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Abstract

In this thesis, we introduce SableJIT, a retargetable just-in-time compiler for the

SableVM Java virtual machine. Our design attempts to minimize the amount of work

required to port (or to retarget) our compiler to a new platform. We accomplish

this in three ways. First, we introduce a retargetable backend where the amount

of work required to port it is reduced to the implementation of simple well-defined

primitive functions. Second, we keep all code related to the internals of the virtual

machine in the frontend, making knowledge of the target architecture sufficient for a

port. Finally, we provide a good development environment that favours incremental

development and testing, in part through a robust runtime system that can recover

from compilation failures.

We demonstrate the portability of SableJIT by supporting three processor archi-

tectures and various operating systems. In particular, we describe the experience

acquired in porting our compiler to the Solaris/SPARC platform.
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Résumé

Dans cette thèse, nous présentons SableJIT, un compilateur juste-à-temps reci-

blable pour SableVM, une machine virtuelle Java. Notre désign tente de minimi-

ser l’effort requis pour porter (ou recibler) notre compilateur à une nouvelle plate-

forme. Nous accomplissons ceci en trois façons. Premièrement, nous présentons un

dorsal reciblable dans lequel le montant de travail requis pour le porter est réduit à

l’implémentation de plusieurs fonctions primitives bien définies. Deuxièmement, nous

gardons tout le code concernant les détails du fonctionnement interne de la machine

virtuelle au niveau du frontal, de sorte que seules les connaissances de la plateforme

ciblée soient nécessaire lors d’un portage. Troisièmement, nous fournissons un en-

vironnement facilitant le développement incrémentiel, en partie grâce à un système

d’exécution pouvant se relever des défaillances lors de la compilation.

Nous démontrons la portabilité de SableJIT en supportant trois architectures de

processeurs et divers systèmes d’exploitation. En particulier, nous décrivons l’expérien-

ce acquise en portant notre compilateur à la platforme Solaris/SPARC.
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Chapter 1

Introduction

In recent years, Java has become a popular object-oriented programming language

[GJSB00]. Java was designed with mobile computing and platform independence in

mind. In particular, Java applications can be downloaded via a network to hosts in

a heterogeneous environment, that is, varying in hardware and software platforms.

Java programs consist of Java source files that are compiled into class files. Class

files contain architecture-independent bytecodes. These bytecodes are then executed

by a Java Virtual Machine (JVM). The JVM provides a runtime environment and it

isolates the application bytecodes from the native architecture specifics.

Initially, virtual machines interpreted bytecodes. Interpreters are quite portable

and various existing interpreters in virtual machines such as Kaffe [Kaf] and SableVM

[Sabb] support several platforms. The drawback of interpreters is their high overhead

leading to poor performance. Interpretation techniques such as direct-threading [Ert]

and inline-threading [PR98] remove some of the overhead and such efficient inter-

preters can still be quite portable as demonstrated in [Gag02]. Performance can be

further improved by compiling Java bytecodes into native code with an ahead-of-time

(AOT) compiler such as GCJ [GCJ] and then executing the resulting binary directly

on the native platform. This tends not to be the ideal solution mainly due to the

highly dynamic nature of Java. Classes not available at compilation time could be

dynamically loaded at execution time. GCJ solves this issue by resorting to an inter-

preter for such code. These problems can be overcome with a just-in-time compiler

1



1.1. Challenges

(JIT). A JIT compiles Java bytecodes to native code at runtime. Since compilation

happens dynamically at runtime as opposed to statically ahead-of-time, JITs are con-

strained as compilation time becomes part of execution time. They need to generate

good code quickly. The main focus of JIT development has mainly been performance.

By nature, JITs are quite platform-specific as is the case with all code generators.

Unlike an interpreter, porting a JIT to a new target platform (or retargeting a JIT)

involves a non-negligible amount of work. The term retargeting is sometimes preferred

to porting as a significant part of the compiler usually needs to be rewritten for each

new target.

Due to the difficulty in retargeting a JIT, efficient virtual machines (i.e. including

JITs) are available for popular platforms such as Win32 and Linux on PCs whereas

less popular platforms are usually left aside. Although JVMs are available on a

variety of hardware/software platforms, efficient JVMs are so at a far lesser degree.

End users interested in a high performance JVM are limited to a smaller choice of

platforms although Java applications are designed to be run everywhere.

In this work, we study portability issues in JITs. In order to do so, we designed

SableJIT, a retargetable JIT for SableVM.

1.1 Challenges

In this thesis, we would like to study and solve the following challenges:

• We would like our retargetable compiler to be a natural extension of SableVM.

In particular, it should take advantage of existing SableVM features and it

should fit nicely into the SableVM design.

• We are interested in studying the relationship between the inline-threaded in-

terpreter (the fastest of three available interpreters) in SableVM, with a naive

JIT. In particular, we would like to answer the question: how much performance

improvement could be achieved by going to the next level, that is, by removing

the remaining instruction dispatch overhead in the fastest interpreter?

2



1.2. Thesis Contributions

• We would like to keep the amount of work required to port our compiler minimal.

We would also like to study the feasibility of using a retargetable code generation

engine based on VCODE [Eng96].

• We would like to provide a good development environment. Since a variety of

architectures exist, we would like to make it as pleasant as possible for other

developers to add support for additional architectures. Also, we would like to be

able to easily integrate new features in the current design such as an optimizing

compiler.

• We would like to apply our framework to several architectures in order to test

its design and to experiment with various retargetability issues. In particular,

we would like to answer the question: how easily can SableJIT be retargeted to

a new architecture?

1.2 Thesis Contributions

The result of this research culminates with the design and implementation of Sable-

JIT, a retargetable compiler for SableVM.

The main contributions of this thesis are:

• The implementation of a retargetable JIT that works almost seamlessly with the

interpreter. Support for garbage collection is simple and our implementation

for signal-based exceptions uses the virtual machine infrastructure already in

place.

• The implementation of a baseline compiler that generates code in one pass plus a

patching phase. Our baseline compiler mimics the interpreter and thus takes us

one level further from the inline-threaded interpreter as all instruction dispatch

overhead is removed by compilation.

• The design of a retargetable backend based on VCODE [Eng96], a retargetable

code generator providing assembly-like instructions. VCODE was originally
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implemented as a set of C macros and functions. Our implementation, in Java,

is made suitable for a Java JIT context by being fully re-entrant, by using

strong types and by having Java-like semantics for instructions. In addition,

for greater flexibility, our implementation generates relocatable code.

Our backend uses a register-based RISC model. Architectures with a small

number of registers such as the x86 offer a challenge. To get around the limited

register set of the x86 architecture, our implementation uses part of the native

stack as virtual registers as suggested in [Eng96]. These virtual registers are

used transparently by the compiler frontend. Our experimental results were

surprising: with a clever use of its small register set along with virtual regis-

ters, the x86 architecture outperformed the two supported RISC architectures:

PowerPC and SPARC.

The work required to retarget SableJIT is kept minimal. In particular, support

for branch patching and jump tables is provided. Also, knowledge of the virtual

machine internals should not be required.

• The design of a robust compiler runtime with compilation failure recovery and

the implementation of a testing framework. These features are useful for porting

our compiler to a new platform and for developing new features. Failure recovery

is particularly useful in that unimplemented features or features known to be

buggy can be skipped for the time being by simply throwing a compilation

exception. Methods that cannot be compiled are marked as uncompilable and

are interpreted instead. This favours incremental development and testing as

compilation failures do not lead to the immediate termination of the virtual

machine.

• The implementation of a backend supporting three processor architectures and

various operating systems: x86 (Linux, FreeBSD), PowerPC (Linux, Mac OS

X) and SPARC (Solaris). In particular, we contribute our porting experience to

the SPARC architecture, the PowerPC and x86 mainly serving as development

platforms.

4



1.3. Thesis Organization

1.3 Thesis Organization

In chapter 2, we present some background information. Chapter 3 introduces the

design and architecture of SableJIT. In chapter 4, we cover the SableJIT runtime:

the interface between the virtual machine and the compiler. In chapter 5, we present

the baseline compiler. In chapter 6, we describe exception handling. In chapter 7,

we present memory management. In chapter 8, we present the retargetable backend.

In chapter 9, we describe our experience in porting SableJIT to the Solaris/sparc

platform. In chapter 10, we present experimental results. In chapter 11, we review the

literature on retargetable dynamic code generators (i.e. generating code at runtime)

and we study the portability in various Java virtual machines. Finally, we conclude

in chapter 12.
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Chapter 2

Background

In this chapter we present the required background information for understand-

ing subsequent chapters. Topics covered are the three interpreters in SableVM, the

extended instruction set used by the interpreters, and finally the preparation se-

quences for efficient code execution. Further information on these topics can be

found in [Gag02].

2.1 Interpreters

SableVM is an efficient and portable Java virtual machine. SableVM has three in-

terpreters: a switch, a direct-threaded, and an inline-threaded interpreter. The three

interpreters have different portability / performance tradeoffs.

2.1.1 Switch

The switch interpreter is the simplest of all three. Figure 2.1 illustrates the basic

implementation of a switch interpreter. This figure as well as others presented later

in this chapter are adapted from [Gag02]. In a switch interpreter, the bytecode is

contained in a code array. The code is dispatched by reading the next bytecode

instruction (indicated by the pc pointer) from the code array and then executing the

switch case implementing that bytecode instruction.
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2.1. Interpreters

char code[] = { ICONST_1, ICONST_2,

IADD, ...};

char *pc = code;

int stack[STACKSIZE];

int *sp = stack;

...

while (true) {

switch (*pc++) {

case ICONST_1: *sp++ = 1; break;

case ICONST_2: *sp++ = 2; break;

case IADD: --sp; sp[-1] += *sp; break;

...

}

}

Figure 2.1: Switch Interpreter

A switch interpreter has a high dispatch cost. Three branch instructions are

required per bytecode instruction: one to get back to the loop head, one to test if the

instruction opcode is within bounds of the cases in the switch statement, and finally

one to jump to the corresponding case statement.

2.1.2 Direct-threaded

A direct-threaded interpreter improves over a switch interpreter by decreasing the

dispatch cost. This is done by putting, in the code array, addresses to bytecode

implementations rather than bytecode (integer) opcodes. The address of a an imple-

mentation can be obtained by using the GNU label-as-value C extension or through

other means such as assembly code. The GNU C && operator is used to obtain the ad-

dress identified by a label. Figure 2.2 shows the general structure of the interpreter.

The pc points to the next instruction to execute. Execution is started by loading

the first address from the code array and then performing an indirect jump to that

location. Note that some dispatch code follows each bytecode implementation.
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2.1. Interpreters

void *code[] = { &&ICONST_1, &&ICONST_2,

&&IADD, ...};

void **pc = code;

int stack[STACKSIZE];

int *sp = stack;

goto **(pc++);

ICONST_1: *sp++ = 1; goto **(pc++);

ICONST_2: *sp++ = 2; goto **(pc++);

IADD: --sp; sp[-1] += *sp; goto **(pc++);

...

Figure 2.2: Direct-threaded Interpreter

The direct-threaded interpreter removes the loop and the switch statement over-

head. A single branch instruction is now required to dispatch each bytecode instruc-

tion. Note that in the implementation found in SableVM, the direct-threaded code

array has the same format as the switch code array with the exception of integer

opcodes that have been replaced by addresses.

2.1.3 Inline-threaded

An inline-threaded interpreter further reduces the number of dispatches over the

direct-threaded interpreter. The implementation of several bytecodes are copied con-

secutively in memory by using the label-as-value extension. These sequences of byte-

codes are called inlined sequences.

Figure 2.3 illustrates the inlined sequence corresponding to the bytecode sequence:

ICONST 1, ICONST 2, and IADD. Note that this removes the instruction dispatch be-

tween instructions within a sequence. The dispatch code is located at the end of the

sequence. Figure 2.4 illustrates how such sequences are dispatched. The address of

sequences are stored in the code array. The first sequence is dispatched by loading

its address from the array and doing an indirect jump to it. Further sequences are

dispatched by the dispatch code located at the end of the sequence implementation.
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ICONST_1 body: *sp++ = 1;

ICONST_2 body: *sp++ = 2;

IADD body: --sp; sp[-1] += *sp;

dispatch body: goto **(pc++);

Figure 2.3: Inlined Sequence

/* buf - pointer to an inlined sequence */

void *code[] = { buf, ...};

void **pc = code;

int stack[STACKSIZE];

int *sp = stack;

goto **(pc++);

Figure 2.4: Inline-threaded Interpreter

The inline-threaded interpreter improves over the direct-threaded interpreter by

reducing the dispatch cost from one branch instruction per bytecode instruction to one

per sequence of bytecode instructions. Not all instructions can be inlined. Inlinability

of an instruction depends on the platform and the compiler version. The inline-

threaded interpreter is the least portable of the three. A framework is provided with

SableVM to help developers port the inline-threaded interpreter to new platforms.

2.2 Virtual Machine Instruction Set

For performance reasons, SableVM does not interpret pure bytecodes. Instead, an

extended bytecode instruction set is used. The main differences are:

• The instruction array is an array of words rather than an array of bytes. The

word size matches the natural word size of the native architecture.

• Some constant operands are inlined into the code array instead of being read

from the constant pool. This provides a more direct access to the values.

• Several bytecode instructions have been split according to their type. For exam-

ple, the getfield bytecode is split into several instructions: GETFIELD BOOLEAN,
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GETFIELD INT, . . .

• Bytecode instructions that might trigger class loading or that might require

method or field resolution are available in two variants. A slower variant

that performs any required preparation work before executing the actual core

functionality of the bytecode and a faster variant without any preparation

work. The slow variant is patched with the fast variant after it has been ex-

ecuted once. For example, each getfield bytecode is further divided into a

slow PREPARE GETFIELD type instruction and a fast GETFIELD type instruc-

tion. This is discussed in further details in section 2.3.

• Branch instructions have been split in two variants: a normal version and a

CHECK version. The check version has a garbage collection check point. The

check point consists of saving the current state and checking if the current thread

should be stopped for garbage collection. These CHECK instructions are used on

loop back edges when the loop body does not contain any check points thus

ensuring one check point per loop iteration. For example, the goto bytecode

instruction has the GOTO and GOTO CHECK variants.

Throughout this thesis, the terms interpreter bytecode and interpreter code refer

to this extended bytecode set.

2.3 Preparation Sequences

SableVM uses preparation sequences for efficient execution. Preparation sequences

are short sequences of code containing the slow variant of instructions requiring prepa-

ration work (see section 2.2). These sequences are located at the end of the code array.

They allow for longer inlined sequences as most fast variants can be inlined whereas

the slow variants cannot. Preparation sequences are also used to solve efficiently

the two-values replacement problem. In multithreading contexts, replacing two or

more values non-atomically creates a potential race condition. This race condition

is avoided without additional synchronization code. When executed, preparation
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2.3. Preparation Sequences

Before first execution After first execution
... ...

opcode 1: GOTO opcode 1: GETSTATIC INT
&sequence 1 &sequence 1 (skipped)

operand 1: NULL operand 1: pointer to field value
next: ... next: ...

sequence 1: PREPARE GETSTATIC INT
pointer to field info
&operand 1
REPLACE preparation sequence the same
&opcode 1 (possible dead code)
GETSTATIC INT
GOTO
&next

Figure 2.5: Preparation Sequence

sequences set all operands of the fast variant in the code array before replacing atom-

ically the jump to the sequence with the faster instruction.

Figure 2.5 illustrates an example adapted from [Gag02]. On the left, we have a

sequence of code before its first execution and on the right we have the same code

array segment after the preparation sequence has been executed. The code accesses

a static integer field. The field access site is located at the location labelled with

opcode 1.

Before the code is executed, we have a GOTO instruction at the site that performs a

jump to the preparation sequence labelled with sequence 1 and located at the end of

the code array. Note that space is reserved after the GOTO instruction for one operand

(labelled with operand 1).

The first time the code is executed, the goto transfers execution to the preparation

sequence. The first instruction of the sequence, PREPARE GETSTATIC INT, resolves the

field reference, performs class initialization, sets a pointer to the field value at the loca-

tion identified by operand 1, and finally executes the actual getfield functionality.

The next instruction, REPLACE, substitutes the GOTO instruction located at opcode 1

with a GETSTATIC INT instruction. Finally, a GOTO instruction transfers the control

back to the instruction after the getstatic site (identified by label next). Note that

future executions of the getfield site at opcode 1 will use the fast GETSTATIC INT

implementation rather than executing the preparation sequence.
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Chapter 3

Overview

In this chapter we introduce SableJIT, our retargetable JIT. We start by enumer-

ating the main characteristics of SableJIT. Then we present its three main compo-

nents: the runtime, the compiler frontend, and the compiler backend. Several topics

introduced in this chapter are discussed in greater depth in subsequent chapters.

3.1 Introduction to SableJIT

SableJIT is a retargetable just-in-time compiler (JIT) for SableVM. The main objec-

tive is to have a JIT that is relatively easy to port or to retarget to a new platform

whether it is a new operating system or a new CPU architecture. SableJIT is designed

to be used in a mixed mode environment. That is, the code is first interpreted then,

to improve the performance, frequently executed code is compiled at runtime for the

native platform. We briefly summarize several key characteristics of SableJIT:

• SableJIT is mostly written in Java with some C code interfacing the compiler

with the virtual machine.

• SableJIT is able to fully self-compile.

• SableJIT is fully reentrant. Several compilations may be in progress at the same

12
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time1.

• SableJIT can be used with any of the three available interpreters.

• SableJIT comprises a baseline compiler and a retargetable backend. An opti-

mizing compiler could be added for improved performance.

• The design of SableJIT favours incremental development and testing. Porting

to a new platform may be done incrementally and requires relatively little effort.

• The code generated by SableJIT is fully relocatable.

• SableJIT is robust in that it can recover from some compilation failures. This

robustness favours incremental development as unimplemented features or in-

structions do not crash the virtual machine during unit testing.

3.2 Architecture Overview

The architecture of SableJIT is divided into 3 main components: the runtime, the

compiler frontend, and the compiler backend. Figure 3.1 illustrates the main com-

ponents. The compiler frontend and the compiler backend are written in Java and

are isolated from the virtual machine internals. The runtime, mostly written in C

with some assembly, is statically compiled within the virtual machine. It provides an

interface between the virtual machine and the compiler as well as runtime support for

compilation. We now further describe each main component and how they interact

with each other.

3.2.1 SableJIT Runtime

The SableJIT runtime provides runtime support for both compilation and execution

of compiled code. The tasks related to the compiler and to the compilation process

are:

1As a current limitation, at most one thread may compile code at any time though several
compilations may be in progress in this thread.
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PowerPC

x86

PowerPC

x86

BackendFrontend

SableJIT Compiler

Native Code

SPARC SPARC

Prepared Code

SableVM

SableJIT Runtime

Figure 3.1: SableJIT Architecture

• Bootstrapping the compiler.

• Determining whether a method should be compiled.

• Preparing the interpreter code in a format suitable for compilation.

• Computing data required by the compiler such as exception maps.

• Invoking the compiler.

• On successful compilations, allocating the code in fixed memory.

• On compilation failures, performing a failure recovery procedure.

• Managing memory: allocating and freeing compiled code and associated data.

The tasks related to the execution of compiled code are:

• Providing hooks into the virtual machine.

14
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• Providing stubs to safely and as efficiently as possible switch from dynamically

compiled code to interpreted code or to JNI native methods.

• Handling of exceptions originating from compiled code.

Most of these tasks are covered in chapter 4. Exception handling and memory

management are covered in chapter 6 and 7 respectively.

3.2.2 Compiler Frontend

The compiler frontend receives the array of code to compile as well as additional data

from the SableJIT runtime. The frontend is mainly responsible for the compilation

process. The frontend consists presently of a baseline compiler that generates code

without optimization in a single pass plus a branch patching phase. Methods from

the backend are invoked directly to generate architecture-specific native code. The

addition of an optimizing compiler is left as future work. The compiler frontend is

architecture independent.

Figure 3.2 shows the main classes involved in the frontend and their relationship

as an unified modelling language (UML) diagram. The Compiler class is the single

class interfacing with the runtime. The OnePassGenerator class implements the

baseline compiler. This implementation of the IRBuilder interface is special in that

no intermediate representation (IR) data structure is built. Instead, methods in the

Architecture class located in the backend are directly invoked to generate the native

code.

Two outcomes are possible from the compilation. If the compilation completes

successfully, the compiled code is returned to the runtime. If compilation fails, the

frontend will attempt to restore its state and will signal the runtime. If the failure

can be recovered from, the method is marked as uncompilable and it is interpreted.

Otherwise, the virtual machine is terminated.

The frontend is described in further details in chapter 5.
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Figure 3.2: Compiler Frontend

3.2.3 Compiler Backend

The compiler backend is responsible for code generation. It consists of both an

architecture-independent and an architecture-dependent part. As most functionality

has been made as architecture independent as possible, it is relatively easy to retarget

the backend to a new platform. Platforms currently supported are x86 (Linux and

FreeBSD), PowerPC (Linux and Mac OS X), and SPARC (Solaris).

Figure 3.3 is an UML diagram illustrating the main backend classes and their re-

lationships. The Architecture class provides the architecture-independent interface

between the compiler frontend and backend. It also performs tasks that can be shared

between all architectures such as maintaining the code arrays and providing a frame-

work for branch patching. Each supported processor architecture has a corresponding

subclass of Architecture. This class provides the implementation of architecture-

specific functionality. The abstract binary interface (ABI) of a platform specifies the

calling conventions and the register usage conventions among other things. It is spe-

cific to an operating system. The ABI of each platform is implemented in a separate

class that implements the ABI interface. This organization favours retargetability

as two operating system on the same processor architecture can differ in their ABI

although the native instruction set is the same.

The backend as well as retargetability issues are covered in chapter 8. Chapter

9 presents a porting strategy and our experience in porting SableJIT to the So-

laris/sparc platform.
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Figure 3.3: Compiler Backend

3.3 Summary

In this chapter we have introduced the different components of SableJIT. In particular,

we have seen that SableJIT is composed of three components: the runtime, the

compiler frontend, and the compiler backend. The runtime controls the compilation

process and provides an execution environment for compiled code. It is the interface

between the compiler and the other components of the virtual machine. The compiler

frontend receives, from the runtime, the code to compile. It compiles it, making use

of the compiler backend to generate architecture-specific native code.
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Chapter 4

SableVM/SableJIT Interface

In this chapter we present the interface between the virtual machine and the

compiler. We start by describing how the interpreter instruction set is extended in

order to reduce compilation overhead and to provide an interpreter-only mode with

little overhead. Then we explain how the virtual machine and the compiler are boot-

strapped. We follow with a discussion on the constraints on where compilation can

occur due to the fact that the implementation of our JIT is in Java. We describe

the data required for compilation and how the compiler is invoked. We explain how

compiled code, interpreter code, and JNI native methods are dispatched from the var-

ious execution contexts. Finally, we study the overhead of method invocations, with

a special emphasis on the transitions between execution contexts such as compiled

code and interpreter code.

4.1 Method Invocation Bytecode Instructions

The interpreter has four invoke instructions: INVOKEVIRTUAL, INVOKESPECIAL, IN-

VOKEINTERFACE and INVOKESTATIC. Each one corresponds to one type of bytecode

invocation. In addition to these SableJIT introduces the following instructions to

reduce compilation overhead.

• INVOKEtype JITCOMPILE BOOTSTRAP: These instructions, one for each invoca-

tion type, checks if the compiler has been bootstrapped before attempting to
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INVOKE_COMPILEINVOKE_BOOTSTRAP

INVOKE
(interpreter)

and SPECIAL
Only for STATIC

Is initialized?

INVOKE_CALL

Is compiled?

Is uncompilable?

Figure 4.1: Method Invocation Bytecodes and Transitions

compile the callee method. If the compiler has already been bootstrapped, this

instruction is replaced with INVOKEtype JITCOMPILE to avoid subsequent checks.

• INVOKEtype JITCOMPILE: These instructions are used once the compiler is known

to have been bootstrapped. If the callee has not been compiled, it checks if its

code should be sent to the compiler for compilation. This variant is also available

for all invocation types.

• INVOKEtype CALLCODE: This variant is available only for special and static invo-

cations. It is used once the callee has been successfully compiled. The compiled

code of the callee is invoked without performing any compilation-related checks.

Figure 4.1 illustrates transitions between the variants as execution and compila-

tion proceed. The reason why the “is uncompilable” and “is compiled” transitions

are done only for static and special invocations is that these invocations are always

monomorphic, that is, the call site has a single target. The method implementation

to use (in our case compiled code) is therefore known and unique at such sites. In

the next few sections we elaborate on how each invoke instruction is used.
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4.2 Interpreter-Only Mode

Even if SableVM is compiled with SableJIT support, it is still possible to run the

virtual machine in interpreter-only mode1. In that mode, the compiler is never used

nor bootstrapped.

To achieve an efficient interpreter-only mode, the normal interpreter INVOKEtype

instructions are used when preparing the interpreter code rather than the INVOKEtype-

JITCOMPILE BOOTSTRAP and INVOKEtype JITCOMPILE instructions. No overhead is

added to the execution of interpreter bytecodes. However, there is a small extra cost

during method preparation as a check is done to select the appropriate invoke variant

to use. It is important to have an interpreter-only mode with an overhead as low as

possible as it could serve as a basis for comparisons in some experiments.

Experimental results show that the performance penalty is from 0% (i.e. unno-

ticeable) to 5% with an average of 1-2% with our benchmarks set. The increase

in the binary sizes on disk are from 21.3% for the switch interpreter up to 22.2%

for the inline-threaded interpreter. Although, the increased binary sizes will cause

more memory to be used, the portion of memory actively used remains basically the

same as code related to the SableJIT runtime and compiler is never executed. The

experimental setup and detailed results can be found in section 10.3.2.

4.3 Bootstrapping the Virtual Machine and Compiler

Our compiler is written in Java. This means that the classes of the compiler cannot

be initialized early in the virtual machine start up. Compilation may only be enabled

after the virtual machine has been bootstrapped and is ready to run arbitrary Java

code.

We first describe the steps involved in bootstrapping the virtual machine. Then

we carry on with the different steps required to bootstrap the compiler, what they

involve and when they occur.

1The interpreter-only mode is specified by passing the -C int option on the command line.
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4.3.1 Bootstrapping the Virtual Machine

As a restriction of SableVM, classes loaded during the bootstrap process cannot have

static initializers. The bootstrapping of the virtual machine consists of the following

steps.

1. The following types are created, linked and initialized: java.lang.Object,

java.io.Serializable, java.lang.Cloneable, byte array, int array2, ja-

va.lang.VMClass, and java.lang.Class. Class instances corresponding to

these types are not created yet.

2. The constructor of java.lang.Class is resolved.

3. Class instances are created for the classes loaded in step 1.

4. Several other types are now loaded. These include additional types in ja-

va.lang, primitive array types, exception types, and error types. For these and

any future types, Class instances are created as they are loaded.

5. Several methods and fields are resolved.

6. Instances of Class for primitive types are created.

7. Instances of exception and error classes are created. These are used if such

instances cannot be created during exceptions.

SableVM is now ready to execute arbitrary bytecode.

4.3.2 Bootstrapping the Compiler

The SableJIT runtime and compiler are initialized as follows:

1. Initializing the runtime

Several data structures in C are initialized based on default values and any

options provided on the command line. This step is performed before boot-

strapping the virtual machine. It does not involve any execution of Java code.

2This one is required for SableJIT.
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2. Bootstrapping the compiler

The compiler is bootstrapped right after the virtual machine has been boot-

strapped. The runtime performs the following steps:

(a) It loads, links and initializes the sablejit.SableJITClassLoader class.

(b) It creates a single instance of the class loader of the previous step.

(c) Using the class loader just created, it loads, links and initializes the sa-

blejit.Compiler class.

(d) It creates a single instance of sablejit.Compiler.

(e) It resolves two methods from Compiler: compile and compileCompile.

The compiler may now be enabled.

The singleton3 [GHJV95] in step 2d is the main interface between the runtime

and the compiler. The two methods resolved in step 2e are used to compile Java

methods. The compileCompile method is used only to compile the compile method

in a transparent way. It has the same prototype as compile and simply calls compile.

At the end of its bootstrap, the compiler is ready to compile arbitrary4 code

including itself. Note that it is ready before the application classes are loaded.

Once the compiler has been bootstrapped, INVOKEtype JITCOMPILE instructions

are used when the code arrays are prepared instead of the INVOKEtype JITCOMPILE -

BOOTSTRAP instructions. Previously prepared methods will have their JITCOMPILE -

BOOTSTRAP instructions patched with the faster version next time these instructions

are executed.

4.3.3 The Compiler Class Loader

There are several advantages of using a separate class loader for the compiler classes

rather than to simply use the virtual machine bootstrap class loader. First, it allows

3A singleton is a class designed to have a single instance.
4Not quite arbitrary, the compiler needs to be temporarily disabled at some specific points. See

section 4.4.1.
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the separation of the compiler classes from the bootstrap classes in both namespace

and in file locations. The compiler classes are bundled together in a jar file. Only the

SableJITClassLoader class file needs to actually reside in the bootstrap classpath.

A second use for a separate class loader is that it provides an interface to the virtual

machine internals. Since the SableJITClassLoader class is loaded by the bootstrap

class loader, native methods located in that class have access to the data structures

and functions of the virtual machine while native methods in the other compiler

classes do not. This interface to the internals is required to access some configuration

information and to perform some basic actions such as stopping and restarting the

compiler.

4.4 Invoking the Compiler

We have seen how the compiler is bootstrapped and brought to a state ready for

compilation. In next few sections we cover the role of the runtime in the compilation

process. We study the constraints on where compilation can take place. We explain

how the runtime makes the decision to compile a method. We describe the data

computed by the runtime and fed to the compiler. Finally, we explain how the

compiler is invoked from the runtime.

4.4.1 Where Compilation May Take Place

Since garbage collection (gc) could be triggered during the compilation of a method,

compilation should occur only at points that are gc safe, that is, at points where the

required state information has been saved in the event that gc happens.

This restriction is not very limiting as all method invocations (method entry

points), that are common compilation entry points, are already gc safe. To enable

compilation at other points such as on loop back edges, it is required to ensure that

these are gc safe points. This is relatively easy to do. SableVM already uses a variant

of branch instructions with gc check points if the loop body does not contain any

instruction with such points. Similar instructions could be used to add compilation
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entry points on loop back edges. An experimental implementation of compilation

on loop back edges has been implemented in SableJIT. It is however not yet stable

enough for use.

It is necessary to temporary disable the compiler when executing particular code

segments that could trigger class loading. We list the regions where compilation is

disabled with a short justification:

1. User Class Loading

If the current class loader is the SableJIT class loader, the compiler is disabled

while executing Java code in the user class loader functions ( svmf usercl -

create class and svmf usercl create array). The Java code comprises both a

method to create a String argument and the invocation of VirtualMachi-

ne.createClass or VirtualMachine.createArray.

This is done to avoid a circular dependency. Consider the case where we are

currently compiling some method m. During compilation, a SableJIT class X

could be loaded. If compilation was enabled during that loading, the compiler

could be invoked again and this would trigger the loading of the same class X.

A circular dependency is created: in order to load class X, X would have to

have been already loaded, as it is needed to compile methods invoked during

the loading and initialization of X.

2. Class Initialization

The compiler is disabled during the initialization5 of a class if the class loader

of that class is the SableJIT class loader.

This is done to avoid executing code in classes that have not been yet fully ini-

tialized. As the compiler can be invoked within static initalizers, these implicit6

method invocations could change the compiler source code semantics.

These two cases were obtained as follows. Compilation was first avoided for large

regions then these regions were shrunk by using some reasoning and by trial and

5More precisely, while executing Class.initialize(int).
6JIT compiler method invocations are not explicit in the source code.
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error. We leave as future work the study whether these restrictions could be entirely

removed or at least alleviated.

Experimental results show that these restrictions do not have a major impact. For

our benchmarks set7, we found that a total of about 16.6 million bytecode instructions

are interpreted while our compiler is temporarily disabled within these regions. This

number is relatively constant through all our benchmarks. We also measured the

total number of bytecode instructions interpreted when the benchmarks are run in

interpreter-only mode. We found that the regions where the compiler is temporarily

disabled account from 0.13% up to 1.82% with an average of 0.71% of the total

bytecode instructions executed.

4.4.2 When Compilation Occurs

Once bootstrapped, the compiler is ready to compile methods. It is not absolutely

necessary for a method to be first interpreted, although it is recommended. The

current default is to compile a method just before its second invocation. The number

of times a method is interpreted before being considered as a hot method, that is, a

method frequently executed, can be specified on the command line.

4.4.3 Data Required for Compilation

In this section, we present the data required for compilation. All data necessary for

compilation is passed as arguments to the compiler. Figure 4.2 shows the prototype

of the compile method. We summarize the arguments below and we describe some

of them in more details later.

• bytecode: The code to compile.

• methodName: The name of the method we are compiling. This is used for

debugging and testing purposes.

7See section 10.2 for a description of our benchmarks set.
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public Object compile(int[] bytecode,
String methodName,
int[] stackOffsets,
boolean isSynchronized,
int startPC,
int[] bpc2inlinedpc,
int bytecodeSize,
boolean isStatic,
int preparedCodePointer,
int preparedCodePointerCurrentPC,
int classInstancePointer,
int thisNbArgs,
int methodInfoPointer,
int nonParamRefLocalsCount,
int[] exceptionHandlerOffsets

) throws Exception

Figure 4.2: Prototype of Compiler.compile

• stackOffsets: The Java operand stack height at the start of each bytecode

instruction.

• isSynchronized: A flag that indicates if we are compiling a synchronized

method.

• startPC: The address of a second entry point in the code. This is used to switch

from the interpreter code to compiled code within a method body.

• bpc2inlinedpc: A (switch bytecode pc8 → inlined pc) mapping. This is used

only with the inline-threaded interpreter for exception handling among other

things.

• bytecodeSize: This is the size of the normal part of the array, that is, it

excludes the preparation sequences at the end.

• isStatic: A flag that indicates if we are compiling a static method.

• preparedCodePointer: The address of the C array corresponding to the code

we are compiling. It is used to translate absolute addresses in the code array

to relative addresses.
8It is actually an index into the switch code array, not an absolute address pc as used in the

interpreter.
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• preparedCodePointerCurrentPC: The address of the code array used by the

interpreter. This is used to compute the current interpreter PC.

• classInstancePointer: An indirect pointer to the Class instance of the

declaring class of the method we are compiling.

• thisNbArgs: The number of arguments that the method we are compiling is

taking.

• methodInfoPointer: A pointer to the C data structure of the method we are

compiling.

• nonParamRefLocalsCount: The number of local variables of reference type that

are not parameters.

• exceptionHandlerOffsets: An array where each element is the starting offset

of an exception handler in the code array. Offset i corresponds to the beginning

of the ith handler.

The code fed to the compiler is the interpreter code (as described in section 2.2).

We use this code rather than pure bytecode to take advantage of information already

computed by the virtual machine. Some of this information is computed at method

preparation. It includes additional type information for some instructions (such as

the type of field operations) as well as information used for garbage collection and

exception handling. Some information is also obtained from the code array at a later

time once the code has been interpreted. As seen in section 2.3 some slower variants of

instructions performing any required preparation work such as class loading, method

resolution and field resolution are patched to faster variants. The compiler takes

advantage of this information as it does not need to generate code to perform this

preparation work for instructions having already been executed.
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static int foo(int n) {

if (n < 0) {

return 100;

} else {

return n;

}

}

(a) source code

0 &&ILOAD 0

1 &&IFGE

2 L1

3 &&LDC INT

4 100

5 &&IRETURN

6 &&ILOAD 0

7 L1: &&IRETURN

(b) direct-threaded code

0 ILOAD 0

1 IFGE

2 L2

3 LDC INT

4 100

5 IRETURN

6 ILOAD 0

7 L2: IRETURN

(c) switch code

Figure 4.3: Direct-Threaded Code to Switch Code Conversion

With the switch interpreter, the interpreter code is simply copied to a Java int[]

array9 before being passed on to the compiler. For the direct-threaded and the inline-

threaded interpreter, we would also like to take advantage of the information ob-

tained by previously interpreting the code. However, direct-threaded code and inline-

threaded code are not convenient inputs to the compiler as the code arrays contain

addresses to implementations of instructions rather than instruction integer opcodes.

For these two interpreters, we therefore compute an equivalent switch code array.

Note that by doing so, the compiler is mostly the same for all three interpreters. We

now describe how the conversion to switch code is done.

Direct-JIT Mode

The direct-threaded code differs from the switch code in that it uses implementation

addresses for instructions rather than integer opcodes. The format of the code array

as well as the instructions operands remain the same. Figure 4.3 illustrates the

conversion from direct-threaded to switch code. In figure 4.3(a) we have the source

code of a small method. Figure 4.3(b) and 4.3(c) illustrate the corresponding direct-

threaded and switch code respectively. Note that as explained, the only difference is

in the representation of the instructions opcodes.

9SableJIT currently supports only 32-bit architectures and it assumes that the code array ele-
ments are 32-bit wide.
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To convert efficiently direct-threaded code to switch code a splay tree data struc-

ture10 is precomputed when the runtime is initialized. Each node in this tree stores

the relationship between an implementation address and its corresponding integer

opcode.

Converting the direct-threaded code of a method then involves the following tasks:

1. For instructions, convert the implementation address to the corresponding in-

teger opcode using the precomputed splay tree.

2. For address operands referring to code array elements, copy an adjusted address.

Address operands included in this category are all branch targets, jump table

target entries and patching addresses in preparation sequences.

3. For all other operands, copy them verbatim.

The adjustment in the second task is required as these address operands are

absolute memory addresses. We want the addresses in the corresponding switch

code array to point to elements in that array and not to the original direct-threaded

code array. Since switch code and direct-threaded code have the same layout, the

adjustment consists of simply adding a constant offset to each operand involved to

reflect the memory location of the new code.

The conversion process is done once. The code is kept for future recompilations.

If compilation fails or the code is not subjected for future compilation, then it is

discarded.

The conversion process is quite efficient. A single pass through the direct-threaded

code array is sufficient. A lookup in the splay tree takes O(log M) amortized time

where M is the size of the tree. The overall runtime is O(n log M) amortized where

n correspond to the code array size. Note that the size of the tree M corresponds to

10A splay tree data structure was chosen to favour code reuse. This data structure is also used for
the inline-threaded code to switch code conversion where it is more suitable. The inline-threaded
conversion is discussed later in this section. Also, a reusable implementation of a splay tree was
readily available in SableVM as it is used by the virtual machine for various tasks. For the direct-
threaded code conversion, a simpler data structure such as a hash-table could have performed as
well, if not better by a constant factor.
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static int

foo(int a, int b, int c,

int d, int e) {

if (a < 0) {

return e + 100;

} else {

return d;

}

}

(a) source code

0 &&ILOAD 0

1 &&IFGE

2 7

3 &&seq 1

4 4

5 100

6 &&IRETURN

7 &&ILOAD 3

8 &&IRETURN

seq 1: ILOAD body

LDC INT body

IADD body

dispatch body

(b) inline-threaded code

Figure 4.4: Inline-Threaded Code

the number of interpreter instructions. This number is constant and is less than 400.

The overall running time is therefore O(n).

Experimental results11 show that the direct-threaded to switch conversion ac-

counts from 0.48% to 1.46% of the compilation time, with an average of 1.00%.

Inlined-JIT Mode

The inline-threaded interpreter takes the direct-threaded interpreter one step further

by using the addresses of implementations of sequences of instructions. Figure 4.4

illustrates a small method and its corresponding inline-threaded code. It will serve

as an example throughout this discussion.

The inline-threaded code array contains three types of elements: addresses of

instruction implementations (such as &&ILOAD 0), addresses of sequence implementa-

tions (such as &&seq 1), and operands of instructions (7, 4, and 100). Implementation

addresses of instructions work as in direct-threaded code. Sequences consist of the

11See chapter 10 for a description of our experimental setup. These experiments were conducted
on our Linux/x86 platform.
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implementation of several instructions copied consecutively in memory. The code

in our example has a single sequence composed of the implementations of ILOAD,

LDC INT, and IADD. Dispatch code is located at the end of the sequence to trans-

fer the control to the next instruction or sequence in the code array. There is no

dispatch code between the implementations of instructions. Note that the operands

of all instructions in a sequence are located consecutively in the code array. In our

example, the consecutive integers 4 and 100 correspond to the operands of the ILOAD

and LDC INT instructions, respectively.

The conversion process of inline-threaded code is more complex than direct-

threaded code. Sequences must be replaced by their individual instructions. These

instructions must be inserted in the resulting code array with their operands in-

between. Additional complexity arises from the fact that preparation sequences in the

inline-threaded code might have more instructions than the (PREPARE instruction,

REPLACE, GOTO) triplet found in switch code. These differences make the layout of

inlined-threaded code quite different from the layout of switch code. Address operands

cannot be simply adjusted by adding a constant offset as is the case for the direct-

threaded code conversion. Instead, a second pass through the code is required to

patch them.

In addition to computing the switch equivalent code, a (switch pc → inlined pc)

mapping needs to be computed and passed to the compiler for exception handling.

This same data structure is also used in the conversion process to patch the address

operands.

The actual implementation of the conversion has quite a lot of technical details.

We limit the presentation to an outline of our algorithm rather than describing every

possible case at each step.

Precomputed Data As is the case for the direct-threaded conversion, a splay

tree is used to map addresses to instructions. It stores the mapping (address →

{instruction, sequence}) where the value is either an instruction integer opcode or a

pointer to the corresponding sequence data structure. This data structure contains

the list of instruction integer opcodes making up the sequence. The splay tree is
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computed when the runtime is initialized. It is updated as new inlined sequences are

created during method preparation.

Conversion The conversion of inline-threaded code is done in two passes. In the

first pass, the resulting switch code array is filled with the equivalent instruction

opcodes and their operands. The second pass fixes some memory address operands.

To translate an implementation address, a lookup is done in the splay tree. The

node in the tree indicates whether it contains the opcode of a single instruction or

if it contains a pointer to a sequence data structure. In both cases, the instruction

opcode(s) and their operands are copied to the right locations in the switch code array.

In particular, operands of several instructions in a sequence that appear consecutively

in the inline-threaded code array will, in the switch code array, appear after their

associated instruction.

Figure 4.5 illustrates the conversion to switch code. The resulting switch code

array at various intermediate steps is shown. In figure 4.5(a), the ILOAD 0 integer

opcode has been copied. In figure 4.5(b), the &&IFGE address has been processed by

writing the integer opcode and the address operand verbatim. Note that in the actual

implementation, address operands are absolute memory addresses pointing to some

element in the code array. We use relative addresses in our example for simplicity.

Addresses pointing to the inline-threaded code will be fixed in the second pass. In

figure 4.5(c), the first instruction of the sequence seq 1, ILOAD, has been copied. In

figure 4.5(d), the second instruction of the sequence has been processed. Note that

the 4 and 100 operands do not appear consecutively in the switch code. In figure

4.5(e), the conversion of the sequence has been completed. Figure 4.5(f) illustrates

the switch code array after the first pass. Note that the address operand of the IFGE

instruction is still incorrect. The second pass is now performed. Figure 4.5(g) shows

the resulting array at the end of the conversion. All address operands have been

patched as necessary.

The first step of the conversion can be performed in a single pass over the code.

However, it is likely to be less efficient than the direct-threaded code conversion by

a constant factor since most operations are not as straightforward and several cases
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0 ILOAD 0

1

2

3

4

5

6

7

8

9

10

(a) after 1st in-
struction

0 ILOAD 0

1 IFGE

2 7
3

4

5

6

7

8

9

10

(b) after 2nd in-
struction

0 ILOAD 0

1 IFGE

2 7

3 ILOAD

4 4

5

6

7

8

9

10

(c) after 1st in-
struction of seq 1

0 ILOAD 0

1 IFGE

2 7

3 ILOAD

4 4

5 LDC INT

6 100

7

8

9

10

(d) after 2nd in-
struction of se-
quence

0 ILOAD 0

1 IFGE

2 7

3 ILOAD

4 4

5 LDC INT

6 100

7 IADD

8

9

10

(e) end of sequence
conversion

0 ILOAD 0

1 IFGE

2 7
3 ILOAD

4 4

5 LDC INT

6 100

7 IADD

8 IRETURN

9 ILOAD 3

10 IRETURN

(f) end of phase 1

0 ILOAD 0

1 IFGE

2 9
3 ILOAD

4 4

5 LDC INT

6 100

7 IADD

8 IRETURN

9 ILOAD 3

10 IRETURN

(g) end of phase 2

Figure 4.5: Inline-Threaded Code to Switch Code Conversion
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need to be checked and handled differently. During that first pass, the bpc2inlinedpc

code array is computed as well. It will be used in the second pass.

A second pass is done through the switch code array generated in the first pass

to fix address operands pointing to elements in the original inline-threaded code

array. The bpc2inlinedpc array is used to map these addresses to the corresponding

elements in the switch code array. The value of the ith element in bpc2inlinedpc

is the inline-threaded PC corresponding to the ith element in the switch code array.

Since the values in the array are in non-decreasing order, a binary search is used

to find a particular address. The array index of the address found indicates the

corresponding address in the switch code.

This marks the end of the conversion process. The conversion of a method is done

once and kept if needed later for recompilation.

We define the input size n as the sum of the size of the inline-threaded array and

all instructions in sequences used in the array. The first step is performed in O(n)

worst case time. The resulting switch code array size is O(n). In the second step,

each binary search is done in O(log n). To fix all address operands requires O(n log n)

time. The overall running time for the conversion is therefore O(n logn).

Experimental results12 show that the inline-threaded to switch conversion accounts

from 0.48% to 1.62% of the compilation time, with an average of 1.15%.

4.4.4 Invoking the Compiler

Once all data necessary for compilation has been computed, the runtime invokes

the compile method located in sablejit.Compiler and passes to it all the data as

arguments. If the method is successfully compiled, the compiled code is returned to

the runtime. Otherwise, the runtime will handle the error accordingly. Error recovery

is discussed in section 5.4.

12See chapter 10 for a description of our experimental setup. These experiments were conducted
on our Linux/x86 platform.

34



4.5. Invoking Compiled Code from the Interpreter

4.5 Invoking Compiled Code from the Interpreter

All the INVOKEtype JITCOMPILE BOOTSTRAP, INVOKEtype JITCOMPILE and INVOKE-

type CALLCODE variants introduced earlier in this chapter are able to call the compiled

code of the callee. Most steps involved in the preparation of the calling context pro-

ceed as usual as both the interpreter code and the compiled code share the same Java

stack. This makes the transition from interpreted code to compiled code relatively

easy and efficient.

For virtual and interface invocations, the actual method is computed by obtaining

a pointer to the method data structure with a lookup in the virtual table. For special

and static invocations, this pointer is one operand of the instruction. This data

structure contains method-related information. One such piece of information is the

iscompiled flag. This flag indicates whether the method has already been compiled

or not. The compiled code, if any, is accessible through a function pointer stored in the

member compiled code of the method data structure. If the method does not have

compiled code, the invocation proceeds as usual and the method is interpreted. If it

does have compiled code, the callee stack frame is built as usual. However, some tasks

that have been moved from the caller to the callee such as method synchronization

are not performed in the caller. The compiled code is called as follows:

stack_inc = method->compiled_code(env, locals, stack);

where env is an environment pointer, locals is a pointer to the callee local variables

and stack is a pointer to the operand stack (see figure 4.6). The env pointer is mostly

used for calling hooks in the virtual machine and for manipulating the Java stack.

The locals and stack pointers could be computed from the env pointer but it is

more convenient and probably more efficient to send them as arguments as they are

readily available in the caller. The value returned and stored in stack inc represents

the net effect that the return value of the callee method has on the the operand stack

of the caller. It can take a value of 0 (for void), 1 (for most types) and 2 (for long

and double). This value is used to update the stack size variable in the interpreter.

The actual return value of the Java method, if any, is pushed on the operand stack
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frame_info
− method
− pc
− stack_size
− prev_offset

frame_info
− method
− pc
− stack_size
− prev_offset

Caller
Frame

Callee
Frame

local 0

local 2

local 1

arg 0

arg 1

arg 2

local 0

local 1

local 2

local 3

locals

env−>stack.current_frame

stack

Figure 4.6: Java Stack
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by the compiled code. If stack inc has the special value of −1, it indicates that the

method exited abruptly due to an uncaught exception.

4.6 Method Invocation in Compiled Code

Method invocations in compiled code are always handled in the same way by the

caller no matter if the callee is compiled or not. The stack frame is pushed and the

function pointer compiled code of the callee is called. No tests are done to see if the

callee has compiled code. The runtime makes sure that compiled code has a valid

value at all time. Its value is a pointer to either compiled code or one of several stub

functions in the runtime. In the next sections we cover how non-compiled callees are

handled as well as JNI native calls. Then, we discuss the overhead of the various

method invocations.

4.6.1 Interpreted Methods

As mentioned in section 4.6, the compiled code of the callee is always called. It

might be the case that the callee has not been compiled yet. In that case, the

interpreter should be invoked unless it is decided that the callee should be compiled

before its execution. In any case, when method data structures are initialized, the

compiled code field is set to point to an interpreter stub function. This function,

written in C, has the exact same prototype as the compiled code function. That is,

it takes the same three arguments (env, locals and stack) and it returns a value

(ranging from −1 to 2) with the same meaning. From the caller point of view, it

behaves in exactly the same way as compiled code. Figure 4.7 illustrates the various

values that the compiled code pointer accepts. It may either point to dynamically

allocated compiled code or to one of the stubs compiled statically with the runtime.

The interpreter stub is used for methods to interpret. The two other stubs are used

for JNI native calls and are discussed in section 4.6.2.

The interpreter stub is structured as follows. It contains a compilation entry

point. That is, it checks whether it should compile the callee method, and if yes,
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compiled_code
iscompiled

Method Data

jint native_nonstatic_stub(env, locals, stack) {
  ...
}

jint native_static_stub(env, locals, stack) {
  ...
}

jint interpreter_stub(env, locals, stack) {
  ...
}

Compiled
Code

Figure 4.7: Stubs for Compiled Code

the compiler is invoked. The second major component is a control transfer point.

If the callee method is compiled (either by the previous compilation entry point or

by some other thread), it jumps to the compiled code. Otherwise, the interpreter

function is called to interpret the method. In both cases, a meaningful return value,

usually depending on the result of the execution of the callee, is returned to the

caller. Note that when a method is successfully compiled, the compiled code pointer

is updated to point to the compiled code such that the stub will not be called for

future invocations of that method. This summarizes the basic roles of the interpreter

stub.

The stub, acting as glue code between the interpreted and the compiled world,

must also do some adjustments to the calling contexts. For example, in interpreter

code, method synchronization, when necessary, is done in the caller whereas in com-

piled code it is done in the callee. Transitions between compiled code to interpreter

code and vice-versa need to take into account these differences to avoid doing the

work twice or not at all. The reasons behind some of these changes are related to

efficiency and are discussed in chapter 5.
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A second required adjustment in the stub consists of inserting an internal call

frame on the Java stack between the caller and the callee stack frame. This special

frame ensures that execution control exits the interpreter function once the interpreted

method exits therefore returning the control to the stub. Note that when the stub is

called, the callee frame has already been pushed by the caller. It is simply moved to

make room for the additional frame.

4.6.2 JNI Native Methods

In Java, some methods can be declared as native. These methods are usually written

in the C or C++ language. They are compiled into native shared libraries. The

virtual machine will then load the libraries and link the methods during program

execution. Although, native methods are not written in Java, SableJIT does not

currently have the ability to invoke them directly from compiled code. To call these

native methods, it is necessary to copy Java arguments located on the Java stack

in registers and/or on the native stack, transfer control to the native function and

retrieve the return value translating it back to a Java argument and storing it on

the Java stack. This glue code required for both the interpreter and compiled code

is implemented in the third party libffi shared library. Although, SableJIT did

not duplicate this functionality and specialize it for each native method invocations,

it still avoids invoking the interpreter to handle them. Two stubs are used, one for

static native methods and one for non-static native methods. Their implementation

consists simply of calling the function in the virtual machine that handles native

methods. It does not require an internal call frame or any other special setup. It

does however need to execute synchronization code if the native method is declared

to be synchronized. Though, this is not additional work, it was simply not done by

the compiled caller.

The compiled code field is set to the stub only once the native method has been

linked. Linkage occurs at the first invocation and it is always done by the interpreter.

In summary, the compiled code pointer is always set to the interpreter stub when

method data structures are initialized. If the method turns out to be native, it is
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replaced by one of the two native method stubs after it is linked.

4.6.3 Method Invocation Overhead

Additional costs can be incurred during the transitions between different types of

method code: interpreter code, compiled code, and JNI native code. A compiled

method invoking a compiled method does not incur additional overhead compared

to an interpreter invocation. Invoking a compiled method from the interpreter is

also lightweight. The overhead consists mostly of additional checks such as testing

if the callee is compiled. However, invoking an interpreted method from a compiled

method has quite some overhead. It includes the overhead of calling a stub as well as

the work inside the stub such as inserting a special stack frame. Therefore, if the caller

is compiled, it is good to compile the callees that are frequently invoked. Invoking

JNI native methods from compiled code should not be more expensive than invoking

them from the interpreted code. However, these invocations could be improved in the

future by bypassing the libffi general code and by generating specialized glue code

at each call sites since the native method prototype is known at compilation time.

4.7 Summary

In this chapter we have presented the SableJIT runtime: the interface between the

virtual machine and the interpreter. We have introduced interpreter instructions used

for the compilation and execution of compiled code. We have then seen how these

instructions are used to provide an efficient interpreter-only mode. We have presented

how the virtual machine and the compiler are bootstrapped. In particular, we have

covered issues that arise from the fact that the compiler is written in Java and is

allowed to self-compile. We have discussed how the code and data are prepared by

the runtime before being fed to the compiler. We have described the dispatch of

various code forms: interpreter code, compiled code, and JNI native code. Finally,

we briefly presented the overhead of transitions between the various code forms.
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The Baseline Compiler

In this chapter we discuss the compiler frontend. We start by providing an

overview of the compilation process including the general structure of generated code

as well as the main frontend components involved. We then proceed by describing

how some runtime information is used in code generation. We discuss how an opti-

mizing compiler could be added to our implementation. We explain how the compiler

is able to recover from different kind of failures that could occur and how it helps de-

velopment. Finally, we describe briefly how partial method compilation and multiple

compilation entry points have been implemented experimentally in SableJIT.

5.1 A Simple Baseline Compiler

5.1.1 General Overview

We implemented a baseline compiler for SableJIT. This baseline compiler, as opposed

to an optimizing compiler, does not perform any optimization. Instead, it generates

code directly, without using an intermediate data structure, through a single pass fol-

lowed by a patching phase. The patching phase is required to patch forward branches

as no information is precomputed for final native code instruction locations. The

code generated by our compiler mimics the interpreter. Both the compiled code and

the interpreted code share the same Java stack. The Java stack includes Java method
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stack frames. The Java local variables and the operand stack of the corresponding

method are located within the frames. Sharing the same Java stack simplifies the

implementation significantly, especially for garbage collection1 and exception han-

dling2. Also, transitions from interpreted code to compiled code and vice-versa can

be relatively easily accomplished at points other than method entry and exit. Indi-

vidual interpreter bytecode instructions are compiled using a template scheme: for

each bytecode a set of instructions implementing that bytecode is generated in the

code array. We could almost say that the baseline compiler takes the inline-threaded3

interpreter one step further by removing the remaining interpreter dispatch overhead.

The baseline compiler, however, does not offer competitive performance compared to

optimizing JITs.

5.1.2 Main Components of the Baseline Compiler Frontend

The compiler frontend consists mainly of two classes: sablejit.Compiler and sa-

blejit.OnePassGenerator. The sablejit.Compiler class interfaces with the run-

time. It receives the method code from the runtime as well as additional information

required for compilation as discussed in chapter 4. The OnePassGenerator class im-

plements the IRBuilder interface. In fact, the OnePassGenerator is a special case

of an IRBuilder in that no intermediate representation (IR) data structure is built;

the code is directly generated. The IRBuilder interface declares a series of methods

named with the pattern build inst, each one corresponding, with few exceptions,

to an interpreter code instruction. Figure 5.1 lists the source code of a possible im-

plementation of the build iaload method that corresponds to the IALOAD (integer

array load) instruction. This particular baseline implementation is located in the

OnePassGenerator class. It basically generates code by directly invoking methods

from the backend rather than building an IR. The IALOAD instruction pops an array

index and an array reference from the Java operand stack (the code generated by lines

1 and 2 accomplishes this). It then performs a null check on the array reference and

1Memory management including garbage collection is covered in chapter 7
2Java exception handling is covered in chapter 6
3For an overview of the different interpreters and how they differ, refer to section 2.1
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// arrayref index --> value
public void build_iaload(int currentPC) {

1 m4sj_popI(tmp2); // index
2 m4sj_popI(tmp1); // ref

3 checkNullPointerException(currentPC, tmp1);
4 checkArrayIndexOutOfBoundsException(currentPC, tmp1, tmp2);

// multiply index by 4
5 arch.shlI_rrn(tmp2, tmp2, 2);

// find element
6 arch.addI(tmp1, tmp1, tmp2);

// load element
7 arch.loadI(tmp1, ALIGNED_ARRAY_INSTANCE_SIZE, tmp1);

// push it on stack
8 m4sj_pushI(tmp1);
}

Figure 5.1: Implementation of build iaload

an array bounds check. Exceptions are thrown if the array reference is null or if the

array index is outside array bounds (see lines 3 and 4). The element address is then

computed and the value located at that address loaded (see lines 5 to 7). Finally, the

value just loaded is pushed on the operand stack (see line 8). We delay the details

of how individual instructions are used until we discuss the retargetable backend in

chapter 8.

The Compiler class consists mainly of a loop iterating over the interpreter byte-

code array and invoking a build inst method for each corresponding inst instruction.

Instruction operands are usually passed verbatim to the build inst. Exceptions in-

clude branch target addresses that are converted from an absolute address to an index

into the input code array.

It is important to note that the implementation in both the Compiler class and the

OnePassGenerator class is architecture independent and is common for all supported

architectures.
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Push callee frame Prologue
Save callee-saved registers
Move args to saved regs (env, locals, stack) Java-Related Actions
Enter monitor (if method is synchronized)
Set local variables to NULL
[Code for each bytecode instruction] Method Body
Handle exception Exception Handling Code

(only if some exceptions handlers)
Restore callee-saved registers Epilogue
Pop native frame and return
[Same code as prologue, plus:] Second Prologue (optional)
Move args to saved regs
Jump to 2nd entry point
Map for signal-based exceptions Data (no code)

Figure 5.2: Compiled Code Organization

5.1.3 The Compilation Process

We describe the steps involved in the code generation of a method. Figure 5.2 illus-

trates the general logical structure of the code generated by the baseline compiler.

Compilation starts by generating the function prologue. The actual tasks done

by the prologue is architecture dependent. In general, a stack frame is allocated,

necessary linking is performed (such as saving the return address) and sufficient space

is reserved in the instruction stream for store instructions to save the callee-saved

registers. As in VCODE [Eng96], the baseline compiler uses a pessimistic approach:

it assumes that all callee-saved registers that could be used will be used. It allocates

enough space on the stack frame to store all the callee-saved registers that could be

potentially used.

Before actually compiling the method body, some additional code is generated.

This includes code to save into callee-saved registers the three arguments passed

to the compiled code when it is called: the env pointer, the locals pointer and

the stack pointer4. For synchronized methods, additional code includes code to

acquire a lock. For methods with local variables (excluding parameters) of reference

4As we have seen in section 4.5, locals is a pointer to the Java local variables, stack is a pointer
to the Java operand stack, and env is a pointer used to access the data of the current thread.
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type, code is generated to initialize each such variable with a null value. This is a

requirement imposed by the current implementation of the garbage collector. Method

synchronization and reference local variables handling are discussed in further details

in section 5.2.

The code implementing each interpreter bytecode instruction is consecutively gen-

erated after the function prologue and the additional setup code. For some instruc-

tions such as forward branches, the actual code is only emitted at the end of code

generation. Sufficient space is reserved in the generated code array for them.

Once the code of the method body has been generated, it is patched for forward

branches5. This first patching phase only handles branches that are at the bytecode

level. A second patching phase is performed later for branches added internally, by

the implementation of particular bytecodes for example.

If the method has at least one exception handler, then general exception handling

code is generated along with a jump table of exception handler offsets.

Then the code generation is finalized. The function epilogue is generated. The

actual content of the epilogue is architecture-specific. It normally includes code for

restoring any used callee-saved registers, popping the stack frame, and returning

from the function. The second patching phase is performed to patch branches within

bytecode implementations or added by the compiler such as branches from method

exit points to the epilogue. Also, the prologue is patched with store instructions for

used callee-saved registers.

A second prologue can optionally be generated after the epilogue. This second

prologue is used as a second entry point into the compiled code. This second entry is

useful to switch to the compiled version of a method being interpreted without first

having to exit it and later reenter it. The code of this second prologue consists of the

code of the first prologue and of code to move the arguments received into registers.

A jump is located at the end of the second prologue to transfer the control to the

second entry point in the method body section, the head of a loop for example. To

use that second entry point, the runtime executes the second prologue instead of the

5In this section, we use the term patching branches rather generally. In addition to branch
instructions, we also include targets found in the various jump tables.
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usual first prologue. This feature has been implemented experimentally. More details

can be found in section 5.5.

This marks the end of actual code in terms of instructions. However, in order

to simplify memory management6, some data might be allocated in the generated

code array after the instructions. In particular, if the compiler is configured to use

signal-based exceptions7, a table containing native program counter (pc) to bytecode

pc mapping information is generated.

5.1.4 Secondary Data Structures

Although no intermediate data structure is built for the code, a number of auxiliary

data structures are built during the compilation process which are used in addition to

the information received from the runtime. We briefly describe these data structures

and their role:

• PCMapper: An array mapping interpreter bytecode instruction indices to the

start of their compiled code implementation. This array is built as compilation

proceeds. It is used for branch and jump table patching. It is also used to

construct the exception handler jump table and to help debugging.

• BranchInfo: A list of branches and other sites that require some form of

patching. Elements are added during code generation and are used later during

the patching phase.

• ExceptionMapping: A linked list of mapping elements. Each element is

a (native pc offset, bytecode pc) pair. These are only used if the compiler is

configured for signals-based exceptions. Elements are added to the list during

code generation of the method body. The list is then used to generate mapping

data in the data section located at the end of the code array.

6Memory management is covered in chapter 7
7Exception handling is covered in chapter 6.
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5.1.5 Dynamic Recompilation, Decompilation and Preparation

Sequences

Dynamic recompilation [BD98] consists of dynamically, i.e. at run-time, compiling a

method that has been previously compiled. Modern high performance Java virtual

machines such as Jikes RVM [AAB+00] usually have several compilers or several level

of optimizations with different compilation time / code efficiency tradeoffs. Fast

compilers performing no or little optimizations are useful for interactive applications

as well as short running applications that require a fast startup. A fast baseline

compiler could be first used, obtaining better performance than the interpreter while

not costing much in compilation time. Later, for methods that are found to be

particularly hot (i.e. with frequently executed code), the method could be recompiled

with an optimizing compiler that generates more efficient code at the cost of extra

compilation time. Note that the extra time spent in optimizing a method could

sometimes outweigh any benefits gained.

Dynamic recompilation can also be used for debugging purposes [THL02]. For

example, methods are recompiled with debugging code to watch for the occurrence

of some event.

With dynamic recompilation, in addition to the interpreter code, we might have

several compiled code versions. Moreover, for multithreaded applications or for single-

threaded applications with recursion, several versions of compiled code might be in

use. Freeing memory allocated for slower versions of code must be delayed until they

are no longer used.

Decompilation (or deoptimization) of a method consists of switching from the

faster compiled code back to slower code (interpreted code in our case). This is

useful for debugging code with a debugger [HCU92]. It is also used for undoing

optimizations [Hot] that became invalid after some event. For example, a virtual

invocation site that was once proven to be monomorphic (i.e. with a single target)

could have become polymorphic (i.e with more than one target) after new Java classes

are loaded. In that case, any optimization done based on the previous analysis is no

longer valid.
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Decompilation could also be used when there are some concerns about memory us-

age. Consider a method that was once hot but is no longer. Reverting to interpreting

code for such a method allows for freeing the memory allocated to the compiled code

or reusing it for code of methods that became recently hot. This can be especially

important for long running applications. With recompilation and decompilation, a

system can better adapt to its current method work load.

SableJIT supports recompilation. Recompilation is achieved by invoking the com-

piler again and by updating a pointer in the method internal data structure in the

virtual machine to point to the newly generated code. The old code is not freed right

away, but from time to time the runtime garbage code collector8 checks if some old

code can be safely freed and, if so, returns all its associated memory to the system.

A usage of recompilation is discussed later in this section. SableJIT does not cur-

rently revert to interpreted code, but this functionality could be easily implemented.

Reverting to interpreted code would consist of simply updating the compiled code

pointer in the method data structure to point to a stub that invokes the interpreter

and to mark the method as not compiled.

The compiler presently does not generate code to patch the slower preparation

sequences (see section 2.3) with a faster variant. Instead, it generates profiling code

and code to patch the interpreter code9. If some threshold is reached, the compiler is

invoked to recompile the method. There are two advantages in recompiling instead of

patching the native code directly. The first advantage is simplicity. Generating code

that patches native code in a portable way seems to be rather difficult. We would

like to keep the compiler as architecture independent as possible without resorting

to architecture-specific code for each prepare sequence / architecture combinations.

It would, however, be interesting to study in future work if this could be done in a

retargetable and efficient way. The second advantage is space efficiency. Since the

compiler does not generate code for dead preparation sequences, the recompiled code

uses less memory. A disadvantage of not patching the code as it is executed is that

8Garbage code collection is covered in chapter 7.
9Actually the code fed to the compiler. For the direct-threaded and inlined threaded interpreter,

this is the equivalent switch code that was computed.
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we cannot take immediate advantage of the faster code, we need to wait until its

next compilation. A second disadvantage is the extra compilation time incurred by

recompiling the method; patching would be less costly.

5.2 Using Runtime Information

As mentioned in the previous sections, the baseline compiler does not perform opti-

mizations per se. It does however use some precomputed and available information in

the virtual machine. We will describe three of them: the operand stack sizes at each

bytecode instruction, the synchronized modifier, and the number of non-parameter

local variables of reference type.

5.2.1 Stack Sizes

The Java specification requires that the operand stack size at an instruction be the

same no matter what computation path is taken to arrive at that instruction [LY99].

During the preparation of the interpreter code of a method, SableVM computes these

sizes as they are required to compute information for garbage collection.

The information on stack sizes is quite useful for a baseline compiler. If we did

not have such information, we would have to increment/decrement the operand stack

pointer when elements are pushed/popped on/from the stack. For example, our

implementation to pop the stack and store the popped value into a register would

look like this:

// decrement stack pointer
arch.addiI(stackPointer, stackPointer, -stackWidth);
// load top element
arch.loadI(reg, 0, stackPointer);

This is likely to be two instructions on a RISC architecture although some archi-

tectures support a load with update that could perform it in a single instruction.

If the stack size information is used, the compiler implementation becomes:

deltaStack--;
arch.loadI(reg,
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(stackOffsets[pc] + deltaStack) * stackWidth,
stackPointer);

where deltaStack is a variable used to keep track of the changes in the stack size

within an instruction and where stackOffsets[pc] is the stack size at the start of

this instruction. The actual code that is generated for this is a single load. The stack

pointer points at the stack bottom at all time and an offset computed at compile time

is used to access the element.

5.2.2 Method Synchronization

In the Java programming language, a method can be marked as synchronized. For

synchronized methods, a monitor must be entered before executing the method body

and must be exited when leaving the method. In the interpreter, the monitor is

entered in the INVOKE instruction of the caller (see figure 5.3) and it is exited in

the RETURN instruction of the callee or in the exception handler if the method exited

abruptly due to an exception. Since the INVOKE and RETURN implementations are

shared between all interpreted methods, an explicit check for synchronization is re-

quired in the interpreter. However, when the compiler is invoked, it is known whether

the method we are compiling is synchronized or not. By moving the synchronization

code from the caller to the callee, the compiled code can be specialized. No dynamic

check at runtime (to see if the method is synchronized or not) is required. Rather,

the synchronization code is simply either generated or not depending on whether the

method is synchronized or not. In addition to eliminating the dynamic check, space

is saved. If the synchronization code had not been moved to the callee for compiled

code, it would have been necessary to generate it at each call site (as opposed to once

per synchronized method) unless we could have determined that no synchronized

method would ever be invoked at that call site.

Note, however, that changes in the calling conventions of Java methods make the

transition between interpreted code and compiled code slightly more complex since

these differences need to be taken into account. A method cannot be synchronized
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twice in a single invoke. The caller, in interpreted code, must not execute the synchro-

nization code if the callee is a synchronized compiled method. Otherwise, it would be

synchronized by both the caller and the callee. Similarly, the stub allowing compiled

code to invoke interpreted methods must do the synchronization if the method is

synchronized before calling the interpreter. Otherwise, the method will not be syn-

chronized as the caller (compiled code) assumes the callee will do it and the callee

(interpreted code) assumes the caller has done it.

On a side note, it would be possible for the interpreter to perform all the synchro-

nization in the callee by adding a bytecode instruction at the beginning of synchro-

nized methods.

5.2.3 Initialization of Non-Parameter Reference Type Local Vari-

ables

The garbage collector implementation in SableVM requires that all object references

either point to a valid object in the heap or otherwise have the null value. This

requirement must hold wherever garbage collection can occur. Garbage collection

can occur before a method local variable is assigned a valid reference or null. In

order to satisfy this requirement, all local variables of reference type that are not

parameters are initialized to null before executing the method body. Reference pa-

rameters passed to the method already have valid values and the operand stack that

is initially empty also satisfies this requirement. Setting local variables of reference

type to null is implemented efficiently in SableVM by reordering variables in order

to regroup consecutively variables of reference type. Then, knowing the number of

such variables is sufficient for initializing them with a simple for loop in the INVOKE

implementation of the interpreter (see figure 5.3). This is done in the caller before

executing the code of the callee. Since the number of non-parameter locals for a given

method is fixed and known at compilation time, it is possible to move this task from

the caller to the callee in a way similar to what we did with the synchronization code.

Additionally, since the number of iterations is constant and relatively small, the loop

is fully unrolled resulting in a series of native store instructions, one per variable.
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Interpreter loop:

INVOKE:
if (method->synchronized) {

/* enter monitor */
}
/* nullify ref locals */
for (i = 0; i < max; i++) {

locals[java_args_count + i].reference = NULL;
}

...

RETURN:
/* exit monitor */

Compiled code:

prologue
[synchronization code]
set refs locals to NULL
body
[synchronization code]
epilogue

Figure 5.3: Caller Work Delegated to the Compiled Callee

5.3 Towards an Optimizing Compiler

Since SableJIT has only a baseline compiler, one could ask: how difficult would it be to

add an optimizing compiler and how should one proceed? Figure 5.4 shows the UML

diagram of the frontend that was first introduced in chapter 3. The baseline compiler

implementation is located in the OnePassGenerator and directly uses methods of the

backend (class Architecture). To add an optimizer the approach would consist of

adding a class, say MIRBuilder to the hierarchy as shown in figure 5.5. The Compiler

class would then invoke the build inst methods of that class instead of the ones in

OnePassGenerator. Each build inst implementation would add one or more IR

nodes to the IR data structure for the inst instruction. Additional classes would

be added to perform analysis and optimizations on the IR built. Finally, another

class could emit native code from the optimized IR by making use of the retargetable

backend.
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Figure 5.4: Compiler Frontend

Figure 5.5: Compiler Frontend with a MIR Builder

5.4 Compiler Robustness and Failure Recovery

The compiler is quite robust in that it can recover from several types of compilation

failures. This feature is especially useful during development and we will come back

on this point in chapter 9 where we describe the suggested strategy to retarget the

compiler to a new platform. We first describe several types of failures that can occur.

Then we discuss when recovery is possible. Finally, we explain how the compiler and

the runtime recover from compilation failures.

5.4.1 Failure Classes

Figure 5.6 illustrates the different types of exception classes and how they are related

through inheritance. Failures can be grouped into the following categories:

1. Unexpected unchecked exceptions: Examples in this category include ex-

ceptions of type NullPointerException and ArrayIndexOutOfBoundsExcep-

tion that correspond to dereferencing a null reference and to accessing an array
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SableJITRuntimeException

SableJITException RuntimeException

Exception

OutOfMemoryError SableJITError

Error

Throwable

ArrayIndexOutOfBoundsException

NullPointerException

Figure 5.6: Partial Class Hierarchy of Exceptions and Errors

with an invalid index, respectively. These exceptions are subclasses (either di-

rect or indirect) of type RuntimeException. These exceptions are said to be

unchecked as it is not necessary for a method to declare that it might throw

them. Also, there is no explicit throw statement for exceptions in this category.

These are due to bugs in the compiler code.

2. Virtual machine errors: Errors in this category are subclasses (either direct

or indirect) of type Error that are not also subclasses of type SableJITError.

These errors usually originate from an unexpected event that is difficult to

recover from. For example, if the virtual machine runs out of memory, an

OutOfMemoryError error is thrown. Errors of this type are never thrown ex-

plicitly by the compiler code.

3. SableJIT checked exceptions: Exceptions of type SableJITException (or

subclasses) are expected in the sense that they are thrown by an explicit throw

statement. They are also checked; methods that can throw them must declare

them. The compiler uses very few checked exceptions, most exceptions are

unchecked.
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4. SableJIT unchecked exceptions: Exceptions of type SableJITRuntimeEx-

ception (or subclasses) that are also thrown by an explicit throw statement.

However, a method need not declare that it throws such an exception. Most

exceptions are of this type. We enumerate them with a brief description or

example:

• AssertionFailedException: An assertion or safety check failed.

• MappingException and TargetException: Unable to map a program

counter (pc) and unable to find a branch target respectively.

• UnusedBytecodeException: The compiler received an unused (or un-

known) interpreter bytecode instruction.

• RegisterException and its subclasses: Errors related to register alloca-

tion such as running out of registers, or related to register usage such as

providing an invalid register number.

• NotImplementedException: Indicates a not yet implemented feature. Usu-

ally these occur when retargeting or developing the compiler incrementally.

5. SableJIT errors: Errors in this category are of type SableJITError (or sub-

classes). These indicate that a non-recoverable fatal error occurred. Examples

of this type are:

• UnrecoverableExceptionError and its subclasses: They occur when an

exception is thrown in a context where it is known that no exception can

be recovered from. The exception is caught and encapsulated in an error

object of this type that is then thrown. An example is described next.

• ExceptionInJITInitError (a subclass of UnrecoverableExceptionEr-

ror): An exception occurred during the bootstrap of the compiler.

5.4.2 Recoverability

SableJIT performs backward error recovery [DVLP98]. In backward error recovery

(or simply backward recovery) the system state is restored to a previous state that is
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known to be error-free. On the other hand, forward error recovery would consist of

fixing the errors to allow the system to continue forward in time.

Backward recovery in our JIT involves two things: restoring the compiler data

structures to a valid state and falling back to the last code version successfully ob-

tained for the method that failed to compile. For efficiency, some objects in the com-

piler are reused for several compilations. Since compilation is abruptly interrupted

when an exception is thrown, some compiler data structures and objects could have

been left in an inconsistent state. The compiler needs to be restored to a consistent

state. Our JIT can fall back to either interpreted code or, if recompilation is enabled,

previously compiled code.

The runtime assumes that the compilation failure is deterministic, that is, if a

method fails to compile once, it is likely that it will fail again. All methods that fail

are marked as uncompilable, thereby preventing any attempt to compile them again.

In general, failures that throw exceptions, i.e. objects that are of type Exception

or one of its subclasses, are recoverable (categories 1, 3 and 4) whereas failures where

errors are thrown, i.e. objects of type Error or its subclasses, are not (categories 2 and

5). Exceptions occurring during the compiler bootstrap or during the initialization of

compiler classes are treated as fatal. In these cases, if the exception is not of a subtype

of Error, it is wrapped into an error object of type sablejit.UnrecoverableExcep-

tionError and will be treated as an unrecoverable error.

5.4.3 The Recovery Process

Part of the recovery is accomplished by the compiler and part by the runtime. The

recovery code of the compiler is located in the Compiler.compile() method since it is

the compiler entry point and therefore the last point in the Java code that an exception

or error can be caught before the control is returned to the runtime. This method has

most of its body covered by exception handlers. Exceptions of type Exception (or

one of its subclasses) and of type SableJITError (or one of its subclasses) are caught

by these handlers. No attempt is made to intercept throwable objects of type Error

(or a subclass) that are not of type SableJITError (or one of its subclasses). Failures
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resulting in SableJITError (or a subclass) are not recovered; the compiler simply

temporarily disables compilation10 and prints a stack trace before terminating the

virtual machine. For recoverable exceptions, the compiler catches them and executes

recovery code to bring the compiler data structures back to a consistent state. Any

exception occurring in recovery code is treated as non-recoverable.

Regardless of whether the failure is recoverable or not, if the Compiler.compile()

exits abruptly due to an unhandled exception, the runtime will detect it. If the ex-

ception is of type Error or one of its subtypes, the runtime terminates the virtual

machine immediately. Otherwise, it knows that the compiler has successfully recov-

ered from the exception. It then marks the method as uncompilable so no further

compilation attempts are made. The runtime frees all the memory allocated for the

compilation of the method. Then, the runtime clears the exception status and falls

back to either the last successfully compiled code (if dynamic recompilation failed)

or to the interpreter. The execution of the Java program now continues normally.

5.5 Flexible Method Entry Point and Compilation Unit

The implementation of the features described in this section is considered experimen-

tal. We emphasise the usefulness of such features and we present our experimental

prototype.

5.5.1 Flexible Entry Point

Currently, compiled code can have two entry points. One at the beginning of the

method body and a second one that can be basically at an arbitrary location in the

method body. The implementation could be adapted relatively easy to support more

than two entry points, although each entry point requires additional code and costs

some space. A second entry point in the middle of a method is useful to switch from

the interpreted code to the compiled code of a method without having to wait for

10Compilation is disabled as Java code is executed to print the stack trace. Doing otherwise, could
lead to compilation of further methods and result in an endless loop.
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the next time the method is invoked. Consider a method that has a hot loop, a loop

with a large number of iterations and where a significant portion of execution time is

spent. This method could be invoked only once during the course of the program. If

compilation and invocation of compiled code occur only at method entry points, then,

unless this method is compiled before its first invocation, it will never be compiled.

However, if we add compilation points on loop back edges and allow switching from

interpreter code to compiled code at these points, then it would be possible to take

advantage of just-in-time compilation for that method.

SableJIT compilation on loop back edges is still considered experimental and it is

therefore not enabled by default. The implementation is quite simple for the baseline

compiler as it mimics the interpreter and operates directly on the Java stacks. It

consists of generating a second prologue, called the stub prologue, that is described in

section 5.1.3. The stub prologue does the work of a native function prologue (pushing

a stack frame, saving callee-saved registers, . . . ), moves the compiled code arguments

(env, locals, and stack pointers) to the appropriate registers and, finally, jumps to

the back edge target. Once the method is compiled, the stub prologue rather than

the normal prologue is used to switch to the compiled code. When the compiled code

returns, the method is known to have exited.

5.5.2 Flexible Compilation Unit

The simplicity of the baseline compiler, combined with the fact that both compiled

and interpreted code share the same Java stack, makes it easier to use a different

compilation unit than a method body. Methods can have rarely executed code. For

example, code in exception handlers could be infrequently executed. Partial method

compilation [Wha01] consists of compiling frequently executed parts of the method

rather than the full method. The main advantage is to better allocate compilation

time where it matters the most. In SableJIT, partial compilation was implemented

for simple loops as a proof of concept only, and is therefore incomplete. Profiling code

is added to the loop back edges. After some threshold is reached, the loop code (not

the full method) is compiled and the execution switches from the interpreter to the
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compiled code for the remaining iterations of the loop. When the loop exits, execution

switches back to the interpreter. Switching from the interpreter to compiled code and

back to the interpreter in this way has little overhead since both work directly on the

Java stack and perform the operations in the same way.

5.6 Summary

In this chapter we have presented the baseline compiler. We have discussed the

frontend of the compiler and have described the steps involved in the compilation of

a method. We have explained dynamic recompilation and decompilation. We have

seen how the baseline compiler uses runtime information to improve performance.

We have described how an optimizing compiler could be added and where it would

fit in the compiler design. We have explained how the compiler and the runtime can

recover from compilation failures. Finally, we have briefly studied how the baseline

compiler simplicity makes it relatively easy to experiment with different entry points

in the compiled code and with partial method compilation.
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Chapter 6

Exception Handling

In this chapter, we discuss how exceptions occurring in compiled code are handled.

We start by describing a simple implementation where all handling is done by the

interpreter. Then, we present an improved implementation where exceptions can be

handled without resorting to the interpreter. We explain how some checks such as

null checks can be made implicit by the use of hardware traps. Finally, we conclude

by summarizing the hardware traps available on various architectures and their use

for exception checks.

6.1 General Exception Handling

6.1.1 Interpreter-only Exception Handling

In early versions of SableJIT all exceptions were handled by the interpreter. Since

both the compiled code and the interpreter use the same stack, this solution is rela-

tively simple. It does not require any additional data structure except for the inlined

interpreter. We delay the discussion of this last point to later in this section. Throw-

ing an exception in the compiled code is done in three simple steps:

1. Set the exception object in env->throwable.

2. Save the bytecode program counter (PC) in the Java stack frame.
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3. Return −1 to signal that an exception occurred.

The first step simply stores a reference to the exception object such that it can

be retrieved later by the exception handler. The bytecode PC, in the second step, is a

pointer to one element past the current element in the interpreter code array. It is used

to identify where the exception occurred. When the compiler is used in combination

with the inlined interpreter, a table that maps the equivalent switch code PC (used

as input to the compiler) to the corresponding inlined code PC is required. With

the direct interpreter, a mapping table is not required as the mapping can be easily

computed since both the direct and the switch code arrays have the same layout.

In the last step, the return statement is not a Java return statement but a native

function return. The return value of the compiled code function is always checked by

the caller, whether the caller is the interpreter or some other (possibly itself) compiled

method. If the caller is the interpreter function and the compiled code returns −1,

a jump is made to the exception handling code (see figure 6.1). If the caller is a

compiled method and the callee returns −1, then the caller returns immediately −1.

Eventually, the interpreter function will be reached and the exception will be handled

there.

Figure 6.2 illustrates the process with a simple example. The effects on the Java

stack and the native stack are shown after each step. Initially, the last 3 methods on

the Java stack are A, B, and C (see figure 6.2(a)). B and C are compiled, the native

stack has their native stack frame. A is an interpreted method, its corresponding

native stack frame is the virtual machine interpreter function. The exception is

thrown in method C and the first matching handler is located in method B. After

constructing the exception object and saving the bytecode PC in the stack frame,

the compiled code of C returns −1 to signal the exception (see figure 6.2(b)). The

compiled method B notices that C has returned −1 and it simply does the same (see

figure 6.2(c)). The control is now back to the interpreter. The interpreter notices

that B returned −1 and it jumps to the exception handling code. Since, C has no

matching handlers, the C Java stack frame is popped (see figure 6.2(d)). The next

method on the stack, B, is checked for a matching handler. One is found and the
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switch (bytecode) {

case INVOKE*:
...
stack_inc = compile_code(...) [-1 is returned]
if (stack_inc == -1) {
goto exception_handler;

}
...

}

exception_handler:
/* Code to handle exception */

Figure 6.1: Compiled Code Signalling the Occurrence of An Exception

interpreter continues the execution of the Java program from the handler.

It is important to note that in this implementation the Java stack is not popped

when compiled methods are returning −1, it is left untouched. Only the native stack

is popped. The end result is that the interpreter does not have to distinguish whether

the exception occurred in compiled code or in interpreted code as in both cases the

Java stack is exactly the same.

The main advantage of this method of handling exceptions is its simplicity. It

allowed us to support exceptions at a very early stage in the development of SableJIT.

However, it does handle exceptions quite inefficiently. Consider the case when several

compiled methods are in progress with no intervening interpreted method on the call

stack. If an exception is thrown by the bottommost compiled method and it happens

that there is a matching exception handler in that same method, the native stack is

still popped several times until an interpreter function is reached. Another inefficiency

is that the exception handler code is always interpreted. These two disadvantages

might not degrade the performance of an application much provided exceptions are

rarely thrown, that is, if they happen only in exceptional cases1. Nevertheless, an

improvement over this implementation fixing these two issues has been implemented

and is presented in the next section.

1Several Java programs do however use exceptions on their normal control flow.
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A

B

C C (compiled)

B (compiled)

Java stack Native stack

(in A)
interpreter

(a) Initial conditions. Method C

throws an exception and the handler

is in method B.

A

B

C

B (compiled)

Java stack Native stack

(in A)
interpreter

(b) Native code C returns −1.

A

B

C

Java stack Native stack

(in A)
interpreter

(c) Native code B also returns −1.

The control is now back to the inter-

preter.

A

B

Java stack Native stack

(in A)
interpreter

(d) The exception handling loop of the

interpreter pops the Java stack frame

of method C. The control is transfered

to the handler in B.

Figure 6.2: Interpreter-only Exception Handling
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6.1.2 Joint Interpreter and Compiled Code Exception Handling

We improved over the previous implementation by allowing a compiled method to

handle the exceptions for which it has matching handlers. Step 3 is changed to:

3. If the method has a matching handler, jump to the exception handler. Other-

wise, pop the Java stack frame and return −1.

Figure 6.3 illustrates the application of this implementation on the example pre-

sented in section 6.1.1. The compiled code of method C does not find any matching

handler, it therefore pops the Java frame as well as the native frame, returning −1

in the process (see figure 6.3(b)). Control is now returned to the compiled code of

method B. Since B has a matching handler, a jump is done to the handler inside

the compiled method B. There are three important differences from the previous

implementation to notice. First, the Java stack frames are popped as the correspond-

ing native stack frames get popped. Second, the native stack frame of the compiled

method containing the handler (B) is not popped. Third, execution of the handler

starts in compiled code whereas in the previous implementation, the handler is inter-

preted.

6.2 Signal-based Exception Handling

SableVM has support for signal-based exceptions. Most processors raise a hardware

trap (also called exception) on some operations considered invalid such as accessing

an invalid memory location or performing an integer division by zero. The proces-

sor trap causes a control transfer to the operating system (OS). On Unix operating

systems, the OS sends a signal to the process that causes the fault. For example, if

a null pointer is dereferenced, the process receives a SIGSEGV (segmentation fault)

signal. The default signal handler is to terminate the faulty process. It is however

possible to replace the default handler with one of our own. The idea of signal-based

exceptions relies on the fact that exceptions seldom occur. We are then interested

in implementing the common case (no exceptions) efficiently even at the expense of
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A

B

C C (compiled)

B (compiled)

Java stack Native stack

(in A)
interpreter

(a) The initial conditions are the same

as figure 6.2(a).

A

B B (compiled)

Java stack Native stack

(in A)
interpreter

(b) The native code C cannot handle

the exception. It pops the Java stack

frame and returns −1. Control returns

to native code B that handles the ex-

ception.

Figure 6.3: Compiled Code / Interpreter Mixed Exception Handling
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increasing the performance cost of the rare case (exception thrown). Consider the

IALOAD instruction that loads a value from an integer array into the operand stack.

If the array reference happens to be null, a NullPointerException must be thrown.

With signal-based exceptions, the explicit null check can be entirely removed. If the

reference is null, accessing the array size located in the array header requires a native

load operation on a very small effective address. In such cases, most architectures

raise a trap that causes a SIGSEGV signal to be delivered to the process. This

signal can be caught by the virtual machine process and “transformed” into a null

pointer exception. The frequent case (the reference is not null) is executed faster as

an explicit null check is no longer required, however, the exceptional case (reference

is null) becomes more expensive. If the user program is not well designed and excep-

tions are thrown regularly, the execution time saved by removing the null checks can

be outweighed by the expensive cost of the trap processing.

We have presented the general idea. We now introduce how signal-based excep-

tions affect the implementation of instructions in the interpreter, then we present how

signal-based exceptions work in the presence of compiled code.

6.2.1 Signal-based Exceptions in Interpreted Code

The sample code in figure 6.4 illustrates parts of the implementation of the GET-

FIELD INT instruction when signal-based exceptions are used. The instance vari-

able is a pointer to the object instance and the offset variable, the field offset. If

instance is NULL, a small memory address is accessed, causing a segmentation fault

on most architectures. Note that there are no explicit null checks for instance. For

comparison purposes, figure 6.5 shows the code of the same instruction when signal-

based exceptions are not used. Even though an explicit check is not required with

signals, it is required to always save the bytecode PC, otherwise the exception context

would not be known. Since all methods share the same instruction implementations,

the segmentation fault address is of no help to compute the context.
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/* save pc in case exception is raised */
env->stack.current_frame->pc = pc;
/* get integer field */
stack[stack_size - 1].jint =

*((jint *) (((char *) instance) + offset));

Figure 6.4: GETFIELD INT Implementation With Signal-Based Exceptions

if (instance == NULL) {
env->stack.current_frame->pc = pc;
goto nullpointerexception_handler;

}
stack[stack_size - 1].jint =
*((jint *) (((char *) instance) + offset)

Figure 6.5: GETFIELD INT Implementation Without Signal-Based Exceptions

6.2.2 Signal-based Exceptions in Compiled Code

In section 6.2.1, we have seen how the interpreter uses signal-based exceptions. In

particular, we have explained that it is necessary to save the bytecode PC at points

where an exception could occur. In compiled code, it is however not necessary to save

the bytecode PC as no memory is shared between the different compiled methods.

The memory address of the faulting instruction uniquely identifies both a method

and the location within that method where the exception occurred. Instead of always

saving the bytecode PC in case an exception occurs, the bytecode PC is computed

only when an exception do occur.

In order to compute the bytecode PC from the native address, it is necessary to

map an absolute memory address to its corresponding bytecode PC. This is done by

computing a mapping table (memory address offset 2, bytecode PC) at compile time

and storing it at the end of the compiled code. The storage requirement is two words

per location that might raise a hardware exception. The first word is the offset from

the beginning of the compiled code and the second, the corresponding bytecode PC.

For flexibility and simplicity, the entries are actually interpreted as ranges covering

from the native offset (inclusive) up to the native offset of the next entry (exclusive)

(see figure 6.6). This is useful as different architectures generate different sequences

2In order to keep the code relocatable, we actually store an offset from the beginning of the
compiled code instead of an absolute memory address.

67



6.2. Signal-based Exception Handling

Native Code Interpreter Code

Range
Covered

native offset

bytecode pc

native offset

bytecode pc

Exception Map

Figure 6.6: Mapping Native Addresses to Bytecode PCs

of instructions. The frontend does not need to know the exact instruction that causes

the trap. Basically, when signal-based exceptions are used, instead of generating code

for a null check, the compiler adds a table entry. It is important to note that the

table requires less space than the code that would be otherwise required to perform a

check and throw an exception. Therefore, signal-based exceptions are space efficient

and should be time efficient provided that exceptions are not frequent.

During the execution, if a segmentation fault (or other) occurs, the address of

the instruction that triggered it is obtained. If the current Java method executing is

compiled, the address is compared with the compiled code boundaries of that method.

If it occurs within the compiled code, the mapping table located at the end of the

compiled code is consulted for the corresponding bytecode PC. The bytecode pc is

then saved in the current Java stack frame and control is passed to the interpreter

exception handler. It could be possible under some circumstances that the current

method is compiled but we are currently interpreting it and therefore the faulting

address is located within the interpreter function. In order to handle that case, if

the address does not fall within the compiled code, the runtime assumes that the

trap originates from the interpreter. In that case, the bytecode PC should have been

already been saved so the control is simply passed to the exception handler.
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6.2.3 Efficient Array Bounds Check

An array bounds check can be performed with a single unsigned comparison as follows:

if (index >=U size) {
// throw exception

}

Some architectures provide one or more trap instructions that raises a hardware

trap when some conditions are satisfied. In particular, the PowerPC architecture pro-

vides a single cycle trap word instruction with the following format: tw cond,rs,rt.

This instruction compares the content of the two registers operands rs and rt and it

raises a hardware trap if the specified condition cond is true. On the Linux operating

system, a SIGTRAP signal is sent to the process. The virtual machine can then han-

dle the SIGTRAP and throw the corresponding ArrayIndexOutOfBoundsException.

In the next section, we present the different trap mechanisms available on various

architectures.

6.2.4 Hardware Support on Various Architectures

Table 6.1 summarizes the signal-based exceptions available on supported architec-

tures. Values in italics are enabled by default. The null sigsegv column indicates

that a SIGSEGV signal is sent when a null pointer is dereferenced. Similarly, the

div sigfpe column indicates that a SIGFPE signal is sent on integer division by zero.

The trap null, trap div and trap bounds columns indicate trap instruction support is

implemented for null checks, division by zero checks, and array bounds checks respec-

tively. Signal-based exceptions on the x86 architecture requires no instruction for null

pointer and division by zero checks. On the PowerPC architecture, division by zero

gives an undefined result and does not raise any exception. Instead, a single trap word

immediate instruction is used to check if the divisor is 0. To distinguish between array

bounds exceptions and arithmetic exceptions (as both sends SIGTRAP), we negate

the offset of one of them before adding it to the mapping table. Trap instructions are

also supported for null pointer checks on the PowerPC, however, the default is not to

use any instructions and to catch the SIGSEGV signal as it is done on x86. On the
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null sigsegv div sigfpe trap null trap div trap bounds

ppc yes no yes yes yes

x86 yes yes no no no

sparc yes yes no no yes

Table 6.1: Summary by architecture. Values in italics are enabled by default for

signal-based exceptions

SPARC architecture, both dereferencing null pointers and dividing integers by zero

raise CPU exceptions as it is the case on the x86. In addition, array bounds checks

can be done in a way similar to the PowerPC architecture by using two instructions:

a compare and a trap on condition code. It would be possible to also use trap instruc-

tions for null pointer and division by zero checks on the SPARC architecture, though

there are no benefits in doing so and hence they were not implemented.

6.3 Summary

In this chapter, we have presented how exception handling is done in the presence of

compiled code. We explained how SableJIT extends signal-based exception handling

to compiled code. We concluded the chapter by listing the different hardware trap

options available on various platforms.
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Chapter 7

Memory Management

In this chapter, we present memory management in SableJIT. We start by briefly

describing how SableVM partitions its memory. Then, we study the memory re-

quirements of SableJIT. We present the memory manager. We explain how garbage

collection is handled in the presence of compiled code. We discuss how unused com-

piled code is detected and freed. Finally, we describe object reuse in the compiler.

7.1 Memory Partitions in SableVM

SableVM partitions its runtime memory into several logical parts. Each memory

manager uses a scheme that performs well with the allocation patterns of a specific

component. Memory areas include the garbage collected heap, the Java stack, the

class loading data, and the native references. Of these, the heap and the class loading

data area are the most relevant to SableJIT memory allocation. The heap is where all

object instances reside. Since the compiler is written in Java, all objects instantiated

during compilation are allocated on the heap. Also, several data structures required

for compilation (mostly arrays) are allocated on the heap by the runtime. Each

class loader has a class loading data area. The class loading data area contains all

the classes, methods, and fields data structures required by the virtual machine. It

includes method code, both the interpreted code and the compiled code. Memory

management inside SableVM and the reasoning behind the partitioning are described
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in details in chapter 3 of [Gag02]. Before describing the memory management done

inside SableJIT runtime, we discuss its memory needs and its memory allocation

behaviour.

7.2 Memory Requirements of SableJIT

Data allocated is classified according to one of three levels of granularity.

• Per compiled code data: Data closely associated to a given compiled code

version. If the code is recompiled, then this data differs from the previously

compiled version. For example, the mapping table used for exception handling

is per compiled code data.

• Per method data: Data computed for a given method that is required for

compilation. If the code is recompiled, this data can be reused. Data in this

category includes the equivalent switch code computed when the direct-threaded

or inline-threaded interpreter is used.

• Global data: All the data required for compilation or runtime support that

is not specific to a method. This includes, for example, configuration data,

data structures used for the direct-threaded/inline-threaded code to switch code

conversion, compiler classes, and object instances.

All the per compiled code data is allocated either within the compiled code or at

the end of the compiled code array. Figure 7.1 shows the compiled code layout. Jump

tables are located within the code following the jump instruction. A (native offset,

bytecode pc) mapping is located at the end. It is used by the runtime to compute the

bytecode pc when signal-based exceptions occur. The last entry in the array indicates

the mapping table size. The memory management of per compiled code data is quite

simple. If the compiled code is ever freed, its accompanying data is also freed without

having to rely on additional data structures or processing.
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native offset
interpreter pc

native code
(including
jump tables)

for signal−based
exceptions

Data required

map size

Figure 7.1: Native Code and Data Layout.

We now describe typical types of data allocated by the runtime and the com-

piler. For each of them, we mention their memory requirements and their allocation

patterns.

• Compiled code arrays: Once ready, compiled code must be allocated at a

fixed memory location. Though the generated code is relocatable, such code

cannot be moved while it is being executed by some thread. Code arrays can

be freed if no longer needed. Compiled code arrays should be allocated in the

class loading data area such that if a class loader and its loaded classes are ever

unloaded, all associated memory would be released at once.

• Stack Offsets and bpc2inlinedpc arrays: These arrays are computed by

the runtime and are used by the compiler during compilation of a method (per-

method data). They are freed when they are no longer needed, that is, if the

method fails to compile or if the method has been successfully compiled and

will not be recompiled. In order to be used by the compiler (written in Java),

the runtime allocates them on the Java heap as Java int arrays.
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• Equivalent switch code arrays: When the direct-threaded or inline-threaded

interpreter is used, an equivalent switch code array is computed by the runtime

and fed to the compiler. This array cannot be moved as it could be patched

during execution to be reused later for recompilation. This array can be freed

if compilation fails or if it will not be reused for compilation. As is the case for

compiled code arrays, these arrays should be allocated in the class loading data

area.

• Compiler classes and objects: Compiler classes are loaded by the SableJIT-

ClassLoader, all the associated data is therefore allocated in that class loader

data area. Compiler objects are allocated on the heap.

• Global runtime data: Most of the global runtime data of SableJIT such as

configuration data is allocated statically. Dynamically allocated data is allo-

cated in SableVM global memory.

7.3 SableJIT Memory Manager

The SableJIT memory manager does not currently perform custom allocation. That

is, it relies heavily on both the garbage collected heap and class loader memory

managers to actually obtain memory. It is designed to provide a centralized and

unified interface for all SableJIT memory allocation needs. By having a memory

manager, we avoid having to adapt and modify the class loader memory manager

to suit the needs of SableJIT. Also, this centralization makes it easy to compute

statistics on memory usage or to later experiment on custom memory allocation that

takes into account the allocation/freeing patterns of SableJIT. The memory manager

does play an essential role in managing code arrays especially when these are to be

freed.

For allocation that should occur on the Java heap, the memory manager allocates

a native reference. Native references provide a handle to objects in native C code.

These references also prevent the objects from being garbage collected. The memory

manager creates the object instance and assigns it to the local reference. To free the
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allocated memory, the native reference is simply freed so the object instance memory

can be reclaimed at the next garbage collection.

For allocations that should occur in the class loading data area, the SableJIT mem-

ory manager uses the class loader memory manager to allocate enough space to store

both a header and data. The header contains the amount of memory allocated. This

is necessary as the class loader memory manager is especially designed for allocating

memory and freeing subareas. As such, it does not contain size information.

The class loader memory manager might not fit well with the SableJIT model if a

lot of allocated data is later freed. It would be interesting to design a custom alloca-

tion scheme that could allocate large blocks from the class loader memory manager

and then sub-allocates smaller blocks in a scheme that would correspond better to

SableJIT memory allocation patterns.

7.4 Garbage Collection

Since SableJIT directly manipulates the Java stack and the locals, we do not need

to maintain an extra root set for garbage collection. At a garbage collection point,

all references have been written either to an operand stack slot, a local, a field, or

some other location traced by the garbage collector. At such points, neither native

registers nor native stack locations contain references that are not already part of the

root set.

The compiled code stores the state at points where garbage collection could occur.

These points are the same as in the interpreter. Saving the state consists of saving the

current bytecode pc and the current operand stack size in the current Java stack frame.

This information is sufficient for the garbage collector to obtain the gc stack map at

the specific point and use it to retrieve references from the operand stack. Other

references are retrieved by other means and are independent of the current location

within a method. Basically, everything is done as in the interpreter. In addition, the

runtime needs to take into account that compilation could trigger garbage collection.

Therefore, compilation can only occur at gc safe points.
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7.5 Garbage Code Collection

SableJIT is able to safely collect unused compiled code that could occur in the pres-

ence of recompilation and when reverting to the interpreted code. This operation

must be done with care as older code versions could still be in used by either some

other thread or, if the method is called recursively, by the current thread. We refer

to this process as garbage code collection. Our algorithm relates to a tracing garbage

collector in two ways. First, it is executed only periodically and second, it traces the

stack of each threads to identify code still in use.

When the runtime requests compiled code to be freed, the memory is not released

right away, instead it adds a pointer to the compiled code to a global list of potentially

unused code. The total size of code on the list is maintained. At garbage collection

time, as threads are stopped their native PCs are recorded. If the total memory that

could be potentially freed exceeds some threshold, code is garbage collected. The

collector uses the native PCs to walk the native stacks and collect the return address

in each native stack frame. Then, for each compiled code element in the global list, a

check is done to see if it is used by some thread, that is, if a return address falls within

the boundaries of a compiled code version. If there are none, the actual memory used

by the code can be safely freed.

A second approach would be to save a pointer to the compiled code in the Java

stack frame (or a NULL value if interpreted) at each method invocations. This

approach would have made each method invocation slightly more expensive but it

would have simplified the implementation significantly. Presently, two small primitive

functions to walk the stack need to be implemented for each architecture supported.

7.6 Memory Management Within the Compiler

Since the compiler is written in Java, all compiler objects, some compiler arguments

and any objects or data structures created during the compilation process are al-

located on the garbage collected heap. In order to reduce pressure on the garbage

collector, a pool of compiler objects is used. The objects that are reused are all the
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main compiler objects in both the frontend and backend (subtypes of IRBuilder,

Architecture and RegisterAllocator) as well as the code arrays. Of these, only

the IRBuilder reference is explicitly stored in the pool, references between these ob-

jects prevent the garbage collector from collecting them. The object graph is therefore

not recreated for every compilation task, only part of their state must be reset before

their next use.

Code arrays are dynamically increased if required. By reusing code arrays for

future compilations, we save on allocation and initialization time. Allocating a new

array every time would have required that its memory be zeroed by the virtual ma-

chine each time.

The maximum pool size is fixed at build time. The actual pool size defaults to

the maximum value but a smaller value can be specified with the following command

line option:

-C pool-size=VALUE

The pool size determines the number of compilations that can be in progress at any

time.

7.7 Summary

In this chapter we have presented the different memory allocation requirements and

patterns of SableJIT. We have described the SableJIT memory manager. We have

seen how the baseline compiler simplicity makes garbage collection support for com-

piled code easy. We have studied how older versions of compiled code are safely

garbage collected by the runtime. Finally, we have seen how the compiler maintains

a pool of objects and reuses them for efficiency.
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Chapter 8

Retargetability

In this chapter, we present the retargetable backend of SableJIT. We start by

describing the backend overall design. Then, we introduce the RT1 code model that

serves as an architecture-independent layer. We discuss register allocation and usage.

We study the special case of the x86 CISC architecture and how we have proceeded

to make it fit the RISC-based RT code model. We conclude the chapter by present-

ing various services provided by the backend such as maintaining code arrays and

performing architecture-independent branch patching.

8.1 Backend Architecture

SableJIT retargetability comes mostly from the design of its compiler backend. Figure

8.1, first introduced in chapter 3, shows the UML diagram of the core backend classes.

In order to facilitate porting, the architecture dependent backend components are

mainly divided into two parts: the instruction set and the abstract binary interface

(ABI). The Architecture class serves as the interface to the backend. Subclasses

of Architecture implement the instruction set for a specific architecture. The ABI

consists of a sets of conventions regulating register usage and function calls on a

specific platform. On a given processor architecture, these conventions can differ

1The name RT comes form the word retargetable.
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Figure 8.1: Compiler Backend

from one operating system to another. The implementation of the ABI for a platform

is located in a class implementing the interface ABI. The Architecture class contains

ABI-related methods that simply delegate the work to the accompanying ABI class.

The frontend generates the code by invoking methods in the Architecture class. In

other words, the Architecture class presents an architecture independent interface

to the frontend.

Table 8.1 summarizes the different CPUs and operating systems (OS) currently

supported2. Each row defines a platform. The first and second columns are the CPU

and ABI respectively representing that platform. The third column lists operating

systems using that CPU and ABI combination. The fourth and fifth columns are

the name of the Architecture subclass and the name of the class implementing the

ABI interface respectively. Note that on the PowerPC architecture, the System V

ABI and the Mach-O ABI did not differ enough to justify the use of two separate

ABI classes. Both use the same class and the small set of differences are taken into

account. Figure 8.2 illustrates these differences. Most of them are accounted for by a

slightly different native stack layout (see figure 8.3). The Mach-O ABI requires that

space be reserved in the linkage area to store the condition register (CR) in addition

to the link register (LR) and the stack pointer (SP). This makes the LR as well as

the function parameters accessible with different offsets from the SP.

A third type hierarchy not illustrated in figure 8.1 is the RegisterAllocator

hierarchy. A RegisterAllocator object maintains a list of registers available on

2Linux on both x86 and ppc were used as development platforms. FreeBSD/x86 and Darwin/ppc
are testing platforms. Signal-based exceptions are not yet supported on these last two. Solaris/sparc
is a recent development platform.

79



8.1. Backend Architecture

CPU Convention OS Architecture ABI

ppc System V Linux PPC PowerPCABI
ppc Mach-O Darwin, Mac OS X PPC PowerPCABI
x86 System V Linux, FreeBSD X86 X86ABI
sparc System V Solaris Sparc SVR4SparcABI

Table 8.1: Classes Implementing the Backend of Supported Platforms

// offset to function parameters
private static final int PARAM_OFFSET = Configuration.IS_DARWIN ? 8 : 4;

...

// frame size
frameSize = Configuration.IS_DARWIN ? 128 : 112;

...

// save LR
arch.mflr_ppc(0);
arch.storeI(0, Configuration.IS_DARWIN ? 8 : 4, FP);

...

// restore LR
arch.loadI(0, Configuration.IS_DARWIN ? 8 : 4, FP);
arch.mtlr_ppc(0);

Figure 8.2: Code Segments Affected by ABI Differences

Stack
frame

Linkage
area

LR

CR

SP

(a) Mach-O ABI

Linkage
area

Stack
frame

SP

LR

(b) System V ABI

Figure 8.3: Differences in Native Stack Layout on the PowerPC
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a platform and register categories. The RegisterAllocator instance is obtained

through the ABI interface.

8.2 RT Code Model

In order to facilitate retargetability, we follow an approach similar to VCODE [Eng96].

A RISC-based virtual architecture model is used. We call our model RT code. As on

RISC architectures, most RT instructions are simple and take three register operands:

two source operands and a destination operand. Data transfers between memory and

registers are accomplished with load and store instructions available for different data

types. Retargeting the backend to a new platform consists mainly of implementing

the set of RT instructions for the target platform.

There are two main motivations for choosing a RISC-based model. First, a RISC

architecture has a small and simple instruction set. This reduces the number of in-

structions to implement for each native platform. Second, several common native

architectures such as PowerPC and SPARC are RISC architectures. These architec-

tures map very well to our model. An important exception is the x86 architecture

that is a CISC architecture. Although the x86 architecture does not fit our model as

well as RISC architectures, it does have a large and varied instruction set that makes

it possible to map it to our model relatively efficiently as we will see in section 8.4.

The RT architecture is implemented by a set of Java methods located in the

architecture classes as opposed to a set of C macros and functions as it has previously

been done in VCODE and in icode [Kaf]. The prototype of a method corresponding

to a typical RT instruction such as a register add is: addI(int rd, int rs, int

rt). This method, when invoked by the frontend, generates native code that adds

the content of registers rt and rs and stores the result in register rd.

Most RT instructions have Java semantics. In particular, instructions such as in-

teger division, floating point operations and type conversions behave in a well-defined

way on all platforms even for exceptional cases. For example, the Java specifica-

tion [LY99] states that division overflow, that is, dividing 0x80000000 by −1, must
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give 0x80000000 as the result and must not throw any exceptions. On both the Pow-

erPC and the x86 architectures the implementation of the integer division requires

additional native instructions to handle this special case.

To simplify the implementation of the RT instruction set on 32-bit architectures, a

pair of registers is provided for operands of type long (64-bit integer) in RT methods.

For example, the method addL(int rd1, int rd2, int rs1, int rs2, int rt1,

int rt2) generates code for a long addition. On 32-bit architecture, the high word

of the operand is provided in the first register of the pair (i.e. rd1, rs1, and rs2) and

the low word is provided in the second register of the pair (i.e. rd2, rs2, and rt2).

On 64-bit architectures, the first register argument in a pair is treated as a 64-bit

register and the second register is simply ignored3.

The RT code provides a level of abstraction between the native architecture and

the frontend. The baseline compiler does not construct any data structures contain-

ing RT instructions, instead, the frontend simply invokes the RT methods of the

backend to generate the code. With the addition of an optimizing compiler, an inter-

mediate representation composed of RT instruction nodes could be built to perform

optimizations before emitting the code.

8.2.1 Instruction Types

Table 8.2 enumerates the types that RT instructions operate on. Most operations

are performed on types: int, long, float, or double. Types byte, short, and char

are mostly used in memory operations and type conversions. As opposed to VCODE

where the types correspond to C types, the RT types are well defined and map directly

to Java types. An int is always a 32-bit signed integer and a long a 64-bit signed

integer no matter if the native platform is 32-bit or 64-bit. As a current limitation,

SableJIT does not have a pointer type. Pointer values are stored into integer registers

and instructions of type int are performed on them.

3SableJIT does not currently support any 64-bit architectures.
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Name Code Description

int I 32-bit signed integer
long L 64-bit signed integer
float F single precision float
double D double precision float

byte B 8-bit signed integer
short S 16-bit signed integer
char C 16-bit unsigned integer

void V void

Table 8.2: RT Code Instruction Types

8.2.2 Naming Convention

A convention is used to name RT instructions and their methods. Each name consists

of a descriptive base name that can be followed by a single-letter type code (see

table 8.2). Implementors wishing to provide additional instructions for modularity or

flexibility are encouraged to append an architecture suffix arch where arch identifies

the architecture (for example, ppc, x86, . . . ). This suffix makes it clear that the

method does not implement a defined RT instruction. Untyped instructions such as

function calls do not have a type code. Finally, type conversion instructions do not

have a type code appended as their types are made implicit in their base name. We

provide some examples:

• addI, addL: add integer, add long (I for int, L for long).

• addiI: add integer immediate.

• mtlr ppc: move to link register (a PowerPC-specific instruction).

• i2f, i2d: integer to float, integer to double (x2y converts type x to type y).

8.2.3 Default Implementation

Some RT instructions inherit a default implementation from the Architecture class.

On some architectures it is possible that the default implementation happens to be the
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best. On others, overriding the default implementation could improve performance.

In that respect, RT code is somewhat similar to VCODE that has a core instruction

set and extension layers implemented in terms of the core instructions. However,

since most RT instructions are quite primitive, no clear delimitation between core and

non-core instructions are made. Most, if not all, instructions should be implemented.

Default implementations allow a quick port that could be improved later. Examples

of instructions with a default implementation are:

• Several instructions with operands of long type expressed in terms of 32-bit

instructions. Ex: andL is implemented as two andI.

• Some immediate variants expressed in terms of a load immediate followed by

the register-only variant. Ex: muliI implemented as a liI followed by a mulI.

• Instructions expressed in terms of some other instruction through modification

of the operands. Ex: subiI(rd,rs,imm) as a addiI(rd,rs,-imm)

• Complex instructions including remL, remF, remD and several type conversions

expressed in terms of an internal C function call.

8.2.4 RT Instruction Set

Table 8.3 and table 8.4 show the RT instruction set. RT instructions are classified

into three categories: simple instructions, ABI instructions, and jump table primitive

instructions. Note that there are two load instructions operating on the byte type:

loadUB and loadSB. The first one zero-extends the byte into the destination register

and the second one sign-extends it.

Simple Instructions

Instructions that fall into this category map trivially to a single or relatively few

(2 or 3) native instructions on a RISC architecture. For example, the add integer

instruction,addI, performing addition on register operands is implemented in a single

instruction on a typical RISC architecture. A second example is the add immediate
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Simple Instructions
Name Type Arguments Description

li I, L rd, imm load immediate into register
(rd = imm)

mr I, L, F, D rd, rs move register (rd = rs)
load UB, SB, S,

C, I, L, F,
D

rd, offset, rb load from memory into register
(rd = mem[rb + offset])

store B, S, I, L,
F, D

rs,offset,rb store from register into memory
(mem[rb + offset] = rs)

add, sub, div, rem I, L, F, D rd, rs, rt binary arithmetic operations
(rd = rs op rt)

neg I, L, F, D rd, rs negation (rd = - rs)
shlX rrn,
shrX rrn,
ushrX rrn

I, L rd, rs, n shift by n (rd = rs sh op n)

shlX rrr,
shrX rrr,
ushrX rrr

I, L rd, rs, rt shift by rt (rd = rs sh op rt)

and, or, xor I, L rd, rs, rt logical operations
(rd = rs op rt)

addi, subi, muli,
divi, remi, andi,
ori, xori

I rd, rs, imm immediate operations
(rd = rs op imm)

cmpL L rd, rs1, rs2,
rt1, rt2

compare long
(rd = cmp(rs1,rs2,rt1,rt2))

cmplF, cmpgF,
cmplD, cmpgD

F, D rd, f1, f2 floating point comparisons
(rd = cmp(f1,f2))

ifxxI I rs, label/addr compare against 0 and branch if
condition xx is true

ifcmpxxI I rs, rt, la-
bel/addr

compare registers and branch if
condition xx is true

Table 8.3: Selected RT Instructions - Part 1
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Simple Instructions
Name Type Arguments Description

jumpReg,
jumpImm,
jumpLabel

N/A rs/imm/label unconditional branches

rawWord,
rawLabel

I imm/label write argument verbatim in code
array

i2l,i2f,i2d,
l2i,l2f,l2d,
f2i,f2l,f2d,
d2i,d2l,d2f,
i2b,i2c,i2s

– rd, rs type conversion (rd = x2y(rs))

nop N/A none no operation
trapWordEqZero I, L rs trap on zero
trapWord-
ArrayBounds

I rs, sizeReg trap on array index out of bounds

ABI Instructions
Name Type Arguments Description

prologue N/A – function prologue
epilogue N/A – function epilogue
moveArg I rd, n move function argument n to reg-

ister rd
pushRegArg I, L, F, D rs push register argument
pushImmArg I, L, F, D imm push immediate argument
callReg N/A rs indirect function call
callImm N/A imm function call
moveReturnValue I, L, F, D rd move return value in rd

return I, V rs/none return value in rs or void
returni I imm return immediate value

Jump Table Primitives
Name Type Arguments Description

jumpTable,
jumpRelative

N/A rs jump primitives

computePC,
computePCImm

N/A rd, label/imm computes the PC identified by rd

Table 8.4: Selected RT Instructions - Part 2
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integer instruction (addiI). On most RISC architectures it requires one or two native

instructions depending on whether the immediate value fits into the immediate field

of the instruction. RT code consists mostly of simple instructions.

ABI Instructions

Instructions that fall into this category are related to the ABI. They provide an

abstract view of the native ABI, hiding the specifics from the frontend. The imple-

mentation of these instructions is located in ABI classes. Some instructions require

several native instructions while others are quite simple. We briefly summarize each

one:

• prologue and epilogue: Generate the prologue and the epilogue respectively.

• moveArgI: Loads an argument passed by the caller in a register.

• pushRegArgX and pushImmArgX: Pushes a function argument on the native stack

or moves the function argument in a register.

• callReg and callImm: Call a function. The function address is provided either

in a register or as a immediate value.

• returnI and returniI: Set the return register or stack location with the pro-

vided return value and then jump to the epilogue. The value can be specified

by a register or immediate operand.

• moveReturnValueX: Retrieves the return value of the callee and stores it in a

register. This instruction, when used, must follow immediately a callReg or

callImm instruction. Otherwise, the value is undefined.

To perform a function call, a series of pushXXArg instructions are done consec-

utively before the actual call with a callReg or callImm instruction. Arguments

are “pushed” from left to right in the order they appear in the function declaration.

Contrary to what the name could imply, the arguments do not actually need to be
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pushed on the stack; they can be passed in registers depending on the native archi-

tecture. Furthermore, the RT architecture does not dictate when the arguments are

actually moved. It is possible to delay all code generation to the callReg/callImm

instruction and to have pushXXArg implementations simply collecting information on

the call. This flexibility is particularly useful for architectures such as x86 where

arguments need to be pushed in reverse order.

The organization of the native stack is also left to the implementor. There are

no requirements other than respecting the ABI of the native architecture. Figure 8.4

illustrates the native stack layout for compiled code on the PowerPC platform. Space

in the stack frame is reserved for a parameter area and a linkage area to satisfy the

native ABI. The stack pointer (SP) always points to the previously saved SP forming

a back chain. The SP must also be aligned on a 16-byte boundary by adding necessary

padding. For simplicity, a general purpose register (GPR) is used as a frame pointer

(FP). Space is reserved to store any callee-saved GPRs that might be used. As no

callee-saved floating point registers (FPR) are used by the baseline compiler, no space

is allocated for them. Also, no space for variables is required as the baseline compiler

uses the Java operand stack.

Jump Table Primitives

Instructions in this category are used in the implementation of jump tables and jump

subroutine (jsr). Their specification is kept simple to minimize the amount of work

required to port to a new architecture. Most functionality to generate jump tables

is located in the frontend. However, the implementation of these instructions is less

trivial than the first category and they usually require several native instructions.

This category includes the following instructions:

• computePCImm and computePCReg: Two basic primitives that are sufficient to

implement the two types of jump tables and the jsr instruction.

• jumpTable: This instruction is used to implement a table switch. It loads the

table entry corresponding to the index argument and then jumps to the target

loaded.
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Figure 8.4: Native Stack Layout Used by Compiled Code on PowerPC

• jumpRelative: This instruction is used to implement a jsr. The jump is

relative to the beginning of the compiled code array.

A RT instruction similar to the jumpTable could be added for the lookup switch

bytecode implementation. However, the lookup switch implementation is complex

as a binary search is used for efficiency. Instead of requiring complex code to be

implemented for each architecture, the code implementing the lookup switch was im-

plemented once in the frontend using RT code. The two primitives computePCImm and

computePCReg are used in the implementation. They have the following prototypes:
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public void computePCImm(int rd, int address)

public void computePCReg(int rd, int addressReg)

They differ only in their second operand. The first one takes an immediate value

(known at compile time) for the address whereas the second one takes a register

argument. The code generated by these methods computes an absolute memory

address and stores it in the destination register rd. The computed address corre-

sponds to &code[address], that is, it identifies some location in the code array. The

tableswitch and jsr bytecodes are, by default, expressed in terms of these two prim-

itives. Computing absolute addresses for jump tables could be avoided by allocating

the tables in fixed memory during code generation and providing the compiler with

the address. Currently, they are allocated within the code array.

8.2.5 Example

We review the example introduced in section 5.1.2. It illustrates how the frontend

uses the retargetable backend. We consider the Java bytecode instruction iaload.

This instruction pops an array reference and an index from the Java operand stack.

The element at the given index is retrieved and pushed on the operand stack. Figure

8.5 shows the memory layout of arrays used by the virtual machine. An array header

containing information such as the array size is located before the array elements.

The array reference points to the header. The step required to execute the iaload

instruction are as follows:

1. Pop the array reference.

2. Pop the index.

3. Check if the reference is null.

4. Check if the index is within bounds.

5. Compute the element address.

6. Load the element value.
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array header
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array ref

Figure 8.5: Memory Layout of Arrays

7. Push the value.

These steps are general and common to all architectures, only the native instruc-

tions implementing them differ. Figure 8.6 shows the implementation found in the

baseline compiler. In line 4 and 5, m4sj popI is a macro that expands to a loadI RT

instruction. Using this macro, the array index and the array reference are popped

from the operand stack and stored in registers tmp1 and tmp2. At lines 7 and 8, RT

code is generated for a null pointer check and an array bounds check. In line 11,

shlI rrn generates code to shift the register tmp2 by 2 in order to multiply by 4. In

line 13, addI adds the content of register tmp2 to register tmp1. In line 15, loadI

loads the array element. The offset from the base in the loadI instruction is used

to skip the header. Finally, in line 18, the content of register tmp1 is pushed on the

operand stack.

It is important to note that this method is shared between all architectures. The

native code generated depends on the type of the arch instance. For example, on the

PowerPC architecture, arch is an instance of class PPC. The methods of the PPC class

are invoked by the frontend and the PowerPC implementation of the RT instruction

set is used.

A second thing to observe is that if the memory layout of arrays is changed,

it is not necessary to modify any architecture specific code. Simply modifying the

frontend is sufficient. The same statement applies to object layouts. Furthermore,

simply porting to a new platform does not require knowledge of the virtual machine

internals.
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1 // arrayref index --> value
2 public void build_iaload(int currentPC) {
3
4 m4sj_popI(tmp2); // index
5 m4sj_popI(tmp1); // ref
6
7 checkNullPointerException(currentPC, tmp1);
8 checkArrayIndexOutOfBoundsException(currentPC, tmp1, tmp2);
9
10 // multiply index by 4
11 arch.shlI_rrn(tmp2, tmp2, 2);
12 // find element
13 arch.addI(tmp1, tmp1, tmp2);
14 // load element
15 arch.loadI(tmp1,

SableVMConstants.ALIGNED_ARRAY_INSTANCE_SIZE,
tmp1);

16
17 // push it on stack
18 m4sj_pushI(tmp1);
19 }

Figure 8.6: Implementation of build iaload in RT Code

8.3 Register Allocation

The backend provides a RegisterAllocator interface. Classes implementing the

RegisterAllocator interface do not perform register allocation per se, in that they

do not automatically handle register spills and register loads. They simply provide

architecture-specific register numbers to the frontend. They contain methods that

are used by the frontend to allocate (request) and to free (release) registers.

There are currently four categories of registers recognized by the allocator. Tem-

porary registers are integer registers that are not preserved across function calls. Saved

registers are integer registers that are preserved across function calls. Finally, float

registers and double registers are registers for single precision and double precision

floating point numbers respectively. Floating point registers (FPRs) do not need

to be preserved across function calls. This register classification is sufficient for the

baseline compiler.
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8.3.1 Register Requirements and Usage

For the baseline compiler, 2 float registers, 2 double registers and several temporary

and saved registers are required. On some architectures such as SPARC, 2 single

precision FPRs are used to store a double precision number. In that case, the first

register of the pair is used to identify the pair and this is transparent to the frontend.

By collecting register usage statistics experimentally, we have found that 9 tem-

porary registers and 9 saved registers seemed to be sufficient in the current PowerPC

implementation. The number of integer registers required depends on the imple-

mentation of individual RT instructions. Computing the exact number would have

consisted of tracing the program flow in the frontend and backend to compute the

number of registers required for each bytecode. Note that if the allocator runs out of

temporary registers, saved registers are used.

A fixed number of registers are preallocated and they refer to the same quantities

at all time. These include registers for global4 values often used such as the Java

locals pointer and the Java operand stack pointer. Several temporary registers used

frequently by the frontend are also preallocated to a specific register, even though the

meaning of their value changes. By preallocating them, we avoid frequently invoking

methods to get and release them.

The frontend can specify which registers are important. On architectures with a

large register set, this hint can simply be ignored. On architectures with a limited

number of registers such as the x86 this hint is used to map important values to real

native registers permanently rather that using locations on the native stack. In the

next section we discuss issues encountered with the non-RISC x86 architecture.

8.4 x86: Problems and Solutions

RT code is based on a RISC-like model. Implementing RT code for a RISC architec-

ture is simple and the implementation is efficient. However, implementing RT code

for a CISC architecture brings up several issues. We summarize problems encountered

4Global to the compiled method.
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on the x86 architecture and then we describe their solutions.

• Limited number of registers: The x86 has only 8 GPRs where one is

the stack pointer. Our implementation uses an additional register as a frame

pointer. This reduces to 6 the number of GPRs for storing variables and per-

forming computations.

• 2-operand instructions: Several x86 instructions have two operands rather

than three, the destination operand serving also as a source operand. For ex-

ample, the addition on the x86 has the format add rd,rt (rd = rd+ rt) rather

than the 3-operand format: add rd,rs,rt (rd = rs + rt).

• Register specific usage: On the x86 architecture some register operands

are implicit, that is, they are not specified by the instruction encoding. A

typical example is the integer division where the 64-bit dividend must be located

in the register pair EDX:EAX (the 32-bit higher word in EDX and the 32-

bit lower word in EAX). The divisor is specified by an explicit register (or

memory) operand. The quotient and remainder are put in register EAX and

EDX respectively.

• Floating point register stack: The x86 architecture has an x87 floating

point unit (FPU) with 8 FPRs. The FPRs are addressed by floating point

instructions in a stack-like manner. A top pointer is kept in a status register.

Load instructions push values on the register stack and store instructions pop

values from the stack. Floating point instructions operate on the top element

and elements relative to the top.

We delay the presentation of the solution of the limited number of registers after

the discussion of the other three solutions.

8.4.1 2-operand Instructions

3-operand RT instructions are expressed in terms of 2-operand native instructions

by reorganizing the order of the operands and by adding necessary register moves.
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In the implementation of the baseline compiler, it is likely that both rs (first source

operand) and rd (destination operand) are the same. In that case, the code emitted

is efficient, as the 3-operand instruction actually has a 2-operand form.

8.4.2 Register Specific Usage

The baseline compiler frontend currently has no knowledge on instructions with im-

plicit register operands or on instructions with register usage restrictions. This prob-

lem is solved in a simplistic way: register moves are added as necessary to bring the

operands in the correct registers. If necessary, values in target registers are saved on

the native stack before the operation and are restored after.

8.4.3 Floating Point Register Stack

The register stack in the x87 FPU does not offer a big challenge for the baseline

compiler. For floating point operations, values are read from the Java operand stack

and the result is written back to the operand stack. At most two FPRs are required

and only the top two elements of the register stack are used. The values are loaded

on the register stack, the computation is performed and the result is stored back in

memory.

8.4.4 Limited Number of Registers

The limited number of GPRs is the most difficult problem to solve. The limitation can

be accommodated by introducing virtual registers. To the frontend, virtual registers

appear as any other registers, however, their data is stored on the native stack rather

than in real (or native) registers. The use of virtual registers was proposed as a

solution by Engler [Eng96], but not implemented.

Figures 8.7 illustrates the native stack layout used for compiled code. In addition

to the space reserved for the 3 callee-saved real registers, sufficient space is allocated

for a predefined fixed number of virtual registers. These registers are accessible by
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Figure 8.7: Native Stack Layout on x86

displacement addressing from the frame pointer (register EBP). Most x86 instruc-

tions have variants with memory operands. It is possible, with a clever selection of

instructions, to achieve performance comparable to a RISC platform.

The use of virtual registers is completely transparent to the frontend. The im-

plementation of the RT instructions distinguishes between real and virtual registers

by their assigned register number. Real registers are numbered from 0 to 7 matching

the native architecture numbering whereas larger numbers are used for virtual reg-

isters. Any combination of real and virtual register operands can be used with RT

instructions.

Register Allocation Scheme

For most x86 instructions not all operands can be memory operands, some of them

must be in registers. To achieve good performance, it is important to dedicate real

registers to some specific variables to avoid excessive register loads and stores. Table

8.5 summarizes the use of real registers in compiled code. ESP and EBP are the
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Register Usage

ESP native stack pointer
EBP native frame pointer

EAX scratch register, return value

ESI Java local pointer
EDI Java operand stack pointer

ECX tmp1
EDX tmp2
EBX tmp3

Table 8.5: Register Usage on x86

stack pointer and the frame pointer respectively. The frame pointer is mostly used to

access efficiently the virtual registers. EAX is used as scratch register and for return

values. ESI and EDI are used for the Java local pointer and Java operand stack

pointer respectively. Since the baseline compiler mimics the Java stack operations,

these two pointers are used extensively. Finally, the three mostly used registers

for computations (known to the frontend as tmp1, tmp2 and tmp3) are assigned to

registers ECX, EDX and EBX respectively.

8.5 Architecture Independent Functionality Provided

The backend provides some architecture independent functionality to handle common

tasks for all architectures and to facilitate porting. These tasks include maintaining

code arrays, performing branch patching and collecting information such as data

structure offsets and other architecture-specific information. We now discuss each of

these.

8.5.1 Maintaining Code Arrays

Maintaining code arrays consists of creating and resizing as necessary Java arrays that

will contain the code emitted. This functionality is implemented in the Architecture

class and it is made available through inheritance. Currently there is support for
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byte arrays and int (or word) arrays. Architectures that encode instructions as 32-

bit words such as PowerPC and SPARC use the word array. Architectures with a

variable-size encoding such as x86 use the byte array.

In debugging mode, the backend can maintain string arrays containing information

such as the equivalent assembly code. It is up to the implementor of a platform to

provide most of the information. Some high-level information is also added by the

frontend.

All maintained arrays are dynamically resized. No explicit check for overflow is

done. Instead, the implementation relies on the Java array bounds exception mecha-

nism to know when they should be resized. This is particularly useful for the one-pass

baseline compiler as the code array size required does not need to be precomputed.

In VCODE, it was up to the client code (that would correspond roughly to a compiler

frontend) to allocate an array large enough to hold the emitted code.

8.5.2 Architecture Independent Branch Patching

The backend provides an architecture-independent branch patching mechanism. The

same framework is also used to patch addresses in jump tables. Each architec-

ture has to implement the abstract method: int reserveBranchSpaceAmount(int

branchType). This method returns amount of space, in terms of array elements, to

set aside for forward branches. There is an extra cost for architectures where the

needed space varies depending on the target. For a branch of a particular type, the

largest amount of space ever required needs to be reserved. If it is not all used at

patching time, nops are added to fill the unused portion. In the compiler, branch

targets are abstracted by the use of Label objects. A label is set at the current point

in the generated code by invoking the setLabel method located in Architecture.

This label can be referred to in branch RT instructions. Branch RT instructions are

available in immediate value form and label form. The immediate form takes an offset

relative to the beginning of the code array as target. This form must be implemented

for each architecture. On the other hand, the label variant is part of the framework.

For backward branches, it invokes the immediate form immediately and for forward
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1 Label label = new Label("else");
2 arch.ifeqI(tmp1, label);
3 arch.returniI(3);
4 arch.setLabel(label);
5 arch.returniI(4);

Figure 8.8: RT Code Segment Using a Label

branches it records information for patching the code later.

Figure 8.8 shows a small RT code fragment that makes use of labels. In line 1 the

label object is created. A descriptive name (“else” in this case) can be given to help

debugging. In line 2, the RT instruction compares tmp1 against zero. If it is found

to be equal, a jump to the label set in line 4 is done, otherwise execution continues

at the next instruction. Since it is a forward branch, the target offset of the branch

is computed during the patching phase.

Patching entries of jump tables are done in a similar way as branches. Two meth-

ods are available to add entries: rawWord(int word) and rawLabel(Label label).

The former writes its argument verbatim in the code array and the latter writes the

address corresponding to the specified label either immediately if known, or later

otherwise.

8.5.3 Platform Independence of the Memory Layout of Data Struc-

tures

The memory layout of data structures (struct and union types) in C code is architec-

ture dependent. The compiled code needs to access and update some data structures

used in the virtual machine. The memory offset of each member from the start of the

structure varies from architecture to architecture, though it is constant within a single

architecture. For convenience, maintenance and portability, these offsets are not hard

coded in the compiler. A data file specifies relevant information. When the virtual

machine is built, this file is preprocessed and used to generate source code that is then

compiled with the virtual machine. This code prints out all the required information

when SableVM is run with the -C dump command line option. This information is

then used to generate a Java class containing all the field offset constants. These
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constants can then be used in the compiler code.

In addition to member offsets, information on the SableVM configuration such

as the used object layout (traditional or bidirectional) is provided to the compiler

in a similar way. Some information such as addresses of functions changes with the

slightest change in the source code. To avoid rebuilding the compiler after small

modifications in the virtual machine, that information is passed to the compiler at

runtime during its initialization. This process is also fully automated; adding a new

hook function consists of adding a new entry to the data file and rebuilding the

software.

Note that although the SableJIT compiler is written in Java, the compiler built is

dependent on a specific platform and a specific SableVM configuration. The compiler

jar file cannot be shared between different platforms or configurations. SableJIT does

however have an option to provide all the configuration information at runtime in

order to remove the dependency on configurations.

8.6 Summary

In this chapter, we have presented the compiler retargetable backend. We have de-

scribed the RT code model and how it is implemented. We have seen how registers

are allocated, their usage, and their requirements. We have studied the case of the

non-RISC architecture x86 and how we were able to make it fit well with our RISC-

based model. We have concluded the chapter by presenting various functionality

provided by the backend to reduce the amount of work required to port and maintain

the compiler code.
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Chapter 9

Porting Strategy and Experience

In this chapter, we present a strategy for porting SableJIT to new platforms. We

start by describing the suggested porting approach. Then we discuss our experience

gained in retargeting SableJIT to the Solaris/sparc platform. Finally, we estimate

the amount of effort required to add a new platform.

9.1 Suggested Porting Strategy

Since the compiler works in conjunction with the interpreter, the first obvious step

to support a new platform is to port the various interpreters of SableVM to that new

platform. The switch interpreter is quite portable whereas the inlined interpreter

requires some additional work. If the target platform does not support the inlined

interpreter or does not support signal-based exceptions, then it is still possible to

port SableJIT without these features. Luckily, SableVM already supports a variety

of platforms and it is likely that most work will be in SableJIT. For porting Sable-

JIT to a new architecture, knowledge of the new architecture should be sufficient.

It should not be necessary to know about bytecode instructions, object layouts or

other virtual machine internals. Note that this property also makes the retargetable

backend quite independent from some design decisions in SableVM. For example,

changing the object or array layout does not require architecture specific changes, as

all changes are located in the compiler frontend. Porting SableJIT requires minimal
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Primitive Function Description

void *

get native frame pointer

( svmt JNIEnv *env)

Returns some pointer (not necessarily a frame
pointer) that allows the native PC to be re-
trieved from stack frames by calling repetitively
sjf get next native pc.

void *

get next native pc

(void **frame pointer)

Returns the native PC (i.e. the return address) stored
in the frame identified by frame pointer. Also up-
dates the pointer argument for the next call.

void *

get fault address

(int signo,

siginfo t * info,

void *context)

Returns the address of the instruction that caused a
SIGSEGV, SIGFPE or SIGTRAP.

void get exactitude

(jint signal code,

jboolean *is exact,

jint *exactitude offset)

Provides some information on how close the fault ad-
dress can be from the addresses stored in the map.

Table 9.1: Architecture Dependent Primitive Functions in the Runtime

work in the runtime and more extensive work in the compiler. We now present the

work required and a strategy to accomplish it.

9.1.1 Porting the SableJIT Runtime

The SableJIT runtime is written in portable C code. Most of the code is architecture

independent. The few architecture-dependent code segments have been isolated in two

well-commented files: jit system.h (about 55 lines) and jit system.c (about 190

lines). In file jit system.h, the code array width is specified: either words or bytes

corresponding to the Java int[] type and byte[] type respectively. In jit system.c,

four small primitive functions need to be implemented for each architecture. Table 9.1

lists their prototypes with a brief description. They require a few lines of assembly or

C code. Functions sjf get native frame pointer and sjf get next native pc

are used to walk up the native stack during garbage code collection (see chapter

7). Functions sjf get fault address and sjf get exactitude are used in signal-

based exception handling (see chapter 6).
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9.1.2 Porting the SableJIT Compiler

Porting the compiler demands more effort than the runtime. The amount of effort

greatly varies depending on whether the compiler is being retargeted to a new oper-

ating system on an already supported processor architecture or if we are targeting a

new processor architecture.

Retargeting a New OS on a Supported Processor Architecture

Retargeting SableJIT to a new operating systems on a supported processor archi-

tecture requires little work. The already implemented RT instruction set for that

architecture is reused. However, the ABI could differ from the currently supported

ones. Two options are available to port the backend to a new ABI:

1. Implementing the full ABI for the target OS as a new class.

2. Modifying an existing ABI implementation to add support for your OS.

As mentioned in earlier chapters, all the ABI-specific code is located in one of the

classes implementing the ABI interface. The backend is designed to easily support

different ABIs for a particular processor architecture. The choice between a full

implementation of a new ABI or a modification of an existing ABI class depends on

the number of differences between the target ABI and an existing one. It is important

to note that only a subset of the ABI is used by the compiled code. This could further

reduce the amount of differences. Several simplifications are made:

• Compiled code does not call functions with more than eight arguments.

• Compiled code does not receive or pass structures by value. A pointer to the

structure is always used.

• Compiled code does not call functions with mixed floating point and integer

arguments. All arguments of a function call are of the same type: either of

integer type (32-bit or 64-bit) or of one of the floating point types.
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• Compiled code does not call variable arguments (a.k.a varargs) functions.

By taking into account these simplifications, operating systems with mostly similar

ABIs could become identical for our purposes. This is indeed the case between the

System V ABI and the Mach-O ABI on the PowerPC platform. The set of differences

is small enough that creating a new ABI class was not justified. Both implementations

were merged in the same class.

Retargeting a New Processor Architecture

Retargeting to a new processor architecture involves more work as the full RT instruc-

tion set must be implemented. Several means are available to help the development

process. Some instructions have a default implementation in terms of others. This

helps incremental development as the full RT code does not need to be implemented

at once then tested as a whole. Isolating bugs is made easier. Also, the fact that

the compiler can recover from compilation errors by falling back to interpretation

helps running full series of test cases without interruption due to bugs. In particular,

some methods or functionality could be temporarily implemented in a dummy way

by adding a statement that throws a NotImplementedException exception. This

delaying of implementation further helps incremental development and testing. In-

cremental development is useful as the code in development can be kept relatively

stable and new code can be tested as it is added.

The robustness of the compiler helps in that test cases provided with SableJIT

can be used early in the development process. Tests failing to compile are simply

interpreted (and hence they are skipped) instead of terminating the virtual machine.

Progress made can be observed by noting the ratio of successful test cases, as im-

plementation and debugging proceed. This strategy was used in the initial SableJIT

development as well as the port to the SPARC architecture, and it proved to work

well.

Finally, when SableJIT is run in testing mode, it is possible to explicitly specify

which methods to include for compilation. The options used to do so are described

in section A.3 in the appendix. This control provides further helps in isolating bugs
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to a single or small number of methods.

Retargeting to a new architecture can be divided into the following steps:

1. Implement basic integer and branch instructions.

2. Start testing and debugging the backend using the provided test cases.

3. Implement the ABI.

4. Start testing and debugging full method compilation.

5. Implement, test and debug remaining instructions such as floating point oper-

ations, type conversions and jump table primitives.

6. Implement, test and debug advanced functionality such as signal-based excep-

tions.

At the end of step 1, a basic code generation system is built. It is sufficient to

compile simple RT code sequences (as opposed to full Java methods) to native code.

In step 2, the test cases provided in class sablejit.arch.ArchitectureTest are

used to test if the implemented RT instructions follow the specification. The testing

code creates small sequences of RT instructions and executes them. This happens

entirely in the backend. After step 3 is done, a sufficient part of the RT instruction

set has been implemented to compile full, simple, Java methods. In step 4, testing the

complete compilation process begins. These test cases which are located in the class

sablejit.CompilerTest consist of compiling the bytecode of small Java methods to

native code. The complete compilation system is tested: the runtime, the frontend,

and the backend. In step 5 and 6, the implementation is completed with the remaining

RT instructions and with the addition of signal-based exception handling.

This strategy was followed to retarget SableJIT to the Solaris/sparc platform and

it worked well. Once the implementation was completed and debugged using the

provided test cases, the compiler was robust enough to survive compilation of most

Java code including the compiler and the Java class libraries, with the exception of

very few library methods.
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9.2 Evaluation of Porting Effort

In this section, we evaluate the required amount of effort to port SableJIT to a new

platform. The platform is Solaris/sparc and the main developer for this task was

Christian Arcand, an undergraduate student in computer science at UQAM. Arcand

implemented most of the SPARC backend. The author helped Arcand in debugging,

testing, and completing the implementation of advanced features such as signal-based

exceptions.

It is important to take into account two factors while evaluating this effort. First,

neither Christian nor the author had previous knowledge of the SPARC architecture.

Second, SableJIT as well as SableVM were still under development during that period

of time. Regularly incorporating new changes into the SPARC branch required some

effort from time to time. Also, at the beginning of the project, SableVM had to be

ported to Solaris. Small issues needed to be solved and several GNU software tools

needed to be installed.

The first thing we noted from that experience is that the architecture-dependent

code is well isolated. No changes other than adding some configuration information

were required in the compiler frontend. The work mainly consisted of adding two

classes: the Sparc class as a subclass of Architecture and the SVR4SparcABI class

implementing the ABI interface.

Adding and testing support for signal-based exceptions mainly consisted of im-

plementing two small primitive functions in the runtime as well as RT instructions

for traps. A small refactoring of the C code in the runtime was required, though,

as a previously made assumption was not holding on SPARC1. The runtime code

was refactored and the varying code was relocated as a primitive function in file

jit system.c. Signal-based exceptions were implemented in about two hours, in-

cluding learning about hardware traps on the Sparc platform, coding, testing and

debugging.

1It was assumed that the first instruction of the trapping code generates the trap, however, on
SPARC, the first instruction is a compare and it is actually the second instruction that generates
the trap based on the result of the comparison.
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9.2.1 Evaluation in Man Hours

We estimated that it took a total of 5 to 6 weeks (200-240 man hours) to learn the ar-

chitecture, install the necessary software tools, implement, test and debug the SPARC

backend. The actual work was done part-time, and spread over several months.

9.2.2 Evaluation in Lines of Code

We present a count of lines of code (LOC) for different components of SableJIT to

provide a general idea of the relative proportions of architecture-dependent code and

architecture-independent code. The LOC metric is a count of all lines including blank

lines and comments. The reason to include these resides in the usage of GNU M4

macros. Most of these macros are defined inside comments. If we had used tools that

exclude comments from the counts, these definitions would not have been reflected

in the counts. Files with M4 macros are expanded to either plain C or plain Java

source code that is then passed to the compiler. We provide numbers for files before

and after M4 expansion.

Table 9.2 shows the LOC value for various components of SableJIT. The first and

second column show the LOC before and after macro expansion respectively. The au-

tomatically generated file SableVMConstant.java is excluded from the counts. The

files containing test cases are also excluded. The percentage values are in terms of the

total line count (the All row). The All row consists of all the source code of SableJIT.

The second row, Compiler, is the compiler only, that is, the Java code. The third row,

Runtime, is the runtime written in C and compiled with virtual machine code. The

fourth row, Base, is the compiler base system, that is, all the compiler code shared

among all architectures. The next three rows correspond to the architecture depen-

dent backend code for the x86, PowerPC, and SPARC architectures respectively. The

last two rows sum up the architecture-dependent and architecture-independent code

respectively. The architecture dependent code for all three architectures represent

25.0% and 18.5% before and after macros expansion, respectively.
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Source LOC before
expansion

LOC after
expansion

All 33657 (100.0%) 56019 (100.0%)

Runtime 11401 (33.9%) 20873 (37.3%)
Compiler 22256 (66.1%) 35146 (62.7%)
Base 13856 (41.2%) 24776 (44.2%)
x86 3935 (11.7%) 5462 (9.6%)
ppc 2365 (7.0%) 2931 (5.2%)
sparc 2100 (6.2%) 1977 (3.5%)

dependent 8400 (25.0%) 10370 (18.5%)
independent 25257 (75.0%) 45649 (81.5%)

Table 9.2: Lines of Code for SableJIT

9.3 Summary

In this chapter, we have presented the porting process and experience. We have

started by describing a porting strategy and the work necessary to port to a new

platform. Then, we have described our experience in porting SableJIT to the So-

laris/sparc platform. Finally, we have evaluated the required amount of work.

108



Chapter 10

Experimental Results

In this chapter we present experimental results. We start by describing the test-

ing environments and the benchmarks used. Then, we present various performance

results.

10.1 Test Platforms

The experiments were conducted on three platforms that we designate as Linux/x86,

Linux/ppc, and Solaris/sparc. The Linux/x86 platform is an AMD Athlon 1250MHz

with 512MB of RAM running Debian GNU/Linux 3.0 with kernel 2.4.20. The

Linux/ppc platform is a PowerPC G4 533MHz with 1152MB of RAM also running

Debian GNU/Linux 3.0 with kernel 2.4.20. Finally, the Solaris/sparc platform is a

Sun Enterprise 3500 with 6 CPUs clocked at 400MHz and 3840MB of RAM running

Solaris 8.

For these experiments, we used SableVM version 1.1.6 (Classpath 0.10) built with

SableJIT support (subversion revision 2830). Unless indicated otherwise, SableVM

and SableJIT are built with default options. In particular, signal-based exception

handling is used and methods are considered for compilation on their second invoca-

tion.
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10.2 Benchmarks

We used the SPECjvm98 [SPE] benchmarks that are well-known in the literature

for measuring performance. Results obtained should not be treated as official SPEC

results as the SPEC methodology was not used to run the benchmark programs.

Instead, custom-written wrapper scripts were used to run them and to collect the

results.

We also used SableCC [Saba] as an additional benchmark for its high use of object-

oriented features. SableCC is a compiler compiler developed by the Sable Research

Group at McGill. It is used in the construction of compilers and interpreters in Java.

SableCC takes as input a grammar and then generates a lexer, a parser, and a set of

classes for building and traversing abstract syntax trees. We used version 2.18.2 and

we fed as input the grammar of Simple C1 available from the SableCC website.

10.3 Results

10.3.1 Interpreters and Compilers

We ran our benchmarks to compare the various combinations of interpreters and

compilers. It is important to remember that our baseline compiler is very naive

and, as such, does not do much more than the inline-threaded interpreter other than

removing additional instruction dispatch overhead.

Overall Performance

Table 10.1, 10.2, and 10.3 show the results obtained on the Linux/x86, Linux/ppc,

and Solaris/sparc platforms respectively. All times shown are in seconds. Times

are computed as the average of the sum of user and system time over three runs.

The first three columns of numbers show the results for the switch, direct-threaded,

and inline-threaded interpreters respectively. These interpreters are compiled with-

out the SableJIT runtime. The last three columns show the results when just-in-time

1Command used: java org.sablecc.sablecc.SableCC -d work simplec.sablecc
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Benchmark switch direct inlined switch/jit direct/jit inlined/jit

compress 361.49 273.25 185.28 91.69 (3.94) 88.45 (3.09) 85.57 (2.17)
db 148.70 120.30 100.85 69.70 (2.13) 69.49 (1.73) 68.53 (1.47)
jack 43.15 36.97 34.44 38.29 (1.13) 37.85 (0.98) 37.72 (0.91)
javac 105.85 85.98 79.01 92.44 (1.15) 90.69 (0.95) 89.78 (0.88)
jess 77.90 63.76 57.30 44.77 (1.74) 45.40 (1.40) 46.09 (1.24)
mpegaudio 317.08 217.86 166.79 114.86 (2.76) 114.35 (1.91) 113.35 (1.47)
mtrt 96.45 77.70 72.57 93.57 (1.03) 92.95 (0.84) 94.74 (0.77)
raytrace 93.15 75.44 69.66 92.30 (1.01) 91.76 (0.82) 92.15 (0.76)
sablecc 91.47 73.66 67.53 70.52 (1.30) 64.56 (1.14) 61.80 (1.09)

Table 10.1: Performance Results for Linux/x86

Benchmark switch direct inlined switch/jit direct/jit inlined/jit

compress 393.64 287.56 220.05 172.20 (2.29) 168.01 (1.71) 165.54 (1.33)
db 160.42 126.19 111.86 104.05 (1.54) 104.40 (1.21) 101.73 (1.10)
jack 55.43 46.60 48.54 53.79 (1.03) 53.51 (0.87) 54.19 (0.90)
javac 131.97 108.59 103.19 118.71 (1.11) 116.20 (0.93) 112.93 (0.91)
jess 93.45 75.97 70.60 67.78 (1.38) 67.05 (1.13) 67.29 (1.05)
mpegaudio 350.92 253.35 240.95 142.09 (2.47) 141.87 (1.79) 142.18 (1.69)
mtrt 116.77 92.41 89.19 115.03 (1.02) 115.27 (0.80) 113.72 (0.78)
raytrace 111.54 89.18 84.81 112.25 (0.99) 111.69 (0.80) 110.79 (0.77)
sablecc 115.32 95.68 88.95 103.55 (1.11) 98.03 (0.98) 93.45 (0.95)

Table 10.2: Performance Results for Linux/ppc

Benchmark switch direct inlined switch/jit direct/jit inlined/jit

compress 912.36 662.90 476.00 389.10 (2.34) 373.17 (1.78) 380.82 (1.25)
db 343.27 252.90 222.83 204.21 (1.68) 201.15 (1.26) 220.47 (1.01)
jack 117.13 94.21 92.44 102.99 (1.14) 101.58 (0.93) 102.67 (0.90)
javac 277.13 216.45 198.69 232.77 (1.19) 224.67 (0.96) 219.55 (0.90)
jess 194.26 150.68 140.09 142.82 (1.36) 145.02 (1.04) 142.87 (0.98)
mpegaudio 820.28 538.35 400.94 391.44 (2.10) 389.28 (1.38) 390.31 (1.03)
mtrt 225.04 171.82 159.96 193.81 (1.16) 192.04 (0.89) 195.06 (0.82)
raytrace 217.82 169.18 162.72 188.71 (1.15) 187.12 (0.90) 188.30 (0.86)
sablecc 235.23 182.58 167.71 206.62 (1.14) 190.22 (0.96) 179.77 (0.93)

Table 10.3: Performance Results for Solaris/sparc
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compilation is used. Numbers in parentheses are speedups achieved by the inter-

preter/compiler combination over the same interpreter without compilation support.

For some benchmarks, the compiler improves the performance while on others

it worsens it. Adding compilation support to the switch interpreter always leads to

improvements in execution time with the exception of raytrace on Linux/ppc which

is slowed down by 1%. The best result was obtained for compress on Linux/x86 with

a speedup of 3.94. For the direct-threaded and inline-threaded interpreter, adding

compilation support improves the execution time of about half the benchmarks. We

see improvements in compress, db, jess (except for inline-threading on SPARC), mpe-

gaudio, and sablecc (on x86 only). Benchmarks where performance decreases are jack,

javac, mtrt, raytrace, jess (inline-threading on SPARC), and sablecc (on PowerPC and

SPARC).

Similar performance patterns are obtained on all three platforms. Note also that

when compilation is enabled, the interpreter that is used in combination with the

compiler does not seem to affect much the performance. For some benchmarks, the

direct/jit combination performs better than the inlined/jit combination. This could

be explained in part by the compilation of inline-threaded code being more expensive

than the compilation of direct-threaded code.

It is interesting to note that the non-RISC x86 architecture performs better, on

average, than both RISC architectures. This result is quite surprising considering

that our model is RISC-based and makes heavily use of registers. We could conclude

that the usage of the native stack as register space does not have a major impact

on performance on the x86. The better performance results obtained on PowerPC

compared to SPARC could be explained by the fact that less development effort was

invested in the SPARC backend implementation. Features such as branch delay slots

are not yet fully exploited.

Compilation Times

Table 10.4 shows the compilation times on the Linux/x86 platform for each interpreter

type. All times shown are in seconds. Columns identified by Comp and Total are the
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Benchmark switch/jit direct/jit inlined/jit
Comp Total (%) Comp Total (%) Comp Total (%)

compress 2.15 91.05 (2.36) 2.02 88.32 (2.29) 2.07 84.87 (2.44)
db 2.20 70.64 (3.11) 2.07 69.44 (2.98) 2.07 68.05 (3.04)
jack 6.04 39.30 (15.37) 5.96 38.37 (15.53) 6.01 39.62 (15.17)
javac 12.01 93.04 (12.91) 12.21 91.43 (13.35) 12.47 91.27 (13.66)
jess 3.94 45.08 (8.74) 3.85 46.50 (8.28) 3.88 44.91 (8.64)
mpegaudio 2.45 115.70 (2.12) 2.29 114.20 (2.01) 2.30 113.48 (2.03)
mtrt 3.77 93.64 (4.03) 3.75 92.89 (4.04) 3.75 93.21 (4.02)
raytrace 3.00 92.59 (3.24) 2.86 90.63 (3.16) 2.88 90.44 (3.18)
sablecc 5.42 71.53 (7.58) 5.39 67.01 (8.04) 5.46 64.58 (8.45)

Table 10.4: Compilation Times for Linux/x86

compilation times and total execution times, respectively. Numbers in parentheses are

the percentages of the total execution time spent in compilation, that is, Comp

Total
× 100.

Compilation times for the direct/jit combination are smaller than the switch/jit

combination for all benchmarks except javac. Compilation times for the inlined/jit

combination are smaller than the switch/jit combination for all benchmarks except

javac and sablecc. Since our compiler is written in Java, its performance is usually

improved if the interpreter used performs better. However, the compilation times

for the inlined/jit are slightly higher than the direct/jit except for two benchmarks

where they are equal. The inline-threaded to switch code conversion cost is likely to

be more expensive that the direct-threaded to switch code conversion and this would

explain the higher compilation times for the inline-threaded.

Some trends can be seen between the proportion of time spent compiling and the

performance of SableJIT. In benchmarks where a large proportion of time is spent

compiling, the performance is poor. This can be observed for jack and javac where

the compilation accounts for up to 15.53% and 13.66% of the execution time, respec-

tively. In particular, for these benchmarks, the direct-threaded and inlined-threaded

interpreter outperform our compiler. Benchmarks where our compiler performs very

well, such as compress and mpegaudio, have low compilation times. The compila-

tion time accounts for up to 2.44% for compress (inlined/jit) and up to 2.12% for

mpegaudio (switch/jit). Note that the two benchmarks where our compiler performs
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the poorest, mtrt and raytrace, are major exceptions to this pattern. Compilation

times for these account only for at most 4.04% (mtrt, direct/jit) and 3.24% (raytrace,

switch/jit) of the total execution time.

General Discussion

Profiling in SableJIT is still quite primitive. A simple counter is used at method

entry. By compiling a method on its second invocation, we might compile too much,

that is, we might compile methods not contributing significantly to the execution

time. On the other hand, if the compilation threshold is too high, we might miss the

opportunity of compiling infrequently invoked methods that contribute significantly

to the execution time. A typical example of such method is a method containing

loops that do many iterations. Better profiling as well as the addition of compilation

entry points within a method body are currently under development.

Other factors than the compilation time could explain the lower performance ob-

tained on some benchmarks. First, SableJIT does not have an optimizing compiler.

Most improvements in execution time are gained from the removal of instruction dis-

patch overhead. Since the direct-threaded and inline-threaded interpreters remove

some of that overhead, the performance gains obtained from compilation are much

lower for these interpreters. For some benchmarks, the removal of the remaining over-

head might have little effect and any speedup gained could be outweighed by other

factors such as the compilation time. Also, it might be possible that the GCC gener-

ated code outperforms our hand-coded architecture-independent RT implementation.

This would especially be the case for method invocation bytecodes as their imple-

mentation consists of large blocks of code. Finally, some overhead could be added

by compiled preparation sequences. The interpreter patches the slower instruction

variants after their first execution. The compiled code, however, does not patch

them. Instead, it profiles them with the hope of recompiling them later. Therefore,

the compiled code does not take immediate advantage of a faster implementation for

such bytecodes. This summarizes the areas where performance could be studied and

improved in future development.
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Benchmark switch switch/jit direct direct/jit inlined inlined/jit

compress 393.13 397.90 (0.99) 287.18 290.84 (0.99) 219.55 220.68 (0.99)
db 160.77 168.35 (0.95) 126.05 130.12 (0.97) 112.14 112.98 (0.99)
jack 55.40 56.31 (0.98) 46.66 47.47 (0.98) 48.57 49.89 (0.97)
javac 131.98 134.33 (0.98) 108.50 109.98 (0.99) 103.06 104.50 (0.99)
jess 93.41 95.10 (0.98) 75.99 77.73 (0.98) 70.45 71.69 (0.98)
mpegaudio 350.90 352.49 (1.00) 253.30 251.82 (1.01) 241.07 242.33 (0.99)
mtrt 119.44 118.06 (1.01) 93.70 94.31 (0.99) 88.78 90.14 (0.98)
raytrace 111.51 114.46 (0.97) 89.15 90.93 (0.98) 84.83 87.36 (0.97)
sablecc 115.35 118.02 (0.98) 95.93 97.31 (0.99) 88.92 91.53 (0.97)

Table 10.5: Runtime Overhead in Interpreter-Only Mode

Without JIT With JIT Difference

Switch 545176 661828 116652 (21.3%)
Direct 565476 686628 121152 (21.4%)
Inlined 602048 735780 133732 (22.2%)

Table 10.6: Size of Executables

Conclusion

We can conclude that we have good results, though there is a lot of room for im-

provements. In particular, we think that with the addition of an optimizer, better

profiling, and better control over compilation; our retargetable JIT would improve

significantly performance-wise.

10.3.2 Interpreter-Only Mode

In this section, we measure the overhead of the interpreter-only mode over SableVM

compiled without SableJIT support. In the interpreter-only mode, the compiler is

disabled at all time. It is not even bootstrapped.

All experiments in this section were conducted on Linux/ppc. Table 10.5 shows the

overhead of the interpreter-only mode. The overhead ranges from 0% (unnoticeable)

to 5%. For most benchmarks, it is in the range 1-2%. The 5% overhead is rather

exceptional and it occurs only with the db benchmark on the switch interpreter. The

overhead in interpreter-only mode comes mostly from the selection of the appropriate
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INVOKE instruction during method preparation (see section 4.2). For each INVOKE

instruction, a check is done to see if the compiler is enabled in order to choose between

the regular interpreter INVOKE instruction or an INVOKE instruction with a compilation

entry point.

Table 10.6 shows the total size (in bytes) of the binaries of SableVM. The second

and third columns are without and with SableJIT runtime, respectively. The fourth

column is the difference in size. The SableJIT runtime increases the total size of the

binaries from 21.3% for the switch interpreter up to 22.2% for the inline-threaded

interpreter.

10.4 Summary

We have seen that our baseline compiler improves over the interpreters for most

benchmarks. We have described several areas of future improvements. We have also

studied the overhead of the runtime when using the interpreter-only mode and we

have concluded that the runtime does not add much cost to the interpreter when the

JIT is disabled.
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Chapter 11

Related Work

In this chapter we present related work. The chapter is separated in two parts.

In the first part, we cover work on retargetable code generators. In the second part,

we study the retargetability aspect of various Java virtual machines and JITs.

11.1 Retargetable Code Generators

11.1.1 Code-Generator Generators

Code-generator generators are tools that help developers in the construction of code

generators. Most of these tools are Bottom-Up Rewrite Systems (BURS [PLG88]).

They take as input a grammar consisting of a set of rules that describe how code

should be generated for each expression subtree. Examples of such tools are iburg

[FHP92, ibu] and JBurg [JBu]. iburg is a Bottom-Up Rewrite Machine Generator

(BURG) used by LCC [LCC], a retargetable (static) C compiler. A modified version

of iburg is also used in Jikes RVM [AAB+00], a Java virtual machine described in

section 11.2.3. We limit our description to JBurg as other systems essentially work

the same.

JBurg takes as input a grammar consisting of rules. Each rule matches an ex-

pression subtree and has an associated number of actions. For code generators, these
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actions are simply statements emitting the native code corresponding to the subtree

node. Basically, each rule tells how code should be generated for a subtree node.

The grammar is allowed to be ambiguous, that is, two or more native instruction

sequences could be derived (or generated) from the same expression tree. This ambi-

guity is useful in that there is usually more that one way to generate native code for

some expression. A cost is assigned to each rule. When the code generator is built,

dynamic programming techniques are used to precompute data about derivations and

their cost.

Code generation is performed by traversing the expression tree twice. The tree

is first traversed bottom-up to compute a derivation of minimal cost. In the second

pass, actions associated with each rule used in the derivation are executed. For code

generators, these actions consist of emitting the code.

Porting the code generator to a new architecture consists of writing a new grammar

with a new set of actions. This new grammar describes how expression trees should

be converted to code for that new architecture.

SableJIT currently does not use any code-generator generators tools. We would

like to consider the use of such tools in the future. These could be used to generate

code generators that convert a high-level intermediate representation (IR) to low-level

IRs such as RT code or native code.

11.1.2 VCODE

Our work is mostly based on the work of Engler on VCODE [Eng96]. VCODE is

designed to be a retargetable, very fast dynamic code generator. It generates native

code in-place, that is, directly in its final destination in memory, without building

any IR data structure. The goal of VCODE is to generate good code fast rather than

taking more time to generate optimized code.

VCODE defines a virtual RISC-based architecture. The client code1 generates

1The client code is the program that makes use of the VCODE backend. For compiler systems,
it corresponds to the compiler frontend.
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native code by using C macros and functions that correspond to VCODE instruc-

tions. Adding a new architecture backend to VCODE consists of implementing each

VCODE instruction in terms of native instructions for the target architecture. On

RISC architectures, most VCODE instructions map trivially to one or two RISC in-

structions. It is therefore easy to add new RISC architectures. CISC architectures,

however, require more work.

It is important to note that VCODE is not a full compiler system but could be used

in a compiler backend. Tasks such as register allocation are mostly left to the client

code. VCODE defines two classes of registers: temporary (caller saved) and persistent

(callee saved). The client can request and release registers, however, if VCODE runs

out of registers, it is up to the client to handle this situation, by performing register

spills for example.

VCODE has some limitations. First, it is up to the client to allocate sufficient

memory to hold the generated code. As the generated code is not relocatable, the

framework cannot reallocate a larger code array. Second, at most one function at a

time can be generated, therefore making it unsuitable for multithreaded environments.

It is mentioned that this limitation could be removed in a future release. A third

limitation is that types in VCODE are C types. This makes the size of some types,

such as long, dependent on the underlying native architecture.

Our compiler backend does not suffer from these limitations. Our backend frame-

work maintains the code array, resizing them as necessary. This is done transparently

to both the client code (our compiler frontend) and to the architecture-dependent

backend components. In addition, our generated code is fully relocatable. Although

such code might not perform as well as non-relocatable code on some architectures,

it provides extra flexibility. Our entire compilation system is fully reentrant. Finally,

our backend uses well-defined Java types rather than C types. Types are the same

on all architectures.

VCODE currently supports the MIPS, SPARC, and Alpha architectures. All

three are RISC architectures. Engler estimates that between 1 to 4 days of work

are required to add support for a new RISC architecture. VCODE does not support

the ubiquitous x86 CISC architecture. Several challenges need to be solved for that
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architecture. In SableJIT, we use virtual registers, as suggested by Engler, to solve

the small register set problem of the x86. Virtual registers consist of space allocated

on the native stack as register space.

To allow for a quick port, VCODE defines a core instruction set that each archi-

tecture is required to implement. Several extension layers are then defined in terms

of this core set. These instructions can later be implemented in terms of native in-

structions for efficiency. In SableJIT, we do not explicitly distinguish between core

instructions and extended instructions, although we do provide a default implemen-

tation to several instructions.

11.1.3 GNU Lightning

GNU lightning [GNU] is a library for dynamic code generation. It borrows ideas from

VCODE and is very similar to VCODE in several respects. It currently supports the

x86, SPARC, and PowerPC architectures. In GNU lightning, only 6 registers in

addition to the stack pointer (SP) are made available to the client code. Of these 6

registers, 3 registers are guaranteed to be preserved across function calls (callee-saved)

while the other 3 are not. By limiting the number of registers to 6, GNU lightning

solves the limited register set challenge of the x86 without resorting to implementation

tricks such as virtual registers.

GNU lightning, like VCODE, suffers from the problem that a client must allocate

sufficient memory to hold the generated code. GNU lightning, unlike VCODE, does

have provisions for reentrant and multithreaded code. Several code generations can be

in progress at the same time provided that the client code for each code generation in

progress resides in different object files. The reason for this is that the static variable

containing the compilation state is defined in a GNU lightning header file. It is also

possible for the client code to specify its own state variable. This can be used to

implement a reentrant compiler, but in this case extra work is put on the client side

as it needs to manage state variables.

The main motivation behind the design of GNU lightning is to provide a JIT for

the GNU Smalltalk interpreter. It has however been designed to be easily used in
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other projects as well.

Since GNU lightning is similar in both design and implementation to VCODE, we

will leave out a comparison of GNU lightning with SableJIT.

11.1.4 LIL

LIL [GTC+04] is a low-level domain-specific language designed to address specific

problems in the Open Runtime Platform (ORP [CEG+03]). ORP is a research plat-

form that defines JIT and garbage collector (GC) interfaces. Its goal is to allow JITs

and GCs to be independently develop and used as interchangeable modules.

Virtual machine stubs are small functions implementing runtime support for tasks

such as object allocation and JNI native method calls. These stubs need access to

registers and to the native stack. Therefore, they cannot be written in a high-level

language. For this reason, they were originally implemented in assembly language.

However, writing stubs in assembly language was tedious, non-portable and difficult to

maintain. Since ORP supports both the x86 and ia64 processor architectures and both

the Linux and Windows operating systems, portability and maintainability became

important issues. LIL was designed to address these problems. LIL is a very low-

level architecture-independent language designed to implement stubs efficiently. Stubs

written in LIL can be shared across all architectures. LIL consists of both low-level

assembly-like instructions and high-level VM-specific instructions. The compilation

of LIL code is done at runtime as some stubs are specialized with runtime values. No

IR is built and no optimizations are performed. The code is generated directly after

computing space requirements.

Whereas VCODE and GNU lightning were designed as general purpose retar-

getable code generators, LIL was conceived to solve a specific problem: the imple-

mentation of stubs in an efficient and portable way.

11.1.5 The Virtual Processor

The Virtual Processor (VPU [Piu04]) by Piumarta is a general-purpose high-level

code generator. Complex tasks such as register allocation that were usually left to
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the client code on previous retargetable code generators are entirely handled by the

VPU. The VPU aims to be an intermediate between a full language specific dynamic

compiler and a virtual assembly language code generator. It should be easier to write

client code for the VPU than other lower-level code generators. The VPU model is

not register-based but stack-based. The complete set of C operations are supported as

well as operations for stack manipulation. Its implementation consists of constructing

an IR, optimizing the code, performing register allocation, and emitting code. Only a

limited number of optimizations are performed. They are chosen for their effectiveness

and low-cost. Code generation is done with a BURS. The VPU currently supports

three architectures: PowerPC, SPARC and Pentium.

The VPU and SableJIT differ in their main objective. The VPU goal is to mini-

mize the amount of work required for the client code (or frontend) whereas in SableJIT

the goal is to mimimize the amount of code required to port the backend to a new

architecture. As the source code of the VPU does not seem to have been made avail-

able, we could not evaluate the amount of work that would be required to add support

for a new architecture.

11.2 Portability in Virtual Machines and JITs

11.2.1 OpenJIT

OpenJIT [Ope,MOKSH98] is a reflective just-in-time open compiler framework writ-

ten in Java. OpenJIT can self-compile as is the case with SableJIT. Some C code is

used to act as glue code by providing an interface allowing the compiler to plug into

any virtual machine supporting the Java Compatibility Kit (JCK).

It supports the SPARC (Solaris) and x86 (Linux, FreeBSD, and Solaris) architec-

tures. The authors report that porting the SPARC implementation to x86 was done

without much difficulty. They also state that it would be relatively easy to port the

backend to a new RISC architecture. By looking at the source, the porting strategy

seems to be about “translating” several files to the target architecture. We do not

see a clear separation between architecture-dependent and architecture-independent
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components as it is the case with other JITs including SableJIT. There is no clear

limited set of functions or instructions to implement. Retargeting OpenJIT would

consist of searching throughout the code and rewriting classes. One of the goals in

the design of our compiler is to isolate as much as possible architecture-independent

functionality and to share it as much as possible between the architectures in order

to minimize the amount of effort required for porting.

Finally, although it is written in Java, the code does not seem to take advantage

of the Java language features. In particular, inheritance is more used to separate the

code into several files rather than into logical components sharing common function-

ality through inheritance.

11.2.2 Kaffe

Kaffe [Kaf] is a virtual machine with both an interpreter and a JIT. Kaffe is entirely

written in C with some assembly. For short-running applications, this might provide a

performance advantage over a JIT written in Java such as SableJIT. In SableJIT, the

compiler code is first interpreted, leading to a higher overhead in compilation early in

execution time. For long-running applications, however, the overall impact becomes

less significant since the compiler code gets compiled to native code as execution

progresses.

Kaffe uses C preprocessor macros extensively. We found that this makes the

source difficult to follow from time to time. The SableJIT compiler is written to

take advantage of features of the Java programming language. In particular, common

functionality is shared through inheritance. In addition, some bugs in our compiler

are immediately detected such as dereferencing null pointers or indexing arrays out

of bounds. Exceptions caused by such bugs are gracefully handled by our compiler.

Recovery can be performed for most of them, thus avoiding the termination of the

virtual machine. We think that these features makes the design of SableJIT clearer

and more robust.

Like SableJIT, Kaffe was designed with portability in mind. In particular, all

architecture-dependent code is isolated in a separate directory tree with subdirectories
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for each supported processors and operating systems. A VCODE-like approach, called

icode, is used. Icode instructions are implemented with C macros. Unlike SableJIT,

the native code is not emitted in a single pass. Kaffe uses two stages: bytecode analysis

and translation. The bytecode analysis stage consists of performing a pass through

the bytecode in order to compute information such as bytecode attributes and usage

of locals. In the translation phase, each basic block is translated to native code in two

passes. First, the JIT constructs an IR data structure containing pointers to code

emitting functions. Optimizations and register allocation are performed only within

basic blocks. In the second pass, the data structure is traversed and the functions are

called to emit code.

SableJIT does have a stage corresponding to bytecode analysis since SableVM al-

ready computes a large and sufficient amount of information about bytecodes. Unlike

Kaffe, SableJIT emits the native code directly without constructing a data structure.

Finally, SableJIT processes bytecodes individually for code generation rather than

basic blocks. This very local view of the bytecode provides fewer opportunities for

optimizations than Kaffe.

The interpreter of Kaffe runs on several processors including x86, ia64, arm, MIPS,

PowerPC, SPARC, and Alpha. Several operating systems are supported, including:

Linux, *BSD, other Unixes, Windows/Cygwin, several real time OSes, and several

embedded OSes. A JIT is not available though for all architectures supported by the

interpreter. The Kaffe JIT currently supports more architecture than SableJIT. The

last generation JIT, known as JIT3, runs on the following processor architectures:

arm, x86, m68k, and MIPS. On Alpha and SPARC, only the previous generation JIT

is available. The wide range of platforms supported by Kaffe confirms that it is a

very portable virtual machine and JIT.

11.2.3 Jikes RVM

Jikes RVM (Research Virtual Machine) [AAB+00] is a virtual machine consisting

only of compilers. The Java bytecode is always compiled, never interpreted. It is first

compiled quickly but naively with a baseline compiler. Then, to improve performance,
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frequently executed code is recompiled later with an optimizing compiler. Jikes RVM

uses several IRs and has several levels of optimizations. One interesting aspect is that

the virtual machine is entirely written in Java with the exceptions of a boot loader

and various small routines that are written in C.

Jikes RVM was originally designed as a high performance virtual machine for the

AIX/PowerPC platform. It was later ported to Linux on both the x86 and the Pow-

erPC architectures. More recently, it has been ported to Mac OS X on PowerPC.

The PowerPC and x86 implementation are located in separate directories. Most of

the compiler infrastructure is shared between all architectures. The naive compiler

of Jikes RVM, called the baseline compiler, is similar to SableJIT in that the com-

piler mimics the Java stack operations without much optimizations. However, the

strategy used to retarget it is different. In Jikes RVM, it is required to implement all

bytecode instructions for the target platform whereas in SableJIT, only the imple-

mentation of simpler elementary RISC-based instructions is required. In other words,

the architecture-specific implementation happens at a lower level in SableJIT. The

implementation of individual bytecodes in SableJIT can therefore be shared among

all architectures. Doing so might lead to a less efficient baseline compiler as the se-

quences of native instructions generated for a bytecode instruction in our compiler

might not turn out to be as optimal as in Jikes RVM. However, porting SableJIT

to a new platform should be simpler as it is not required to have knowledge of the

virtual machine internals or the semantics of bytecode instructions. Simply knowing

the target architecture should be sufficient.

The optimizing compiler in Jikes RVM converts higher-level IRs to a machine-

dependent IR (MIR) that is then used to generate native code. A low-level IR (LIR)

to MIR converter needs to be implemented for each architectures. It is also required

to implement a MIR to machine code converter. Part of the tedious work involved

has been automated with the use of specification files and of a BURS.
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11.2.4 Sun’s HotSpot

The Java HotSpot VM [Hot,PVC01] is a virtual machine using an adaptive optimizer.

Java bytecode is first interpreted and then, frequently executed portions, called hot

spots, are compiled to native code. Optimizations are based on information collected

from the program execution. The system can therefore adapt to the program being

executed.

The HotSpot VM has two compilers: the Java HotSpot Client and the Java

HotSpot Server. The Client is more suitable for interactive applications requiring a

fast startup whereas the Server is more suitable for server applications where through-

put rather than startup time matters.

Sun claims that HotSpot is highly portable however we could not verify this claim2.

A machine description file is used to describe all architecture-specific aspects. The

Java HotSpot VM is available for Solaris (SPARC 32-bit/64-bit, x86), Linux (x86) and

Windows (x86). HP and Apple also uses the HotSpot technology on their respective

platforms: PA-RISC and Mac OS X (PowerPC) respectively.

11.3 Summary

In this chapter, we have presented a survey of various retargetable code generators.

We have also studied the retargetability aspects of various existing JVMs and JITs.

2We cannot have access to the source code of HotSpot for the purpose of this thesis. Our
description is based on the information made publicly available.
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Conclusion and Future Work

12.1 Summary and Conclusions

JITs have become an essential component of high-performance virtual machines.

However, JITs, by their nature, tend to be very architecture-specific. Porting them

to new platforms usually involve some large amount of tedious work. Large portions

of the compiler might have to be rewritten to the target platform.

In this thesis, we introduced SableJIT, a retargetable JIT. We have explained how

SableJIT is a natural extension of SableVM by integrating well with any of the three

available interpreters and by taking advantage of existing features in SableVM such

as signal-based exception handling.

We have studied the relationship between the inline-threaded interpreter and a

naive JIT by developing a baseline compiler that mimics the Java operations on

the stack. We could say that our compiler takes inline-threading one level further

by removing the remaining dispatch overhead of interpretation. Our results have

shown that our naive JIT has difficulty competing with the advanced interpreters of

SableVM.

We have designed a retargetable VCODE-like backend for SableJIT. Our backend

was designed to work well within a Java JIT context through the use of inheritance

and the use of Java semantics in our retargetable virtual instruction set. Virtual

register support was implemented for the x86 architecture and our results demonstrate
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that virtual registers, with a clever implementation, are a viable option for simple

retargetable code generation engines.

We have minimized the required amount of work to port SableJIT to a new plat-

form. We have made a serious attempt to isolate as much as possible architecture-

independent code from architecture-dependent code. Several code portion such as

the generation of jump table and signal-based exceptions have been made mostly

architecture-independent by isolating the architecture-dependent code in small prim-

itive functions. The retargetable backend has been designed such that no knowledge

of virtual machine internals should be required to simply port SableJIT to a new

platform, knowledge of the target platform should be sufficient.

We have designed a good development and testing environment. A testing frame-

work accompanied by a series of test cases is provided to assist developers in testing

their implementation of new target architectures. Furthermore, the compilation sys-

tem is robust enough to survive compilation failures. Methods failing to compile are

marked as uncompilable and are simply interpreted. Our development environment

favours incremental development and testing.

Finally, our retargetable backend framework was applied to several platforms: x86

(Linux, FreeBSD), PowerPC (Linux, Mac OS X), and SPARC (Solaris). In particular,

the portability of SableJIT was demonstrated by porting SableJIT to Solaris/SPARC

without making any major changes in the architecture-independent components.

12.2 Future Work

Although, SableJIT already supports three processor architectures, it is still work

in progress and it can be improved in several ways. Improvements can be grouped

in two categories: performance-related and retargetability-related. Performance im-

provements are important to make SableJIT useful for real-world applications. Re-

targetability improvements help adding support for new platforms.

We enumerate future improvements:

• SableJIT does not have an optimizing compiler. We would like to design an
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optimizing compiler to improve performance.

• SableJIT does not have an advanced profiling system. In particular, we would

like to complete our implementation for profiling loop back edges and for switch-

ing from interpreted code to compiled code on loop back edges.

• Compiled preparation sequences are not patched with a faster implementation.

We would like to implement a patching mechanism that would be as retargetable

as possible.

• The RT instruction set consists mostly of simple primitive instructions. We

would like to consider adding higher-level instructions such as a field and array

access instructions. These would have a default implementation in terms of

simpler instructions, however, it would be possible to override them to provide

a better implementation on some architectures.

• Retargeting the backend still involves tedious work. We would like to automate

part of the process through the use of machine specification files. We hope to

reduce errors if instruction encoding information could be provided in a table

form.

• SableJIT does not use any code-generator generator. With the addition of an

optimizer, we would like to consider the use of a BURS to help translating

expression trees to RT code or to native code.

• SableJIT does not currently support any 64-bit architectures. Although some

provisions have been made in the design concerning 64-bit architecture, Sable-

JIT is currently not fully 64-bit compliant. It would be interesting to port

SableJIT to 64-bit architectures.

129



Appendix A

SableJIT User Guide

A.1 Getting and Installing SableJIT

SableJIT is known to work on the following platforms:

• x86: GNU/Linux and FreeBSD

• PowerPC: GNU/Linux and Mac OS X

• SPARC: Solaris

SableJIT is available for download on the SableVM website:

http://sablevm.org/

For a specific release x.y.z of SableVM, a corresponding version with SableJIT

support is packaged in sablevm-sablejit-x.y.z.tar.gz. This file contains the full

source code of SableVM modified for SableJIT support as well as the source code of the

SableJIT compiler. For convenience, a file sablevm-sablejit-patch-x.y.z.tar.gz

is also made available. Rather than including the full sources of SableVM, this file

includes a patch to add SableJIT support to SableVM. In both cases, it is also required

to download the file sablevm-classpath-x.y.z.tar.gz that contains the Java class

library for SableVM.
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The following instructions assume that the file with the full SableVM and SableJIT

source is used. To patch the source code, the documentation in the archive should be

consulted.

1. Unpack the sablevm-sablejit-x.y.z.tar.gz archive:

tar -xzvf sablevm-sablejit-all-x.y.z.tar.gz

2. Consult the INSTALL files located in the sablevm and the sablejit directories

for current build requirements and installation instructions.

3. Unpack and install SableVM Classpath:

tar -xzvf sablevm-classpath-x.y.z.tar.gz

cd sablevm-classpath-x.y.z

./configure

make

make install

4. Install SableVM and SableJIT. In the sablevm directory, do:

./configure --with-sablejit

make

make install

make -f Makefile.sablejit sablejit

make -f Makefile.sablejit sablejit_install

To test if the installation went well, do:

make -f Makefile.sablejit sablejit_version

This should print the SableJIT configuration information.

A.2 Customizing SableJIT

A.2.1 Source Organization

The bin directory contains various sample scripts to build SableVM and SableJIT

with different configurations. The sablejit directory tree contains the Java classes
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that are part of the SableJIT compiler. The sablevm directory tree contains the

SableVM sources modified for SableJIT support. In particular, the SableJIT runtime

files are located in src/libsablevm/sablejit.

A.2.2 Configure Options

Any SableVM configuration options can be passed to the ./configure script. In

addition, several SableJIT-specific options can be passed. A listing of all current

options can be obtained by executing the following command:

./configure --help

We briefly describe some of them:

• Files and programs locations:

--with-sablejit-srcdir=DIR SableJIT Compiler (Java) files
location. Default: ../sablejit

--with-sablejit-junit-path=CLASSPATH Location of the JUnit testing
framework.

--with-sablejit-java-compiler=PATH Java compiler to use.

• Untested platform builds: If you are trying out SableJIT on an untested

platform, you can explicitly specify the backend to use.

--with-sablejit-force-platform=PLATFORM
Current values for PLATFORM are:
x86-linux - x86 using same calling convention as GNU/Linux.

Works on FreeBSD.
ppc-sysv - ppc using the System V calling convention.

Used by GNU/Linux.
ppc-macosx - ppc using the Mac OS X calling convention.
sparc-solaris - Used by Solaris on SPARC.

• Signal-based exception handling: If SableVM is configured to use signals

for exceptions (option --enable-signals-for-exceptions), they will be en-

abled for compiled code as well. The best known configuration for the target

platform is used by default. It is however possible to enable and disable them

independently:
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--disable-sablejit-signals-for-exceptions-null
--disable-sablejit-signals-for-exceptions-div
--enable-sablejit-trapping-null
--disable-sablejit-trapping-div-by-zero
--disable-sablejit-trapping-array-bounds

• Testing Mode (or Control Mode): It is required to enable the testing mode

in order to run test cases. The testing mode also provides some control over

the methods that are to be considered for compilation (see section A.3). The

testing mode is enabled with:

--enable-sablejit-testing

A.3 Running SableVM with SableJIT

In non-testing mode, SableJIT considers all methods for compilation. To disable

the compiler and run SableVM in interpreter-only mode, pass the -C int option to

SableVM on the command line.

In testing mode, SableJIT does not compile any method by default. Methods to

be considered for compilation must be explicitly specified by using one or more of the

following Java properties:

sablevm.jit.compile.include=LIST

sablevm.jit.compile.exclude=LIST

sablevm.jit.recompile.include=LIST

sablevm.jit.recompile.exclude=LIST

Properties are specified on the command line by using the -p option. Each prop-

erty value is a list of method specifications delimited by “:”. A method specification

is a prefix of the fully qualified name of a method, that is, the fully qualified class

name, followed by the method name and the method descriptor. A special method

specification for the sablevm.jit.compile.include property is the ALL wildcard

that matches all methods. We present a few examples:

• "java/lang/" (methods of classes in package java.lang)
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• "java/lang/String" (methods of classes with prefix java.lang.String such

as java.lang.String and java.lang.StringBuffer)

• "java/lang/String." (methods of the java.lang.String class)

• "java/lang/String.toString" (toString() method of java.lang.String)

The set of methods considered for compilation/recompilation is INCLUDE SET−

EXCLUDE SET . If recompilation is enabled and the sablevm.jit.recompile.in-

clude property is not defined, the default is to consider all methods for recompilation.

A.4 -C Options

Some options are specified as -C options. These are used to control the compiler and

to provide information on the compiler. The most useful -C options are:

• -C int: Runs SableVM in interpreter-only mode. The compiler is disabled.

• -C intr-count=VALUE: Specifies the number of times a method should be in-

terpreted before being considered for compilation.

• -C pool-size=VALUE: Specifies the size of the compiler object pool. This im-

poses a limit on the number of compilations that can be in progress at any

time. In particular, a value of 1 indicates a single compilation at any time; the

compiling thread will not be allowed to re-enter the compiler code. Valid values

range from 1 up to some constant value set at build time.

• -C recomp-threshold: Sets the threshold before a method is considered for

recompilation. The threshold is compared against the number of times slower

PREPARE inst instructions have been executed.

• -C version: Prints the version of SableJIT and its configuration.

• -C help: Prints a list of available -C options.

• -C info: Prints more info on available options including the properties.
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