can access the private members of other classes. In

order to implement privileged aspects, public wrapper methods for each pri-

vate method the aspect may call, and public accessor methods for each private

field the aspect may reference, are added to each method and field’s contain-

ing class. The instructions in these methods are of these kinds.

CLINIT The static initializer of the aspect classes have instructions of this kind. The

static initializer may setup the default singleton instance of the aspect, or it

may setup the data structures used to model the call stack for the implemen-

tation of cflow pointcuts. Instructions added to the static initializers of base

program classes are also of this kind. Instructions in the static initializer that

initialize static join point information, however, are of THISJOINPOINT kind.
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Figure 5.1: Complete taxonomy of instruction kind categories
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5.2 Shadow ID Tags

Each join point shadow at which the weaver has inserted instructions has a unique

ID called the shadow ID. It is unique across the entire program. Every instruction

generated by the weaver is assigned the shadow ID of the join point shadow to

which it has been added. The tag holding this ID is called the instruction shadow

tag. In effect, the instruction shadow tag identifies the location of an instruction.

For example, consider the code in Listing 5.1. It declares a class with two method

calls in the main method, and an aspect, which declares two pieces of advice, which

apply to the two method calls in main .

Listing 5.2 shows the result of compiling and weaving the code in Listing 5.1.

The instruction shadow tag is listed (in square brackets to the left of each bytecode

instruction) for those instructions that have been woven into a join point shadow.

There are two shadows, one comprising the call to foo1 , the other the call to foo2 .

Instructions at the first shadow have ID 1, instructions at the second, ID 2.

5.3 Source ID Tags

The specific instances of AspectJ language features that result in the generation of

instructions by the weaver are referred to, in this thesis, as sources. Sources include

such constructs as advice declarations, cflow pointcuts, intertype declarations, and

per-object aspect declarations. The implementation of each of these may require

instructions to be woven into the base program. Each source in a program has

a unique ID. The instructions that result from the implementation of a particular

source are tagged by the weaver with an instruction source tag, the value of which

is the source ID.

For example, consider the aspect in Listing 5.3. It contains four sources, each

given a unique ID. Source 1 is the perthis declaration. It will require having in-

structions woven in before each method call in the Foo class, associating the cor-

rect instance of TheAspect with the target of the call, such that aspectOf , when
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public class Base {

public static void main(String[] args ) {

foo1(); // shadow 1

foo2(); // shadow 2

}

public static void foo1() {

// do something

}

public static void foo2() {

// do something

}

}

aspect TheAspect {

// advice 0:

before (): call ( void Base.foo*()) {

// do something

}

// advice 1:

before (): call ( void Base.foo*()) {

// do something

}

}

Listing 5.1: AspectJ program with multiple join point shadows
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[1: ] invokestatic TheAspect.aspectOf()

[1: ] invokevirtual TheAspect.before$0()

[1: ] invokestatic TheAspect.aspectOf()

[1: ] invokevirtual TheAspect.before$1()

[ : ] invokestatic Base.foo1()

[2: ] invokestatic TheAspect.aspectOf()

[2: ] invokevirtual TheAspect.before$0()

[2: ] invokestatic TheAspect.aspectOf()

[2: ] invokevirtual TheAspect.before$1()

[ : ] invokestatic Base.foo2()

[ : ] return

Listing 5.2: Bytecode listing of the main method from Listing 5.1. Instruction shadow tags

are indicated with square brackets.

called, will return the correct instance.

Source 2 is the cflow fragment of the pointcut declaration. The cflow primi-

tive pointcut will require instructions that manage the cflow state objects. These

instructions will be tagged with the source ID of the cflow pointcut.

Source 3 is the advice declaration which uses the previously declared pointcut.

The instructions woven in to test the validity of the cflow pointcut and to execute

the advice will have this source ID. Note the instructions that test the cflow state

will have the source ID of the advice declaration, which is different from that of the

cflow declaration.

Source 4 is an advice declaration that applies to the same join points as source

3. Its instructions will be woven in at the same shadow, but have a different source

ID.

Listing 5.4 is a pseudo-bytecode listing of the result of weaving this aspect into

the base program class listed in Listing 5.2. The instructions with instruction source

tags have them listed, in square brackets, to the left of the bytecode generated by

the weaver to implement each of the above-listed features.
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public aspect TheAspect

// source 1:

perthis ( call ( void Base.foo*()))

{

// source 2:

pointcut pc(): call ( void Base.foo2())

&& cflow ( call ( void Foo.foo1()));

// source 3:

before (): pc {

// do something

}

// source 4:

before (): pc {

// do something else

}

}

Listing 5.3: Different sources in an aspect

Listing 5.5 shows the code in Listing 5.1 with both shadow and source IDs, in

square brackets, to the left of each instruction. The first value is the shadow ID and

the second value is the source ID. This listing illustrates how a given source may

result in instructions with the same source ID being woven into different shadows,

and how different sources may result in instructions being woven into the same

shadow, and thus being tagged with the same shadow ID. What is important to

note is that a particular advice execution, for example, at a particular join point

shadow, is uniquely identified by the shadow/source ID pair.
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public static void main(String[] arg0)

0: [ : ] /* store cflowCounter$0 to local */

6: [ : ] new Base

9: [ : ] astore_0

10: [ : ] aload_0

11: [ : ] invokespecial Base.<init>:()V

14: [ :1] aload_0

15: [ :1] invokestatic TheAspect.abc$perTargetBind(Object)

18: [ :2] /* cflowCounter$0.push() */

42: [ : ] aload_0

43: [ : ] invokevirtual Base.foo1()

46: [ :2] /* cflowCounter$0.pop() */

76: [ :1] aload_0

77: [ :1] invokestatic TheAspect.abc$perTargetBind()

80: [ :3] aload_0

81: [ :3] invokestatic TheAspect.hasAspect()

84: [ :3] ifeq -> 118

87: [ :3] /* if cflowCounter$0 == 0 then goto -> 118 */

111: [ :3] aload_0

112: [ :3] invokestatic TheAspect.aspectOf(Object)

115: [ :3] invokevirtual TheAspect.before$0()

118: [ :4] aload_0

119: [ :4] invokestatic TheAspect.hasAspect()

122: [ :4] ifeq -> 156

125: [ :4] /* if cflowCounter$0 == 0 then goto -> 156 */

149: [ :4] aload_0

150: [ :4] invokestatic TheAspect.aspectOf()

153: [ :4] invokevirtual TheAspect.before$1()

156: [ : ] aload_0

157: [ : ] invokevirtual Base.foo2()

160: [ : ] return

Listing 5.4: Pseudo-bytecode of aspect in Listing 5.3 woven into base program in Listing 5.1.

Instruction source tags are indicated with square brackets.
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[1:1] invokestatic TheAspect.aspectOf()

[1:1] invokevirtual TheAspect.before$0()

[1:2] invokestatic TheAspect.aspectOf()

[1:2] invokevirtual TheAspect.before$1()

[ : ] invokestatic Base.foo1()

[2:1] invokestatic TheAspect.aspectOf()

[2:1] invokevirtual TheAspect.before$0()

[2:2] invokestatic TheAspect.aspectOf()

[2:2] invokevirtual TheAspect.before$1()

[ : ] invokestatic Base.foo2()

[ : ] return

Listing 5.5: Woven bytecode listing of the main method from Listing 5.1. Instruction shadow

and source tags, in that order, are indicated with square brackets.
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5.4 Inlined Advice Tags

Advice bodies, if they are small enough, may be inlined by the compiler as an

optimization. In the case of around advice, the method containing the advised

shadow, normally called when execution of a proceed statement occurs, may also

be inlined. When this happens, information required by the metric calculations

could be lost. The metadata described in this section, attached to classes by the

inlining optimizer, ensure that the information is not lost. Inlining of advice requires

three new instruction tags: the inline count, the inlined shadow/source list, and the

proceed tag.

The inline count of an instruction is incremented each time it is inlined, either

as part of an advice body, or as part of a proceed method. It is used to identify when

an advice body or a proceed body is entered or exited.

An instruction’s inlined shadow/source list indicates which inlined advice bodies

an instruction belongs to. It is non-empty when the instruction is part of an advice

body that has been inlined into a join point shadow. Each time instructions from an

advice body are inlined, all of the instructions in the body add the shadow/source

ID pair of the call site to their list of inlined shadow/source IDs, associating them

to the advice execution. The attribute is a list because an instruction can be inlined

multiple times in the case of advice applying to advice.

The proceed tag identifies an instruction as being part of a proceed body. An

instruction can be identified as belonging to an inlined advice body when it has a

non-empty inlined shadow/source list. (Note that its instruction kind, shadow, and

source tags can be anything.) Distinguishing between an inlined advice body and

a proceed body, however, requires the proceed tag. Whenever a proceed body is

inlined, the proceed tag is attached to all of the body’s instructions. (Currently, the

tag is single-valued, as that is sufficient for calculating the metrics in this thesis.

Tagging each body with a unique ID, however, is a conceivably useful extension.)

In addition to these three new tags, an appropriate kind tag needs to be assigned

to the inlined instructions. This is described in section 6.1.5.
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What follows is an example illustrating inlining of a simple advice body. Con-

sider the bytecode in Listing 5.6. The bytecode instruction at offset 10 invokes the

method Aspect.before$0 , implementing the before advice that applies at join

points corresponding to this shadow. The advice body has only a single statement:

System.out.println("before foo()") . It is, consequently, a candidate for

inlining. Listing 5.7 shows the result of inlining this advice. The instructions at

offsets 11-16 are those that were in the method Aspect.before$0 , retaining

their original instruction kind tags, if they had any, or receving the kind tag IN-

LINED ADVICE if they didn’t, as is the case here.

The inlined instructions each have an inline count of 1, and a single entry in the

inlined shadow/source tag list: the pair (1:3) , which is the shadow/source tag

of the original invoke instruction at offset 10 in Listing 5.6. This identifies these

instructions as being part of the advice that applies at this join point.

If, instead of being inlined into main , but rather into another advice body, and

an invoke instruction for this advice with shadow/source ID (2:4) were inlined

elsewhere (at offset 10), then the instructions currently at offsets 11–16 would have

the new list [(1:3), (2:4)] and an inline count of 2, while all the others would

have the list [(2:4)] and an inline count of 1. This is illustrated in Listing 5.8.

public static void main(String[] arg0)

0: [ : ] new DoubleInline

3: [ : ] dup

4: [ : ] invokespecial DoubleInline.<init>()

7: [1:3] invokestatic Aspect.aspectOf()

10: [1:3] invokevirtual Aspect.before$0()

13: [ : ] invokevirtual DoubleInline.foo()

16: [ : ] return

Listing 5.6: Method body with no advice inlining. Shadow and source tags are indicated with

square brackets.
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public static void main(String[] arg0)

0: [ : ][ ] new DoubleInline

3: [ : ][ ] dup

4: [ : ][ ] invokespecial DoubleInline.<init>()

7: [1:3][ ] invokestatic Aspect.aspectOf()

10: [1:3][ ] pop

11: [ : ][(1:3)](1) getstatic System.out

14: [ : ][(1:3)](1) ldc "before foo()"

16: [ : ][(1:3)](1) invokevirtual PrintStream.println(String)

19: [ : ][ ] invokevirtual DoubleInline.foo()

22: [ : ][ ] return

Listing 5.7: Method body with inlined advice body. Shadow and source tags are indicated

with square brackets. Inlined shadow/source list indicated by second set of square brackets,

followed by inlined count in parentheses.

10: [ : ][(2:4)](1) new DoubleInline

13: [ : ][(2:4)](1) dup

14: [ : ][(2:4)](1) invokespecial DoubleInline.<init>()

17: [1:3][(2:4)](1) invokestatic Aspect.aspectOf()

20: [1:3][(2:4)](1) pop

21: [ : ][(2:4),(1:3)](2) getstatic System.out

24: [ : ][(2:4),(1:3)](2) ldc "before foo()"

26: [ : ][(2:4),(1:3)](2) invokevirtual PrintStream.println(String)

29: [ : ][(2:4)](1) invokevirtual DoubleInline.foo()

32: [ : ][(2:4)](1) return

Listing 5.8: Multiple inlining of advice.
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5.5 Tag Representation

Since dynamic metrics are calculated in a separate program, the tags defined in the

preceding sections need to be encoded into the class files produced by the compiler,

from which they can later be read. This section defines the binary format of these

tags and how they are encoded in Java class files.

Java class file attributes can be attached to several different class file structures:

classes, fields, methods, and code attributes. (A code attribute is a special attribute

attached to a method, to which other attributes can be attached.) The class file

attributes used to encode the tags described in this chapter are presented below,

according to the class file structure to which they are attached.

5.5.1 Code Attributes

The instruction tags presented in the previous sections are all encoded as code

attributes in the class files produced by the compiler. As per the JVM spec [LY99],

all attributes have the following structure:

attribute_info {

u2 attribute_name_index;

u4 attribute_length;

u1 info[attribute_length];

}

attribute name index is an index into the constant pool, pointing to the

attribute’s name. The attribute names for the above tags are:

1. ca.mcgill.sable.InstructionKind

2. ca.mcgill.sable.InstructionShadow

3. ca.mcgill.sable.InstructionSource

4. ca.mcgill.sable.InstructionInlineCount
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5. ca.mcgill.sable.InstructionInlineProceed

6. ca.mcgill.sable.InstructionInlineShadowSource

The info field for the first five of these attributes is a stream of (offset:short,

value:int) pairs. The special value, -1, indicates no tag. The offset indicates the

beginning of a range of bytecode instructions that have the given value. (Thus, no

two adjacent pairs should have the same value). For example, the instruction tags

listed in Listing 5.9 would be encoded as (3,1)(5,2)(6,-1) .

1: [ ] instr

2: [ ] instr

3: [1] instr

4: [1] instr

5: [2] instr

6: [ ] instr

7: [ ] instr

Listing 5.9: Instruction tags on pseudo-bytecode

The inlined shadow/source attribute encodes a list for each instruction, and

so its encoded format is similar, but with variable length values. The info field

for this attribute is a stream of (offset:short, len:int, (shadow:int,

source:int), ...) tuples, where len is the count of (shadow, source)

pairs succeeding it.

5.5.2 Class Attributes

In addition to the instruction tags described above, the following class attributes

are optionally added by the compiler:

1. ca.mcgill.sable.InstructionShadow map

2. ca.mcgill.sable.InstructionSource map
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The info field of each of these attributes is a stream of (id: int, cp index:

int) pairs. The id field corresponds to an instruction shadow or instruction source

ID, and the cp index is an index into the constant pool pointing to a human-

readable string describing that ID. These attributes are not required of any of the

analyses, and so are optional.

5.5.3 Method Attributes

1. ca.mcgill.sable.ProceedMethod

This attribute has no data. It identifies a method as representing the execution

of a proceed statement within an around advice body. Its use is further described

in section 6.1.
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Chapter 6

Computing Metrics

This chapter describes the various dynamic analyses used to measure the run-

time behaviour of AspectJ programs. Section 6.1 describes the algorithm used to

assign an instruction kind to every bytecode execution for a run of a program. Sec-

tion 6.2 describes the algorithm used to detect advice guard success and failure.

6.1 Tag Propagation

The compiler assigns instruction kind tags only to a subset of the bytecode instruc-

tions that may be executed. Other instructions must have the appropriate tags

assigned dynamically during execution or analysis. This process of dynamic tag as-

signment is called tag-propagation, and it is explained below. Section 6.1.1 explains

why it is necessary, section 6.1.2 defines the algorithm, and section 6.1.3 presents

an example.

6.1.1 Why do we need to propagate tags?

It is generally not possible for the compiler to statically tag all of a program’s byte-

code instructions with an appropriate instruction kind tag at weave-time for several

reasons. It may be that some of the code is not available to the weaver, such as

library code or dynamically loaded classes; or it may be that the correct value of a
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bytecode instruction’s kind tag depends on runtime context. If every execution of

a given bytecode instruction will be of the same instruction kind, then it could be

statically tagged by the compiler; this is not true of every instruction. Consider the

following examples:

1. The Java standard library: clearly a programmer may make use of the stan-

dard library in his code, either in the base program or in advice bodies. The

AspectJ runtime library, however, also makes use of the standard library. For

instance, the implementation of cflow in ajc uses the Java collections frame-

work. When the push method on java.util.Stack is called by the pro-

grammer, it is clearly not AspectJ overhead; when the same method is called

in the AspectJ runtime library by the cflow management code, however, it is.

The appropriate instruction kind tag will therefore need to be assigned to the

body of Stack.push() at runtime.

2. Consider the code in Listing 6.1. The method BaseProgram.bar() is called

from three different contexts, and its execution should be considered of a

different kind in each case. When called at site 1, its execution qualifies as

BASE CODE. When called from site 2, its execution qualifies as ASPECT CODE,

being that it is executed below an advice body. When called from site 3,

it should be counted as ADVICE TEST, being part of an advice guard. It is

therefore insufficient to statically tag the body of bar() at weave-time. The

correct instruction kind tag must be determined dynamically.

3. The special method aspectOf , defined in aspect classes, is used to acquire

the appropriate aspect instance. Instructions invoking this method are wo-

ven into a join point shadow as part of advice execution. When this method

is called, in preparation for the execution of a piece of advice, it should be

counted as ADVICE ARG SETUP. However, this method can also be called di-

rectly by the programmer to acquire an aspect instance, perhaps in order to

access a field or to invoke a non-static “normal” method on the aspect. Since

the call has been made explicitly by the programmer, in this case, it should
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class BaseProgram {

public void foo() {

// call site 1:

BaseProgram.bar()

}

public static boolean bar() {

return true ;

}

}

aspect TheAspect {

before (): call ( void BaseProgram.foo()) {

// call site 2:

BaseProgram.bar();

}

after (): call ( void BaseProgram.foo())

// call site 3:

&& if (BaseProgram.bar())

{

// do something

}

}

Listing 6.1: The correct instruction kind for the body of bar() depends on calling context.
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not be counted as AspectJ overhead. (A good example of this sort of direct

call to aspectOf can be seen in the AspectJ implementation of the Observer

design pattern in [HK02].)

These examples demonstrate the need for dynamic assignment of instruction

kind tags to bytecode instructions. The following section describes how these tags

are assigned.

6.1.2 How do we propagate tags?

The tag-propagation algorithm ensures that during the analysis of a program’s exe-

cution, each bytecode execution is associated with a single instruction kind, appro-

priately indicating its overhead nature. While each bytecode execution has exactly

one instruction kind, any given bytecode may have several different instruction

kinds associated with it, over the course of the program’s execution.

Dynamic and static tags

The tags assigned by the propagation algorithm are called dynamic tags, in contrast

to the tags assigned to bytecode instructions by the compiler, which are called static

tags. It is usually, but not always, the case that if a bytecode instruction has a

static tag then it will be assigned a dynamic tag of the same value for each of its

executions.

Current and default tags

A single bytecode instruction may have several different dynamic tags assigned to

it over the run of a program. In the presence of recursion, it may need to retain

multiple dynamic tags. The current tag is that which represents the instruction kind

for the current execution.

Conceptually, every bytecode instruction can be thought of as having a stack

of instruction kind tags per thread of execution. If the bytecode instruction has a

static tag, assigned by the compiler, then that tag is the bottom value on the stack.
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Otherwise, the bottom value is the special tag NO TAG. The value on the top of the

stack is the current tag. If, during analysis, an instruction’s current tag is NO TAG,

then the default tag, BASE CODE, will be substituted.

Caller and propagated tags

Tag-propagation occurs on method calls. The body of the called method may con-

tain untagged instructions, which should be tagged, or it may contain tagged in-

structions, some of whose tags should be overwritten. The caller tag is the kind tag

at the call site. The propagated tag is the tag that is assigned to untagged instruc-

tions in the method body, or which may overwrite certain tagged instructions in the

method body. The propagated tag is determined by the caller tag.

Advice depth counter

around advice may apply to join points within base code or it may apply to join

points within aspect code. It is important to distinguish between these two cases

so that the correct tag can be propagated on execution of a proceed statement.

The advice depth counter indicates whether a proceed statement corresponds to the

return of execution to base code or to aspect code, and thus what the correct value

is for the propagated tag.

The advice depth counter is incremented every time an advice body is entered

and decremented every time an advice body is exited. In the case of around advice,

this means that it is also decremented on every call to proceed and incremented

on return. A value greater than zero indicates that execution is currently within

advice.

The proceed statement is implemented in both compilers as a method call to

a special proceed method. The proceed method is identified by the compiler and

is given the class file attribute ca.mcgill.sable.ProceedMethod . Entry into

a proceed method corresponds to the execution of the proceed statement in an

around advice body. Exit from this method corresponds to the return of execution

to the advice. The advice depth counter is adjusted appropriately on entry to and
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function propagate(caller tag, advice depth):

if caller tag ∈ {ADVICE EXECUTE, INTERMETHOD }:
propagated tag ← ASPECT CODE

else if caller tag = AROUND PROCEED :

if advice depth > 1:

propagated tag ← ASPECT CODE

else:

propagated tag ← BASE CODE

else:

propagated tag ← caller tag

return propagated tag

Listing 6.2: The propagation function

exit from this method.

The propagation function

The propagation function maps the caller tag to the propagated tag. It is called by

the propagation algorithm on method entry to determine the correct value of the

propagated tag. It is defined in Listing 6.2.

For most caller tags, the propagation function will return a propagated tag of the

same value. ADVICE EXECUTE and INTERMETHOD, however, return ASPECT CODE,

since they apply to invoke instructions that call user-defined code, not additional

overhead. Likewise, the AROUND PROCEED tag propagates either BASE CODE or

ASPECT CODE, depending on the value of the advice depth counter (as described

above), for the same reason. All other tags, for which propagate(caller tag, advice

depth) = caller tag, for all values of advice depth, are called self-propagating tags.
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The replacement function

On entering a method, some instructions may already have tags, either static tags

assigned by the compiler, or, if the method is being called recursively, dynamic tags

previously assigned by the propagation algorithm. The new tag to be pushed on

each instruction’s instruction stack—that is, the value of each instruction’s current

tag for the execution of this method—is determined by the replacement function,

shown in Listing 6.3. Some of the special cases in the function are explained below.

1. Lines 2-3: All BASE CODE instructions executing below ASPECT CODE instruc-

tions are to be considered ASPECT CODE, e.g. in the case of a base code

method being called from an advice body.

2. Lines 4-5: The special aspect methods hasAspect and aspectOf can be

called by the user from base code, as explained in example 3 in section 6.1.1.

In this case, they should be counted as ASPECT CODE. The BASE CODE tag will

not overwrite the static ASPECT CODE tag in this case.

3. Lines 6-8: Otherwise, any call made from self-propagating overhead code will

propagate the caller tag. For example, a call to aspectOf (statically tagged

ASPECT CODE) from ADVICE ARG SETUP instructions, or a call to any normal

method from an if pointcut or from within cflow management instructions.

Note that if the current tag is NO TAG, this is interpreted as the default tag,

BASE CODE, so those conditions that match when the current tag is BASE CODE also

match “untagged” instructions.

The propagation algorithm

Tag-propagation consists of two basic steps:

1. calculating the propagated tag on method entry (the propagation function)

2. calculating the correct dynamic tag for each bytecode instruction execution

(the replacement function)

Listing 6.4 defines the propagation algorithm.
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function replace(current tag, propagated tag):

2 if propagated tag = ASPECT CODE and current tag = BASE CODE :

new tag ← propagated tag

4 else if propagated tag = BASE CODE and static tag = ASPECT CODE

new tag ← ASPECT CODE

6 else if current tag ∈ {ASPECT CODE, BASE CODE }
and propagated tag is self-propagating:

8 new tag ← propagated tag

else:

10 new tag ← current tag

return new tag

Listing 6.3: The replacement function

6.1.3 A simple propagation example

The code in Listing 6.5 is of a simple AspectJ program that will be used to illustrate

the behaviour of tag propagation. When compiled, two class files are produced:

one corresponding to the Main class, the other to the MainAspect aspect. Their

bytecode is shown in listings 6.6 and 6.7, respectively. For each bytecode listing,

the static instruction kind tags assigned by the compiler are indicated.

Figure 6.1 illustrates, step-by-step, tag propagation at work. It consists of sev-

eral subfigures, each of which represents a different point in the execution/analysis.

The current point of execution/analysis is indicated by the small arrow, absent in

the first subfigure. The current kind tag for each instruction is indicated to the

instruction’s left. The tag is highlighted when the propagation algorithm has re-

sulted in a change. As each bytecode instruction is executed, its instruction kind is

counted. The box at the bottom right of each subfigure contains the current tally for

each kind. Not every instruction is shown, but the tallies account for them anyway.

In the case where a call is made into the standard library, and an indeterminate

number of instructions are executed, this is indicated by appending a + to the tally.
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On Method Entry:

// update advice depth counter

if caller tag = ADVICE EXECUTE :

increment advice depth

if method is proceed method:

decrement advice depth

// compute the propagated tag

propagated tag ← propagate(current tag, advice depth)

// compute the new dynamic tag for each instruction in method

for each instruction in method

new tag ← replace(current tag, propagated tag)

push new tag on instruction’s tag stack

On Method Exit:

decrement/increment advice depth if required

pop tag stack for all instructions in method

Listing 6.4: The propagation algorithm

The arrow in aspectOf indicates the branch. In this execution, the branch is not

taken, and only the executed instructions are shown. The fact that all instructions

in the class are tagged on method entry is indicated by the tag to the left of the

ellipsis.
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public class Main {

public static void main(String[] args ) {

Main m = new Main();

m.sayHello();

}

public void sayHello() {

System.out.println("Hello.");

}

}

aspect MainAspect {

before (): call ( void Main.sayHello()) {

System.out.println("before sayHello");

}

}

Listing 6.5: A simple AspectJ program
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public static void main(String[] arg0)

new Main

dup

invokespecial Main.<init>()

ADVICE ARG SETUP invokestatic MainAspect.aspectOf()

ADVICE EXECUTE invokevirtual MainAspect.before$0()

invokevirtual Main.sayHello()

return

public void sayHello()

getstatic java/lang/System.out

ldc "Hello."

invokevirtual java/io/PrintStream.println(String)

return

public void <init>()

aload_0

invokespecial java/lang/Object.<init>()

return

static void <clinit>()

return

Listing 6.6: Main.class
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public final void before$0()

getstatic java/lang/System.out

ldc "before sayHello"

invokevirtual java/io/PrintStream.println(String)

return

public void <init>()

aload_0

invokespecial java/lang/Object.<init>()

return

public static MainAspect aspectOf()

ASPECT CODE getstatic MainAspect.abc$perSingletonInstance

ASPECT CODE astore_0

ASPECT CODE aload_0

ASPECT CODE ifnull -> 10

ASPECT CODE aload_0

ASPECT CODE areturn

ASPECT CODE new org/aspectj/lang/NoAspectBoundException

ASPECT CODE dup

ASPECT CODE ldc "MainAspect"

ASPECT CODE getstatic MainAspect.abc$initFailureCause

ASPECT CODE invokespecial org/aspectj/lang/NoAspectBoundException

.<init>(String;Throwable)

ASPECT CODE athrow

Listing 6.7: MainAspect.class
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(a) static tags

Figure 6.1: Propagation example

Figure 6.1(a) shows the state of the program before execution. The tags listed

are the static tags assigned to the bytecode instructions by the compiler.
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(b) execution enters main , default tag assigned

Figure 6.1: Propagation example (cont.)

On entering the body of Main.main , in Figure 6.1(b), all untagged instructions

are assigned the default tag BASE CODE. (Equivalently, their current tag is NO TAG,

as described in section 6.1.2, which is interpreted as the default tag as each instruc-

tion is counted.)
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(c) BASE CODE propagated into constructor

Figure 6.1: Propagation example (cont.)

In Figure 6.1(c), the executions of the first three bytecode instructions have been

counted. The tally for BASE CODE has been updated appropriately. Execution has

currently entered the body of the constructor for Main , which is untagged. The

caller tag in this case is BASE CODE, which, according to the propagation function,

maps to itself as the propagated tag. Consequently it is pushed to all of the instruc-

tions in the constructor (the body of which is not shown here, but indicated with

an ellipsis.)
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(d) ADVICE ARG SETUP propagated into aspectOf , overwrites static tag

Figure 6.1: Propagation example (cont.)

In Figure 6.1(d), execution has reached a call site with the static kind tag AD-

VICE ARG SETUP. This call to MainAspect.aspectOf was inserted by the weaver

to acquire the aspect instance in preparation for the execution of the before advice.

The caller tag here is ADVICE ARG SETUP, which also propagates itself. The body of

the aspectOf method, however, has already been statically tagged ASPECT CODE,

but according to the replacement function, a self-propagating tag, of which is AD-

VICE ARG SETUP, can overwrite a static ASPECT CODE tag. Each instruction in the

body of the aspectOf method is therefore assigned the ADVICE ARG SETUP tag.
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(e) aspectOf instruction tag stacks popped on leaving method

Figure 6.1: Propagation example (cont.)

In Figure 6.1(e), execution has returned from the aspectOf method. On leav-

ing the method body, the current tag for each instruction is reset to its previous

value, ASPECT CODE. That is, the stack of dynamic tags for each instruction is

popped.
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(f) Execution of the advice body

Figure 6.1: Propagation example (cont.)

The aspect instance having been acquired, the advice body itself is executed

next. In Figure 6.1(f), execution has entered the advice body, MainAspect-

.before$0 . In this case, the propagated tag differs from the caller tag. The prop-

agation function indicates that ADVICE EXECUTE propagates ASPECT CODE, which is

assigned to the untagged instructions in the advice body.

84



6.1. Tag Propagation

(f) Execution of main finished

Figure 6.1: Propagation example (cont.)

In Figure 6.1(f), execution of main has completed, and all dynamic instruction

kind tags have been popped. The final tally of executions is given. For this example,

the + for ASPECT CODE indicates however many instructions were executed by the

println method.

6.1.4 Propagation in the presence of around advice

As indicated in section 6.1.2, around advice requires the propagation algorithm to

maintain an advice depth counter. This section briefly presents a simple example

showing tag propagation in the presence of around advice.

Listing 6.8 is an extension to the program in Listing 6.5. The aspect defines an

additional piece of around advice which executes around calls to methods named
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public class Main {

public static void main(String[] args ) {

Main h = new Main();

h.sayHello();

}

public void sayHello() {

System.out.println("Hello.");

}

}

aspect MainAspect {

before (): call ( void Main.sayHello()) {

System.out.println("before sayHello");

}

void around (): call (* *.println(..)) {

System.out.print("around println\n");

proceed ();

}

}

Listing 6.8: New around advice

“println”. It prints out a short message to System.out and proceeds with the

execution of the original call to println . Notice that it applies at two places:

to the call to System.out.println in the method Main.sayHello() , and to

the call to System.out.println in the before advice body. The propagation

algorithm will treat these two cases differently.

When execution reaches the call to sayHello , it will proceed to the before

advice body defined in MainAspect . On execution of the method before$0 ,

the value of the aspect code depth counter will be incremented from 0 to 1. The

before advice body calls System.out.println , which is advised by the around
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advice, which is therefore executed. On execution of the around advice, the aspect

code depth counter is again incremented, now to 2. Since the value of this counter

is greater than 1 when execution reaches the proceed statement, ASPECT CODE is

propagated to the proceed call instead of BASE CODE, since it is proceeding back

into an advice body, not back into the base program. The counter is decremented

when proceed is called, and incremented on return.

In contrast, when execution reaches the call to println in sayHello , the

value of the aspect code depth counter is 0. This gets incremented to 1 on execution

of the around advice body, and so when the call to proceed is reached, since aspect

code depth ≤ 1, BASE CODE will be propagated back to the call to println .

6.1.5 Propagation and advice inlining

The abc compiler implements a number of optimizations that that the ajc compiler

does not. Among these is advice inlining. Advice inlining results in the bodies of

small advice being inlined directly into the advised join point shadow, in place of

the original invoke instruction. For example, Listing 6.9 lists the bytecode resultant

from compiling the program in Listing 6.5 with this optimization turned on.

Inlining advice bodies has several consequences:

1. It requires the compiler to statically propagate the instruction kind tag on the

invoke appropriately to the body of the method being inlined.

2. It complicates the identification of advice bodies and proceed statments. Pre-

viously, execution of an advice body or proceed statement corresponded to

method calls. In the presence of inlining, this is no longer necessarily true.

In order to identify inlined advice and proceed methods, additional metada is

required. This is described in more detail in section 5.4.

3. It requires the introduction of new instruction kind tags to identify inlined

advice and proceed methods.

Static propagation for the inlining of advice bodies is very simple: every un-

tagged instruction in the body being inlined is assigned the tag INLINED ADVICE,
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public static void main(String[] arg0)

[ : ] new Main

[ : ] dup

[ : ] invokespecial Main.<init>:()V

ADVICE ARG SETUP [1:3] invokestatic MainAspect.aspectOf()

ADVICE ARG SETUP [1:3] pop

INLINED ADVICE [ : ] getstatic java/lang/System.out

([1:3])

INLINED ADVICE [ : ] ldc “before sayHello”

([1:3])

INLINED ADVICE [ : ] invokevirtual java/io/PrintStream.println(String)

([1:3])

[ : ] invokevirtual Main.sayHello()

[ : ] return

Listing 6.9: main from program in Listing 6.5, compiled with abc with advice inlining en-

abled

which is equivalent to ASPECT CODE. The methods corresponding to proceed state-

ments and if pointcuts can also be inlined by the same facility; they are distin-

guished from advice bodies by the caller tag. In the case of if pointcut methods,

the caller tag (ADVICE TEST, or one of the other dynamic residue kind tags) is prop-

agated to the untagged body instructions. In the case of a proceed method, IN-

LINED PROCEED is propagated. INLINED PROCEED is equivalent either to BASE CODE

or to ASPECT CODE, depending on the value of the advice depth counter. As ex-

plained in section 5.4, the instructions in the body of the proceed method are also

tagged with the proceed tag and have their inline count tag incremented.

Maintaining the advice depth counter is the only complication to dynamic tag-

propagation raised by advice inlining. When there is no advice inlining, entry to

and exit from an advice body corresponds to entry to and exit from a method. Like-

wise for the execution of proceed statements. When advice bodies can be inlined,

however, any instruction may represent entry to or exit from an advice or proceed
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body. Furthermore, although it is not possible given the code generation strategies

of current AspectJ compilers (because an advice invocation is always preceded by a

call to aspectOf , and therefore can’t be the first instruction in an advice body), it

is conceivable (if advice bodies were compiled as static methods, for example) for a

single instruction to represent entry into multiple advice bodies. Single instructions

can currently, however, represent exit from multiple advice or proceed bodies. A

strategy for detecting entry to and exit from inlined advice and proceed bodies is

described below.

To detect the execution of an inlined advice body, we keep track of the last in-

struction executed in this method (for the first instruction of a method, the previous

instruction is null.)

If the previous instruction is null, and the current instruction has a non-zero

inline count (the number of shadow/source pairs in the instruction’s list of inlined

shadow/source pairs), then execution has entered at least one new advice body.

The advice body, or bodies, that are currently being executed are those whose shad-

ow/source IDs are in the current instruction’s inlined shadow/source list.

If the current instruction’s inline shadow/source list matches the previous in-

struction’s inline shadow/source list, then we are still executing the same advice

bodies. If it differs, then we may have entered a new advice body, left an advice

body, or both left and entered an advice body.

To determine which advice executions have ended and which have begun, we

compare the inline shadow/source lists of the current and previous instructions. We

eliminate the common tail from the lists; the remainder of the first list is the list of

advice bodies we have left, and the remainder of the second list is the the list of the

advice bodies we have entered.

For example, let instruction prev have the list of IDs [5, 3, 2, 1] and let

instruction curr have the list of IDs [5, 4, 2, 1] . The common tail of both

lists is the list [2, 1] , indicating that both instructions are being executed within

advice body execution 2, which in turn is being executed within advice body exe-

cution 1. The remaining lists are [5, 3] and [5, 4] . This means that the the

execution of curr corresponds to having finished executing advice 5 and 3, and
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begun executing advice 4 and 5.

To detect entry to an inlined proceed body, we keep track of the inline count of

the previous instruction. If the current instruction has a proceed tag, and its inline

count is greater than that of the previous instruction, and the current instruction

doesn’t represent entry to or exit from an advice body (that is, the inlined shad-

ow/source list is unchanged), then a new proceed body has been entered, and the

advice depth counter is updated appropriately.

There are a couple more complex cases to handle. A single instruction could rep-

resent entry to multiple proceed bodies (in the case of around advice on around

advice), or entry to both an advice body and a proceed method (around advice

the first statement of which being a proceed), or simultaneous exit from and entry

to a proceed method (contiguous proceed statements). In the first case, the inline

count will differ by more than one, and the advice depth counter should be updated

appropriately. In the second case, advice entry or exit will first be detected. When

this happens, the inline count of the current instruction should first be decremented

by the number of advice bodies entered, and incremented by the number of advice

bodies exited, before it is compared to that of the previous instruction. The dif-

ference after this adjustment indicates the number of proceed bodies entered. The

final case is not detected, because it does not affect the value of the advice depth

counter.

Given this strategy for detecting advice and proceed entry and exit events, the

propagation algorithm need only be modified to update the advice depth counter

on these events, in addition to method entry and exit.

6.2 Advice Guard Identification

As explained in chapter 2, instead of actually observing the execution of a program

for join points matched by a given pointcut and executing advice appropriately

when found, which would be a very inefficient way to implement the join point
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model, the AspectJ compiler (either ajc or abc ) instead performs a kind of par-

tial evaluation, weaving advice execution instructions into the join point shadows

whose execution gives rise to join points matched by particular pointcuts. Since it is

not the case that the execution of a particular shadow will always result in a match-

ing join point, it is often necessary to compile in a runtime check that determines

dynamically whether the join point corresponding to a particular execution of the

shadow matches. These checks are called dynamic residues, or guards.

A naive implementation of AspectJ might weave in guards at every join point

shadow, while an optimized implementation could use more sophisticated static

analysis to eliminate the need for most guards.

The advice execution metric requires us to have a way to identify when we

have entered a guard, and to determine whether that guard has evaluated to true

(resulting in the execution of its advice) or false.

6.2.1 The simple case

When the compiler weaves advice execution instructions that require a guard into

a join point shadow, the instructions implementing that guard are tagged with the

ADVICE TEST instruction kind tag. (Correspondingly, if the compiler is not weaving

in an advice execution proper, but rather cflow management instructions with a

guard, then that guard is differentiated by being tagged CFLOW TEST. Likewise

for PEROBJECT ENTRY TEST. The advice execution metric, however, only considers

advice guards.)

Since a given piece of advice can be applied to a particular join point only once,

a guard is uniquely identified by a pair of shadow and source identifiers.

In order to implement the advice execution metric, we must identify three

events: entering a guard; leaving a guard and executing the corresponding advice

(that is, guard success); and leaving a guard without executing its corresponding

advice (that is, guard failure.)

For each instruction execution, we keep track of the previous instruction’s kind,

shadow, and source tag.
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For each pair of instruction executions, there are 6 possible transitions:

1. not in a guard→ in a guard

2. still in the same guard

3. in a guard→ guard failure→ in a different guard

4. in a guard→ guard success→ advice execution

5. in a guard→ guard failure→ advice execution

6. in a guard→ guard failure→ something else

We identify these cases as follows:

1. If the current instruction’s kind tag is ADVICE TEST, and the previous instruc-

tion’s kind tag is not, then we have entered a new guard, identified by the

current instruction’s shadow and source IDs.

2. If both the current and previous instructions’ kind tags are ADVICE TEST, and

their source and shadow IDs match, then we have not finished executing the

current guard, and do nothing.

3. If both the current and previous instructions’ kind tags are ADVICE TEST, but

either their source or shadow IDs do not match, then we have entered a new

guard, and the previous guard failed.

4. If the current instruction’s kind tag is ADVICE EXECUTE, and the previous in-

struction’s kind tag is ADVICE TEST, and if the source and shadow IDs of the

current and previous instructions match, then the guard identified by the

shadow and source IDs was successful.

5. Correspondingly, if the shadow and source IDs do not both match, the guard

has failed.
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6. If the previous instruction’s kind tag is ADVICE TEST, and the current instruc-

tion’s kind tag is anything but ADVICE TEST or ADVICE EXECUTE, the previous

guard failed.

6.2.2 Advice guard identification and advice inlining

Guard identification in the presence of advice inlining is more complicated. As

described in section 6.1.5, the compiler may optimize the generated code by inlining

small advice bodies directly into the advised join point shadows. To accommodate

this inlining, the guard detection algorithm is extended in a manner similar to the

extension of the tag-propagation algorithm.

Once we can detect the execution of an inlined advice body (see section 6.1.5),

we need to be able to associate a guard with an inlined advice body. An advice

body, even when inlined, will still be identified by the shadow/shadow ID pair of its

original invoke instruction. We make the association as follows.

Guard instructions will have a shadow/source ID. The guard itself may have

been inlined, and its inline count is equivalent to the size of its inlined shadow/-

source ID list.

For the first instruction executed after a guard, we compare the shadow/source

ID of the guard to the shadow/source ID in the instructions inlined shadow/source

ID list at the position corresponding to the inline count of the guard. (The inline

count is usually 0, so we usually look at the first pair in the list.) If the shadow/-

source IDs match, then the advice execution corresponds to the guard.

Consider the following examples. Several execution traces are given, some for

guard successes and some for guard failures. For simplicity, the shadow/source ID

pair is presented as a single number. The instruction kind tag is listed first, followed

by the shadow/source ID, followed by the inlined shadow/source ID list.

In this example, the guard has not been inlined. The shadow/source ID of the

guard matches the inlined shadow/source ID of the advice execution. Therefore,

the guard has succeeded.
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ADVICE TEST [1] [ ] instr

INLINED ADVICE [ ] [1] instr

In the next case, although advice is executed immediately after a guard, it is not

the advice associated with that guard. Since the advice that is associated with the

guard was not executed, the guard failed.

ADVICE TEST [1] [ ] instr

INLINED ADVICE [ ] [2] instr

In this final example, the guard and the inlined advice body have both been

inlined. The inline count of the guard instructions is 1. Therefore, the shadow/-

source ID of the guard must be compared to the shadow/source ID at position 1

(the second one from the end) in the inlined shadow/source ID list for the next

advice instruction. In this case, it matches, and the guard succeeds.

ADVICE TEST [1] [3] instr

INLINED ADVICE [ ] [3,1] instr
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Experimental Results

In this chapter, experimental results and analyses for a number of benchmarks

are presented, each for a number of compiler configurations. These benchmarks

span a variety of uses for AspectJ, each exercising different features of the language.

They have been collected from a variety of public sources.

As discussed in chapter 1, it has been generally believed that AspectJ programs

should show little runtime overhead. Although this is true of some of the bench-

marks analyzed, others show very large runtime overheads. These overheads are,

for the most part, due to two AspectJ features: cflow pointcuts and around advice.

Lesser overheads are also observed for use of thisJoinPoint and aspect instance

binding.

Section 7.1 presents results for the benchmarks as compiled by ajc 1.2. Those

benchmarks that show relatively little runtime overhead are examined first, fol-

lowed by those showing significant runtime overheads. These overheads are ana-

lyzed and explained, and potential solutions for reducing them are suggested.

Section 7.2 presents results generated with abc , an optimizing AspectJ compiler,

the development of which was prompted, in part, by early versions of this work.

Some of its optimization strategies are explained, and its results are compared with

those for ajc .

Finally, some results for ajc 1.2.1, which incorporates some of the optimizations

suggested here, and the latest development version of abc (as of August, 2005) are
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presented in section 7.3.

To produce the *J trace files used for dynamic metrics calculation, all bench-

marks were run in Sun’s Java 2 Runtime Environment, Standard Edition version

1.4.0 04-b04. All execution time results were produced in the same JRE on a

1.80GHz Intel Pentium 4 with 1GB of RAM running Linux 2.4.20. (More recent

versions of the JRE could not be used for calculating dynamic metrics due to flaws

in the JVMPI implementation of the VM.)

7.1 ajc Results

This section presents results for the benchmarks compiled with ajc 1.2. Sec-

tion 7.1.1 presents the overall data. Section 7.1.2 examines the results for those

benchmarks that show relatively little overhead. Section 7.1.3 presents the results

for those benchmarks that show significant overhead, and explains the nature of

that overhead.

7.1.1 Overall Data

An overview of the key data for benchmarks compiled with ajc 1.2 is presented in

Tables 7.1 and 7.2. Table 7.1 presents execution time measurements and general

Java dynamic metrics. Table 7.2 presents the key AspectJ-specific dynamic metrics.

For the tag mix metrics in this table, only the relevant instruction kind tags are

listed.

Data for the following benchmarks are presented. (More detailed descriptions

of the benchmarks are provided in the subsequent discussion.)

dcm-sim: Calculates a dynamic coupling metric for a base program.

prodline: Implements a product line of related graph algorithms.

bean: Aspects add Java Bean functionality to a base program.

lod-sim: Tests a base program for correct Law of Demeter object form. Shows high

cflow-related overhead.
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figure: Simulation of a simple figure editor. Shows high cflow-related overhead.

nullcheck-sim: Tests a program for the “on error condition, return null from method”

anti-pattern. Shows high around-related overhead.
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 55 28 5 63 15 138

Instructions Loaded 16553 3289 560 27187 594 8577

Code Coverage (%) 45 60 67 58 64 41

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 393 325 375 385 301 456

Instructions Loaded 112475 83823 99947 120933 75258 101011

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 3642 2213 158 4814 2871 1938

Total time - client (sec) 10.65 1.85 1.93 136.44 20.17 9.01

JIT time - client (sec) 0.36 0.12 0.08 0.64 0.08 0.11

GC time - client (sec) 0.52 0.03 0.03 91.88 0.10 2.17

Slowdown vs. handcoded(×) 1.05 37.35 3.92

Time - client noinline (sec) 11.31 2.15 2.13 97.93 30.12 10.10

Slowdown vs. handcoded (×) 1.15 25.18 4.30

Time - interpreter (sec) 72.64 21.94 6.79 201.10 136.86 67.23

Slowdown vs. handcoded (×) 1.20 27.63 3.86

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 367 30 110 1004 374 1535

Obj. Alloc. Density (per kbc) 2.13 0.35 21.60 7.30 5.58 19.34

#Garbage Collections 373 38 144 1104 489 1526

Table 7.1: Overall data: general metrics
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ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 4.82 0.73 14.25 97.69 95.78 50.15

#overhead/#advice (whole) 0.05 0.01 0.18 49.25 229.17 19.49

#advice/#total (whole) 0.94 0.99 0.79 0.02 0.00 0.03

AspectJ Runtime Lib % (whole) 3.09 0.01 0.00 94.01 91.67 3.88

AspectJ Overhead % (app) 16.66 11.25 39.48 98.01 83.43 50.29

#overhead/#advice (app) 0.21 0.13 0.92 146.87 50.33 19.49

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)

BASE CODE 1.41 0.06 7.16 0.32 3.80 47.27

ASPECT CODE 93.77 99.21 78.59 1.98 0.42 2.57

INTERMETHOD 0.23 0.51

INTERFIELDINIT 0.09 1.27

INTERCONSTRUCTOR PRE 0.07

INTERCONSTRUCTOR POST 0.23

INTERCONSTRUCTOR CONVERSION 0.03

ADVICE EXECUTE 0.29 0.002 0.76 0.005 0.14 1.29

ADVICE ARG SETUP 1.03 0.02 5.19 0.15 0.35 22.51

ADVICE TEST 0.35 20.62

THISJOINPOINT 2.05 0.03

AROUND CONVERSION 1.15 0.004 0.64

AROUND CALLBACK 0.01 13.49

AROUND PROCEED 0.30 0.01 2.53 5.79

CLOSURE INIT 0.007 6.43

AFTER RETURNING EXPOSURE 0.002

AFTER THROWING HANDLER 0.001

CFLOW ENTRY 46.00 35.39

CFLOW EXIT 50.83 39.29

PERCFLOW ENTRY 0.14

PERCFLOW EXIT 0.12

CLINIT 0.001

INLINE ACCESS METHOD 2.66

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)

AspectJ Overhead (total) 73.29 45.88 3.56 99.70 99.98 99.90

BASE CODE 0.39 0.57 3.74 0.03 0.02 0.10

ASPECT CODE 26.32 53.54 92.69 0.27

INTERFIELDINIT 3.56

INTERCONSTRUCTOR PRE 18.72

INTERCONSTRUCTOR POST 21.06

INTERCONSTRUCTOR CONVERSION

ADVICE ARG SETUP 4.07 0.02 66.62

THISJOINPOINT 54.25 0.24

AROUND CONVERSION 19.04

AROUND PROCEED 2.03 33.28

CFLOW ENTRY 98.97 99.98

PERCFLOW ENTRY 0.47

PEROBJECT ENTRY 0.009

PEROBJECT SET

CLINIT 0.005 0.001 0.002 0.001

ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%)

Hot Shadows (for 90%) 5.26 50.00 100.00 27.43 100.00 7.69

Hot Sources (for 90%) 25.00 14.29 100.00 66.67 100.00 100.00

Advice Execution Const.(%) 100.00 100.00

Table 7.2: Overall data: AspectJ metrics
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7.1.2 Benchmarks with low overhead

From the overall data presented in Tables 7.1 and 7.2, a benchmark can be de-

termined to have low runtime overhead in one of two ways: the dynamic metrics

may indicate low aspect overhead (in terms of bytecode executions and object allo-

cations), or, for those benchmarks with equivalent hand-woven Java versions, low

overhead may be indicated by a small difference in execution time.

The dcm-sim and prodline benchmarks are shown to have relatively low run-

time overheads by the dynamic metrics alone (4.82% and 0.73% AspectJ execution

overhead, respectively), while the bean benchmark is shown to have relatively low

runtime overhead by the dynamic metrics (14.24% AspectJ execution overhead)

and execution time comparisons (5% slowdown vs. handcoded with JIT enabled).

Each of these benchmarks will be considered individually below.

DCM-sim

One potential use for aspects is to instrument a base program in order to report on

a facet of its dynamic behaviour—to confirm, for example, that the base program

conforms to some policy. Hassoun, Johnson, and Counsell have proposed a dynamic

coupling metric [HJC04a], and provided an AspectJ implementation [HJC04b] that

can be applied to any base program.

As is also true for many subsequent benchmarks, the aspects in the dcm-sim

benchmark can be applied to any base program. Certrevsim [Arn00] is a reasonably

large and complex Java application that simulates and compares various certificate

revocation schemes. This is the base program with which the dcm-sim aspects have

been woven.

This benchmark makes extensive use of advice, both to compute the dynamic

coupling metric and to report it. To compute the coupling metric, around and after

advice apply to all method and constructor executions in the application space.

This advice, which updates data records in a hash table and makes use of reflective

information by means of the thisJoinPoint construct, is relatively expensive.

The results for this benchmark can be seen in the dcm-sim columns of Tables 7.1
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and 7.2. Since the advice bodies defined in the aspects are relatively complex, and

the pointcuts fairly broad, it is unsurprising that the execution is dominated by

ASPECT CODE (which is non-overhead) instructions. The AspectJ overhead is less

than 5%.

Looking at the application-only metrics, however, which ignore the execution

in the Java library, and thus the expensive hash table methods called in the advice

bodies, we see the aspect overhead to be 17%, much of which is THISJOINPOINT and

AROUND CONVERSION instructions. The whole-program allocation metrics indicate

that 54% of allocations are attributed to THISJOINPOINT and 19% to around advice.

5% of total execution time is spent in garbage collection, so these allocations are not

without cost, although it is relatively low compared to that for the high-overhead

benchmarks presented later. Nevertheless, it suggests that around advice and use

of thisJoinPoint may be a source of significant overhead in other benchmarks.

ProdLine

A product line is a family of related programs. Lopez-Herrejon and Batory use As-

pectJ’s static crosscutting features to implement a product line of related graph

algorithms [LHB02].

This benchmark’s base program consists of a number of empty classes represent-

ing graph primitives (e.g. Edge, Vertex , Graph ). It provides a mere skeleton of

common types—the functionality of each program in the product line is defined in

the aspects. These aspects make heavy use of intertype declarations to add mem-

bers to these basic types, and also make use of advice.

One might expect the static crosscutting features of AspectJ to incur no runtime

overhead, and Table 7.2 does indicate the execution overhead to be less than 1%.

An examination of the allocation metrics, however, indicates that the overhead is

not non-existant: 40% of allocations are due to introduced constructors. This does

not adversely affect the execution time of this benchmark, but does show that even

static crosscutting features can result in some runtime overhead, and are a potential

area for improved code generation.
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Bean

The bean benchmark is an example taken from the AspectJ Programming Guide

[Tea01]. The base program is a simple data structure with little functionality (a

Point class) and the aspects encapsulate the implementation of the JavaBeans

protocol.

The aspect makes use of static crosscutting features to introduce new fields and

methods into the Point class, and to declare the Point class an implementor of

the Serializable interface. around advice is used to fire property change events

when the Point ’s coordinates change.

A hand-woven version of this benchmark—that is, a version of equivalent func-

tionality written in pure Java, without aspects—was produced for comparison.

Although bean displays some overhead in interpreted mode (as indicated by

the aspect overhead metric and slowdown vs. hand-coded) the JIT with inlining

enabled succeeds in mostly eliminating this overhead. This supports the claim

in [Xer03] that the JIT and inliner should eliminate most overhead. However, this

benchmark does not make many overhead allocations, and weaving of the advice

results in no dynamic residues. Furthermore, with the inliner disabled, there is a

15% performance penalty. Since inliner behaviour can be difficult to predict, it is

not yet clear that it can always be relied upon to eliminate this overhead.

7.1.3 Benchmarks with high overhead

Although some benchmarks in the previous section showed some overhead, these

overheads were relatively small and generally supported the belief that AspectJ re-

sults in little runtime cost that cannot be eliminated by the JIT and inliner. Contrary

to this conventional belief, however, some benchmarks show very significant run-

time overheads.

This section examines the benchmarks that exhibit high runtime overheads.

Each benchmark is considered below, and the dynamic metrics and execution times

are used to identify the runtime overheads. For each of these benchmarks, the

overheads are primarily due to two potentially expensive AspectJ features: around
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 63 63 62 63 63

Instructions Loaded 27187 32480 15948 23162 29415

Code Coverage (%) 58 59 55 57 60

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 385 391 390 391 391

Instructions Loaded 120933 127809 111277 118491 124744

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 4814 1487 128 4750 1458

Total time - client (sec) 136.44 11.09 1.29 20.68 8.04

JIT time - client (sec) 0.64 0.38 0.23 0.68 0.28

GC time - client (sec) 91.88 0.88 0.06 1.17 0.22

Time - client noinline (sec) 97.93 13.15 1.25 26.74 10.75

Time - interpreter (sec) 201.10 38.01 3.02 152.01 34.47

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 1004 40 39 1005 40

Obj. Alloc. Density (per kbc) 7.30 0.25 2.90 7.40 0.26

#Garbage Collections 1104 42 42 1103 42

Table 7.3: Law of Demeter: general metrics

advice and cflow pointcuts. Some lesser overhead is a result of using thisJoinPoint

and aspect instance binding.

Law of Demeter

The Law of Demeter (lod-sim) benchmark is similar in purpose to dcm-sim: it uses

aspects to instrument a base program and report on its dynamic behaviour—in this

case, checking if the program has correct Law of Demeter object form.
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ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 97.69 92.52 22.02

#overhead/#advice (whole) 49.25 14.41 0.29

#advice/#total (whole) 0.02 0.06 0.76

AspectJ Runtime Lib % (whole) 94.01 72.42 20.93

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)

BASE CODE 0.32 1.06 2.46

ASPECT CODE 1.98 6.42 75.52

ADVICE EXECUTE 0.005 0.02 0.18

ADVICE ARG SETUP 0.15 0.49 5.64

ADVICE TEST 0.35 1.70 5.00

THISJOINPOINT 0.03 0.10 1.18

AFTER RETURNING EXPOSURE 0.002 0.005 0.06

AFTER THROWING HANDLER 0.001 0.004 0.05

CFLOW ENTRY 46.00 79.70

CFLOW EXIT 50.83 9.23

PERCFLOW ENTRY 0.14 0.45 5.14

PERCFLOW EXIT 0.12 0.39 4.47

CLINIT 0.001 0.002 0.02

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)

BASE CODE 0.03 2.74 2.72

ASPECT CODE 0.27 26.04 26.05

AspectJ Overhead (total) 99.70 71.23 71.23

ADVICE ARG SETUP 0.02 2.09 2.09

THISJOINPOINT 0.24 22.96 22.96

CFLOW ENTRY 98.97 0.009

PERCFLOW ENTRY 0.47 45.04 45.05

PEROBJECT ENTRY 0.009 0.90 0.90

PEROBJECT SET

CLINIT 0.002 0.23 0.22

Table 7.4: Law of Demeter: AspectJ metrics
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A program is said to have correct Law of Demeter [LLW03a] object form when,

for each of its objects, the object can only send messages to: itself, its arguments, its

instance variables, a locally constructed object, or a returned object from a message

sent to itself.

Lieberherr, Lorenz, and Wu have implemented an AspectJ program [LLW03b]

that can be applied to any base program to determine if it has correct Law of Deme-

ter object form. This implementation makes use of cflow pointcuts for its advice,

and percflow and pertarget aspect instance binding.

These aspects have been applied to the same discrete event simulator as dcm-

sim.

Like dcm-sim, the advice bodies in this benchmark do a fair amount of work. One

might therefore assume that, like dcm-sim, the overhead would be overwhelmed by

the advice bodies and would, consequently, be relatively low. This turns out, how-

ever, not to be the case—this benchmark exhibits an enormous amount of runtime

overhead.

An examination of the tag mix metrics identifies the source of this overhead:

97.7% of instructions executed, and 99.7% of allocations to the heap, are due to

cflow bookkeeping instructions (CFLOW ENTRY and CFLOW EXIT). These instruc-

tions are those generated by the weaver to manage the representations of the call

stack required by the implementation of cflow pointcuts.

The allocation instructions here are not only, in themselves, expensive instruc-

tions unlikely to be optimized away by the JIT, but also contribute to increased

garbage collection activity: for this benchmark, garbage collection accounted for

67% of execution time.
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Cflow Stacks

A closer examination of ajc ’s implementation of cflow pointcuts further ex-

plains this overhead, and suggests some potential optimizations to reduce it.

Consider the following pointcuts:

pointcut P1(T t): call (* foo(T)) && args (t);

pointcut P2(T t): cflow (P1(t)) && call (* bar());

The cflow pointcut, P2, serves two purposes: (1) it selects all join points that are ex-

ecuted within the dynamic scope of join points matching pointcut P1; (2) it exposes

the (most recent) value of t to advice associated with this pointcut. An implemen-

tation of cflow pointcuts must support both of these features.

The implementation in ajc does so by associating a stack, each element of

which is a set of variable bindings, to each pointcut. (In actual fact, there is one

such stack per pointcut per thread of execution.) On entering a join point matching

P1, a binding for t is pushed onto the stack corresponding to P2. On leaving the

join point, the stack is popped. A join point can be determined to match the cflow

clause of P2 by testing that the stack is not empty. The bound context variables

can be retrieved from the top of the stack and passed to the advice body when it is

invoked.

The overhead involved in such an implementation is two-fold: that responsible

for maintaining the stack (CFLOW ENTRY and CFLOW EXIT instructions) and that

responsible for testing it (ADVICE TEST, CFLOW TEST, and PEROBJECT ENTRY TEST

instructions.) The join point shadows at which instructions for maintaining the

stack are woven are called update shadows.

The lod-sim benchmark, however, does not bind any context variables with its

cflow pointcut. (This kind of parameterless cflow usage turns out to be quite typ-

ical.) Examinations of the generated bytecode and the compiler source reveal that

in this case, an empty Object array is constructed and pushed onto the cflow

stack—this is clearly a heavyweight solution.
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In the case of parameterless cflow, using a simple counter instead of a stack

should result in significantly lower overhead. To test this hypothesis, a modified

version of ajc , cajc , which uses counters instead of stacks when possible, was

written. Results are presented in the “Counters” column of Table 7.3. Clearly, this

is a vast improvement—execution time in both JIT and interpreted modes is almost

an order of magnitude lower, the number of allocations and total bytes allocated

are an order of magnitude lower, and garbage collection time now accounts for a

much more reasonable 2.7% of total execution time.

Duplicated stacks

Even with this optimization, however, the tag mix metric still indicates a large

amount of overhead due to cflow bookkeeping. Further examination of the gener-

ated code reveals that a large number of cflow stacks have been created and are

being maintained at update shadows, as suggested by the tag mix metrics. In fact,

they are all being maintained at the same shadows: at least 13 cflow stacks are

generated and maintained for the same cflow pointcut.

The lod-sim source defines a named pointcut scope() , which is then referenced

in many other pointcut definitions. As a consequence of its presumed inlining into

each of these other pointcuts, a multitude of (identical) state objects (counters or

stacks) is being maintained at each update shadow.

To establish that this was the cause of the overhead, a version of the benchmark

was written without the cflow clause in the scope() pointcut. The results can be

seen in the “No cflow” column of Tables 7.3 and 7.4—a significant improvement

again.

This is clearly a case for potential optimization. (The abc compiler performs

such an optimization, unifying and reusing cflow state objects when possible. Re-

sults are presented in the next section.)
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Locals

The dynamic metrics for this variant without the cflow clause in the scope

pointcut still suggest the presence of some overhead: 5.6% of executions are at-

tributed to ADVICE ARG SETUP. This tag represents the code inserted before advice

executions. Examination of the generated bytecode reveals a very large number of

local variables in use—possibly a result of ajc ’s weaving at the bytecode level, with

the required additional complexity of having to sort through the Java stack. In order

to test this hypothesis, the benchmark was post-processed with SOOT, which per-

forms a local packing optimization. Examination of the bytecode revealed a large

reduction in the number of locals, and the results, shown in the “No cflow” column

of Table 7.3, show a significant improvement. The last column of Table 7.3 shows

the results of combining this SOOT optimization with the use of cflow counters.

The allocation metrics for the no-cflow variant of this benchmark still indicate

the presence of other overheads. 23% of allocations made by the no-cflow vari-

ant of this benchmark are attributed to THISJOINPOINT and 45% are attributed to

PERCFLOW ENTRY. Thus, the uses of thisJoinPoint and aspect instance binding also

incur some not insignificant overhead, and are potential areas for future optimiza-

tion.

Finally, the advice execution metric indicates that every advice guard always

evaluates the same. This suggests that it might be possible to completely eliminate

the cflow overheads with a static analysis. (See section 7.2.2).

Figure

The Figure benchmark illustrates the use of an aspect to update the display in a

figure editor[KHH+01a]. The DisplayUpdating aspect observes all of the shapes

the editor supports with the following pointcut:

107



Experimental Results

O
ri

gi
na

l

C
ou

nt
er

s

PROGRAM SIZE (APPLICATION ONLY)
Classes Loaded 15 14

Instructions Loaded 594 654

Code Coverage (%) 64 61

PROGRAM SIZE (WHOLE PROGRAM)
Classes Loaded 301 300

Instructions Loaded 75258 75318

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)
# instr. (million bytecodes) 2871 1431

Total time - client (sec) 20.17 6.79

JIT time - client (sec) 0.08 0.04

GC time - client (sec) 0.10 0.00

Slowdown vs. handcoded(×) 37.35 12.57

Time - client noinline (sec) 30.12 13.20

Slowdown vs. handcoded (×) 25.18 11.04

Time - interpreter (sec) 136.86 38.37

Slowdown vs. handcoded (×) 27.63 7.75

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)
Mem. Alloc. (million bytes) 374 1

Obj. Alloc. Density (per kbc) 5.58 0.01

#Garbage Collections 489 0

Table 7.5: Figure: general metrics
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ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 95.78 91.54

#overhead/#advice (whole) 229.17 109.17

#advice/#total (whole) 0.00 0.01

AspectJ Runtime Lib % (whole) 91.67 79.38

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 3.80 7.62

ASPECT CODE 0.42 0.84

ADVICE EXECUTE 0.14 0.28

ADVICE ARG SETUP 0.35 0.70

ADVICE TEST 20.62 48.08

CFLOW ENTRY 35.39 38.01

CFLOW EXIT 39.29 4.47

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 0.02 99.83

AspectJ Overhead (total) 99.98 0.17

CFLOW ENTRY 99.98 0.09

CLINIT 0.09

ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%)
Advice Execution Const.(%) 100.00 100.00

Table 7.6: Figure: AspectJ metrics
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pointcut move():

call ( void FigureElement.moveBy( int , int ))

|| call ( void Point.setX( int ))

|| call ( void Point.setY( int ))

|| call ( void Line.setP1(Point))

|| call ( void Line.setP2(Point));

Whenever a shape is moved, the display should be updated. However, we wish

to avoid unnecessary updates. Translating a line, for example, involves translating

the points that comprise the line, but should result in only a single display update.

Consequently, the advice to update the display is defined as follows:

after () returning : move() && ! cflowbelow (move()) {

Display.needsRepaint();

}

The negated cflowbelow pointcut here checks that a move operation is not part of

a more complex move operation—that is, that no move exists above it on the call

stack. This eliminates unnecessary display updates.

The core program in this benchmark performs no interesting computation. This

benchmark’s purpose is to isolate and examine the cost of using the cflowbelow

pointcut. To this end, it is compared with a hand-woven version, in which all of

the calls to Display.needsRepaint() are added by hand. Table 7.1 shows

that the AspectJ version of the benchmark is 37 times slower. The execution space

measurements indicate a large number of allocations, which, as can be seen in the

tag mix metric, are due to the updating of cflow state objects. This benchmark,

like lod-sim, has a significant amount of overhead due to the use of cflow pointcuts.

The hand-woven version, however, suggests that there is room for a great deal of

improvement.

The figure benchmark was compiled with cajc , as lod-sim was. The results

are presented in the “Counters” column of Tables 7.5 and 7.6. As with lod-sim,

the use of counters in place of stacks results in a significant reduction in overhead
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and a significant increase in performance. Client mode execution time drops from

20.17s to 6.79s. The number of CFLOW ENTRY instructions sees a small reduction,

but the allocation overhead, almost entirely attributed to CFLOW ENTRY, drops from

99.98% to 0.17%. Also like lod-sim, the advice execution metric suggests that static

analysis might be able to completely eliminate the remaining cflow overhead.

NullCheck

Asberry [Asb02] has suggested an aspect (nullcheck-sim) to test for the anti-pattern

“on error condition, return null from method.” The idea behind this anti-pattern

is that it is generally preferable, in Java, to throw a meaningful exception than

to return null . Like dcm-sim and lod-sim, nullcheck-sim reports on the behaviour

of any base program without altering its behaviour, and like both of these other

benchmarks, the nullcheck-sim aspects have been applied to the Certrevsim discrete

event simulator.

The nullcheck-sim aspects use around advice, applied to all methods that return

objects, to check if the return value is null . If it is, a message is printed to the

console that includes the signature and static location of the offending method.

For comparison, a hand-woven Java version was produced. As can be seen in

Table 7.1, the AspectJ version is significantly slower than the Java version. The

dynamic metrics provide some insight into this performance difference.

The metrics indicate the presence of significant overhead in several ways. First,

the AspectJ version executes 1,938 million instructions to the Java version’s 963

million. According to the AspectJ overhead metric, 50% of these (approximately

the difference) are overhead instructions. Second, the AspectJ version loads 138

application classes to the Java version’s 22. Third, and most significant, the As-

pectJ version makes 19.34 allocations per kbc (for a total of 1,535 MB) to the Java

version’s 0.04 (for a total of 2MB). This difference is reflected in the garbage collec-

tion behaviour: the AspectJ version performs 1,526 collections, accounting for 24%

of execution time, while the Java version performs only 2 accounting for approxi-

mately 0% of execution time.
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 138 252 48 48 22

Instructions Loaded 8577 14021 7727 3926 2421

Code Coverage (%) 41 50 36 47 57

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 456 576 366 372 334

Instructions Loaded 101011 108038 100161 97943 93678

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 1938 5034 1313 1089 963

Total time - client (sec) 9.01 26.29 3.14 3.10 2.30

JIT time - client (sec) 0.11 0.30 0.09 0.08 0.07

GC time - client (sec) 2.17 7.68 0.02 0.01 0.01

Slowdown vs. handcoded(×) 3.92 11.43 1.37 1.35 1.00

Time - client noinline (sec) 10.10 34.08 3.43 3.35 2.35

Slowdown vs. handcoded (×) 4.30 14.50 1.46 1.43 1.00

Time - interpreter (sec) 67.23 226.62 24.38 20.84 17.43

Slowdown vs. handcoded (×) 3.86 13.00 1.40 1.20 1.00

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 1535 5725 2 2 2

Obj. Alloc. Density (per kbc) 19.34 32.29 0.03 0.04 0.04

#Garbage Collections 1526 5818 3 2 2

Table 7.7: Nullcheck: general metrics
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ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 50.15 69.56 25.63 13.74

#overhead/#advice (whole) 19.49 20.03 5.40 6.00

#advice/#total (whole) 0.03 0.03 0.05 0.02

AspectJ Runtime Lib % (whole) 3.88 21.39 0.00 0.00

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 47.27 26.97 69.62 83.97

ASPECT CODE 2.57 3.47 4.75 2.29

ADVICE EXECUTE 1.29 1.74 1.90 3.44

ADVICE ARG SETUP 22.51 26.66 16.13 8.02

THISJOINPOINT

AROUND CONVERSION 0.64 8.31 0.95

AROUND CALLBACK 13.49 16.35

AROUND PROCEED 5.79 7.81 6.64

CLOSURE INIT 6.43 8.68

AFTER RETURNING EXPOSURE 2.29

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
BASE CODE 0.10 19.25 99.24 99.75

AspectJ Overhead (total) 99.90 80.75 0.76 0.25

ADVICE ARG SETUP 66.62 53.85

THISJOINPOINT

AROUND PROCEED 33.28 26.90

CLINIT 0.001 0.76 0.25

Table 7.8: Nullcheck: AspectJ metrics
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The tag mix metrics, for executions and allocations, point to the implementation

of around advice as the source of the overhead. In particular, the allocation tag

mix indicates that 99.9% of allocations are performed by ADVICE ARG SETUP and

AROUND PROCEED instructions, combined.

An examination of the instructions in the generated bytecode revealed the use

of heavyweight closures to implement around advice for this benchmark. Exami-

nation of the ajc source-code revealed that there are two strategies used for im-

plementing around advice: this heavyweight closure strategy and an “inlining”

strategy. The compiler prefers the inlining strategy, but falls back on the use of

closures if the around advice body has around advice that applies to it. Since the

around advice in nullcheck-sim makes several method calls returning objects, the

use of closures for all applications of this advice is triggered.

Since it is presumably not of much value for the nullcheck-sim aspect to test itself,

and in order to compare the closure strategy to the inlining strategy, an alternate

version of the benchmark was written with the following pointcut:

call (Object+ *.*(..)) && !notwithin(codingstandards.*)

The notwithin clause deselects all join points within the advice body, thus al-

lowing for the inlining strategy to be used. Results for this variant are presented in

Tables 7.7 and 7.8.

(The use of closures can be forced in ajc with the -Xnoinline command line

option. In order to confirm that the performance differences reported in Table 7.7

were due to the use of the inlining strategy, and not to the slight change in be-

haviour incurred by the use of the notwithin clause, the notwithin variant was

compiled with this option turned on: results were no different than those for the

original version that triggered the use of closures.)

It is possible to rewrite the benchmark using after returning advice instead of

around advice, achieving the same functionality. This was done, and results for

the after returning version are given in the last column of Tables 7.7 and 7.8.

The metrics indicate even lower overhead for this version, suggesting that even the
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inlining implementation of around advice weaving could be improved.

It is clear from these results that ajc ’s inlining strategy for around advice is

much more efficient than its closure strategy. However, the very large change ob-

served in performance behaviour was due to a very small change in pointcut defini-

tion. Ideally, a programmer should not have to be concerned with the performance

impacts of such minor changes.

This last point is emphasised by the “All non-void” variant of the benchmark.

This is the original implementation of the aspect, which although functioned cor-

rectly, contained a coding error that drastically affected performance: where the

documentation claimed the aspect checked the return value of methods that could

return objects, the implementation checked the return values of all non-void meth-

ods. The error has been fixed for the primary version of the benchmark, but results

for this version are shown to illustrate the performance consequence a small change

to pointcut definition can have.

7.2 abc Results

Where ajc has been designed with fast incremental compilation and integration

with the Eclipse toolset as primary design goals, abc has been designed with ex-

tensibility and optimization as primary goals. ajc ’s emphasis on fast incremental

compilation comes at the cost of optimization: little intraprocedural and no whole-

program analysis is done. The design of abc , in contrast, facilitates and incorpo-

rates both intraprocedural and interprocedural analyses and optimizations, at the

cost of incremental compilation.

The observation of significant runtime overheads in AspectJ programs prompted,

in part, the development of abc . In order to facilitate the design of novel optimiza-

tions, abc ’s back-end is based on the SOOT analysis and optimization framework,

which not only makes it easy to develop new analyses and optimizations for As-

pectJ programs, but provides a library of stock analyses and optimizations that can

be leveraged immediately in abc . (The local packing optimization mentioned in
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the previous section, for example.)

One major difference between ajc and abc is that where weaving in ajc is

performed on Java bytecode, it is performed on Jimple in abc . Jimple is a typed

3-address intermediate representation used by SOOT. The use of Jimple simplifies

the weaving process and facilitates analysis.

The AspectJ-specific optimizations present in abc address each of the major

overheads identified in section 7.1.3. They are described in detail in [ACH+05b].

In brief, they are:

1. An improved implementation of around weaving, reducing the use of expen-

sive closures.

2. Intraprocedural optimizations to reduce the cost associated with cflow point-

cuts.

3. An interprocedural optimization to eliminate the cost of cflow pointcuts in

many cases.

And again, because abc is based on SOOT, it makes use of the standard SOOT

optimizations.

The following sections will briefly explain the optimizations, and present results

for the relevant benchmarks compiled using them.

7.2.1 Intraprocedural cflow optimizations

As explained in section 7.1.3, ajc ’s implementation results in significant overheads

of several kinds. abc incorporates several intraprocedural optimizations to reduce

these overheads.

1. It is often the case that cflow pointcuts expose no context. This turns out to be

true for all of the benchmarks used in this work. In this case, as demonstrated

by the cajc modifications to ajc introduced in section 7.1.3, using counters

instead of stacks is preferable—abc does so when appropriate.
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2. abc attempts to unify cflow pointcuts. Often, pointcuts which are similar

enough to share states don’t, resulting in redundant updating. By unifying

pointcuts, abc can reduce the cost of updating pointcut states and also reduce

code bloat.

3. caching of cflow state objects to locals.

The results in Tables 7.9 and 7.10 are for the benchmarks that showed cflow-

related overheads, compiled with abc , with intraprocedural optimizations enabled.

For the sake of comparison, results for the same benchmarks, as compiled with

ajc and cajc , and presented in section 7.1, are also listed. These results show

significant improvements. lod-sim’s execution time, in client mode, is 1.1% what

it is when compiled with ajc (1.46s vs. 136.44s), and figure’s is 6% (1.19s vs.

20.17s). The metrics show the expected and corresponding reduction in overhead:

CFLOW ENTRY and CFLOW EXIT instructions account for much less of the execution,

and, in interpreted mode, the number of executed bytecodes differs by an order

of magnitude (147 million to 4,814 million for lod-sim, and 310 million to 2,871

million for figure.)

7.2.2 Interprocedural cflow optimizations

The results in Tables 7.9 and 7.10 still indicate the presence of noticeable cflow-

related overhead, though significantly reduced by abc ’s intraprocedural optimiza-

tions. The slowdown vs. handcoded metric for figure, for instance, suggests addi-

tional room for improvement.

The advice execution metric indicates, for a given run of a benchmark, what

percentage of advice guards always evaluate to true, always evaluate to false, and

sometimes evaluate to true and sometimes to false. A guard that sometimes evalu-

ates to true and sometimes to false clearly cannot be statically eliminated. One that

always evaluates the same, for a given run, may always evaluate the same for every

run, and thus suggests the possibility that a more sophisticated static analysis could
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 59 63 63 13 14 15

Instructions Loaded 22441 32480 27187 583 654 594

Code Coverage (%) 54 59 58 72 61 64

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 389 391 385 301 300 301

Instructions Loaded 117784 127809 120933 75261 75318 75258

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 147 1487 4814 310 1431 2871

Total time - client (sec) 1.46 11.09 136.44 1.19 6.79 20.17

JIT time - client (sec) 0.19 0.38 0.64 0.03 0.04 0.08

GC time - client (sec) 0.06 0.88 91.88 0.00 0.00 0.10

Slowdown vs. handcoded(×) 3.72 12.57 37.35

Time - client noinline (sec) 1.39 13.15 97.93 1.57 13.20 30.12

Slowdown vs. handcoded (×) 2.18 11.04 25.18

Time - interpreter (sec) 3.51 38.01 201.10 7.00 38.37 136.86

Slowdown vs. handcoded (×) 2.58 7.75 27.63

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 44 40 1004 1 1 374

Obj. Alloc. Density (per kbc) 3.09 0.25 7.30 0.02 0.01 5.58

#Garbage Collections 47 42 1104 0 0 489

Table 7.9: abc with intraprocedural optimization: general metrics

118



7.2. abc Results

lo
d-

si
m

(a
bc

)

lo
d-

si
m

(c
aj

c)

lo
d-

si
m

(a
jc

)

fig
ur

e
(a

bc
)

fig
ur

e
(c

aj
c)

fig
ur

e
(a

jc
)

ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 30.29 92.52 97.69 65.80 91.54 95.78

#overhead/#advice (whole) 0.45 14.41 49.25 17.00 109.17 229.17

#advice/#total (whole) 0.67 0.06 0.02 0.04 0.01 0.00

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)

BASE CODE 2.21 1.06 0.32 34.20 7.62 3.80

ASPECT CODE 67.50 6.42 1.98 0.84 0.42

INLINED ADVICE 3.87

ADVICE EXECUTE 0.22 0.02 0.005 0.28 0.14

ADVICE ARG SETUP 2.83 0.49 0.15 5.16 0.70 0.35

ADVICE TEST 2.07 1.70 0.35 7.74 48.08 20.62

THISJOINPOINT 1.06 0.10 0.03

CFLOW ENTRY 9.49 79.70 46.00 27.42 38.01 35.39

CFLOW EXIT 7.92 9.23 50.83 20.64 4.47 39.29

PERCFLOW ENTRY 3.11 0.45 0.14

PERCFLOW EXIT 2.50 0.39 0.12

GET CFLOW LOCAL 0.31 0.97

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)

AspectJ Overhead (total) 60.26 71.23 99.70 0.09 0.17 99.98

BASE CODE 2.17 2.74 0.03 99.91 99.83 0.02

ASPECT CODE 37.57 26.04 0.27

THISJOINPOINT 20.10 22.96 0.24

CFLOW ENTRY 98.97 0.09 99.98

PERCFLOW ENTRY 37.70 45.04 0.47

PEROBJECT ENTRY 0.74 0.90 0.009

CLINIT 0.002 0.23 0.002 0.09 0.09

ASPECTJ METRICS FOR SHADOWS (WHOLE PROGRAM) (%)

Hot Shadows (for 90%) 27.62 27.62 27.62 100.00 100.00 100.00

Hot Sources (for 90%) 66.67 66.67 66.67 100.00 100.00 100.00

Advice Execution Const.(%) 100.00 100.00 100.00 100.00 100.00 100.00

Table 7.10: abc with intraprocedural optimization: AspectJ metrics
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eliminate the guard entirely. The value of the metric for these benchmarks (100%)

suggests that guard elimination may be possible.

abc has an interprocedural analysis for eliminating these guards. Since per-

forming this sort of analysis before weaving can be very complicated, (for one thing,

the analysis must be AspectJ-aware,) abc performs the analysis after weaving and

feeds the results back into the weaver for reweaving. Weaving, therefore, occurs

as a two stage process in abc : the first stage is a naive weaving, the results of

which are subject to an interprocedural analysis. This analysis informs the second

stage, which repeats the weaving operation with this additional information. This

is illustrated in Figure 4.2 and explained in more detail in [ACH+05b]. The result

of this optimization is the elimination of unnecessary cflow advice guards and of

unnecessary updates to cflow state objects.

Table 7.11 shows the results of compiling the benchmarks with this optimization

enabled. Using static analysis to eliminate cflow checks and updating is clearly

desirable. The execution time of figure compiled with abc with interprocedural

cflow elimination is 1% that of the same benchmark compiled with ajc 1.2, (that

is, it is 100× faster,) and it is only 1% slower than the hand-woven version. The

execution time of lod-sim is likewise 1% what it is when compiled with ajc 1.2.

Both are improvements over the performance gained with intraprocedural cflow

optimization alone.

7.2.3 around optimizations

around advice is the second AspectJ feature that results in high overhead in bench-

marks compiled with ajc . Consequently, abc optimizes the weaving of around

advice.

As shown in section 7.1.3, it is the creation of heavyweight closures that causes

the significant overheads observed with around advice.

abc ’s implementation of around weaving, which [ACH+05b] describes in de-

tail, never performs significantly worse than ajc ’s, and often performs significantly

better. When ajc uses closures, abc produces much faster code. When advice is
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 54 59 8 13

Instructions Loaded 16092 22441 245 583

Code Coverage (%) 57 54 75 72

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 382 389 294 301

Instructions Loaded 111421 117784 74909 75261

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 114 147 121 310

Total time - client (sec) 1.24 1.46 0.35 1.19

JIT time - client (sec) 0.15 0.19 0.03 0.03

GC time - client (sec) 0.06 0.06 0.00 0.00

Slowdown vs. handcoded(×) 1.03 3.72

Time - client noinline (sec) 1.23 1.39 0.80 1.57

Slowdown vs. handcoded (×) 1.07 2.18

Time - interpreter (sec) 2.87 3.51 2.98 7.00

Slowdown vs. handcoded (×) 1.08 2.58

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 44 44 1 1

Obj. Alloc. Density (per kbc) 3.96 3.09 0.06 0.02

#Garbage Collections 47 47 0 0

Table 7.11: abc with interprocedural optimization
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large and applies frequently, abc produces code with much less bloat. In the case

of circular advice application, abc produces fewer closures and is much faster.

Table 7.13 shows the results of compiling around-heavy benchmarks with abc .

The enormous performance difference observed between nullcheck-sim and null-

check-norec, when compiled with ajc , has been eliminated. The small change in

pointcut definition no longer incurs a huge change in performance. Likewise, the

“All non-void” variant is no longer as costly a coding error—it is now only 3.76

times slower than the hand-coded version. (Although it is still 3 times slower than

the corrected version.)
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 43 43 43 43 22

Instructions Loaded 6333 10306 6010 3828 2539

Code Coverage (%) 50 56 51 49 55

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 367 367 367 367 345

Instructions Loaded 100350 104323 100027 97845 96549

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 1426 3269 1426 1089 901

Total time - client (sec) 2.99 8.80 2.95 2.85 2.33

JIT time - client (sec) 0.12 0.20 0.09 0.08 0.06

GC time - client (sec) 0.01 1.31 0.01 0.01 0.01

Slowdown vs. handcoded(×) 1.28 3.78 1.27 1.22 1.00

Time - client noinline (sec) 3.24 13.05 3.31 3.22 2.40

Slowdown vs. handcoded (×) 1.35 5.44 1.38 1.34 1.00

Time - interpreter (sec) 26.52 67.53 27.82 21.79 16.00

Slowdown vs. handcoded (×) 1.66 4.22 1.74 1.36 1.00

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 2 973 2 2 2

Obj. Alloc. Density (per kbc) 0.03 9.57 0.03 0.04 0.04

#Garbage Collections 2 956 2 2 2

Table 7.12: abc with around optimization (NullCheck): general metrics

123



Experimental Results

O
ri

gi
na

l

A
ll

no
n-

vo
id

m
et

ho
ds

no
tw

it
hi

n

af
te

r
ad

vi
ce

ASPECTJ METRICS SUMMARIZING OVERHEAD

AspectJ Overhead % (whole) 28.00 43.54 28.00 13.76

#overhead/#advice (whole) 4.57 4.65 4.57 4.00

#advice/#total (whole) 0.06 0.09 0.06 0.03

AspectJ Runtime Lib % (whole) 0.00 0.00 0.00 0.00

ASPECTJ TAG MIX FOR ALL INSTRUCTIONS (WHOLE PROG.) (%)
BASE CODE 65.87 47.09 65.87 82.80

ASPECT CODE 6.13 9.36 6.13 3.44

INLINED ADVICE

ADVICE EXECUTE 7.88 14.71 7.88 3.44

ADVICE ARG SETUP 7.88 12.04 7.88 10.32

THISJOINPOINT 0.001 0.001 0.001

AROUND CONVERSION

AROUND CALLBACK

AROUND PROCEED 12.23 16.79 12.23

CLOSURE INIT

AFTER RETURNING EXPOSURE

ASPECTJ TAG MIX FOR ALLOCATIONS ONLY (WHOLE PROG.) (%)
AspectJ Overhead (total) 1.06 0.002 0.95 0.26

BASE CODE 98.94 100.00 99.05 99.74

ADVICE ARG SETUP

THISJOINPOINT 1.06 0.002 0.94 0.26

AROUND PROCEED

CLINIT 0.003 0.003 0.003

Table 7.13: abc with around optimization (NullCheck): AspectJ metrics
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7.3 Results for the latest ajc and abc

A number of these optimizations have recently been incorporated into ajc . This

section provides execution time comparisons of high-overhead benchmarks in ajc

1.2.1 and the most recent development version, as of August 2005, of abc . The

results are presented in Table 7.14. (Since the tagging code has not yet been ported

to these versions, only general metrics and execution times are presented.) As can

be seen, ajc 1.2.1 has a significantly improved cflow implementation, but still lags

abc , especially when abc ’s interprocedural optimizations are enabled. Client mode

execution time for figure is 0.35s when compiled with the latest abc and 7.40s when

compiled with ajc 1.2.1; since figure’s overhead is almost entirely due to cflow,

abc ’s interprocedural cflow optimization results in a large performance difference.

lod-sim, however, has additional overhead due to aspect instance binding and use of

THISJOINPOINT. Consequently, it sees a similar but lesser performance difference:

1.41s for abc compared to 2.26s for ajc . around advice, however, can still be

extremely expensive in ajc 1.2.1 when the closure strategy is used, while abc

continues to improve its implementation; the performance difference between ajc

and abc is a factor of three.

(lod-sim compiled with abc allocates slightly more memory than lod-sim com-

piled with ajc —44MB compared to 40MB, 3.96 allocations per kbc to 1.20—this

is due not to compilation strategies but to the different runtime library implemen-

tations.)

7.4 Summary

While some of the benchmarks analyzed here seem to confirm the general belief

that AspectJ incurs little runtime overhead, others have shown runtime overheads

increasing execution time by an order of magnitude. The lod-sim benchmark shows

very high runtime overheads due to its use of cflow pointcuts and the nullcheck-sim
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PROGRAM SIZE (APPLICATION ONLY)

Classes Loaded 66 54 15 8 138 43

Instructions Loaded 20363 16092 484 245 8695 6393

Code Coverage (%) 54 57 74 75 41 50

PROGRAM SIZE (WHOLE PROGRAM)

Classes Loaded 395 382 302 294 462 361

Instructions Loaded 115699 111421 75155 74909 102712 98827

EXECUTION TIME MEASUREMENTS (WHOLE PROGRAM)

# instr. (million bytecodes) 346 114 1805 121 1939 1650

Total time - client (sec) 2.26 1.41 7.40 0.35 8.83 2.81

JIT time - client (sec) 0.26 0.15 0.04 0.03 0.12 0.13

GC time - client (sec) 0.06 0.06 0.00 0.00 2.04 0.01

Slowdown vs. handcoded(×) 21.76 1.03 3.74 1.20

Time - client noinline (sec) 2.75 1.33 11.32 0.80 11.44 3.31

Slowdown vs. handcoded (×) 14.89 1.07 4.70 1.38

Time - interpreter (sec) 9.02 2.96 46.66 2.98 75.81 22.75

Slowdown vs. handcoded (×) 15.88 1.08 4.24 1.42

EXECUTION SPACE MEASUREMENTS (WHOLE PROGRAM)

Mem. Alloc. (million bytes) 41 44 1 1 1523 2

Obj. Alloc. Density (per kbc) 1.20 3.96 0.00 0.06 19.33 0.02

#Garbage Collections 43 47 0 0 1525 2

Table 7.14: General metrics for the latest compilers
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7.4. Summary

benchmark shows very high runtime overheads due to its use of around advice. Ad-

ditional lesser overheads, associated with thisJoinPoint and aspect instance bind-

ing, are also found. In the case of nullcheck-sim, careful programming can avoid

most of these overheads. For example, writing “tighter” pointcuts or using after

returning advice instead of around advice can have a significant improvement

on performance. As the abc compiler demonstrates, however, there is significant

room for optimization in the implementation of these features, and the programmer

should not necessarily have to “hand-optimize” their aspects in this fashion.

This chapter has presented some key benchmarks illustrating the main over-

heads found in AspectJ programs. Execution time comparisons between abc and

ajc for some additional benchmarks affected by the same overheads identified here

can be found in [ACH+05b].
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Chapter 8

Related Work

Work on analyzing the performance of AspectJ programs and the efficiency of

AspectJ compilers is limited. Some research on this, and on closely related subjects,

however, is briefly surveyed below.

A fair amount of research has been done on the subject of dynamic metrics,

much of which, however, has been related to software engineering complexity and

quality measures.

Yacoub et al. [YAR99] present a suite of dynamic metrics for assessing the design

quality of object-oriented systems, including metrics for dynamic complexity and

object cohesion. The metrics are applied to a sample application, and the dynamic

measurements made with these metrics are compared to measurements made with

corresponding static metrics.

Dufour et al. [DDHV03] have defined a set of general dynamic metrics for char-

acterizing Java programs and describe a framework for collecting them. This work

is the basis for the dynamic metrics collection in this thesis. It is further described

in Bruno Dufour’s masters thesis [Duf04].

Previous work on analyzing the behaviour of Java programs at the bytecode

level has been done by Daly et al. In [DHPW01], they claim that

Even though the majority of Java code executed may now be using some

form of JIT compiler, dynamic analysis of interpreted bytecode usage
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. . . can provide valuable information for profiling programs and for the

design and implementation of virtual machines.

The authors use this form of analysis to do a comparative study of Java Grande

Forum [EPC] benchmarks across a variety of platforms. They establish, by means of

this analysis, that compiler choice is not the main explanation of observed execution

speed differences.

Brown et al. similarly use bytecode-level dynamic analysis in [BAMP05] to com-

pare certain static and dynamic metrics using coverage criteria.

The abc group has performed a lot of recent work optimizing the implemen-

tation of AspectJ to reduce the impact of runtime overhead. The general design

of the compiler is described in [ACH+04] while a closer presentation of optimiza-

tions to reduce cflow and around advice overheads is described in [ACH+05b].

Sascha Kuzins’ masters thesis [Kuz04] is a detailed description of abc ’s strategy for

weaving around advice. Sereni and de Moor present a theoretical alternate im-

plementation of pointcut designators and an analysis for the static elimination of

runtime matching in [SdM03].

Hilsdale and Hugunin describe the implementation of advice weaving in ajc

in [HH04]. They conclude with a limited performance study, comparing AspectJ

implementations of a logging aspect using before advice, applied to the Xalan XML

parser, with a hand-woven equivalent. They benchmark the Xalan library with the

XSLTMark benchmark. In order to isolate the overhead associated with executing

the advice, logging functionality is disabled. A naive implementation of the aspect is

found to incur 2900% overhead. They find 22% overhead in an optimized version,

however, which they claim to be “an upper bound on the performance overhead

for well-written advice.” The work presented in this thesis is a more comprehen-

sive performance study, and identifies some very significant overheads due to other

AspectJ features, not examined by the authors.

Pace and Campo [PC01] compare several different approaches to aspect ori-

ented programming (including AspectJ). A temperature control benchmark is im-

plemented in these various approaches, and several quality factors are studied, one
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of which is performance. The AspectJ version is shown to be insignificantly slower

than the standard (Java) version.

The performance of aspect weaving is of particular concern when it is performed

dynamically at runtime. As such, a number of studies have addressed this issue,

including that by Sato et al. [SCT03] and Popovic et al. [PAG03]. Performance of

the aspect weaver itself, however, in either a static or dynamic weaving context, is

orthogonal to the work in this thesis.
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Chapter 9

Conclusions and Future Work

The features AspectJ provides for the modularization of crosscutting concerns

show much promise for improving source code quality in complex systems. Until

now, however, little work has been done to establish the runtime cost of these fea-

tures, and it has been taken mostly as an article of faith that this cost is negligible.

This thesis has provided a means for evaluating the code generation strategies

of AspectJ compilers. This has included:

• Defining some new AspectJ-specific dynamic metrics and implementing these

metrics in the *J dynamic analysis framework.

• Defining a taxonomy of AspectJ overheads.

• Modifying the existing AspectJ compilers, ajc and abc , to annotate the class-

files they generate with metadata required for the computation of the AspectJ-

specific dynamic metrics.

• Collecting a set of AspectJ benchmarks.

By these means, it has identified some significant runtime overheads in pro-

grams compiled with ajc 1.2, and attributed them to particular uses of cflow point-

cuts and around advice. It has suggested some possible improvements, which have

been implemented, among others, in abc , to which ajc is here compared. Some

of these optimizations have since been integrated in ajc 1.2.1.
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9.1 Future Work

The work presented in this thesis can be extended upon in a number of ways. Some

possible directions for future work are presented in this section.

9.1.1 Accurate measurement of overhead time

In order for the *J agent to produce a useful execution trace for a program, the

JVM must execute the program in interpreted mode. The AspectJ dynamic metrics,

therefore, describe the program’s behaviour when run in interpreted mode. It is

quite possible for runtime overhead in interpreted mode to disappear when the JIT

is enabled. At first, this may seem like a severe limitation of these metrics. In prac-

tice, however, this does not invalidate their use, as has been shown in this work. In

many cases, the JIT cannot reduce runtime overhead to insignificant levels, and the

dynamic metrics remain useful for identifying and locating these overheads. Over-

heads identified by execution time comparisons performed with the JIT enabled,

for example, can often be explained by metrics calculated with the JIT disabled.

Furthermore, the allocation tag mix metric, for instance, counts expensive instruc-

tions that remain costly even when the JIT is enabled, and thus tends to identify

overheads that are not eliminated by the JIT.

Furthermore, not all bytecode instructions are of equal cost. A large number

of executed overhead instructions does not necessarily indicate a large runtime

overhead, even in interpreted mode. Metrics that count an expensive subset of

instructions (such as the allocation metrics) are a partial solution to this, but ob-

taining an accurate measure of actual overhead execution time would be preferable

to counting instructions in interpreted mode.

One way to achieve this might be to implement the metric calculations in the

JVM. For example, the classloader could demarcate regions of overhead code with

special accounting bytecode instructions. Another could be to postprocess the tagged

classfiles and insert calls to high-precision native timing routines. However it is
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achieved, obtaining accurate and precise measures of overhead execution time, es-

pecially with the JIT enabled, would probably be a valuable extension.

9.1.2 Measurement efficiency

Although dynamic metrics are a useful tool, the current technology for measuring

them has some performance limitations. The *J agent can produce many gigabytes

of trace data, which must be output and then read by the *J analyzer. I/O is a

major bottleneck. Metric calculation for even simple benchmarks can take many

hours. This limits the size of the programs that can be analyzed and also limits the

audience: some metrics would provide useful information to regular programmers,

but not when it takes a day to compute them. This is a limitation of *J more than it is

of the metrics themselves, and implementing the metrics directly in the JVM has the

potential to eliminate this I/O bottleneck and significantly improve performance.

9.1.3 Additional metrics

Implementing the metric calculations in the JVM opens some additional avenues

for extension. The current metrics are limited by the information made available to

*J by the JVMPI. By implementing the metrics in the JVM, a great deal of additional

runtime information might be made available. For example, the current allocation

metrics are a little crude: the number of bytes allocated, and the number of allo-

cations made. A program that allocates and frees 100K 10,000 times for a total of

1GB over the course of its run has significantly different behaviour than one that

allocates 900MB at once and 10K 10,000 times, but this difference is not captured

by the current metrics. Having access to the garbage collector potentially allows for

some much more sophisticated and interesting allocation metrics.

Other additional metrics, not requiring implementation within the JVM, could

also be defined. Further subdividing instruction kinds, for example, may prove

useful for the study of particular features and optimizations. Likewise may counting

them for different subsets of the execution.
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9.1.4 New optimizations

Work has been done in the abc compiler to optimize the implementations of the

two most significant sources of overhead identified in this thesis: around advice

and cflow pointcuts. Some similar improvements have been made to recent ver-

sions of ajc . Overheads due to other features have been found, and although they

seem generally to be of lower impact, may prove to be an avenue of fruitful further

research. In particular, the implementations of thisJoinPoint and of advice instance

binding incur overheads that might be reduced by static analysis and improved code

generation.
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