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Abstract

In order to perform meaningful experiments in optimizing compilation and runtime

system design, researchers usually rely on a suite of benchmark programs of interest to the

optimization technique under consideration. Programs are described asnumeric, memory-

intensive, concurrent, or object-oriented, based on a qualitative appraisal, in some cases

with little justification.

In order to make these intuitive notions of program behaviour more concrete and sub-

ject to experimental validation, this thesis introduces a methodology to objectively quantify

key aspects of program behaviour using dynamic metrics. A set of unambiguous, dynamic,

robust and architecture-independent dynamic metrics is defined, and can be used to cate-

gorize programs according to their dynamic behaviour in five areas: size, data structures,

memory use, polymorphism and concurrency. Each metric is also empirically validated.

A general-purpose, easily extensible dynamic analysis framework has been designed

and implemented to gather empirical metric results. This framework consists of three major

components. Theprofiling agentcollects execution data from a Java virtual machine. The

trace analyzerperforms computations on this data, and theweb interfacepresents the result

of the analysis in a convenient and user-friendly way.

The utility of the approach as well as selected specific metrics is validated by examining

metric data for a number of commonly used benchmarks. Case studies of program trans-

formations and the consequent effects on metric data are also considered. Results show

that the information that can be obtained from the metrics not only corresponds well with

the intuitive notions of program behaviour, but can also reveal interesting behaviour that

would have otherwise required lengthy investigations using more traditional techniques.
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Résum é

Afin d’effectuer des exṕeriences signifiantes dans les domaines de compilation avec

optimisation et du design de systèmes d’ex́ecution, les chercheurs se basent habituellement

sur une suite de programmes de test pertinentsà la technique d’optimisation sousétude.

De tels programmes sont souvent décrits comméetant nuḿeriques, concurrents, orientés

objet, ou faisant un usage intensif de la mémoireà partir d’uneévaluation qualitative, et

dans certains cas avec peu de preuvesà l’appui.

Dans le but de rendre ces notions du comportement des programmes basées sur l’in-

tuition plus concr̀etes et les assujettirà la validation exṕerimentale, la pŕesente th̀ese intro-

duit une ḿethodologie permettant de quantifier d’une façon objective des aspects clés du

comportement des programmes en utilisant une métrologie dynamique. Un ensemble de

mesures clairement définies, dynamiques, robustes et indépendantes de l’architecture est

propośe, et peut̂etre utiliśe afin de classifier les programmes en termes de leur compor-

tement dynamique dans cinq catégories : magnitude, structures de données, utilisation de

la mémoire, polymorphisme et colatéralit́e. Chacune des mesures fait aussi l’objet d’une

validation empirique.

Un cadre d’applications polyvalent et extensible permettant d’effectuer des analyses

dynamiques áet́e conçu et impĺement́e afin de calculer des valeurs expérimentales pour les

mesures. Ce cadre d’applications est consitué de trois composantes principales. L’agent de

profilageamasse des données relatives̀a l’exécutionà partir d’une machine virtuelle Java.

Le programme d’analyse de tracesapplique des calculs̀a ces donńees, et l’interface web

présente les ŕesultats des analyses d’une façon pratique et conviviale.

L’utilit é de cette approche ainsi qu’une sélection de mesures spécifiques sont vali-

didéesà partir de l’examen des données provenant de plusieurs programmes de tests com-
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muńement utiliśes. Deśetudes de cas traitant de la transformation de programmes et les

effects conśequents sur les valeurs obtenues sont aussi traités. Les ŕesultats d́emontrent que

l’information qui est obtenuèa partir des mesures dynamiques correspond non seulement

bien avec les notions intuitives du comportement des programmes, mais peut aussi révéler

la pŕesence de comportements inattendus qui auraient en d’autres cas nécessit́e desétudes

approfondies̀a l’aide de techniques plus traditionnelles.
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Chapter 1

Introduction

1.1 Motivation

The increasing complexity of software systems combined with their constant evolution has

led to an undeniable need for program understanding tools and techniques. Such tools have

already found their place in many phases of the software development process. Approaches

to program understanding vary greatly, and include many well-known and commonly used

techniques such as source code navigation, software metrics, reverse engineering, and soft-

ware visualization. Program understanding techniques can extract information from the

system under consideration in one of three ways: by looking at the documentation, by

looking at the source code and by running the program [Cor89]. Traditionally, most tech-

niques could either be classified asstaticor dynamic, depending on whether they made use

of the source code or execution data, respectively. However, hybrid techniques combining

both sources of data are starting to emerge [Ern03].

Different program understanding techniques naturally possess different strengths, mak-

ing them suitable for different tasks. For instance, program visualization techniques excel

at allowing a user to process multiple aspects of the data at once. However, it suffers from

poor scalability; in most cases, visualizing large amounts of data quickly becomes very dif-

ficult as the total size of the system increases. Software metrics, on the other hand, possess

a much better scalability, but achieve this at the cost of losing some of the information that

is available. Metric results are, however, much easier to compare than entire graphs.
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1.1. Motivation

Program understanding techniques have applications beyond the realm of software

maintenance. Understanding the dynamic behaviour of programs is in fact an important

aspect in developing effective new strategies for optimizing compilers and runtime sys-

tems. Techniques proposed in these areas are often presented as being aimed at programs

which are eithernumeric, loop-intensive, pointer-intensive, memory-intensive, polymor-

phic, concurrent, etc. However, there appears to be no well-established standard way to

determine if a program fits into one or more of these categories. Such categorizations are

often based on a qualitative appraisal of the source code of programs.

Moreover, a survey of key conferences in the area of programming languages for the

last few years has revealed that many quantitative summaries of benchmarks and results

also focus on static program measurements; e.g., number of lines of code (LOC), number

of methods, number of loops transformed, number of inlinable methods, and so on. How-

ever, because the categories relate to the program’sbehaviour, basing the categorization of

benchmark programs on static measurements is not desirable.

This thesis therefore aims to study dynamic metrics as a means of objectively quantify-

ing software behaviour by performing an offline, post-mortem analysis of Java programs.

This approach has a wide range of possible applications. Most obviously, it can simply be

used to obtain a high-level overview of a program’s behaviour. Specific examples of such an

application include selecting benchmarks which exhibit particular runtime characteristics,

or using dynamic metrics as part of an incremental approach to program understanding.

For instance, dynamic metrics can be used to identify interesting aspects of the program’s

behaviour in order to guide more detailed program understanding techniques such as soft-

ware visualization. Because the metrics provide summarized behavioural information, they

can also be used to quickly identify a specific behavioural pattern, which can then be in-

vestigated more closely using common program understanding tools. Dynamic metrics are

also effective in quantifying changes in behaviour, such as those observed before and after

applying manual or compiler optimizations to a program. Moreover, dynamic metrics can

be used not only to measure their effects but also to guide such optimizations.

2



1.2. Contributions

1.2 Contributions

While dynamic metrics have many potential applications, little research has been done on

the subject. This thesis aims to be one of the first comprehensive studies of the subject. As

such, the contributions of this research are threefold. They consist of the design of a set of

dynamic metrics, the design and implementation of a framework for computing the metrics

for Java programs, and a database of empirical metric results for a set of commonly used

benchmarks. These contributions are described in the following subsections.

1.2.1 Dynamic Metrics

One of the main objectives of this thesis is to provide a methodology for designing and

computing dynamic metrics that can be used to measure relevant runtime properties of

programs. To that end, this thesis provides the following key contributions:

• We provide a discussion of the general requirements for good dynamic metrics and

outline some problems that are frequently faced when trying to devise objective mea-

surements of a dynamic nature.

• We provide an analysis of the different ways of presenting metrics, and describe three

general kinds of dynamic metrics:values, percentilesandbins.

• We provide a discussion of five groups of specific metrics that are particularly rele-

vant to compiler developers and runtime developers:size, data structures, memory

use, concurrencyandpolymorphism.

• We provide unambiguous descriptions of dynamic metrics for each category, along

with some specific examples from benchmark programs, with the ultimate goal of

establishing some standard metrics that could be used for quantitative analysis of

benchmark programs in compiler research.

3



1.2. Contributions

1.2.2 *J Framework

Computing dynamic metrics appears to be a deceptively simple task. In practice, however,

the huge amount of data that has to be processed constitutes a problem by itself. Several

other factors, such as source of data and profiler-specific issues, contribute to making the

computation of dynamic metrics a non-trivial task. This difficulty is in fact likely to be one

of the most important factors which contribute to the widespread use of static metrics. In

order to develop a set of interesting dynamic metrics, it was however necessary not only to

be able to compute them, but also to be able to experiment with metrics with a high level of

freedom. To solve this problem, the*J framework was developed.*J allows new dynamic

metrics to be implemented, tested and validated quickly and easily.

The*J framework consists of two separate tools:

• Profiling agent: Execution data is collected by the*J agent and stored in an execu-

tion trace file. Trace files essentially consist of a stream of serialized runtime events,

along with some meta-data which describes the contents of the trace and its encoding.

• Trace analyzer: The *J analyzer processes trace files produced by the agent and

performs the required dynamic analyses.

Data collection

The primary data collection component of*J is a profiler based upon the Java Virtual Ma-

chine Profiler Interface (JVMPI). This profiling agent hooks into an executing Java Virtual

Machine (JVM) and receives runtime events.

The design of the*J agent was influenced by many challenges, including:

• Flexibility : Because not all analyses require the same information, the agent gener-

ates traces using an adaptive format which can be tailored usingevent specifications.

• Trace size: When frequent events are recorded (e.g., execution of Java bytecode in-

structions), trace file reduction strategies become necessary. The*J agent supports

trace compression techniques such as bytecode prediction. It is also capable of out-

putting trace files to a pipe, thereby avoiding trace storage altogether.

4



1.2. Contributions

• JVMPI-related issues: The implementation of the current JVMPI has a number

of problems which must be solved or worked around by the profiler. The*J agent

includes, among other things, an entity resolution mechanism which greatly improves

the accuracy of the collected data during the startup phase of the JVM.

Dynamic analysis

The trace analysis component of*J reads events sequentially from a trace file and applies

a series ofoperationson them.

Various factors influenced the design of the trace analyzer, such as:

• Flexibility : The key to the flexibility of*J is its pipelined design, which allows

results of some computations to be used by subsequent ones. This design greatly

facilitates the implementation of new dynamic analyses by providing most of the

necessary support as part of a standard operation library. This design also minimizes

direct interactions between operations, therefore allowing them to be easily swapped

in and out of the pipeline.

• Extensibility : In order to facilitate the addition of new operations to the framework,

*J allows all common trace entities, (e.g., methods, classes, bytecode instructions,

. . . ) to act asstorage containersat the class level. This makes it possible for new

operations to associate data with such entities without having to modify the entity

classes directly. For example, it is possible for a metric analysis to associate a counter

with every method in the program to record the number of times that it was entered

without requiring the use of a hash table.

• Performance and efficiency: Although the analysis is performed offline, the amount

of data that has to be processed makes performance and efficiency issues very rel-

evant. Making the computations feasible for non-trivial programs was not a trivial

endeavour, and required careful design and implementation decisions. Caching and

pooling strategies, for example, are used extensively and allow the tool to work in a

reasonable and practical time. The memory requirements of*J are also well within

acceptable limits, and scale well with increasing trace sizes.

5



1.2. Contributions

• Ease of use: Because the analysis component of*J is implemented in Java, it benefits

from a strongly object-oriented design. As a result, the implementation of new oper-

ations is greatly simplified by using inheritance. Because*J was primarily designed

as a metric computation tool, an emphasis was put on making most metric-related

tasks as easy as possible to implement. A majority of metric computing modules

can be implemented in under 150 lines of Java code. The more complex ones only

require about 400-500 lines of code.

• Trace size: significant efforts have been invested in making the analyzer work in a

single pass on the trace file, thereby freeing it from the necessity to store the trace

data.

1.2.3 Empirical Results

Using the*J framework, a database of dynamic metric results has been collected for a set of

commonly used benchmarks. While this database of metric data constitutes a contribution

in itself, experiments were conducted in the following key areas:

• Program understanding: We illustrate how the metrics relate to our intuitive quali-

tative notions of program behaviour, and show how they reveal behaviour that would

normally be difficult to ascertain without reverting to a lengthy benchmark investiga-

tion.

• Manual optimizations: We show how dynamic metrics can help identify bottlenecks

in applications, and provide examples of cases where metrics were used to locate and

eliminate such problems.

• Compiler optimizations: We demonstrate how dynamic metrics can be used to both

guide and evaluate the effect of compiler optimizations through real examples.

Results from these case studies are very encouraging; metric data not only corresponds

well to the expected optimization, but can also reveal interesting and surprising optimiza-

tion behaviour and interactions. Use of metrics thus simplifies and validates investigations

and evaluation of compiler optimizations.
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1.3. Thesis Organization

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter2 is a survey of the related work.

Chapter3 defines the set of dynamic metrics. Chapter4 gives a detailed description of

the implementation of the*J framework. Chapter5 presents empirical results as well as

case studies which illustrate some potential applications of dynamic metrics. Chapter6

concludes this work, and suggests future directions for research.
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Chapter 2

Related Work

This chapter presents previous work on program understanding and software metrics.

Section2.1 is a survey of static software metrics. The survey is not intended as a compre-

hensive review but is instead meant to provide an overview of the most influential work in

the area. Readers interested in a more thorough treatment of the subject are directed, as a

starting point, towards Fenton and Pfleeger’s book [FP97], or surveys such as [Rig96] or

[FN99]. Section2.2presents previous dynamic analyses of benchmark suites. Section2.3

is a survey of the work done so far on dynamic metrics. Section2.4 discusses previous

work on execution trace collection and compression techniques.

2.1 Static Metrics

Fenton and Neil [FN00] report that during the late 1960’s, theLines of Code (LOC)met-

ric has been used to measure both programmer productivity (e.g., LOC per programmer

month) and program quality (e.g., defects per LOC). They consider such measurements as

being the first active work on static software metrics.

The first attempt to provide a measure of program size which was independent of cod-

ing style and programming language is due to Halstead [Hal72, Hal77], who introduced

Software Science. Halstead’s software science is based on the assumption that several

properties of software systems can be expressed in terms of a few basic quantities, which

are defined in terms ofoperatorsandoperands. Halstead based his metrics on four basic
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quantities: the number of distinct and repeated operators and operands in the source code

of a program. Halstead defined thelengthof a program as the total number of occurrences

of operators and operands. He also defined thevolumeof a program as the total number of

binary digits required to represent the program if all entities are assigned a unique, positive

integer value.

By only distinguishing between operators and operands, Halstead aimed to provide a

language-independent metric. In practice however, the counting method that is used is not

only highly dependent on a specific programming language, but also open to interpreta-

tion. Halstead did not judge necessary to provide an unambiguous definition of operators

and operations. This lack of a precise definition has been extensively discussed, notably

in [Els78], [Sal82] and [Piw82]. Also, empirical studies, such as [HF82], have been per-

formed and denounce the speculative nature of Halstead’s metric definitions.

A graph-theoretic approach to measuring software complexity,cyclomatic complexity,

has been proposed by McCabe [McC76]. McCabe theorized that complexity was only

affected by the decision structure of a program. The cyclomatic complexity metric is de-

rived from the notion of cyclomatic number in graph theory, and represents the number of

linearly independent paths in the control flow graph (CFG) of a program, orbasic paths.

Equivalently, it represents the number of decisions statements in the CFG plus one. Mc-

Cabe suggested that any particular module should not have a cyclomatic complexity value

that is higher than 10, and provided empirical evidence to support this claim. He also de-

scribed a testing methodology which equates the cyclomatic complexity of a graph and the

minimum number of unit tests that have to be designed. This methodology relies on the

assumption that because all paths in the CFG can be expressed in terms of the basic paths,

testing all such basic paths is a sufficient testing strategy.

However, McCabe’s definition of cyclomatic complexity has a number of associated

issues. Myers [Mye77] pointed out that in the presence compound predicates, several dis-

tinct CFGs may accurately represent a program’s decision structure. In order to address

this problem, Myers proposed a variation on the cyclomatic complexity metric which uses

an interval of complexity values rather than a single one. The lower bound of the interval

corresponds to the original definition of the metric, i.e., the number of decision statements

plus one. The upper bound of the interval corresponds to the number of individual boolean
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predicates plus one.

While McCabe defined his complexity metric in terms of testing difficulty, Harrison and

Magel [HM81] argued that a more appropriate complexity metric measures the difficulty

related to understanding the source code of a program. They consider McCabe’s decision

to exclude any information about nesting level from the complexity measure to be a serious

limitation of the metric. They proposed a new metric which combines ideas from both

cyclomatic complexity and software science. Each node in the CFG is assigned araw

complexity value, which consists of Halstead’s volume measure for that particular node,

and anadjustedcomplexity value. The adjusted complexity value only differs from the

raw complexity value in the case of selection (conditional) nodes. For such nodes, the

adjusted complexity value is defined as the sum of the adjusted complexities of all of the

nodes which are within its range. The concept of range of a selection node is defined in

terms of nesting levels inside a function.

Evangelist [Eva84] performed a thorough examination of the theoretical foundations of

the cyclomatic complexity metric. He identified several shortcomings of the cyclomatic

complexity metric, and concluded that McCabe’s metric was poorly developed. For ex-

ample, he argued that the metric is not a good indicator of testing effort because the total

number of circuits in the CFG of an application is bounded by an exponential function of

the cylomatic complexity value. Based on the work by Harrison and Magel, Evangelist

proposed a new, theoretically founded algorithm for computing a control flow metric. This

new algorithm was intended to become the basis of a new complexity metric. However,

empirical studies needed to be performed in order to determine how it should be adjusted

to correspond to our intuitive notions of complexity. To the best of our knowledge, this

empirical validation has yet to be provided.

Nejmeh [Nej88] also pointed out the fact that cyclomatic complexity does not account

for nesting. He also considered the fact that all kinds of control flow structures are treated

equally a shortcoming of the metric. Because the number of acyclic paths in a program can

be an exponential function of the number of basic paths, Nejmeh argues that the cyclomatic

complexity metric does not even accurately measure the difficulty of testing such programs.

To address these issues, he proposes theNPATH metric, which measures the number of

acyclic execution paths through a function for the C programming language.
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Kearneyet al. [KST+86] criticized the way in which most complexity metrics have

been developed. They argued that because most of the measures are designed without a

specific application in mind, their applicability to specific uses is questionable. Kearneyet

al. proposed a set of informally-defined properties that aim at determining how complexity

measures can be used and applied.

Weyuker [Wey88] proposed a set of formally-defined properties which compose a frame-

work that can be used to compare software metrics, and determine whether given metrics

are suitable for specific purposes. These properties were then used to compare several

complexity metrics. However, Fenton [Fen94] pointed out that Weyuker’s properties are

contradictory (proven by Zuse [Zus92]). He argued that finding a single, general measure

of complexity is not feasible, and underlined the need for software metrics work to use

concepts from measurement theory.

Chidamber and Kemerer [CK94] proposed a set of six object-oriented software metrics

which is still widely used today. Among the most commonly used metrics areLack of

Cohesion in Methods (LCOM), which measures the relative disparate nature of the methods

of a class, andCoupling Between Object Classes (CBO), which measures the amount of

interaction between classes. Despite all of the criticism surrounding Weyuker’s properties,

Chidamber and Kemerer decided to use them as a theoretical foundation for their metrics,

and provided results from an empirical study to demonstrate their usefulness.

These metrics are however not without criticism. Churcher and Shepperd [CS95]

pointed out that a simple count of the number of methods in a class is, without a pre-

cise definition, subject to a wide variety of interpretations. Hitz and Montazeri [HM96]

criticized the CBO and LCOM metrics from a measurement theory standpoint. They ar-

gued that the CBO metric has no acceptable empirical relation system, and that the LCOM

metric maps intuitively equivalent cases to different values. In order to address this issue,

Hitz and Montazeri defined a graph-theoretic version of the LCOM metric.

Briand et al. [BDW98, BDW99] have performed extensive studies of both coupling

and cohesion metrics in object-oriented systems, and have found that it was very difficult

to compare the work done by any of them. They defined, for each metric, a precise termi-

nology and formalism which can be used to specify it in an unambiguous manner.
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2.2 Dynamic Benchmark Analyses

Since the SPECjvm98 benchmarks appear to drive a lot of the development and evaluation

of new compiler techniques, several groups have made specific studies of these bench-

marks. For example, Dieckmann and Hölzle [DH99] have presented a detailed study of the

allocation behaviour of SPECjvm98 benchmarks. They studied heap size, object lifetimes,

and various ways of looking at the heap composition. The work by Shufet al. [SSGS01]

also looked at characterizing the memory behaviour of Java Workloads, concentrating, on

the actual memory performance of a particular JVM implementation and evaluating the po-

tential for various compiler optimizations like field reordering. Liet al. [LJN+00] presented

a complete system simulation to characterize the SPECjvm98 benchmarks in terms of low-

level execution profiles such as how much time is spent in the kernel and the behaviour of

the TLB. Eeckhoutet al. [EGD03] have studied the interaction between executing Java pro-

grams and the JVM at the microarchitectural level using hardware performance counters.

The results of applying their analysis to several benchmarks, including the SPECjvm98 and

Java Grande Forum (JGF) benchmark suites, indicate that differences in program input, as

well as different virtual machines, can have a large impact on the observed behaviour of an

executing Java program.

Daly et al. [DHPW01] performed a platform independent bytecode level analysis of the

JGF benchmark suite. Their analysis concentrated mostly on finding different distributions

of instructions. For example, how many method calls/bytecodes executed in the the ap-

plication, and how many in the Java API library, and what is the frequency of executions

of various Java bytecodes. Byrneet al. [BPW01] used a similar approach to compare the

SPECjvm98 and JGF benchmark suites. Power and Waldron [PW02] used the frequency

of execution of small methods (i.e., methods which contain less than 10 bytecode instruc-

tions) as a measure of the level of object-orientation of an application, and compared both

suites. They concluded that the benchmarks from the JGF suite are measurably less object-

oriented that those from the SPECjvm98 suite.
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2.3 Dynamic Metrics

Kobayashi [Kob97] has defined a set of low-level memory reference metrics based on trace-

driven simulation of applications. Such metrics are highly platform-dependent, and include

information concerning memory blocks and cache behaviour.

Yacoubet al. [YAR99] identified the need for dynamic metrics, and proposed two

object-level coupling metrics:Export Object Coupling (EOC)andImport Object Coupling

(IOC). These metrics aim at measuring the quality of a design early in the development of

an application. Because at that stage the application is not available for an execution, the

measurements are obtained from a simulation of the behaviour of the application using a

executable design model. The authors applied this technique to performing risk-assessment

in [YAR00].

Mitchell and Power [Mit02, MP03b, MP03a] have defined dynamic versions of the

coupling and cohesion metrics that were originally proposed by Chidamber and Kemerer.

Their work focuses on measuring dynamic design metrics for the the Java programming

language, and uses dynamic profile data gathered during the execution of the application.

They applied the technique to the Java Grande Forum [JGF] and the SPECjvm98 [Spec]

benchmark suites. The results show that dynamic coupling metric results exhibit a large

variation from their static counterparts. On the other hand, no variation has been observed

in the case of the dynamic lack of cohesion metrics, because all modules were found to be

maximally cohesive (LCOM = 0) in both the static and dynamic versions of the metrics.

Mitchell and Power partly attributed this to a lack of discriminating power of the LCOM

metric. This claim is backed up by an empirical study conducted by Basiliet al. [BBM96].

Gupta and Rao [GR01] have identified some limitations of the static cohesion measure-

ments proposed by Ott and Thuss in [OT89, OT93] which may lead to an overestimate

of the real cohesion value. In order to address these limitations, they proposed a cohe-

sion measurement based on def-use pairs in the the dynamic program slices of outputs of

an application. They show that their metric is at least as precise as its static counterpart,

and provide empirical results to demonstrate the difference in precision between both ap-

proaches. A brief discussion of metric-driven code refactoring is also provided.

Aggarwalet al. [ASC03] argued that static software metrics are not adequate for pur-
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poses of improving the running time of software using code optimizations. To address this

limitation of the metrics, they have developed a system for computing dynamic metrics

related to finding the most frequently executed modules in C programs. They proposed to

use the information that is collected by their tool to concentrate the optimization efforts on

the most important modules in an application at runtime.

2.4 Trace Collection

Several methods can be used to collect execution data, such as instrumenting a Java vir-

tual machine (JVM), using a profiling interface such as Sun Microsystem’s Java Virtual

Machine Profiler Interface [JVMPI], or using a Java bytecode transformation tool such

as SOOT [VRGH+00]. For example, Reiss and Renieris [RR00] described a system for

gathering Java trace data using the JVMPI. Their system collects runtime events from an

executing JVM, and produces one trace per started thread. A separate component in the

system is responsible for merging all individual traces into a single, complete execution

trace for the entire application.

Because of the large amount of data that is typically stored in execution traces, several

trace compression techniques have been developed. Arnold and Ryder [AR01] have de-

signed and implemented a framework for performing low-overhead instrumentation sam-

pling in the Jalapẽno JVM [AAB+00]. Although sampling is a lossy trace compression

technique, they report a very high accuracy of the data while incurring a very low over-

head during profiling (typically around 3%). Reiss and Renieris [RR01] used a two-phase

process to filter data from execution traces and encode the result in an appropriate format.

Several lossless trace compression techniques have also been proposed. Burtscher and

Jeeradit [BJ03] have used a set of value predictors to reduce the size of an execution trace.

STEP [Bro03] is a trace definition compiler system designed to provide profiler developers

with a standard method for encoding general program trace data in a flexible and compact

format. STEP provides a trace definition language (STEP-DL), which is used to specify

both the format of the trace as well as trace-specific compression strategies to be used

during the encoding process.
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Chapter 3

Dynamic Metrics

This chapter presents a new set of dynamic metrics which are designed to summarize

the dynamic behaviour of Java programs. The metrics are not, however, restricted to the

Java language; many of them would apply to different, even non object-oriented languages.

Section3.1 outlines some desirable properties that guided the design of the new metrics.

Section3.2 describes the different kinds of dynamic metrics that are present in the set.

Section3.3 discusses how the metrics can be applied to partitions of the sample space,

and presents the partitioning schemes that have been used. Section3.4 gives a detailed

description all of the dynamic metrics, along with relevant empirical data.

3.1 Properties

When designing new dynamic metrics, one must ensure that they adequately capture the

aspect of software behaviour that they are intended to measure. New metrics must also

render clear and comparable numbers for any kind of program. Therefore, we outline

some general requirements for dynamic metrics which address some of the most important

factors which may impact their usefulness. These properties not only helpful in designing

the metrics, but can also be used in the evaluation of the applicability of a particular metric

to specific purposes. These desirable properties are only presented informally; it may not

be possible to realistically achieve all of them for every metric.

15



3.1. Properties

Unambiguous

One lesson learned from static metric literature is that ambiguous definitions lead to unus-

able metrics. It is therefore crucial to provide a clear, precise and unambiguous definition

of all dynamic metrics. For instance, the most widely used static metric for program size is

“lines of code” (LOC). LOC is sufficient to give an approximate measure of program size

or to evaluate an amount of programming work. However, without further specification,

it is virtually useless to compare two programs. Blank lines, comments and coding style

obviously have potentially large impacts on the metric. A precise definition of the metric

has to be provided in order to make meaningful comparisons of different programs using

the LOC metric. For example, within a given language, the LOC of a pretty-printed ver-

sion of a program with comments and blank lines removed would give an unambiguous

measurement that can be used to compare two programs.

Object-oriented languages often add another source of ambiguity because of inheri-

tance. For example, referring to the methods of a given class is ambiguous, because it

is not specified whether the methods which are inherited but not overridden by the class

should be included or not.

Dynamic

In order to be considered dynamic, a metric should measure an aspect of a program that

can only be obtained by actually executing it. The dynamic nature of a metric makes it

unaffected by the addition ofdead code(unexecuted code) to the program, because code

that is never executed will obviously never contribute to the measured value.

In compiler optimization papers, static metrics are often reported instead of their dy-

namic counterparts, partly because they are easier to obtain. However, they tend to relate

to thecostof a particular optimization technique, whereas dynamic metrics relate to the

relevanceof such a technique. For example, counting the number of virtual call sites in a

program gives an upper-bound for the number of inlining opportunities. However, because

some virtual call sites may actually be polymorphic, the number of call sites which can be

dynamically de-virtualized may be less than the statically-computed number of opportuni-

ties. A dynamic metric would, in this case, be more relevant because it could measure the
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number ofactually monomorphiccall sites in the program. Moreover, dynamic metrics can

better assess the overall impact of the optimization on performance, because they can be

used to determine how the monomorphic call sites are actually used. Optimizing a call site

which is located within a frequently executed loop intuitively has a greater impact on per-

formance than optimizing a call site which is executed only once during the startup phase

of the application.

Robust

The other side of the coin of using dynamic measurements is the possibility that the mea-

sures are heavily influenced by program behaviour. Where static numbers may have re-

duced relevance because non-executed code influences the numbers, dynamic metrics may

have reduced relevance because the measured program execution may not reflect common

behaviour. Unfortunately, one simply cannot guarantee that a program’s input is repre-

sentative. However, one can take care to define metrics that are robust with respect to

program behaviour. In other words, asmall, relevantchange in behaviour should cause a

correspondinglysmallchange in the resulting metric. Conversely,irrelevantchanges in be-

haviour should not affect any unrelated metrics. Definitions ofsmallandrelevantof course

will depend on the situation under analysis.

In particular, a robust metric should not be overly sensitive to the size of a program’s

input. A bubble sort, for example, will execute four times as many bytecodes if the input

size is increased by a factor of two. Thus, the total number of bytecode instructions exe-

cuted is not a robust metric of program size. The number ofdifferentinstructions executed

is more robust since the size of the input will not drastically change the size of the part of

the program that is executed.

To categorize aspects of program behaviour, absolute numbers are often misleading and

non-robust. For example, the total amount of memory allocated by an executing program,

a metric often reported in the literature, says little about the “memory-hungriness” of the

program. A relative metric, such as bytes allocated per executed bytecode, is more robust.

Merely running a program twice as long will have less effect on a relative metric. Ro-

bustness is in practice not always easy to achieve, and mostly depends on what effects are
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considered “relevant” and “small”.

Discriminating

Robustness is however not by itself a sufficient property. For example, a metric which

returns the same value for all programs executions is in some sense maximally robust.

No irrelevant—or relevant—changes affect it; it is notdiscriminating. This results in a

property that is dual to robustness within a given context. A metric is discriminating if a

largechange in behaviour causes a correspondinglylargechange in the resulting metric.

Platform-independent

Since the metrics pertain to program behaviour, they should not change if the measurement

takes place on a different platform (including virtual machine implementation). While it

may seem like platform-independence is easily achieved in languages such as Java, which

are designed to be multi-platform, reality is otherwise. The Java language is designed

to have “as few implementation dependencies as possible” [GJSB00]. However, while

typically Java applications may be executed on different platforms without requiring any

modifications, the Java Virtual Machines (JVMs) themselves exhibit some differences. For

instance, the JVM specification [LY99] does not mandate a particular object header size.

As a result, when considering memory metrics one needs to be aware that the size of al-

located objects in different JVM implementations may vary. Internal differences in the

standard libraries may also be observed. Different JVM vendors may modify the libraries

as long as the API is not affected, and are likely to do so for various reasons, includ-

ing efficiency. Of course, differences in the class hierarchies also exist simply to sup-

port platform-independence. Thejava.lang.UNIXProcess class, for example, is not

found on non-UNIX platforms.

Differences in implementations are however not the only possible source of platform-

dependence in the metrics. For example, the number of objects allocated per second is

a platform-dependent metric which disallows comparisons between measurements from

different studies, because it is virtually impossible to reproduce the exact conditions un-

der which the experiment was executed. On the other hand, number of objects allocated
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per 1000 executed bytecode instructions (kilobytecode, or kbc), is a much less platform-

dependent metric. In general, metrics defined around the bytecode as a unit of measurement

can be considered machine-independent for Java programs.

3.2 Kinds of Dynamic Metrics

While there are many possible metrics one could gather, a survey of the literature in the

field of compilers and runtime systems reveals that the most commonly described metrics,

and the ones which seem most useful, tend to be belong to a few basic categories. A

new classification of the metrics into three basic categories is presented. These categories

correspond to the ubiquitous value metrics such as average, hot spot detection metrics and

metrics based on discrete categorization. A more detailed continuous “expansion” of each

category is also mentioned.

It is of course possible to design and use a dynamic metric that does not fit into these

categories; these initial metric kinds, however, are useful to at least begin to explore the

various potential metrics by considering whether an appropriate metric exists in each of

our categories.

3.2.1 Value Metrics

The value metric is by far the most commonly used kind of dynamic metric, and corre-

sponds to typical, one value answers. Many data gatherers, for instance, will present a

statistic likeaverageor maximumas a rough indicator of some quantity; the idea being

that a single value is sufficiently accurate. Typically this is intended to allow one to easily

compare results for different benchmarks, since the values form an intuitive totally ordered

set. It may also be used to allow one to observe differences in behaviour before and after

some transformation. For example, the total number of bytes allocated and the number

of method invocations are two frequently reported dynamic value metrics. Value metrics

appear in almost every research article that presents dynamic measurements.
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3.2.2 Percentile Metrics

Often in compiler optimization it is important to know whether the relative contributions of

aspects of a program to a metric are evenly or unevenly distributed among the program ele-

ments. If a few elements dominate, then those can be consideredhot, and therefore worthy

of further examination or optimization. Knowing, for example, that 2% of allocation sites

are responsible for 90% of allocated bytes indicates that those top 2% of allocation sites are

of particular interest. For comparison, a program where 50% of allocation sites contribute

90% of allocated bytes indicates a program that has a more even use of allocation, and so

intensive optimization of a few areas will be less fruitful.

Percentile metrics are similar to value metrics, but additionally have an associated

threshold value which indicates the proportion of the program entities which are to be

considered in the computation of the metric, i.e., the “hotness level” that is measured by

the metric. A higher threshold is used when looking for more pronounced hotspots, and is

thus associated with a higher hotness level.

Similar metrics can be found in compiler optimization literature; e.g., the topx% of

most frequently-executed methods [KC01].

3.2.3 Bin Metrics

Compiler optimization is often based on identifying specific categories of measurements,

with the goal of applying different optimization strategies to different cases. A call-site

optimization, for instance, may use one approach for monomorphic sites, a more complex

system for polymorphic sites of degree 2, and may be unable to handle sites with a higher

degree of polymorphism. In such a situation single value metrics do not measure the sit-

uation well, e.g., computing an average number of types or targets per call site may not

give a good impression of the optimization opportunities for de-virtualization. An appro-

priate metric for this example would be to give a relative or absolute value for each of the

categories of interest, namely 1, 2, or≥3 target types.

These kinds of metrics are referred to as bin metrics, since the measurement task is to

appropriately divide elements of the sample space into a few categories orbins.

There are many examples of bins in the literature; e.g., categorizing runtime safety
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checks according to type (null, array, type) [GRS00], the percentage of loops requiring less

thanx registers [ZLAV00].

3.2.4 Continuous Metrics

All three kinds of dynamic metrics have continuous analogues, where the calculations are

performed at various (or all) partial stages of execution (rather than once at the end of

the execution), and plotted as a graph. Motivation for continuous metrics arises from the

inherent inaccuracy of a single, summary metric value in many situations: a horizontal line

in a graph can have the same overall average as a diagonal line, but clearly indicates very

different behaviour.

Additional descriptive values like standard deviation can be included in order to allow

further refinement to a single metric datum; unfortunately, secondary metrics are them-

selves often inadequate to really describe the difference in behaviour, requiring further

tertiary metrics, and so on. Specific knowledge of other aspects of the metric space may

also be required; correct use of standard deviation, for example, requires understanding the

underlying distribution space of result values. Analysis situations in compiler optimization

design may or may not result in simple normal distributions; certainly few if any compiler

researchers verify or even argue that property.

In order to present a better, less error-prone metric for situations where a single number

or set of numbers is potentially inaccurate, a straightforward solution is to present a graph

of the metric over a continuous domain (like time, or bytecode instructions executed). Bi-

ased interpretations based on a single value are thus avoided, and an astute reader can judge

the relative accuracy or appropriateness of the single summary metric themselves. Contin-

uous metrics can then be seen as an extension to metrics, giving a more refined view of the

genesis of a particular value. The focus of this work is on establishing general characteri-

zations of benchmarks that one could use as a basis or justification for further investigation;

actual continuous metrics are thus left as future work (see Section6.2.2).
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3.3 Sample Space Partitioning

While it is possible to compute dynamic metrics for the entire set of events collected during

the execution of a Java program, it is often desirable to compute metric values based on a

subset of the dynamic data. For example, differentiating between application and library

code is often beneficial, especially for small programs. The virtual machine startup phase

is a large program in itself, and thus the inclusion of the contributions from non-application

code can significantly distort the metric values. It is therefore useful to think of metric

definitions as general “recipes” that can be applied to arbitrary partitions of the sample

space rather than representing specific concepts. Two partitioning schemes are introduced

and used used as part of this work:

• Whole program: this trivial partitioning scheme defines a single partition which

includes contributions from the entire sample space.

• Static application/library : this partitioning scheme defines two distinct partitions of

the sample space,application andlibrary , based on a package name filtering

strategy. One partition corresponds to the Java standard library, the other one to the

application itself. Methods, bytecodes, and other class file constructs contribute to

the partition which corresponds to the class in which they are found. Object instances

contribute to the partition which corresponds to their runtime type; all arrays are con-

sidered to be part of the library partition. This partitioning scheme is very relevant

in the context of code optimizations, since only the application code can usually

be optimized by a compiler or by manually changing the program. Conversely, the

library-only version of a metric can provide meaningful information relative to li-

brary performance, and could potentially be useful for comparing the libraries from

different JVM implementations.

A number of different and more elaborate partitioning schemes can obviously be de-

signed. Examples include a more dynamic subdivision of the sample space based on differ-

entiation between startup/runtime support and the main computation (application + called

library code), or a per-thread partitioning strategy.
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3.4 Metric Definitions

This section presents a set of new dynamic metrics which aim to summarize the behaviour

of Java programs. The metrics naturally fit into five groups: program size and structure,

measurements of data structures, polymorphism, dynamic memory use and concurrency.

For each group, individual metrics are defined, and appropriate benchmark data is presented

in order to validate the metric and discuss its properties. All experimental data that was

reported as part of this thesis has been collected using Sun’s HotspotTM Client VM (build

1.4.0-b921, mixed mode), on a Pentium 4 1.8 GHz machine runing Debian Linux. The five

metric groups are discussed in the next subsections.

3.4.1 Program Size and Structure

Traditionally, the notions of program size and structure have been studied as measures of a

program’s complexity. Such attributes have been extensively studied in a static context; the

resulting metrics have a large number of potential users. Dynamic metrics which capture

the notions of dynamic size and control structure complexity are presented next.

Program Size

Before dynamic loading became commonplace, an approximation of a program’s size could

be obtained by measuring the size of the executable file. However, in languages such as

Java that allow dynamic loading it is necessary to execute the program in order to accurately

measure its size.

Table3.1 shows program size metric values for a number of selected benchmarks (a

detailed description of the benchmarks is given in Section5.1). The metric values are

provided for both the entire code (labelled “All”) as well as the application (non-library)

code only (labelled “Application”, or “App.”). The description of the metrics are given

below. A complete set of values for all benchmarks is also given in AppendixA.

1 Flaws in the implementation of the JVMPI interface in more recent versions of Sun’s JRE caused the
collected data to be incomplete, and precluded their use in this study.
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size.loadedClasses.value 277 281 280 286 310 819 471

size.load.value 72059 76295 78173 80292 90762 126901 133172

size.run.value 7354 10703 10708 12887 14514 38404 37831

size.hot.value 985 186 119 116 396 3323 2261

size.hot.percentile 13.4% 1.7% 1.1% 0.9% 2.7% 8.7% 6.0%

size.codeCoverage.value 10.2% 14.0% 13.7% 16.1% 16.0% 30.3% 28.4%

A
pp

lic
at

io
n

size.loadedClasses.value 1 6 1 6 22 532 175

size.load.value 4 720 1056 2374 6555 45446 44664

size.run.value 0 593 749 975 5084 26239 26267

size.hot.value 0 175 59 57 396 2759 2759

size.hot.percentile N/A 29.5% 7.9% 5.8% 7.8% 10.5% 10.5%

size.codeCoverage.value 0.0% 82.4% 70.9% 41.1% 77.6% 57.7% 58.8%

Table 3.1: Size metrics

size.loadedClasses.value This metric measures the total number distinct classes that

are loaded. It gives a rough idea of program size.

From Table3.1, size.loadedClasses.value starts at 277, rises to 286 for COEFFICI-

ENTSand to 310 for COMPRESS. Only JAVAC and SOOT really stand out with 471 and 819

total loaded classes. The large number of classes that are required to execute the EMPTY

benchmark clearly indicates that the startup phase of the JVM is itself a large program;

including it in the metrics can therefore significantly skew the values for relatively small

applications. The contribution of startup to the metric also tends to make the measured

values very similar; about half of the benchmarks load between 277 and 292 classes. As

a result, thesize.loadedClasses.value values that include the standard libraries are not

discriminating enough to be used as a measure of program size. This metric is also not

platform-independent, because the number of classes that are loaded during startup can

significantly differ depending on the JVM that is used to execute the program. For example,

IBM’s Classic VM (build 1.4.1, J2RE 1.4.1 IBM build cxia32141-20030522 (JIT enabled:

jitc)) loads 293 classes for the EMPTY benchmark. Therefore, the application-only version

of the metric is preferred over its whole-program counterpart as a measure of program size.

However, because the size of each class may exhibit a large variation, this metric may

not correspond to the intuitive notion of program size. For example, the EMPTY and LIN-
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PACK benchmarks both load only one application class, but are clearly not the same size.

Also, LINPACK’s single class contains more bytecode instructions than MST’s six applica-

tion classes combined. Based on this empirical evidence, the application-only version of

thesize.loadedClasses.value is more robust than discriminating.

size.load.value This metric measures the total number of bytecodes that are loaded. It

is computed by adding the number of bytecodes in all methods of a class to a running total

each time a new class is loaded. This metric is the closest dynamic equivalent to the static

size of a program, and corresponds more closely to the intuitive notion of program size

thansize.loadedClasses.value.

However, it suffers from the same problems as thesize.loadedClasses.value metric

when it includes the standard libraries, and becomes platform-dependent and insufficiently

discriminating as a measure of program size. On the other hand, thesize.load.value metric

is less sensitive to the particular programming style and class decomposition thansize.-

loadedClasses.value. It is therefore more robust in this respect.

From Table3.1, the the fact that the EMPTY benchmark loads 4 bytecodes requires

further explanations. An empty method requires only a singlereturn bytecode. However,

the javac compiler adds a default constructor to the compiled class file, even though it is

not used in this case. This constructor is comprised of 3 bytecode instructions, for a total

of 4 loaded bytecodes.

size.run.value This metric measures the number of bytecode instructions that were exe-

cuted at least once, ortouched. It is computed by keeping anexecuted bit for each byte-

code instruction that is part of a loaded class. Initially, all executed bits are unset. When-

ever a bytecode instruction with an unsetexecuted bit is executed, a running counter

is incremented, and the bit is set. The value of this metric is bounded by the value of

thesize.load.value metric. In practice, however,size.run.value is usually much smaller

because applications tend to contain a significant amount of (dynamically) dead code.

Empirical results show thatsize.run.value is a discriminating measure of program

size. Table3.1 is sorted left-to-right in increasing order with respect to this metric. It can

be observed that there is a clear progression of sizes which closely matches the intuitive
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notion of program size. This metric can be used to classify benchmark programs in five

distinct size categories which are listed in Table3.2.

Category size.run.value Examples

XS < 100 EMPTY

S 100–2000 MST, L INPACK, COEFFICIENTS

M 2000–10K COMPRESS

L 10K–50K SOOT, JAVAC

XL > 50K FORTE

Table 3.2: Program size categories.

In order to study the robustness of metrics, a number of benchmarks have been analyzed

using different inputs. Such benchmarks include AUTOMATA , COEFFICIENTS, SABLECC,

SOOT, as well as all benchmarks from the SPECjvm98 suite (see Section5.1for a detailed

description of all input sizes). Results show that thesize.run.value metric is robust with

respect to program input: different executions of a number of benchmarks did not result

in substantial differences, and did not upset the relative ordering of benchmarks. It is also

robust with respect to various compiler optimizations (see Section5.2.3). Therefore, the

size.run.value metric is the preferred dynamic measure of program size, as it seems to

achieve the right balance between robustness and discriminating power.

The results of the EMPTY benchmark again merit an explanation. It was previously

argued that an empty method requires a single bytecode; however, EMPTY obtains asize.-

run.value value of 0. This is due to an optimization performed by Sun’s HotspotTM Client,

which avoids calling empty methods. Thus, themain method of the EMPTY benchmark is

in practice never entered.

size.hot.value This metric measures the number of distinct bytecode instructions that are

responsible for 90% of the total bytecode executions. It is computed by counting the num-

ber of times each bytecode instruction is executed, sorting the bytecodes by frequency, and

reporting the number of bytecodes which account for 90% of the total bytecode executions.

It represents the size of a program’s hotspot.
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From Table3.1, this metric is very discriminating; hotspot sizes range from 116 for

L INPACK and COEFFICIENTSto 3323 for SOOT. However, this metric lacks robustness.

For example, using a different input in the SOOT benchmark resulted in the number of hot

bytecodes to drop from 2759 to 1191.

size.hot.percentile This metric is derived from thesize.hot.value metric, and measures

the proportion of the touched code which is responsible for 90% of the total bytecode

executions. It is computed assize.hot.value / size.run.value.

As it can be observed from Table3.1, size.hot.percentile is much less discriminating

thansize.hot.value; all benchmarks except EMPTY have a hotspot proportion which is

below 10%. This results supports the well-known 90-10 rule, which claims that in general,

only 10% of an application is responsible for 90% of the total execution. Thesize.hot.-

percentile metric is also more robust thansize.hot.value. The same variation of inputs

for the SOOT benchmark resulted in a 5.5% difference only; a similar variation on the

SABLECC benchmark left the metric value almost unaffected.

The application-only version of the metric is a little more discriminating than its whole-

program counterpart; the MST benchmark reaches a value of 29.5%, while the JAVAC

benchmark barely crosses the 10% boundary.

size.codeCoverage.value This metric measures theproportionof the total code that is

touched. It is computed assize.run.value / size.load.value.

Table3.1 shows that most of the library code that is loaded is never executed; code

coverage spans a range of 10.2% for EMPTY to 30.3% for SOOT. This is intuitively ex-

plained by the fact that the Java standard libraries have been designed with a broad range of

applications in mind, and thus any single benchmark application is not likely to cover them

all. Conversely, most benchmarks tend to touch most of their own loaded code. COEFFI-

CIENTS stands out because it does not even execute half of its own code; this is due to the

fact that the benchmark’sMatrix class supports many more operations than are required

by the simple pseudo-inverse algorithm that it implements. This is analogous to the use of

the standard libraries. SOOT and JAVAC also have lowsize.codeCoverage.value values

which can explained in similar ways.
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It is clear from the obtained values that both the whole-program and application-only

versions of thesize.codeCoverage.value metrics lack discriminating power; none of the

benchmark’s whole code coverage value exceeded 40%, and none of them touched less

than 40% of its own code (except for the EMPTY program). In fact, the vast majority of

the benchmarks touched over 70% of their application code. This metric is also very robust

in terms of both program input and compiler optimizations. With the exception of JAVAC ,

variations in input for all other benchmarks resulted very small differences in the metric

values.

3.4.2 Data Structures

The data structures and types used in a program are of frequent interest. For example,

optimization techniques change significantly for programs that rely heavily on particular

classes of data structures. Techniques which are useful for array-based programs, for in-

stance are different from those that may be applied to programs building dynamic data

structures. The study of data structure manipulations will be broken down into three key

aspects which relate to the intensity of use of arrays, floating point operations and pointers.

Array Intensive

Many “scientific” benchmarks are deemed so at least partially because the dominant data

structures are arrays. The looping and access patterns used for array operations are then

expected to provide opportunities for optimization. This is not entirely accurate since ar-

ray intensity can certainly exist without necessarily computing arithmetic values based on

arrays; it is however an important indicator. Moreover, array accesses in Java have other

opportunities for optimization, e.g., array bounds check removal [QHV02].

Determining if a program is array intensive will then be a problem of determining if

there are a relatively significant number of array accesses. This is tracked by examining

traces for specific array operation bytecodes.

There are complications to such a simple approach in the context of Java. Not only is

the separation between application code and runtime libraries important, but in Java multi-

dimensional arrays are stored as arrays of arrays, and so the number of array operations
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data.arrayDensity.value 150.880 151.953 31.059 105.891 93.417 43.635 73.311

data.charArrayDensity.value 1.562 2.197 10.430 0.013 0.017 6.638 33.186

data.numArrayDensity.value 74.986 140.602 14.581 97.512 92.490 9.450 34.213

data.refArrayDensity.value 73.708 8.867 0.396 4.380 0.156 15.613 1.795

A
pp

lic
at

io
n data.arrayDensity.value 160.404 157.775 133.667 105.947 97.433 38.868 N/A

data.charArrayDensity.value 0.000 0.000 14.805 0.000 0.000 0.000 N/A

data.numArrayDensity.value 79.486 148.385 118.803 97.577 96.487 11.209 N/A

data.refArrayDensity.value 80.713 9.389 0.015 4.383 0.162 13.274 N/A

Table 3.3: Array metrics

required for each multi-dimensional array access is magnified. This skewing factor could

be eliminated by ignoring array accesses where the array element is an array itself; this is

planned as future work. Evidence of such skewing is given later, in Section5.2.1.

data.arrayDensity.value This metric measures the number of array access bytecodes

executed, on average, per kbc. It describes the relative importance of array access opera-

tions. Further refinement of the metric can be done according to the type of the array being

accessed:data.charArrayDensity.value for character arrays,data.numArrayDensity.-

value for arrays of primitive numerical types, anddata.refArrayDensity.value for arrays

of non-primitive (reference) types.

Example metric calculations for each of the proposed array density metrics are given in

Table3.3. The impact of startup and library code is again very apparent: for example, the

AUTOMATA benchmark has a very high array density for its application code only, but ranks

below the EMPTY program when the whole program is being considered. This indicates

that while the AUTOMATA benchmark itself makes intensive use of arrays (and even startup

has a significant use of arrays), the library methods that the benchmark calls have a limited

use of arrays. In fact, while the AUTOMATA code does consist almost entirely of array

operations, it also emits an output description of its current state at each iteration, and the

amount of code involved in doing this I/O significantly dilutes the relative number of array

operations. An optimization that reduces the cost of array operations (such as removing
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bounds checks) may thus not realize as much overall benefit as a naive understanding of

the algorithm and design of the benchmark may indicate.

In Java, string operations usually reduce to operations on character arrays, and so one

would expect string usage would skew results here (thedata.carArrayDensity.value met-

ric shows the number of character array operations per kbc). This turns out not to be

the case—intense usage of character arrays is largely confined to startup and library code.

Since the actual character array for a string is a private field in the String class, almost all

such operations are necessarily contained2 in the library code. Interestingly, the startup

code is by far the most intense user of char arrays; only one of the benchmarks of signifi-

cant duration/size actually has a character array density that is slightly larger than the that of

the EMPTY program (even the benchmarks that do parsing, such as JAVAC and SABLECC,

ranked lower).

The threshold for considering a program array intensive is not as clear as with some

other metrics; the benchmarks, application or whole, tend to be fairly evenly distributed

over the range of reasonable density values. This however shows the discriminating nature

of the array intensity metrics. A value of the application version of thedata.arrayDensity.-

value metric in the high 90’s identifies the majority of what would intuitively be considered

array intensive programs.

The array density metrics generally achieve a good balance between discriminating

power and robustness. Empirical results show that varying the input of the program has

little effect on the metrics, and generally keeps the relative ordering of the benchmarks.

Floating-Point Intensive

Programs that do numerous floating-point calculations also tend to be considered scientific.

Different optimizations apply though; including the choice of appropriate math libraries op-

timized for speed or compatibility, opportunities for more aggressive floating point trans-

formations and so on. Fortunately, floating-point operations are quite rarely used in most

applications that do not actually focus on floating-point data, and so identifying floating-

point intensive benchmarks is relatively straightforward.

2Copies of the char array can of course be created and used outside the library, but in the benchmarks that
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Benchmark
data.floatDensity.value

All Application

POWER 474.918 461.224

TSP 471.478 499.775

L INPACK 285.427 306.142

BARNES-HUT 245.669 245.580

VORONOI 226.363 226.489

COEFFICIENTS 202.808 217.956

EM3D 13.512 11.913

EMPTY 1.987 N/A

SOOT 0.717 0.269

JAVAC 0.072 0.000

Table 3.4: Floating-Point density metric

data.floatDensity.value This metric measures the average number of floating point op-

erations per kbc. It is intended to capture the relative importance of floating-point opera-

tions in an application. It is computed as the number of executed bytecode instructions that

operate on either float or double type divided by the total number of executed bytecodes

times 1000.

As can be seen from Table3.4, high float density values correlate well with benchmarks

or algorithms that have been traditionally considered to rely on numeric, floating-point

data (POWER, TSP, COEFFICIENTS, L INPACK, etc.), and low values generally correspond

to non-numeric benchmarks (JAVAC , SOOT, etc.). Some apparently numeric benchmarks

are pruned out by this metric; the EM3D benchmark, for example. While this program

does use floating-point data in an iterative calculation, by default it only computes a single

iteration of the algorithm. A relatively significant proportion of the program is devoted to

constructing and traversing the (irregular) graph structure that supports that computation,

and this is very non-numeric.

Because the EMPTY program has a very low float density value of 1.987, the relative

float density of very small floating-point benchmarks is necessarily diluted when consid-

ered in their startup and library context. Even in the whole-program metric, though, the

division between floating-point intensive and not is quite sharp: the 226.363 value for

VORONOI drops to 13.512 for EM3D, and then rapidly reaches small single digits for less

have been analyzed this does not occur often.
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float-intensive programs. This indicates that the metric possesses a good discriminating

power. Based on this empirical data, adata.floatDensity.value value of at least 100 ap-

pears to be a good indicator of a floating-point intensive program.

Empirical evidence also shows that, unlike most densities,data.floatDensity.value

achieves a good amount of robustness. For example, a different input for the COEFFICI-

ENTS benchmark resulted in the number of executed bytecodes to double, but left the float

density almost unchanged.

With respect to identifying “scientific” benchmarks, it is useful to know which bench-

marks combine floating-point intensity with array usage. In the benchmark list this includes

COEFFICIENTS, BARNES-HUT, POWER, and LINPACK (see tables3.3and3.4). Note that

while these combine intensive floating-point usage with intensive array usage, they do not

necessarily contain perfect loops over arrays. BARNES-HUT, for instance, uses numerous

arrays and vectors, but computationally is largely based on traversing and modifying a tree

structure.

Pointer Intensive

Dynamic data structures are manipulated and traversed through pointers or object refer-

ences. Programs that use dynamic data structures are thus expected to perform a greater

number of object dereferences leading to further objects than a program which uses local

data or arrays as primary data structures; a basic metric can be developed from this obser-

vation. Of course a language such as Java which encourages object usage can easily skew

this sort of measurement: an array-intensive program that stores array elements as objects

(e.g.,Complex objects) will result in as many object references as array references. A fur-

ther complication is due to arrays themselves; arrays are considered objects in Java, and so

an array access will appear as an object access unless special care is taken to differentiate

them.

pointer.refFieldAccessDensity.value This metric measures the number of reference

field access bytecodes executed, on average, per kbc. It coarsely describes the impor-

tance of pointer references in a program. In a pointer-intensive program, one expects that
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A
ll pointer.nonrefFieldAccessDensity.value 92.139 95.144 93.849 57.370 2.120 30.054

pointer.refFieldAccessDensity.value 55.905 94.413 70.017 99.673 1.679 23.790

A
pp pointer.nonrefFieldAccessDensity.value 75.393 95.152 120.080 40.635 0.001 N/A

pointer.refFieldAccessDensity.value 133.837 94.422 88.269 124.260 0.000 N/A

Table 3.5: Pointer metrics

the effect of following pointer references to object fields will result in a high value for this

metric.

pointer.nonrefFieldAccessDensity.value This metric measures the number of primi-

tive field access bytecodes executed, on average, per kbc.

Examples of both metrics are shown in Table3.5. From this, the AUTOMATA and

SABLECC benchmarks are both very pointer-intensive. While it is no surprise in the case

of SABLECC, the case of AUTOMATA merits an explanation: AUTOMATA is a simple one-

dimensional cellular automaton simulation program, and uses arrays of integers to store

the state of the automaton. It is thus expected to spend most of its time executing primitive

array operations. In Section3.4.2, it has already been demonstrated that AUTOMATA is in-

deed very array-intensive. The pointer intensity of the AUTOMATA benchmark is therefore

surprisingly high, and can be attributed its naive implementation. The benchmark uses two

arrays to keep track of the state of the cellular automaton; one array is used to store the state

of the automaton at each iteration, the other is used as a temporary buffer. After each iter-

ation, contents of the temporary array are copied back to the “real” array. Both arrays are

allocated once, and stored in fields. All accesses to the arrays, however, are made directly

from the field reference, resulting in an artificially highpointer.refFieldAccessDensity.-

value. A similar situation can be observed for the array size, which is also stored in a field.

Modifying the source code to cache field values in local variables has the expected effect

on the metric values, as shown in Table3.6.

L INPACK has almost no field accesses of either kind; it is a very non-object-oriented

benchmark that creates just one object with only one field (a primitive type). In the case of
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Metric Original With caching

A
pp pointer.nonrefFieldAccessDensity.value 75.393 54.275

pointer.refFieldAccessDensity.value 133.837 18.750

Table 3.6: Impact of caching field values on pointer metrics in AUTOMATA benchmark

COMPRESS, which one would expect not to be pointer intensive, the benchmark has a high

reference and primitive field accesses. This is largely due to accessing buffers and arrays of

constants; in particular, COMPRESSmakes an intensive use of a byte buffer, which requires

multiple primitive field operations for manipulating the current index, and one reference

field access to obtain a reference to the byte array itself. The nature of JAVAC is less clear;

it has a very high density of primitive field accesses, and a moderately high density of

reference field accesses. Conversely, SABLECC has a very high density of reference field

accesses, and a moderate primitive field acess density; this corresponds to the intuition for

this benchmark. The coarseness of this metric thus seems adequate to identify applica-

tions that are unequivocally pointer or non-pointer intensive, but is not accurate enough to

identify pointer-intensity in all cases, particularly in the face of arrays as objects.

3.4.3 Polymorphism

Polymorphism is a salient feature of object-oriented languages like Java. A polymorphic

call in Java takes the form of aninvokevirtual or invokeinterface bytecode.

The target method of a polymorphic call depends on the runtime type of the receiver object.

In programs that do not employ polymorphism, such as programs that have a limited use

of inheritance, this target never changes and no call is truly polymorphic. The amount of

polymorphism can therefore serve as a measurement of a program’s object-orientation.

Table3.7presents polymorphism metrics for seven distinctive benchmarks.

polymorphism.callSites.value This metric measures the number of potentially poly-

morphic bytecode instructions (i.e.,invokevirtual or invokeinterface ) that have

been touched. This measurement excludes allinvokestatic and invokespecial

bytecodes, but includes allinvokevirtual and invokeinterface call sites, even

if they have only one associated receiver at runtime. Therefore, this metric does not re-
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polymorphism.callSites.value 606 1309 667 3802 3233 559

polymorphism.invokeDensity.value 16.532 55.283 18.664 51.691 39.158 45.766

polymorphism.receiverArity.bin(1) 97.5% 97.7% 97.6% 93.6% 81.8% 95.2%

polymorphism.receiverArity.bin(2) 2.3% 1.6% 2.2% 3.0% 8.3% 2.0%

polymorphism.receiverArity.bin(3+) 0.2% 0.7% 0.1% 3.5% 9.9% 2.9%

polymorphism.receiverArityCalls.bin(1) 100.0% 93.3% 86.7% 68.3% 70.7% 37.0%

polymorphism.receiverArityCalls.bin(2) 0.0% 2.4% 13.3% 13.2% 12.6% 0.0%

polymorphism.receiverArityCalls.bin(3+) 0.0% 4.3% 0.0% 18.5% 16.6% 63.0%

polymorphism.receiverCacheMissRate.value 0.0% 3.2% 3.0% 8.9% 8.8% 41.0%

polymorphism.targetArity.bin(1) 98.4% 98.5% 98.4% 95.2% 91.2% 96.8%

polymorphism.targetArity.bin(2) 1.5% 0.9% 1.5% 2.1% 3.4% 1.1%

polymorphism.targetArity.bin(3+) 0.2% 0.6% 0.1% 2.6% 5.4% 2.1%

polymorphism.targetArityCalls.bin(1) 100.0% 93.4% 86.7% 72.8% 86.8% 42.9%

polymorphism.targetArityCalls.bin(2) 0.0% 2.4% 13.3% 11.9% 1.7% 0.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 4.3% 0.0% 15.3% 11.5% 57.1%

polymorphism.targetCacheMissRate.value 0.0% 3.2% 3.0% 4.3% 4.8% 37.4%

A
pp
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at

io
n

polymorphism.callSites.value 54 737 129 3186 2617 49

polymorphism.invokeDensity.value 16.532 59.194 18.672 69.927 71.771 45.891

polymorphism.receiverArity.bin(1) 98.1% 98.4% 96.9% 93.3% 78.4% 69.4%

polymorphism.receiverArity.bin(2) 1.9% 0.8% 3.1% 3.0% 9.7% 0.0%

polymorphism.receiverArity.bin(3+) 0.0% 0.8% 0.0% 3.7% 12.0% 30.6%

polymorphism.receiverArityCalls.bin(1) 100.0% 99.2% 86.7% 78.4% 72.6% 36.9%

polymorphism.receiverArityCalls.bin(2) 0.0% 0.1% 13.3% 15.4% 15.1% 0.0%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.8% 0.0% 6.2% 12.3% 63.1%

polymorphism.receiverCacheMissRate.value 0.0% 0.4% 3.0% 4.4% 7.2% 41.1%

polymorphism.targetArity.bin(1) 98.1% 98.9% 96.9% 95.1% 89.7% 77.6%

polymorphism.targetArity.bin(2) 1.9% 0.4% 3.1% 2.1% 3.8% 0.0%

polymorphism.targetArity.bin(3+) 0.0% 0.7% 0.0% 2.8% 6.5% 22.4%

polymorphism.targetArityCalls.bin(1) 100.0% 99.2% 86.7% 83.5% 92.0% 42.8%

polymorphism.targetArityCalls.bin(2) 0.0% 0.0% 13.3% 13.9% 1.9% 0.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.8% 0.0% 2.6% 6.1% 57.2%

polymorphism.targetCacheMissRate.value 0.0% 0.4% 3.0% 2.7% 3.1% 37.5%

Table 3.7:Polymorphism Metrics
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flect the use of polymorphism, but rather a measure of program size. It is intended to be a

dynamic version of the frequently reported static measure which involves counting all call

sites in the code.

From a compiler optimization point of view, thepolymorphism.callSites.value metric

gives an indication of the amount of effort required to optimize polymorphic calls, but not

of the relevance of such optimizations to performance.

As it was previously observed with thesize.run.value metric, this metric is robust with

respect to both program input and various compiler optimizations. The impact of changing

the input of all benchmarks except JAVAC had a very small impact on the metric. In the

case of JAVAC , going size 1 to size 10 doubled both the whole program and application-only

variations of thepolymorphism.callSites.value metric value. This result tends to indicate

that the changes between the different input sizes for JAVAC result in a rather pronounced

change in the overall behaviour of the benchmark.

Changes in the input of all benchmarks had only a small impact on the metric, and did

not change the relative ordering of the benchmarks.

The application version of the metric is more discriminating than the whole program

version. For instance, about half of the benchmarks touch less than 100 call sites in their

application code. The whole program version of thepolymorphism.callSites.value met-

ric therefore reaches a value of around 550 for many of the benchmarks. Also, the EMPTY

program touches 437 call sites before terminating, and thus startup can significantly distort

the results even for benchmarks which themselves touch a large number of call sites. For

example, the SOOT benchmark touches 3845 call sites during its entire execution, but only

3229 of them are found in application code, which represents a difference of around 16%.

polymorphism.invokeDensity.value This metric measures the average number ofin-

vokevirtual and invokeinterface bytecodes executed, on average, per kbc. It

indicates the relative importance of virtual method invocations, and thus can be used to

assess the relevance of optimizing invokes. For example, both COMPRESSand PERIMETER

have similar number of touched call sites in their application code (54 and 49, respectively),

but COMPRESShas an applicationpolymorphism.invokeDensity.value value of 16.532,

while PERIMETERhas an invoke density of 45.891. Optimizing method invocations can be
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expected to be more beneficial when applied to PERIMETER than to COMPRESS.

Both the whole program and application versions of thepolymorphism.invokeDensity.-

value metric are easily perturbed by variations in the program’s input. For example,

SOOT’s invoke density dropped from 69.927 down to a mere 37.510 by only changing

the input. A similar, although less pronounced, variation can be observed by changing

SABLECC’s input. The metrics also shows a clear progression of values, starting around

0.5 for POWER and reaching values in the 120-130 range for a number of benchmarks,

indicating that it is very discriminating.

The previous metrics did not provide information relative to the more realistic amount

of polymorphism. The following metrics capture a more accurate notion of polymorphism.

There are two variants. In the first variant, polymorphism is expressed in terms of the num-

ber of receiver types associated with a call site, and in the second variant, polymorphism

is defined in terms of the number of distinct target methods that are invoked by a call site.

The number of receiver types at any given call site is an upper bound on the number of

target methods that it may invoke. Two different receiver types can, however, result in the

same target method being invoked in cases where a method of a common super class has

been inherited but not overridden by several distinct receiver classes.

Optimization techniques that are related to virtual method invocations are usually de-

signed to take advantage of a low level of polymorphism in one of the variants. For ex-

ample, devirtualization techniques based on Class Hierarchy Analysis (CHA) [DGC95]

optimize call sites that have a limited number of targets. Other techniques, such as inline

caching [DS84], optimize call sites with a restricted number of receiver types. Specific

metrics for each variant are described next.

Receiver Polymorphism

polymorphism.receiverArity.bin This metric shows the percentage of all touched call

sites that have one, two and more than two distinct receiver types at runtime. The nature

of this metric makes it ideal for comparison with type inference techniques which conser-

vatively estimate the number of receiver types without running the program. However, by
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only counting call sites, the metric does not reflect the importance of those sites.

polymorphism.receiverArityCalls.bin This metric shows the percentage of all calls orig-

inating from call sites that have one, two and more than two distinct receiver types at run-

time. It is “more dynamic” than the previouspolymorphism.receiverArity.value metric

because it measures theimportanceof polymorphic calls. For example, the COMPRESS

benchmark has 1.9% of polymorphic call sites in its application code, but the zero value

of thepolymorphism.receiverArityCalls.bin(1) in Table3.7indicates that those call sites

are almost never executed.

From Table3.7, all benchmarks except JAVAC appear to mostly have monophorphic call

sites. However, looking at thepolymorphism.receiverArityCalls.bin values clearly shows

that many of the benchmarks have polymorphic call sites that are executed frequently;

polymorphism.receiverArity.bin appears to lack discriminating power and to be a rather

poor indicator of the use of polymorphism. The application-only counterparts of these

metrics are clearly more discriminating. For instance, the application-only version of the

polymorphism.receiverArity.bin metric correctly identifies both JAVAC and PERIMETER

as being polymorphic benchmarks, but SOOT is still pruned out. The application-only

polymorphism.receiverArityCalls.bin metric from Table3.7, however, reveals the actual

use of polymorphism for each benchmark. COMPRESSand JESS are not polymorphic,

BARNES-HUT and VOLANO-SERVERare moderately polymorphic, and SOOT, JAVAC and

PERIMETER make a significant use of polymorphism.

In the application-only part of Table3.7, the percentage of monomorphic calls is lower

than the percentage of monomorphic call sites for BARNES-HUT, VOLANO-SERVER, SOOT,

JAVAC and PERIMETER. PERIMETER is the most extreme case, with 30.6% heavily poly-

morphic call sites, which are executed 63.1% of the time. This metric is preferred as an

appraisal of polymorphism, since it highlights polymorphism that actually occurs, weighted

by the frequency of its occurrence. Table3.7 is therefore sorted in descending order from

left to right, usingpolymorphism.receiverArityCalls.bin(1).
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polymorphism.receiverCacheMissRate.bin This metric shows as a percentage how

often a call site switches between receiver types. It represents the miss rate of a true inline

cache. Inline caching works by keeping a cached copy the result of the previous method

lookup at the call site (inline). Subsequent executions of the call site will require no lookup

as long as the receiver type does not change. Apart from the initial miss, an inline cache

which never misses indicates a dynamically monomorphic call site.

This metric is potentially non-robust, since the miss rate of an inline cache can be heav-

ily influenced by the ordering of the receiver types: a call site with two different receiver

types can have a cache miss rate varying between 0% (objects of one type precede all ob-

jects of the other type) and 100% (two types occur in an alternating sequence). SOOT, for

example, executes 21.7% non-monomorphic calls (1 -polymorphism.receiverArityCalls.-

bin(1)) in its application code, but has a receiver cache miss rate of only 4.3%. PERIME-

TER, on the other hand, has 63% non-polymorphic calls, and a receiver cache miss rate

of 37.4%, indicating that the polymorphic call sites actually switch often between receiver

types.

Target Polymorphism

Target polymorphism can be measured in a similar manner as receiver polymorphism, how-

ever the metrics focus on the actual target method invoked at a call site rather than the

receiver type for the call.

polymorphism.targetArity.bin This metric shows the percentage of all touched call sites

that have one, two and more than two distinct target methods at runtime. This metric is very

similar to polymorphism.receiverArity.bin, but has a greater relevance in the context of

compiler optimizations; whenever a compiler can prove that a call site only has a single

possible target, the call can be replaced by a static call or inlined [SHR+00].

Like polymorphism.receiverArity.bin, this metric is dynamic, but does not reflect the

importance of the calls at runtime.

polymorphism.targetArityCalls.bin This metric shows the percentage of all calls orig-

inating from call sites that have one, two and more than two distinct target methods at
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runtime. The same observations hold as for receiver polymorphism, but the number of

monomorphic calls is larger.

polymorphism.targetCacheMissRate.bin This metric shows as a percentage how of-

ten a call site switches between receiver types. It represents the miss rate of an idealized

branch target buffer [Dri01]. It is always lower than the corresponding inline cache miss

rate, as measured by thepolymorphism.receiverCacheMissRate.value, since different

receiver types can be result in the same target being invoked. This metric can also be

heavily influenced by the order in which target methods occur.

3.4.4 Memory Use

Understanding the memory use of programs is very important when trying to understand

their behaviour, especially in modern, garbage-collected languages. Specific memory use

patterns can be exploited by various compiler and runtime optimizations. Dynamic metrics

that measure the amount and properties of dynamically-allocated memory are presented

next.

Allocation Density

In order to measure the how memory-hungry a program is, one can look at the rate of

memory allocation in a program. There are two variations:

memory.byteAllocationDensity.value This metric measures the number of bytes of mem-

ory that are allocated, on average, per kbc. The application-only version of the metric only

counts objects that have a type that is a user-defined class, whereas the whole program

version includes all dynamically allocated objects. Arrays are implemented as objects in

Java, and are included in the computations as instances of a library class. This metric is

platform-dependent, because the number of bytes in the object headers is dependent on the

JVM implementation.
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memory.averageObjectSize.value 191.6 34.9 443.5 53.8 41.4 35.2 62.0

memory.byteAllocationDensity.value 1684.216 8.917 36.069 313.836 131.801 290.029 343.095

memory.objectAllocationDensity.value 8.790 0.255 0.081 5.831 3.180 8.235 5.536

memory.objectSize.bin(8) 0.6% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 14.7% 0.5% 3.6% 34.6% 14.6% 46.3% 22.3%

memory.objectSize.bin(24) 32.8% 97.3% 8.1% 39.8% 41.9% 33.9% 40.8%

memory.objectSize.bin(32) 8.7% 0.3% 2.1% 4.2% 20.7% 1.0% 7.2%

memory.objectSize.bin(40) 9.5% 0.3% 20.6% 7.1% 6.2% 6.5% 12.8%

memory.objectSize.bin(48-72) 21.7% 0.9% 6.1% 12.7% 11.4% 10.6% 6.5%

memory.objectSize.bin(80-136) 7.2% 0.3% 2.7% 0.7% 4.2% 1.0% 5.3%

memory.objectSize.bin(144-392) 3.9% 0.2% 7.1% 0.5% 0.8% 0.5% 5.0%

memory.objectSize.bin(400+) 0.9% 0.1% 49.7% 0.4% 0.2% 0.2% 0.2%

A
pp
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at

io
n

memory.averageObjectSize.value N/A 24.0 39.9 31.2 29.9 21.1 23.3

memory.byteAllocationDensity.value N/A 5.895 0.680 19.056 69.435 152.356 64.138

memory.objectAllocationDensity.value N/A 0.246 0.017 0.610 2.320 7.222 2.758

memory.objectSize.bin(8) N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) N/A 0.0% 0.2% 8.4% 14.8% 58.8% 49.9%

memory.objectSize.bin(24) N/A 100.0% 0.0% 1.6% 22.7% 30.9% 19.8%

memory.objectSize.bin(32) N/A 0.0% 0.0% 81.1% 45.1% 0.8% 20.2%

memory.objectSize.bin(40) N/A 0.0% 99.8% 8.9% 11.3% 8.8% 10.1%

memory.objectSize.bin(48-72) N/A 0.0% 0.0% 0.0% 6.1% 0.7% 0.0%

memory.objectSize.bin(80-136) N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) N/A 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 3.8: Memory metrics

memory.objectAllocationDensity.value This metric measures the number of objects

that are allocated, on average, per kbc.

From the data presented in Table3.8, it can be observed that the memory allocation

density varies widely. The EMPTY program shows a surprisingly high allocation density,

1684 bytes per kbc. This shows that system startup and class loading of library methods

is quite memory hungry. Of the remaining benchmarks, BISORT and EM3D have fairly

low densities, while the rest are quite high, with SABLECC having the highest at 343 bytes

per kbc. One would expect that benchmarks with low allocation densities would not be as

suitable for use in examining different memory management schemes.

The discriminating nature of the allocation density metrics is easy to see from the data
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presented in Table3.8. The metrics, both in their whole program and application versions,

are sensitive to changes in the program inputs, and therefore are not very robust. For

example, changing the input of the SOOT benchmark halved its allocation densities. JAVAC ,

JESSand RAYTRACE also exhibit similarly large variations.

Although these metrics give a simple summary of how memory-hungry the program is

overall, they do not distinguish between a program that allocates smoothly over its entire

execution and a program that allocates only in some phases of the execution. To show this

kind of behaviour, there are obvious continuous analogues of the metrics, where the number

of bytes/objects allocated per kbc is computed per execution time interval, and not just once

for the entire execution. Such extensions are planned as future work (see Section6.2.2).

Object Size Distribution

In order to further study the memory requirements of applications, the next metrics look at

the size of the objects being dynamically allocated. Knowing this information is useful for

various optimization strategies, as well as manual memory management techniques. For

example, if small objects are frequently allocated (and deallocated), it might be a good idea

to manage them in a pool. However, pooling large objects may artificially increase the

memory footprint of an application, and is probably not desirable.

memory.averageObjectSize.value This metric measures the average size of the ob-

jects that are dynamically allocated. This metric can be computed by taking the ratio of

memory.byteAllocationDensity.value to memory.objectAllocationDensity.value. Be-

cause the size of the object headers is included in the total size of the objects, this metric is

platform-dependent.

From Table3.8, the EMPTY benchmark allocates large objects. This is due to the fact

that during class loading and JVM initialization, several data structures have to be built.

Many of them correspond to an internal representation of the classes being loaded. The

EM3D benchmark allocates large objects (actually arrays ofNode objects), but has a very

low object allocation density. This pattern is characteristic of programs that first build a data
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structure, then perform computations on it. All other benchmarks presented in Table3.8

allocate fairly small objects.

Thememory.averageObjectSize.value metric is much more robust than the alloca-

tion density metrics. Intuitively, the application-only version of the metric is generally

more robust than the whole-program version. Different optimizations, as well as changes

in program input, had little effect of the metric value for all of the benchmarks for which

multiple inputs were available.

Rather than just a simple average object size, one might be more interested in the dis-

tribution of the sizes of allocated objects. For example, programs that allocate many small

objects may be more suitable for some optimizations such as object inlining, on-stack allo-

cation or special memory allocators which optimize for small objects.

memory.objectSize.bin This metric shows as percentages the proportion of allocated

objects which fall within various size ranges. In order to factor out implementation-specific

details of the object header size, bin 0 is used to represent all objects which have no fields

(i.e., all objects which are represented only by the header). In order to capture commonly

allocated sizes in some detail, bins 1, 2, 3, and 4 correspond to objects usingh + 1 words

(h + 4 bytes),h + 2 words,h + 3 words andh + 4 words respectively, whereh represents

the size of the object header. The value ofh is of course platform-dependent3; a typical

value used by the major JVM implementations is currently 8 bytes.

Then, increasingly coarser bins are used to capture all remaining sizes, where bin 4

corresponds to objects with sizeh + 5 . . . h + 8, bin 5 corresponds to objects with size

h+9 . . . h+16, bin 6 corresponds to objects with sizeh+17 . . . h+48 and bin 7 corresponds

to all objects with size greater thanh + 48. Readers should note that the sum of all bins

should be 100%.

Table 3.8 presents empirical data for this metric. With the exception of EM3D, all

benchmarks seem to allocate relatively small objects, indicating that the most frequently

used user objects contain relatively few fields. The BISORT benchmark stands out because

all its application objects are in one bin, objects of size 24 bytes. This is explained by

3A command-line option is provided in our tool to set the size of the object header.
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concurrency.lockDensity.value 18.142 4.259 8.730 5.593

concurrency.lock.percentile 14.1% 20.6% 10.8% 11.7%

concurrency.contendedLockDensity.value 0.271 0.088 0.017 0.017

concurrency.contendedLock.percentile 50.0% 30.0% 28.6% 50.0%

A
pp
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at
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n concurrency.lockDensity.value 32.800 5.503 7.949 9.467

concurrency.lock.percentile 14.3% 50.0% 23.1% 25.0%

concurrency.contendedLockDensity.value 0.100 0.099 0.006 0.165

concurrency.contendedLock.percentile 50.0% 100.0% 100.0% 88.9%

Table 3.9: Synchronization metrics for multithreaded benchmarks

the fact that the benchmark operates on a tree ofValue objects. As with thememory.-

averageObjectSize.value metric, thememory.objectSize.bin metric is generally robust

with respect to program input and program optimizations.

3.4.5 Concurrency and Synchronization

Optimizations that focus on multithreaded programs need to identify the appropriate op-

portunities. A basic requirement is to know whether a program does or can actually exhibit

concurrent behaviour, or whether it is effectively single-threaded, executing one thread at

a time. This affects the application of various optimization techniques, most obviously

synchronization removal and lock design, but also the utility of other analyses that may be

constrained by conservative assumptions in the presence of multithreaded execution (e.g.,

escape analysis).

Since the use of locks can have a large impact on performance in both single and mul-

tithreaded code, it is also useful to consider metrics that give more specific information on

how locks are being used. A program, even a multithreaded one that does relatively little

locking will obviously have a correspondingly reduced benefit from optimizations designed

to reduce the cost of locking or number of locks acquired. Lock design and placement is

also often predicated on knowing the amount of contention a lock experiences; this can

also be exposed by appropriate metrics.
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concurrency.lockDensity.value 6.677 1.266 14.673 15.748 12.764 1.528

concurrency.lock.percentile 15.1% 43.2% 2.9% 19.2% 5.6% 40.9%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000 0.000

concurrency.contendedLock.percentile N/A N/A N/A 100.0% 33.3% N/A

A
pp

lic
at

io
n concurrency.lockDensity.value 0.000 0.000 0.017 1.142 0.000 N/A

concurrency.lock.percentile N/A N/A 50.0% 100.0% N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000 N/A

concurrency.contendedLock.percentile N/A N/A N/A N/A N/A N/A

Table 3.10: Synchronization metrics for single-threaded benchmarks

An important criterion in optimizing synchronization usage is to know whether a pro-

gram does a significant number of lock operations (entering of synchronized blocks or

methods). This is quickly seen from the single value metric of an average number of lock

operations per execution unit (kbc). Continuous versions of the same would enable one to

see if the locking behaviour is concentrated in one section of the program, or is specific to

particular program phases.

concurrency.lockDensity.value This metric measures the average number of lock (mo-

nitorenter ) operations per kbc. Programs which frequently pass through locks will

have a relatively high density. Because synchronized blocks are often defined without

knowing whether more than one thread will be running, this metric is irrespective of any

actual concurrency.

Tables3.9 and3.10show metrics for benchmarks with the highest lock density of the

benchmark suite. This includes AUTOMATA , DB, JACK, ROLLERCOASTER, SABLECC,

TELECOM, and VOLANO (VOLANO-CLIENT and VOLANO-SERVER), spanning a lock

density range from 18.142 for ROLLERCOASTERto 1.528 for EMPTY. ROLLERCOASTER,

VOLANO, and TELECOM are explicitly multithreaded benchmarks that contain significant

amounts of synchronization and relatively little actual computation, so one would expect
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them to have a high lock density. Inclusion of the others, AUTOMATA in particular, is less

intuitive, and merits further investigation.

The actual AUTOMATA code itself consists of iteratively applying arithmetic opera-

tions on arrays. However, as mentioned in Section3.4.2, each iteration within AUTOMATA

requires generating output onSystem.out . The Java library calls for streamed output

naturally incorporate synchronization, and this turns out to be the source of the relatively

high synchronization count. This is further supported by the metrics for the same bench-

mark with the output methods disabled (shown as AUTOMATA -NOOUTPUT in Table3.10);

in this case the lock intensity drops to 1.266, below that of the EMPTY program.

SABLECC does not do any locking itself, but does through frequent invocation of li-

brary methods (I/O andString s). In the case of JACK and DB, we note that JACK has

been previously reported to have the highest absolute number of synchronized objects of

any of the SPECjvm98 benchmarks [ADG+99], while DB has the highest absolute number

of total synchronizations [KKO02].

concurrency.lock.percentile Locks may be amenable to hot spot optimization—specific

locks can be optimized for use by a certain number of threads, or code can be specialized

to avoid locking. Whether high-use locks exist or not can be identified through a percentile

metric, showing that a large percentage of lock operations are performed by a small per-

centage of locks; for the current metric we define this as the percentage of locks responsible

for 90% of lock operations.

From Table3.10, the EMPTY benchmark has 40.9% of locks responsible for 90% of

locking. Lock usage in the startup code is thus not perfectly evenly distributed, but does

not indicate significant hot spots. SABLECC and DB have the smallest number of hot

locks, just 5.6% and 2.9% respectively. Hot spots here exist, but at least for SABLECC

they are contained in the library code.

concurrency.contendedLock.value Adaptive locks can make use of knowing whether

a lock will experience contention. This allows them to optimize behaviour for single-

threaded access, but also to adapt to an optimized contended access behaviour if necessary

[BKMS98]. Similarly, lock removal or relocation strategies will be better if they have
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information on which locks are (perhaps just likely) high, low or no-contention locks. A

simple metric relevant to these efforts is to try and measure the importance of contention;

this can be a value giving the average number of contended lock entry operations per kbc.

For most benchmarks, contention is relatively rare, and the contended density is less

than one in a million. VOLANO, ROLLERCOASTER and TELECOM, the benchmarks de-

signed to test multithreading and synchronization, have the highest density. Note that even

for these, the actual density value is small; this suggests that techniques based on presumed

low contention will be (and indeed are) effective [ADG+99, KKO02].

concurrency.contendedLock.percentile This metric shows the existence of hot spots

of contention. In the suite only highly multithreaded programs, TELECOM, VOLANO, and

ROLLERCOASTER, have percentiles significantly less than 90%. ROLLERCOASTERhas no

contention hotspot since it has aconcurrency.contendedLock.percentile 50%; this ac-

tually corresponds with the algorithm design of this particular implementation, which uses

multiple locks to avoid contention bottlenecks. The cause for the distribution of VOLANO’s

hot spots is not entirely clear (VOLANO is closed source, which impedes investigation), but

we note that it has a relatively high number of locks [ADG+99], and so contention hot spots

are less likely.

While the TELECOM benchmark has a small percentile for the whole program, the

contention on the locks that are found in its own code is completely evenly distributed.

This is due to the fact that the benchmark tries to reduce lock contention through the use

of separate locks for each of the 15 resources, effectively eliminating contention hotspots

in its own locks. However, the resources themselves are all accessed through a single

java.util.Vector . High contention on the single lock associated with that object

results in an overall high contended percentile for the whole program.

The contention that is found in the whole-program version of theconcurrency.con-

tendedLock.percentile metric for single-threaded benchmarks like JAVAC and JACK also

deserves some explanation. The fact that these benchmarks obtain aconcurrency.con-

tendedLockDensity.value value of 04 indicates that contention does not occur frequently.

The observed contention is due to the fact that all Java applications are in practice multi-

4The actual metric value is in fact non-zero, but is reported as 0 due to rounding.
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threaded, since many JVM implementations rely on additional threads to perform runtime

support functions. For example, the lock contention in this case is due to the garbage

collector attempting to runfinalize() methods from its own thread.

Both concurrency.lockDensity.value and concurrency.lockDensity.percentile are

potentially non-robust metrics because the order in which different threads acquire the locks

may have a very significant impact of the actual lock contention. Such metrics are also

highly platform dependent: different thread scheduling policies are likely to have an impact

on the observed lock contention.
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Chapter 4

*J Framework

Empirical validation is an essential part of the metric development process. However,

dynamic metrics do not yet form a well-defined corpus of calculations. Because individ-

ual metrics were motivated from ongoing investigations into program behaviour, it was

necessary to build a tool to allow new metric calculations to be easily added and tested.

This chapter describes the*J framework, a complete system for gathering trace data

from runs of Java programs and performing dynamic analyses on that input (offline). Sec-

tion 4.1 describes the major goals that the tool had to achieve. Section4.2 presents an

overview of the design of the framework, along with a discussion of how it addresses im-

portant issues. As a proof of concept, Section4.3 lists applications of the tool to dynamic

analysis tasks other than dynamic metric computations.

4.1 Goals

Because the development of individual metrics stemmed from investigating the behaviour

of programs, it was necessary to build a framework which would not only make it possi-

ble to investigate dynamic metrics with a high level of freedom, but which would also be

extensible in order to accommodate other possible dynamic analysis needs.*J was there-

fore intended to be a general-purpose dynamic analysis framework rather than a specialized

metric computation tool.
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The main factor which influenced the development of*J was the need for flexibility

and extensibility, in terms of both the data side and the analysis side. In particular, it was

necessary to ensure that new dynamic metrics could be quickly and easily added, modified

or removed. Because there are multiple ways of collecting execution data, each of which

offered different possibilities and constraints, it was also necessary to make sure that*J

was not tied to any particular data source. This mandated the design of two distinct tools,

one to collect execution data and one to perform the analyses.

On the other hand, the amount of computations that the tool has to perform imposes

another constraint: the performance of*J had to stay in an acceptable range in order to

make sure that non-trivial benchmarks could be successfully analyzed.

4.2 Design and Implementation

The *J framework consists of two major components: a profiling agent which records

dynamic information regarding the execution of a program in the form of anexecution

trace, and an analysis back-end which uses the traces as input for various dynamic analyses.

This design allows either component to be used independently. A third component of the

system is a versatile web-based interface which allows users to view the metric results in a

convenient, user-friendly way.

Figure 4.1 shows an overview of the*J framework. Individual components of the

framework will be discussed in details next. Section4.2.1describes the major features of

the profiling agent. Section4.2.2presents the design of the analysis back-end. Section4.2.3

discusses the web interface to the metric database.

4.2.1 Agent

Execution traces in*J are formed of a trace header followed by records of runtime events,

and use a simple, generic and extensible trace format. This simplifies the task of collecting

data from multiple sources. The main trace generator uses the built-in Java Virtual Machine

Profiling Interface (JVMPI) [JVMPI] to dynamically receive events from any JVM which

implements the interface, which it then serializes into a single event stream. The profiling
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Figure 4.1: The*J framework
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agent is compatible with any JVM that implements the JVMPI.

Flexibility

Because not all of the events that are available through the JVMPI may be needed for the

analysis phase,*J uses an adaptive trace format that can be customized viaspecification

files. Specification files are defined in a pattern-based domain-specific language for sim-

plicity. For example, Listing4.1 shows a tiny specification file, which will lead to only

ClassLoad , GCStart andGCFinish events being included in the trace.

default {
recorded: yes ; # Record all events for which there is a definition

}

event ClassLoad {
class_name: yes ; # Record class name field
methods: yes ; # Record method table field (implies method count field)

}

event GC* {
# ‘GC∗’ matches GCStart and GCFinish

}

Listing 4.1: Simple event specification

Specification files must be compiled before being used with the agent. This allows

the compiler to perform a dependency check to make sure that a sane specification is re-

ceived. For example, it is not possible to record themethods field without recording the

num methods field as well (an internal array size); the compiler will thus introduce the

missing dependency. Compiling the specification also has the additional advantage of pro-

ducing a precise binary encoding of it, which is then including as an integral part of the

trace header. This allows data consumers to know precisely what kind of data is available

in the trace.
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In order to make the trace format more generic and easily extensible, the trace header

also contains a section reserved for attributes. The attributes used in*J traces are very simi-

lar in spirit to those found in the compiled representation of Java classes [LY99]. Attributes

allow data producers to encode information in the trace in a portable way. For example, the

particular class path that was used to generate the trace can be included as an attribute. The

trace consumer is then free to use this information if it needs it.

Trace Size

Complete execution traces are well-known to occupy a very large amount of space even

for relatively small benchmark program executions. When recording frequent events, such

as executed bytecode instructions, the amount of disk space may well be insufficient to

store the uncompressed trace file. This obviously limits the amount of information that

can be recorded unless a means of reducing the trace size is found. Fortunately, the data

the composes execution traces is usually highly predictable, and can be compressed very

effectively.

The most frequent kind of event that is found in the traces produced by*J corresponds

to the execution of a bytecode instruction. Such events are in fact so common that record-

ing all of them in a naive way would require many gigabytes (GB) of storage space even

for relatively small benchmarks.*J therefore tries to predict what the next executed byte-

code will be, keeping a count of how many of them were successfully predicted. Then,

it will merge correctly predicted events into a single one. Note that there is absolutely

no trace size penalty incurred for mispredictions; in this case the profiling agent would

fall back to the original encoding.*J employs a very simple predictor, and yet achieves

significant trace compression. Table4.1 shows the total size (in bytes) of traces for the

HELLOWORLD benchmark (which contain over half a million bytecode execution events

for the VM startup) using no predictor and the default predictor. Empirical results suggest

that the prediction of bytecode executions is an effective trace compression scheme, as it

achieves a reduction in trace size of over 65% in the case of the HELLOWORLD benchmark.

Generally, execution traces contain a significant number of memory addresses. The

traces produced by*J are no exception. Such addresses often exhibit good locality; as
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Predictor
% Difference

None Default

Trace size (bytes) 6 950 804 2 381 852 65.7%

Table 4.1: Trace compression for HELLOWORLD using a predictor

Compression
% Difference

None gzip

Trace size (bytes) – No predictor 6 950 804 428 567 93.8%

Trace size (bytes) – Default predictor 2 381 852 194 321 91.8%

Table 4.2: Trace compression for HELLOWORLD usinggzip

a result, execution traces generally respond very well to ordinary compression schemes.

The *J profiling agent is able to directly generate traces using thegzip [GZIP] format.

Table4.2 shows the amount of compression that is achieved using thegzip format with

traces using no predictor or the default predictor.

Combining both trace size reduction techniques can therefore achieve a total compres-

sion of 97% of the original trace. Better tailored compression algorithms, such as the the

ones used by the STEP framework [Bro03], can reduce the trace sizes even further. Inte-

gration of STEP and*J is planned as future work (see Section6.2.4).

*J also supports splitting of the trace files into multiple, smaller trace segments, if

compression techniques are either not used or still insufficient. It also supports writing the

trace to a FIFO file (also called “named pipe”), eliminating the need to store the trace on

disk altogether.

JVMPI-related Issues

The JVMPI was selected as a source of trace data primarily because it can work with the

major virtual machine implementations, and provides access to information that is impos-

sible to obtain by instrumenting the application code. Unfortunately, while the JVMPI is

reasonably ubiquitous it has several drawbacks which affect the performance and complex-

ity of the profiler, as well as the kind of data that can be recorded.

The most obvious drawback associated with the JVMPI is the fact that its callback

mechanism is inherently slow for frequent events, which results in a very significant in-

crease in execution time even for simple benchmark programs. For example, running the
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JAVAC benchmark using an empty profiling agent slows down the execution by a factor of

6.5.

Moreover, the JVMPI does not guarantee complete trace data—some events may be

skipped during JVM startup, this requires non-trivial internal state in order to track and

handle missing events. The profiling agent has to keep an internal representation of all

trace entities in order to detect missing entity definitions, and explictly request the corre-

sponding events from the JVM. However, such requests have to be placed while respecting

the constraints imposed by the internal state of the virtual machine; failure to do so would

most likely result in its immediate failure. Producing a correct JVMPI agent is therefore a

complex task.

A further limitation of the JVMPI is in the data it provides. Not only are event types

fixed (limiting metric possibilities), but even the event data can be insufficient: the JVMPI

reports instruction executions using code offsets, and so locating the actual opcode of the

executed bytecode requires classfile parsing. The JVMPI also does not allow the profiler to

inspect the contents of the execution stack. The only way to keep track of object references

at the level of executed instructions is thus to simulate the entire execution, which of course

imposes a very high overhead in both performance and code complexity.

4.2.2 Analyzer

The trace analyzer component takes as input the traces produced by the profiling agent. It

is then responsible for applying any number of dynamic analyses (operations) to the data

stored in the trace.

Flexibility

Conceptually, the trace analyzer uses a pipeline design through which events are sent. Dy-

namic analysis operations are placed along this pipeline, and are free to manipulate all

events that flow through it, for example by inspecting, modifying, replacing or terminat-

ing the processing of events. Because the order in which an event travels through the set

of analyses is determined by their respective order in the pipeline, it is possible for some

analyses to execute with a higher priority in order to provide services to subsequent ones.
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This design is the key to the flexibility in*J .

*J provides several kinds of analyses in its standard library:

• Services: Services are helper operations that decouple common tasks from the spe-

cific analyses by making their results available to other operations. Most services

that are distributed as part of the standard operation library are mutator operations,

i.e., operations that modify the event objects that are propagated to other operations.

• Metric operations: Metric operations are responsible for computing specific dy-

namic metrics.

• Printers: Printer operations simply convert some information from the execution

trace into an alternate representation.*J includes simple printers which simply out-

put the trace in a human-readable format, and more involved ones such as the dy-

namic call graph printer (discussed in more details in Section4.3.2).

• Propagation operations: Propagation operations perform propagation of data in the

dynamic control flow graph (CFG) of the application. This is further discussed in

Section4.3.

Analysis operations in*J are organized hierarchically asPack s andOperation s.

Pack objects are containers for otherPack s or Operation s, whereasOperation s

perform computations.Pack s andOperation s can be added, removed or redefined.

This hierarchical formation is conceptually clean and very convenient when working with

the tool from the command line. For example, the pack which contains all of the operations

that compute the various metrics can be enabled or disabled using one simple command.

Each pack maintains a uniquely determined ordering of the operations that it contains,

which in turn determines the order in which they appear in the processing chain. Events can

therefore be thought of as “flowing” through the hierarchy, which constitutes the pipeline.

Because of the large amount of information that is to be processed for each trace file,

however, an event dispatch system that simply propagates events through thePack tree

is impractical. Instead,*J preprocesses this tree and generates a mapping from events

to sets ofOperation s, effectively “flattening” the hierarchy while keeping the relative

56



4.2. Design and Implementation

ordering of operations.Operation s are required to specify which events they want to

receive. Only operations interested in an event will receive it, thus eliminating the cost of

recursively traversing the tree of analyses for each event.

Extensibility

In order to support the addition of new dynamic analyses without having to modify the core

of the framework,*J provides several extension mechanisms.

For instance,*J uses the notion ofstorage containerto allow user-defined data storage

to be associated at runtime with trace entities, such as classes, methods, objects, bytecode

instructions, and so on. There are several kinds of data that can be associated with storage

containers, such as counters and object references. Any operation can dynamically request

more storage space from any storage container class; all existing instances of that class

will automatically be notified of the change and reserve the additional storage space. With-

out this support from the framework, a simple computation such as counting the number

of times each bytecode instruction is executed would require either a modification of the

framework to add a field to theInstruction class, or the use of hash tables.

Moreover, it had to be possible to gather data from different sources. To this end,*J

supports the creation of custom trace reader objects, which allow the tool to read traces

stored in other formats. This can be easily achieved since all trace file readers only have

to implement the very simpleTraceReader interface. Communication between the*J

core and trace readers is only achieved through queries that are placed by the framework,

and belong to one of the following categories:

• Contents queries: contents queries are issued by the framework in order to de-

termine if some particular information is available from the trace file. Because

all Operation s are required to explictly state their event dependencies, content

queries are used to verify that all dependencies for a particularOperation are met

before allowing it to execute. The*J framework performs queries for each event in-

dividually, and the trace reader must respond with an event descriptor which contains

information regarding the status of the event (whether or not it is available), and its

available fields.
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• Attribute queries : attribute queries involve retrieving information concerning trace

attributes. For example, if the class path that was used to generate the trace is in-

cluded in the trace, then it can be accessed from another part of the framework using

atttribute queries.

• Event queries: event queries are issued in order to request the next event from a

trace reader. Because in general it is not possible to know the number of events in

advance, the end of the trace is signalled by returningnull in response to this query.

Additionally, a trace reader can be asked to provide the number of events that it has

successfully returned in response to event queries so far.

The simplicity of the communication between trace readers and the rest of the framework

is further increased by the fact that apart from guaranteeing that no request will be issued

before the trace reader has been initialized, there is no restriction on the ordering of the

requests; different kinds of requests can even be interleaved.

The analyzer also relies on its own class file parser, which can easily be extended using

custom attribute readers, which simply have to be registered with the class file parser. At-

tribute readers rely on thefactorydesign pattern [GHJV95] to instantiate new instances of

theAttribute class.

Performance and Efficiency

Although the analysis is performed offline, it was necessary to ensure that the tool would

run in practical time. A right balance between performance and flexibility had to be

achieved. The large amount of data that has to be processed for most benchmarks makes

this task especially challenging, and required careful design to keep the memory footprint

of *J as small as possible.

In order to increase the efficiency of the framework pooling techniques are used exten-

sively. For example, a single instance of each kind of event is allocated at runtime, thereby

saving a significant amount of memory. Also, because allocating objects and performing

garbage collection are relatively expensive operations, reducing the number of allocations

has a positive impact on the overall performance of the framework.
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Caching techniques are also used in many situations, and help considerably to keep the

number of expensive computations as low as possible. For example, many entity resolution

code segments use caches in order to avoid costly lookups in data structures. Also,*J pos-

sesses many highly specialized data structures in order to avoid the typically high overhead

that is associated with the ones provided in the Java standard libraries (e.g., for primitive

types used in hash maps).

Ease of Use

*J is designed to make the implementation of new dynamic analyses as quick and pain-free

as possible while making sure that the tool will work in practical time. The analyzer itself

is entirely written in Java; it therefore relies on inheritance to simplify most of the work

related to the implementation of new analyses.

New dynamic metrics can be easily implemented by extending theAbstractMe-

tricOperation class, and providing only a minimal amount of functionality. All

Operation s in *J are required to provide a set ofevent dependencies, and to specify

how to handle the events that they receive. Additionally, metric operations are required to

implement two specific callbacks. One of them is used to ask the metric operation class

to compute and return its metric data, the other is used to instantiate aMetricRecord ,

which allows*J to associate computations with arbitrary metric spaces, as discussed in

Section3.3. As a result, the entire code which is needed to implement the computations

for some entire metric catgories, such as thepointer category, can easily be written within

a few minutes.

In *J , each operation and/or pack is responsible for generating its own output. This is

flexible, but not always convenient, and so the framework uses thevisitor pattern [GHJV95]

to walk thePack tree before and after the computation, therefore providing a simple way

to collect the output from different analyses into a single output file. For example, a default

metric walker will collect all metric data from the enabledMetricOperation s, and

emit it in the form of an XML or a text document.
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4.2.3 Web Interface

The current set of output processing tools focuses on the XML file that is emitted by*J for

the dynamic metric results. An XML format was selected to store the metric data because

of the ease with which XML data can be processed or converted to other formats.

For example,*J includes several XSLT style sheets which allow the XML metric data

files to be transformed into various other formats, including HTML or plain text. This

makes it possible to view the information in common web browsers or text editors.

While XSLT style sheets are convenient for processing a small number of files, more

complex investigations involving many benchmarks require a more versatile approach.

Therefore,*J includes a parser for the XML files that is designed to insert the data that

they contain into a central database, which can then be used as the basis of a dynamically

generated website.

This web interface1 has the inherent advantage of allowing multiple users to view and

query the data simultaneously, as well as being easy to maintain. Publishing new results

merely requires them to be inserted into the database, and makes it possible to distribute

them within seconds. The web interface allows users to look at metrics or benchmarks

individually, but also supports various advanced features such as benchmark comparisons

and complex search using custom queries. It can be used to easily build tables which

summarize the results, and includes sorting features on almost every page.

Such a website can constitute the basis of a benchmark knowledge base. In fact, the

required facilities are in place to allow users to browse through the metrics, selecting bench-

marks as they find interesting ones using a “shopping cart” approach. The selected bench-

marks can then be automatically packaged and downloaded in various compressed archive

formats.

4.3 Extending the *J Framework

In order to demonstrate the flexibility and extensibility of the framework, three case studies

are presented. Section4.3.1explains the necessary steps to add a simple metric computa-

1The initial version of the web interface has been provided by Tobias Simon.
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tion to the framework. Section4.3.2presents an extension which produces dynamic call

graphs. Section4.3.3discusses extensions related to the study of the behaviour of AspectJ

programs.

4.3.1 Adding a Simple Metric Computation

One of the most common tasks that has to be performed with*J is the addition of a new

metric computation. In order to demonstrate the necessary steps to implement and use new

metric operations, a new metric,example.instructionMix.bin will be used as an example.

This metric reports the proportion of the executed bytecodes that is due to each individual

opcode, and thus has one bin per valid Java bytecode.

In order to provide as much flexibility as possible, all metric operations are only re-

quired to implement theMetricOperation interface. In almost all cases, extending

the AbstractMetricOperation class is preferred as it readily provides some com-

monly used facilities. The skeleton from which the new metric operation will be built is as

follows:

package examples;

import starj.EventBox;
import starj.dependencies.*;
import starj.toolkits.metrics.*;

public class InstructionMixMetric extends AbstractMetricOperation {
public InstructionMixMetric(String name, String description) {

super (name, description);
}

public OperationSet operationDependencies() {
/∗ State which other operations provide information used by this

operation∗/
return super .operationDependencies();

}

public EventDependencySet eventDependencies() {
/∗ Register to receive required events∗/
return super .eventDependencies();

}

public void apply(EventBox box, MetricRecord[] records) {
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/∗ Event callback∗/
}

public MetricRecord newRecord() {
/∗ Create and return a new custom metric record to store computation

state∗/
return new MetricRecord(){};

}

public void accept(MetricVisitor visitor, MetricRecord record) {
/∗ Compute the metric values for the given record∗/

}
}

Listing 4.2: Skeleton for theInstructionMixMetric class

The code from Listing4.2 forms a valid—although useless—metric operation class.

In order to perform a meaningful computation, theInstructionMixMetric class has

to receive events from the execution trace. In this particular case, only one type of event

needs to be monitored: instruction start events. Such events are triggered whenever the

JVM is about to execute a bytecode instruction. Events in*J are represented by objects,

and are sent to the operations through a callback mechanism. In order for any operation to

receive execution events, it must first register them as dependencies. Event dependencies

are specified using theeventDependencies() method, and used by*J to determine

if any given operation can be allowed to execute. Event dependencies can berequired

or optional. If an operation has unmet required dependencies, it will automatically be

disabled.Optionaldependencies, indicate that a given operation wants to receive the certain

events if they are available, but that it should not be disabled otherwise. Nonetheless, an

operation will be disabled if none of its required or optional event dependencies can be

satisfied.

public EventDependencySet eventDependencies() {
/∗ Register to receive INSTRUCTIONSTART events∗/
EventDependencySet deps = super .eventDependencies();
deps.add( new EventDependency(

Event.INSTRUCTION_START, // Event type ID
new TotalMask( // Field dependencies

Constants.FIELD_RECORDED
| Constants.FIELD_OFFSET
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)
));
return deps;

}

Listing 4.3: Specifying event dependencies

The code from Listing4.3 registers a single event dependency. For performance rea-

sons,*J refers to event types using numerical identifiers. Each event dependency consists

of an event identifier and a field mask. In this case, the required event type identifier

is INSTRUCTIONSTART, since the metric operation needs to monitor instruction start

events. In order to compute the instruction mix, only the opcode for eachInstruction-

StartEvent object is required. However, the current JVMPI implementation does not

provide this value directly; it reports bytecode offsets instead. Therefore, the field mask that

is specified for this event consists of two field descriptors: theFIELD RECORDEDdescrip-

tor specifies that the event under consideration should be present in the trace file, and the

FIELD OFFSETdescriptor specifies that theoffset field of the event must be present

as well. ATotalMask instance is created because all field descriptors are required for

the dependency to be met. In contrast, aPartialMask instance would only require that

one of the descriptors be available. Combining masks is also possible, for example using

theOrMask or AndMask classes, but not required for this example.

Because resolving the opcode from the limited information that is provided by the

JVMPI interface is a fairly common but non-trivial task, the*J framework provides fa-

cilities to perform the necessary bookkeeping and provide the information to other op-

erations. TheInstructionResolver operation handles opcode resolution. It then

makes this information available to subsequent operations by mutating theInstruc-

tionStartEvent objects to include, among other things, the opcode which corresponds

to the executed bytecode. In order to make use of this information from theInstruc-

tionMixMetric class, theInstructionResolver operation needs to be declared

as an operation dependency in theoperationDependencies() method, as illustrated

in Listing 4.4. This ensures that if theInstructionResolver class is disabled, then

the InstructionMixMetric class will be disabled as well. This can happen if, for

example, theInstructionResolver operation is manually disabled by a user, or in
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cases where the information that is stored in the trace file is not sufficient for it to perform

its task.

public OperationSet operationDependencies() {
/∗ Add InstructionResolver as a dependency∗/
OperationSet deps = super .operationDependencies();
deps.add(InstructionResolver.v());
return deps;

}

Listing 4.4: Specifying operation dependencies

In this case, theInstructionResolver operation is aSingleton[GHJV95] whose

instance can be accessed via thev() method, which simplifies the specification of the

operation dependencies. References to regular operations can always be obtained from the

singletonScene instance.

The next step is to determine which information needs to be recorded in to compute the

value for each bin. In this case, the computation is very simple and only requires recording

the number of times that each kind of bytecode is executed. Because the JVM specification

[LY99] states that there is a maximum of 256 possible opcodes, execution counts can be

stored in an array.

Recall from Section3.3that the entire sample space for the metric computations can in

fact be subdivided using arbitrary partitioning schemes. In order to relieve the operation

implementor from the burden of managing such partitions, metric operations are required

to store their computation state in a class that implements theMetricRecord interface.

*J will automatically associate one metric record to every sample space partition that is

created by requesting new records as needed. Therefore, a private metric record class is

defined as follows, along with the required factory method:

private class InstructionMixRecord implements MetricRecord {
private long [] counts; // Execution counts per opcode
private long unknown_count; // Unresolved bytecode count

public InstructionMixRecord() {
this .counts = new long [256];
this .unknown_count = 0L;

}
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public long getCount( short opcode) {
return this .counts[opcode];

}

public long getTotal() {
long total = 0;
for ( int i = 0; i < this .counts.length; i++) {

total += this .counts[i];
}
return total;

}

public long getUnknownCount() {
return this .unknown_count;

}

public void stepCount( short opcode) {
this .counts[opcode] += 1L;

}

public void stepUnknownCount() {
this .unknown_count += 1L;

}
}

public MetricRecord newRecord() {
/∗ Create and return a new custom metric record to store computation

state∗/
return new InstructionMixRecord();

}

Listing 4.5: Providing customMetricRecord s

Note that theInstructionMixRecord class includes storage to keep track of “un-

known” bytecodes, in case*J fails to resolve some of the bytecode instructions. This can

happen if, for example, some classes cannot be found during the analysis. Also note that all

opcodes are declared asshort s for convenience since Java does not possess an unsigned

byte primitive type.

The code from Listing4.5provides sufficient information for*J to manage the record

by itself. The event callback can now be implemented:

public void apply(EventBox box, MetricRecord[] records) {
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// Obtain the current event
InstructionStartEvent e = (InstructionStartEvent) box.getEvent();
// Obtain the opcode of the executed instruction
short opcode = e.getOpcode();

// Check for a valid list of records
if (records != null ) {

for ( int i = 0; i < records.length; i++) {
// For each record, increase the appropriate counter
if (opcode >= 0) {

((InstructionMixRecord) records[i]).stepCount(opcode);
} else {

((InstructionMixRecord) records[i]).stepUnknownCount();
}

}
} // else: this event should not be taken into account

}

Listing 4.6: Providing an event callback

Note that for performance reasons, iterating through all records is left to the implementor

of the metric operation. This allows for a much more efficient implementation of the met-

ric computations, since expensive computations which are common to all records can be

performed only once.

The final step consists of computing the actual metric data and emitting it in a form that

is recognized by the framework.*J uses aVisitor pattern [GHJV95] for this task. Metric

data is represented by objects which can be visited by any number of visitors. Different

visitors can format the data in different ways. For instance,*J provides a plain text visitor

and an XML visitor. The code which performs the metric computation is as follows:

public void accept(MetricVisitor visitor, MetricRecord record) {
/∗ Compute the metric values for the given record∗/
InstructionMixRecord r = (InstructionMixRecord) record;

// Create a new BinMetric
BinMetric inst_mix = new BinMetric("examples", "instructionMix");

long total = r.getTotal();
// Add the ’unknown’ bin to the metric
inst_mix.addBin( new SimpleBin(

new StringKey("unknown"),
new PercentageMetricValue(r.getUnknownCount(), total)
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));

// Add one bin for each valid opcode
for ( short opcode = 0; opcode < 256; opcode++) {

String opcode_name = Code.getOpcodeName(opcode);
if (opcode_name != null ) {

inst_mix.addBin( new SimpleBin(
new StringKey(opcode_name),
new PercentageMetricValue(r.getCount(opcode), total)

));
} // else: not a valid opcode

}

// Make the specified visitor visit the new metric
visitor.visit(inst_mix);

}

Listing 4.7: Emitting metric data

The code from Listing4.7performs the actual metric computation for eachMetric-

Record instance. The computed metric value is represented by aBinMetric object.

BinMetric objects are themselves containers forBin objects. In this case, only one

kind of Bin —the SimpleBin class—is used.Bin objects always possess a key and a

value. A bin key serves as an identifier for the bin, and must thus be unique. In this case,

the type of key used is aStringKey , which allows the bins to be identified by the name

of their associated opcode (or the string “unknown ”). The MetricValue objects that

are created are instances of thePercentageMetricValue class. If, for example, the

absolute execution count for each bin was to be reported instead of the proportion of the

executed bytecodes that it represents,LongMetricValue objects would have been used.

Note that the formatting of theMetricValue objects is handled by the metric visitor.

While the implementation of theInstructionMixMetric is completed, there is

one additional step that is required to make the operation usable. There are two possible

ways to register a new operation with*J . The newly implemented operation can be directly

incorporated into the*J source code. This solution has obvious drawbacks, and requires

the recompilation of some parts of the toolkit each time that a change is made. A much

more convenient solution involves the creation of adriver class, such as the one presented

in Listing 4.8.
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package examples;

import starj.*;

public class InstructionMixDriver {
public static void main(String[] args) {

// Obtain the RootPack instance from the Scene
RootPack root_pack = Scene.v().getRootPack();

// Create a new pack for the examples
Pack examples_pack = new Pack("examples",

"Contains example operations");
root_pack.add(examples_pack);

// Add a new instance of the InstructionMixMetric class to the
// ’examples’ pack
examples_pack.add( new InstructionMixMetric("imix",

"Instruction mix metric"));

// Delegate all processing to the Main class
Main.main(args);

}
}

Listing 4.8: Implementing a driver class

The driver class from Listing4.8first obtains theRootPack instance from theScene

object. TheScene keeps track of global configurations, and is responsible for performing

the analysis. The driver class then creates a new pack and adds it to theRootPack . An

instance of theInstructionMixMetric class is also added to the “example” pack.

Finally, the command-line arguments are passed on to theMain class for normal process-

ing.

4.3.2 Producing Dynamic Call Graphs

Call graphs represent call relations between methods of a program. Traditionnally, call

graphs have been approximated using static type analysis techniques, and have been used

for performing interprocedural optimizations. Recently, dynamic call graph construction

techniques have been proposed, such as in [QH04].
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*J can be extended to compute dynamic call graphs from its execution traces. Several

services that are part of the standard analysis library make the implementation a lot easier

than it would otherwise be. For instance,*J can automatically notify an analysis when

a new method is entered and exited, allowing it to provide callbacks to be executed upon

such events.*J will also correctly associate a call site with the invocation, and will provide

an access to the context in which the method invocation occured. This is the basis of the

propagation framework, which is designed to facilitate the implementation of common

dynamic propagation analyses.

Using such facilities, the implementation of the dynamic call graph analysis is very

compact2, and its full source code is reproduced in Listing4.9.

package starj.toolkits.printers;

import java.io.PrintStream;
import java.util.*;

import starj.*;
import starj.coffer.InvokeInstruction;
import starj.dependencies.OperationSet;
import starj.options.*;
import starj.toolkits.services.*;

public class CallGraphPrinter extends AbstractPrinter
implements Propagation {

private boolean use_dot = false ;
private Map edges;

public CallGraphPrinter(String name, String description) {
super (name, description);
PropagationManager.v().addPropagation( this );

}

public CallGraphPrinter(String name, String description,
PrintStream out) {

super (name, description, out);
PropagationManager.v().addPropagation( this );

}

public OperationSet operationDependencies() {

2The original version of the code was contributed by Ondřej Lhot́ak.
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OperationSet ops = super .operationDependencies();
ops.add(PropagationManager.v());
return ops;

}

public void init() {
super .init();
this .edges = new HashMap();

}

public void apply(EventBox box) {
// Intentionally empty

}

public void propagate(InvokeInstruction call_site,
MethodEntity new_method, ExecutionContext call_context) {

MethodEntity current_method = call_context.getMethod();
if (current_method != null ) {

Set targets = (Set) this .edges.get(current_method);
if (targets == null ) {

targets = new HashSet();
this .edges.put(current_method, targets);

}

if (! this .edges.containsKey(new_method)) {
this .edges.put(new_method, null ); // Insert placeholder

}

targets.add(new_method);
}

}

public void unpropagate(ExecutionContext context) {
// Intentionally empty

}

public void configure(ElementConfigArgument config, Object value) {
String name = config.getName();
if (name.equals("dot")) {

if (value != null ) {
this .use_dot = ((Boolean) value).booleanValue();

}
} else {

super .configure(config, value);
}

}

public ElementConfigSet getConfigurationSet() {
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ElementConfigSet set = super .getConfigurationSet();
ElementConfigArgument dot_arg = new ElementConfigArgument(

"dot",
"Specifies whether the ’dot’ output format will be used",
"Specifies whether the ’dot’ output format will be used "

+ "to print the call graph",
false

);
dot_arg.addArgument( new BooleanArgument(

"value",
true , // required
false , // not repeatable
"boolean",
"true or false"

));
set.addConfig(dot_arg);
return set;

}

public void done() {
PrintStream out = this .out;
Set keys = this .edges.keySet();
if ( this .use_dot) {

out.println("digraph CallGraph {");

// Output node descriptions
out.println(" /* Nodes */");
out.println(" node [shape=box];");
for (Iterator i = keys.iterator(); i.hasNext(); ) {

MethodEntity src = (MethodEntity) i.next();
out.println(" " + src.getID() + " [label=\""

+ src.getClassEntity().getClassName() + "\\n"
+ src.getMethodName() + "\"];");

}

// Output edge descriptions
out.println("\n /* Edges */");
for (Iterator i = keys.iterator(); i.hasNext(); ) {

MethodEntity src = (MethodEntity) i.next();
Set targets = (Set) this .edges.get(src);
if (targets == null ) {

continue ;
}
for (Iterator j = targets.iterator(); j.hasNext(); ) {

MethodEntity tgt = (MethodEntity) j.next();
out.println(" " + src.getID() + " -> " + tgt.getID()

+ ";");
}
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}
out.println("}");

} else {
for (Iterator i = keys.iterator(); i.hasNext(); ) {

MethodEntity src = (MethodEntity) i.next();
Set targets = (Set) this .edges.get(src);
if (targets == null ) {

continue ;
}
for (Iterator j = targets.iterator(); j.hasNext(); ) {

MethodEntity tgt = (MethodEntity) j.next();
out.println(src + " -> " + tgt);

}
}

}
}

}

Listing 4.9: TheCallGraphPrinter class

4.3.3 Measuring the AspectJ-related Metrics

AspectJ [Asp] is an increasingly popular aspect-oriented extension of the Java program-

ming language. In order to study the behaviour of AspectJ programs, Dufouret al. [DGH+04]

have developed a modified version of the AspectJ compiler which annotates the generated

bytecode according to several kinds of overhead.*J was then extended to make use of

these code annotations and compute new, AspectJ-specfic dynamic metrics based on them.

This required two different kinds of extensions to*J . First, the new class file attributes that

are generated by the modified compiler had to be correctly decoded. Next, new dynamic

metrics had to be designed and implemented.

Making *J recognize custom class attributes requires that a custom reader class along

with its factory be implemented for each new attribute. Then, an instance of the factory

class simply has to be associated with the attribute name. This can be accomplished by

issuing a simple call to the currentClassFileFactory instance. At this point, all

further management of the new attributes is handled by*J .

Computing the new metrics is a more complex task because the tags need to be dy-
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namically propagated along call edges in the dynamic control flow graph (CFG) of the

application in order to provide a more accurate measure of each class of overhead. The

generic propagation framework discussed in the previous example can be used for this task

as well, allowing the implementor of the new analysis to almost exclusively focus on de-

tails of the propagation algorithm. In this example, the propagation rules are complex;

nonetheless, the implementation of the propagation algorithm itself is very compact.

Once the progation analysis was implemented, implementing the new metrics was an

almost trivial task, and only required very little work in order to implement a total of nine

new metrics.

Therefore, none of the modifications that were required for this relatively complex task

required modifying the core of the*J framework. All modifications were also easy to

implement because of the built-in support for propagation operations that*J provides.
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Experiences

Chapter3 has presented a set of dynamic metrics, along with empirical results demon-

strating the potential usefulness of individual metrics in understanding program behaviour.

This chapter discusses practical experiences with dynamic metrics, and shows not only the

extent of the information that can be obtained from them, but more importantly how com-

bined information from various metrics can be used to paint a better portrait of the overall

behaviour of an application. Section5.1describes the benchmark programs that were used

in this study. Section5.2 presents specific case studies which demonstrate the usefulness

of dynamic metrics for common program understanding tasks.

5.1 Benchmarks

This section lists the benchmarks that were used in this study, along with a short description

of each of them.

AUTOMATA

AUTOMATA is a simple one-dimensional, two-state cellular automaton simu-

lator. This instance of the benchmark simulates an automaton with 100 cells

for 20 time steps. Two additional computation sizes have also been used: 200

cells for 40 time steps, and 1000 cells for 100 time steps.
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COEFFICIENTS

COEFFICIENTScomputes the coefficients of the least square polynomial curves

of degrees 0 to 20 for a set of 114 points in a real-valued coordinate system

using a matrix pseudoinverse. An alternative problem size consists of the same

computation for polynomials of degree 0 to 24 using a set of 162 points.

EMPTY

EMPTY is the empty program, i.e., the program which simply returns from its

main method.

HELLOWORLD

HELLOWORLD is the well-known program that prints the string"Hello,

world" to its standard output.

JLEX

JLEX is a lexical analyzer generator. This benchmark takes as input the syntax

describing the commands of a simple media server, and generates a Java im-

plementation of a lexical analyzer program which tokenizes character streams

according to the specification.

L INPACK

L INPACK is a numerically intensive program which is commonly used to mea-

sure floating-point performance. It solves a dense 500x500 system of linear

equations in the formA~x = ~b by performing a Gaussian elimination on the

matrix. The matrixA is generated randomly.

ROLLERCOASTER

ROLLERCOASTER is an implementation of the classical “Roller Coaster” con-

currency problem. A cart waits for passengers and goes for a ride, and repeats
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the process. This instance of the benchmark has 7 passenger threads and one

cart thread.

The concept of “seat” in the benchmark is implemented using a non-blocking

mutex for each seat. Passenger threads continuously try to acquire a free seat

in the roller coaster. The cart thread continuously checks to see if it is filled

with passengers. Once it is, it takes them for a ride, then kicks them off. This

process is repeated 50 times.

TELECOM

A phone billing simulation program. The benchmark simulates a phone sys-

tem with 15 users, and 5 threads trying to place calls between pairs of users.

Users are then charged according to the duration of their calls. Apart from

being multithreaded, the TELECOM benchmark has the particularity of being

implemented usingAspectJ.

VOLANO-CLIENT

The VOLANO benchmark [Volano] is a client-server chat room simulation pro-

gram. This benchmark is the client side of the VOLANO benchmark executed

for two iterations 3 chat rooms, depth 4.

VOLANO-SERVER

The server side of the VOLANO-CLIENT benchmark.

Ashes Suite Collection Benchmarks [ Ashes ]

SABLECC

An object-oriented framework compiler generator. The SableCC framework

uses object-oriented techniques to automatically build a strictly typed abstract

syntax tree (AST), and generates tree-walker classes using an extended ver-

sion of the visitor design pattern which enables the implementation of actions
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on the nodes of the abstract syntax tree using inheritance. This benchmark

processes a grammar for version 1.1 of the Java programming language. The

WIG grammar was also used as an alternative input for this benchmark.

SOOT

A Java bytecode transformation and optimization framework. The framework

provides a number of static program transformations that are applied to a 3-

address representation of Java bytecode calledJimple. This benchmark reads

classes from its ownjimple subpackage and emits them in the form of Jimple

code. An alternative input consits of a class from SOOT’s coffi subpackage.

JOlden benchmarks [ CM01]

BARNES-HUT

Simulates the the motion of particles in space using aO(n log n) algorithm

for computing the respective accelerations. This benchmark uses an oct-tree

representation of 4K bodies in space.

BISORT

Sorts an array of 128K randomly-generated integers by creating two bitonic

sequences and merging them. This benchmark performs both a forward sort

and a backward sort.

EM3D

Simulates the propagation of electromagnetic waves through a 3D object. This

benchmark uses an irregular bipartite graph which contains 2000 nodes of out-

degree 100 representing electric and magnetic field values.

HEALTH

Simulates the Columbian health care system, where villages generate a stream

of patients, who are treated at the local health care center or referred to a parent
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center. Nodes in a 4-way tree are used to represent hospitals. This benchmark

performs the simulation for 500 time steps using 5 levels for health centers.

MST

Computes the Minimum Spanning Tree (MST) of a graph composed of 1K

nodes using Bentley’s algorithm.

PERIMETER

Computes the total perimeter of a region in a 64K binary image represented

by a quad-tree. The benchmark creates an image, counts the number of leaves

in the quad-tree and then computes the perimeter of the image using Samet’s

algorithm.

POWER

Solves the Power System Optimization Problem for 10000 customers, where

the price of each customer’s power consumption is set so that the economic

efficiency of the whole community is maximized.

TSP

Computes an estimate of the best Hamiltonian circuit for the Travelling Sales-

man Problem using 10000 cities.

VORONOI

Computes the Voronoi Diagram for a set of 20000 points by using a divide-

and-conquer method. Points are stored in a binary tree sorted byx-coordinate.

SPECjvm98 benchmark suite [ Spec]

All benchmarks from this suite can be executed with three different input sizes (sizes 1, 10

and 100). The default configuration used for these benchmarks excludes the harness, which

automatically selects the largest input size.
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COMPRESS

Modified Lempel-Ziv method (LZW). Basically finds common substrings and

replaces them with a variable size code. This is deterministic, and can be done

on the fly. Thus, the decompression procedure needs no input table, but tracks

the way the table was built.

JESS

JESS is the Java Expert Shell System is based on NASA’s CLIPS expert shell

system. In simplest terms, an expert shell system continuously applies a set

of if-then statements, called rules, to a set of data, called the fact list. The

benchmark workload solves a set of puzzles commonly used with CLIPS. To

increase run time the benchmark problem iteratively asserts a new set of facts

representing the same puzzle but with different literals. The older sets of facts

are not retracted. Thus the inference engine must search through progressively

larger rule sets as execution proceeds.

RAYTRACE

A raytracer that works on a scene depicting a dinosaur.

DB

Performs multiple database functions on memory resident database. This bench-

mark reads in a 1 MB file which contains records with names, addresses and

phone numbers of entities and a 19KB file calledscr6 which contains a

stream of operations to perform on the records in the file. The program loops

and reads commands till it hits the ‘q’ command. The commands performed

on the file include, among others:

• add an address

• delete and address

• find an address

• sort addresses
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JAVAC

This is the Java compiler from the JDK 1.0.2. [As this is a commercial appli-

cation, no source code and no further information are provided.]

MPEGAUDIO

This is an application that decompresses audio files that conform to the ISO

MPEG Layer-3 audio specification. As this is a commercial application only

obfuscated class files are available. The workload consists of about 4MB of

audio data.

MTRT

This is a variant of RAYTRACE, a raytracer that works on a scene depicting a

dinosaur, where two threads each render the scene in the input file time-test

model, which is 340KB in size.

JACK

A Java parser generator that is based on the Purdue Compiler Construction

Tool Set (PCCTS). This is an early version of what is now called JavaCC. The

workload consists of a file namedjack.jack , which contains instructions

for the generation of JACK itself. This is fed to JACK so that the parser gener-

ates itself multiple times. Because this is a commercial application, no source

code is provided.

5.2 Case Studies

5.2.1 Program Understanding

In this section, four benchmarks are analyzed and compared in terms of various dynamic

metrics. This analysis is meant to demonstrate how dynamic metrics can be used to obtain
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Metric C
O
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A
ll

size.run.value 12887 14514 37831 7354

data.arrayDensity.value 150.880 52.152 37.932 73.311

data.floatDensity.value 202.808 0.000 0.072 1.987

polymorphism.receiverCacheMissRate.value 0.1% 0.0% 8.8% 8.4%

concurrency.lockDensity.value 0.352 0.000 7.897 1.528

A
pp

lic
at

io
n

size.run.value 975 5084 26267 0

data.arrayDensity.value 160.404 52.150 15.471 N/A

data.refArrayDensity.value 80.713 0.000 3.543 N/A

data.numArrayDensity.value 79.486 52.150 0.359 N/A

data.floatDensity.value 217.956 0.000 0.000 N/A

polymorphism.receiverArityCalls.bin(1) 100.0% 100.0% 72.6% N/A

polymorphism.receiverArityCalls.bin(2) 0.0% 0.0% 15.1% N/A

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.0% 12.3% N/A

polymorphism.invokeDensity.value 65.973 16.532 71.771 N/A

polymorphism.receiverCacheMissRate.value 0.0% 0.0% 7.2% N/A

memory.averageObjectSize.value 18.7052 29.02564 29.93472 N/A

memory.objectAllocationDensity.value 0.013 0.000 2.320 N/A

memory.objectSize.bin(8) 0.0% 0.0% 0.0% N/A

memory.objectSize.bin(16) 66.8% 42.0% 14.8% N/A

memory.objectSize.bin(24) 32.9% 41.7% 22.7% N/A

memory.objectSize.bin(32) 0.0% 0.0% 45.1% N/A

memory.objectSize.bin(40) 0.3% 0.3% 11.3% N/A

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% N/A

concurrency.lockDensity.value 0.000 0.000 0.670 N/A

Table 5.1: Metrics for benchmark analysis

a high-level overview of the behaviour of applications. The benchmarks that are consid-

ered are COEFFICIENTS, COMPRESS, JAVAC , and for startup cost comparison, the EMPTY

benchmark. A table of metrics for each is shown in Table5.1.

Program Size

As discussed in Section3.4.1, these benchmarks form a progression from small to large.

What is surprising is the relative impact of startup and library code. Considering the whole

program version of thesize.run.value metric, the relative sizes of these programs is far

less apparent; e.g., COMPRESSis only 1.12 times larger than COEFFICIENTS, whereas in
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the application-only version ofsize.run.value metric the ratio is more than 5.2. Startup

code, in fact, accounts for the majority of touched bytecode instructions in all but JAVAC .

When assessing a small benchmark it is thus fairly critical to separate out the potentially

large effects that may be due startup.

Data Structures

Array usage of the applications is reflected in the application-only version of thedata.-

arrayDensity.value metric; the EMPTY program has no arrays, JAVAC has some array

accesses (15.471), COMPRESSa significant but not large number (52.15), and COEFFI-

CIENTS has the highest (160.404). These numbers correspond to a reasonable perception

of the relative importance of array usage in these benchmarks. In the case of COMPRESS,

there are enough application bytecode instructions executed to almost eliminate the relative

effect of startup and other (infrequent) library calls; the whole-program and application-

only versions of the metric thus obtain very similar values.

A further breakdown of the array density metric can also show the importance of un-

derstanding exactly how a metric is computed, and how potential skewing factors even

within the application itself may influence it. COEFFICIENTShas an almost equal density

of accesses to numerical (primitive types) arrays as reference arrays (all object and array

types), whereas the array density of compress comes entirely from numerical arrays; this

is shown through the application-only versions of thedata.numArrayDensity.value and

data.refArrayDensity.value metrics. In fact, from an inspection of the source both bench-

marks actually use almost exclusively numerical arrays. The significant difference between

their specific array densities can be explained by the way arrays are represented in Java;

in the case of COMPRESS, arrays are primarily one-dimensional, mostlybyte arrays, and

so each array element access corresponds to an access to an array of numerical type. For

COEFFICIENTS, however, arrays are almost all two-dimensional, and so each element ac-

cess requires first an access to the outermost dimension (elements are of array and hence

reference type), followed by a numerical array access to the actual primitive value. This

can be demonstrated through an optimization such as loop invariant removal, as shown in

Table5.2.
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Metric Original Loop. Inv.

A
ll

size.run.value 12887 12894

data.arrayDensity.value 150.880 122.153

data.floatDensity.value 202.808 228.643

A
pp

lic
at

io
n

size.run.value 975 989

data.arrayDensity.value 160.404 129.877

data.numArrayDensity.value 79.486 90.443

data.refArrayDensity.value 80.713 39.200

data.floatDensity.value 217.956 248.730

polymorphism.invokeDensity.value 65.973 75.390

Table 5.2: Effects of loop invariant removal on COEFFICIENTSbenchmark

In this case, outer array index calculations are found to be invariant in the inner loops,

and moved outside the inner loop reducing the number of reference array operations. The

difference is evident in a comparison of the same metrics for both versions of COEFFICI-

ENTS—application numerical and reference array densities of 79.486 and 80.713 respec-

tively change to 90.443 and 39.200 when loop invariant removal is applied. Optimizations

specialized to one-dimensional or just numerical array accesses may therefore not realize as

much benefit as the general array density would imply. Alternatively, an optimization that

recognizes rectangular two-dimensional matrices and converts them to one-dimensional

matrices would likely be quite effective in COEFFICIENTS, but much less so in COMPRESS.

Use of floating point is relatively uncomplicated. The EMPTY program uses a small

amount of floating point in startup, and JAVAC and COMPRESSuse none in their application

code —data.floatingPoint.value is 0 for both benchmarks. COEFFICIENTS, the only

benchmark that does use floating point data is clearly identified as float-intensive through

its relatively high score of 202.983. Float density of the loop invariant removal version

of COEFFICIENTS is higher still (228.784)—the reduction in number of array operations

increases the relative density of floating point operations.

Polymorphism

The benchmarks also illustrate essential differences with respect to object-orientation, as

measured through method polymorphism. By examining the application code, one would

expect JAVAC to be reasonably polymorphic and compress to be very non-polymorphic (one
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large method dominates computation). COEFFICIENTSis composed of several classes, and

superficially appears to have potential for polymorphism; closer inspection reveals that

there is no significant application class inheritance, and there should be no polymorphism.

These perceptions are validated by the various polymorphism metrics. Thepolymor-

phism.receiverArityCalls.bin metric, for instance shows that 100% of both COEFFICI-

ENTS’s and COMPRESS’s invokevirtual or invokeinterface call sites reach ex-

actly one class type; in other words, they are completely monomorphic. The lack of in-

heritance in COEFFICIENTSis thus evident in the metric. JAVAC does have a significantly

smaller percentage of monomorphic call sites, and even has some sites associated with 3

or more types. Its non-zeropolymorphism.receiverCacheMissRate.value also supports

the perception that JAVAC is qualitatively more polymorphic than the other two.

Memory Use

Memory use between the benchmarks is also quite different. This can be seen simply

through thememory.averageObjectSize.value metric: JAVAC has an average object al-

location size of 41.447 bytes, COEFFICIENTS144.603 bytes, and COMPRESSover 13,077

bytes. These programs are of course not all allocating objects at the same rate; thememory.-

objectAllocationDensity.value metric shows that while COMPRESSallocates large ob-

jects, it does not allocate very many (density of 0.001), and so despite its large average

size, it is not a memory intensive program. COEFFICIENTSallocates more often (0.751),

and JAVAC allocates relatively frequently (3.181).

These numbers and judgements are quite reasonable given the algorithms the bench-

marks implement. JAVAC ’s data structures for parsing and representing its input would

naturally be reasonably small and numerous. There is further evidence for this in the

memory.objectSize.bin metric, where JAVAC allocates proportionally more small objects

(24–32 bytes) than the other benchmarks. COMPRESSallocates a few large arrays to use

as buffers and tables, but otherwise does little allocation. COEFFICIENTSiteratively allo-

cates two-dimensional arrays of increasing size, and this aggregate effect also shows up in

a larger proportion of larger objects (≥ 400 bytes).
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Concurrency and Locking

None of the benchmarks being compared here are explicitly concurrent; any actual con-

currency is entirely due to library and/or internal virtual machine threads. Locking is also

very low in all cases; JAVAC and EMPTY have the highest lock density (7.897 and 1.528 re-

spectively). COEFFICIENTShas a low lock density of 0.352 and this rises only slightly for

the loop invariant version (due to the decreased number of (invariant) calculations). COM-

PRESSunsurprisingly has a very low lock density (below 0.001), owing to its long internal

calculations. All of these program exceptjavac are thus minimally lock intensive.

5.2.2 Manual Optimizations

Understanding a program’s behaviour helps to understand its performance bottlenecks. In

this section, a case study is presented which aims to demonstrate how dynamic metrics can

be used to guide manual code refactoring. A new benchmark, TWELVE, will be introduced

in order to achieve this goal. While the benchmark itself is tiny, the techniques that will be

described apply equally well to larger programs.

Understanding the benchmark

The TWELVE benchmark is a naive Java reimplementation of a famous obfuscated C pro-

gram which outputs to its standard output the complete lyrics of song “The Twelve Days of

Christmas”. The C version of this benchmark has been studied by Ball in [Bal99], where

the program was progressively “unobfuscated” using dynamic analysis techniques in order

to understand its operation. The program uses a substitution cipher to encode all of the

lyrics, and implements a selector algorithm to print verses of the song in the correct order.

All of the lyrics of the song are encoded using two strings: one stores the encoded lyrics,

and the other stores the cipher that is used to decode them. The original implementation is

also entirely recursive. The TWELVE benchmark was given as a challenge problem for the

Dagstuhl Seminar on “Understanding Program Dynamics”.

The Java implementation of the benchmark is a trivial reimplementation of the same

algorithm. It uses the same two strings as the original C version. It also allocates a single
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Metric T
W

E
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E
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A
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A
ll base.instructions.value 7 670 314 529 290 8 613 320 2 018 819 228

size.run.value 8 137 7 804 10 708 37 831
A

pp base.instructions.value 900 508 4 8 026 544 912 643 681

size.run.value 117 4 749 26 267

Table 5.3:Size metrics for TWELVE

object correspoding to the application class, which stores references to both strings using

non-static fields. While the original version of the program makes heavy use of pointer

gymnastics, the Java version usessubstring operations to implement the same func-

tionality.

Table5.3 list several size-related metric values for the TWELVE benchmark. In order

to facilitate the analysis of the data, the values are presented along with some context

from other benchmarks. From this data, it is obvious that the TWELVE benchmark is tiny.

It touches only 117 different bytecode instructions, and does not even execute a million

bytecode instructions in its single class (from the value of thebase.instructions.value

metric1). However, looking at the whole program paints a slightly different portrait; in

this context TWELVE is much closer in size to LINPACK. These results show that most of

TWELVE’s computations occur inside the standard libraries. Because of the nature of the

benchmark, a reasonable assumption seems to be that it spends the quasi-totality of its time

doing string manipulations.

Table 5.4 presents polymorphism-related metrics for the TWELVE benchmark. The

next immediately obvious fact about TWELVE is that it has a very high method invocation

density. Itspolymorphism.invokeDensity.value of 187.100 is the largest that has been

recorded for any benchmark except HELLOWORLD, which has an artificially high invoke

density due to the fact that it only executes 4 bytecode instructions, one of which is anin-

vokevirtual . Its polymorphism.invokeDensity.value value for the whole program

is also very high, and ranks TWELVE within the top 10 benchmarks with respect to that

1Thebase metric category contains metrics that failed to meet the basic requirements for the inclusion of
dynamic metrics in the set (as discussed in Section3.1) but which are still useful in some situations.
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Metric T
W

E
LV

E
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E

L
L
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C
K

JA
V

A
C

A
ll polymorphism.invokeDensity.value 52.908 15.132 2.251 39.481

memory.byteAllocationDensity.value 403.980 1 730.292 150.079 131.824

memory.objectAllocationDensity.value 11.554 9.084 0.623 3.181

pointer.refFieldAccessDensity.value 1.067 6.326 0.428 49.778

pointer.nonrefFieldAccessDensity.value 56.450 47.561 3.266 114.120

data.arrayDensity.value 20.146 73.196 152.085 37.919

data.charArrayDensity.value 14.508 32.817 2.123 17.566

A
ll polymorphism.invokeDensity.value 187.100 250.000 1.325 72.305

pointer.fieldAccessDensity.value 2.619 250.000 0.001 208.349

Table 5.4:Polymorphism metrics for TWELVE

Metric T
W

E
LV

E

H
E

L
L
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K
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V

A
C

A
ll

memory.byteAllocationDensity.value 359.269 1684.801 149.410 131.804

memory.objectAllocationDensity.value 10.287 8.937 0.625 3.180

memory.objectSize.bin(16) 3.9% 14.3% 14.1% 14.6%

memory.objectSize.bin(24) 89.9% 32.1% 31.1% 41.9%

memory.objectSize.bin(48-72) 4.3% 23.3% 22.4% 11.4%

A
pp

lic
at

io
n

memory.byteAllocationDensity.value 0.009 0.000 0.002 69.435

memory.objectAllocationDensity.value 0.001 0.000 0.000 2.320

memory.objectSize.bin(16) 0.0% N/A 100.0% 14.8%

memory.objectSize.bin(24) 0.0% N/A 0.0% 22.7%

memory.objectSize.bin(48-72) 0.0% N/A 0.0% 6.1%

Table 5.5:Memory metrics for TWELVE

particular metric. TWELVE’s recursive nature is an important factor in the measured den-

sities. It is also clear that TWELVE is really not a polymorphic application. In fact, its

application class is completely monomorphic (polymorphism.receiverArityCalls.bin(1)

= 100%). The whole program version of the same metric reveals only a very low amount

of polymorphism; this is most likely due to the effect of the JVM startup.

Table5.5 shows memory-related metric results. The application part of TWELVE has

values of almost zero for bothmemory.byteAllocationDensity.value andmemory.ob-

jectAllocationDensity.value In fact, TWELVE itself allocates only one object: an instance
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Metric T
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A
ll

data.arrayDensity.value 18.012 73.120 151.953 37.932

data.charArrayDensity.value 12.960 33.169 2.197 17.577

data.numArrayDensity.value 2.780 34.038 140.602 6.785

data.refArrayDensity.value 0.131 1.787 8.867 5.608

A
pp

lic
at

io
n data.arrayDensity.value 0.000 0.000 157.775 15.471

data.charArrayDensity.value 0.000 0.000 0.000 3.488

data.numArrayDensity.value 0.000 0.000 148.385 0.359

data.refArrayDensity.value 0.000 0.000 9.389 3.543

Table 5.6:Array metrics for TWELVE

of the Twelve class. However, including the standard libraries shows that the TWELVE

benchmark is relatively memory intensive. It frequently allocates objects—itsmemory.-

objectAllocationDensity.value is the highest of the four benchmarks from Table5.5, and

makes TWELVE rank second of all benchmarks. Thememory.byteAllocationDensity.-

value value for TWELVE is also high, but clearly not among the high values. This is due to

the fact that while TWELVE frequently allocates objects, it allocates fairly small ones. This

can be observed by looking at thememory.objectSize.bin(24) metric, which indicates

that 24-byte objects account for nearly 90% of all object allocations for this benchmark.

A reasonable hypothesis at this time is thatjava.lang.String objects fall under that

category; this hypothesis indeed holds under the platform used to conduct this study2.

This hypothesis is further supported by looking at the density of array operations in

the benchmark, shown in Table5.6. From this data, TWELVE makes a moderate use of

character arrays, similar to JAVAC , and ranks among the top 10 benchmarks of the suite

for use of character arrays. Table5.6 also shows that character arrays are by far the

most commonly used kind of array in TWELVE ; data.numArrayDensity.value anddata.-

refArrayDensity.value obtain much lower values of 2.780 and 0.131 respectively.

Finally, from Table5.7, it can be observed that the locking density in TWELVE is sur-

prisingly high (1.857), and that the locking operations are performed by a relatively small

2The java.lang.String class has four 4-byte non-static fields (instance variables), combined with a
header size of 8 bytes for this particular platform and JVM combination, for a total of 24 bytes.
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Metric T
W

E
LV

E
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A
C

A
ll concurrency.lockDensity.value 1.857 0.178 0.017 0.229

concurrency.lock.percentile 25.0% 65.0% 70.0% 6.2%
A

pp concurrency.lockDensity.value 0.000 0.000 0.000 0.002

concurrency.lock.percentile N/A N/A N/A 100.0%

Table 5.7:Synchronization metrics for TWELVE

Metric TWELVE TWELVE2 % Change Ratio

A
ll

base.instructions.value 7 670 314 4 732 160 -38.3% 0.617

data.charArrayDensity.value 12.960 21.006 62.1% 1.621

concurrency.lockDensity.value 1.857 3.008 62.0% 1.620

memory.byteAllocationDensity.value 359.984 243.978 -32.2% 0.678

memory.objectAllocationDensity.value 11.554 2.884 -75.3% 0.247

memory.objectSize.bin(16) 3.89 25.472 554.8% 6.548

memory.objectSize.bin(24) 87.749 32.866 -62.6% 0.375

memory.objectSize.bin(48-72) 4.463 29.227 554.9% 6.549

A
pp base.instructions.value 900 508 974 979 8.2% 1.082

polymorphism.invokeDensity.value 187.100 104.150 -44.3% 0.557

Table 5.8: Change in metrics due to optimization of TWELVE

proportion of the locks (25%).

Improving TWELVE

The most significant findings from the analysis of the benchmark were its very high fre-

quency of method calls, as well as its high memory requirements. In order to address this

problem, a new version of the benchmark, TWELVE2, has been written that gets rid of

substring operations by keeping track of the current position in the array by introduc-

ing an additional parameter to the recursive methods. The significant differences in the

metrics are shown in Table5.8.

From Table5.8, the memory requirements of the TWELVE benchmark have been greatly

reduced; its object allocation density has dropped from 11.554 to 2.884, a reduction of

75%. The byte allocation density has also been reduced, from 360 bytes per kbc to 244,

which represents a decrease of over 38%. The distribution of objects has also shifted. The
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TWELVE TWELVE2 % Difference

Real time (msec) 463 433 -6.5%

Table 5.9: Differences in runtime between TWELVE and TWELVE2

distribution of allocated objects in TWELVE2 is more more uniform, as can be observed

from the three most important bins frommemory.objectSize.bin. Finally, a reduction of

over 44% in the density of method invocations in the application code only can also be

observed. Thus, the transformation has successfully addressed the original issues.

However, the transformation had inverse effects on two relevant metrics, namelydata.-

charArrayDensity.value andconcurrency.lockDensity.value; both metric values increased

by roughly 62%. This apparent change in the metric value was however caused by a change

in the number of executed bytecode instructions, and not in the attributes that these met-

rics measure. Looking at the ratios between the values from the original and transformed

versions of TWELVE, one can note that

1

0.617
≈ 1.621

which is incidentally the ratio between the affected metric values. Thus, while relative

metrics are more robust than absolute counts with respect to program input, they may vary

due to changes in the executed bytecode instructions which are irrelevant to the attributes

that they measure. Such variations can be misleading; on the other hand, they only occur

when comparing different versions of a benchmark.

Table5.9 shows the execution time for both the TWELVE and TWELVE2 benchmarks.

The measurements correspond to the average execution time for five runs. The optimization

had a positive effect on the total running time of the benchmark, reducing the original time

by approximately 6.5%.

Improving TWELVE2

Both TWELVE and TWELVE2 had a surprisingly high density of lock operations. Further

investigation can reveal that the locking is caused by calling I/O routines from the standard

libraries (see Section3.4.5for a previous discussion of the matter). A new version of the

benchmark, TWELVE3, has been designed which improves upon TWELVE2 by reducing the
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Metric TWELVE2 TWELVE3 % Change Ratio

A
ll

base.instructions.value 4 732 160 2 845 436 -39.9% 0.601

data.charArrayDensity.value 21.006 34.920 66.2% 1.662

concurrency.lockDensity.value 3.008 0.311 -89.7% 0.103

Table 5.10: Change in metrics due to optimization of TWELVE2

TWELVE2 TWELVE3 % Difference

Real time (msec) 433 279 -35.6%

Table 5.11: Differences in runtime between TWELVE2 and TWELVE3

number of calls toSystem.out.print . This is accomplished by collecting the output

in a java.lang.StringBuffer object. TheStringBuffer class is itself synchro-

nized to support concurrent modifications; however, every call toSystem.out.print

is very heavyweight and touches six distinctmonitorenter instructions, rather than a

single one in the case ofStringBuffer . Therefore, buffering the output is still expected

to have a beneficial effect overall. Table5.10shows the changes in the metric values which

were caused by this optimization.

From Table5.10, the optimization led to the desired reduction of the lock density—the

value ofconcurrency.lockDensity.value dropped by almost 90% to reach the very low

value of 0.311 lock operations per kbc. The total number of executed bytecodes was also

reduced in the process, indicating calls to the I/O library were also expensive because of

their deep call chains. As with TWELVE2, various densities were again skewed because of

the dramatic reduction in the number of executed bytecodes. Table5.10shows the effect

on the value of thedata.charArrayDensity.value metric, which exhibits a variation that is

inversely proportional to the reduction in the number of executed bytecodes.

Table5.11shows the execution time for both the TWELVE2 and TWELVE3 benchmarks.

The improvement is even more noticeable for this optimization, since it reduced the running

time of the already optimized TWELVE2 program by another 35.6%. This represents a total

improvement of 39.7% over the unoptimized TWELVE.
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Metric Orig. Inline -O PT+CSE

A
ll base.instructions.value 445.13 M 287.86 M 280.41 M 282.08 M

A
pp

lic
at

io
n

size.run.value 1008 1449 1417 1425

size.hot.value 330 683 662 663

polymorphism.invokeDensity.value 116.17 10.84 11.13 11.06

polymorphism.receiverArityCalls..bin(1) 100% 100% 100% 100%

polymorphism.targetArity.bin(1) 100% 100% 100% 100%

pointer.fieldAccessDensity.value 126.7 196.1 200.9 177.8

Table 5.12: Dynamic Metrics for the VORONOI Benchmark

5.2.3 Compiler Optimizations

The previous subsection has demonstrated that dynamic metrics can be used to guide man-

ual program transformations or refactorings, as well as to quantify their respective effects

on the behaviour of the program. However, the same approach can be applied to compiler

optimizations, where dynamic metrics can be used to reveal potential optimization oppor-

tunities, and evaluate the effect of applying the transformations. In order to demonstrate

this, the effect of compiler transformations will be studied using the VORONOIbenchmark.

Table 5.12 shows the relevant dynamic metrics for four variations of the VORONOI

benchmark. Note that because only the application code can be optimized, all metrics

exceptbase.instructions.value are reported in their application-only version. A detailed

look at each variation will be provided next, followed by a discussion of the impact of the

transformations on the running time of the benchmark.

Effect of Transformations on Dynamic Metrics

In Table5.12, the column namedOrig. corresponds to the metric values for the original

version of the VORONOI benchmark3. While the benchmark executes about 445 million

bytecode instructions (base.instructions.value), it only touched 1008 distinct bytecodes

in its own classes (size.run.value). The size of the VORONOIapplication is thus relatively

small. Of these 1008 bytecodes, only 330 of them account for 90% of the total bytecode

executions (size.hot.value).

The most interesting metrics for the VORONOI benchmark have to do with the density

3For consistency, all four variations of the benchmark have been run through SOOT, a Java bytecode
transformation framework.
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and polymorphism of the virtual method calls. The benchmark has a very high density of

calls to to virtual methods, as thepolymorphism.invokeDensity.value metric is 116.17.

This means that this benchmark executes a virtual invocation about 1 out of every 11 byte-

code instructions. Moreover, the fact that the both thepolymorphism.receiverArityCalls.-

bin(1) and thepolymorphism.targetArityCalls.bin(1) metrics have a value of 100% in-

dicates that all virtual calls originate from completely monomorphic call sites. The high

density of virtual invocations indicates that method inlining is likely to have a positive im-

pact of the performance of the application; the low polymorphism suggests that compiler

techniques could likely resolve each call site to exactly one method, and are this likely to

be very effective at performing inlining.

The column labelledInline gives the dynamic metrics for the same benchmark after

having applied inlining using the SOOT framework. Note that this had a dramatic effect

on the benchmark as the transformed version executes about 288 million instructions, a

reduction of approximately 35%. The transformation also had the desired effect on the

invocation density, which was reduced from 116.17 to 10.84. However, inlining also intro-

duced potentially negative effects, the size of the running application has increased from

1008 to 1449, and the size of the hot part of the application has increased from 330 to 683.

The column labelled-O gives the dynamic metrics for the inlined version of the bench-

mark after having additionally applied intra-method scalar optimizations enabled by the

-O option of SOOT. Note that this does make a small impact on the benchmark, reduc-

ing the number of executed instructions to 280M, and the size of the application to 1417

instructions.

After applying inlining and scalar optimizations, another opportunity for optimization

is apparent from the metric values: the density of field accesses is very high in the trans-

formed version of the program. Thepointer.fieldAccessDensity.value metric has a value

of 200.9, which means that about 1 in 5 bytecode instructions is an access (either a write or

a read operation) to a field.

In the case where a single field is read multiple times, such as in the following code:

...

a = p.x;
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...

b = p.x;

...

it is possible to transform the program so that the value of the field will be stored in a

local variable, and then reuse the value of the variable to avoid performing repeated, more

expensive field accesses. The transformed example would thus become the following:
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...

temp = p.x;

a = temp;

...

b = temp;

...

Note that this is only possible when the value of the field does not change between the

two accesses. Determining this information is further complicated by the fact that multiple

references can bealiased, i.e., point to the same object. The following example illustrates

such a case where the transformation would be prohibited:

...

p.x = 0;

...

q = p; // Alias p and q

a = p.x; // a = 0

...

q.x = 4; // p.x = 4

...

b = p.x; // b = 4, not b = 0

...

In order to reduce the number of field accesses, a whole-program points-to (PT) anal-

ysis has been performed in order to determine which references are possibly aliased, fol-

lowed by a common-sub-expression (CSE) elimination of field accesses. Note that in this

transformation we reduce the number of field accesses, but increase the number of total in-

structions, since we have to insert the assignment to the temporary. This extra assignment

may eventually get eliminated via copy propagation, but it may not. The metric values for

this transformation are provided in the column labelledPT+CSE.
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Mode Orig. Inline -O PT+CSE

Interpreter runtime 48.43 30.50 30.08 30.10

JIT–No Inlining

runtime 12.23 9.87 9.89 9.88

compile-time 0.048 0.046 0.045 0.044

compiled-bytes 2711 3683 3519 3400

JIT

runtime 9.80 9.72 9.76 9.75

compile-time 0.094 0.052 0.055 0.046

compiled-bytes 2743 3435 3193 3150

Table 5.13: Running time measurements for the VORONOI benchmark

Indeed, the metrics show that after applying the transformation the number of executed

instructions increased from 280M to 282M and the size of the application went up from

1417 instructions to 1425 instructions. However, it did have the desired effect on the field

accesses; the value of thedata.fieldAcessDensity.value metric been reduced from 200.9

to 177.8.

Effect of Optimizations on Runtime Performance

As it has been demonstrated in the previous subsection, the dynamic metrics help to identify

opportunities for optimizations and transformations, and can also help in understanding the

effect, both positive and negative.

Table 5.13 presents runtime measurements to see if the behaviour predicted by the

metrics has any correlation with the real runtime behaviour observed when running the

program on a real JVM. In order to get reliable and repeatable results, a slightly larger

problem size was used for the runtime experiments than when collecting the metrics (metric

computations were performed using 20 000 nodes, while runtime experiements used 100

000 nodes). The runtime numbers are the average of five runs, reporting the total time as

reported by the benchmark. The JIT compile time and compiled size are the average of five

runs, as reported by Sun’s VM using the-XX:+CITime option.

In Table5.13, runtime measurements are given for three configurations of the VM. The

first configuration, labelledInterpreter, runs only in interpretive mode (java -Xint ).

The second configuration, labelledJIT–No Inlining, uses the ordinary mixed mode VM, but

the JIT has inlining disabled ( java -client -XX:MaxInlineSize=0

-XX:FreqInlineSize=0 ). The third configuration, labelledJIT , is the normal mixed
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mode VM using its defaults (java -client ).

The results from the interpreter are easiest to analyze since the interpreter does not

perform any optimizations of its own and there is no overhead due to JIT compilation.

These results follow the dynamic metrics very closely. TheOrig. version runs in 48.43

seconds, whereas theInline version is much faster, executing in 30.50 seconds. The-O

version shows a small improvement, with an execution time of 30.08 seconds, which cor-

responds quite well with the small improvement in executed instructions that was visible

in the metrics. ThePTR+CSEshows a very slight increase in running time, executing

in 30.10 seconds. This shows that the additional instructions that were introduced by the

transformation could not all be eliminated.

The result from theJIT–No Inliningconfiguration again show that the statically-inlined

version of VORONOI (columnInline) executes much faster, 9.87 versus 12.23 seconds for

the original version. However, the-O andPT+CSEversions have no significant impact

(even a slight negative impact) on runtime. This is probably because the JIT optimizations

and the static optimizations negatively affect each other. However, it is worth noting that

the amount of compiled code does go down slightly.

Running the benchmark with the ordinaryJIT configuration shows that the JIT inliner

is quite effective, giving an execution time of 9.80 versus 12.23 when the JIT inliner is

turned off. This indicates that two different inliners (SOOT’s static inliner and the JIT

dynamic inliner) work very well for this benchmark, as predicted by looking at our dynamic

metrics. However, note that the JIT inliner has to compile slightly more code (2743 bytes

vs 2711 bytes for when the inliner is disabled). It is also interesting to note that the JIT

inliner (rowJIT runtime) and the static inliner (columnInline) actually combine to give the

overall best result. The runtime is the best (9.72 seconds), the JIT compile time is very

reasonable (0.051 seconds), and the amount of compiled code is quite small (3435 bytes).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis has presented dynamic metrics as a means of assessing the actual runtime be-

haviour of a program by providing a high-level overview of several of its key aspects. This

dynamic information can be more relevant than the more common static measures, in par-

ticular for compiler and runtime system developers.

Five categories of dynamic metrics have been defined and empirically validated us-

ing data from a representative set of benchmarks programs. The metrics characterize a

program’s runtime behaviour in terms of size, data structures, polymorphism, memory use,

and concurrency and synchronization. These metrics were designed with the goals of being

unambiguous, dynamic, robust, discriminating, and platform-independent.

A flexible and extensible dynamic analysis framework,*J , has been built around the

JVMPI, and allows the defined metrics to be computed for Java programs, as well as to

distill a concise subset that characterizes a program.

Empirical validation of the metrics was performed by computing the defined metrics

for a representative set of well-known Java benchmarks, and by evaluating the metrics in

terms of how well they corresponded to the commonly accepted qualitative appraisal of the

benchmarks. The discussion also considered how well each of the metrics satisfied the set

of desirable metric properties.
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The utility of the metrics was evaluated by applying them to three specific problems,

and determining to which extent they provided useful information for each task.

6.2 Future Work

The work on dynamic metrics can be extended in several ways. This section presents some

possible directions for future research.

6.2.1 Alternate Data Sources

In order to continue the investigation of dynamic metrics, it would be necessary to find

alternate sources of execution data in order to overcome the limitations that are imposed

by using the JVMPI. In particular, the addition of a general-purpose profiling framework

within SableVM [Gag02], a free, open-source and portable Java virtual machine, would

offer many potential advantages. Such a framework could provide a more versatile profiling

interface than what the JVMPI currently offers, and allow for a greater flexibility in terms

of the information that can be recorded. Such a profiling framework may also be useful

to other researchers who also often need to instrument a Java virtual machine in order to

obtain dynamic information.

6.2.2 Additional Metrics

Several new metrics could be added to our set. In particular, the following metrics are

believed to be among the most promising for compiler optimization and runtime develop-

ment.

Program Structure

Based on the ideas that were proposed as part of the research done on static complexity met-

rics, the decision structure of a program seems to be closely associated with its complexity.

Dynamic metrics based on measuring various aspects of the control flow of an application
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could therefore provide an informative measure of one aspect of its complexity. Such met-

rics could be obtained by measuring instructions that change control flow (if , switch ,

goto , method invocations, . . . ). For example, a program with a single large loop is con-

sidered simple, whereas a program with multiple loops and/or many control flow changes

within a loop is considered more complex. Simple metrics include measuring the density of

execution of control bytecodes. A more dynamic measure of the decision structure would

involve, for instance, measuring the rate at which control bytecodes change direction. Per-

centile metrics measuring the “hotness” of control bytecodes, as well as bin metrics that

measure the proportion of such bytecodes that always take a particular direction, or that

take different ones at different points in the execution, are also possible.

Concurrency

Identifying concurrent benchmarks involves determining whether more than one thread1

can be executing at the same time. This is not a simple quality to determine; certainly the

number of threads started by an application is an upper bound on the amount of execution

that can overlap or be concurrent, but the mere existence of multiple threads does not imply

they can or will execute concurrently.

For an ideal measurement of thread concurrency, one needs to measure the application

running on the same number of processors that would be available at runtime, and also

the same scheduling model. Unfortunately, these properties, as well as timing variations

at runtime that would also affect scheduling, are highly architecture (and virtual machine)

dependent, and so truly robust and accurate dynamic metrics for thread concurrency are

difficult, perhaps impossible to define.

The amount of concurrency in a program could, however, be approximated by moni-

toring the threads which are simultaneously in theactiveor runnablestates, i.e., threads

that are either running, or at least capable of being run (but which are not currently sched-

uled). In this case, the requirement on the number of processors that are needed to show

concurrent execution is lifted.
1Note that the JVM will start several threads for even the simplest of programs (e.g. one or more garbage

collector threads, a finalizer thread, etc). When identifying concurrency by the number of existing threads it
is necessary to discount these if every benchmark is not to be considered trivially concurrent.
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Unfortunately, this would certainly perturb results: two short-lived threads started se-

rially by one thread may never overlap execution on a 3-processor; on a uniprocessor,

however, scheduling may result in all three threads being runnable at the same time. Given

the considerable potential variation in thread activity already permitted by Java’s thread

scheduling model (which provides almost no scheduling guarantees), this amount of extra

imprecision should not overly obscure the actual concurrency of an application.

Memory

Another interesting program behaviour is to determine if there exists an allocation hotspot

for a given program execution, i.e., small fraction of allocation sites which account for a

large fraction of total bytes or objects allocated. Value and percentile metrics would be

good candidates for measuring such behaviour.

Researchers interested in garbage collection are often interested in the liveness of dyna-

mically-allocated objects. For example, generational garbage collection is potentially a

good idea if a large proportion of objects have short lifetimes. For liveness metrics, time

is often reported in terms of intervals of allocated bytes. For example, for an interval size

of 10000 bytes, interval 1 ends after 10000 bytes have been allocated, interval 2 ends after

20000 bytes have been allocated and so on.

Object lifetimes could be estimated by identifying objects which become unreachable

during each interval. Based on the the amount of live memory at the end of each interval,

a simple metric such as the average or maximum number of live bytes or object could be

computed. More interestingly, more dynamic metrics such as the rate at which objects or

bytes become unreachable, or a bin metric reporting the proportion of objects or allocated

bytes which survive predetermined numbers of intervals (e.g., 0, 1, 2, 3–5, 6–10, 11 and

more) could also be reported.

By defining thebirth time of an object as the number of the interval in which it was

allocated and conversely itsdeath timeas the number of the interval in which it becomes

unreachable, it is possible to define metrics which measure various aspects of thelifetime

of objects. Bin metrics would constitute good candidates for such measurements.
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Another concept that is appearing in the garbage collection literature is the notion of

dragged objects [RR96, SKS02]. Dragged objects are those that are still reachable, but

are never touched for the remainder of the execution. These objects therefore represent

unnecessary heap overhead. Dynamic metrics could measure quantities such as the average

drag time of an object, or the proportion of the heap which is occupied by dragged objects.

Pointers

Pointer polymorphism is typically measured as an average or maximum number of target

addresses per pointer, and symmetrically the number of pointers per target address (Cheng

and Hwu argue that both are required for a more accurate measurement [CH00]). Value and

bin metrics could be defined to measure the number of distinct objects that are referenced

by each object reference, as well as the number of distinct object references directed at

each object.

Continuous Extensions

Because of the large amount of information that is now available in software visualization

tools, an approach to program understanding based on a refinement process has obvious ad-

vantages. In order to bridge the large gap that exists between dynamic software metrics and

complete visualization, continuous versions of the metrics need to be defined. Such metrics

would be computed at specific intervals rather than once at the end of the execution, and

would thus show the evolution of the metric value over time. One particularly interesting

potential application of such a technique is metric-based program phase detection.

6.2.3 Objectivity of Measures

Most metrics are affected by variations in the program’s behaviour which should not impact

the characteristics being measured. Different kinds of metrics react differently to such

changes in the behaviour. While it may not be possible to completely eliminate such noise,

any reduction of its effects on the metrics would have a positive impact on the objectivity

of the measures.
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6.2. Future Work

The informally-defined desirable qualities of dynamic metrics that were presented in

Section3.1could also benefit from a formal definition. This would allow further studies to

take place, such as investigating a possible correlation between the informative nature of a

metric and its robustness with respect to unrelated behavioural changes.

6.2.4 Efficiency of the Computations

Due to the very large amount of information being processed, the current method for com-

puting dynamic metrics is very slow — in the range of several hours for simple benchmark

programs. There are many aspects of the computation that could be optimized for speed.

In particular, better compression techniques, instruction predicting strategies, alternate pro-

filing techniques and data representations could result in significant speed improvements.

The integration of STEP and*J is also planned. Investigating sample-based techniques,

as well as their impact of the measurement values would also be valuable. Most of the

research in this area would also potentially applicable to the field of software visualization.
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Appendix A

Metric Data

A.1 Whole program metrics
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A.1. Whole program metrics

Table A.1: Whole program metrics for small benchmarks

Metric E
M
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T
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L
IN
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C
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base.bytes.value 940008 941048 1119784 3070920 1281376

base.classes.value 277 277 275 286 280

base.instructions.value 558128 561842 2551019 28264280 8613320

base.methods.value 16202 16391 161835 1818630 27738

base.objects.value 4906 4922 10933 21216 5287

concurrency.contendedLock.percentile N/A N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000

concurrency.lock.percentile 40.9% 38.9% 15.1% 16.7% 47.3%

concurrency.lockDensity.value 1.528 1.557 6.677 0.352 0.111

data.arrayDensity.value 73.311 73.120 31.059 150.880 151.953

data.charArrayDensity.value 33.186 33.169 10.430 1.562 2.197

data.floatDensity.value 1.987 1.974 0.438 202.808 285.427

data.numArrayDensity.value 34.213 34.038 14.581 74.986 140.602

data.refArrayDensity.value 1.795 1.787 0.396 73.708 8.867

memory.averageObjectSize.value 191.60375 191.1922 102.42239 144.74548 242.36353

memory.byteAllocationDensity.value 1684.216 1674.934 438.956 108.650 148.767

memory.objectAllocationDensity.value 8.790 8.760 4.286 0.751 0.614

memory.objectSize.bin(8) 0.6% 0.6% 0.3% 0.1% 0.5%

memory.objectSize.bin(16) 14.7% 14.6% 24.9% 14.4% 14.4%

memory.objectSize.bin(24) 32.8% 32.8% 33.1% 38.8% 31.7%

memory.objectSize.bin(32) 8.7% 8.7% 3.9% 3.7% 8.3%

memory.objectSize.bin(40) 9.5% 9.4% 4.2% 4.1% 8.9%

memory.objectSize.bin(48-72) 21.7% 21.8% 28.3% 15.6% 20.9%

memory.objectSize.bin(80-136) 7.2% 7.3% 3.3% 8.1% 6.9%

memory.objectSize.bin(144-392) 3.9% 3.8% 1.6% 7.6% 3.6%

memory.objectSize.bin(400+) 0.9% 1.0% 0.4% 7.6% 4.8%

pointer.fieldAccessDensity.value 53.844 54.179 148.044 97.686 3.799

pointer.nonrefFieldAccessDensity.value 30.054 30.268 92.139 34.807 2.120

pointer.refFieldAccessDensity.value 23.790 23.911 55.905 62.880 1.679
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A.1. Whole program metrics

Table A.1: Whole program metrics for small benchmarks (continued)

Metric E
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polymorphism.callSites.value 437 472 482 677 530

polymorphism.calls.value 8356 8485 111511 1731915 19559

polymorphism.invokeDensity.value 14.971 15.102 43.712 61.276 2.271

polymorphism.receiverArity.bin(1) 97.3% 97.5% 97.5% 98.1% 97.7%

polymorphism.receiverArity.bin(2) 2.5% 2.3% 2.3% 1.8% 2.1%

polymorphism.receiverArity.bin(3+) 0.2% 0.2% 0.2% 0.1% 0.2%

polymorphism.receiverArityCalls.bin(1) 95.2% 95.2% 96.0% 100.0% 97.9%

polymorphism.receiverArityCalls.bin(2) 2.1% 2.1% 3.8% 0.0% 1.0%

polymorphism.receiverArityCalls.bin(3+) 2.6% 2.6% 0.2% 0.0% 1.1%

polymorphism.receiverCacheMissRate.value 8.4% 8.7% 0.7% 0.1% 4.1%

polymorphism.receiverPolyDensity.value 0.02746 0.02542 0.0249 0.0192 0.02264

polymorphism.receiverPolyDensityCalls.value 0.04751 0.04773 0.03994 0.00045 0.02147

polymorphism.targetArity.bin(1) 98.4% 98.5% 98.5% 98.8% 98.7%

polymorphism.targetArity.bin(2) 1.4% 1.3% 1.2% 1.0% 1.1%

polymorphism.targetArity.bin(3+) 0.2% 0.2% 0.2% 0.1% 0.2%

polymorphism.targetArityCalls.bin(1) 96.7% 96.8% 99.8% 100.0% 98.6%

polymorphism.targetArityCalls.bin(2) 0.6% 0.6% 0.0% 0.0% 0.3%

polymorphism.targetArityCalls.bin(3+) 2.6% 2.6% 0.2% 0.0% 1.1%

polymorphism.targetCacheMissRate.value 6.9% 7.2% 0.6% 0.0% 3.4%

polymorphism.targetPolyDensity.value 0.01602 0.01483 0.01452 0.01182 0.01321

polymorphism.targetPolyDensityCalls.value 0.03267 0.03241 0.00249 0.00021 0.01411

size.codeCoverage.value 10.2% 10.8% 11.4% 16.1% 13.7%

size.deadCode.value 64705 64258 63926 67405 67465

size.hot.value 985 1009 924 116 119

size.hot.percentile 13.4% 12.9% 11.2% 0.9% 1.1%

size.hotClasses.value 10 10 15 3 1

size.hotClasses.percentile 8.1% 7.6% 11.4% 1.9% 0.7%

size.hotMethods.value 34 35 53 6 4

size.hotMethods.percentile 7.7% 7.4% 11.0% 1.0% 0.8%

size.load.value 72059 72062 72158 80292 78173

size.loadedClasses.value 277 277 275 286 280

size.loadedMethods.value 3603 3603 3599 3735 3650

size.run.value 7354 7804 8232 12887 10708
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A.1. Whole program metrics

Table A.2: Whole program metrics for small mulithreaded benchmarks

Metric R
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base.bytes.value 1047536 25403664 2253960 3388888

base.classes.value 282 322 396 547

base.instructions.value 2029566 219682923 9202666 14772826

base.methods.value 133495 12605381 387753 608208

base.objects.value 7418 358398 33013 50143

concurrency.contendedLock.percentile 50.0% 30.0% 28.6% 50.0%

concurrency.contendedLockDensity.value 0.271 0.088 0.017 0.017

concurrency.lock.percentile 14.1% 20.6% 10.8% 11.7%

concurrency.lockDensity.value 18.142 4.259 8.730 5.593

data.arrayDensity.value 43.999 53.058 60.954 63.117

data.charArrayDensity.value 16.331 10.783 21.765 24.963

data.floatDensity.value 0.568 0.015 0.278 0.409

data.numArrayDensity.value 12.625 5.066 22.318 21.098

data.refArrayDensity.value 11.489 34.848 0.561 2.475

memory.averageObjectSize.value 141.21542 70.88115 68.27492 67.58447

memory.byteAllocationDensity.value 516.138 115.638 244.925 229.400

memory.objectAllocationDensity.value 3.655 1.631 3.587 3.394

memory.objectSize.bin(8) 0.4% 0.0% 0.2% 0.2%

memory.objectSize.bin(16) 10.3% 4.7% 13.6% 13.5%

memory.objectSize.bin(24) 34.6% 47.4% 45.9% 44.5%

memory.objectSize.bin(32) 6.2% 8.7% 10.2% 10.5%

memory.objectSize.bin(40) 11.9% 8.6% 7.1% 6.7%

memory.objectSize.bin(48-72) 25.3% 21.7% 11.5% 14.9%

memory.objectSize.bin(80-136) 8.0% 4.4% 7.2% 6.6%

memory.objectSize.bin(144-392) 2.6% 4.3% 3.6% 2.2%

memory.objectSize.bin(400+) 0.7% 0.3% 0.7% 0.9%

pointer.fieldAccessDensity.value 109.555 111.066 108.634 103.315

pointer.nonrefFieldAccessDensity.value 64.621 61.084 63.174 59.002

pointer.refFieldAccessDensity.value 44.934 49.982 45.459 44.313
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A.1. Whole program metrics

Table A.2: Whole program metrics for small mulithreaded benchmarks (continued)

Metric R
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polymorphism.callSites.value 536 967 1577 2588

polymorphism.calls.value 87421 10913528 300399 484130

polymorphism.invokeDensity.value 43.074 49.679 32.643 32.772

polymorphism.receiverArity.bin(1) 97.4% 95.6% 98.2% 97.0%

polymorphism.receiverArity.bin(2) 2.1% 3.5% 1.4% 2.0%

polymorphism.receiverArity.bin(3+) 0.6% 0.9% 0.4% 1.0%

polymorphism.receiverArityCalls.bin(1) 98.2% 98.2% 97.3% 94.6%

polymorphism.receiverArityCalls.bin(2) 1.5% 1.3% 1.7% 2.5%

polymorphism.receiverArityCalls.bin(3+) 0.3% 0.6% 1.0% 2.9%

polymorphism.receiverCacheMissRate.value 1.0% 0.8% 1.1% 2.8%

polymorphism.receiverPolyDensity.value 0.02612 0.04447 0.01839 0.02975

polymorphism.receiverPolyDensityCalls.value 0.01764 0.0182 0.02705 0.05435

polymorphism.targetArity.bin(1) 98.7% 97.6% 98.7% 98.0%

polymorphism.targetArity.bin(2) 1.1% 1.7% 1.0% 1.5%

polymorphism.targetArity.bin(3+) 0.2% 0.7% 0.3% 0.5%

polymorphism.targetArityCalls.bin(1) 99.6% 99.3% 98.1% 96.4%

polymorphism.targetArityCalls.bin(2) 0.1% 0.1% 1.4% 1.8%

polymorphism.targetArityCalls.bin(3+) 0.3% 0.6% 0.5% 1.8%

polymorphism.targetCacheMissRate.value 0.8% 0.6% 0.8% 1.4%

polymorphism.targetPolyDensity.value 0.01306 0.02378 0.01268 0.02009

polymorphism.targetPolyDensityCalls.value 0.00363 0.00704 0.0192 0.03645

size.codeCoverage.value 11.8% 24.4% 22.2% 34.7%

size.deadCode.value 63923 69155 68853 97886

size.hot.value 1219 713 1273 2418

size.hot.percentile 14.3% 3.2% 6.5% 4.6%

size.hotClasses.value 20 10 13 23

size.hotClasses.percentile 14.6% 4.9% 5.5% 6.6%

size.hotMethods.value 59 32 56 96

size.hotMethods.percentile 11.8% 3.5% 5.2% 5.5%

size.load.value 72460 91469 88494 149940

size.loadedClasses.value 282 322 396 547

size.loadedMethods.value 3620 4095 4526 6132

size.run.value 8537 22314 19641 52054
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A.1. Whole program metrics

Table A.3: Whole program metrics for medium and large benchmarks

Metric JL
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base.bytes.value 22126432 616113752 235391416 217111616 238632360

base.classes.value 310 819 809 663 666

base.instructions.value 72940156 2124320307 1401704070 632803039 1155005238

base.methods.value 6112124 152128245 63999476 44361168 68825232

base.objects.value 441908 17493261 5668203 3503081 4243762

concurrency.contendedLock.percentile N/A 100.0% 100.0% 33.3% 66.7%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000

concurrency.lock.percentile 4.8% 10.0% 7.5% 5.6% 4.6%

concurrency.lockDensity.value 23.313 5.769 4.251 12.764 9.825

data.arrayDensity.value 24.583 42.821 84.290 43.635 52.068

data.charArrayDensity.value 1.254 7.316 4.168 6.638 4.885

data.floatDensity.value 0.021 1.109 0.066 0.032 0.019

data.numArrayDensity.value 9.522 10.915 52.585 9.450 18.125

data.refArrayDensity.value 12.459 13.612 11.032 15.613 13.917

memory.averageObjectSize.value 50.07022 35.22006 41.5284 61.97733 56.23132

memory.byteAllocationDensity.value 303.350 290.029 167.932 343.095 206.607

memory.objectAllocationDensity.value 6.059 8.235 4.044 5.536 3.674

memory.objectSize.bin(8) 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 0.6% 46.3% 46.5% 22.3% 26.0%

memory.objectSize.bin(24) 2.6% 33.9% 33.7% 40.8% 37.5%

memory.objectSize.bin(32) 93.9% 1.0% 1.0% 7.2% 10.0%

memory.objectSize.bin(40) 0.5% 6.5% 5.5% 12.8% 11.8%

memory.objectSize.bin(48-72) 1.9% 10.6% 10.4% 6.5% 5.7%

memory.objectSize.bin(80-136) 0.3% 1.0% 1.2% 5.3% 4.5%

memory.objectSize.bin(144-392) 0.2% 0.5% 0.9% 5.0% 4.3%

memory.objectSize.bin(400+) 0.0% 0.2% 0.9% 0.2% 0.2%

pointer.fieldAccessDensity.value 167.756 159.668 167.253 157.043 147.967

pointer.nonrefFieldAccessDensity.value 104.479 67.313 53.710 57.370 45.607

pointer.refFieldAccessDensity.value 63.278 92.355 113.543 99.673 102.360
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A.1. Whole program metrics

Table A.3: Whole program metrics for medium and large benchmarks (continued)
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polymorphism.callSites.value 1263 3802 3453 3984 3876

polymorphism.calls.value 3510504 109808788 47599767 32127993 51805162

polymorphism.invokeDensity.value 48.129 51.691 33.958 50.771 44.853

polymorphism.receiverArity.bin(1) 98.6% 93.6% 93.4% 94.3% 93.9%

polymorphism.receiverArity.bin(2) 1.0% 3.0% 3.2% 2.4% 2.7%

polymorphism.receiverArity.bin(3+) 0.4% 3.5% 3.4% 3.3% 3.4%

polymorphism.receiverArityCalls.bin(1) 90.5% 68.3% 63.4% 94.3% 94.7%

polymorphism.receiverArityCalls.bin(2) 0.1% 13.2% 12.7% 0.5% 0.5%

polymorphism.receiverArityCalls.bin(3+) 9.5% 18.5% 23.9% 5.2% 4.8%

polymorphism.receiverCacheMissRate.value 0.2% 8.9% 7.6% 0.2% 0.2%

polymorphism.receiverPolyDensity.value 0.01425 0.06444 0.06632 0.05748 0.0614

polymorphism.receiverPolyDensityCalls.value 0.09532 0.31709 0.36567 0.05733 0.05318

polymorphism.targetArity.bin(1) 99.1% 95.2% 95.2% 97.3% 97.3%

polymorphism.targetArity.bin(2) 0.6% 2.1% 2.3% 2.0% 2.1%

polymorphism.targetArity.bin(3+) 0.3% 2.6% 2.5% 0.6% 0.6%

polymorphism.targetArityCalls.bin(1) 90.5% 72.8% 74.6% 95.5% 95.9%

polymorphism.targetArityCalls.bin(2) 9.3% 11.9% 11.0% 0.2% 0.2%

polymorphism.targetArityCalls.bin(3+) 0.2% 15.3% 14.3% 4.2% 3.9%

polymorphism.targetCacheMissRate.value 0.1% 4.3% 3.6% 0.1% 0.2%

polymorphism.targetPolyDensity.value 0.0095 0.04761 0.04778 0.02661 0.02657

polymorphism.targetPolyDensityCalls.value 0.09488 0.27167 0.25351 0.04454 0.04096

size.codeCoverage.value 24.4% 30.3% 28.3% 33.9% 33.1%

size.deadCode.value 66072 88497 90901 96726 97914

size.hot.value 422 3323 1859 1760 1434

size.hot.percentile 2.0% 8.7% 5.2% 3.6% 3.0%

size.hotClasses.value 8 35 23 19 17

size.hotClasses.percentile 4.5% 6.5% 4.6% 4.0% 3.5%

size.hotMethods.value 25 134 86 78 62

size.hotMethods.percentile 3.3% 7.5% 5.0% 3.7% 2.9%

size.load.value 87405 126901 126733 146253 146337

size.loadedClasses.value 310 819 809 663 666

size.loadedMethods.value 3848 6013 5983 7162 7173

size.run.value 21333 38404 35832 49527 48423
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A.1. Whole program metrics

Table A.4: Whole program metrics for JOlden benchmarks–part 1
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base.bytes.value 703254112 4763424 9646152 38481896 50504088

base.classes.value 285 277 280 283 281

base.instructions.value 1936887268 534219368 267434575 385920250 203111553

base.methods.value 44963711 15550676 2099777 23415523 17297868

base.objects.value 15521638 136396 21749 1232200 2105058

concurrency.contendedLock.percentile N/A N/A N/A N/A 100.0%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000

concurrency.lock.percentile 51.7% 48.3% 1.6% 49.2% 51.7%

concurrency.lockDensity.value 0.001 0.002 4.521 0.004 0.006

data.arrayDensity.value 105.891 0.081 89.253 4.564 19.585

data.charArrayDensity.value 0.013 0.037 0.080 0.065 0.112

data.floatDensity.value 245.665 0.002 13.511 5.988 0.006

data.numArrayDensity.value 97.512 0.037 3.067 0.056 0.102

data.refArrayDensity.value 4.380 0.002 81.534 3.992 19.352

memory.averageObjectSize.value 45.30798 34.92349 443.52163 31.23024 23.99178

memory.byteAllocationDensity.value 363.085 8.917 36.069 99.715 248.652

memory.objectAllocationDensity.value 8.014 0.255 0.081 3.193 10.364

memory.objectSize.bin(8) 0.0% 0.0% 0.1% 0.0% 0.0%

memory.objectSize.bin(16) 49.6% 0.5% 3.6% 69.4% 49.9%

memory.objectSize.bin(24) 0.0% 97.3% 8.1% 16.0% 49.9%

memory.objectSize.bin(32) 0.4% 0.3% 2.1% 14.0% 0.0%

memory.objectSize.bin(40) 49.6% 0.3% 20.6% 0.1% 0.0%

memory.objectSize.bin(48-72) 0.3% 0.9% 6.1% 0.2% 0.1%

memory.objectSize.bin(80-136) 0.0% 0.3% 2.7% 0.1% 0.0%

memory.objectSize.bin(144-392) 0.0% 0.2% 7.1% 0.2% 0.0%

memory.objectSize.bin(400+) 0.0% 0.1% 49.7% 0.1% 0.1%

pointer.fieldAccessDensity.value 111.141 120.798 110.669 249.321 80.125

pointer.nonrefFieldAccessDensity.value 5.781 47.485 21.167 79.331 22.096

pointer.refFieldAccessDensity.value 105.359 73.313 89.503 169.990 58.029
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A.1. Whole program metrics

Table A.4: Whole program metrics for JOlden benchmarks–part 1 (continued)
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polymorphism.callSites.value 667 546 577 616 598

polymorphism.calls.value 36149267 6159976 2070608 22017320 9426469

polymorphism.invokeDensity.value 18.664 11.531 7.742 57.051 46.410

polymorphism.receiverArity.bin(1) 97.6% 97.8% 97.9% 98.1% 98.0%

polymorphism.receiverArity.bin(2) 2.2% 2.0% 1.9% 1.8% 1.8%

polymorphism.receiverArity.bin(3+) 0.1% 0.2% 0.2% 0.2% 0.2%

polymorphism.receiverArityCalls.bin(1) 86.7% 100.0% 100.0% 100.0% 100.0%

polymorphism.receiverArityCalls.bin(2) 13.3% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverCacheMissRate.value 3.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverPolyDensity.value 0.02399 0.02198 0.0208 0.01948 0.02007

polymorphism.receiverPolyDensityCalls.value 0.13257 8e-05 0.00026 3e-05 6e-05

polymorphism.targetArity.bin(1) 98.4% 98.7% 98.8% 98.9% 98.8%

polymorphism.targetArity.bin(2) 1.5% 1.1% 1.0% 1.0% 1.0%

polymorphism.targetArity.bin(3+) 0.1% 0.2% 0.2% 0.2% 0.2%

polymorphism.targetArityCalls.bin(1) 86.7% 100.0% 100.0% 100.0% 100.0%

polymorphism.targetArityCalls.bin(2) 13.3% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 3.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetPolyDensity.value 0.01649 0.01282 0.01213 0.01136 0.01171

polymorphism.targetPolyDensityCalls.value 0.13256 5e-05 0.00015 2e-05 4e-05

size.codeCoverage.value 15.1% 13.2% 13.2% 14.9% 14.0%

size.deadCode.value 65866 66118 66389 65131 65592

size.hot.value 160 138 76 66 186

size.hot.percentile 1.4% 1.4% 0.8% 0.6% 1.7%

size.hotClasses.value 3 1 2 3 4

size.hotClasses.percentile 1.9% 0.7% 1.4% 2.0% 2.6%

size.hotMethods.value 7 4 3 5 11

size.hotMethods.percentile 1.1% 0.8% 0.6% 0.8% 1.9%

size.load.value 77594 76129 76518 76566 76295

size.loadedClasses.value 285 277 280 283 281

size.loadedMethods.value 3683 3623 3642 3637 3644

size.run.value 11728 10011 10129 11435 10703
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A.1. Whole program metrics

Table A.5: Whole program metrics for JOlden benchmarks–part 2

Metric P
E

R
IM
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T
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R
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V
O

R
O

N
O

I

base.bytes.value 18251376 49747904 2792344 48128808

base.classes.value 285 281 278 281

base.instructions.value 169521668 1290322805 53740828 467194279

base.methods.value 12219921 24030991 1583529 54588717

base.objects.value 459021 789299 54250 1441905

concurrency.contendedLock.percentile N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile 48.3% 51.7% 3.2% 51.7%

concurrency.lockDensity.value 0.009 0.001 1.849 0.003

data.arrayDensity.value 0.308 93.417 0.793 28.351

data.charArrayDensity.value 0.156 0.017 0.364 0.049

data.floatDensity.value 0.008 474.910 471.566 226.352

data.numArrayDensity.value 0.128 92.490 0.364 0.044

data.refArrayDensity.value 0.007 0.156 0.019 27.675

memory.averageObjectSize.value 39.76153 63.02796 51.47178 33.37863

memory.byteAllocationDensity.value 107.664 38.555 51.959 103.017

memory.objectAllocationDensity.value 2.708 0.612 1.009 3.086

memory.objectSize.bin(8) 0.0% 0.0% 0.1% 0.0%

memory.objectSize.bin(16) 0.2% 0.1% 1.4% 3.5%

memory.objectSize.bin(24) 0.4% 1.6% 3.1% 75.0%

memory.objectSize.bin(32) 98.8% 97.6% 61.2% 18.8%

memory.objectSize.bin(40) 0.1% 0.1% 0.9% 2.3%

memory.objectSize.bin(48-72) 0.3% 0.4% 32.3% 0.1%

memory.objectSize.bin(80-136) 0.1% 0.1% 0.7% 0.1%

memory.objectSize.bin(144-392) 0.1% 0.0% 0.3% 0.1%

memory.objectSize.bin(400+) 0.0% 0.0% 0.1% 0.1%

pointer.fieldAccessDensity.value 102.844 31.544 212.953 120.546

pointer.nonrefFieldAccessDensity.value 21.786 30.320 184.858 55.719

pointer.refFieldAccessDensity.value 81.058 1.224 28.096 64.827
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A.1. Whole program metrics

Table A.5: Whole program metrics for JOlden benchmarks–part 2 (continued)

Metric P
E

R
IM

E
T

E
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O
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I

polymorphism.callSites.value 559 540 569 685

polymorphism.calls.value 7758325 642003 1361998 51624887

polymorphism.invokeDensity.value 45.766 0.498 25.344 110.500

polymorphism.receiverArity.bin(1) 95.2% 97.8% 97.9% 98.2%

polymorphism.receiverArity.bin(2) 2.0% 2.0% 1.9% 1.6%

polymorphism.receiverArity.bin(3+) 2.9% 0.2% 0.2% 0.1%

polymorphism.receiverArityCalls.bin(1) 37.0% 99.9% 100.0% 100.0%

polymorphism.receiverArityCalls.bin(2) 0.0% 0.1% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(3+) 63.0% 0.0% 0.0% 0.0%

polymorphism.receiverCacheMissRate.value 41.0% 0.1% 0.1% 0.0%

polymorphism.receiverPolyDensity.value 0.0483 0.02222 0.02109 0.01752

polymorphism.receiverPolyDensityCalls.value 0.62977 0.00088 0.00035 1e-05

polymorphism.targetArity.bin(1) 96.8% 98.7% 98.8% 99.0%

polymorphism.targetArity.bin(2) 1.1% 1.1% 1.1% 0.9%

polymorphism.targetArity.bin(3+) 2.1% 0.2% 0.2% 0.1%

polymorphism.targetArityCalls.bin(1) 42.9% 99.9% 100.0% 100.0%

polymorphism.targetArityCalls.bin(2) 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(3+) 57.1% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 37.4% 0.1% 0.1% 0.0%

polymorphism.targetPolyDensity.value 0.0322 0.01296 0.0123 0.01022

polymorphism.targetPolyDensityCalls.value 0.57136 0.00051 0.00022 1e-05

size.codeCoverage.value 13.4% 14.4% 13.6% 13.7%

size.deadCode.value 66151 66323 66323 66783

size.hot.value 398 409 110 354

size.hot.percentile 3.9% 3.7% 1.1% 3.3%

size.hotClasses.value 5 1 1 3

size.hotClasses.percentile 3.4% 0.7% 0.7% 2.1%

size.hotMethods.value 16 7 4 15

size.hotMethods.percentile 2.9% 1.3% 0.8% 2.7%

size.load.value 76430 77503 76751 77358

size.loadedClasses.value 285 281 278 281

size.loadedMethods.value 3658 3640 3636 3681

size.run.value 10279 11180 10428 10575
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A.1. Whole program metrics

Table A.6: Whole program metrics for SPECjvm98 benchmarks–part 1

Metric D
B

JA
V

A
C

JA
C

K

JE
S

S

base.bytes.value 95257968 266083104 322520528 529596000

base.classes.value 304 471 356 458

base.instructions.value 3837235350 2018819228 1027673717 1800201377

base.methods.value 117421985 104976930 62969582 112635997

base.objects.value 3212477 6419563 5992438 7947181

concurrency.contendedLock.percentile N/A 50.0% 100.0% 100.0%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile 2.9% 7.1% 19.2% 2.6%

concurrency.lockDensity.value 14.673 7.897 15.748 2.746

data.arrayDensity.value 73.544 37.932 32.776 55.183

data.charArrayDensity.value 33.810 17.577 6.341 0.231

data.floatDensity.value 0.000 0.072 0.224 12.098

data.numArrayDensity.value 0.995 6.785 4.737 0.766

data.refArrayDensity.value 38.625 5.608 13.016 48.596

memory.averageObjectSize.value 29.6525 41.44879 53.82125 66.63948

memory.byteAllocationDensity.value 24.825 131.801 313.836 294.187

memory.objectAllocationDensity.value 0.837 3.180 5.831 4.415

memory.objectSize.bin(8) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 91.4% 14.6% 34.6% 17.8%

memory.objectSize.bin(24) 5.9% 41.9% 39.8% 16.6%

memory.objectSize.bin(32) 0.9% 20.7% 4.2% 24.8%

memory.objectSize.bin(40) 0.9% 6.2% 7.1% 0.9%

memory.objectSize.bin(48-72) 0.9% 11.4% 12.7% 39.6%

memory.objectSize.bin(80-136) 0.0% 4.2% 0.7% 0.2%

memory.objectSize.bin(144-392) 0.0% 0.8% 0.5% 0.1%

memory.objectSize.bin(400+) 0.0% 0.2% 0.4% 0.1%

pointer.fieldAccessDensity.value 123.279 163.866 156.614 151.145

pointer.nonrefFieldAccessDensity.value 50.430 93.849 95.091 89.639

pointer.refFieldAccessDensity.value 72.849 70.017 61.523 61.506
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A.1. Whole program metrics

Table A.6: Whole program metrics for SPECjvm98 benchmarks–part 1 (continued)

Metric D
B

JA
V

A
C

JA
C

K

JE
S

S

polymorphism.callSites.value 695 3233 1685 1309

polymorphism.calls.value 91503087 79053857 43790538 99520115

polymorphism.invokeDensity.value 23.846 39.158 42.611 55.283

polymorphism.receiverArity.bin(1) 97.8% 81.8% 98.2% 97.7%

polymorphism.receiverArity.bin(2) 2.0% 8.3% 1.4% 1.6%

polymorphism.receiverArity.bin(3+) 0.1% 9.9% 0.5% 0.7%

polymorphism.receiverArityCalls.bin(1) 100.0% 70.7% 82.5% 93.3%

polymorphism.receiverArityCalls.bin(2) 0.0% 12.6% 17.5% 2.4%

polymorphism.receiverArityCalls.bin(3+) 0.0% 16.6% 0.1% 4.3%

polymorphism.receiverCacheMissRate.value 0.0% 8.8% 1.7% 3.2%

polymorphism.receiverPolyDensity.value 0.02158 0.18187 0.0184 0.02292

polymorphism.receiverPolyDensityCalls.value 0.00024 0.29291 0.17547 0.06651

polymorphism.targetArity.bin(1) 98.6% 91.2% 98.8% 98.5%

polymorphism.targetArity.bin(2) 1.3% 3.4% 0.8% 0.9%

polymorphism.targetArity.bin(3+) 0.1% 5.4% 0.4% 0.6%

polymorphism.targetArityCalls.bin(1) 100.0% 86.8% 90.2% 93.4%

polymorphism.targetArityCalls.bin(2) 0.0% 1.7% 9.7% 2.4%

polymorphism.targetArityCalls.bin(3+) 0.0% 11.5% 0.1% 4.3%

polymorphism.targetCacheMissRate.value 0.0% 4.8% 1.7% 3.2%

polymorphism.targetPolyDensity.value 0.01439 0.08815 0.01246 0.01528

polymorphism.targetPolyDensityCalls.value 0.00022 0.13218 0.09784 0.06633

size.codeCoverage.value 15.9% 28.4% 26.8% 20.3%

size.deadCode.value 77166 95341 78814 89040

size.hot.value 152 2261 1475 564

size.hot.percentile 1.0% 6.0% 5.1% 2.5%

size.hotClasses.value 4 23 16 9

size.hotClasses.percentile 2.6% 7.7% 7.9% 3.1%

size.hotMethods.value 5 103 63 24

size.hotMethods.percentile 0.8% 7.3% 7.0% 2.3%

size.load.value 91730 133172 107697 111661

size.loadedClasses.value 304 471 356 458

size.loadedMethods.value 4299 5435 4559 4962

size.run.value 14564 37831 28883 22621
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A.1. Whole program metrics

Table A.7: Whole program metrics for SPECjvm98 benchmarks–part 2

Metric C
O

M
P

R
E
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S
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P
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IO
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R
A

C
E

M
T

R
T

base.bytes.value 138418824 4965544 195899840 203094952

base.classes.value 310 356 324 324

base.instructions.value 12474432171 11491896285 2125242085 2173460119

base.methods.value 225970199 109746189 277506608 281538532

base.objects.value 10571 15099 6381047 6652175

concurrency.contendedLock.percentile N/A 100.0% N/A 100.0%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile 47.0% 21.5% 1.4% 1.4%

concurrency.lockDensity.value 0.000 0.001 0.166 0.323

data.arrayDensity.value 52.152 142.423 39.092 39.347

data.charArrayDensity.value 0.006 0.010 0.402 0.744

data.floatDensity.value 0.000 287.862 313.131 308.502

data.numArrayDensity.value 52.145 110.674 3.833 3.927

data.refArrayDensity.value 0.001 31.247 34.247 34.041

memory.averageObjectSize.value 13094.20339 328.86575 30.70027 30.53061

memory.byteAllocationDensity.value 11.096 0.432 92.178 93.443

memory.objectAllocationDensity.value 0.001 0.001 3.003 3.061

memory.objectSize.bin(8) 0.3% 0.2% 0.0% 0.0%

memory.objectSize.bin(16) 10.2% 14.6% 1.0% 1.9%

memory.objectSize.bin(24) 37.3% 37.5% 91.1% 89.4%

memory.objectSize.bin(32) 6.2% 5.8% 4.3% 4.7%

memory.objectSize.bin(40) 5.4% 3.5% 2.3% 2.5%

memory.objectSize.bin(48-72) 19.2% 15.8% 1.1% 1.2%

memory.objectSize.bin(80-136) 13.9% 15.4% 0.2% 0.3%

memory.objectSize.bin(144-392) 4.3% 6.3% 0.0% 0.0%

memory.objectSize.bin(400+) 3.1% 0.9% 0.0% 0.0%

pointer.fieldAccessDensity.value 189.557 95.682 157.955 157.739

pointer.nonrefFieldAccessDensity.value 95.144 38.897 97.490 97.243

pointer.refFieldAccessDensity.value 94.413 56.785 60.464 60.496
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A.1. Whole program metrics

Table A.7: Whole program metrics for SPECjvm98 benchmarks–part 2 (continued)

Metric C
O
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P
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R
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R
T

polymorphism.callSites.value 606 847 1506 1510

polymorphism.calls.value 206227172 79265420 266910566 270241701

polymorphism.invokeDensity.value 16.532 6.898 125.591 124.337

polymorphism.receiverArity.bin(1) 97.5% 96.3% 95.3% 95.2%

polymorphism.receiverArity.bin(2) 2.3% 1.7% 3.3% 3.3%

polymorphism.receiverArity.bin(3+) 0.2% 2.0% 1.5% 1.5%

polymorphism.receiverArityCalls.bin(1) 100.0% 91.7% 91.0% 90.9%

polymorphism.receiverArityCalls.bin(2) 0.0% 7.9% 7.5% 7.4%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.4% 1.5% 1.6%

polymorphism.receiverCacheMissRate.value 0.0% 0.1% 0.2% 0.3%

polymorphism.receiverPolyDensity.value 0.02475 0.0366 0.04714 0.04768

polymorphism.receiverPolyDensityCalls.value 1e-05 0.08273 0.08987 0.09059

polymorphism.targetArity.bin(1) 98.4% 97.5% 99.1% 99.0%

polymorphism.targetArity.bin(2) 1.5% 2.2% 0.9% 0.9%

polymorphism.targetArity.bin(3+) 0.2% 0.2% 0.1% 0.1%

polymorphism.targetArityCalls.bin(1) 100.0% 91.8% 98.9% 99.0%

polymorphism.targetArityCalls.bin(2) 0.0% 8.1% 1.1% 1.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 0.0% 0.0% 0.0% 0.0%

polymorphism.targetPolyDensity.value 0.0165 0.02479 0.0093 0.00993

polymorphism.targetPolyDensityCalls.value 1e-05 0.0816 0.01062 0.01049

size.codeCoverage.value 16.0% 35.6% 20.2% 20.3%

size.deadCode.value 76248 78986 79131 79013

size.hot.value 396 3062 778 832

size.hot.percentile 2.7% 7.0% 3.9% 4.1%

size.hotClasses.value 4 8 7 7

size.hotClasses.percentile 2.5% 4.3% 4.0% 4.0%

size.hotMethods.value 7 18 18 20

size.hotMethods.percentile 1.1% 2.4% 2.4% 2.6%

size.load.value 90762 122698 99149 99161

size.loadedClasses.value 310 356 324 324

size.loadedMethods.value 4276 4555 4427 4427

size.run.value 14514 43712 20018 20148
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A.2 Application-only metrics
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A.2. Application-only metrics

Table A.8: Application-only metrics for small benchmarks

Metric E
M

P
T

Y

H
E

L
L
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W

O
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T
S

L
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P
A

C
K

base.bytes.value 0 0 32 6472 16

base.classes.value 1 1 1 6 1

base.instructions.value 0 4 135291 25792396 8026544

base.methods.value 0 1 2047 1699017 10619

base.objects.value 0 0 1 346 1

concurrency.contendedLock.percentile N/A N/A N/A N/A N/A

concurrency.contendedLockDensity.value N/A 0.000 0.000 0.000 0.000

concurrency.lock.percentile N/A N/A N/A N/A N/A

concurrency.lockDensity.value N/A 0.000 0.000 0.000 0.000

data.arrayDensity.value N/A 0.000 133.667 160.404 157.775

data.charArrayDensity.value N/A 0.000 14.805 0.000 0.000

data.floatDensity.value N/A 0.000 0.000 217.956 306.142

data.numArrayDensity.value N/A 0.000 118.803 79.486 148.385

data.refArrayDensity.value N/A 0.000 0.015 80.713 9.389

memory.averageObjectSize.value N/A N/A 32.0 18.7052 16.0

memory.byteAllocationDensity.value N/A 0.000 0.237 0.251 0.002

memory.objectAllocationDensity.value N/A 0.000 0.007 0.013 0.000

memory.objectSize.bin(8) N/A N/A 0.0% 0.0% 0.0%

memory.objectSize.bin(16) N/A N/A 0.0% 66.8% 100.0%

memory.objectSize.bin(24) N/A N/A 0.0% 32.9% 0.0%

memory.objectSize.bin(32) N/A N/A 100.0% 0.0% 0.0%

memory.objectSize.bin(40) N/A N/A 0.0% 0.3% 0.0%

memory.objectSize.bin(48-72) N/A N/A 0.0% 0.0% 0.0%

memory.objectSize.bin(80-136) N/A N/A 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) N/A N/A 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) N/A N/A 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value N/A 250.000 209.230 99.604 0.001

pointer.nonrefFieldAccessDensity.value N/A 0.000 75.393 34.174 0.001

pointer.refFieldAccessDensity.value N/A 250.000 133.837 65.430 0.000
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A.2. Application-only metrics

Table A.8: Application-only metrics for small benchmarks (continued)

Metric E
M
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polymorphism.callSites.value 0 1 8 85 39

polymorphism.calls.value 0 1 2064 1701599 10634

polymorphism.invokeDensity.value N/A 250.000 15.256 65.973 1.325

polymorphism.receiverArity.bin(1) N/A 100.0% 100.0% 100.0% 100.0%

polymorphism.receiverArity.bin(2) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArity.bin(3+) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(1) N/A 100.0% 100.0% 100.0% 100.0%

polymorphism.receiverArityCalls.bin(2) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(3+) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverCacheMissRate.value N/A 100.0% 0.4% 0.0% 0.4%

polymorphism.receiverPolyDensity.value N/A 0.0 0.0 0.0 0.0

polymorphism.receiverPolyDensityCalls.value N/A 0.0 0.0 0.0 0.0

polymorphism.targetArity.bin(1) N/A 100.0% 100.0% 100.0% 100.0%

polymorphism.targetArity.bin(2) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArity.bin(3+) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(1) N/A 100.0% 100.0% 100.0% 100.0%

polymorphism.targetArityCalls.bin(2) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(3+) N/A 0.0% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value N/A 100.0% 0.4% 0.0% 0.4%

polymorphism.targetPolyDensity.value N/A 0.0 0.0 0.0 0.0

polymorphism.targetPolyDensityCalls.value N/A 0.0 0.0 0.0 0.0

size.codeCoverage.value 0.0% 57.1% 85.2% 41.1% 70.9%

size.deadCode.value 4 3 51 1399 307

size.hot.value 0 4 62 57 59

size.hot.percentile N/A 100.0% 21.2% 5.8% 7.9%

size.hotClasses.value 0 1 1 2 1

size.hotClasses.percentile N/A 100.0% 100.0% 40.0% 100.0%

size.hotMethods.value 0 1 3 4 2

size.hotMethods.percentile N/A 100.0% 33.3% 11.4% 15.4%

size.load.value 4 7 344 2374 1056

size.loadedClasses.value 1 1 1 6 1

size.loadedMethods.value 2 2 10 87 14

size.run.value 0 4 293 975 749
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Table A.9: Application-only metrics for small mulithreaded benchmarks

Metric R
O
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L
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base.bytes.value 648 1201032 39488 35760

base.classes.value 4 13 19 38

base.instructions.value 318426 7734125 172969 242947

base.methods.value 19565 837629 11965 18080

base.objects.value 12 45024 1142 1045

concurrency.contendedLock.percentile 50.0% 100.0% 100.0% 88.9%

concurrency.contendedLockDensity.value 0.100 0.099 0.006 0.165

concurrency.lock.percentile 14.3% 50.0% 23.1% 25.0%

concurrency.lockDensity.value 32.800 5.503 7.949 9.467

data.arrayDensity.value 36.976 0.005 16.298 25.425

data.charArrayDensity.value 0.000 0.000 0.000 0.420

data.floatDensity.value 0.000 0.000 0.006 0.037

data.numArrayDensity.value 0.000 0.003 0.000 0.000

data.refArrayDensity.value 36.966 0.000 6.735 10.920

memory.averageObjectSize.value 54.0 26.67537 34.57793 34.2201

memory.byteAllocationDensity.value 2.035 155.290 228.295 147.193

memory.objectAllocationDensity.value 0.038 5.821 6.602 4.301

memory.objectSize.bin(8) 0.0% 0.0% 0.1% 0.0%

memory.objectSize.bin(16) 33.3% 0.0% 0.0% 1.7%

memory.objectSize.bin(24) 0.0% 66.6% 9.5% 9.6%

memory.objectSize.bin(32) 0.0% 33.3% 76.1% 75.6%

memory.objectSize.bin(40) 0.0% 0.0% 3.2% 3.4%

memory.objectSize.bin(48-72) 58.3% 0.0% 9.5% 8.7%

memory.objectSize.bin(80-136) 8.3% 0.0% 1.6% 0.9%

memory.objectSize.bin(144-392) 0.0% 0.0% 0.0% 0.1%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 170.350 136.140 169.504 157.952

pointer.nonrefFieldAccessDensity.value 68.663 59.497 79.141 69.933

pointer.refFieldAccessDensity.value 101.688 76.643 90.363 88.019
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A.2. Application-only metrics

Table A.9: Application-only metrics for small mulithreaded benchmarks (continued)
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polymorphism.callSites.value 33 82 288 524

polymorphism.calls.value 40143 1007898 21097 28644

polymorphism.invokeDensity.value 126.067 130.318 121.970 117.902

polymorphism.receiverArity.bin(1) 100.0% 93.9% 98.6% 98.5%

polymorphism.receiverArity.bin(2) 0.0% 6.1% 0.0% 0.6%

polymorphism.receiverArity.bin(3+) 0.0% 0.0% 1.4% 1.0%

polymorphism.receiverArityCalls.bin(1) 100.0% 92.6% 89.4% 87.3%

polymorphism.receiverArityCalls.bin(2) 0.0% 7.4% 0.0% 3.7%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.0% 10.6% 9.0%

polymorphism.receiverCacheMissRate.value 0.1% 2.8% 5.3% 4.7%

polymorphism.receiverPolyDensity.value 0.0 0.06098 0.01389 0.01527

polymorphism.receiverPolyDensityCalls.value 0.0 0.07441 0.10561 0.12673

polymorphism.targetArity.bin(1) 100.0% 98.8% 99.3% 99.2%

polymorphism.targetArity.bin(2) 0.0% 1.2% 0.0% 0.2%

polymorphism.targetArity.bin(3+) 0.0% 0.0% 0.7% 0.6%

polymorphism.targetArityCalls.bin(1) 100.0% 98.5% 94.7% 94.3%

polymorphism.targetArityCalls.bin(2) 0.0% 1.5% 0.0% 0.7%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.0% 5.3% 5.0%

polymorphism.targetCacheMissRate.value 0.1% 0.6% 3.3% 3.4%

polymorphism.targetPolyDensity.value 0.0 0.0122 0.00694 0.00763

polymorphism.targetPolyDensityCalls.value 0.0 0.01488 0.0528 0.05677

size.codeCoverage.value 81.0% 73.4% 57.6% 49.1%

size.deadCode.value 75 243 1759 5018

size.hot.value 33 360 572 1268

size.hot.percentile 10.3% 53.7% 23.9% 26.2%

size.hotClasses.value 3 7 7 12

size.hotClasses.percentile 75.0% 58.3% 43.8% 41.4%

size.hotMethods.value 4 26 29 58

size.hotMethods.percentile 40.0% 42.6% 29.3% 28.3%

size.load.value 395 914 4149 9861

size.loadedClasses.value 4 13 19 38

size.loadedMethods.value 13 92 210 370

size.run.value 320 671 2390 4843
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A.2. Application-only metrics

Table A.10: Application-only metrics for medium and large benchmarks
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base.bytes.value 86688 196809392 64670968 26364016 38976080

base.classes.value 24 532 522 304 307

base.instructions.value 13607703 1291772489 1061844586 411052482 870603855

base.methods.value 414274 105284449 41936959 27041635 46634885

base.objects.value 3406 9329175 3120275 1133840 1652059

concurrency.contendedLock.percentile N/A N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000

concurrency.lock.percentile N/A N/A N/A N/A N/A

concurrency.lockDensity.value 0.000 0.000 0.000 0.000 0.000

data.arrayDensity.value 53.677 35.553 93.999 38.868 50.287

data.charArrayDensity.value 1.418 0.000 0.000 0.000 0.000

data.floatDensity.value 0.000 0.269 0.008 0.000 0.000

data.numArrayDensity.value 47.001 16.159 68.625 11.209 22.190

data.refArrayDensity.value 0.611 9.696 7.425 13.274 10.251

memory.averageObjectSize.value 25.45156 21.09612 20.72605 23.25197 23.59243

memory.byteAllocationDensity.value 6.371 152.356 60.904 64.138 44.769

memory.objectAllocationDensity.value 0.250 7.222 2.939 2.758 1.898

memory.objectSize.bin(8) 0.1% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 12.9% 58.8% 61.1% 49.9% 48.0%

memory.objectSize.bin(24) 71.9% 30.9% 29.2% 19.8% 18.9%

memory.objectSize.bin(32) 0.1% 0.8% 0.9% 20.2% 23.3%

memory.objectSize.bin(40) 14.9% 8.8% 8.4% 10.1% 9.8%

memory.objectSize.bin(48-72) 0.0% 0.7% 0.5% 0.0% 0.0%

memory.objectSize.bin(80-136) 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) 0.1% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 129.197 190.751 185.943 164.895 147.958

pointer.nonrefFieldAccessDensity.value 46.428 70.976 52.264 40.635 30.821

pointer.refFieldAccessDensity.value 82.769 119.776 133.679 124.260 117.136
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A.2. Application-only metrics

Table A.10: Application-only metrics for medium and large benchmarks (continued)
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polymorphism.callSites.value 636 3186 2839 2624 2513

polymorphism.calls.value 375638 90329861 39829368 28335329 47796441

polymorphism.invokeDensity.value 27.605 69.927 37.510 68.934 54.900

polymorphism.receiverArity.bin(1) 100.0% 93.3% 93.1% 92.4% 91.7%

polymorphism.receiverArity.bin(2) 0.0% 3.0% 3.2% 2.8% 3.3%

polymorphism.receiverArity.bin(3+) 0.0% 3.7% 3.7% 4.8% 5.0%

polymorphism.receiverArityCalls.bin(1) 100.0% 78.4% 72.0% 94.3% 94.7%

polymorphism.receiverArityCalls.bin(2) 0.0% 15.4% 14.6% 0.4% 0.5%

polymorphism.receiverArityCalls.bin(3+) 0.0% 6.2% 13.3% 5.3% 4.8%

polymorphism.receiverCacheMissRate.value 0.2% 4.4% 4.6% 0.2% 0.2%

polymorphism.receiverPolyDensity.value 0.0 0.06685 0.06939 0.07584 0.08277

polymorphism.receiverPolyDensityCalls.value 0.0 0.21637 0.27964 0.05712 0.05292

polymorphism.targetArity.bin(1) 100.0% 95.1% 95.1% 96.7% 96.7%

polymorphism.targetArity.bin(2) 0.0% 2.1% 2.3% 2.5% 2.6%

polymorphism.targetArity.bin(3+) 0.0% 2.8% 2.7% 0.8% 0.7%

polymorphism.targetArityCalls.bin(1) 100.0% 83.5% 85.1% 95.0% 95.6%

polymorphism.targetArityCalls.bin(2) 0.0% 13.9% 12.7% 0.2% 0.2%

polymorphism.targetArityCalls.bin(3+) 0.0% 2.6% 2.2% 4.7% 4.2%

polymorphism.targetCacheMissRate.value 0.2% 2.7% 2.1% 0.1% 0.2%

polymorphism.targetPolyDensity.value 0.0 0.04896 0.04931 0.03277 0.03303

polymorphism.targetPolyDensityCalls.value 0.0 0.16504 0.14904 0.04972 0.04386

size.codeCoverage.value 73.5% 57.7% 52.7% 72.1% 69.0%

size.deadCode.value 3778 19207 21428 11877 13228

size.hot.value 758 2759 1191 1099 874

size.hot.percentile 7.2% 10.5% 5.0% 3.6% 3.0%

size.hotClasses.value 5 29 16 12 11

size.hotClasses.percentile 21.7% 7.5% 4.6% 5.0% 4.4%

size.hotMethods.value 15 106 61 45 36

size.hotMethods.percentile 12.0% 9.4% 5.8% 4.3% 3.4%

size.load.value 14243 45446 45278 42606 42690

size.loadedClasses.value 24 532 522 304 307

size.loadedMethods.value 157 2188 2158 2223 2234

size.run.value 10465 26239 23850 30729 29462
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A.2. Application-only metrics

Table A.11: Application-only metrics for JOlden benchmarks–part 1
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base.bytes.value 125298336 3145704 160144 17784024 25198592

base.classes.value 9 2 4 8 6

base.instructions.value 1935371167 533615375 235376026 385173978 191438642

base.methods.value 44058916 15532248 68033 23391029 13086509

base.objects.value 7762308 131071 4009 1025342 1050624

concurrency.contendedLock.percentile N/A N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000 0.000

concurrency.lock.percentile N/A N/A N/A N/A N/A

concurrency.lockDensity.value 0.000 0.000 0.000 0.000 0.000

data.arrayDensity.value 105.947 0.000 101.217 4.441 20.532

data.charArrayDensity.value 0.000 0.000 0.000 0.000 0.000

data.floatDensity.value 245.580 0.000 11.913 5.997 0.000

data.numArrayDensity.value 97.577 0.000 3.399 0.000 0.000

data.refArrayDensity.value 4.383 0.000 92.635 3.997 20.527

memory.averageObjectSize.value 16.14189 24.0 39.94612 17.34448 23.98441

memory.byteAllocationDensity.value 64.741 5.895 0.680 46.171 131.628

memory.objectAllocationDensity.value 4.011 0.246 0.017 2.662 5.488

memory.objectSize.bin(8) 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 99.2% 0.0% 0.2% 83.3% 0.2%

memory.objectSize.bin(24) 0.0% 100.0% 0.0% 16.6% 99.8%

memory.objectSize.bin(32) 0.8% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(40) 0.0% 0.0% 99.8% 0.0% 0.0%

memory.objectSize.bin(48-72) 0.1% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(80-136) 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) 0.0% 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 111.206 120.870 115.322 249.684 76.597

pointer.nonrefFieldAccessDensity.value 5.774 47.502 13.697 79.416 15.119

pointer.refFieldAccessDensity.value 105.432 73.367 101.625 170.268 61.478
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A.2. Application-only metrics

Table A.11: Application-only metrics for JOlden benchmarks–part 1 (continued)
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polymorphism.callSites.value 129 36 63 74 60

polymorphism.calls.value 36136608 6150231 852049 22003629 9414983

polymorphism.invokeDensity.value 18.672 11.526 3.620 57.126 49.180

polymorphism.receiverArity.bin(1) 96.9% 100.0% 100.0% 100.0% 100.0%

polymorphism.receiverArity.bin(2) 3.1% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArity.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(1) 86.7% 100.0% 100.0% 100.0% 100.0%

polymorphism.receiverArityCalls.bin(2) 13.3% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverCacheMissRate.value 3.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverPolyDensity.value 0.03101 0.0 0.0 0.0 0.0

polymorphism.receiverPolyDensityCalls.value 0.1326 0.0 0.0 0.0 0.0

polymorphism.targetArity.bin(1) 96.9% 100.0% 100.0% 100.0% 100.0%

polymorphism.targetArity.bin(2) 3.1% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArity.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(1) 86.7% 100.0% 100.0% 100.0% 100.0%

polymorphism.targetArityCalls.bin(2) 13.3% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 3.0% 0.0% 0.0% 0.0% 0.0%

polymorphism.targetPolyDensity.value 0.03101 0.0 0.0 0.0 0.0

polymorphism.targetPolyDensityCalls.value 0.1326 0.0 0.0 0.0 0.0

size.codeCoverage.value 80.5% 85.4% 79.0% 91.5% 82.4%

size.deadCode.value 392 81 150 84 127

size.hot.value 160 137 42 65 175

size.hot.percentile 9.9% 29.0% 7.5% 7.2% 29.5%

size.hotClasses.value 2 1 1 3 4

size.hotClasses.percentile 22.2% 50.0% 25.0% 37.5% 66.7%

size.hotMethods.value 7 4 1 4 10

size.hotMethods.percentile 13.0% 33.3% 5.6% 15.4% 32.3%

size.load.value 2012 554 713 991 720

size.loadedClasses.value 9 2 4 8 6

size.loadedMethods.value 73 15 22 29 36

size.run.value 1620 473 563 907 593
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A.2. Application-only metrics

Table A.12: Application-only metrics for JOlden benchmarks–part 2
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base.bytes.value 14493376 656104 786384 28017056

base.classes.value 10 6 2 6

base.instructions.value 168779823 1236657898 50508412 466327427

base.methods.value 12196762 16939154 1303323 54436748

base.objects.value 452921 22403 16383 1161916

concurrency.contendedLock.percentile N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile N/A N/A N/A N/A

concurrency.lockDensity.value 0.000 0.000 0.000 0.000

data.arrayDensity.value 0.000 97.433 0.000 28.303

data.charArrayDensity.value 0.000 0.000 0.000 0.000

data.floatDensity.value 0.000 461.224 499.775 226.489

data.numArrayDensity.value 0.000 96.487 0.000 0.000

data.refArrayDensity.value 0.000 0.162 0.000 27.724

memory.averageObjectSize.value 31.99979 29.28643 48.0 24.11281

memory.byteAllocationDensity.value 85.871 0.531 15.569 60.080

memory.objectAllocationDensity.value 2.684 0.018 0.324 2.492

memory.objectSize.bin(8) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 0.0% 0.0% 0.0% 4.2%

memory.objectSize.bin(24) 0.0% 50.0% 0.0% 93.0%

memory.objectSize.bin(32) 100.0% 44.6% 0.0% 0.0%

memory.objectSize.bin(40) 0.0% 0.0% 0.0% 2.8%

memory.objectSize.bin(48-72) 0.0% 5.4% 100.0% 0.0%

memory.objectSize.bin(80-136) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 103.041 32.883 221.376 120.687

pointer.nonrefFieldAccessDensity.value 21.738 31.618 191.774 55.776

pointer.refFieldAccessDensity.value 81.303 1.264 29.602 64.911
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A.2. Application-only metrics

Table A.12: Application-only metrics for JOlden benchmarks–part 2 (continued)
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polymorphism.callSites.value 49 34 56 175

polymorphism.calls.value 7745539 631062 1254194 51613567

polymorphism.invokeDensity.value 45.891 0.510 24.831 110.681

polymorphism.receiverArity.bin(1) 69.4% 100.0% 100.0% 100.0%

polymorphism.receiverArity.bin(2) 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArity.bin(3+) 30.6% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(1) 36.9% 100.0% 100.0% 100.0%

polymorphism.receiverArityCalls.bin(2) 0.0% 0.0% 0.0% 0.0%

polymorphism.receiverArityCalls.bin(3+) 63.1% 0.0% 0.0% 0.0%

polymorphism.receiverCacheMissRate.value 41.1% 0.0% 0.0% 0.0%

polymorphism.receiverPolyDensity.value 0.30612 0.0 0.0 0.0

polymorphism.receiverPolyDensityCalls.value 0.63073 0.0 0.0 0.0

polymorphism.targetArity.bin(1) 77.6% 100.0% 100.0% 100.0%

polymorphism.targetArity.bin(2) 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArity.bin(3+) 22.4% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(1) 42.8% 100.0% 100.0% 100.0%

polymorphism.targetArityCalls.bin(2) 0.0% 0.0% 0.0% 0.0%

polymorphism.targetArityCalls.bin(3+) 57.2% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 37.5% 0.0% 0.0% 0.0%

polymorphism.targetPolyDensity.value 0.22449 0.0 0.0 0.0

polymorphism.targetPolyDensityCalls.value 0.57225 0.0 0.0 0.0

size.codeCoverage.value 90.9% 95.1% 90.8% 59.6%

size.deadCode.value 78 95 87 720

size.hot.value 393 402 54 351

size.hot.percentile 50.6% 21.9% 6.3% 33.0%

size.hotClasses.value 5 1 1 2

size.hotClasses.percentile 50.0% 16.7% 50.0% 33.3%

size.hotMethods.value 16 6 2 15

size.hotMethods.percentile 38.1% 20.7% 15.4% 34.1%

size.load.value 855 1928 946 1783

size.loadedClasses.value 10 6 2 6

size.loadedMethods.value 50 32 16 73

size.run.value 777 1833 859 1063
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A.2. Application-only metrics

Table A.13: Application-only metrics for SPECjvm98 benchmarks–part 1

Metric D
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base.bytes.value 250432 63369728 4836304 138894184

base.classes.value 14 175 66 158

base.instructions.value 1116021821 912643681 253793323 1555320922

base.methods.value 1560372 55325842 7380830 91077976

base.objects.value 15646 2116931 154799 3883094

concurrency.contendedLock.percentile N/A N/A N/A N/A

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile 50.0% 20.0% 100.0% 50.0%

concurrency.lockDensity.value 0.017 0.670 1.142 0.009

data.arrayDensity.value 86.161 15.471 22.538 58.064

data.charArrayDensity.value 0.000 3.488 1.275 0.000

data.floatDensity.value 0.000 0.000 0.000 13.998

data.numArrayDensity.value 2.486 0.359 11.476 0.833

data.refArrayDensity.value 83.675 3.543 2.042 53.067

memory.averageObjectSize.value 16.00614 29.93472 31.24248 35.76895

memory.byteAllocationDensity.value 0.224 69.435 19.056 89.303

memory.objectAllocationDensity.value 0.014 2.320 0.610 2.497

memory.objectSize.bin(8) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(16) 99.9% 14.8% 8.4% 0.1%

memory.objectSize.bin(24) 0.0% 22.7% 1.6% 18.3%

memory.objectSize.bin(32) 0.0% 45.1% 81.1% 48.9%

memory.objectSize.bin(40) 0.0% 11.3% 8.9% 0.0%

memory.objectSize.bin(48-72) 0.0% 6.1% 0.0% 32.7%

memory.objectSize.bin(80-136) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(144-392) 0.0% 0.0% 0.0% 0.0%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 129.693 208.349 161.333 155.981

pointer.nonrefFieldAccessDensity.value 0.254 120.080 89.463 91.654

pointer.refFieldAccessDensity.value 129.439 88.269 71.870 64.327
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A.2. Application-only metrics

Table A.13: Application-only metrics for SPECjvm98 benchmarks–part 1 (continued)

Metric D
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polymorphism.callSites.value 128 2617 1110 737

polymorphism.calls.value 89942094 65501655 21539366 92066118

polymorphism.invokeDensity.value 80.592 71.771 84.870 59.194

polymorphism.receiverArity.bin(1) 100.0% 78.4% 98.9% 98.4%

polymorphism.receiverArity.bin(2) 0.0% 9.7% 0.5% 0.8%

polymorphism.receiverArity.bin(3+) 0.0% 12.0% 0.5% 0.8%

polymorphism.receiverArityCalls.bin(1) 100.0% 72.6% 90.0% 99.2%

polymorphism.receiverArityCalls.bin(2) 0.0% 15.1% 9.9% 0.1%

polymorphism.receiverArityCalls.bin(3+) 0.0% 12.3% 0.2% 0.8%

polymorphism.receiverCacheMissRate.value 0.0% 7.2% 3.4% 0.4%

polymorphism.receiverPolyDensity.value 0.0 0.21628 0.01081 0.01628

polymorphism.receiverPolyDensityCalls.value 0.0 0.27395 0.10028 0.00834

polymorphism.targetArity.bin(1) 100.0% 89.7% 99.0% 98.9%

polymorphism.targetArity.bin(2) 0.0% 3.8% 0.4% 0.4%

polymorphism.targetArity.bin(3+) 0.0% 6.5% 0.5% 0.7%

polymorphism.targetArityCalls.bin(1) 100.0% 92.0% 90.0% 99.2%

polymorphism.targetArityCalls.bin(2) 0.0% 1.9% 9.9% 0.0%

polymorphism.targetArityCalls.bin(3+) 0.0% 6.1% 0.2% 0.8%

polymorphism.targetCacheMissRate.value 0.0% 3.1% 3.4% 0.4%

polymorphism.targetPolyDensity.value 0.0 0.10279 0.00991 0.01085

polymorphism.targetPolyDensityCalls.value 0.0 0.08007 0.10026 0.00818

size.codeCoverage.value 70.6% 58.8% 79.9% 52.0%

size.deadCode.value 1890 18397 4703 10736

size.hot.value 67 2759 802 476

size.hot.percentile 1.5% 10.5% 4.3% 4.1%

size.hotClasses.value 1 20 5 6

size.hotClasses.percentile 12.5% 13.8% 9.6% 4.3%

size.hotMethods.value 2 124 17 19

size.hotMethods.percentile 3.8% 15.9% 5.8% 4.3%

size.load.value 6436 44664 23424 22370

size.loadedClasses.value 14 175 66 158

size.loadedMethods.value 162 1259 440 781

size.run.value 4546 26267 18721 11634
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A.2. Application-only metrics

Table A.14: Application-only metrics for SPECjvm98 benchmarks–part 2

Metric C
O

M
P

R
E

S
S

M
P

E
G

A
U

D
IO

R
A

Y
T

R
A

C
E

M
T

R
T

base.bytes.value 9056 17736 122551072 125843104

base.classes.value 22 62 35 35

base.instructions.value 12472768728 11488941053 2097923733 2121758239

base.methods.value 225926502 108336917 276304326 279242302

base.objects.value 312 992 5039690 5189653

concurrency.contendedLock.percentile N/A N/A N/A 100.0%

concurrency.contendedLockDensity.value 0.000 0.000 0.000 0.000

concurrency.lock.percentile 100.0% 100.0% 50.0% 50.0%

concurrency.lockDensity.value 0.000 0.000 0.000 0.000

data.arrayDensity.value 52.150 142.445 38.974 39.129

data.charArrayDensity.value 0.000 0.000 0.000 0.000

data.floatDensity.value 0.000 287.936 316.809 315.536

data.numArrayDensity.value 52.150 110.699 3.694 3.665

data.refArrayDensity.value 0.000 31.254 34.690 34.867

memory.averageObjectSize.value 29.02564 17.87903 24.31718 24.24885

memory.byteAllocationDensity.value 0.001 0.002 58.415 59.311

memory.objectAllocationDensity.value 0.000 0.000 2.402 2.446

memory.objectSize.bin(8) 0.0% 0.4% 0.0% 0.0%

memory.objectSize.bin(16) 42.0% 94.5% 1.0% 1.9%

memory.objectSize.bin(24) 41.7% 1.0% 94.2% 93.3%

memory.objectSize.bin(32) 0.0% 0.6% 4.8% 4.8%

memory.objectSize.bin(40) 0.3% 0.2% 0.0% 0.0%

memory.objectSize.bin(48-72) 8.0% 2.5% 0.0% 0.1%

memory.objectSize.bin(80-136) 8.0% 0.7% 0.0% 0.0%

memory.objectSize.bin(144-392) 0.0% 0.1% 0.0% 0.0%

memory.objectSize.bin(400+) 0.0% 0.0% 0.0% 0.0%

pointer.fieldAccessDensity.value 189.575 95.693 158.432 158.522

pointer.nonrefFieldAccessDensity.value 95.152 38.900 97.729 97.611

pointer.refFieldAccessDensity.value 94.422 56.793 60.703 60.910

132



A.2. Application-only metrics

Table A.14: Application-only metrics for SPECjvm98 benchmarks–part 2 (continued)

Metric C
O

M
P

R
E

S
S

M
P

E
G

A
U

D
IO

R
A

Y
T

R
A

C
E

M
T

R
T

polymorphism.callSites.value 54 326 936 939

polymorphism.calls.value 206202050 79209661 266335521 269129344

polymorphism.invokeDensity.value 16.532 6.894 126.952 126.843

polymorphism.receiverArity.bin(1) 98.1% 94.8% 94.2% 94.1%

polymorphism.receiverArity.bin(2) 1.9% 0.3% 3.5% 3.6%

polymorphism.receiverArity.bin(3+) 0.0% 4.9% 2.2% 2.2%

polymorphism.receiverArityCalls.bin(1) 100.0% 91.7% 91.0% 90.9%

polymorphism.receiverArityCalls.bin(2) 0.0% 7.9% 7.5% 7.4%

polymorphism.receiverArityCalls.bin(3+) 0.0% 0.4% 1.5% 1.6%

polymorphism.receiverCacheMissRate.value 0.0% 0.1% 0.2% 0.3%

polymorphism.receiverPolyDensity.value 0.01852 0.05215 0.05769 0.05857

polymorphism.receiverPolyDensityCalls.value 0.0 0.08272 0.09005 0.09096

polymorphism.targetArity.bin(1) 98.1% 96.3% 99.6% 99.5%

polymorphism.targetArity.bin(2) 1.9% 3.4% 0.4% 0.5%

polymorphism.targetArity.bin(3+) 0.0% 0.3% 0.0% 0.0%

polymorphism.targetArityCalls.bin(1) 100.0% 91.8% 98.9% 98.9%

polymorphism.targetArityCalls.bin(2) 0.0% 8.1% 1.1% 1.1%

polymorphism.targetArityCalls.bin(3+) 0.0% 0.0% 0.0% 0.0%

polymorphism.targetCacheMissRate.value 0.0% 0.0% 0.0% 0.0%

polymorphism.targetPolyDensity.value 0.01852 0.03681 0.00427 0.00532

polymorphism.targetPolyDensityCalls.value 0.0 0.08161 0.01064 0.01053

size.codeCoverage.value 77.6% 90.9% 83.7% 84.5%

size.deadCode.value 1471 3509 1817 1733

size.hot.value 396 3058 731 754

size.hot.percentile 7.8% 8.7% 7.8% 8.0%

size.hotClasses.value 4 8 7 7

size.hotClasses.percentile 23.5% 16.7% 23.3% 23.3%

size.hotMethods.value 7 17 16 17

size.hotMethods.percentile 12.3% 7.6% 8.8% 9.3%

size.load.value 6555 38484 11181 11193

size.loadedClasses.value 22 62 35 35

size.loadedMethods.value 162 439 294 294

size.run.value 5084 34975 9364 9460
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Appendix B

On-line Metrics Resources

B.1 Dynamic Metrics

An online database of dynamic metrics is available for public consultation at:

http://www.sable.mcgill.ca/metrics/

B.2 *J

*J is made publicly available, at no cost, under the terms of theGNU Lesser General Public

License (LGPL). The source code of*J , and all relevant documentation can be obtained

from McGill University’s Sable Research Groupat:

http://www.sable.mcgill.ca/starj/
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