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Abstra
t
The Java programming language requires array referen
e range 
he
ks at run timeto guarantee a program's safe exe
ution. If the array index ex
eeds the range, therun-time environment must throw an IndexOutOfBoundsEx
eption at the pre
iseprogram point where the array referen
e o

urs. Compilers generate 
onditionalbran
h instru
tions for implementing array bounds 
he
ks. A bran
h instru
tionhas great performan
e penalties in modern pipelined ar
hite
tures. Also, it makesmany other optimizations diÆ
ult. For array-intensive appli
ations, array bounds
he
ks may 
ause a heavy run-time overhead, and thus it is bene�
ial to eliminateall 
he
ks whi
h a stati
 analysis 
an prove to be unneeded. Array bounds 
he
ksare required by some other languages su
h as Ada and Fortran, and some bounds
he
k elimination algorithms have been developed for these kinds of languages. How-ever, these algorithms are not dire
tly appli
able for Java appli
ations be
ause of thepre
ise-ex
eption requirement of the language.We present a new approa
h to eliminate array bounds 
he
ks in Java by usingstati
 analyses. Our approa
h is based upon a 
ow-sensitive intrapro
edural analysis
alled variable 
onstraint analysis (VCA). VCA 
olle
ts 
onstraints between lo
alsrelated to array referen
es. The array bounds 
he
k problem is formulated as solvinga system of di�eren
e 
onstraints. The analysis builds a small 
onstraint graph forea
h important point in a method, and then 
omputes the shortest-path weight ofthe graph. The shortest-path weights from upper bound to array index and from theindex to lower bound indi
ates the safety of 
he
ks. Using VCA as the base analysis,we also show how two further analyses 
an improve the results of VCA. Array �eldanalysis is applied on ea
h 
lass and provides information about some arrays stored in�elds, while re
tangular array analysis is an interpro
edural analysis to approximatethe shape of arrays, and is useful for �nding re
tangular (non-ragged) arrays.
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We have implemented all three analyses using the Soot byte
ode optimization/anno-tation framework and we transmit the results of the analysis to virtual ma
hines using
lass �le attributes. We have modi�ed the Ka�e JIT, and IBM's High Performan
eCompiler for Java (HPCJ) 1 to make use of these attributes, and we demonstratesigni�
ant speed-ups.

1The experiment on HPCJ was 
ondu
ted by Clark Verbrugge.iii



R�esum�e
Le langage Java v�eri�e les valeurs des indi
es de tableaux durant l'ex�e
ution pourgarantir une ex�e
ution sûre. Si l'indi
e est sup�erieur �a la taille du tableau, l'environne-ment d'ex�e
ution produit une ex
eption IndexOutOfBoundsEx
eption �a l'endroitpr�e
is du programme o�u l'indi
e de tableau fautif apparâit. Les 
ompilateurs g�en�erentdes instru
tions de bran
hements 
onditionnels pour impl�ementer 
ette v�eri�
ation.Une instru
tion de bran
hement est tr�es p�enalisante dans les ar
hite
tures en pipelinemodernes, et rend diÆ
iles beau
oup d'autres optimisations. Pour les appli
ations quiutilisent beau
oup de tableaux, la v�eri�
ation des limites de tableaux peut 
auser uneimportante augmentation du temps d'ex�e
ution, et il serait don
 b�en�e�que d'�eliminertoutes les v�eri�
ations qu'une analyse statique r�ev�elerait inutiles. Les v�eri�
ations delimites de tableaux sont n�e
essaires pour 
ertains langages 
omme Ada et Fortran, etdes algorithmes d'�elimination ont �et�e d�evelopp�es pour 
eux-
i. Or 
es algorithmes nesont pas dire
tement appli
ables �a Java de par la pr�esen
e du m�e
anisme d'ex
eptionsdu langage.Nous pr�esentons une nouvelle appro
he pour �eliminer les v�eri�
ations de limitesde tableaux en Java par des analyses statiques. Notre appro
he est bas�ee sur uneanalyse intrapro
�edurale et "
ow-sensitive" appell�ee analyse �a 
ontraintes variables(VCA). La VCA 
olle
te les 
ontraintes entre variables lo
ales li�ees aux indi
es detableaux. Le probl�eme des v�eri�
ations de limites de tableaux est formul�e 
omme unsyst�eme de di��eren
e de potentiels. L'analyse 
onstruit un petit graphe de 
ontraintespour 
haque point important de la m�ethode et 
al
ule la valeur du plus 
ourt 
hemindu graphe. Les valeurs des plus 
ourts 
hemins de la limite sup�erieure �a la valeur del'indi
e et de l'indi
e �a la limite inf�erieure indiquent l'utilit�e de la v�eri�
ation. Enutilisant VCA 
omme analyse de base, nous montrons aussi 
omment deux analy-ses plus pouss�ees peuvent am�eliorer les r�esultats. L'analyse des 
hamps tableaux estappliqu�ee sur 
haque 
lasse et fournit des informations sur 
ertains tableaux utilis�esiv



dans les 
hamps, tandis que l'analyse de tableaux re
tangulaires est une analyse inter-pro
�edurale d'approximation de la forme des tableaux multi-dimensionnels, qui estutile pour trouver les tableaux re
tangulaires.Ces trois analyses ont �et�e impl�ement�ees ave
 la stru
ture d'optimisation et d'anno-tation Soot grâ
e �a laquelle nous transmettons les r�esultats de nos analyses aux ma-
hines virtuelles Java par le biais des attributs des �
hiers 
lasses. Nous avons modi��ele JIT de Ka�e, ainsi que le High Performan
e Compiler for Java (HPCJ) d'IBM 2pour utiliser 
es attributs et nous montrons les am�eliorations signi�
atives qui enr�esultent.

2L'exp�erien
e sur HPCJ a �et�e r�ealis�ee par Clark Verbrugge.v
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Chapter 1Introdu
tion
The Java programming language is be
oming in
reasingly popular for the implemen-tation of a wide variety of appli
ation programs, in
luding loop-intensive programsthat use arrays. Java o�ers many desirable features su
h as obje
t-oriented softwaredesign, 
ross-platform portability, safe exe
ution, and many support 
lass libraries.By programming in Java, a programmer 
an in
rease produ
tivity while writing safe
ode. Also the program 
an be written on
e and run everywhere. These attra
tivefeatures, however, 
ause performan
e penalties. The obje
t-oriented feature relies onvirtual method 
alls; the 
ross-platform portability is a

omplished by interpretingand/or just-in-time 
ompiling byte
ode; and the safety is se
ured by various 
om-piler and run-time 
he
ks, e.g, 
lass �le veri�
ation, array bounds 
he
ks, null pointer
he
ks, and type 
he
ks. Be
ause of these expensive operations, a Java programusually is mu
h slower than its 
ounterpart in C/C++.A Java program is 
ompiled to a 
lass �le in byte
ode format. The byte
ode 
lass�le is exe
uted by a virtual ma
hine (VM). The Java programming language has itsown spe
i�
ation [10℄, whi
h de�nes the syntax and semanti
s of the language. TheJava virtual ma
hine spe
i�
ation [17℄ de�nes the byte
ode format and the run-timesupport environment. The byte
ode 
lass �le 
an be exe
uted in several ways. Inan internet environment, the 
lass �le is loaded and exe
uted by a virtual ma
hine.The VM 
an interpret the byte
ode, or use a Just-In-Time 
ompiler to translatethe byte
ode to native 
ode and exe
ute it by hardware dire
tly. In this 
ase, theinterpretation and/or 
ompilation time 
ontributes to the total exe
ution time of theprogram. In other �elds, su
h as s
ienti�
 
omputations and real-time appli
ations,1



all the 
lass �les of the appli
ation 
an be 
ompiled to native 
ode by an Ahead-Of-Time (AOT) 
ompiler before exe
ution. In this 
ase, the 
ompilation time 
anusually be ignored.To speed up the exe
ution of Java programs, a general approa
h is to build asophisti
ated virtual ma
hine, whi
h in
ludes a 
lass �le loader and veri�er, an in-terpreter and/or JIT 
ompiler(s), and a garbage 
olle
tor. A naive JIT 
ompiler [15℄translates byte
ode to native 
ode without performing many optimizations ( it mayperform some simple optimizations within basi
 blo
ks ). Sophisti
ated JIT 
ompilers[5, 30, 1, 11℄ apply traditional and adaptive optimizations on the pro
ess of transla-tion. It has been proved that Just-In-Time 
ompilation makes the exe
ution of Javaprograms mu
h faster than interpretation. Be
ause the 
ompilation time a

ounts apart of the program exe
ution time, a JIT 
ompiler 
an not a�ord many advan
edoptimizations whi
h are usually expensive.Another approa
h to improve the performan
e of Java programs is to optimizethe byte
ode and perform relatively expensive analyses stati
ally. The optimizations
an target either spa
e redu
tion, whi
h removes unused �elds and methods from
lass �les, or performan
e improvement. Many traditional analyses 
an be appliedto byte
ode and produ
e good-quality byte
ode 
lass �les. Su
h optimizations in-
lude 
ommon subexpression elimination, dead
ode removal, stati
 inlining, and soon. Another group of analysis results 
annot be re
e
ted by transforming byte
odedire
tly, for example, array bounds 
he
k elimination, type 
he
k removal, and sta
kobje
t allo
ation. But these analysis results 
an be used by a virtual ma
hine or anAhead-Of-Time 
ompiler ( the optimizations 
an be built in AOT 
ompilers ). Theanalyses are not limited in 
ompilation from byte
ode to native 
ode, they 
an alsoimprove memory management, task organization, and so on. This approa
h movesthe performan
e burden from running time to stati
 
ompilation time, and allows usto optimize the 
lass �le on
e for reuse by many VMs at any time.The fo
us of this thesis is on redu
ing the run-time overhead 
aused by arraybounds 
he
k instru
tions ( and partially null pointer 
he
k instru
tions ). We areusing stati
 analyses to analyze Java appli
ations at the byte
ode level. The resultsare en
oded in the 
lass �le as attributes. A JIT or AOT 
ompiler understands theattributes and removes the bounds 
he
k instru
tions whi
h are marked as unne
es-sary. The algorithm 
an also be implemented in an AOT 
ompiler. Although thealgorithm was developed for Java, it also 
an be implemented in 
ompilers for otherimperative languages whi
h require array bounds 
he
ks.2



The rest of this 
hapter is organized as follows. Se
tion 1.1 introdu
es the prob-lem of array bounds 
he
k elimination in Java. Se
tion 1.2 des
ribes the frameworkon whi
h our analyses are implemented. Thesis 
ontribution and organization arepresented in Se
tions 1.3 and 1.4.1.1 Array bounds 
he
ks in Java: the problemIn languages like C, a major sour
e of potential errors is illegal memory a

esses. Forexample, writing to the region outside of an array 
an 
ause unanti
ipated 
onse-quen
es. Java provides se
ure and safe exe
ution of programs. As part of the safetysystem, array bounds 
he
ks are used to dete
t memory violations due to illegal arraya

esses. The Java language spe
i�
ation requires that an ex
eption has to be raisedfor any array a

ess in whi
h the array index expression evaluates to be out of bounds.Figure 1.1 gives several examples that raise IndexOutOfBoundsEx
eptions. In ad-dition to the IndexOutOfBoundsEx
eption ex
eption, an array referen
e will throwa NullPointerEx
eption if the array obje
t is null, and the virtual ma
hine willnot 
he
k the array bounds. The Java language spe
i�
ation also requires that theex
eption has to be thrown at the pre
ise point where the ex
eption happens be
auseuser 
ode 
an 
at
h su
h ex
eptions or dump sta
k tra
es for debugging purposes.Exe
ution of an array referen
e byte
ode ( e.g, iaload, istore ) needs a null pointer
he
k �rst, and then 
he
ks of both lower and upper bounds. The lower bound ofan array referen
e is �xed to the 
onstant 0, and the upper bound is 1 less than thearray length stored in the array obje
t. Both lower and upper bounds 
he
ks mustbe satis�ed. The ex
eptions for lower and upper bounds 
he
ks are the same.int a = new int[10℄;(1) a[-1℄ = ...; // lower bound out of range(2) a[10℄ = ...; // upper bound out of range(3) for (i=0; i<=a.length; i++)a[i℄ ... ; // upper bound out of rangeFigure 1.1: IndexOutOfBoundsEx
eption examples3



A dire
t implementation of 
he
ks for one array referen
e adds three 
onditionalbran
h instru
tions: 1) if the address of the array obje
t equals zero, bran
h to aroutine raising a null pointer ex
eption, 2) if the index is less than zero, raise anarray bounds out of range ex
eption, and 3) after reading in the array length, if theindex is greater than the array length minus 1, raise an array bounds out of rangeex
eption. Some well-known te
hniques 
an redu
e three bran
h instru
tions to onein most of modern ar
hite
tures ( e.g, x86, PPC ). The null pointer 
he
k does notneed an expli
it 
he
k instru
tion when the hardware is 
apable of 
at
hing memorya

esses to the �rst page ( page address starting from zero ). Usually the arraylength �eld is lo
ated near the obje
t head. Thus, reading in the �eld from a nullobje
t would 
ause a hardware trap and the trap handler would raise a null pointerex
eption. Lower and upper bounds 
he
ks 
an be implemented by one unsigned
omparison instru
tion be
ause any negative integer is greater than any positive onewhen it is treated as an unsigned integer.Although we 
an use the above te
hniques to redu
e the 
ost of 
he
ks, at leastone 
onditional bran
h instru
tion is still needed for ea
h array a

ess. A naive JIT orAOT 
ompiler inserts 
he
ks for ea
h array a

ess, whi
h is 
learly ineÆ
ient. These
he
ks 
ause a program to exe
ute slower due to both dire
t and indire
t e�e
ts of thebounds 
he
k. The dire
t e�e
t is that the bounds 
he
k is usually implemented via
omparison and bran
h instru
tions, and thus ea
h array a

ess has this additionaloverhead. The indire
t e�e
t is that these 
he
ks also limit further optimizationsbe
ause the Java virtual ma
hine spe
i�
ation requires pre
ise ex
eption handling.This limits 
ode movement and also limits many e�e
tive loop transformations whi
hare 
ommonly used in high-performan
e C and Fortran 
ompilers [21℄. Furthermore,this same pre
ise ex
eption requirement limits program transformations that optimizethe run-time 
he
ks. For example, 
he
ks 
annot be moved to earlier program pointsif this 
hanges the ex
eption behavior of the program.The problem of eliminating array bounds 
he
ks has been studied for other lan-guages and stati
 analyses have been shown to be quite su

essful[12, 13, 16℄. How-ever, array bounds 
he
k analysis in Java presents several spe
ial 
hallenges. Firstly,the length of an array is determined dynami
ally, when the array is allo
ated, and thusthe length ( or upper bound ) of the array may not be a known 
onstant. Se
ondly,arrays in Java are obje
ts, and these obje
ts may be passed as referen
es throughmethod 
alls, or may be stored as a �eld of some obje
ts. Thus, there may be anon-obvious 
orresponden
e between the allo
ation site of an array and the a

esses4



to the array. Thirdly, multidimensional arrays in Java are not ne
essarily re
tangu-lar, and so reasoning about the lengths of higher dimensions is not simple. Finally,te
hniques that require transforming the program or inserting 
he
ks at other earlierprogram points are not as appli
able in Java as in other languages with less stri
tsemanti
s about ex
eptions.Figure 1.2(a) shows a pie
e of 
ode whi
h needs two 
he
ks for two array referen
es.Some well-known algorithms[12, 13, 16℄ 
an merge two 
he
ks to one as in 1.2(b).Although the 
hange redu
es two 
he
ks to one, the new 
ode does not have sameex
eption behavior as original one. Consider that the length of the array is 4. In (a)the ex
eption is raised before the se
ond array a

ess a[5℄, and in (b) the ex
eptionhappens before the �rst referen
e. The problem is that a user may write a try-
at
h
lause to 
at
h the ex
eption and do some re
over work. The 
at
h statement wouldget di�erent value of i for the two di�erent 
ases. The se
ond treatment violates thepre
ise ex
eption requirement of the Java language.int a = new int[k℄; int a = new int[k℄;; if a.length <= i ; if a.length <= i+1; raise ex
eption ; raise ex
eptiona[i℄... ; a[i℄... ;; if a.length <= i+1 a[i+1℄... ;; raise ex
eptiona[i+1℄... ;(a) original 
he
ks (b) merged 
he
kFigure 1.2: A pre
ise-ex
eption exampleMultidimensional arrays are the most 
ommon data stru
tures in s
ienti�
 
om-putation. Ve
tors and matri
es in linear algebra are represented as one- and two-dimensional arrays ( we have used a few in our ben
hmarks ). To make Java as
ompetitive as C and Fortran, operations on multidimensional arrays must be per-formed eÆ
iently. In C or other languages, a two-dimensional array is allo
ated in a
ontiguous memory blo
k as in Figure 1.3(a). However, Java de�nes a multidimen-sional array as an array of arrays. See Figure 1.3(b) whi
h is a legal array shape in5



Java. Sub-arrays are independent and 
an have di�erent lengths. To deal with this,a referen
e to the se
ond dimension in sour
e 
ode is implemented in byte
ode bytwo array referen
es, as in Figure 1.4. The byte
ode instru
tion set provides onlyone-dimensional array a

ess and a

esses to multidimensional arrays are performedone dimension at a time. This de�nition makes the multidimensional array be a veryloose stru
ture, and the sub-arrays may not all be the same length, or sub-arrays maybe referen
es to the same array obje
t (aliased), or they 
ould even be null.
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(a) A two-dimensional array in C
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1
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(b) A two-dimensional array in JavaFigure 1.3: Compare multidimensional array shapes1.1.1 Eliminating unne
essary array bounds 
he
ks in JavaThis thesis des
ribes a 
ow-sensitive, intrapro
edural algorithm 
alled variable 
on-straint analysis ( VCA for short ) that 
an prove that many array referen
es are safe,without transforming the original program. The algorithm 
olle
ts di�eren
es 
on-straints, and builds a 
onstraint graph for ea
h array referen
e. Then it uses thegraph to infer the relationship between the index of the array referen
e and the ar-ray's length. The algorithm was designed 
arefully to take advantage of the fa
t that6



int[℄[℄ I = new int[10℄[10℄;I[2℄[3℄ = 10;a) Java sour
e 
odebipush 10bipush 10multianewarray <[[I> 2 (2)astore_1aload_1i
onst_2aaloadi
onst_3bipush 10iastoreb) Byte
ode$r1 = multinewarray int[10℄[10℄;$r2 = $r1[2℄;$r2[3℄ = 10;
) More readable JIMPLE 
odeFigure 1.4: A referen
e to two-dimensional array in Javavariables used in index expressions often have very short lifetimes, and thus build-ing graphs for only live variables of interest leads to very small graphs. Further, wetuned the worklist algorithm to redu
e the number of iterations. As a result, thea
tual running time is linear in the size of the method being analyzed.We have improved the base VCA algorithm using two additional analyses: array�eld analysis is applied to ea
h 
lass and provides information about some arraysstored in �elds, while re
tangular array analysis is an interpro
edural analysis basedon 
all graphs to approximate the shapes of arrays.Java is a 
lass-based obje
t-oriented language. Ea
h 
lass 
an de
lare �elds, andea
h �eld has a modi�er whi
h de�nes the a

ess privilege to it. Array �eld analysis7



takes advantage of the fa
t that updates to final or private �elds are limited. Afinal type �eld 
an only be assigned on
e in its de
laring 
lass. A private �eld 
anonly be assigned in the de
laring 
lass. By analyzing assignments to su
h �elds, we
an often identify �elds whi
h always hold some 
onstant length array obje
ts. Su
hinformation 
an pass the bound of methods and be utilized by all methods of the
lass.For programs using multidimensional arrays, VCA does not know any informationabout sub-arrays. Even if the programmer knows all sub-arrays have the same length,a 
onservative approa
h must assume that sub-arrays may have di�erent lengths.Re
tangular array analysis aims to determine if an array is guaranteed to be re
tan-gular, i.e. all sub-arrays have the same length. Re
tangular array information 
an beused to make VCA more powerful by allowing VCA to in
lude sub-array a

esses.All three analyses have been implemented using the Soot byte
ode optimizationframework[34, 33℄, but 
ould be easily implemented in other 
ompilers with goodintermediate representations. The Soot framework 
onverts byte
ode from 
lass �lesinto a typed 3-address representation 
alled JIMPLE, and the analysis is implementedon this representation. In order to 
onvey the results of the analysis to virtual ma-
hines we use the tagging/attributing 
apabilities of Soot to tag ea
h array a

essinstru
tion to indi
ate if the lower bound and/or upper bound 
he
ks 
an be elimi-nated. Moreover, a simple intrapro
edural null pointer analysis generates null pointer
he
k attributes about array referen
es. The Soot framework then produ
es byte
odeoutput, with the tag information stored in the attributes se
tion of the 
lass �les. Vir-tual ma
hines or ahead-of-time byte
ode-to-native
ode 
ompilers 
an then use theseattributes to avoid emitting bounds 
he
ks based on the attributes. We have instru-mented both the Ka�e JIT and IBM HPCJ ahead-of-time 
ompiler to read theseattributes.We have experimented with 10 ben
hmark programs, in
luding 5 spe
JVM ben
h-marks, 3 kernels from the s
imark2 suite1 and 2 array-based ben
hmarks we imple-mented a

ording to standard algorithms. First, we measured the 
omplexity of ourbase VCA analysis, measuring both the maximum and average sizes of the 
onstraintgraphs, and the average number of times ea
h blo
k was analyzed. These results showthat the analysis is pra
ti
al, with small graph sizes ( maximum size 13 ) and a lownumber of iterations ( average always less than 3 ). We then measured the dynami
behavior of array bounds 
he
ks and 
ompared the syntheti
 
ase when all bounds1Available at http://math.nist.gov/s
imark2.8




he
ks are removed ( an upper bound of what 
ould be a
hieved with stati
 analysis) and the results of our analysis. Not surprisingly, we found that it was mu
h harderto eliminate upper array bounds 
he
ks than lower array bounds 
he
ks. We showedthat the base VCA algorithm 
ould eliminate from 3% to 60% of both the lower andupper bounds 
he
ks for array referen
es, while adding the array �eld analysis andre
tangular array analysis improved these results. In �ve of the ben
hmarks we 
ouldeliminate 60% or more 
he
ks and in three of those 
ases we eliminate more than99% of the 
he
ks. We also provide run-time speed-ups, and we showed signi�
antspeed-ups for both the Ka�e VM and IBM's HPCJ.1.2 Soot: ba
kgroundWe implemented algorithms on the Soot framework be
ause it provides a sta
kless,typed, 3-address intermediate representation. All analyses work on this IR. SomeSoot utility 
lasses alleviate the work of development. Furthermore, the analysisresults are passed to 
lass �les using Soot's attribute annotation fun
tionality.Soot is a Java byte
ode optimization and annotation framework[28, 34℄. Sootreads in a byte
ode 
lass �le, 
onverts it to an intermediate representation form
alled JIMPLE, whi
h is a typed 3-address 
ode. Stati
 analyses and transformationsare performed on the JIMPLE IR. After that, the JIMPLE IR is written ba
k to the
lass �le byte
ode format.In Soot, a byte
ode 
lass is represented with a SootClass obje
t. Fields andmethods are represented as SootField and SootMethod obje
ts, respe
tively. ASootMethod obje
t may have a method body, whi
h 
onsists of a 
hain of JIMPLEstatements. Analyses 
an either dire
tly optimize the JIMPLE statements by 
hang-ing instru
tions ( e.g. peephole optimizations, CSE, and stati
 inlining ), or en
oderesults in 
lass �le attributes whi
h 
an be used by a Java virtual ma
hine ( e.g.bounds 
he
ks and null pointer 
he
ks ).1.2.1 JIMPLE: a typed 3-address IRJIMPLE is a 3-address ( sta
kless ) intermediate representation of byte
ode. It sim-pli�es the representation of more than two hundred types of byte
ode instru
tionsto about seventeen types of JIMPLE statements. A JIMPLE statement is a typi
al9



3-address 
ode, whi
h is suitable for many analyses and optimizations. Readers 
anget detailed des
ription from [33℄. Here I would like to des
ribe some features usedfor the analyses presented in this thesis.Lo
als in JIMPLE 
ode are typed by a stati
 type inferen
e system[8℄. Theoperands of a statement have de
lared types. Based on these types we 
an deter-mine if a method involves arrays by examining the types of its lo
als.A stati
 analysis on JIMPLE is simpli�ed sin
e ea
h JIMPLE statement has onlyone 
omplex feature. Figure 1.5 shows an example. An assignment from a �eldreferen
e to an array referen
e is a
hieved by using a lo
al variable. The fo
us of the�rst statement is the �eld referen
e, and the se
ond statement emphasizes the arrayreferen
e. a[i℄ = o.f; $r1 = o.f;a[i℄ = $r1;a) Java 
ode b) Jimple 
odeFigure 1.5: Example of JIMPLE representationTo further improve the results of analysis, lo
al variables are split using def-use/use-def webs, whi
h is a simple alternative to SSA form. Figure 1.6 shows anexample of the original Java 
ode and the resulting JIMPLE 
ode. It should be 
learthat two assignments to variable a are split to two unrelated variables r1 and r2.a = new int[10℄; r1 = new int[10℄;a[i℄ = ... ; r1[i1℄ = ...;... ...a = o.f; r2 = o.f;a[i℄ = ... ; r2[i1℄ = ...;a) Java 
ode b) Jimple 
odeFigure 1.6: Example of DU-UD webs10



1.2.2 Intrapro
edural analysis tool 
lassesFor a method with byte
ode, the Soot framework provides various 
ontrol graphs,with or without ex
eption edges, on the unit base or basi
 blo
ks, and so on. Aset of well-implemented tool 
lasses makes data-
ow analyses ( 
ow-sensitive or 
ow-insensitive ) easy ( see the pa
kage soot.jimple.toolkits ).Here, I des
ribe a few 
lasses used by VCA:Blo
kGraph implements a 
ontrol-
ow graph ( CFG ) for a method body wherethe nodes of the graph are basi
 blo
ks.Ba
kwardFlowAnalysis provides the �xed point iteration fun
tionality requiredby all ba
kward 
ow analyses. VCA extends the Ba
kwardFlowAnalysis to
ompute live lo
als related to array referen
es.ForwardBran
hedFlowAnalysis provides fun
tionality for bran
hed forward 
owanalysis. A bran
hed 
ow analysis 
an propagate di�erent information to thesu

essors/prede
essors of a node ( e.g., a 
onditional bran
h instru
tion ).VCA uses a 
ustomized version of this 
lass, whi
h has spe
ial operations su
has ordering graph nodes and widening edge weights.1.2.3 Call graphsVirtual method 
alls are resolved at run time, whi
h means the exa
t type of a re
eivermay not be known at 
ompilation time. However, for 
losed-world appli
ations, the
lass hierar
hy 
an be stati
ally 
omputed. Class hierar
hy analysis ( CHA ) [7℄provides a set of potential re
eiver types for a virtual method 
all. Moreover, rapidtype analysis ( RTA ) [2℄ and variable type analysis ( VTA ) [31, 32℄ 
an make thetype set smaller.Based on the results of CHA, a 
onservative 
all graph 
an be built for a Javaappli
ation. Whole-program ( interpro
edural ) analyses need the 
all graph as aba
kbone. Soot has implementations of CHA, RTA, and VTA, and builds a 
onser-vative 
all graph for other analyses. Our re
tangular array analysis is based on the
all graph provided by the Soot framework.
11



1.2.4 Class �le annotationsSoot 
an also be used as a byte
ode annotation framework[24℄. Be
ause the byte
odeis a relatively high-level instru
tion set, it hides some low-level operations behind thebyte
ode instru
tions. For example, a virtual ma
hine impli
itly performs the arraybounds 
he
ks for array a

ess byte
odes, su
h as iaload, iastore, et
. However,at the byte
ode level, even if we know that an array a

ess byte
ode has an index inthe safe range, it is impossible to represent su
h information in the byte
ode itself.The attributes of a 
lass �le provide an alternative way to pass the results of a stati
analysis, whi
h 
annot be 
onveyed by the byte
ode, to the underlying systems. AJIT or ahead-of-time 
ompiler 
an then generate more eÆ
ient native 
ode when ituses the annotation information. Figure 1.7 shows the internal stru
ture of the Sootannotation framework.Based on this idea, the results of our analyses are en
oded in the attributes of a
lass �le. The modi�ed Ka�e JIT and HPCJ 
an use these attributes to optimize thenative 
ode they produ
e. The details of annotation goes beyond this thesis, but themodi�
ation of JIT 
ompiler to utilize the attributes is des
ribed in Chapter 3.1.3 Thesis ContributionsWe have designed a new algorithm to prove the safety of array referen
es in generalJava programs. In our algorithm di�eren
e 
onstraints, whi
h are program-point-spe
i�
, are used to approximate the run-time value relationships among lo
al vari-ables. A 
onstraint guarantees that, at the respe
tive program point, a variable'srun-time value is less than or equal to another variable's run-time value plus/minusa 
onstant integer. If an index expression has a 
onstraint that is bound to a valueless than the length of an array obje
t, the upper bound 
he
k 
an be removed at therun-time. Similarly, the lower bound 
he
k is redundant when the index is greaterthan or equal to the 
onstant 0.The basi
 Variable Constraint Analysis analyzes the 
ode of one method. It 
on-stru
ts a 
onstraint graph at ea
h important program point. By using some spe
ialte
hniques ( e.g. ordering CFG, widening edges, and liveness analysis ), the analysispropagates 
onstraint graphs along the 
ontrol-
ow graph of the method until rea
h-ing a �xed point. The relationships of variables 
an be inferred from the 
onstraintgraphs. VCA is also extended to take advantage of the information from our array12
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�eld analysis and re
tangular array analysis. We have implemented the algorithm inthe Soot framework. General and array-intensive ben
hmarks are analyzed to demon-strate the e�e
tiveness and eÆ
ien
y of the algorithm. The results are en
oded in the
lass �le attributes via Soot's annotation fun
tionality. We also demonstrate how tomake a JIT 
ompiler be aware of su
h attributes, and experiments on the Ka�e VMand IBM's HPCJ showed signi�
ant speed-ups.In summary, the main 
ontributions of this thesis are:� De�nition of the 
onstraint graph and operations on it. We demonstrate howthe array bounds 
he
k problem 
an be represented by a system of di�eren
e
onstraints, and how to solve the system by �nding the shortest-path weight inthe 
orresponding 
onstraint graph. We also use several te
hniques to minimizethe overhead of the analysis.� Design of the array bounds 
he
k elimination algorithm, whi
h in
ludes threeanalyses:1. Variable Constraint Analysis (VCA) is an intrapro
edural analysis whi
hbuilds and solves 
onstraint graphs in the s
ope of one method. VCA alsoserves as the basis for the two extended analyses.2. Array �eld analysis analyzes the assignments to a 
lass �eld with spe
i�
modi�ers. The analysis is performed in the s
ope of a Java 
lass.3. Re
tangular array analysis is for �nding the shape of multidimensionalarrays. It is an interpro
edural analysis based on the 
all graph of a wholeappli
ation. The analysis builds an array type graph and tra
ks down arrayshapes from paths leading to a method parameter or a lo
al variable.The results of array �eld analysis and re
tangular array analysis help the VCAimprove the analysis of both one-dimensional and multidimensional arrays.� Implementation of the algorithm in the 
ontext of Soot. The algorithm is im-plemented in pure Java language.� Experiments on real JVMs. I de�ned the format of array bounds 
he
k at-tributes and modi�ed Ka�e JIT 
ompiler to use the attributes. The annotated
lass �les were also provided to Clark Verbrugge at IBM Toronto Lab whoperformed the experiments using IBM's HPCJ ahead-of-time 
ompiler.14



1.4 Thesis OrganizationThe remainder of the thesis is stru
tured as follows. We present our algorithm inChapter 2. The base variable 
onstraint analysis is presented in Se
tion 2.1, thearray �eld analysis and re
tangular array analysis are presented in Se
tion 2.2 and 2.3,respe
tively. We also dis
uss some enhan
ements made to the VCA in Se
tion 2.4.Related null pointer analysis is des
ribed in Se
tion 2.5. Experimental results aregiven in Chapter 3, where the modi�
ation of Ka�e JIT 
ompiler is also des
ribed.The related work is dis
ussed in Chapter 4, and 
on
lusions are in Chapter 5.

15



Chapter 2Analyses
In this 
hapter we introdu
e the three analyses used in our approa
h. The VariableConstraint Analysis is presented �rst be
ause it serves the basis of the other twoanalyses. Then two extensions, array �eld analysis and re
tangular array analysis,are des
ribed after VCA. Also, some extensions we made on VCA are introdu
edlater, although they do not have obvious e�e
ts on our results. In the last se
tion,we brie
y des
ribe an intrapro
edural analysis for eliminating null pointer 
he
ks. Insome 
ases eliminating array bounds 
he
ks requires inserting null pointer 
he
ks ifthe array referen
e 
annot be shown to be non-null.Ea
h analysis is illustrated by graphs and examples. All examples are given inJava or JIMPLE form.2.1 Variable Constraint AnalysisThe obje
tive of our variable 
onstraint analysis is to determine the relationshipsbetween array index expressions and the bounds of the array. In Java, an arrayreferen
e of the form a[i℄ is in bounds if 0 � i � a:length� 1. If the array referen
eis out of bounds, an ArrayIndexOutOfBoundsEx
eption must be thrown, and thisex
eption must be thrown in the 
orre
t 
ontext.The relationships between variables 
an be represented as di�eren
e 
onstraints.A system of di�eren
e 
onstraints has a 
orresponding 
onstraint graph. Findingthe shortest-path weights in the graph gives a solution to the system. Our baseanalysis uses a variable 
onstraint graph ( VCG ) to represent di�eren
e 
onstraints16



between variables. The VCG is a weighted, dire
ted graph, in whi
h nodes representvariables, 
onstants, or other symboli
 representations; and ea
h edge has a weight torepresent the di�eren
e 
onstraint from the sour
e to destination node. The analysisis intrapro
edural and 
ow-sensitive. Ea
h program point of interest (
ontrol-
ow joinpoints and array referen
es ) has a VCG to approximate the relationships betweenvariables. These VCGs are propagated through the 
ontrol-
ow graph by using anoptimisti
 worklist-based 
ow analysis. When the analysis rea
hes a �xed point, thedistan
e in the VCG from an array variable to its index expression 
an be solved asthe single-sour
e shortest path problem. By redu
ing the size of the graphs, 
arefuldesign of the worklist strategy, and the appropriate use of widening operators, wehave developed an eÆ
ient and s
alable analysis.In the remainder of this se
tion we introdu
e the 
on
ept of the variable 
onstraintgraph whi
h is the essen
e of our algorithm. Then we des
ribe the data-
ow analysis,and �nally we outline the te
hniques we used to improve the algorithm's performan
e.2.1.1 Systems of di�eren
e 
onstraintsSystems of di�eren
e 
onstraints 
an be used to solve the general linear-programmingproblem[6℄(p.539-p543). A 
onstraint is a simple linear inequality of the formxi � xj � 
k;where xi, xj are unknown variables and 
k is a 
onstant. A solution to a set ofdi�eren
e 
onstraints is a ve
tor (x1; x2; � � � ; xn) whi
h satis�es the 
onstraints:x1 � x2 � 
1x2 � xi � 
i� � �xn�1 � xn � 
n�1Now we show how systems of di�eren
e 
onstraints 
an represent the array bounds
he
k problem. Figure 2.1 is a pie
e of 
ode from an insertion sorting program. Ourgoal is to prove three array referen
es (ex
ept the �rst one) are safe, and thus nobounds 
he
ks are ne
essary for them. The 
orresponding JIMPLE 3-address 
odeis in Figure 2.2(a). Figure 2.2(b) lists the di�eren
e 
onstraints generated by ea
hstatement. For example, an assignment j = i�1 produ
es two di�eren
e 
onstraints:17



j � i � �1 and i� j � 1; the array referen
e a[i℄ generates 0� i � 0 and i� a � �1,where a represents the array length ( be
ause an out-of-bounds index expression 
annot pass the bounds 
he
ks of the array referen
e ); and so on. The 
on
uen
e pointand spe
ial assignment ( j = j � 1 ) need spe
ial operations ( e.g. merge and update) to maintain the 
orre
tness of the analysis, we will talk about these in more detaillater. key = a[i℄;j = i - 1;while (j>=0 && a[j℄>key){ a[j+1℄=a[j℄;j--;}Figure 2.1: A VCG example: Java sour
e 
odeBy walking through the instru
tion sequen
e, we 
an 
olle
t several di�eren
e
onstraints before an array referen
e. In the example given in Figure 2.2(a), we have�ve di�eren
e 
onstraints before statement $i1 = a[j℄ ( temporarily assuming thereis no 
ow-joint point at label 1 ): 0� i � 0i� a � �1j � i � �1i� j � 10� j � 0where i, j, and a are variables, the 0 on the left side of inequality is a spe
ial noderepresenting the lower bound of array referen
es.A system of di�eren
e 
onstraints 
an be represented as a weighted, dire
ted
onstraint graph, and a solution 
an be obtained by �nding shortest-path weights inthe graph. Given a system of di�eren
e 
onstraints at the beginning of this se
tion,the 
orresponding 
onstraint graph is a weighted, dire
ted graph G = (V;E), whereV = fv0; v1; v2; � � � ; vng 18



key = a[i℄; 0 - i <= 0 i - a <= -1j = i - 1; j - i <= -1 i - j <= 1label_1: merge(G1, G2)if (j<0)goto exit; 0 - j <= 0$i1 = a[j℄; 0 - j <= 0 j - a <= -1if ($i1 <= key)goto exit;$i2 = j + 1; $i2 - j <= 1 j - $i2 <= -1$i3 = a[j℄; 0 - j <= 0 j - a <= -1a[$i2℄ = $i3; 0 - $i2 <= 0 $i2 - a <= -1j = j - 1; update(j, -1)goto label_1;exit:......(a) JIMPLE 
ode (b) Differen
e 
onstraintsFigure 2.2: A VCG example: JIMPLE 
ode and di�eren
e 
onstraintsand E = f(vi; vj) : xj � xi � 
kg [ f(v0; v1); (v0; v2); � � � ; (v0; vn)g:Ea
h vertex vi in the graph, for i = 1; 2; � � � ; n, 
orresponds to the variable xi. Anextra node v0 makes all vi rea
hable from it. The edge weight of (v0; vi) is ini-tialized to 0. If the 
onstraint graph G 
ontains no negative-weight 
y
le, thenX = (Æ(v0; v1); Æ(v0; v2); � � � ; Æ(v0; vn)) is a feasible solution for the system of dif-feren
e 
onstraints, where Æ(u; v) is the shortest-path weight from u to v.In our problem de�nition, however, we do not need to �nd a solution to all variablesin the system of di�eren
e 
onstraints. The shortest-path weight from the arrayvariable node to the index expression node is suÆ
ient to prove whether the upperbound 
he
k of an array referen
e is safe or not. Formally, if Æ(a; i) � �1, a[i℄ has asafe upper bound 
he
k; if Æ(i; 0) � 0, a[i℄ has the safe lower bound 
he
k. Figure 2.3shows the 
orresponding 
onstraint graph before the statement $i1 = a[j℄, where19



Æ(a; j) = �2 and Æ(j; 0) = 0. Therefore, the a[j℄ 
an be proved to be safe.
i a

j

0

0

−1 0

1
−1

Figure 2.3: The 
onstraint graph before $i1 = a[j℄2.1.2 Variable 
onstraint graphsGiven the JIMPLE 3-address representation of a method body, we build a 
ontrol-
ow graph ( CFG ) of basi
 blo
ks, where a statement with an array referen
e breaksa basi
 blo
k into two smaller ones. Thus, the array a

essing statement will alwaysappear at the top of a basi
 blo
k. Ea
h basi
 blo
k is asso
iated with an input VCG.Di�eren
e 
onstraints are 
olle
ted when going through statements in the blo
k. Thenew 
onstraints are in
orporated into the 
onstraint graph dire
tly. At the exit of theblo
k, an output VCG is produ
ed, and passed to su

essors as their input VCGs.We de�ne a variable 
onstraint graph as follows:A node in a variable 
onstraint graph represents one of:� an int type lo
al whi
h is related to some array index or array obje
t length;� an array type lo
al whi
h is used to represent the length of the array;� a 0 node representing the lower bound of array referen
es; or� an abstra
t representation for �elds, array elements, and 
ommon sub expres-sions (used only in Se
tion 2.4). 20



A dire
ted edge in a variable 
onstraint graph is asso
iated with an abstra
tion valuewhi
h is one of:� ?, the edge is uninitialized;� an integer 
onstant; or� >, there is no 
onstant 
onstraint from the sour
e to the destination.The weights asso
iated to edges are 
omparable. The integer 
onstants are in theorder of ordinary integers. For any 
onstant 
, the ordering ? < 
 < > holds. The? weight is a spe
ial 
ase, it is only used to represent the graph as uninitialized (or never visited ). As we 
an see later, the iteration on a 
ontrol-
ow graph followsthe graph's pseudo-topologi
al order, and the �rst input graph's edges are initializedto >, we never operate on an uninitialized graph ex
ept merging it with some otherinitialized graphs.From a system of di�eren
e 
onstraints to a variable 
onstraint graph, a variableon the left hand side of an inequality has a 
orresponding node in the graph. Thegraph 
an be viewed as full-
onne
ted. If there is an inequality of i � j � 
, the
orresponding edge from j to i is asso
iated with weight 
. Other edges without
orresponding 
onstraints have weight >. Using this representation, we show how
onstraints are generated and how to operate on the 
onstraint graph in followingtext.Constraint generationWhen going through a statement, some 
onstraints may be generated ( and some maybe killed, whi
h is explained later ). We have seen a few examples in Figure 2.2 howstatements generate di�eren
e 
onstraints. Generally, an assignment may build 
on-straints between its right and left hand side variables. An array referen
e expressionbounds its index expression in the range of 0 to array length minus 1. For bran
h in-stru
tions, di�erent 
onstraints are produ
ed a

ording to the out
ome of the bran
h
ondition. We de�ne the 
onstraint generation here for di�erent types of statementsand expressions. Other e�e
ts of the statements, su
h as killing 
onstraints of a node,are dis
ussed afterwards. In our rules, 
 is an integer 
onstant, i and j are integervariables related to some array referen
es, a is an array type variable and representsthe array obje
t length. 21



i = 
Assigning an integer to a lo
al variable generates two 
onstraints: i�0 � 
 and0� i � �
. The 
onstraint graph is 
hanged by adding an edge from node 0 toi with weight 
 and a reversed edge with weight �
.
0 i

−c

c

We do not 
reate a node for ea
h integer 
onstant appearing in statements, butrepresent the 
onstraint as edges to/from the 0 node with adjusted weights.This approa
h ensures the graph size manageable, and more important, the 0node 
an 
onne
t two variables whi
h have no dire
t edges between them.i = j + 
The statement also generates two 
onstraints: i � j � 
 and j � i � �
. Theedges added to the graph are following:
i

−c

j

c

i = a.lengthThe arraylength is a byte
ode instru
tion whi
h gets length of an array. Theexpression 
an be views as a variable like others. In our representation, thearray variable a is used to represent the length of array. Then the 
onstraintsgenerated from the statement are i � a � 0 and a � i � 0. The edges in thegraph are:
i a

0

0a = new T[
℄A new expression assigns the variable on the left hand side the length of 
.22



It has the same e�e
t as the assignment a:length = 
. Using a to representa:length, the 
onstraints from the new statement are a� 0 � 
 and 0� a � �
.a = new T[i℄This statement has the same e�e
t as statement a:length = i, and 
onstraintsgenerated are a� i � 0 and i� a � 0.a[i℄ We know that the JVM 
he
k the bounds of an array referen
e. If the index iis not in the range of bounds, the JVM throws an ArrayIndexOutOfBounds-Ex
eption and exits the normal exe
ution path. So, on the normal exe
utionpath, the index i must have passed the bounds 
he
ks after the array referen
ea[i℄. Then the array referen
e expression produ
es two 
onstraints: 0 � i � 0and i� a � �1, whi
h 
an be represented as following edges:
i a

0

−1

0

if (i < j)The i
t 
onditional bran
h instru
tion has two out paths. In this example,the TRUE path has 
onstraint i � j � �1, and the FALSE path has 
onstraintj � i � 0. We 
an use the same way to derive 
onstraints from other bran
h
onditions su
h as ifeq, ifgt, ifge, and i
e.i = j & 
Some 
onstraints are not obvious in the statement. An arithmeti
 and expres-sion of j & 
 will make the expression value no more than 
 if 
 is a positiveinteger. Then two hidden 
onstraints, 0� i � 0 and i� 0 � 
, are derived fromthis statement.Two spe
ial 
ases have no 
onstraint generation, but need spe
ial operations onthe graph. We dis
uss them here, and the operations are des
ribed in next subse
tion.i = i + 
A loop indu
tion variable in
reases or de
reases itself. The rules above 
an only23



generate di�eren
e 
onstraints between di�erent variables, and obviously none
an be applied dire
tly on this 
ase. The assignment, however, 
an be writtenin another form by using a temporary variable:i0 = i+ 
i = i0In this way we 
an �nd suitable rules for the new statements. In fa
t, it hassame e�e
t as in
reasing i's in-edges' weights by 
 and de
reasing its out-edges'weights by 
 after bypassing the temporary variable i0 in the graph. We de�nedan operation update to handle the 
hanges in the graph due to these kinds ofassignments.i = � � �When a variable i is assigned a new value, its old 
onstraints have to be removedbefore new 
onstraints are added ( ex
ept i = i + 
 where the update fun
tionperforms this operation impli
itly ). Instead of removing old 
onstraints of idire
tly, however, we take a spe
ial operation deta
hnode to bypass the node i.If the right hand side expression is one of the 
ases above, the new 
onstraintsare added in the graph, otherwise, we do not take any a
tion.Constraint graph operationsThe implementation of the 
onstraint graph 
an use either the adja
en
y-list repre-sentation for sparse graphs, or the adja
en
y-matrix representation for dense graphs.Be
ause the graph size is relatively small, we implemented the graph as a 
olle
tion ofadja
en
y lists. As we introdu
ed before, an edge's weight 
an have di�erent values.? indi
ates the edge is uninitialized. However, in our analysis, iterating the CFG inits pseudo-topologi
al order ensures that only all edges of an uninitialized graph 
anbe ? at the same time. On
e the graph is initialized, its edges 
an never be ? again.Thus, in our representation, ? is indi
ated by a state variable of the graph. In aninitialized graph, a physi
al edge of a pair of nodes has an integer 
onstant weight,otherwise, it means the pair has a virtual edge with weight >. In following text, weassume an initialized graph is full-
onne
ted with physi
al or virtual edges. The edgeweight is an integer 
onstant or >.No matter what kind of representation we use, however, the fun
tionality of the
onstraint graph is independent of the implementation. In the following text, we24



introdu
e these fun
tions ( or primitives ) in further detail. All operations are onlyapplied on an initialized graph where the edge weight 
annot be ?.Creating a graph:When we do 
ow-analysis, only variables related to some array referen
es needto be examined. As 
an be seen later, at an interesting program point, if theset of variables under examination does not 
hange, then the graph node setwill not 
hange. The 
reation fun
tion a

epts a set of variables as verti
es.The graph does not provide any fun
tionality to add or delete variables. Graphedges 
an be set to > for the entry blo
k's input graph, or the graph statevariable is set to ? whi
h means the graph is in an uninitialized state.Adding a 
onstraint:When 
olle
ting a new 
onstraint, we add a new edge to the 
onstraint graph.The addition will make the graph have more than one ( physi
al or virtual )edge from a sour
e to a destination. However, we only need to keep one edge forea
h pair of sour
e and destination, whi
h has the smallest weight, to guaranteethat both 
onstraints hold. It 
an be proved as follows. Two edges 
an bewritten as two 
onstraints:i� j � 
1 (2.1)i� j � 
2 (2.2)where 
1 � 
2. If inequality 2.1 is true, 2.2 is automati
ally true. Then inequal-ity 2.2 is redundant.When adding an edge to a graph, we keep the one with the smaller weight. Theabstra
t value > is greater than any other values.addedge(from, to, weight)oldweight = edge(from, to).weightif (oldweight > weight)edge(from, to).weight = weightDeleting a 
onstraint:When a 
onstraint does not hold anymore, the 
orresponding edge weight shouldbe 
hanged to re
e
t the removal of the 
onstraint. The edge weight is set to >in the graph. Right now, a 
onstraint is deleted only in deta
hnode operation.25



delete_edge(from, to)edge(from, to).weight = TOPUpdating a node's in and out edges:For an expression i = i + 
, we do not kill the node i. Rather, all in-edges'weights are in
reased by 
, and all out-edges' weights are de
reased by 
, tore
e
t the 
onstraint 
hanges. For example, there is an existing inequality ofi � a � 
1, and we use i0 represent the new value of i after the assignmenti = i + 
. We have 
onstraints:i� a � 
1i0 � i � 
from whi
h we 
an easily get i0 � a � 
1 + 
. The weight of in-edge from a isadded by 
. The same pro
ess 
an be used to derive the out-edge 
hanges.update(node, 
)for ea
h prede
essor p of nodeedge(p,node).weight += 
;for ea
h su

essor s of nodeedge(node,s).weight -= 
;Deta
hing a node:When a variable is assigned a new value, its old 
onstraint edges should beremoved before adding new ones. However, the edges may be part of somepaths 
onne
ting other nodes, and we wish to retain this information. Thus, thedeta
hnode primitive �rst builds edges from ea
h prede
essor to ea
h su

essor,and then removes all in and out edges.deta
hnode(node)for ea
h prede
essor p of nodefor ea
h su

essor s of nodeedge(p, s).weight = edge(p,node).weight+ edge(a,node).weightdelete_edge(p,node)for ea
h su

essor s of nodedelete_edge(node,s) 26



Making the shortest path:A 
onstraint graph also provides methods to �nd the shortest path between twonodes or of all pairs. It implements the single-sour
e shortest paths and all-pairsshortest paths algorithms[6℄. If the method dete
ts a negative 
y
le existing inpaths, it aborts the operation. This is a 
onservative de
ision. As 
an be seenin following text, there should not be any negative 
y
les at rea
hable programpoints after rea
hing the �xed point.Merging two graphsAt 
on
uen
e points we must merge VCGs 
oming from more than one prede-
essor. All prede
essor graphs will have the same set of nodes, but their edgesmay have di�erent weights. Thus, merging graphs is done by simply merg-ing edge weights. Note that this is di�erent than adding an edge to a graph.Adding edges implies the new and old 
onstraints are existing at the same time(in logi
, they are AND relationship ), and the tighter one gives the most pre
iseinformation. Merging edges means di�erent 
onstraints from multiple paths areall possible ( they are OR relationship ). So the merged 
onstraint should beable to 
ontain all possibilities, as thus we must use the weakest 
onstraint. Oneor more VCGs from prede
essors may not be initialized. When an initializedgraph ( not ? ) is merged with an uninitialized graph ( ? ), we simply take theinitialized one. The 
omplete merging table is given in Table 2.1.? 
1 >? ? 
1 >
2 
2 MAX(
1, 
2) >> > > >Table 2.1: Merge two edge weightsIt is important to note that when 
omputing the merge of an edge p! q fromtwo graphs G1 and G2 we need not use the value stored on the edges, ratherwe 
an get a more pre
ise answer by using the shortest path. Thus, we mergethe shortest path from p to q in G1 with the shortest path from p to q in G2.merge(G1, G2) 27



if G1 is uninitializedreturn a 
opy of G2if G2 is uninitializedreturn a 
opy of G1make G1, G2 be the shortest-path graphsG = make a 
opy of G1for ea
h edge e of G1e1 = G1.e.weighte2 = G2.e.weightif e1 is TOP or e2 is TOPG.e.weight = TOPelseG.e.weight = MAX ( G1.e.weight, G2.e.weight )return GNegative Cy
lesIn a dire
ted 
onstraint graph with negative edge weights, it is possible that a negative
y
le exists at some points of the data-
ow analysis, before the �xed-point is rea
hed.However, after rea
hing the �xed point, every rea
hable point in the program shouldhave a graph without negative 
y
les. For example, if a negative path from a to bto 
, and ba
k to a, as in the �gure 2.4, the edge weight is wa, wb, and w
 whilewa + wb + w
 < 0. So we have b� a � wa
� b � wba� 
 � w
Adding both sides, we get 0 � wa+wb+w
, whi
h is a 
ontradi
tion to the assumption.It is possible to have a graph with negative 
y
les for programs with unrea
hable
ode due to useless bran
hes. For example:28



cw bw

wa b

c

a

Figure 2.4: A negative 
y
leif (i < j) {if (j < i) {P: ......}}would lead to a negative 
y
le at program point P: ( see Figure 2.5 ), but of 
oursethis point is never rea
hed. In the presen
e of negative 
y
les in a path, we 
annot
ompute the shortest path weight for nodes in the path. Leaving them un
hanged isa 
onservative approa
h to keep the 
orre
tness of the analysis.
ji

−1

−1

Figure 2.5: The negative 
y
le at P:Properities of a 
onstraint graphAfter seeing how the array bounds 
he
k problem is 
onverted to solving systems ofdi�eren
e 
onstraints and the di�eren
e 
onstraints are en
oded in a variable 
on-straint graph, we would like to study some properties of the 
onstraint graph. Avariable 
onstraint graph has the following important properties.Dire
ted Edges: Instead of keeping equality relationships, an assignment state-ment produ
es two dire
ted edges between nodes. The �rst �ve 
ases of 
on-straint generation generates two edges between nodes with reversed dire
tions.29



The bran
h instru
tions and array referen
es generate asymmetri
 edges. Butall edges are dire
ted and weighted. This approa
h uni�es the graph represen-tation for the 
onstraints from di�erent sour
es.Inequality edges are transitive: A path from a1 to an 
an be represented by aseries of 
onstraints, for example the 
onstraints in Figure 2.6 are:a2 � a1 � w1a3 � a2 � w2� � �an � an�1 � wn�1By summing both sides, we 
an derive the 
onstraint an � a1 � w1 + w2 +� � �+ wn�1, whi
h implies the dashed edge from a1 to an with weight Pn�11 wi.The transitive property simpli�es graph operations. Any new 
onstraints areadded dire
tly as edges. The edge nodes, however, 
an indire
tly get 
onstraintsfrom other nodes 
onne
ted in the graph. We 
an lazily perform some otheroperations , su
h as deta
hing a node, 
omputing the shortest path, as required.
a1 a2 a3 an

w2 ww1 n−1

Figure 2.6: Transitivity of inequality edgesShortest path gives the tightest 
onstraint: Several paths may exist from asour
e to a destination node in the graph. Ea
h path represents some 
onstraintsfrom di�erent sour
es. However, only the shortest path gives the most a

urateapproximation. Any non-shortest paths are 
onservative estimations; they are
orre
t, but not as pre
ise.Be
ause the inequality graph is transitive, it has the advantage of preserving
onstraints when some variables are rede�ned. Figure 2.7(a) gives an example of fourstatements. 30



s0 : i = j + 2;s1 : a[i℄ = � � � ;s2 : i = � � � ;s3 : a[j℄ = � � � ;(a) a basi
 blo
k
i j

2

−2(b) the 
onstraint graph before s1
i j

2

−2

a 0

−1 0(
) the 
onstraint graph before s2
a 0

i j

−3 2(d) the 
onstraint graph before s3Figure 2.7: The status of 
onstraint graph 
hangesFigure 2.7(b), (
), and (d) show the 
onstraint graphs before the statement s1,s2, and s3, respe
tively. We are interested in the graph before s3 be
ause it has anarray a

ess and we want to know whether j is in the bounds. The other two graphsonly re
e
t the 
onstraint 
hanges.The statement s1 generates the 
onstraint i� a � �1, whi
h makes a path froma to j, and 0� i � 0. The path from a to j implies the 
onstraint j� a � �3by adding its edge weights. Statement s2 deta
hes the node i from the graph by31



bypassing it. Before the statement s3, i has lost its 
onstraints from a and j, but thepath from a to j, whi
h goes through i, is short
ut by a new edge dire
tly from a toj with weight �3. Thus the 
onstraint j� a � �3 is preserved before s3, even wheni was rede�ned. Therefore, the upper bound 
he
k for s3 
an be proved to be safe( we 
an not derive the safe lower bound from this simple example, be
ause it onlyimplies 0� j � 2 ).So far, we 
an 
on
lude some advantages of using 
onstraint graphs for arraybounds 
he
k elimination, although there are many other abstra
tions that 
an beused too. The 
onstraint graph o�ers several advantages, in
luding:1. As we explained in above text, a 
onstraint graph 
an represent and preserveindire
t 
onstraints, even when a variable is rede�ned.2. It has a uni�ed representation for 
onstraints from di�eren
e sour
es, e.g. as-signments, 
onditional bran
hes, and array referen
es.3. The lower and upper bounds relationships 
an be represented in the same graph.Array obje
t, index, and 
onstant 0 are en
oded in the same graph.4. It is 
exible, and 
an be extended to hold other information. For example, inSe
tion 2.4, we show how to in
lude information about the se
ond dimension ofre
tangular arrays and 
ommon sub-expressions.Certainly, the variable 
onstraint graph has some weakness. It 
an not representsome subtle 
onstraints that we 
an infer from semanti
s of the language. A typi
allimitation is that it is hard to represent other arithmeti
 operations su
h as multiplyand division.2.1.3 Data-
ow analysesTo understand how a method manipulates its data, we 
an apply data-
ow analyseson the 
ode of a method body. We developed two data-
ow analyses in our algorithm.A spe
ial live-lo
al analysis, whi
h is relatively simple, determines whi
h lo
als arerelevant to array referen
es. A more 
ompli
ated analysis performs abstra
t exe
utionof the method, and gets a 
onservative approximation of 
onstraints among live lo
als.The �rst analysis limits the number of nodes in a 
onstraint graph and thereforeredu
es the 
omputation of the se
ond analysis.32



Array-related liveness analysisA variable 
onstraint graph 
ontains nodes of lo
als and edges between them. The sizeof the graph 
an be redu
ed by in
luding only those lo
als that are used to 
omputean index or an array obje
t length in the future. A smaller 
onstraint graph allowsfaster 
omputation of shortest paths, and may also redu
e the number of iterationsrequired for the �xed-point 
omputation.In our liveness analysis, a variable is live at a program point if there is an exe-
ution path from this program point to an array referen
e expression su
h that the
onstraints 
olle
ted by using 
onstraint generating rules de�ned in se
tion 2.1.2 
anform a path from the variable to the array index or array obje
t length in the 
orre-sponding 
onstraint graph. We brie
y say that the variable is relevant to some arrayreferen
es. Our goal is to determine that whether we need to add a 
onstraint 
ol-le
ted at this point to the 
onstraint graph by 
onsulting the liveness of the variable.We formulate the analysis as follows:Partial ordering for approximation domainIn this analysis, we have a set of int or array type lo
al variables. The extendedanalysis in
ludes �elds, array elements, and 
ommon sub-expressions. The par-tial ordering of the set is from empty set ( ? ) to the full set of variables ( > ).It is best represented by following pi
ture, assuming the method has int typelo
als (i1; i2; � � � ; im) and array type lo
als (a1; a2; � � � ; an) :

i1 a1

EMPTY

ai, ani1, i2 im, a1

im an

i1, i2, ..., im, a1, ..., an

33



Problem statementWe already de�ned the liveness of a lo
al in the above paragraph.Dire
tionAs with ordinary liveness analysis, it is a ba
kward 
ow analysis.Con
uen
e operatorAt the 
ow-joint point, we are take union operatoroutset = set1 [ set2;be
ause a lo
al is live at this program point if it is live in any paths from thisstatement.Equations for instru
tionsTable 2.2 provides the key 
ow fun
tions. The �rst 
olumn gives the typesof statements or expressions that may generate or kill live lo
als. The se
ondand third 
olumn should be used together. Only when at least one of thelo
al(s) in the 
ondition set are live, does the statement generate live lo
alsin the gen set. Note that array referen
es generate live lo
als without any
onditions. The statement i = i + 
 needs no operations be
ause the variableis in
reasing/de
reasing itself. For any assignment statements that are not the
ase listed in the table, the left hand side variable is removed from the set.stmt/expr 
ond gen killi = j + 
 i j ii = a:length i a ia = new T [i℄ a i aa [ i ℄ a; iif (i op j) i; j i; ji = i+ 
i = � � � iTable 2.2: Liveness for array referen
esWhen going through a statement s, we retrieve the 
ond(s), gen(s), and kill(s).The equations for 
omputing IN and OUT sets are 
hanged to re
e
t the 
on-ditions. 34



OUT [s℄ = [p2su

[s℄ IN [p℄if 
ond[s℄ = � or 
ond[s℄ \ OUT [s℄ 6= �IN [s℄ = gen[s℄ [ (OUT [s℄� kill[s℄)else IN [s℄ = OUT [s℄� kill[s℄The starting approximationThe analysis starts with the safe approximation. Be
ause the analysis is ba
k-ward, all nodes' out sets are initialized as �.Now we look ba
k the example in Figure 2.2. Although variable $i1 and key 
an beint type variables, there is no path leading them to an array referen
e. We do not
olle
t 
onstraints produ
ed by the if ($i1 � key) statement.One 
an easily extend the liveness analysis to a

ommodate other spe
ial nodes,su
h as 
lass �elds, array elements, and 
ommon sub-expressions.Variable Constraint AnalysisWe use a forward, 
ow-sensitive, optimisti
 data-
ow analysis to approximate a vari-able 
onstraint graph for ea
h important point in a method body. We named theanalysis as variable 
onstraint analysis, or VCA.VCA is based on the 
ontrol-
ow graph of basi
 blo
ks as we explained before. Aninstru
tion with an array referen
e appears on the top of the basi
 blo
k. The entryof ea
h basi
 blo
k is asso
iated with a VCG. The initial state of ea
h graph has ?state, ex
ept the entry point graph whi
h has all > edges. The analysis is driven bya worklist algorithm whi
h 
omputes an output VCG based on the input VCG andthe e�e
t of the statements in the basi
 blo
k. When pro
essing a 
onditional bran
hstatement, it may generate di�erent 
onstraints for the target blo
k and the nextblo
k. After rea
hing a �xed point, the information for ea
h array a

ess statement,S, is en
oded by the VCG asso
iated basi
 blo
k starting with S.Now we de�ne the variable 
onstraint analysis formally:Partial ordering of approximation domainAt any program point the set of interesting variables is known from array-related liveness analysis, so the set of nodes is �xed. There is one node for ea
h35



variable of interest, plus a node representing the 
onstant 0. The abstra
tion
omputed by our analysis is all-pairs shortest paths of a variable 
onstraintgraph. But instead of 
omputing the shortest paths at every program point, weonly perform su
h 
omputation at the 
on
uen
e point. In other pla
es, we dosimple operations on the graph. The abstra
t information that 
hanges is theweights asso
iated to edges. For any 
onstant 
, the ordering ? < 
 < 
 + 1 <
+ 2 < : : : < maxint < > must hold.Problem statementA pair of nodes (i; j) has the shortest path weight of 
 from j to i at a pro-gram point P if the symboli
 exe
ution of the program 
an guarantee that the
onstraint i� j � 
 holds at any time when it rea
hes the program point P .Dire
tionThe variable 
onstraint analysis is a forward 
ow-analysis. Moreover, it requiresthe node of the CFG must be visited in its pseudo-topologi
al order be
ausethe analysis is simulating the exe
ution of the program. The dominators of anode must be visited before that node. Re
all that we initialize the entry pointgraph to > and other graphs to ?. By keeping the topologi
al order, the inputVCG of a basi
 blo
k 
an never be ? when we start to go through it.Moreover, the analysis is 
ow-sensitive. When going through a 
onditionalbran
h statement, di�erent 
onstraints may be produ
ed for di�erent out pathsof the bran
h. The 
ow fun
tion of if statement adds di�erent edges to thetarget and next graphs.Con
uen
e operatorAt a 
on
uen
e point P , we use a set of output graphs from prede
essors ( G1,G2, � � � , Gn ) and the old input graph oldgraph(P) to 
ompute the new inputgraph newgraph(P). We �rstly 
all the merge operation to union all outputgraphs from prede
essors:newgraph = 
opy of G1for i = 2 to nnewgraph = merge( newgraph, Gi )Then we apply a spe
ial operation 
alled widening on ea
h new graph edgeweight by 
omparing it to the old graph edge weight.36



widen(newgraph, oldgraph)The widening operation looks at the 
hanging trend of an edge weight. If theweight is in
reasing, we set it to > dire
tly. But if the new weight is lessthan the old weight, we will dis
ard the new weight and use the old one. Thewidening te
hnique speeds up the symboli
 exe
ution and also stops in�niteloops 
orre
tly. We will explain it in detail later.Equations for instru
tionsThe base analysis deals only with lo
al variables. It is obvious that the integerlo
als 
annot be aliased, nor 
an they be modi�ed by method 
alls. The arrayobje
ts referen
ed by array type lo
als have the same properties. We only dealwith the �rst dimension of arrays in our base analysis. On
e an array obje
twas 
reated, the only way to 
hange the array size is to re-allo
ate a new arrayobje
t. Then, the array lengths 
an be treated as integer lo
als in the sameway. Thus, the e�e
t of ea
h statement on a VCG is quite straightforward. The
ow fun
tion for ea
h kind of relevant JIMPLE statement is given in Table 2.3.Variables i, j and a represent nodes in the graph, and 
 is an integer 
onstant.Ea
h graph has a node for the 
onstant 0.The �rst 
olumn shows the kinds of statement whi
h have e�e
t on a VCG. These
ond 
olumn lists the 
onstraints 
an be generated from the statement in the�rst 
olumn. The third 
olumn shows the node of whi
h 
onstraints should bebypassed. The last 
olumn gives operations on the 
onstraint graph a

ordingto the statement. We always 
he
k the liveness of variables before performingthe 
ow-through fun
tion for a statement. Only when the variables are live, theoperations on the graph are performed.The rules in Table 2.3 use several primitives, whi
h were de�ned in se
tion2.1.2. The kinds of statement that 
an a�e
t 
onstraint graphs depend onthe semanti
s of languages. Table 2.3 de�nes some basi
 statements for Java.One 
an also add more 
ompli
ated ones if they do not violate the languagesemanti
s. We will show a few extension in se
tion 2.4.The starting approximationAs we stated before, the edges of entry point VCG are initialized to >, whi
his the safe solution. Other VCGs' edges are set to ?.Brie
y, the implementation of the analysis uses a heap ( implemented as Bounded-PriorityList ) to maintain the topologi
al order of blo
ks in the 
ontrol-
ow graph.37



stmts gen deta
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)i = � � � i deta
hnode(i)Table 2.3: Statements generating 
onstraintsThe VCGs are asso
iated to the edges of the CFG instead of being atta
hed to theblo
ks dire
tly. Ea
h head of the CFG has an auxiliary edge as its in
oming edge.The input graph of a blo
k 
omes from merging all graphs on its in
oming edges. Theoutput graph is asso
iated to ea
h outgoing edge. A blo
k with a bran
h as the lastinstru
tion would produ
e two di�erent output graphs for its two out-edges, whi
hmakes the analysis 
onditional. A blo
k also keeps the input graph after merging thein
oming edges' graphs. To better understand the variable 
onstraint analysis, weprovide the pseudo-
ode in Figure 2.8, some fun
tions used by worklist are de�ned38



in the later paragraph introdu
ing the BoundedPriorityList 
lass.The flowThrough fun
tion take an input VCG and goes through a basi
 blo
k.It operates on the VCG a

ording the 
ow fun
tions in table 2.3, and updates theVCGs asso
iated to the blo
k's out-edges. It returns the set of su

essor blo
ks whosein
oming edge's VCG has 
hanged. When going through a basi
 blo
k, some variablesadded in the temporary graph may be not live at the end of blo
k, we deta
h thosenodes when updating out-edges' VCGs.2.1.4 Improving the performan
e of the algorithmA naive implementation of the algorithm requires a large volume of 
omputation torea
h the �xed point. We 
an analyze the expensive parts of the algorithm. Thereare two fa
tors dominating the performan
e of the algorithm: the variable 
onstraintgraph size and the time that the data-
ow analysis takes to rea
h the �xed point.In this se
tion, we des
ribe some te
hniques we have used to redu
e the performan
eoverheads in our algorithm.Limiting the size of 
onstraint graphsThe running time of 
omputing the shortest path on a graph depends on the number ofnodes and the number of edges. Sin
e we 
annot dire
tly 
ontrol the number of edges,we redu
e the number of nodes, whi
h subsequently redu
es the number of edges. Thearray-related liveness analysis keeps the node size minimal. The experiment showsthe average node size is less than 10 and the maximum node size never ex
eeds 13for the base VCA.Widening edges at 
on
uen
e pointsGiven the long 
hains in the ordering for edge weights, the ordinary �xed-point 
om-putation is too expensive. We redu
e the number of iterations by applying a wideningat loop entry points. At these points we repla
e the ordinary merge operation whi
huses the maximum value with a widening implemented as follows. If an edge's previ-ous weight was not ? and the 
urrent weight in
reases, the edge is set to >. Thus,it is 
lear that an edge's weight at loop headers 
an 
hange two times at most alongthe same exe
ution path. The following is the pseudo-
ode for the operation.39



units = make PseudoTopologi
alOrder of the CFGworklist = make BoundedPriorityList of units/* initializes all VCGs to BOTTOM. */for ea
h edge of CFG{ edge's VCG = new VCG with live lo
als ofedge's sour
e nodeedge's VCG is set to BOTTOM}/* initializes the entry VCGs to TOP. */for the in
oming edge of CFG headsedge's VCG is set to TOP/* performs iterative flow-analysis. */while not worklist.isEmpty(){ Blo
k blo
k = worklist.removeFirst()prevVCG = blo
k's input VCGif the blo
k has only 1 in
oming edgebeforeVCG = 
opy of in
oming edge's VCGelse{ beforeVCG = merge all in
oming edges' graphswiden ( beforeVCG, prevVCG )}blo
k's input VCG = 
opy of beforeVCGList 
hangedSu

s = flowThrough ( blo
k, beforeVCG )add all elements of 
hangedSu

s to the worklist}Figure 2.8: Pseudo-
ode of the worklist algorithm40



widen(newgraph, oldgraph)for ea
h edge of oldgraph and newgraphdoif oldgraph's edge weight is BOTTOM
ontinue;if oldgraph's edge weight is lessthan newgraph's edge weightset newgraph's edge to TOP.doneA subtle e�e
t of widening edge weights is that it 
an stop the 
ow-analysis qui
klyand 
orre
tly on an in�nite loop. For example, a programmer may unintentionallywrite an in�nite for loop as in Figure 2.9. Without widening edge (i; 0) at the loop
for ( int i=0; i<a.length; i-- )...

int i=0;label_1:if ( i >= a.length)goto exit...i = i-1;goto label_1exit:...Figure 2.9: An in�nite for loopentry label 1, Æ(i; 0) is in
reased by 1 for ea
h iteration over the loop body. Theanalysis 
annot ever rea
h the �xed point. However, the widening fun
tion 
an �ndout that Æ(i; 0) is in
reasing when the analysis visits label 1 the se
ond time, thenset Æ(i; 0) to >, and the analysis stops 
orre
tly.Ordering the nodes of a CFGWalking through a CFG in its pseudo-topologi
al order 
an speed up data-
ow anal-ysis. However, a simple depth-�rst sear
h ( DFS ) algorithm 
annot guarantee an41



optimal order for the su

essors of a loop exit node.For our analysis, we prefer to visit the loop body before the loop exit. To enfor
ea good ordering we perform a DFS from exiting nodes of the CFG in reverse order�rst; then the DFS from the starting node 
an 
onsult the order of reversed DFSwhen it meets a loop exit allowing us to put loop body nodes before loop exits.Our worklist algorithm puts the su

essors of a node, whose out set 
hanges, ontothe worklist for re-
al
ulation. The worklist is handled as a heap using the order
omputed as above. By enfor
ing this order we ensure that inner loops rea
h a �xed-point before the outer loops. Experiments show this is very e�e
tive way of makingour data-
ow analysis run eÆ
iently.The worklist is implemented as the 
lass BoundedPriorityList whi
h providesseveral methods:publi
 BoundedPriorityList(List list)The 
onstru
tor a

epts a list as the fulllist (universal set), the order of ea
helement is de
ided by its index in the list. The fulllist is a list of blo
ks in anoptimal topologi
al order 
omputed as above. This list is used to keep the indexof ea
h element, another linked list is 
reated as the worklist. All elements infulllist are added to the worklist in order.publi
 boolean isEmpty()The method returns true if the worklist is empty, otherwise returns false.publi
 Obje
t removeFirst()This method removes the �rst element in the worklist and returns it to the
aller.publi
 void add(Obje
t toadd)When a blo
k needs re-
omputation, it is put ba
k to the worklist. However,unlike the usual worklist whi
h adds the node to the end of the list, this methodwill �nd the right pla
e in the worklist by its index. All elements are kept theorder in worklist as the same order in the fulllist.2.1.5 Running time analysisThe performan
e of our algorithm is de
ided by two fa
tors: the size of 
onstraintgraphs and the number of iterations required to rea
h a �xed-point. The nodes of a42




onstraint graph 
onsists of lo
als, therefore, the graph size is bounded by the numberof lo
als in a method. Liveness analysis 
an limit the graph size even further, andour experiments 
on�rm the graphs are small in pra
ti
e.For a 
ontrol-
ow graph without 
y
les, the data-
ow analysis takes linear timeto rea
h the �xed point. However, most of methods 
ontain loops. At a loop entry,the spe
ial widening step of 
omparing an edge weight with before makes the edgeweight rea
h a �xed-point qui
kly. An edge weight 
an not 
hange more than twi
ebe
ause of visiting the same path. So the upper bound of the analysis depends onthe depth of loops and the number of nodes in the loops. It 
an be represented asjN j +P 2jLDj+1 � jLN j, where N is the total number of nodes in a CFG, LD is theloop depth, and LN is the number of nodes in the loop. Theoreti
ally, the worst 
asemay have exponential running time in the loop depth. However, in our experiments,the pra
ti
al running time is linear in the size of the method body with a 
onstantless than 3.2.1.6 Revisiting the exampleNow we revisit the example in Figure 2.2 with 
onsideration of 
ontrol-
ow informa-tion. Figure 2.10 shows the program's 
ontrol-
ow graph of basi
 blo
ks. Note thatea
h statement with array referen
e shows on the top of a basi
 blo
k. The blo
ksare labeled from A to G.First of all, we perform the array-related liveness analysis on the 
ontrol-
owgraph. The live-lo
al set is marked before ea
h basi
 blo
k, in whi
h the 
onstantnode of 0 is added. The optimal topologi
al order of the CFG is (A;B;C;D;E; F;G).The VCA 
reates a 
onstraint graph Guv for ea
h edge (u; v) in the CFG with the nodeset before blo
k v. All graphs are initialized to ? ex
ept the blo
k A's input graphGAA, whi
h is set to >. The analysis iterates the blo
ks in their pseudo-topologi
alorder. But after visiting the blo
k F , it will visit B instead of G sin
e the blo
k B isadded in the worklist and it be
omes the �rst one with higher priority than G.Now we look at the 
ow-joint point at blo
k B in detail. The �rst iteration overblo
k B has only one initialized input graph GAB in Figure 2.11(a). After goingthrough blo
ks B, C, D, E, and F, GFB was initialized as in Figure 2.11(b). Themerged input graph GB is same as GAB. Now the 
ow analysis rea
hes the �xedpoint. In this example, Æ(j; 0) = 1 in GFB although there is a statement j = j � 1 inblo
k F. The reason is that, in blo
k E, the referen
e a[j℄ always produ
es 
onstraint43



j = i − 1
key = a [ i ]

if ( j < 0 )
goto exit

$i1 = a [ j ]
if ($i1<=key)

goto exit

$i2 = j + 1

$i3 = a [ j ]

goto label_1
j = j − 1
a[$i2] = $i3

........
exit:

A

B

C

D

E

F

G

( )

(a, i, 0)

(a, j, 0)

(a, j, 0)

(a, j, 0)

(a, j, $i2, 0)

(a, j, $i2, 0)

Figure 2.10: Control-
ow graph of basi
 blo
ks
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0�j � 0 whi
h may eliminate other paths of Æ(j; 0) < 0. At the �xed point, the inputVCGs of blo
k C, E, and F 
orre
tly give the shortest path weights: Æ(a; j) = �2and Æ(j; 0) = 0 in GC and GE, Æ(a; $i2) = �1 and Æ($i2; 0) = �1 in GF . Thus, arrayreferen
es in these blo
ks were proved to be safe.
a j

0

−1 0

−2
a j

0

0

−3

−2

(a) G AB (b) GFBFigure 2.11: VCGs of the blo
k B2.2 Array Field AnalysisThe base analysis only looks at lo
als and analyzes the body of ea
h method ( in-trapro
edural ). It does not know any information from outside of the method, su
has �elds or method parameters. There are no 
ommuni
ations between methods. InJava appli
ations, programmers may use �elds to hold some 
onstant value for 
odemodularity and 
larity. For example, some �elds are initialized in 
onstru
tors andare never 
hanged again, or �elds are assigned in some methods and used by others.To explore the full relationships of �elds and on di�erent methods is non-trivial, andneeds whole program information. The analysis in our algorithm looks for spe
ial
ases where a �eld holds a �xed length array obje
t. This information allows us toextend the VCA analysis to in
lude these �elds.A 
lass �eld with modi�er final or private 
an only be assigned a value in the
lass de
laring that �eld. A final type �eld has more restri
tions, it is assigned by avariable initializer in the sour
e 
ode. That means the assignment 
an only be in the
onstru
tors ( <
linit> or <init> ) of the de
laring 
lass. The array �eld analysismaintains a one-to-one map from 
lasses to �eld information tables. For a 
lass, ea
h45



array type �eld with the private or final modi�er has an entry in the table, and avalue is assigned to that �eld. The value 
an be ?, an integer 
onstant 
, or >. A�eld f de
lared in a 
lass C is represented as C.f no matter the f is stati
 or non-stati
.For ea
h 
lass C, array �eld analysis examines the 
lass �elds. Let FC be the setof array-type �elds modi�ed by private or final de
lared in C. If FC is non-empty,then a table �C is 
reated, and for ea
h f 2 FC an entry �C [f ℄ is 
reated and initializedto ?. Ea
h method m de
lared in C is then 
onsidered. Sin
e the Soot frameworkprovides typed lo
als, and ensures that a putfield or putstati
 is always in theform of an assignment from a lo
al to a �eld, a simple pre-s
an of the types of lo
alsof m 
an be used to avoid further pro
essing of methods that 
annot 
hange the valueof any f 2 FC . For ea
h method m that might 
hange an array �eld, the body of mis s
anned. Let f = ` be an assignment to some f 2 FC . A value Æ(`) is 
omputedas follows:1. If ` is a newarray or multianewarray operation, then extra
t the array lengthexpression d and return Æ(d).2. If ` is a lo
al variable, the UD-DU 
hains provided by the Soot framework areused to lo
ate the de�nitions of `. If ` has more than one de�nition point, return>, otherwise for a de�nition ` = x return Æ(x).3. If ` is an integer 
onstant 
, return 
.4. Otherwise, return >.Figure 2.12 is the pseudo-
ode for the pro
ess. The while loop ends when the lengthvalue is not BOTTOM (?). The table information �C [f ℄ is then updated by mergingthe existing value for �C [f ℄ with the 
omputed Æ(`) a

ording to Table 2.4; note thatÆ(`) is never ?. ? 
1 >
2 
2 
1 : 
1==
2 >> : otherwise> > > >Table 2.4: The rule for updating the �eld table.When the intrapro
edural VCA analysis meets an array type �eld read of the forma=o.f; where o has type of 
lass C, it 
onsults the array �eld analyzer to get the value46



length = BOTTOM;usestmt = 
urrentStatement;lo
al = 
urrentStatement.RHS;while length is BOTTOM{ List defs = getDefsOfAt(lo
al, usestmt);if (defs.size != 1){ length = TOP;break;}usestmt = (DefinitionStmt)defs.get(0);tmp_rhs = usestmt.getRHS;
ase tmp_rhs is a NewArrayExpression{ size = tmp_rhs.getSize;
ase size is an integer 
onstantlength = size;
ase size is a lo
allo
al = size;otherslength = TOP;}
ase tmp_rhs is an integer 
onstantlength = tmp_rhs;
ase tmp_rhs is a lo
allo
al = tmp_rhs;otherslength = TOP;}Figure 2.12: Tra
king down the array length.47



asso
iated to the �eld C.f. If the �eld has a 
onstant value 
, we 
an analyse thisstatement as if it was a = new T[
℄ (see rule in Table 2.3).Our experien
e shows that this usually happens for a �eld with an initializer, whereall assignments are made in the 
onstru
tors. For simpli
ity, our implementation ofarray �eld analysis fo
uses only on the �rst dimension of array obje
ts.2.3 Re
tangular Array AnalysisAnother opportunity to improve VCA lies in re
tangular arrays. Be
ause multidi-mensional arrays in Java 
an be ragged, it is more diÆ
ult to get good array boundsanalysis for multidimensional arrays. However, in s
ienti�
 programs arrays are mostoften re
tangular. Thus, we have developed a whole-program analysis using the 
allgraph to identify re
tangular arrays that are passed to methods as parameters.Java de�nes a very loose stru
ture for multidimensional arrays. A multidimen-sional array obje
t 
an have a ragged shape (di�erent rows in an array may havedi�erent lengths); sub-arrays 
an be sparse in memory or aliased; and array obje
ts
an be assigned to variables of type java.lang.Obje
t. All of these properties makearray bounds analysis hard. ( re
all the �gure 1.3(b), whi
h is an example of aliasedsub-arrays. )In order to �nd all arrays that are re
tangular, we must �nd all 
ases where are
tangular array is allo
ated, and we must tra
k those allo
ations to their eventualuses.Consider the example in Figure 2.13, the new 
opy method is taken from thes
imark2 ben
hmark. If we only analyze the method new 
opy, it is not possibleto say that all array referen
es are safe be
ause we do not know the array obje
tpassed to the parameter A are re
tangular or not. However, if we know that theparameter A always holds re
tangular arrays from all method 
alls, then we would besure N equals to the length of any A[i℄, whi
h is the programmer's assumption. There
tangular array analysis tra
ks the array shape at ea
h method 
alls of new 
opy,and in this 
ase 
an safely 
on
lude that all method 
alls will pass a re
tangular arrayto new 
opy.
48



publi
 
lass C{ publi
 stati
 void main(String[℄ args){ double[℄[℄ A = new double[10℄[9℄;double[℄[℄ B = new_
opy(A);}prote
ted stati
 double[℄[℄ new_
opy(double A[℄[℄){ int M = A.length;int N = A[0℄.length;double T[℄[℄ = new double[M℄[N℄;for (int i=0; i<M; i++){ int[℄ Ti = T[i℄;int[℄ Ai = A[i℄;for (int j=0; j<N; j++)Ti[j℄ = Ai[j℄;}return T;}}Figure 2.13: Re
tangular array example.2.3.1 Call graphsIn se
tion 1.2.3, we mentioned that the Soot provides the 
all graph of an Javaappli
ation. The 
all graph has one node for ea
h method rea
hable from any start-ing method, whi
h 
an be the main method of an appli
ation, or the start or runmethod of a runnable thread. The user 
an spe
ify a set of starting methods. Ea
hnode ( method ) has a list of 
all sites, whi
h are invokestati
, invokespe
ial,invokevirtual and invokeinterfa
e byte
ode instru
tions. The re
eiver of theinvokestati
 is resolved by the java
 
ompiler and it has only one target. The49



invokespe
ial has a �xed target also. For virtual method 
alls, invokevirtualand invokeinterfa
e, the 
all graph provides a set of all possible targets. Theedges of the graph 
onne
t ea
h 
all site to its possible target methods. More detailsabout 
all graphs 
an be found in [31℄.An algorithm based on the 
all graph is a 
onservative approximation be
ause itdoes not know the exa
t 
all target whi
h is resolved at the run-time. If a method isrea
hable, all targets of its 
all sites must be marked as rea
hable. Our re
tangulararray analysis builds an array type graph based on the 
all graph. For ea
h rea
hablemethod, it �rst re
overs the re
tangular array initializer as explained in se
tion 2.3.2.It then 
onstru
ts a propagation graph where nodes 
onsist of lo
als, method param-eters, and method returns. Edges are then added between nodes when values arepassed, su
h as assignments and method 
alls. Creation sites for re
tangular arraysare marked as TRUE. If a nodes 
hanges shape it is marked as FALSE. All nodesrea
hable from FALSE nodes are marked as FALSE. The remaining nodes rea
h-able from TRUE nodes are marked as TRUE. Nodes marked with TRUE after theanalysis represent variables referring to a re
tangular arrays.2.3.2 Re
over array initializersBefore 
onstru
ting the array type graph, we have to look at some spe
ial 
ases. Ifa programmer allo
ates a new multidimensional array using a statement of the formnew int[10℄[10℄, this instru
tion is translated into a multianewarray byte
odeinstru
tion whi
h allo
ates re
tangular arrays. However, a multidimensional arrayinitializer is 
ompiled by java
 or jikes as individual allo
ations to give a potentiallyragged array of array obje
ts. An array of arrays is 
reated, then ea
h element isassigned a sub-array obje
t. Figure 2.14(a) shows a typi
al Java example, and Figure2.14(b) shows the resulting byte
ode.We use a simple pattern mat
her that 
an �nd this idiom and re
over a re
tangulararray's 
reation from its sparse representation to a dense one, as shown in Figure2.14(
). The pattern mat
her is a state ma
hine whi
h identi�es the patterns as inFigure2.14(b). Table 2.5 gives a simpli�ed state table for identifying two-dimensionalarrays, whi
h is the 
urrent implementation.The input of the state ma
hine is a sequen
e of JIMPLE instru
tions of a method.The start state 0 a

epts a statement of r1 = new (A[℄)[
℄;. We brie
y des
ribethe operations at ea
h state: 50



int[℄[℄ a = {{1},{2}};a) An arrayinitializer
a = newarray (int[℄)[2℄;$r2 = newarray (int)[1℄;$r2[0℄ = 1;a[0℄ = $r2;$r3 = newarray (int)[1℄;$r3[0℄ = 2;a[1℄ = $r3;b) Compiled 
ode byjava
 and jikes

a = multianewarrayint[2℄[1℄;$r2 = a[0℄;$r2[0℄ = 1;$r3 = a[1℄;$r3[0℄ = 2;
) Re
overed 
odeFigure 2.14: Re
over the 
reation of re
tangular arraysstate input goto0 r1 = new (A[℄)[
℄ 11 r2 = new A[d℄ 22 r2[*℄ = � � � 2r1[e℄ = r2 (e=
-1) 3r1[e℄ = r2 (e=e0+1) 13 endTable 2.5: The state ma
hine for mat
hing two-dimensional arrays.State 0 re
ords the base type A, the length 
, and the left hand side variable r1.State 1 a

epts a statement of array 
reation. The base type is 
he
ked with there
orded type A in state 0, the sub-array r2 and the length d are re
orded.State 2 goes to di�erent states a

ording to the input statement. It 
ould be theinitialization of the sub-array r2, in whi
h 
ase, it will 
ontinue on state 2.Or it is a store to the �rst dimension of the array obje
t r1, the array indexe is 
he
ked with the array length 
. It also ensures the referen
e index isin
remental by 1 ( e = e0 + 1 ) if it does not rea
h the array length.State 3 returns the length of the se
ond dimension d if the pattern is mat
hed,otherwise it returns -1.For any ex
eptional inputs, the state ma
hine jumps to the state 3 and returns -1.51



2.3.3 Array type graphsAfter �nding all the 
reation sites for re
tangular arrays, we then build an array typepropagation graph to �nd whi
h variables must be asso
iated with re
tangular arrays.The graph has following nodes:1. Two spe
ial nodes for TRUE and FALSE. Marking another node is a
hievedby adding an edge between it and one of the spe
ial nodes.2. Method lo
als that are multidimensional arrays. Consider the example in Figure2.13, the method new 
opy in the 
lass C has a lo
al M. The lo
al M is representedas C.new 
opy.M.3. Method parameters whose types are multidimensional arrays. The parametersare handled in the same way as lo
als. The parameter A in the example isrepresented by C.new 
opy.A.4. Method returns whose types are multidimensional arrays. In our example, thereturn of method new 
opy is represented as C.new 
opy.return.5. Class �elds. As in array field analysis, an array type �eld f of the 
lass Cis represented as C.f whether f is stati
 or non-stati
.Then we de�ne rules to add edges to the graph a

ording to the types of thestatements. In general, assignment statements and invoke expressions add edgesbetween nodes in the graph. Some spe
ial 
ases will add edges between normal nodesand the spe
ial nodes TRUE or FALSE. Only multidimensional array type variablesare 
onsidered in this analysis. In following rules, lower-
ase letters are lo
als, andby default, they are referred in a method C.m.1. a = newA[i℄[j℄This is a site that 
reates a re
tangular array. We add an edge between C.m.aand the spe
ial node TRUE.2. a = bFor a general assignment, we add an edge between nodes C.m.a and C.m.b. Theb is either a lo
al or a parameter. 52



3. a[i℄ = bIf a is a multidimensional array type lo
al, a store into it adds an edge betweenC.m.a and the spe
ial node FALSE.4. o:n(a; b; :::)An invo
ation expression needs more explanation. Let Cn be the set of possiblere
eiver 
lasses of this 
all site, and p0, p1, ... be the parameters of the methodn. For ea
h C 0 of Cn, we add edges between C.m.a and C 0.n.p0, C.m.b andC 0.n.p1, and so on.5. a = o:n(:::)An assignment from a method return adds edges between C.m.a and the returnof ea
h possible target, C 0.n.return.6. return aA return expression adds edges between C.m.a and C.m.return.7. t:f = a or a = t:fField referen
es add edges between C.m.a and T.f where the 
lass T de
laresthe �eld f.8. a = (A)bFor the assignment with a 
ast expression, we 
he
k the stati
 type of a and b. Ifboth lo
als are multidimensional arrays and have the same dimension number,the statement is treated as a normal assignment a = b, otherwise, C.m.a andC.m.b are 
onne
ted to the FALSE node. This is a 
onservative approa
h toredu
e the 
omplexity of the analysis be
ause array types 
an be 
asted fromand to java.lang.Obje
t in Java.If a lo
al gets a return value from a method whi
h is out of our analysis 
ontext( i.e. we only analyze the appli
ation 
ode without library 
ode ), we make a 
onser-vative assumption and 
onne
t the variable to the FALSE node. Parameters of themethod invo
ation are treated in the same way. Figure 2.15 gives the propagationgraph of the example in Figure 2.13.After building the propagation graph, we want to �nd all nodes whi
h are rea
hedstarting at the TRUE node ( were allo
ated as re
tangular ), and are not rea
hedstarting at the FALSE node ( may have be
ome ragged ). We a
hieve this as follows:�rst we traverse the graph, starting from the FALSE node, marking these nodes as53
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C.main.B
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Figure 2.15: Propagation graphrea
hable from FALSE. Then we traverse the graph starting at the TRUE node,�nding all rea
hable nodes that are not marked FALSE. This set indi
ates that themembers are always assigned re
tangular arrays. The pseudo-
ode is listed in Figure2.16.To use re
tangular array information, the 
onstraint graph has some spe
ial nodesto represent the sub-arrays. In our re
tangular example ( �gure 2.13 ), a spe
ial nodeA[ is used to represent the se
ond dimension length of A. When the VCA meetsa statement of a = A[i℄ and A is a multidimensional array, it 
he
ks the true nodeset generated by the re
tangular array analysis. When the node is in the true set,dire
ted edges are added between node a and A[. In the example, sin
e the VCAanalysis will determine that lo
al variable N is equal to A[, it is possible to determinethat all array referen
es are safe in the program.2.4 Other Enhan
ementsBesides the multidimensional arrays, the variable 
onstraint graph 
an be extendedto a

ommodate some extra nodes, su
h as 
lass �elds and array referen
es. We havedone this in a very 
onservative way, assuming the worst-
ase aliasing and side-e�e
tinformation. With these 
onservative assumptions we did not �nd mu
h improvementin the result. More a

urate side-e�e
t information may improve the situation.54



Set startNodes = su

essors of FALSE nodeadd startNodes to falseSetadd startNodes to workListwhile workList is not emptynode = workList.removeFirstSet su

s = su

essors of nodefor ea
h su

 in su

sif falseSet does not 
ontain su

add su

 to falseSetadd su

 to workList(a) marking FALSE nodesSet startNodes = su

essors of TRUE nodefor ea
h node of startNodesif falseSet does not 
ontain nodeadd node to trueSetadd node to workListwhile worklist is not emptynode = workList.removeFirstSet su

s = su

essors of nodefor ea
h su

 in su

sif falseSet does not 
ontain nodeand trueSet does not 
ontain nodeadd node to trueSetadd node to workList(b) marking TRUE nodesFigure 2.16: Traverse the graph.
55



We did following extension to our intrapro
edural algorithm. In the liveness anal-ysis, we also add �elds, array elements, and 
ommon sub expressions as lo
als to thelive lo
al sets. For example, a:f , a[i℄, and i � j 
an be added into the live lo
al setsand the 
onstraint graph 
an add edges 
onne
ting them to other nodes.But it should be 
onservative when dealing with an assignment to a �eld or arrayelement sin
e we do not have alias information. Detailed operations are:a = � � �If a is an array type lo
al, all array elements of a[�℄ should be killed. If it is areferen
e type lo
al, all �elds of a:f should be killed.a[i℄ = � � �Sin
e we do not know any alias information, all array referen
e nodes should bekilled. However, if we use the type information of a, we only need to kill thesame type arrays' elements.i = � � �When i is an integer variable. Array elements of �[i℄ should be killed, and allexpressions 
ontaining i, su
h as i � j, should be killed.a.f = � � �Fields of �:f should be killed. Be
ause the de
laring 
lass of a �eld is resolvedby the 
ompiler, f in this statement should be understood as T:f where T isits de
laring 
lass, rather to be interpreted as a symboli
 name f .m(a)When an array or referen
e type lo
al is passed to a method, all related �eldsand array elements should be killed sin
e we do not know the alias informationand the side e�e
t of the method 
all.a.m()A virtual method 
all passes the 
aller as the �rst parameter to the 
alleeimpli
itly, then it has to take the same a
tion as m(a).In our experiment, the enhan
ements in
reased the 
onstraint graph size dra-mati
ally, but the results has very few improvements. In Java appli
ations, methodinvo
ations happen very often, thus the life time of a �eld in the graph is very short.Basi
ally �elds get killed again and again. The same situation happens to array56



elements. The side-e�e
t analysis and alias analysis may help us to make less 
onser-vative assumptions when dealing with assignments and method 
alls.2.5 Null Pointer AnalysisEliminating array bounds 
he
ks is often related to eliminating null pointer 
he
ks.Ea
h array referen
e, for example a[i℄, must �rst 
he
k that the array obje
t refer-en
ed by a is non-null. In many modern 
ompilers null pointer 
he
ks are performedby handling the asso
iated hardware trap if a null pointer is dereferen
ed. In this 
asethe ma
hine ar
hite
ture guarantees a hardware ex
eption if any very low memoryaddresses are read or written. In order to do the upper array bounds 
he
k the lengthof the array must be a

essed, and sin
e the length of the array is usually stored ata small o�set from the obje
t address, this a

ess will trap if a is null. Thus, thearray bounds 
he
k gives a null pointer 
he
k for free. If the array bounds 
he
k iseliminated, then it may be ne
essary to insert an expli
it null pointer 
he
k ( sin
ethe address of a[i℄ may be suÆ
iently large to avoid the null pointer trap, even if ais null ).Our nullness analysis is a fairly straightforward 
ow-sensitive intrapro
edural anal-ysis that is implemented as an extension of the Bran
hedForwardFlowAnalysis 
lassthat is part of the Soot API. The basi
 idea is that variable a is non-null after state-ments of the form a = new T(); and statements that refer to a.f or a[i℄. We alsoinfer nullness information from 
ondition 
he
ks of the form if (a == null). Sin
ethe nullness analysis is intrapro
edural we make 
onservative assumptions about thee�e
t of method 
alls.
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Chapter 3Experimental Results
We have implemented the algorithm in the 
ontext of the Soot framework1. In this
hapter we present and dis
uss the experimental results that we have obtained. Theresults are grouped into three 
ategories:1. We measured the dynami
 
hara
teristi
s of the variable 
onstraint analysis interms of two most important fa
tors a�e
ting the algorithm's performan
e: thesize of variable 
onstraint graphs and the number of iterated blo
ks to rea
h the�xed point.2. In se
tion 3.5, we show the results of the base intrapro
edural analysis, followedby the array �eld analysis and re
tangular array analysis as they are added inseparately, and �nally 
ombined. The results are presented as per
entages oflower and upper bound 
he
ks that 
an be proved safe.3. Our analyses results are en
oded in the attributes of 
lass �les. To measure thereal impa
t to the run-time performan
e of Java programs, we modi�ed Ka�eJIT and HPCJ 
ompiler to read and take advantages of su
h attributes. Therun-time measurements show speed-ups in most of ben
hmarks.In se
tion 3.1, we brie
y introdu
e the implementation of array bounds 
he
ksin a JVM at �rst, whi
h often interleaves with the null pointer 
he
ks. Also wedes
ribe the experimental environment and methodologies. Then we show the stati
and dynami
 
hara
teristi
s of ben
hmarks. We measured two important fa
tors of1A brief overview of the 
ode organization is given in Appendix A58



the analysis, whi
h show the algorithm runs in linear time with respe
t to the sizeof the method body. Finally, we des
ribe in detail how to de�ne the stru
ture of thearray bounds 
he
k attributes and make a VM take advantage su
h attributes.3.1 Experimental MethodOur algorithm is implemented in the Soot framework as an independent pa
kage whi
h
an be found in soot.jimple.toolkits.annotation.arraybounds. A wrapper is
reated to let the Soot main method 
all the analysis a

ording the 
ommand options.In this se
tion, we introdu
e our pro�ling methodology used in our experiment, andthe hardware and software environment in whi
h the experiment is 
ondu
ted.To measure the 
hara
teristi
s of ben
hmarks and the results of the analysis, weneed a pro�ler to tell us the run-time results. This was done by inserting instru
tionsin
reasing an integer 
ounter before ea
h byte
ode whi
h requires array bounds 
he
kor null pointer 
he
k.The experiment was 
ondu
ted on two environments. The �rst one uses Ka�eopen VM 1.05 with JIT engine 3 running on a dual Pentium II 400M PC with 384Mmemory, Linux OS kernel 2.2.8, and glib
-2.1.3. We measured the ben
hmark 
har-a
teristi
s and pro�ling information on Ka�e VM. We also modi�ed the Ka�e JIT
ompiler to take advantage of attributes and 
ompared the results with no attributes.The se
ond part of experiment is 
ondu
ted on IBM's High Performan
e Compiler forJava (HPCJ), whi
h runs on a Pentium III 500M PC with 192M memory, WindowsNT operating system. The HPCJ ahead-of-time 
ompiler understands the attributesand generate improved 
ode for the ben
hmark 
lass �les. We measured the perfor-man
e 
hanges with/without attributes.3.2 Ben
hmarksWe 
hose several ben
hmarks in
luding both general and numeri
al ones: as well asSpe
JVM and s
imark2, LCS , an implementation of a Longest Common Subsequen
ealgorithm, and MCO , an algorithm for �nding an optimal order of matrix multipli
a-tion. Here a brief des
ription of ea
h of the ben
hmarks is presented ( the des
riptionof �rst �ve ben
hmarks 
omes from [29℄ ).59



db : The db ben
hmark performs multiple database fun
tions on memory residentdatabase. It reads in a 1 MB �le whi
h 
ontains re
ords with names, addressesand phone numbers of entities and a 19KB �le 
alled s
r6 whi
h 
ontains astream of operations to perform on the re
ords in the �le.ja
k : Ja
k is a Java parser generator. The workload 
onsists of a �le named ja
k.ja
k,whi
h 
ontains instru
tions for the generation of ja
k itself. This is fed to ja
kso that the parser generates itself multiple times.java
 : This is the Java 
ompiler from the JDK 1.0.2.mpegaudio : This is an appli
ation that de
ompresses audio �les that 
onform tothe ISO MPEG Layer-3 audio spe
i�
ation. From our experiments, we knowthis ben
hmark uses arrays heavily.raytra
e : This is a raytra
er that works on a s
ene depi
ting a dinosaur.s
imark2 : S
iMark 2.0 is a Java ben
hmark for s
ienti�
 and numeri
al 
omputing.It measures several 
omputational kernels whi
h in
lude FFT, SOR, LU matrixfa
torization, Monte Carlo integration, and Sparse matrix multiply. In ourexperiment, we measured the run-time improvement on the �rst three kernelssin
e the algorithm 
an prove most of their array referen
es safe.MCO This is an algorithm 
omputing the matrix-
hain multipli
ation problem. Thefun
tion name is 
alled Matrix-Chain-Order ( see [6℄(p.306) ).LCS This algorithm �nds a maximum-length 
ommon subsequen
e of two sequen
es.Both of MCO and LCS algorithm use two-dimensional arrays as main datastru
tures.The ben
hmarks are 
hara
terized by their size, array referen
e density, and therun-time overhead 
aused by array bounds 
he
ks. Table 3.1 shows ben
hmark 
hara
-teristi
s. All numbers are 
olle
ted from ben
hmark 
ode ( ex
luding the 
lass libraries). The third 
olumn des
ribes the size of ben
hmark as the number of byte
odes of
lass �les in the pa
kage. FFT, LU, and SOR are pa
kaged together in \s
imark2".They share some 
ommon 
lasses, the total size of the \s
imark2" pa
kage is showedin the 
ell. The last two 
olumns, density and overhead, show dynami
 measurementsof the ben
hmarks. The problem size of ben
hmarks from \Spe
JVM98" are set as100. The exe
ution of ben
hmarks from \s
imark2" is spe
i�ed as \LARGE". LCS60



and MCO both have loop size of 3000, whi
h makes the ben
hmarks run long enoughto redu
e the e�e
t of VM initialization. The density is a 
ount of how many arrayreferen
es per se
ond o

ur in the ben
hmark ( not in
luding 
lass libraries ). It is arough estimate of the potential bene�t of array bounds 
he
k elimination. The last
olumn shows the overhead 
aused by array bounds 
he
k instru
tions. To measurethe overhead, we modi�ed Ka�e JIT to turn o� generating bounds 
he
k instru
tionsfor ben
hmark 
ode, then 
ompare the time without 
he
ks against with 
he
ks.name sour
e #byte
ode density overheaddb Spe
JVM98 14526 1,074,979/s 0.4%ja
k Spe
JVM98 31604 29,962/s 1.1%java
 Spe
JVM98 54897 73,861/s 3.8%mpegaudio Spe
JVM98 47265 19,531,665/s 22.3%raytra
e Spe
JVM98 19359 1,054,832/s 1.7%FFT s
imark2 8,667,594/s 5.1%LU s
imark2 2303 23,120,315/s -0.9%SOR s
imark2 14,528,328/s 11.3%LCS 255 58,384,589/s 13.9%MCO 418 33,659,647/s 15.1%Table 3.1: Chara
teristi
s of the ben
hmarksThe Spe
 ben
hmarks are relatively large, while the other �ve ben
hmarks arerelatively small. From the density of array referen
es and the run-time overhead ofbounds 
he
ks, we 
an see `mpegaudio' has a large overhead, as do LCS, MCO andthree sub-ben
hmarks in s
imark2. (The LU ben
hmark exhibits a negative overhead,whi
h is probably due to the impa
t of instru
tion 
a
hes after we removed bounds
he
k instru
tions, we also �nd su
h impa
t in later experiments.) These ben
hmarksare all typi
al examples of array-intensive programs. Other ben
hmarks in our studyserve as examples of normal programs whi
h are less array intensive, but also re
e
tthe dynami
 
hara
teristi
s of the algorithm in the next se
tion.3.3 Dynami
 
hara
teristi
s of the algorithmAs we analyzed in the se
tion 2.1.5, the theoreti
al upper bound of the variable
onstraint analysis 
an be exponential. To understand the real 
ost of the algorithm,61



we 
hose to measure two fa
tors: the 
onstraint graph size and the number of blo
ksiterated by the worklist algorithm.Table 3.2 shows some of the dynami
 properties of our algorithm applied to thedi�erent ben
hmarks. The Blo
ks 
olumn gives the number of basi
 blo
ks in theprogram, while the NonZero Blo
ks 
olumn gives the number of blo
ks that havenon-empty live sets for lo
al variables, and so non-empty 
onstraint graphs. OnlyNonZero blo
ks were used in the 
al
ulation of average and maximum 
onstraintgraph sizes, and every ( non-empty ) 
onstraint graph in
ludes at least one node forthe 
onstant zero. From this, the size of the 
onstraint graphs is quite reasonable:average size never ex
eeds 10 nodes, and maximum size no more than 13. These arequite pra
ti
al fa
tors.Name Graph size Blo
ks Iter NonZero(avg) (max) (avg) Blo
ksdb 3.17 6 280 1.28 89ja
k 2.5 6 2076 1.04 1892java
 2.45 6 3347 1.27 1631mpegaudio 3.42 10 6987 1.10 6670raytra
e 2.56 6 626 1.31 476s
imark2 5.8 12 388 1.79 301LCS 9 13 59 2.8 55MCO 4.6 11 98 2.0 95Table 3.2: Chara
teristi
s of the algorithmThe Iter 
olumn is the average number of times a blo
k is pro
essed as the analysisiterates toward a �xed point. It is a good indi
ator how long the analysis will run,and suggests that in a pra
ti
al sense the running time of our algorithm is linear inthe 
ode size. There is an impa
t due to loop nesting; in small ben
hmarks, LCS,MCO and s
imark2, the 
ode bodies are dominated by nested loops and hen
e, thefa
tor is higher than other ben
hmarks. Nevertheless, the fa
tor remains relativelysmall overall.
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3.4 Array Bounds Che
k AttributesAfter the analysis phase the 
ow information is asso
iated with JIMPLE statements.The next step is to propagate this information so that it will be embedded in the
lass �le attributes. This is done by �rst tagging the JIMPLE statements, and thenspe
ifying a tag aggregator whi
h pa
ks all the tags for a method into one aggregatedtag. The pro
ess of tagging/attributing is des
ribed in [23℄.We �rst outline the attribute as it eventually appears in the generated 
lass �le.The stru
ture of the array bounds attribute is quite straightforward. It has the name"ArrayNullChe
kAttribute". Figure 3.1 shows the format of the array bounds 
he
kattribute as it will be generated for the 
lass �les.array_null_
he
k_attribute{ u2 attribute_name_index;u4 attribute_length;u3 attribute[attribute_length/3℄;}Figure 3.1: Array Bounds Che
k AttributeThe value of attribute name index is an index into the 
lass �le's 
onstant pool.The 
orresponding entry at that index is a CONSTANT Utf8 string representing thename "ArrayNullChe
kAttribute". The value of attribute length is the lengthof the attribute data, ex
luding the initial six bytes. The attribute[℄ �eld is a tablethat holds the array bound 
he
k information. The attribute length is 3 timeslarger than the table size. Ea
h entry 
onsists of a PC (the �rst two bytes) and theattribute data (last one byte), totaling three bytes. These pairs are sorted in thetable by as
ending PC value.The least two bits of the attribute data are used to 
ag the safety for the two arraybounds 
he
ks. The bit is set to 1 if the 
he
k is needed. The null 
he
k informationis in
orporated into the array bounds 
he
k attribute. The third lowest bit is usedto represent the null 
he
k info. Other bits are unused and are set to zero. Thearray referen
e is non-null and the bounds 
he
ks are safe only when the value of theattribute is zero. 63



After generating the annotated 
lass �le, we need to make a JVM aware of at-tributes and have it use them to improve its generated native 
ode. We modi�edboth Ka�e's OpenVM 1.0.5 JIT and IBM's HPCJ ahead-of-time 
ompiler to takeadvantage of the array bound attributes. Below we des
ribe the modi�
ations neededfor Ka�e. The modi�
ations to HPCJ are similar.The Ka�eVM JIT reads in 
lass �les, veri�es them, and produ
es native 
ode ondemand. It uses the ' methods' stru
ture to hold method information. We added a�eld to the ' methods' stru
ture to hold the array bounds 
he
k attribute. Figure 3.2shows the data stru
ture.typedef stru
t _methods {........soot_attr attrTable;} methods;typedef stru
t _soot_attr{u2 size;soot_attr_entry* entries;} soot_attr;typedef stru
t _soot_attr_entry {u2 p
;u1 attribute;} soot_attr_entry;Figure 3.2: Modi�ed Ka�e Internal Stru
tureWhen the VM reads in the array bounds 
he
k attribute of the Code attribute,it allo
ates memory for the attribute. The <PC, data> pairs are then stored in theattribute table. The pairs were already sorted by PC when written into the 
lass �le,so no sorting has to be done now.The Ka�e JIT uses a large swit
h statement to generate native 
ode for byte
odes.It goes through the byte
odes sequentially. We use the 
urrent PC as the key to lookup the array bounds 
he
k attribute in the table before generating 
ode for arrayreferen
es. Be
ause attribute pairs are sorted by as
ending PC, and byte
odes are64



pro
essed sequentially, we 
an use an index to keep the 
urrent entry in the attributetable and use it to �nd the next entry instead of sear
hing the whole table. Figure3.3 gives the pseudo-
ode.idx = 0;...
ase IALOAD:...if (attr_table_size > 0) {/* the method has attributes. */attr = entries[idx℄.attribute;idx++;if (attr & 0x03)/* generates bounds 
he
k instr. */
he
k_array_index(..);elseif (attr & 0x04)/* null pointer 
he
k instr. */expli
it_
he
k_null(..);}else/* normal path */
he
k_array_index(..);Figure 3.3: Using attributes in Ka�eVMIn se
tion 2.5, we dis
ussed the subtle relationship between array bounds 
he
k andnull pointer 
he
k for an array referen
es. Here, we turn o� bounds 
he
k instru
tionswhen the array referen
e is non-null and both bounds are safe. We also insert null
he
k instru
tions at the pla
e where bounds 
he
k instru
tions 
an be removed butthe null 
he
k is still needed. The 
he
k array index fun
tion emits following 
odefor 
he
king array bounds:
mp reg1, [reg2+off℄jge outofboundserrorand the expli
it 
he
k null generates instru
tions for 
he
king null pointers:
mp reg1, 0je nullpointerex
eption65



HPCJ uses a slightly di�erent s
heme to handle bounds 
he
ks. If array bounds
he
ks are required, a test-and-bran
h 
ode sequen
e is inserted prior to the arraya

ess : mov eax,[ebx+offset℄
mp eax,edxjge outofboundserrorWhen only bounds 
he
ks are proved to unneed, the null pointer 
he
k is a

omplishedby a test instru
tion:test eax,[eax℄The reason for using di�erent 
he
k instru
tions in two experiments is that we utilizedexisting routines in the two systems.3.5 Dynami
 Results and Dis
ussionFigure 3.4(a) shows the per
entage of bounds 
he
ks that our basi
 intrapro
eduralanalysis is able to dete
t as safe to remove. Note that these are dynami
 statisti
s,obtained by instrumenting the 
lass �les and inserting pro�ling instru
tions beforeea
h array referen
e byte
ode. Lower bounds and upper bounds are measured sepa-rately in the �rst two bars for ea
h ben
hmark, while the last bar gives the per
entageof array referen
es with both safe 
he
ks.The intrapro
edural algorithm 
an determine that a fairly high per
entage ofthe lower bound 
he
ks are safe. Safety of upper bound 
he
ks is more diÆ
ult toas
ertain. Still, the results for the array-intensive ben
hmarks (rightmost �ve) areen
ouraging; these are the ben
hmarks whi
h will bene�t the most, and also in whi
hwe a
hieve the best results.Figure 3.4(b) gives the per
entage of 
ases where both upper and lower bounds
he
ks 
ould be determined to be safe. The se
ond and third bars are from the basi
intrapro
edural algorithm augmented with either array �eld analysis or re
tangulararray analysis; the last bar represents the intrapro
edural algorithm with both array�eld and re
tangular array analyses.By analyzing the �elds holding 
onstant length array obje
ts, the intrapro
eduralanalysis 
an get more information about �eld a

esses. The su

ess of this method,66
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 Results of VCAhowever, depends on the appli
ation: `mpegaudio' and `raytra
e' improve greatly,while others are more or less una�e
ted ( Figure 3.4(b) ). Re
tangular array analysisalso proves to be very appli
ation-dependent. It is of bene�t only to those ben
hmarksusing multidimensional arrays. LU, SOR, and LCS and MCO improve dramati
allywith the addition of this analysis.The last experiment shows the result of the 
ombined use of �eld and re
tangularanalyses. Be
ause these are essentially independent analyses, the 
ombined improve-ment is 
lose to the sum of the improvements seen individually. With most of ourben
hmarks this brings the per
entage of 
he
ks we 
ould eliminate to 50% or more;again, array-intensive ben
hmarks fare best, and in some 
ases we identify almost100% of array bounds 
he
ks as safe.Relative run-time performan
e improvements for the instrumented versions of theKa�e JIT and HPCJ are given in Figure 3.5. Both systems were modi�ed to read thearray attribute information stored within the 
lass �le and to apply that data during67




ode generation.
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) HPJC (other optimizations on)Figure 3.5: Speed-ups for Ka�e and HPCJIf an array a

ess is deemed safe from the attribute information, no su
h 
he
ksare 
reated|this is done during a
tual (just-in-time) 
ode generation for Ka�e, andat an internal, intermediate stage for HPCJ. In the latter 
ase, this eliminates the68



potential array bounds ex
eption that may restri
t subsequent internal optimizations,resulting in di�erent 
ode output. For this reason we present results with and withoutHPCJ's own optimizations applied.Finally, note that every array a

ess is an obje
t a

ess, and so null pointer 
he
ksare also required at these points. Depending on ma
hine ar
hite
ture and how ob-je
ts are organized, this 
he
k 
an be 
ombined with the array bounds 
he
k, andso removing the latter may require inserting expli
it null pointer 
he
ks [23℄. Bestperforman
e results therefore o

ur when both kinds of 
he
ks are eliminated. Ourresults in
lude this optimization.In ea
h 
ase the result of using the intrapro
edural analysis 
ombined with both�eld and re
tangular analyses is 
ompared with the e�e
t of arti�
ially disablingall bounds 
he
ks. A 
ouple of 
ases (LU in Ka�e, FFT in HPCJ (opt)) exhibitinteresting anomalous results that we have been able to attribute to 
ode 
a
he e�e
ts.In all other 
ases, however, we a
hieve signi�
ant performan
e in
reases, roughly
orresponding to the quality of information we were able to 
olle
t.
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Chapter 4Related Work
Array bounds 
he
k optimization has been performed for other languages, su
h asPas
al, Fortran, and Ada[22℄, for a long time. We �rst dis
uss some related workdeveloped on other languages. These algorithms 
an not be dire
tly applied to Javaprograms be
ause of its unique requirement of pre
ise ex
eptions ( Ada shares thissame property ). However, another unique property of Java is that multidimensionalarrays are de�ned as array of arrays, whi
h prevents many existing methods fromapplying on Java. New solutions have been emerging sin
e the introdu
tion of Java.We will dis
uss more details in the following text.W.H.Harrison[14℄ des
ribed an algorithm for value ranges analysis. The algorithm
onsists of two me
hanisms 
alled range propagation and range analysis. Range prop-agation uses the data and the 
onditional stru
ture of a program to derive and propa-gate symboli
 range information. Targeting 
omplex 
ontrol 
ow stru
tures ( loops ),range analysis tra
ks the 
hanges applied to a variable at ea
h point in a loop of theprogram. The information is used to derive a range of values for the loop variable.The resulting range information 
an be used to eliminate unne
essary tests and pro-du
e diagnosti
 information. While this was a novel idea to redu
e redundant testsat that time, the simple me
hani
al propagation of symboli
 value 
an only prove asmall part of safe 
he
ks.The problem of run-time overhead of array bounds 
he
ks was �rst addressed byMarkstein et. al. [18℄. R. Gupta[12, 13℄ extended their work by using data-
owanalysis to eliminate redundant 
he
ks, propagate 
he
ks out of loops, and 
ombinemultiple 
he
ks into a single 
he
k. The algorithm has the same prin
iple as partialredundan
y elimination. It relies on hoisting 
he
k instru
tions to the earlier point.70



Several kinds of 
he
ks 
an be subsumed: identi
al 
he
ks, 
he
ks with identi
albounds, and 
he
ks with identi
al subs
ript expressions. Kolte et.al. [16℄ extendedGupta's algorithm in a partial redundan
y elimination framework. A fundamentalassumption of the algorithms is that the ex
eption 
an be thrown at the point beforeoriginal ex
eption point ( remember that Figure 1.2(b) showed su
h an example ).This assumption is a

eptable when working on languages that do not require pre
iseex
eptions. Java does not allow an ex
eption to happen before the pla
e it reallyshould be. However, a more basi
 problem with this type of algorithm is that thelanguage should be able to express and modify 
he
ks expli
itly, where byte
odeinstru
tions 
an not do that.There are several algorithms targeting di�erent problems involved in removingbounds 
he
k overhead for Java. S
ienti�
 
omputing programs use multidimensionalarrays. Be
ause of Java's loose multidimensional array stru
ture, it is very hardto optimize su
h programs. Moreira et.al. [21, 19, 20℄ designed an Array pa
kagefor two- and three-dimensional arrays. The pa
kage provides Fortran 90-like arrayfun
tionality ( all array operations are performed through method 
alls ). Internally,a multidimensional array is implemented by a one-dimensional array. To a
hievegood performan
e, an inlining te
hnique is used to redu
e the overhead 
aused bymethod 
alls, and a spe
ial regioning or loop-versioning te
hnique is used to 
reatesafe regions for array a

esses, and thus, remove unneeded array bounds 
he
ks. Thealgorithm only works on loops and relies on underlying virtual ma
hine to be awareof the Array pa
kage and perform unusual optimizations on it.Some JIT 
ompilers perform array bounds 
he
k elimination when translatingbyte
ode to native 
ode. The Intel JIT[5℄ performs analysis to approximate the rangethat an array might a

ess within a loop. In the 
ase of a known range, a spe
ial 
he
k-free loop body is 
reated, while the bounds 
he
k 
ode is inserted outside the loop.The IBM JIT[30℄ uses the same te
hnique 
alled loop versioning, but also has a data-
ow analysis to analyze 
he
ks not in a loop. The data-
ow analysis is an extensionof Gupta's algorithm. Both of two 
ompilers have to obey the pre
ise ex
eptionrequirement of Java. A basi
 poli
y is to not moving 
he
ks over any byte
ode whi
hhas side-e�e
t ( e.g., memory a

ess, byte
ode may 
ause other ex
eptions ). Loopversioning also 
an 
ause 
ode explosion. So the appli
ation of the optimization islimited by some parameters: the 
ode size of loop body, the innermost loops, and soon.More re
ently, Bodik et. al. [3℄ presented an algorithm 
alled ABCD ( EliminatingArray Bounds Che
ks on Demand ) for general Java appli
ations, The algorithm uses71



a di�erent form of 
onstraint graphs to solve bounds 
he
ks. The algorithm �rstsplits lo
als' de�nitions and uses a

ording the value range 
onstraints. It builds anextended SSA ( stati
 single assignment ) form for a method body. In this e-SSAform, all uses of a variable would have the same value range whi
h 
an be derivedfrom the program. For example, assignments 
an 
hange a variable's value range as inordinary SSA form, and array referen
es and 
onditional bran
hes 
an also bound thevalue range of the index or 
ondition variables in the s
ope after them. Thus, thesestatements are treated as assignments in the SSA algorithm. The e-SSA guaranteesthat all uses ( by name ) of a variable are bounded by the same 
onstraints, the valuerange, at the run-time. The value range 
ould be an approximation. Based on the newform, a 
onstraint graph is 
onstru
ted, where nodes are lo
als and 
onstants, andweighted edges are 
onstraints representing inequality relationship between nodes.To infer the relationship between array and index, the shortest path between themis solved by a 
ustomized depth �rst sear
h algorithm whi
h spe
ially handles the �nodes in the graph. If the shortest path length is less than zero, the upper bound
he
k for that array referen
e is unneeded. The lower bound 
an be eliminated if theweight of the shortest path from array index to the node of 
onstant 0 is greater orequal to 0. At ea
h 
ontrol 
ow joint point (� node), the weakest 
onstraint has tobe taken.Our VCA shares some similarities with theirs, both are using inequality graphs torepresent 
onstraints. However, there are several di�eren
es between our algorithmand ABCD approa
h:1. The ABCD algorithm is based on an extended SSA form, and uses one graph tosummarize 
onstraints from all statements in a method. Thus, the 
ontrol-
owinformation is in
luded in the 
onstraint graph. Our VCA approa
h does notrely on any underlying program representation form, it uses a �xed number ofsmall program-point spe
i�
 
onstraint graphs.2. Based on e-SSA form, the ABCD algorithm 
an be used in a demand-drivenmanner. Ea
h demand (query) is solved individually, and may be performedon sele
ted array referen
es that o

ur in hot spots. Ea
h query is relativelyinexpensive. The VCA approa
h is designed to prove all array referen
es aton
e. It builds 
onstraint graphs and solves 
onstraints in relatively expensive
osts, but the results are available for all array referen
es immediately.3. The VCA approa
h keeps 
onstraints of lower and upper bounds in the samegraph, whi
h is not the 
ase in the ABCD approa
h.72



4. ABCD is 
apable of 
at
hing partial redundant bounds 
he
ks. VCA is not ableto do that 
urrently.5. In some 
ases, a program-point spe
i�
 graph 
an hold some impli
it 
onstraintswhere a summary graph based on a SSA representation form 
annot. Figure4.1 illustrates this point. Given the program segment in Figure 4.1(a), ourVCA algorithm builds the 
onstraint graph shown in Figure 4.1(b), whereasthe ABCD algorithm builds the graph shown in Figure 4.1(
). Note that in theABCD graph, 
onstraints are only en
oded along the dire
tion of the 
ontrol
ow (for example, the assignment i = k + 2; results only in one edge, from kto i). Given this graph, it is not possible to �nd the safe upper bound at p2.However, sin
e VCA 
olle
ts a separate graph for p2, and the 
onstraint gainedfrom p1 is also applied to i and q, it is possible to show that the bounds aresafe at program point p2.6. In our algorithm, the 
onstraint graph serves as the basis of other two analyses.We 
an see, for 
ertain type appli
ations, the impa
ts of the analyses are sig-ni�
ant. Currently it is not 
lear how 
lass �elds and multidimensional arraysinformation 
an be used to help the ABCD algorithm.VCA may not be faster than the ABCD algorithm, although the te
hniques weused make our algorithm run at a reasonable speed. In some SPEC JVM98 ben
h-marks, VCA 
an prove nearly same per
entages of safe upper bound 
he
ks as reportedin [3℄. With array �eld analysis and re
tangular array analysis, VCA 
an outperformABCD signi�
antly. Experiments show that VCA with re
tangular array analysisis very e�e
tive on mi
ro ben
hmarks using two-dimensional arrays. We also thinkthe approa
h of formulating a problem in 
onstraint graphs and solving it by usingdata-
ow analysis 
an be useful for other problems.The general idea of using the single-sour
e shortest-path of an inequality graphto solve systems of di�eren
e 
onstraints has been stated in [6℄(p.539-p.545).R. Shaham et. al. [27, 26℄ des
ribed an algorithm for identifying live regions ofarrays to dete
t array memory leaks in Java. In their work, the representation andanalysis are very similar as our VCA. Constraint graphs and data-
ow analyses areused to 
ompute inequalities between variables. However, their fo
us is on �ndingrelationships between spe
ial 
lass �elds a
ross method boundaries based on super-graphs of a few parti
ular library 
lasses. Although the supergraph 
an make our�eld analysis more powerful, our VCA approa
h fo
uses on intrapro
edural analysis73



       i = k + 2;


p1:  a[i] ... ;


       j = k + 1;


p2:  a[j] ... ;
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Figure 4.1: Comparing the VCA and ABCD 
onstraint graphs.for general Java appli
ations, and we handle di�erent statements in more detail. An-other important aspe
t of our VCA approa
h is that we use di�erent te
hniques toredu
e the 
ost of data-
ow analysis, su
h as limiting 
onstraint graph node size, andenfor
ing iteration in pseudo-topologi
al order.Compared with other algorithms, our VCA works on byte
ode level and does not
hange the program. The analysis results are en
oded in the 
lass �le attributes.Thus, there are no problems with pre
ise ex
eption semanti
s. It is 
apable of pre-serving information from various sour
es. Although it uses a relatively sophisti
atedabstra
tion for the data-
ow analysis, the te
hniques used in the algorithm redu
ethe overhead to a minimum. VCA 
an be very easily extended to take advantage ofresults from other analyses. We demonstrated how the two extended algorithms 
animprove the analysis results dramati
ally for array intensive ben
hmarks.Ghemawat et. al. [9℄ des
ribed an algorithm 
alled �eld analysis whi
h exploitsthe de
lared a

ess restri
tions pla
ed on �elds in a modular language. Java programsare based on 
lasses. Classes, �elds, and methods have modi�ers whi
h limit a

essto them. Some �elds with modi�ers private, or final 
an only be a

essed in alimited s
ope. By s
anning the 
ode in the s
ope, all possible value or obje
t thata �eld 
an hold at the run-time is determinable. They implemented the algorithmin the Swift optimizing 
ompiler [25℄. The analysis results is used by other analysesfor obje
t inlining, sta
k allo
ation, and syn
hronization removal. They reported anaverage 7% speedups.To target the s
ienti�
 programs whi
h use multidimensional arrays frequently, ourre
tangular array analysis provides very important information to the VCA, whi
hhelps the 
onservative VCA remove almost hundred per 
ent bounds 
he
ks in some74



typi
al appli
ations. To the best of our knowledge, very few other works takes advan-tage of knowing array shapes. Further, we believe the array shape information 
analso help memory layout of array obje
ts in a virtual ma
hine[4℄.
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Chapter 5Con
lusions
In this thesis we have presented a 
olle
tion of te
hniques for eliminating array bounds
he
ks in Java. Our base analysis, variable 
onstraint analysis (VCA), is a 
ow-sensitive intrapro
edural analysis that approximates the 
onstraints between impor-tant program variables at program points 
orresponding to array a

ess statements.The analysis has been made eÆ
ient by redu
ing the size of the graphs, 
hoosing anappropriate worklist order, and applying a widening at loop entry points. As shownin the experimental results, the size of the graphs is small (around 10 nodes for ourben
hmarks), and the average number of iterations per basi
 blo
k is always less than3. In order to improve the pre
ision of the base VCA analysis, we have des
ribedtwo additional te
hniques. Array �eld analysis is applied to ea
h 
lass to �nd thosearray type �elds that always hold an array with a �xed 
onstant length. Re
tangulararray analysis is applied to whole programs to �nd those variables that always referto re
tangular, non-ragged, arrays. Given the information from these analyses, theintrapro
edural VCA analysis was improved to in
lude information about �elds, andupper dimensions for multidimensional arrays.Our analyses were implemented in the Soot optimization/annotation framework,and we provided dynami
 results that showed the e�e
tiveness of the base VCAanalysis and the in
remental improvements due to �eld and re
tangular array analysis.These results were quite en
ouraging and demonstrated that almost all 
he
ks 
ouldbe eliminated for those ben
hmarks with very regular 
omputations. We also providedexperimental results for Ka�e and IBM's HPCJ to demonstrate that signi�
ant run-time savings 
an be a
hieved as a result of the analysis.76



Our next phase of work will be to integrate a side-e�e
t analysis into the frame-work, and improve upon information for arrays stored in obje
ts. To extend 
onstraintgraphs to represent other arithmeti
 operations is a very interesting topi
.
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Appendix AImplementation 
lasses in Soot
Classes implementing three analyses lo
ate in the dire
tory rooted from Soot proje
t:%SOOTDIR%/soot/jimple/toolkits/annotation/array
he
k/. The 
lass �les arelisted below:Array2ndDimensionSymbol.javaArrayBoundsChe
ker.javaArrayBoundsChe
kerAnalysis.javaArrayIndexLivenessAnalysis.javaArrayReferen
eNode.javaBoolValue.javaBoundedPriorityList.javaClassFieldAnalysis.javaExtendedHashMutableDire
tedGraph.javaFlowGraphEdge.javaIntContainer.javaMethodLo
al.javaMethodParameter.javaMethodReturn.javaRe
tangularArrayFinder.javaWeightedDire
tedEdge.javaWeightedDire
tedSparseGraph.javaThe ArrayBoundsChe
ker 
lass is a wrapper handling parameters and 
alling82



other analyses. The ArrayBoundsChe
kerAnalysis implements VCA, and the Weighted-Dire
tedSparseGraph implements VCG. The ClassFieldAnalysis and Re
tangular-ArrayFinder implement array field analysis and re
tangular array analysisrespe
tively. Other 
lasses are utility 
lasses.
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