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Abstrat
The Java programming language requires array referene range heks at run timeto guarantee a program's safe exeution. If the array index exeeds the range, therun-time environment must throw an IndexOutOfBoundsExeption at the preiseprogram point where the array referene ours. Compilers generate onditionalbranh instrutions for implementing array bounds heks. A branh instrutionhas great performane penalties in modern pipelined arhitetures. Also, it makesmany other optimizations diÆult. For array-intensive appliations, array boundsheks may ause a heavy run-time overhead, and thus it is bene�ial to eliminateall heks whih a stati analysis an prove to be unneeded. Array bounds heksare required by some other languages suh as Ada and Fortran, and some boundshek elimination algorithms have been developed for these kinds of languages. How-ever, these algorithms are not diretly appliable for Java appliations beause of thepreise-exeption requirement of the language.We present a new approah to eliminate array bounds heks in Java by usingstati analyses. Our approah is based upon a ow-sensitive intraproedural analysisalled variable onstraint analysis (VCA). VCA ollets onstraints between loalsrelated to array referenes. The array bounds hek problem is formulated as solvinga system of di�erene onstraints. The analysis builds a small onstraint graph foreah important point in a method, and then omputes the shortest-path weight ofthe graph. The shortest-path weights from upper bound to array index and from theindex to lower bound indiates the safety of heks. Using VCA as the base analysis,we also show how two further analyses an improve the results of VCA. Array �eldanalysis is applied on eah lass and provides information about some arrays stored in�elds, while retangular array analysis is an interproedural analysis to approximatethe shape of arrays, and is useful for �nding retangular (non-ragged) arrays.

ii



We have implemented all three analyses using the Soot byteode optimization/anno-tation framework and we transmit the results of the analysis to virtual mahines usinglass �le attributes. We have modi�ed the Ka�e JIT, and IBM's High PerformaneCompiler for Java (HPCJ) 1 to make use of these attributes, and we demonstratesigni�ant speed-ups.

1The experiment on HPCJ was onduted by Clark Verbrugge.iii



R�esum�e
Le langage Java v�eri�e les valeurs des indies de tableaux durant l'ex�eution pourgarantir une ex�eution sûre. Si l'indie est sup�erieur �a la taille du tableau, l'environne-ment d'ex�eution produit une exeption IndexOutOfBoundsExeption �a l'endroitpr�eis du programme o�u l'indie de tableau fautif apparâit. Les ompilateurs g�en�erentdes instrutions de branhements onditionnels pour impl�ementer ette v�eri�ation.Une instrution de branhement est tr�es p�enalisante dans les arhitetures en pipelinemodernes, et rend diÆiles beauoup d'autres optimisations. Pour les appliations quiutilisent beauoup de tableaux, la v�eri�ation des limites de tableaux peut auser uneimportante augmentation du temps d'ex�eution, et il serait don b�en�e�que d'�eliminertoutes les v�eri�ations qu'une analyse statique r�ev�elerait inutiles. Les v�eri�ations delimites de tableaux sont n�eessaires pour ertains langages omme Ada et Fortran, etdes algorithmes d'�elimination ont �et�e d�evelopp�es pour eux-i. Or es algorithmes nesont pas diretement appliables �a Java de par la pr�esene du m�eanisme d'exeptionsdu langage.Nous pr�esentons une nouvelle approhe pour �eliminer les v�eri�ations de limitesde tableaux en Java par des analyses statiques. Notre approhe est bas�ee sur uneanalyse intrapro�edurale et "ow-sensitive" appell�ee analyse �a ontraintes variables(VCA). La VCA ollete les ontraintes entre variables loales li�ees aux indies detableaux. Le probl�eme des v�eri�ations de limites de tableaux est formul�e omme unsyst�eme de di��erene de potentiels. L'analyse onstruit un petit graphe de ontraintespour haque point important de la m�ethode et alule la valeur du plus ourt hemindu graphe. Les valeurs des plus ourts hemins de la limite sup�erieure �a la valeur del'indie et de l'indie �a la limite inf�erieure indiquent l'utilit�e de la v�eri�ation. Enutilisant VCA omme analyse de base, nous montrons aussi omment deux analy-ses plus pouss�ees peuvent am�eliorer les r�esultats. L'analyse des hamps tableaux estappliqu�ee sur haque lasse et fournit des informations sur ertains tableaux utilis�esiv



dans les hamps, tandis que l'analyse de tableaux retangulaires est une analyse inter-pro�edurale d'approximation de la forme des tableaux multi-dimensionnels, qui estutile pour trouver les tableaux retangulaires.Ces trois analyses ont �et�e impl�ement�ees ave la struture d'optimisation et d'anno-tation Soot grâe �a laquelle nous transmettons les r�esultats de nos analyses aux ma-hines virtuelles Java par le biais des attributs des �hiers lasses. Nous avons modi��ele JIT de Ka�e, ainsi que le High Performane Compiler for Java (HPCJ) d'IBM 2pour utiliser es attributs et nous montrons les am�eliorations signi�atives qui enr�esultent.

2L'exp�eriene sur HPCJ a �et�e r�ealis�ee par Clark Verbrugge.v
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Chapter 1Introdution
The Java programming language is beoming inreasingly popular for the implemen-tation of a wide variety of appliation programs, inluding loop-intensive programsthat use arrays. Java o�ers many desirable features suh as objet-oriented softwaredesign, ross-platform portability, safe exeution, and many support lass libraries.By programming in Java, a programmer an inrease produtivity while writing safeode. Also the program an be written one and run everywhere. These attrativefeatures, however, ause performane penalties. The objet-oriented feature relies onvirtual method alls; the ross-platform portability is aomplished by interpretingand/or just-in-time ompiling byteode; and the safety is seured by various om-piler and run-time heks, e.g, lass �le veri�ation, array bounds heks, null pointerheks, and type heks. Beause of these expensive operations, a Java programusually is muh slower than its ounterpart in C/C++.A Java program is ompiled to a lass �le in byteode format. The byteode lass�le is exeuted by a virtual mahine (VM). The Java programming language has itsown spei�ation [10℄, whih de�nes the syntax and semantis of the language. TheJava virtual mahine spei�ation [17℄ de�nes the byteode format and the run-timesupport environment. The byteode lass �le an be exeuted in several ways. Inan internet environment, the lass �le is loaded and exeuted by a virtual mahine.The VM an interpret the byteode, or use a Just-In-Time ompiler to translatethe byteode to native ode and exeute it by hardware diretly. In this ase, theinterpretation and/or ompilation time ontributes to the total exeution time of theprogram. In other �elds, suh as sienti� omputations and real-time appliations,1



all the lass �les of the appliation an be ompiled to native ode by an Ahead-Of-Time (AOT) ompiler before exeution. In this ase, the ompilation time anusually be ignored.To speed up the exeution of Java programs, a general approah is to build asophistiated virtual mahine, whih inludes a lass �le loader and veri�er, an in-terpreter and/or JIT ompiler(s), and a garbage olletor. A naive JIT ompiler [15℄translates byteode to native ode without performing many optimizations ( it mayperform some simple optimizations within basi bloks ). Sophistiated JIT ompilers[5, 30, 1, 11℄ apply traditional and adaptive optimizations on the proess of transla-tion. It has been proved that Just-In-Time ompilation makes the exeution of Javaprograms muh faster than interpretation. Beause the ompilation time aounts apart of the program exeution time, a JIT ompiler an not a�ord many advanedoptimizations whih are usually expensive.Another approah to improve the performane of Java programs is to optimizethe byteode and perform relatively expensive analyses statially. The optimizationsan target either spae redution, whih removes unused �elds and methods fromlass �les, or performane improvement. Many traditional analyses an be appliedto byteode and produe good-quality byteode lass �les. Suh optimizations in-lude ommon subexpression elimination, deadode removal, stati inlining, and soon. Another group of analysis results annot be reeted by transforming byteodediretly, for example, array bounds hek elimination, type hek removal, and stakobjet alloation. But these analysis results an be used by a virtual mahine or anAhead-Of-Time ompiler ( the optimizations an be built in AOT ompilers ). Theanalyses are not limited in ompilation from byteode to native ode, they an alsoimprove memory management, task organization, and so on. This approah movesthe performane burden from running time to stati ompilation time, and allows usto optimize the lass �le one for reuse by many VMs at any time.The fous of this thesis is on reduing the run-time overhead aused by arraybounds hek instrutions ( and partially null pointer hek instrutions ). We areusing stati analyses to analyze Java appliations at the byteode level. The resultsare enoded in the lass �le as attributes. A JIT or AOT ompiler understands theattributes and removes the bounds hek instrutions whih are marked as unnees-sary. The algorithm an also be implemented in an AOT ompiler. Although thealgorithm was developed for Java, it also an be implemented in ompilers for otherimperative languages whih require array bounds heks.2



The rest of this hapter is organized as follows. Setion 1.1 introdues the prob-lem of array bounds hek elimination in Java. Setion 1.2 desribes the frameworkon whih our analyses are implemented. Thesis ontribution and organization arepresented in Setions 1.3 and 1.4.1.1 Array bounds heks in Java: the problemIn languages like C, a major soure of potential errors is illegal memory aesses. Forexample, writing to the region outside of an array an ause unantiipated onse-quenes. Java provides seure and safe exeution of programs. As part of the safetysystem, array bounds heks are used to detet memory violations due to illegal arrayaesses. The Java language spei�ation requires that an exeption has to be raisedfor any array aess in whih the array index expression evaluates to be out of bounds.Figure 1.1 gives several examples that raise IndexOutOfBoundsExeptions. In ad-dition to the IndexOutOfBoundsExeption exeption, an array referene will throwa NullPointerExeption if the array objet is null, and the virtual mahine willnot hek the array bounds. The Java language spei�ation also requires that theexeption has to be thrown at the preise point where the exeption happens beauseuser ode an ath suh exeptions or dump stak traes for debugging purposes.Exeution of an array referene byteode ( e.g, iaload, istore ) needs a null pointerhek �rst, and then heks of both lower and upper bounds. The lower bound ofan array referene is �xed to the onstant 0, and the upper bound is 1 less than thearray length stored in the array objet. Both lower and upper bounds heks mustbe satis�ed. The exeptions for lower and upper bounds heks are the same.int a = new int[10℄;(1) a[-1℄ = ...; // lower bound out of range(2) a[10℄ = ...; // upper bound out of range(3) for (i=0; i<=a.length; i++)a[i℄ ... ; // upper bound out of rangeFigure 1.1: IndexOutOfBoundsExeption examples3



A diret implementation of heks for one array referene adds three onditionalbranh instrutions: 1) if the address of the array objet equals zero, branh to aroutine raising a null pointer exeption, 2) if the index is less than zero, raise anarray bounds out of range exeption, and 3) after reading in the array length, if theindex is greater than the array length minus 1, raise an array bounds out of rangeexeption. Some well-known tehniques an redue three branh instrutions to onein most of modern arhitetures ( e.g, x86, PPC ). The null pointer hek does notneed an expliit hek instrution when the hardware is apable of athing memoryaesses to the �rst page ( page address starting from zero ). Usually the arraylength �eld is loated near the objet head. Thus, reading in the �eld from a nullobjet would ause a hardware trap and the trap handler would raise a null pointerexeption. Lower and upper bounds heks an be implemented by one unsignedomparison instrution beause any negative integer is greater than any positive onewhen it is treated as an unsigned integer.Although we an use the above tehniques to redue the ost of heks, at leastone onditional branh instrution is still needed for eah array aess. A naive JIT orAOT ompiler inserts heks for eah array aess, whih is learly ineÆient. Theseheks ause a program to exeute slower due to both diret and indiret e�ets of thebounds hek. The diret e�et is that the bounds hek is usually implemented viaomparison and branh instrutions, and thus eah array aess has this additionaloverhead. The indiret e�et is that these heks also limit further optimizationsbeause the Java virtual mahine spei�ation requires preise exeption handling.This limits ode movement and also limits many e�etive loop transformations whihare ommonly used in high-performane C and Fortran ompilers [21℄. Furthermore,this same preise exeption requirement limits program transformations that optimizethe run-time heks. For example, heks annot be moved to earlier program pointsif this hanges the exeption behavior of the program.The problem of eliminating array bounds heks has been studied for other lan-guages and stati analyses have been shown to be quite suessful[12, 13, 16℄. How-ever, array bounds hek analysis in Java presents several speial hallenges. Firstly,the length of an array is determined dynamially, when the array is alloated, and thusthe length ( or upper bound ) of the array may not be a known onstant. Seondly,arrays in Java are objets, and these objets may be passed as referenes throughmethod alls, or may be stored as a �eld of some objets. Thus, there may be anon-obvious orrespondene between the alloation site of an array and the aesses4



to the array. Thirdly, multidimensional arrays in Java are not neessarily retangu-lar, and so reasoning about the lengths of higher dimensions is not simple. Finally,tehniques that require transforming the program or inserting heks at other earlierprogram points are not as appliable in Java as in other languages with less stritsemantis about exeptions.Figure 1.2(a) shows a piee of ode whih needs two heks for two array referenes.Some well-known algorithms[12, 13, 16℄ an merge two heks to one as in 1.2(b).Although the hange redues two heks to one, the new ode does not have sameexeption behavior as original one. Consider that the length of the array is 4. In (a)the exeption is raised before the seond array aess a[5℄, and in (b) the exeptionhappens before the �rst referene. The problem is that a user may write a try-athlause to ath the exeption and do some reover work. The ath statement wouldget di�erent value of i for the two di�erent ases. The seond treatment violates thepreise exeption requirement of the Java language.int a = new int[k℄; int a = new int[k℄;; if a.length <= i ; if a.length <= i+1; raise exeption ; raise exeptiona[i℄... ; a[i℄... ;; if a.length <= i+1 a[i+1℄... ;; raise exeptiona[i+1℄... ;(a) original heks (b) merged hekFigure 1.2: A preise-exeption exampleMultidimensional arrays are the most ommon data strutures in sienti� om-putation. Vetors and matries in linear algebra are represented as one- and two-dimensional arrays ( we have used a few in our benhmarks ). To make Java asompetitive as C and Fortran, operations on multidimensional arrays must be per-formed eÆiently. In C or other languages, a two-dimensional array is alloated in aontiguous memory blok as in Figure 1.3(a). However, Java de�nes a multidimen-sional array as an array of arrays. See Figure 1.3(b) whih is a legal array shape in5



Java. Sub-arrays are independent and an have di�erent lengths. To deal with this,a referene to the seond dimension in soure ode is implemented in byteode bytwo array referenes, as in Figure 1.4. The byteode instrution set provides onlyone-dimensional array aess and aesses to multidimensional arrays are performedone dimension at a time. This de�nition makes the multidimensional array be a veryloose struture, and the sub-arrays may not all be the same length, or sub-arrays maybe referenes to the same array objet (aliased), or they ould even be null.
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(b) A two-dimensional array in JavaFigure 1.3: Compare multidimensional array shapes1.1.1 Eliminating unneessary array bounds heks in JavaThis thesis desribes a ow-sensitive, intraproedural algorithm alled variable on-straint analysis ( VCA for short ) that an prove that many array referenes are safe,without transforming the original program. The algorithm ollets di�erenes on-straints, and builds a onstraint graph for eah array referene. Then it uses thegraph to infer the relationship between the index of the array referene and the ar-ray's length. The algorithm was designed arefully to take advantage of the fat that6



int[℄[℄ I = new int[10℄[10℄;I[2℄[3℄ = 10;a) Java soure odebipush 10bipush 10multianewarray <[[I> 2 (2)astore_1aload_1ionst_2aaloadionst_3bipush 10iastoreb) Byteode$r1 = multinewarray int[10℄[10℄;$r2 = $r1[2℄;$r2[3℄ = 10;) More readable JIMPLE odeFigure 1.4: A referene to two-dimensional array in Javavariables used in index expressions often have very short lifetimes, and thus build-ing graphs for only live variables of interest leads to very small graphs. Further, wetuned the worklist algorithm to redue the number of iterations. As a result, theatual running time is linear in the size of the method being analyzed.We have improved the base VCA algorithm using two additional analyses: array�eld analysis is applied to eah lass and provides information about some arraysstored in �elds, while retangular array analysis is an interproedural analysis basedon all graphs to approximate the shapes of arrays.Java is a lass-based objet-oriented language. Eah lass an delare �elds, andeah �eld has a modi�er whih de�nes the aess privilege to it. Array �eld analysis7



takes advantage of the fat that updates to final or private �elds are limited. Afinal type �eld an only be assigned one in its delaring lass. A private �eld anonly be assigned in the delaring lass. By analyzing assignments to suh �elds, wean often identify �elds whih always hold some onstant length array objets. Suhinformation an pass the bound of methods and be utilized by all methods of thelass.For programs using multidimensional arrays, VCA does not know any informationabout sub-arrays. Even if the programmer knows all sub-arrays have the same length,a onservative approah must assume that sub-arrays may have di�erent lengths.Retangular array analysis aims to determine if an array is guaranteed to be retan-gular, i.e. all sub-arrays have the same length. Retangular array information an beused to make VCA more powerful by allowing VCA to inlude sub-array aesses.All three analyses have been implemented using the Soot byteode optimizationframework[34, 33℄, but ould be easily implemented in other ompilers with goodintermediate representations. The Soot framework onverts byteode from lass �lesinto a typed 3-address representation alled JIMPLE, and the analysis is implementedon this representation. In order to onvey the results of the analysis to virtual ma-hines we use the tagging/attributing apabilities of Soot to tag eah array aessinstrution to indiate if the lower bound and/or upper bound heks an be elimi-nated. Moreover, a simple intraproedural null pointer analysis generates null pointerhek attributes about array referenes. The Soot framework then produes byteodeoutput, with the tag information stored in the attributes setion of the lass �les. Vir-tual mahines or ahead-of-time byteode-to-nativeode ompilers an then use theseattributes to avoid emitting bounds heks based on the attributes. We have instru-mented both the Ka�e JIT and IBM HPCJ ahead-of-time ompiler to read theseattributes.We have experimented with 10 benhmark programs, inluding 5 speJVM benh-marks, 3 kernels from the simark2 suite1 and 2 array-based benhmarks we imple-mented aording to standard algorithms. First, we measured the omplexity of ourbase VCA analysis, measuring both the maximum and average sizes of the onstraintgraphs, and the average number of times eah blok was analyzed. These results showthat the analysis is pratial, with small graph sizes ( maximum size 13 ) and a lownumber of iterations ( average always less than 3 ). We then measured the dynamibehavior of array bounds heks and ompared the syntheti ase when all bounds1Available at http://math.nist.gov/simark2.8



heks are removed ( an upper bound of what ould be ahieved with stati analysis) and the results of our analysis. Not surprisingly, we found that it was muh harderto eliminate upper array bounds heks than lower array bounds heks. We showedthat the base VCA algorithm ould eliminate from 3% to 60% of both the lower andupper bounds heks for array referenes, while adding the array �eld analysis andretangular array analysis improved these results. In �ve of the benhmarks we ouldeliminate 60% or more heks and in three of those ases we eliminate more than99% of the heks. We also provide run-time speed-ups, and we showed signi�antspeed-ups for both the Ka�e VM and IBM's HPCJ.1.2 Soot: bakgroundWe implemented algorithms on the Soot framework beause it provides a stakless,typed, 3-address intermediate representation. All analyses work on this IR. SomeSoot utility lasses alleviate the work of development. Furthermore, the analysisresults are passed to lass �les using Soot's attribute annotation funtionality.Soot is a Java byteode optimization and annotation framework[28, 34℄. Sootreads in a byteode lass �le, onverts it to an intermediate representation formalled JIMPLE, whih is a typed 3-address ode. Stati analyses and transformationsare performed on the JIMPLE IR. After that, the JIMPLE IR is written bak to thelass �le byteode format.In Soot, a byteode lass is represented with a SootClass objet. Fields andmethods are represented as SootField and SootMethod objets, respetively. ASootMethod objet may have a method body, whih onsists of a hain of JIMPLEstatements. Analyses an either diretly optimize the JIMPLE statements by hang-ing instrutions ( e.g. peephole optimizations, CSE, and stati inlining ), or enoderesults in lass �le attributes whih an be used by a Java virtual mahine ( e.g.bounds heks and null pointer heks ).1.2.1 JIMPLE: a typed 3-address IRJIMPLE is a 3-address ( stakless ) intermediate representation of byteode. It sim-pli�es the representation of more than two hundred types of byteode instrutionsto about seventeen types of JIMPLE statements. A JIMPLE statement is a typial9



3-address ode, whih is suitable for many analyses and optimizations. Readers anget detailed desription from [33℄. Here I would like to desribe some features usedfor the analyses presented in this thesis.Loals in JIMPLE ode are typed by a stati type inferene system[8℄. Theoperands of a statement have delared types. Based on these types we an deter-mine if a method involves arrays by examining the types of its loals.A stati analysis on JIMPLE is simpli�ed sine eah JIMPLE statement has onlyone omplex feature. Figure 1.5 shows an example. An assignment from a �eldreferene to an array referene is ahieved by using a loal variable. The fous of the�rst statement is the �eld referene, and the seond statement emphasizes the arrayreferene. a[i℄ = o.f; $r1 = o.f;a[i℄ = $r1;a) Java ode b) Jimple odeFigure 1.5: Example of JIMPLE representationTo further improve the results of analysis, loal variables are split using def-use/use-def webs, whih is a simple alternative to SSA form. Figure 1.6 shows anexample of the original Java ode and the resulting JIMPLE ode. It should be learthat two assignments to variable a are split to two unrelated variables r1 and r2.a = new int[10℄; r1 = new int[10℄;a[i℄ = ... ; r1[i1℄ = ...;... ...a = o.f; r2 = o.f;a[i℄ = ... ; r2[i1℄ = ...;a) Java ode b) Jimple odeFigure 1.6: Example of DU-UD webs10



1.2.2 Intraproedural analysis tool lassesFor a method with byteode, the Soot framework provides various ontrol graphs,with or without exeption edges, on the unit base or basi bloks, and so on. Aset of well-implemented tool lasses makes data-ow analyses ( ow-sensitive or ow-insensitive ) easy ( see the pakage soot.jimple.toolkits ).Here, I desribe a few lasses used by VCA:BlokGraph implements a ontrol-ow graph ( CFG ) for a method body wherethe nodes of the graph are basi bloks.BakwardFlowAnalysis provides the �xed point iteration funtionality requiredby all bakward ow analyses. VCA extends the BakwardFlowAnalysis toompute live loals related to array referenes.ForwardBranhedFlowAnalysis provides funtionality for branhed forward owanalysis. A branhed ow analysis an propagate di�erent information to thesuessors/predeessors of a node ( e.g., a onditional branh instrution ).VCA uses a ustomized version of this lass, whih has speial operations suhas ordering graph nodes and widening edge weights.1.2.3 Call graphsVirtual method alls are resolved at run time, whih means the exat type of a reeivermay not be known at ompilation time. However, for losed-world appliations, thelass hierarhy an be statially omputed. Class hierarhy analysis ( CHA ) [7℄provides a set of potential reeiver types for a virtual method all. Moreover, rapidtype analysis ( RTA ) [2℄ and variable type analysis ( VTA ) [31, 32℄ an make thetype set smaller.Based on the results of CHA, a onservative all graph an be built for a Javaappliation. Whole-program ( interproedural ) analyses need the all graph as abakbone. Soot has implementations of CHA, RTA, and VTA, and builds a onser-vative all graph for other analyses. Our retangular array analysis is based on theall graph provided by the Soot framework.
11



1.2.4 Class �le annotationsSoot an also be used as a byteode annotation framework[24℄. Beause the byteodeis a relatively high-level instrution set, it hides some low-level operations behind thebyteode instrutions. For example, a virtual mahine impliitly performs the arraybounds heks for array aess byteodes, suh as iaload, iastore, et. However,at the byteode level, even if we know that an array aess byteode has an index inthe safe range, it is impossible to represent suh information in the byteode itself.The attributes of a lass �le provide an alternative way to pass the results of a statianalysis, whih annot be onveyed by the byteode, to the underlying systems. AJIT or ahead-of-time ompiler an then generate more eÆient native ode when ituses the annotation information. Figure 1.7 shows the internal struture of the Sootannotation framework.Based on this idea, the results of our analyses are enoded in the attributes of alass �le. The modi�ed Ka�e JIT and HPCJ an use these attributes to optimize thenative ode they produe. The details of annotation goes beyond this thesis, but themodi�ation of JIT ompiler to utilize the attributes is desribed in Chapter 3.1.3 Thesis ContributionsWe have designed a new algorithm to prove the safety of array referenes in generalJava programs. In our algorithm di�erene onstraints, whih are program-point-spei�, are used to approximate the run-time value relationships among loal vari-ables. A onstraint guarantees that, at the respetive program point, a variable'srun-time value is less than or equal to another variable's run-time value plus/minusa onstant integer. If an index expression has a onstraint that is bound to a valueless than the length of an array objet, the upper bound hek an be removed at therun-time. Similarly, the lower bound hek is redundant when the index is greaterthan or equal to the onstant 0.The basi Variable Constraint Analysis analyzes the ode of one method. It on-struts a onstraint graph at eah important program point. By using some speialtehniques ( e.g. ordering CFG, widening edges, and liveness analysis ), the analysispropagates onstraint graphs along the ontrol-ow graph of the method until reah-ing a �xed point. The relationships of variables an be inferred from the onstraintgraphs. VCA is also extended to take advantage of the information from our array12
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�eld analysis and retangular array analysis. We have implemented the algorithm inthe Soot framework. General and array-intensive benhmarks are analyzed to demon-strate the e�etiveness and eÆieny of the algorithm. The results are enoded in thelass �le attributes via Soot's annotation funtionality. We also demonstrate how tomake a JIT ompiler be aware of suh attributes, and experiments on the Ka�e VMand IBM's HPCJ showed signi�ant speed-ups.In summary, the main ontributions of this thesis are:� De�nition of the onstraint graph and operations on it. We demonstrate howthe array bounds hek problem an be represented by a system of di�ereneonstraints, and how to solve the system by �nding the shortest-path weight inthe orresponding onstraint graph. We also use several tehniques to minimizethe overhead of the analysis.� Design of the array bounds hek elimination algorithm, whih inludes threeanalyses:1. Variable Constraint Analysis (VCA) is an intraproedural analysis whihbuilds and solves onstraint graphs in the sope of one method. VCA alsoserves as the basis for the two extended analyses.2. Array �eld analysis analyzes the assignments to a lass �eld with spei�modi�ers. The analysis is performed in the sope of a Java lass.3. Retangular array analysis is for �nding the shape of multidimensionalarrays. It is an interproedural analysis based on the all graph of a wholeappliation. The analysis builds an array type graph and traks down arrayshapes from paths leading to a method parameter or a loal variable.The results of array �eld analysis and retangular array analysis help the VCAimprove the analysis of both one-dimensional and multidimensional arrays.� Implementation of the algorithm in the ontext of Soot. The algorithm is im-plemented in pure Java language.� Experiments on real JVMs. I de�ned the format of array bounds hek at-tributes and modi�ed Ka�e JIT ompiler to use the attributes. The annotatedlass �les were also provided to Clark Verbrugge at IBM Toronto Lab whoperformed the experiments using IBM's HPCJ ahead-of-time ompiler.14



1.4 Thesis OrganizationThe remainder of the thesis is strutured as follows. We present our algorithm inChapter 2. The base variable onstraint analysis is presented in Setion 2.1, thearray �eld analysis and retangular array analysis are presented in Setion 2.2 and 2.3,respetively. We also disuss some enhanements made to the VCA in Setion 2.4.Related null pointer analysis is desribed in Setion 2.5. Experimental results aregiven in Chapter 3, where the modi�ation of Ka�e JIT ompiler is also desribed.The related work is disussed in Chapter 4, and onlusions are in Chapter 5.
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Chapter 2Analyses
In this hapter we introdue the three analyses used in our approah. The VariableConstraint Analysis is presented �rst beause it serves the basis of the other twoanalyses. Then two extensions, array �eld analysis and retangular array analysis,are desribed after VCA. Also, some extensions we made on VCA are introduedlater, although they do not have obvious e�ets on our results. In the last setion,we briey desribe an intraproedural analysis for eliminating null pointer heks. Insome ases eliminating array bounds heks requires inserting null pointer heks ifthe array referene annot be shown to be non-null.Eah analysis is illustrated by graphs and examples. All examples are given inJava or JIMPLE form.2.1 Variable Constraint AnalysisThe objetive of our variable onstraint analysis is to determine the relationshipsbetween array index expressions and the bounds of the array. In Java, an arrayreferene of the form a[i℄ is in bounds if 0 � i � a:length� 1. If the array refereneis out of bounds, an ArrayIndexOutOfBoundsExeption must be thrown, and thisexeption must be thrown in the orret ontext.The relationships between variables an be represented as di�erene onstraints.A system of di�erene onstraints has a orresponding onstraint graph. Findingthe shortest-path weights in the graph gives a solution to the system. Our baseanalysis uses a variable onstraint graph ( VCG ) to represent di�erene onstraints16



between variables. The VCG is a weighted, direted graph, in whih nodes representvariables, onstants, or other symboli representations; and eah edge has a weight torepresent the di�erene onstraint from the soure to destination node. The analysisis intraproedural and ow-sensitive. Eah program point of interest (ontrol-ow joinpoints and array referenes ) has a VCG to approximate the relationships betweenvariables. These VCGs are propagated through the ontrol-ow graph by using anoptimisti worklist-based ow analysis. When the analysis reahes a �xed point, thedistane in the VCG from an array variable to its index expression an be solved asthe single-soure shortest path problem. By reduing the size of the graphs, arefuldesign of the worklist strategy, and the appropriate use of widening operators, wehave developed an eÆient and salable analysis.In the remainder of this setion we introdue the onept of the variable onstraintgraph whih is the essene of our algorithm. Then we desribe the data-ow analysis,and �nally we outline the tehniques we used to improve the algorithm's performane.2.1.1 Systems of di�erene onstraintsSystems of di�erene onstraints an be used to solve the general linear-programmingproblem[6℄(p.539-p543). A onstraint is a simple linear inequality of the formxi � xj � k;where xi, xj are unknown variables and k is a onstant. A solution to a set ofdi�erene onstraints is a vetor (x1; x2; � � � ; xn) whih satis�es the onstraints:x1 � x2 � 1x2 � xi � i� � �xn�1 � xn � n�1Now we show how systems of di�erene onstraints an represent the array boundshek problem. Figure 2.1 is a piee of ode from an insertion sorting program. Ourgoal is to prove three array referenes (exept the �rst one) are safe, and thus nobounds heks are neessary for them. The orresponding JIMPLE 3-address odeis in Figure 2.2(a). Figure 2.2(b) lists the di�erene onstraints generated by eahstatement. For example, an assignment j = i�1 produes two di�erene onstraints:17



j � i � �1 and i� j � 1; the array referene a[i℄ generates 0� i � 0 and i� a � �1,where a represents the array length ( beause an out-of-bounds index expression annot pass the bounds heks of the array referene ); and so on. The onuene pointand speial assignment ( j = j � 1 ) need speial operations ( e.g. merge and update) to maintain the orretness of the analysis, we will talk about these in more detaillater. key = a[i℄;j = i - 1;while (j>=0 && a[j℄>key){ a[j+1℄=a[j℄;j--;}Figure 2.1: A VCG example: Java soure odeBy walking through the instrution sequene, we an ollet several di�ereneonstraints before an array referene. In the example given in Figure 2.2(a), we have�ve di�erene onstraints before statement $i1 = a[j℄ ( temporarily assuming thereis no ow-joint point at label 1 ): 0� i � 0i� a � �1j � i � �1i� j � 10� j � 0where i, j, and a are variables, the 0 on the left side of inequality is a speial noderepresenting the lower bound of array referenes.A system of di�erene onstraints an be represented as a weighted, diretedonstraint graph, and a solution an be obtained by �nding shortest-path weights inthe graph. Given a system of di�erene onstraints at the beginning of this setion,the orresponding onstraint graph is a weighted, direted graph G = (V;E), whereV = fv0; v1; v2; � � � ; vng 18



key = a[i℄; 0 - i <= 0 i - a <= -1j = i - 1; j - i <= -1 i - j <= 1label_1: merge(G1, G2)if (j<0)goto exit; 0 - j <= 0$i1 = a[j℄; 0 - j <= 0 j - a <= -1if ($i1 <= key)goto exit;$i2 = j + 1; $i2 - j <= 1 j - $i2 <= -1$i3 = a[j℄; 0 - j <= 0 j - a <= -1a[$i2℄ = $i3; 0 - $i2 <= 0 $i2 - a <= -1j = j - 1; update(j, -1)goto label_1;exit:......(a) JIMPLE ode (b) Differene onstraintsFigure 2.2: A VCG example: JIMPLE ode and di�erene onstraintsand E = f(vi; vj) : xj � xi � kg [ f(v0; v1); (v0; v2); � � � ; (v0; vn)g:Eah vertex vi in the graph, for i = 1; 2; � � � ; n, orresponds to the variable xi. Anextra node v0 makes all vi reahable from it. The edge weight of (v0; vi) is ini-tialized to 0. If the onstraint graph G ontains no negative-weight yle, thenX = (Æ(v0; v1); Æ(v0; v2); � � � ; Æ(v0; vn)) is a feasible solution for the system of dif-ferene onstraints, where Æ(u; v) is the shortest-path weight from u to v.In our problem de�nition, however, we do not need to �nd a solution to all variablesin the system of di�erene onstraints. The shortest-path weight from the arrayvariable node to the index expression node is suÆient to prove whether the upperbound hek of an array referene is safe or not. Formally, if Æ(a; i) � �1, a[i℄ has asafe upper bound hek; if Æ(i; 0) � 0, a[i℄ has the safe lower bound hek. Figure 2.3shows the orresponding onstraint graph before the statement $i1 = a[j℄, where19



Æ(a; j) = �2 and Æ(j; 0) = 0. Therefore, the a[j℄ an be proved to be safe.
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Figure 2.3: The onstraint graph before $i1 = a[j℄2.1.2 Variable onstraint graphsGiven the JIMPLE 3-address representation of a method body, we build a ontrol-ow graph ( CFG ) of basi bloks, where a statement with an array referene breaksa basi blok into two smaller ones. Thus, the array aessing statement will alwaysappear at the top of a basi blok. Eah basi blok is assoiated with an input VCG.Di�erene onstraints are olleted when going through statements in the blok. Thenew onstraints are inorporated into the onstraint graph diretly. At the exit of theblok, an output VCG is produed, and passed to suessors as their input VCGs.We de�ne a variable onstraint graph as follows:A node in a variable onstraint graph represents one of:� an int type loal whih is related to some array index or array objet length;� an array type loal whih is used to represent the length of the array;� a 0 node representing the lower bound of array referenes; or� an abstrat representation for �elds, array elements, and ommon sub expres-sions (used only in Setion 2.4). 20



A direted edge in a variable onstraint graph is assoiated with an abstration valuewhih is one of:� ?, the edge is uninitialized;� an integer onstant; or� >, there is no onstant onstraint from the soure to the destination.The weights assoiated to edges are omparable. The integer onstants are in theorder of ordinary integers. For any onstant , the ordering ? <  < > holds. The? weight is a speial ase, it is only used to represent the graph as uninitialized (or never visited ). As we an see later, the iteration on a ontrol-ow graph followsthe graph's pseudo-topologial order, and the �rst input graph's edges are initializedto >, we never operate on an uninitialized graph exept merging it with some otherinitialized graphs.From a system of di�erene onstraints to a variable onstraint graph, a variableon the left hand side of an inequality has a orresponding node in the graph. Thegraph an be viewed as full-onneted. If there is an inequality of i � j � , theorresponding edge from j to i is assoiated with weight . Other edges withoutorresponding onstraints have weight >. Using this representation, we show howonstraints are generated and how to operate on the onstraint graph in followingtext.Constraint generationWhen going through a statement, some onstraints may be generated ( and some maybe killed, whih is explained later ). We have seen a few examples in Figure 2.2 howstatements generate di�erene onstraints. Generally, an assignment may build on-straints between its right and left hand side variables. An array referene expressionbounds its index expression in the range of 0 to array length minus 1. For branh in-strutions, di�erent onstraints are produed aording to the outome of the branhondition. We de�ne the onstraint generation here for di�erent types of statementsand expressions. Other e�ets of the statements, suh as killing onstraints of a node,are disussed afterwards. In our rules,  is an integer onstant, i and j are integervariables related to some array referenes, a is an array type variable and representsthe array objet length. 21



i = Assigning an integer to a loal variable generates two onstraints: i�0 �  and0� i � �. The onstraint graph is hanged by adding an edge from node 0 toi with weight  and a reversed edge with weight �.
0 i
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c

We do not reate a node for eah integer onstant appearing in statements, butrepresent the onstraint as edges to/from the 0 node with adjusted weights.This approah ensures the graph size manageable, and more important, the 0node an onnet two variables whih have no diret edges between them.i = j + The statement also generates two onstraints: i � j �  and j � i � �. Theedges added to the graph are following:
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i = a.lengthThe arraylength is a byteode instrution whih gets length of an array. Theexpression an be views as a variable like others. In our representation, thearray variable a is used to represent the length of array. Then the onstraintsgenerated from the statement are i � a � 0 and a � i � 0. The edges in thegraph are:
i a

0

0a = new T[℄A new expression assigns the variable on the left hand side the length of .22



It has the same e�et as the assignment a:length = . Using a to representa:length, the onstraints from the new statement are a� 0 �  and 0� a � �.a = new T[i℄This statement has the same e�et as statement a:length = i, and onstraintsgenerated are a� i � 0 and i� a � 0.a[i℄ We know that the JVM hek the bounds of an array referene. If the index iis not in the range of bounds, the JVM throws an ArrayIndexOutOfBounds-Exeption and exits the normal exeution path. So, on the normal exeutionpath, the index i must have passed the bounds heks after the array referenea[i℄. Then the array referene expression produes two onstraints: 0 � i � 0and i� a � �1, whih an be represented as following edges:
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if (i < j)The it onditional branh instrution has two out paths. In this example,the TRUE path has onstraint i � j � �1, and the FALSE path has onstraintj � i � 0. We an use the same way to derive onstraints from other branhonditions suh as ifeq, ifgt, ifge, and ie.i = j & Some onstraints are not obvious in the statement. An arithmeti and expres-sion of j &  will make the expression value no more than  if  is a positiveinteger. Then two hidden onstraints, 0� i � 0 and i� 0 � , are derived fromthis statement.Two speial ases have no onstraint generation, but need speial operations onthe graph. We disuss them here, and the operations are desribed in next subsetion.i = i + A loop indution variable inreases or dereases itself. The rules above an only23



generate di�erene onstraints between di�erent variables, and obviously nonean be applied diretly on this ase. The assignment, however, an be writtenin another form by using a temporary variable:i0 = i+ i = i0In this way we an �nd suitable rules for the new statements. In fat, it hassame e�et as inreasing i's in-edges' weights by  and dereasing its out-edges'weights by  after bypassing the temporary variable i0 in the graph. We de�nedan operation update to handle the hanges in the graph due to these kinds ofassignments.i = � � �When a variable i is assigned a new value, its old onstraints have to be removedbefore new onstraints are added ( exept i = i +  where the update funtionperforms this operation impliitly ). Instead of removing old onstraints of idiretly, however, we take a speial operation detahnode to bypass the node i.If the right hand side expression is one of the ases above, the new onstraintsare added in the graph, otherwise, we do not take any ation.Constraint graph operationsThe implementation of the onstraint graph an use either the adjaeny-list repre-sentation for sparse graphs, or the adjaeny-matrix representation for dense graphs.Beause the graph size is relatively small, we implemented the graph as a olletion ofadjaeny lists. As we introdued before, an edge's weight an have di�erent values.? indiates the edge is uninitialized. However, in our analysis, iterating the CFG inits pseudo-topologial order ensures that only all edges of an uninitialized graph anbe ? at the same time. One the graph is initialized, its edges an never be ? again.Thus, in our representation, ? is indiated by a state variable of the graph. In aninitialized graph, a physial edge of a pair of nodes has an integer onstant weight,otherwise, it means the pair has a virtual edge with weight >. In following text, weassume an initialized graph is full-onneted with physial or virtual edges. The edgeweight is an integer onstant or >.No matter what kind of representation we use, however, the funtionality of theonstraint graph is independent of the implementation. In the following text, we24



introdue these funtions ( or primitives ) in further detail. All operations are onlyapplied on an initialized graph where the edge weight annot be ?.Creating a graph:When we do ow-analysis, only variables related to some array referenes needto be examined. As an be seen later, at an interesting program point, if theset of variables under examination does not hange, then the graph node setwill not hange. The reation funtion aepts a set of variables as verties.The graph does not provide any funtionality to add or delete variables. Graphedges an be set to > for the entry blok's input graph, or the graph statevariable is set to ? whih means the graph is in an uninitialized state.Adding a onstraint:When olleting a new onstraint, we add a new edge to the onstraint graph.The addition will make the graph have more than one ( physial or virtual )edge from a soure to a destination. However, we only need to keep one edge foreah pair of soure and destination, whih has the smallest weight, to guaranteethat both onstraints hold. It an be proved as follows. Two edges an bewritten as two onstraints:i� j � 1 (2.1)i� j � 2 (2.2)where 1 � 2. If inequality 2.1 is true, 2.2 is automatially true. Then inequal-ity 2.2 is redundant.When adding an edge to a graph, we keep the one with the smaller weight. Theabstrat value > is greater than any other values.addedge(from, to, weight)oldweight = edge(from, to).weightif (oldweight > weight)edge(from, to).weight = weightDeleting a onstraint:When a onstraint does not hold anymore, the orresponding edge weight shouldbe hanged to reet the removal of the onstraint. The edge weight is set to >in the graph. Right now, a onstraint is deleted only in detahnode operation.25



delete_edge(from, to)edge(from, to).weight = TOPUpdating a node's in and out edges:For an expression i = i + , we do not kill the node i. Rather, all in-edges'weights are inreased by , and all out-edges' weights are dereased by , toreet the onstraint hanges. For example, there is an existing inequality ofi � a � 1, and we use i0 represent the new value of i after the assignmenti = i + . We have onstraints:i� a � 1i0 � i � from whih we an easily get i0 � a � 1 + . The weight of in-edge from a isadded by . The same proess an be used to derive the out-edge hanges.update(node, )for eah predeessor p of nodeedge(p,node).weight += ;for eah suessor s of nodeedge(node,s).weight -= ;Detahing a node:When a variable is assigned a new value, its old onstraint edges should beremoved before adding new ones. However, the edges may be part of somepaths onneting other nodes, and we wish to retain this information. Thus, thedetahnode primitive �rst builds edges from eah predeessor to eah suessor,and then removes all in and out edges.detahnode(node)for eah predeessor p of nodefor eah suessor s of nodeedge(p, s).weight = edge(p,node).weight+ edge(a,node).weightdelete_edge(p,node)for eah suessor s of nodedelete_edge(node,s) 26



Making the shortest path:A onstraint graph also provides methods to �nd the shortest path between twonodes or of all pairs. It implements the single-soure shortest paths and all-pairsshortest paths algorithms[6℄. If the method detets a negative yle existing inpaths, it aborts the operation. This is a onservative deision. As an be seenin following text, there should not be any negative yles at reahable programpoints after reahing the �xed point.Merging two graphsAt onuene points we must merge VCGs oming from more than one prede-essor. All predeessor graphs will have the same set of nodes, but their edgesmay have di�erent weights. Thus, merging graphs is done by simply merg-ing edge weights. Note that this is di�erent than adding an edge to a graph.Adding edges implies the new and old onstraints are existing at the same time(in logi, they are AND relationship ), and the tighter one gives the most preiseinformation. Merging edges means di�erent onstraints from multiple paths areall possible ( they are OR relationship ). So the merged onstraint should beable to ontain all possibilities, as thus we must use the weakest onstraint. Oneor more VCGs from predeessors may not be initialized. When an initializedgraph ( not ? ) is merged with an uninitialized graph ( ? ), we simply take theinitialized one. The omplete merging table is given in Table 2.1.? 1 >? ? 1 >2 2 MAX(1, 2) >> > > >Table 2.1: Merge two edge weightsIt is important to note that when omputing the merge of an edge p! q fromtwo graphs G1 and G2 we need not use the value stored on the edges, ratherwe an get a more preise answer by using the shortest path. Thus, we mergethe shortest path from p to q in G1 with the shortest path from p to q in G2.merge(G1, G2) 27



if G1 is uninitializedreturn a opy of G2if G2 is uninitializedreturn a opy of G1make G1, G2 be the shortest-path graphsG = make a opy of G1for eah edge e of G1e1 = G1.e.weighte2 = G2.e.weightif e1 is TOP or e2 is TOPG.e.weight = TOPelseG.e.weight = MAX ( G1.e.weight, G2.e.weight )return GNegative CylesIn a direted onstraint graph with negative edge weights, it is possible that a negativeyle exists at some points of the data-ow analysis, before the �xed-point is reahed.However, after reahing the �xed point, every reahable point in the program shouldhave a graph without negative yles. For example, if a negative path from a to bto , and bak to a, as in the �gure 2.4, the edge weight is wa, wb, and w whilewa + wb + w < 0. So we have b� a � wa� b � wba�  � wAdding both sides, we get 0 � wa+wb+w, whih is a ontradition to the assumption.It is possible to have a graph with negative yles for programs with unreahableode due to useless branhes. For example:28
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Figure 2.4: A negative yleif (i < j) {if (j < i) {P: ......}}would lead to a negative yle at program point P: ( see Figure 2.5 ), but of oursethis point is never reahed. In the presene of negative yles in a path, we annotompute the shortest path weight for nodes in the path. Leaving them unhanged isa onservative approah to keep the orretness of the analysis.
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Figure 2.5: The negative yle at P:Properities of a onstraint graphAfter seeing how the array bounds hek problem is onverted to solving systems ofdi�erene onstraints and the di�erene onstraints are enoded in a variable on-straint graph, we would like to study some properties of the onstraint graph. Avariable onstraint graph has the following important properties.Direted Edges: Instead of keeping equality relationships, an assignment state-ment produes two direted edges between nodes. The �rst �ve ases of on-straint generation generates two edges between nodes with reversed diretions.29



The branh instrutions and array referenes generate asymmetri edges. Butall edges are direted and weighted. This approah uni�es the graph represen-tation for the onstraints from di�erent soures.Inequality edges are transitive: A path from a1 to an an be represented by aseries of onstraints, for example the onstraints in Figure 2.6 are:a2 � a1 � w1a3 � a2 � w2� � �an � an�1 � wn�1By summing both sides, we an derive the onstraint an � a1 � w1 + w2 +� � �+ wn�1, whih implies the dashed edge from a1 to an with weight Pn�11 wi.The transitive property simpli�es graph operations. Any new onstraints areadded diretly as edges. The edge nodes, however, an indiretly get onstraintsfrom other nodes onneted in the graph. We an lazily perform some otheroperations , suh as detahing a node, omputing the shortest path, as required.
a1 a2 a3 an

w2 ww1 n−1

Figure 2.6: Transitivity of inequality edgesShortest path gives the tightest onstraint: Several paths may exist from asoure to a destination node in the graph. Eah path represents some onstraintsfrom di�erent soures. However, only the shortest path gives the most aurateapproximation. Any non-shortest paths are onservative estimations; they areorret, but not as preise.Beause the inequality graph is transitive, it has the advantage of preservingonstraints when some variables are rede�ned. Figure 2.7(a) gives an example of fourstatements. 30



s0 : i = j + 2;s1 : a[i℄ = � � � ;s2 : i = � � � ;s3 : a[j℄ = � � � ;(a) a basi blok
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−3 2(d) the onstraint graph before s3Figure 2.7: The status of onstraint graph hangesFigure 2.7(b), (), and (d) show the onstraint graphs before the statement s1,s2, and s3, respetively. We are interested in the graph before s3 beause it has anarray aess and we want to know whether j is in the bounds. The other two graphsonly reet the onstraint hanges.The statement s1 generates the onstraint i� a � �1, whih makes a path froma to j, and 0� i � 0. The path from a to j implies the onstraint j� a � �3by adding its edge weights. Statement s2 detahes the node i from the graph by31



bypassing it. Before the statement s3, i has lost its onstraints from a and j, but thepath from a to j, whih goes through i, is shortut by a new edge diretly from a toj with weight �3. Thus the onstraint j� a � �3 is preserved before s3, even wheni was rede�ned. Therefore, the upper bound hek for s3 an be proved to be safe( we an not derive the safe lower bound from this simple example, beause it onlyimplies 0� j � 2 ).So far, we an onlude some advantages of using onstraint graphs for arraybounds hek elimination, although there are many other abstrations that an beused too. The onstraint graph o�ers several advantages, inluding:1. As we explained in above text, a onstraint graph an represent and preserveindiret onstraints, even when a variable is rede�ned.2. It has a uni�ed representation for onstraints from di�erene soures, e.g. as-signments, onditional branhes, and array referenes.3. The lower and upper bounds relationships an be represented in the same graph.Array objet, index, and onstant 0 are enoded in the same graph.4. It is exible, and an be extended to hold other information. For example, inSetion 2.4, we show how to inlude information about the seond dimension ofretangular arrays and ommon sub-expressions.Certainly, the variable onstraint graph has some weakness. It an not representsome subtle onstraints that we an infer from semantis of the language. A typiallimitation is that it is hard to represent other arithmeti operations suh as multiplyand division.2.1.3 Data-ow analysesTo understand how a method manipulates its data, we an apply data-ow analyseson the ode of a method body. We developed two data-ow analyses in our algorithm.A speial live-loal analysis, whih is relatively simple, determines whih loals arerelevant to array referenes. A more ompliated analysis performs abstrat exeutionof the method, and gets a onservative approximation of onstraints among live loals.The �rst analysis limits the number of nodes in a onstraint graph and thereforeredues the omputation of the seond analysis.32



Array-related liveness analysisA variable onstraint graph ontains nodes of loals and edges between them. The sizeof the graph an be redued by inluding only those loals that are used to omputean index or an array objet length in the future. A smaller onstraint graph allowsfaster omputation of shortest paths, and may also redue the number of iterationsrequired for the �xed-point omputation.In our liveness analysis, a variable is live at a program point if there is an exe-ution path from this program point to an array referene expression suh that theonstraints olleted by using onstraint generating rules de�ned in setion 2.1.2 anform a path from the variable to the array index or array objet length in the orre-sponding onstraint graph. We briey say that the variable is relevant to some arrayreferenes. Our goal is to determine that whether we need to add a onstraint ol-leted at this point to the onstraint graph by onsulting the liveness of the variable.We formulate the analysis as follows:Partial ordering for approximation domainIn this analysis, we have a set of int or array type loal variables. The extendedanalysis inludes �elds, array elements, and ommon sub-expressions. The par-tial ordering of the set is from empty set ( ? ) to the full set of variables ( > ).It is best represented by following piture, assuming the method has int typeloals (i1; i2; � � � ; im) and array type loals (a1; a2; � � � ; an) :

i1 a1

EMPTY
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i1, i2, ..., im, a1, ..., an
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Problem statementWe already de�ned the liveness of a loal in the above paragraph.DiretionAs with ordinary liveness analysis, it is a bakward ow analysis.Conuene operatorAt the ow-joint point, we are take union operatoroutset = set1 [ set2;beause a loal is live at this program point if it is live in any paths from thisstatement.Equations for instrutionsTable 2.2 provides the key ow funtions. The �rst olumn gives the typesof statements or expressions that may generate or kill live loals. The seondand third olumn should be used together. Only when at least one of theloal(s) in the ondition set are live, does the statement generate live loalsin the gen set. Note that array referenes generate live loals without anyonditions. The statement i = i +  needs no operations beause the variableis inreasing/dereasing itself. For any assignment statements that are not thease listed in the table, the left hand side variable is removed from the set.stmt/expr ond gen killi = j +  i j ii = a:length i a ia = new T [i℄ a i aa [ i ℄ a; iif (i op j) i; j i; ji = i+ i = � � � iTable 2.2: Liveness for array referenesWhen going through a statement s, we retrieve the ond(s), gen(s), and kill(s).The equations for omputing IN and OUT sets are hanged to reet the on-ditions. 34



OUT [s℄ = [p2su[s℄ IN [p℄if ond[s℄ = � or ond[s℄ \ OUT [s℄ 6= �IN [s℄ = gen[s℄ [ (OUT [s℄� kill[s℄)else IN [s℄ = OUT [s℄� kill[s℄The starting approximationThe analysis starts with the safe approximation. Beause the analysis is bak-ward, all nodes' out sets are initialized as �.Now we look bak the example in Figure 2.2. Although variable $i1 and key an beint type variables, there is no path leading them to an array referene. We do notollet onstraints produed by the if ($i1 � key) statement.One an easily extend the liveness analysis to aommodate other speial nodes,suh as lass �elds, array elements, and ommon sub-expressions.Variable Constraint AnalysisWe use a forward, ow-sensitive, optimisti data-ow analysis to approximate a vari-able onstraint graph for eah important point in a method body. We named theanalysis as variable onstraint analysis, or VCA.VCA is based on the ontrol-ow graph of basi bloks as we explained before. Aninstrution with an array referene appears on the top of the basi blok. The entryof eah basi blok is assoiated with a VCG. The initial state of eah graph has ?state, exept the entry point graph whih has all > edges. The analysis is driven bya worklist algorithm whih omputes an output VCG based on the input VCG andthe e�et of the statements in the basi blok. When proessing a onditional branhstatement, it may generate di�erent onstraints for the target blok and the nextblok. After reahing a �xed point, the information for eah array aess statement,S, is enoded by the VCG assoiated basi blok starting with S.Now we de�ne the variable onstraint analysis formally:Partial ordering of approximation domainAt any program point the set of interesting variables is known from array-related liveness analysis, so the set of nodes is �xed. There is one node for eah35



variable of interest, plus a node representing the onstant 0. The abstrationomputed by our analysis is all-pairs shortest paths of a variable onstraintgraph. But instead of omputing the shortest paths at every program point, weonly perform suh omputation at the onuene point. In other plaes, we dosimple operations on the graph. The abstrat information that hanges is theweights assoiated to edges. For any onstant , the ordering ? <  <  + 1 <+ 2 < : : : < maxint < > must hold.Problem statementA pair of nodes (i; j) has the shortest path weight of  from j to i at a pro-gram point P if the symboli exeution of the program an guarantee that theonstraint i� j �  holds at any time when it reahes the program point P .DiretionThe variable onstraint analysis is a forward ow-analysis. Moreover, it requiresthe node of the CFG must be visited in its pseudo-topologial order beausethe analysis is simulating the exeution of the program. The dominators of anode must be visited before that node. Reall that we initialize the entry pointgraph to > and other graphs to ?. By keeping the topologial order, the inputVCG of a basi blok an never be ? when we start to go through it.Moreover, the analysis is ow-sensitive. When going through a onditionalbranh statement, di�erent onstraints may be produed for di�erent out pathsof the branh. The ow funtion of if statement adds di�erent edges to thetarget and next graphs.Conuene operatorAt a onuene point P , we use a set of output graphs from predeessors ( G1,G2, � � � , Gn ) and the old input graph oldgraph(P) to ompute the new inputgraph newgraph(P). We �rstly all the merge operation to union all outputgraphs from predeessors:newgraph = opy of G1for i = 2 to nnewgraph = merge( newgraph, Gi )Then we apply a speial operation alled widening on eah new graph edgeweight by omparing it to the old graph edge weight.36



widen(newgraph, oldgraph)The widening operation looks at the hanging trend of an edge weight. If theweight is inreasing, we set it to > diretly. But if the new weight is lessthan the old weight, we will disard the new weight and use the old one. Thewidening tehnique speeds up the symboli exeution and also stops in�niteloops orretly. We will explain it in detail later.Equations for instrutionsThe base analysis deals only with loal variables. It is obvious that the integerloals annot be aliased, nor an they be modi�ed by method alls. The arrayobjets referened by array type loals have the same properties. We only dealwith the �rst dimension of arrays in our base analysis. One an array objetwas reated, the only way to hange the array size is to re-alloate a new arrayobjet. Then, the array lengths an be treated as integer loals in the sameway. Thus, the e�et of eah statement on a VCG is quite straightforward. Theow funtion for eah kind of relevant JIMPLE statement is given in Table 2.3.Variables i, j and a represent nodes in the graph, and  is an integer onstant.Eah graph has a node for the onstant 0.The �rst olumn shows the kinds of statement whih have e�et on a VCG. Theseond olumn lists the onstraints an be generated from the statement in the�rst olumn. The third olumn shows the node of whih onstraints should bebypassed. The last olumn gives operations on the onstraint graph aordingto the statement. We always hek the liveness of variables before performingthe ow-through funtion for a statement. Only when the variables are live, theoperations on the graph are performed.The rules in Table 2.3 use several primitives, whih were de�ned in setion2.1.2. The kinds of statement that an a�et onstraint graphs depend onthe semantis of languages. Table 2.3 de�nes some basi statements for Java.One an also add more ompliated ones if they do not violate the languagesemantis. We will show a few extension in setion 2.4.The starting approximationAs we stated before, the edges of entry point VCG are initialized to >, whihis the safe solution. Other VCGs' edges are set to ?.Briey, the implementation of the analysis uses a heap ( implemented as Bounded-PriorityList ) to maintain the topologial order of bloks in the ontrol-ow graph.37



stmts gen detah operationsi =  i� 0 �  i detahnode(i)0� i � � addedge(0,i,)addedge(i,0,�)i = j +  i� j �  i detahnode(i)j � i � � addedge(j,i,)addedge(i,j,�)i = a:length i� a � 0 i detahnode(i)a� i � 0 addedge(a,i,0)addedge(i,a,0)a = new T [℄ a� 0 �  a detahnode(a)0� a � � addedge(0,a,)addedge(a,0,�)a = new T [i℄ a� i � 0 a detahnode(a)i� i � 0 addedge(i,a,0)addedge(a,i,0)a [ i ℄ i� a � �1 addedge(a,i,-1)0� i � 0 addedge(i,0,0)if (i < j) target:i� j � �1 addedge(j,i,-1)else:j � i � 0 addedge(i,j,0)i = j& i� 0 �  i addedge(0, i, )0� i � 0 addedge(i, 0, 0)i = i +  update(i,)i = � � � i detahnode(i)Table 2.3: Statements generating onstraintsThe VCGs are assoiated to the edges of the CFG instead of being attahed to thebloks diretly. Eah head of the CFG has an auxiliary edge as its inoming edge.The input graph of a blok omes from merging all graphs on its inoming edges. Theoutput graph is assoiated to eah outgoing edge. A blok with a branh as the lastinstrution would produe two di�erent output graphs for its two out-edges, whihmakes the analysis onditional. A blok also keeps the input graph after merging theinoming edges' graphs. To better understand the variable onstraint analysis, weprovide the pseudo-ode in Figure 2.8, some funtions used by worklist are de�ned38



in the later paragraph introduing the BoundedPriorityList lass.The flowThrough funtion take an input VCG and goes through a basi blok.It operates on the VCG aording the ow funtions in table 2.3, and updates theVCGs assoiated to the blok's out-edges. It returns the set of suessor bloks whoseinoming edge's VCG has hanged. When going through a basi blok, some variablesadded in the temporary graph may be not live at the end of blok, we detah thosenodes when updating out-edges' VCGs.2.1.4 Improving the performane of the algorithmA naive implementation of the algorithm requires a large volume of omputation toreah the �xed point. We an analyze the expensive parts of the algorithm. Thereare two fators dominating the performane of the algorithm: the variable onstraintgraph size and the time that the data-ow analysis takes to reah the �xed point.In this setion, we desribe some tehniques we have used to redue the performaneoverheads in our algorithm.Limiting the size of onstraint graphsThe running time of omputing the shortest path on a graph depends on the number ofnodes and the number of edges. Sine we annot diretly ontrol the number of edges,we redue the number of nodes, whih subsequently redues the number of edges. Thearray-related liveness analysis keeps the node size minimal. The experiment showsthe average node size is less than 10 and the maximum node size never exeeds 13for the base VCA.Widening edges at onuene pointsGiven the long hains in the ordering for edge weights, the ordinary �xed-point om-putation is too expensive. We redue the number of iterations by applying a wideningat loop entry points. At these points we replae the ordinary merge operation whihuses the maximum value with a widening implemented as follows. If an edge's previ-ous weight was not ? and the urrent weight inreases, the edge is set to >. Thus,it is lear that an edge's weight at loop headers an hange two times at most alongthe same exeution path. The following is the pseudo-ode for the operation.39



units = make PseudoTopologialOrder of the CFGworklist = make BoundedPriorityList of units/* initializes all VCGs to BOTTOM. */for eah edge of CFG{ edge's VCG = new VCG with live loals ofedge's soure nodeedge's VCG is set to BOTTOM}/* initializes the entry VCGs to TOP. */for the inoming edge of CFG headsedge's VCG is set to TOP/* performs iterative flow-analysis. */while not worklist.isEmpty(){ Blok blok = worklist.removeFirst()prevVCG = blok's input VCGif the blok has only 1 inoming edgebeforeVCG = opy of inoming edge's VCGelse{ beforeVCG = merge all inoming edges' graphswiden ( beforeVCG, prevVCG )}blok's input VCG = opy of beforeVCGList hangedSus = flowThrough ( blok, beforeVCG )add all elements of hangedSus to the worklist}Figure 2.8: Pseudo-ode of the worklist algorithm40



widen(newgraph, oldgraph)for eah edge of oldgraph and newgraphdoif oldgraph's edge weight is BOTTOMontinue;if oldgraph's edge weight is lessthan newgraph's edge weightset newgraph's edge to TOP.doneA subtle e�et of widening edge weights is that it an stop the ow-analysis quiklyand orretly on an in�nite loop. For example, a programmer may unintentionallywrite an in�nite for loop as in Figure 2.9. Without widening edge (i; 0) at the loop
for ( int i=0; i<a.length; i-- )...

int i=0;label_1:if ( i >= a.length)goto exit...i = i-1;goto label_1exit:...Figure 2.9: An in�nite for loopentry label 1, Æ(i; 0) is inreased by 1 for eah iteration over the loop body. Theanalysis annot ever reah the �xed point. However, the widening funtion an �ndout that Æ(i; 0) is inreasing when the analysis visits label 1 the seond time, thenset Æ(i; 0) to >, and the analysis stops orretly.Ordering the nodes of a CFGWalking through a CFG in its pseudo-topologial order an speed up data-ow anal-ysis. However, a simple depth-�rst searh ( DFS ) algorithm annot guarantee an41



optimal order for the suessors of a loop exit node.For our analysis, we prefer to visit the loop body before the loop exit. To enforea good ordering we perform a DFS from exiting nodes of the CFG in reverse order�rst; then the DFS from the starting node an onsult the order of reversed DFSwhen it meets a loop exit allowing us to put loop body nodes before loop exits.Our worklist algorithm puts the suessors of a node, whose out set hanges, ontothe worklist for re-alulation. The worklist is handled as a heap using the orderomputed as above. By enforing this order we ensure that inner loops reah a �xed-point before the outer loops. Experiments show this is very e�etive way of makingour data-ow analysis run eÆiently.The worklist is implemented as the lass BoundedPriorityList whih providesseveral methods:publi BoundedPriorityList(List list)The onstrutor aepts a list as the fulllist (universal set), the order of eahelement is deided by its index in the list. The fulllist is a list of bloks in anoptimal topologial order omputed as above. This list is used to keep the indexof eah element, another linked list is reated as the worklist. All elements infulllist are added to the worklist in order.publi boolean isEmpty()The method returns true if the worklist is empty, otherwise returns false.publi Objet removeFirst()This method removes the �rst element in the worklist and returns it to thealler.publi void add(Objet toadd)When a blok needs re-omputation, it is put bak to the worklist. However,unlike the usual worklist whih adds the node to the end of the list, this methodwill �nd the right plae in the worklist by its index. All elements are kept theorder in worklist as the same order in the fulllist.2.1.5 Running time analysisThe performane of our algorithm is deided by two fators: the size of onstraintgraphs and the number of iterations required to reah a �xed-point. The nodes of a42



onstraint graph onsists of loals, therefore, the graph size is bounded by the numberof loals in a method. Liveness analysis an limit the graph size even further, andour experiments on�rm the graphs are small in pratie.For a ontrol-ow graph without yles, the data-ow analysis takes linear timeto reah the �xed point. However, most of methods ontain loops. At a loop entry,the speial widening step of omparing an edge weight with before makes the edgeweight reah a �xed-point quikly. An edge weight an not hange more than twiebeause of visiting the same path. So the upper bound of the analysis depends onthe depth of loops and the number of nodes in the loops. It an be represented asjN j +P 2jLDj+1 � jLN j, where N is the total number of nodes in a CFG, LD is theloop depth, and LN is the number of nodes in the loop. Theoretially, the worst asemay have exponential running time in the loop depth. However, in our experiments,the pratial running time is linear in the size of the method body with a onstantless than 3.2.1.6 Revisiting the exampleNow we revisit the example in Figure 2.2 with onsideration of ontrol-ow informa-tion. Figure 2.10 shows the program's ontrol-ow graph of basi bloks. Note thateah statement with array referene shows on the top of a basi blok. The bloksare labeled from A to G.First of all, we perform the array-related liveness analysis on the ontrol-owgraph. The live-loal set is marked before eah basi blok, in whih the onstantnode of 0 is added. The optimal topologial order of the CFG is (A;B;C;D;E; F;G).The VCA reates a onstraint graph Guv for eah edge (u; v) in the CFG with the nodeset before blok v. All graphs are initialized to ? exept the blok A's input graphGAA, whih is set to >. The analysis iterates the bloks in their pseudo-topologialorder. But after visiting the blok F , it will visit B instead of G sine the blok B isadded in the worklist and it beomes the �rst one with higher priority than G.Now we look at the ow-joint point at blok B in detail. The �rst iteration overblok B has only one initialized input graph GAB in Figure 2.11(a). After goingthrough bloks B, C, D, E, and F, GFB was initialized as in Figure 2.11(b). Themerged input graph GB is same as GAB. Now the ow analysis reahes the �xedpoint. In this example, Æ(j; 0) = 1 in GFB although there is a statement j = j � 1 inblok F. The reason is that, in blok E, the referene a[j℄ always produes onstraint43



j = i − 1
key = a [ i ]

if ( j < 0 )
goto exit

$i1 = a [ j ]
if ($i1<=key)

goto exit
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Figure 2.10: Control-ow graph of basi bloks
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0�j � 0 whih may eliminate other paths of Æ(j; 0) < 0. At the �xed point, the inputVCGs of blok C, E, and F orretly give the shortest path weights: Æ(a; j) = �2and Æ(j; 0) = 0 in GC and GE, Æ(a; $i2) = �1 and Æ($i2; 0) = �1 in GF . Thus, arrayreferenes in these bloks were proved to be safe.
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(a) G AB (b) GFBFigure 2.11: VCGs of the blok B2.2 Array Field AnalysisThe base analysis only looks at loals and analyzes the body of eah method ( in-traproedural ). It does not know any information from outside of the method, suhas �elds or method parameters. There are no ommuniations between methods. InJava appliations, programmers may use �elds to hold some onstant value for odemodularity and larity. For example, some �elds are initialized in onstrutors andare never hanged again, or �elds are assigned in some methods and used by others.To explore the full relationships of �elds and on di�erent methods is non-trivial, andneeds whole program information. The analysis in our algorithm looks for speialases where a �eld holds a �xed length array objet. This information allows us toextend the VCA analysis to inlude these �elds.A lass �eld with modi�er final or private an only be assigned a value in thelass delaring that �eld. A final type �eld has more restritions, it is assigned by avariable initializer in the soure ode. That means the assignment an only be in theonstrutors ( <linit> or <init> ) of the delaring lass. The array �eld analysismaintains a one-to-one map from lasses to �eld information tables. For a lass, eah45



array type �eld with the private or final modi�er has an entry in the table, and avalue is assigned to that �eld. The value an be ?, an integer onstant , or >. A�eld f delared in a lass C is represented as C.f no matter the f is stati or non-stati.For eah lass C, array �eld analysis examines the lass �elds. Let FC be the setof array-type �elds modi�ed by private or final delared in C. If FC is non-empty,then a table �C is reated, and for eah f 2 FC an entry �C [f ℄ is reated and initializedto ?. Eah method m delared in C is then onsidered. Sine the Soot frameworkprovides typed loals, and ensures that a putfield or putstati is always in theform of an assignment from a loal to a �eld, a simple pre-san of the types of loalsof m an be used to avoid further proessing of methods that annot hange the valueof any f 2 FC . For eah method m that might hange an array �eld, the body of mis sanned. Let f = ` be an assignment to some f 2 FC . A value Æ(`) is omputedas follows:1. If ` is a newarray or multianewarray operation, then extrat the array lengthexpression d and return Æ(d).2. If ` is a loal variable, the UD-DU hains provided by the Soot framework areused to loate the de�nitions of `. If ` has more than one de�nition point, return>, otherwise for a de�nition ` = x return Æ(x).3. If ` is an integer onstant , return .4. Otherwise, return >.Figure 2.12 is the pseudo-ode for the proess. The while loop ends when the lengthvalue is not BOTTOM (?). The table information �C [f ℄ is then updated by mergingthe existing value for �C [f ℄ with the omputed Æ(`) aording to Table 2.4; note thatÆ(`) is never ?. ? 1 >2 2 1 : 1==2 >> : otherwise> > > >Table 2.4: The rule for updating the �eld table.When the intraproedural VCA analysis meets an array type �eld read of the forma=o.f; where o has type of lass C, it onsults the array �eld analyzer to get the value46



length = BOTTOM;usestmt = urrentStatement;loal = urrentStatement.RHS;while length is BOTTOM{ List defs = getDefsOfAt(loal, usestmt);if (defs.size != 1){ length = TOP;break;}usestmt = (DefinitionStmt)defs.get(0);tmp_rhs = usestmt.getRHS;ase tmp_rhs is a NewArrayExpression{ size = tmp_rhs.getSize;ase size is an integer onstantlength = size;ase size is a loalloal = size;otherslength = TOP;}ase tmp_rhs is an integer onstantlength = tmp_rhs;ase tmp_rhs is a loalloal = tmp_rhs;otherslength = TOP;}Figure 2.12: Traking down the array length.47



assoiated to the �eld C.f. If the �eld has a onstant value , we an analyse thisstatement as if it was a = new T[℄ (see rule in Table 2.3).Our experiene shows that this usually happens for a �eld with an initializer, whereall assignments are made in the onstrutors. For simpliity, our implementation ofarray �eld analysis fouses only on the �rst dimension of array objets.2.3 Retangular Array AnalysisAnother opportunity to improve VCA lies in retangular arrays. Beause multidi-mensional arrays in Java an be ragged, it is more diÆult to get good array boundsanalysis for multidimensional arrays. However, in sienti� programs arrays are mostoften retangular. Thus, we have developed a whole-program analysis using the allgraph to identify retangular arrays that are passed to methods as parameters.Java de�nes a very loose struture for multidimensional arrays. A multidimen-sional array objet an have a ragged shape (di�erent rows in an array may havedi�erent lengths); sub-arrays an be sparse in memory or aliased; and array objetsan be assigned to variables of type java.lang.Objet. All of these properties makearray bounds analysis hard. ( reall the �gure 1.3(b), whih is an example of aliasedsub-arrays. )In order to �nd all arrays that are retangular, we must �nd all ases where aretangular array is alloated, and we must trak those alloations to their eventualuses.Consider the example in Figure 2.13, the new opy method is taken from thesimark2 benhmark. If we only analyze the method new opy, it is not possibleto say that all array referenes are safe beause we do not know the array objetpassed to the parameter A are retangular or not. However, if we know that theparameter A always holds retangular arrays from all method alls, then we would besure N equals to the length of any A[i℄, whih is the programmer's assumption. Theretangular array analysis traks the array shape at eah method alls of new opy,and in this ase an safely onlude that all method alls will pass a retangular arrayto new opy.
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publi lass C{ publi stati void main(String[℄ args){ double[℄[℄ A = new double[10℄[9℄;double[℄[℄ B = new_opy(A);}proteted stati double[℄[℄ new_opy(double A[℄[℄){ int M = A.length;int N = A[0℄.length;double T[℄[℄ = new double[M℄[N℄;for (int i=0; i<M; i++){ int[℄ Ti = T[i℄;int[℄ Ai = A[i℄;for (int j=0; j<N; j++)Ti[j℄ = Ai[j℄;}return T;}}Figure 2.13: Retangular array example.2.3.1 Call graphsIn setion 1.2.3, we mentioned that the Soot provides the all graph of an Javaappliation. The all graph has one node for eah method reahable from any start-ing method, whih an be the main method of an appliation, or the start or runmethod of a runnable thread. The user an speify a set of starting methods. Eahnode ( method ) has a list of all sites, whih are invokestati, invokespeial,invokevirtual and invokeinterfae byteode instrutions. The reeiver of theinvokestati is resolved by the java ompiler and it has only one target. The49



invokespeial has a �xed target also. For virtual method alls, invokevirtualand invokeinterfae, the all graph provides a set of all possible targets. Theedges of the graph onnet eah all site to its possible target methods. More detailsabout all graphs an be found in [31℄.An algorithm based on the all graph is a onservative approximation beause itdoes not know the exat all target whih is resolved at the run-time. If a method isreahable, all targets of its all sites must be marked as reahable. Our retangulararray analysis builds an array type graph based on the all graph. For eah reahablemethod, it �rst reovers the retangular array initializer as explained in setion 2.3.2.It then onstruts a propagation graph where nodes onsist of loals, method param-eters, and method returns. Edges are then added between nodes when values arepassed, suh as assignments and method alls. Creation sites for retangular arraysare marked as TRUE. If a nodes hanges shape it is marked as FALSE. All nodesreahable from FALSE nodes are marked as FALSE. The remaining nodes reah-able from TRUE nodes are marked as TRUE. Nodes marked with TRUE after theanalysis represent variables referring to a retangular arrays.2.3.2 Reover array initializersBefore onstruting the array type graph, we have to look at some speial ases. Ifa programmer alloates a new multidimensional array using a statement of the formnew int[10℄[10℄, this instrution is translated into a multianewarray byteodeinstrution whih alloates retangular arrays. However, a multidimensional arrayinitializer is ompiled by java or jikes as individual alloations to give a potentiallyragged array of array objets. An array of arrays is reated, then eah element isassigned a sub-array objet. Figure 2.14(a) shows a typial Java example, and Figure2.14(b) shows the resulting byteode.We use a simple pattern mather that an �nd this idiom and reover a retangulararray's reation from its sparse representation to a dense one, as shown in Figure2.14(). The pattern mather is a state mahine whih identi�es the patterns as inFigure2.14(b). Table 2.5 gives a simpli�ed state table for identifying two-dimensionalarrays, whih is the urrent implementation.The input of the state mahine is a sequene of JIMPLE instrutions of a method.The start state 0 aepts a statement of r1 = new (A[℄)[℄;. We briey desribethe operations at eah state: 50



int[℄[℄ a = {{1},{2}};a) An arrayinitializer
a = newarray (int[℄)[2℄;$r2 = newarray (int)[1℄;$r2[0℄ = 1;a[0℄ = $r2;$r3 = newarray (int)[1℄;$r3[0℄ = 2;a[1℄ = $r3;b) Compiled ode byjava and jikes

a = multianewarrayint[2℄[1℄;$r2 = a[0℄;$r2[0℄ = 1;$r3 = a[1℄;$r3[0℄ = 2;) Reovered odeFigure 2.14: Reover the reation of retangular arraysstate input goto0 r1 = new (A[℄)[℄ 11 r2 = new A[d℄ 22 r2[*℄ = � � � 2r1[e℄ = r2 (e=-1) 3r1[e℄ = r2 (e=e0+1) 13 endTable 2.5: The state mahine for mathing two-dimensional arrays.State 0 reords the base type A, the length , and the left hand side variable r1.State 1 aepts a statement of array reation. The base type is heked with thereorded type A in state 0, the sub-array r2 and the length d are reorded.State 2 goes to di�erent states aording to the input statement. It ould be theinitialization of the sub-array r2, in whih ase, it will ontinue on state 2.Or it is a store to the �rst dimension of the array objet r1, the array indexe is heked with the array length . It also ensures the referene index isinremental by 1 ( e = e0 + 1 ) if it does not reah the array length.State 3 returns the length of the seond dimension d if the pattern is mathed,otherwise it returns -1.For any exeptional inputs, the state mahine jumps to the state 3 and returns -1.51



2.3.3 Array type graphsAfter �nding all the reation sites for retangular arrays, we then build an array typepropagation graph to �nd whih variables must be assoiated with retangular arrays.The graph has following nodes:1. Two speial nodes for TRUE and FALSE. Marking another node is ahievedby adding an edge between it and one of the speial nodes.2. Method loals that are multidimensional arrays. Consider the example in Figure2.13, the method new opy in the lass C has a loal M. The loal M is representedas C.new opy.M.3. Method parameters whose types are multidimensional arrays. The parametersare handled in the same way as loals. The parameter A in the example isrepresented by C.new opy.A.4. Method returns whose types are multidimensional arrays. In our example, thereturn of method new opy is represented as C.new opy.return.5. Class �elds. As in array field analysis, an array type �eld f of the lass Cis represented as C.f whether f is stati or non-stati.Then we de�ne rules to add edges to the graph aording to the types of thestatements. In general, assignment statements and invoke expressions add edgesbetween nodes in the graph. Some speial ases will add edges between normal nodesand the speial nodes TRUE or FALSE. Only multidimensional array type variablesare onsidered in this analysis. In following rules, lower-ase letters are loals, andby default, they are referred in a method C.m.1. a = newA[i℄[j℄This is a site that reates a retangular array. We add an edge between C.m.aand the speial node TRUE.2. a = bFor a general assignment, we add an edge between nodes C.m.a and C.m.b. Theb is either a loal or a parameter. 52



3. a[i℄ = bIf a is a multidimensional array type loal, a store into it adds an edge betweenC.m.a and the speial node FALSE.4. o:n(a; b; :::)An invoation expression needs more explanation. Let Cn be the set of possiblereeiver lasses of this all site, and p0, p1, ... be the parameters of the methodn. For eah C 0 of Cn, we add edges between C.m.a and C 0.n.p0, C.m.b andC 0.n.p1, and so on.5. a = o:n(:::)An assignment from a method return adds edges between C.m.a and the returnof eah possible target, C 0.n.return.6. return aA return expression adds edges between C.m.a and C.m.return.7. t:f = a or a = t:fField referenes add edges between C.m.a and T.f where the lass T delaresthe �eld f.8. a = (A)bFor the assignment with a ast expression, we hek the stati type of a and b. Ifboth loals are multidimensional arrays and have the same dimension number,the statement is treated as a normal assignment a = b, otherwise, C.m.a andC.m.b are onneted to the FALSE node. This is a onservative approah toredue the omplexity of the analysis beause array types an be asted fromand to java.lang.Objet in Java.If a loal gets a return value from a method whih is out of our analysis ontext( i.e. we only analyze the appliation ode without library ode ), we make a onser-vative assumption and onnet the variable to the FALSE node. Parameters of themethod invoation are treated in the same way. Figure 2.15 gives the propagationgraph of the example in Figure 2.13.After building the propagation graph, we want to �nd all nodes whih are reahedstarting at the TRUE node ( were alloated as retangular ), and are not reahedstarting at the FALSE node ( may have beome ragged ). We ahieve this as follows:�rst we traverse the graph, starting from the FALSE node, marking these nodes as53



C.new_copy.returnC.new_copy.A

C.main.A C.new_copy.T

C.main.B

TRUE FALSE

Figure 2.15: Propagation graphreahable from FALSE. Then we traverse the graph starting at the TRUE node,�nding all reahable nodes that are not marked FALSE. This set indiates that themembers are always assigned retangular arrays. The pseudo-ode is listed in Figure2.16.To use retangular array information, the onstraint graph has some speial nodesto represent the sub-arrays. In our retangular example ( �gure 2.13 ), a speial nodeA[ is used to represent the seond dimension length of A. When the VCA meetsa statement of a = A[i℄ and A is a multidimensional array, it heks the true nodeset generated by the retangular array analysis. When the node is in the true set,direted edges are added between node a and A[. In the example, sine the VCAanalysis will determine that loal variable N is equal to A[, it is possible to determinethat all array referenes are safe in the program.2.4 Other EnhanementsBesides the multidimensional arrays, the variable onstraint graph an be extendedto aommodate some extra nodes, suh as lass �elds and array referenes. We havedone this in a very onservative way, assuming the worst-ase aliasing and side-e�etinformation. With these onservative assumptions we did not �nd muh improvementin the result. More aurate side-e�et information may improve the situation.54



Set startNodes = suessors of FALSE nodeadd startNodes to falseSetadd startNodes to workListwhile workList is not emptynode = workList.removeFirstSet sus = suessors of nodefor eah su in susif falseSet does not ontain suadd su to falseSetadd su to workList(a) marking FALSE nodesSet startNodes = suessors of TRUE nodefor eah node of startNodesif falseSet does not ontain nodeadd node to trueSetadd node to workListwhile worklist is not emptynode = workList.removeFirstSet sus = suessors of nodefor eah su in susif falseSet does not ontain nodeand trueSet does not ontain nodeadd node to trueSetadd node to workList(b) marking TRUE nodesFigure 2.16: Traverse the graph.
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We did following extension to our intraproedural algorithm. In the liveness anal-ysis, we also add �elds, array elements, and ommon sub expressions as loals to thelive loal sets. For example, a:f , a[i℄, and i � j an be added into the live loal setsand the onstraint graph an add edges onneting them to other nodes.But it should be onservative when dealing with an assignment to a �eld or arrayelement sine we do not have alias information. Detailed operations are:a = � � �If a is an array type loal, all array elements of a[�℄ should be killed. If it is areferene type loal, all �elds of a:f should be killed.a[i℄ = � � �Sine we do not know any alias information, all array referene nodes should bekilled. However, if we use the type information of a, we only need to kill thesame type arrays' elements.i = � � �When i is an integer variable. Array elements of �[i℄ should be killed, and allexpressions ontaining i, suh as i � j, should be killed.a.f = � � �Fields of �:f should be killed. Beause the delaring lass of a �eld is resolvedby the ompiler, f in this statement should be understood as T:f where T isits delaring lass, rather to be interpreted as a symboli name f .m(a)When an array or referene type loal is passed to a method, all related �eldsand array elements should be killed sine we do not know the alias informationand the side e�et of the method all.a.m()A virtual method all passes the aller as the �rst parameter to the alleeimpliitly, then it has to take the same ation as m(a).In our experiment, the enhanements inreased the onstraint graph size dra-matially, but the results has very few improvements. In Java appliations, methodinvoations happen very often, thus the life time of a �eld in the graph is very short.Basially �elds get killed again and again. The same situation happens to array56



elements. The side-e�et analysis and alias analysis may help us to make less onser-vative assumptions when dealing with assignments and method alls.2.5 Null Pointer AnalysisEliminating array bounds heks is often related to eliminating null pointer heks.Eah array referene, for example a[i℄, must �rst hek that the array objet refer-ened by a is non-null. In many modern ompilers null pointer heks are performedby handling the assoiated hardware trap if a null pointer is dereferened. In this asethe mahine arhiteture guarantees a hardware exeption if any very low memoryaddresses are read or written. In order to do the upper array bounds hek the lengthof the array must be aessed, and sine the length of the array is usually stored ata small o�set from the objet address, this aess will trap if a is null. Thus, thearray bounds hek gives a null pointer hek for free. If the array bounds hek iseliminated, then it may be neessary to insert an expliit null pointer hek ( sinethe address of a[i℄ may be suÆiently large to avoid the null pointer trap, even if ais null ).Our nullness analysis is a fairly straightforward ow-sensitive intraproedural anal-ysis that is implemented as an extension of the BranhedForwardFlowAnalysis lassthat is part of the Soot API. The basi idea is that variable a is non-null after state-ments of the form a = new T(); and statements that refer to a.f or a[i℄. We alsoinfer nullness information from ondition heks of the form if (a == null). Sinethe nullness analysis is intraproedural we make onservative assumptions about thee�et of method alls.
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Chapter 3Experimental Results
We have implemented the algorithm in the ontext of the Soot framework1. In thishapter we present and disuss the experimental results that we have obtained. Theresults are grouped into three ategories:1. We measured the dynami harateristis of the variable onstraint analysis interms of two most important fators a�eting the algorithm's performane: thesize of variable onstraint graphs and the number of iterated bloks to reah the�xed point.2. In setion 3.5, we show the results of the base intraproedural analysis, followedby the array �eld analysis and retangular array analysis as they are added inseparately, and �nally ombined. The results are presented as perentages oflower and upper bound heks that an be proved safe.3. Our analyses results are enoded in the attributes of lass �les. To measure thereal impat to the run-time performane of Java programs, we modi�ed Ka�eJIT and HPCJ ompiler to read and take advantages of suh attributes. Therun-time measurements show speed-ups in most of benhmarks.In setion 3.1, we briey introdue the implementation of array bounds heksin a JVM at �rst, whih often interleaves with the null pointer heks. Also wedesribe the experimental environment and methodologies. Then we show the statiand dynami harateristis of benhmarks. We measured two important fators of1A brief overview of the ode organization is given in Appendix A58



the analysis, whih show the algorithm runs in linear time with respet to the sizeof the method body. Finally, we desribe in detail how to de�ne the struture of thearray bounds hek attributes and make a VM take advantage suh attributes.3.1 Experimental MethodOur algorithm is implemented in the Soot framework as an independent pakage whihan be found in soot.jimple.toolkits.annotation.arraybounds. A wrapper isreated to let the Soot main method all the analysis aording the ommand options.In this setion, we introdue our pro�ling methodology used in our experiment, andthe hardware and software environment in whih the experiment is onduted.To measure the harateristis of benhmarks and the results of the analysis, weneed a pro�ler to tell us the run-time results. This was done by inserting instrutionsinreasing an integer ounter before eah byteode whih requires array bounds hekor null pointer hek.The experiment was onduted on two environments. The �rst one uses Ka�eopen VM 1.05 with JIT engine 3 running on a dual Pentium II 400M PC with 384Mmemory, Linux OS kernel 2.2.8, and glib-2.1.3. We measured the benhmark har-ateristis and pro�ling information on Ka�e VM. We also modi�ed the Ka�e JITompiler to take advantage of attributes and ompared the results with no attributes.The seond part of experiment is onduted on IBM's High Performane Compiler forJava (HPCJ), whih runs on a Pentium III 500M PC with 192M memory, WindowsNT operating system. The HPCJ ahead-of-time ompiler understands the attributesand generate improved ode for the benhmark lass �les. We measured the perfor-mane hanges with/without attributes.3.2 BenhmarksWe hose several benhmarks inluding both general and numerial ones: as well asSpeJVM and simark2, LCS , an implementation of a Longest Common Subsequenealgorithm, and MCO , an algorithm for �nding an optimal order of matrix multiplia-tion. Here a brief desription of eah of the benhmarks is presented ( the desriptionof �rst �ve benhmarks omes from [29℄ ).59



db : The db benhmark performs multiple database funtions on memory residentdatabase. It reads in a 1 MB �le whih ontains reords with names, addressesand phone numbers of entities and a 19KB �le alled sr6 whih ontains astream of operations to perform on the reords in the �le.jak : Jak is a Java parser generator. The workload onsists of a �le named jak.jak,whih ontains instrutions for the generation of jak itself. This is fed to jakso that the parser generates itself multiple times.java : This is the Java ompiler from the JDK 1.0.2.mpegaudio : This is an appliation that deompresses audio �les that onform tothe ISO MPEG Layer-3 audio spei�ation. From our experiments, we knowthis benhmark uses arrays heavily.raytrae : This is a raytraer that works on a sene depiting a dinosaur.simark2 : SiMark 2.0 is a Java benhmark for sienti� and numerial omputing.It measures several omputational kernels whih inlude FFT, SOR, LU matrixfatorization, Monte Carlo integration, and Sparse matrix multiply. In ourexperiment, we measured the run-time improvement on the �rst three kernelssine the algorithm an prove most of their array referenes safe.MCO This is an algorithm omputing the matrix-hain multipliation problem. Thefuntion name is alled Matrix-Chain-Order ( see [6℄(p.306) ).LCS This algorithm �nds a maximum-length ommon subsequene of two sequenes.Both of MCO and LCS algorithm use two-dimensional arrays as main datastrutures.The benhmarks are haraterized by their size, array referene density, and therun-time overhead aused by array bounds heks. Table 3.1 shows benhmark hara-teristis. All numbers are olleted from benhmark ode ( exluding the lass libraries). The third olumn desribes the size of benhmark as the number of byteodes oflass �les in the pakage. FFT, LU, and SOR are pakaged together in \simark2".They share some ommon lasses, the total size of the \simark2" pakage is showedin the ell. The last two olumns, density and overhead, show dynami measurementsof the benhmarks. The problem size of benhmarks from \SpeJVM98" are set as100. The exeution of benhmarks from \simark2" is spei�ed as \LARGE". LCS60



and MCO both have loop size of 3000, whih makes the benhmarks run long enoughto redue the e�et of VM initialization. The density is a ount of how many arrayreferenes per seond our in the benhmark ( not inluding lass libraries ). It is arough estimate of the potential bene�t of array bounds hek elimination. The lastolumn shows the overhead aused by array bounds hek instrutions. To measurethe overhead, we modi�ed Ka�e JIT to turn o� generating bounds hek instrutionsfor benhmark ode, then ompare the time without heks against with heks.name soure #byteode density overheaddb SpeJVM98 14526 1,074,979/s 0.4%jak SpeJVM98 31604 29,962/s 1.1%java SpeJVM98 54897 73,861/s 3.8%mpegaudio SpeJVM98 47265 19,531,665/s 22.3%raytrae SpeJVM98 19359 1,054,832/s 1.7%FFT simark2 8,667,594/s 5.1%LU simark2 2303 23,120,315/s -0.9%SOR simark2 14,528,328/s 11.3%LCS 255 58,384,589/s 13.9%MCO 418 33,659,647/s 15.1%Table 3.1: Charateristis of the benhmarksThe Spe benhmarks are relatively large, while the other �ve benhmarks arerelatively small. From the density of array referenes and the run-time overhead ofbounds heks, we an see `mpegaudio' has a large overhead, as do LCS, MCO andthree sub-benhmarks in simark2. (The LU benhmark exhibits a negative overhead,whih is probably due to the impat of instrution ahes after we removed boundshek instrutions, we also �nd suh impat in later experiments.) These benhmarksare all typial examples of array-intensive programs. Other benhmarks in our studyserve as examples of normal programs whih are less array intensive, but also reetthe dynami harateristis of the algorithm in the next setion.3.3 Dynami harateristis of the algorithmAs we analyzed in the setion 2.1.5, the theoretial upper bound of the variableonstraint analysis an be exponential. To understand the real ost of the algorithm,61



we hose to measure two fators: the onstraint graph size and the number of bloksiterated by the worklist algorithm.Table 3.2 shows some of the dynami properties of our algorithm applied to thedi�erent benhmarks. The Bloks olumn gives the number of basi bloks in theprogram, while the NonZero Bloks olumn gives the number of bloks that havenon-empty live sets for loal variables, and so non-empty onstraint graphs. OnlyNonZero bloks were used in the alulation of average and maximum onstraintgraph sizes, and every ( non-empty ) onstraint graph inludes at least one node forthe onstant zero. From this, the size of the onstraint graphs is quite reasonable:average size never exeeds 10 nodes, and maximum size no more than 13. These arequite pratial fators.Name Graph size Bloks Iter NonZero(avg) (max) (avg) Bloksdb 3.17 6 280 1.28 89jak 2.5 6 2076 1.04 1892java 2.45 6 3347 1.27 1631mpegaudio 3.42 10 6987 1.10 6670raytrae 2.56 6 626 1.31 476simark2 5.8 12 388 1.79 301LCS 9 13 59 2.8 55MCO 4.6 11 98 2.0 95Table 3.2: Charateristis of the algorithmThe Iter olumn is the average number of times a blok is proessed as the analysisiterates toward a �xed point. It is a good indiator how long the analysis will run,and suggests that in a pratial sense the running time of our algorithm is linear inthe ode size. There is an impat due to loop nesting; in small benhmarks, LCS,MCO and simark2, the ode bodies are dominated by nested loops and hene, thefator is higher than other benhmarks. Nevertheless, the fator remains relativelysmall overall.
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3.4 Array Bounds Chek AttributesAfter the analysis phase the ow information is assoiated with JIMPLE statements.The next step is to propagate this information so that it will be embedded in thelass �le attributes. This is done by �rst tagging the JIMPLE statements, and thenspeifying a tag aggregator whih paks all the tags for a method into one aggregatedtag. The proess of tagging/attributing is desribed in [23℄.We �rst outline the attribute as it eventually appears in the generated lass �le.The struture of the array bounds attribute is quite straightforward. It has the name"ArrayNullChekAttribute". Figure 3.1 shows the format of the array bounds hekattribute as it will be generated for the lass �les.array_null_hek_attribute{ u2 attribute_name_index;u4 attribute_length;u3 attribute[attribute_length/3℄;}Figure 3.1: Array Bounds Chek AttributeThe value of attribute name index is an index into the lass �le's onstant pool.The orresponding entry at that index is a CONSTANT Utf8 string representing thename "ArrayNullChekAttribute". The value of attribute length is the lengthof the attribute data, exluding the initial six bytes. The attribute[℄ �eld is a tablethat holds the array bound hek information. The attribute length is 3 timeslarger than the table size. Eah entry onsists of a PC (the �rst two bytes) and theattribute data (last one byte), totaling three bytes. These pairs are sorted in thetable by asending PC value.The least two bits of the attribute data are used to ag the safety for the two arraybounds heks. The bit is set to 1 if the hek is needed. The null hek informationis inorporated into the array bounds hek attribute. The third lowest bit is usedto represent the null hek info. Other bits are unused and are set to zero. Thearray referene is non-null and the bounds heks are safe only when the value of theattribute is zero. 63



After generating the annotated lass �le, we need to make a JVM aware of at-tributes and have it use them to improve its generated native ode. We modi�edboth Ka�e's OpenVM 1.0.5 JIT and IBM's HPCJ ahead-of-time ompiler to takeadvantage of the array bound attributes. Below we desribe the modi�ations neededfor Ka�e. The modi�ations to HPCJ are similar.The Ka�eVM JIT reads in lass �les, veri�es them, and produes native ode ondemand. It uses the ' methods' struture to hold method information. We added a�eld to the ' methods' struture to hold the array bounds hek attribute. Figure 3.2shows the data struture.typedef strut _methods {........soot_attr attrTable;} methods;typedef strut _soot_attr{u2 size;soot_attr_entry* entries;} soot_attr;typedef strut _soot_attr_entry {u2 p;u1 attribute;} soot_attr_entry;Figure 3.2: Modi�ed Ka�e Internal StrutureWhen the VM reads in the array bounds hek attribute of the Code attribute,it alloates memory for the attribute. The <PC, data> pairs are then stored in theattribute table. The pairs were already sorted by PC when written into the lass �le,so no sorting has to be done now.The Ka�e JIT uses a large swith statement to generate native ode for byteodes.It goes through the byteodes sequentially. We use the urrent PC as the key to lookup the array bounds hek attribute in the table before generating ode for arrayreferenes. Beause attribute pairs are sorted by asending PC, and byteodes are64



proessed sequentially, we an use an index to keep the urrent entry in the attributetable and use it to �nd the next entry instead of searhing the whole table. Figure3.3 gives the pseudo-ode.idx = 0;...ase IALOAD:...if (attr_table_size > 0) {/* the method has attributes. */attr = entries[idx℄.attribute;idx++;if (attr & 0x03)/* generates bounds hek instr. */hek_array_index(..);elseif (attr & 0x04)/* null pointer hek instr. */expliit_hek_null(..);}else/* normal path */hek_array_index(..);Figure 3.3: Using attributes in Ka�eVMIn setion 2.5, we disussed the subtle relationship between array bounds hek andnull pointer hek for an array referenes. Here, we turn o� bounds hek instrutionswhen the array referene is non-null and both bounds are safe. We also insert nullhek instrutions at the plae where bounds hek instrutions an be removed butthe null hek is still needed. The hek array index funtion emits following odefor heking array bounds:mp reg1, [reg2+off℄jge outofboundserrorand the expliit hek null generates instrutions for heking null pointers:mp reg1, 0je nullpointerexeption65



HPCJ uses a slightly di�erent sheme to handle bounds heks. If array boundsheks are required, a test-and-branh ode sequene is inserted prior to the arrayaess : mov eax,[ebx+offset℄mp eax,edxjge outofboundserrorWhen only bounds heks are proved to unneed, the null pointer hek is aomplishedby a test instrution:test eax,[eax℄The reason for using di�erent hek instrutions in two experiments is that we utilizedexisting routines in the two systems.3.5 Dynami Results and DisussionFigure 3.4(a) shows the perentage of bounds heks that our basi intraproeduralanalysis is able to detet as safe to remove. Note that these are dynami statistis,obtained by instrumenting the lass �les and inserting pro�ling instrutions beforeeah array referene byteode. Lower bounds and upper bounds are measured sepa-rately in the �rst two bars for eah benhmark, while the last bar gives the perentageof array referenes with both safe heks.The intraproedural algorithm an determine that a fairly high perentage ofthe lower bound heks are safe. Safety of upper bound heks is more diÆult toasertain. Still, the results for the array-intensive benhmarks (rightmost �ve) areenouraging; these are the benhmarks whih will bene�t the most, and also in whihwe ahieve the best results.Figure 3.4(b) gives the perentage of ases where both upper and lower boundsheks ould be determined to be safe. The seond and third bars are from the basiintraproedural algorithm augmented with either array �eld analysis or retangulararray analysis; the last bar represents the intraproedural algorithm with both array�eld and retangular array analyses.By analyzing the �elds holding onstant length array objets, the intraproeduralanalysis an get more information about �eld aesses. The suess of this method,66
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potential array bounds exeption that may restrit subsequent internal optimizations,resulting in di�erent ode output. For this reason we present results with and withoutHPCJ's own optimizations applied.Finally, note that every array aess is an objet aess, and so null pointer heksare also required at these points. Depending on mahine arhiteture and how ob-jets are organized, this hek an be ombined with the array bounds hek, andso removing the latter may require inserting expliit null pointer heks [23℄. Bestperformane results therefore our when both kinds of heks are eliminated. Ourresults inlude this optimization.In eah ase the result of using the intraproedural analysis ombined with both�eld and retangular analyses is ompared with the e�et of arti�ially disablingall bounds heks. A ouple of ases (LU in Ka�e, FFT in HPCJ (opt)) exhibitinteresting anomalous results that we have been able to attribute to ode ahe e�ets.In all other ases, however, we ahieve signi�ant performane inreases, roughlyorresponding to the quality of information we were able to ollet.
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Chapter 4Related Work
Array bounds hek optimization has been performed for other languages, suh asPasal, Fortran, and Ada[22℄, for a long time. We �rst disuss some related workdeveloped on other languages. These algorithms an not be diretly applied to Javaprograms beause of its unique requirement of preise exeptions ( Ada shares thissame property ). However, another unique property of Java is that multidimensionalarrays are de�ned as array of arrays, whih prevents many existing methods fromapplying on Java. New solutions have been emerging sine the introdution of Java.We will disuss more details in the following text.W.H.Harrison[14℄ desribed an algorithm for value ranges analysis. The algorithmonsists of two mehanisms alled range propagation and range analysis. Range prop-agation uses the data and the onditional struture of a program to derive and propa-gate symboli range information. Targeting omplex ontrol ow strutures ( loops ),range analysis traks the hanges applied to a variable at eah point in a loop of theprogram. The information is used to derive a range of values for the loop variable.The resulting range information an be used to eliminate unneessary tests and pro-due diagnosti information. While this was a novel idea to redue redundant testsat that time, the simple mehanial propagation of symboli value an only prove asmall part of safe heks.The problem of run-time overhead of array bounds heks was �rst addressed byMarkstein et. al. [18℄. R. Gupta[12, 13℄ extended their work by using data-owanalysis to eliminate redundant heks, propagate heks out of loops, and ombinemultiple heks into a single hek. The algorithm has the same priniple as partialredundany elimination. It relies on hoisting hek instrutions to the earlier point.70



Several kinds of heks an be subsumed: idential heks, heks with identialbounds, and heks with idential subsript expressions. Kolte et.al. [16℄ extendedGupta's algorithm in a partial redundany elimination framework. A fundamentalassumption of the algorithms is that the exeption an be thrown at the point beforeoriginal exeption point ( remember that Figure 1.2(b) showed suh an example ).This assumption is aeptable when working on languages that do not require preiseexeptions. Java does not allow an exeption to happen before the plae it reallyshould be. However, a more basi problem with this type of algorithm is that thelanguage should be able to express and modify heks expliitly, where byteodeinstrutions an not do that.There are several algorithms targeting di�erent problems involved in removingbounds hek overhead for Java. Sienti� omputing programs use multidimensionalarrays. Beause of Java's loose multidimensional array struture, it is very hardto optimize suh programs. Moreira et.al. [21, 19, 20℄ designed an Array pakagefor two- and three-dimensional arrays. The pakage provides Fortran 90-like arrayfuntionality ( all array operations are performed through method alls ). Internally,a multidimensional array is implemented by a one-dimensional array. To ahievegood performane, an inlining tehnique is used to redue the overhead aused bymethod alls, and a speial regioning or loop-versioning tehnique is used to reatesafe regions for array aesses, and thus, remove unneeded array bounds heks. Thealgorithm only works on loops and relies on underlying virtual mahine to be awareof the Array pakage and perform unusual optimizations on it.Some JIT ompilers perform array bounds hek elimination when translatingbyteode to native ode. The Intel JIT[5℄ performs analysis to approximate the rangethat an array might aess within a loop. In the ase of a known range, a speial hek-free loop body is reated, while the bounds hek ode is inserted outside the loop.The IBM JIT[30℄ uses the same tehnique alled loop versioning, but also has a data-ow analysis to analyze heks not in a loop. The data-ow analysis is an extensionof Gupta's algorithm. Both of two ompilers have to obey the preise exeptionrequirement of Java. A basi poliy is to not moving heks over any byteode whihhas side-e�et ( e.g., memory aess, byteode may ause other exeptions ). Loopversioning also an ause ode explosion. So the appliation of the optimization islimited by some parameters: the ode size of loop body, the innermost loops, and soon.More reently, Bodik et. al. [3℄ presented an algorithm alled ABCD ( EliminatingArray Bounds Cheks on Demand ) for general Java appliations, The algorithm uses71



a di�erent form of onstraint graphs to solve bounds heks. The algorithm �rstsplits loals' de�nitions and uses aording the value range onstraints. It builds anextended SSA ( stati single assignment ) form for a method body. In this e-SSAform, all uses of a variable would have the same value range whih an be derivedfrom the program. For example, assignments an hange a variable's value range as inordinary SSA form, and array referenes and onditional branhes an also bound thevalue range of the index or ondition variables in the sope after them. Thus, thesestatements are treated as assignments in the SSA algorithm. The e-SSA guaranteesthat all uses ( by name ) of a variable are bounded by the same onstraints, the valuerange, at the run-time. The value range ould be an approximation. Based on the newform, a onstraint graph is onstruted, where nodes are loals and onstants, andweighted edges are onstraints representing inequality relationship between nodes.To infer the relationship between array and index, the shortest path between themis solved by a ustomized depth �rst searh algorithm whih speially handles the �nodes in the graph. If the shortest path length is less than zero, the upper boundhek for that array referene is unneeded. The lower bound an be eliminated if theweight of the shortest path from array index to the node of onstant 0 is greater orequal to 0. At eah ontrol ow joint point (� node), the weakest onstraint has tobe taken.Our VCA shares some similarities with theirs, both are using inequality graphs torepresent onstraints. However, there are several di�erenes between our algorithmand ABCD approah:1. The ABCD algorithm is based on an extended SSA form, and uses one graph tosummarize onstraints from all statements in a method. Thus, the ontrol-owinformation is inluded in the onstraint graph. Our VCA approah does notrely on any underlying program representation form, it uses a �xed number ofsmall program-point spei� onstraint graphs.2. Based on e-SSA form, the ABCD algorithm an be used in a demand-drivenmanner. Eah demand (query) is solved individually, and may be performedon seleted array referenes that our in hot spots. Eah query is relativelyinexpensive. The VCA approah is designed to prove all array referenes atone. It builds onstraint graphs and solves onstraints in relatively expensiveosts, but the results are available for all array referenes immediately.3. The VCA approah keeps onstraints of lower and upper bounds in the samegraph, whih is not the ase in the ABCD approah.72



4. ABCD is apable of athing partial redundant bounds heks. VCA is not ableto do that urrently.5. In some ases, a program-point spei� graph an hold some impliit onstraintswhere a summary graph based on a SSA representation form annot. Figure4.1 illustrates this point. Given the program segment in Figure 4.1(a), ourVCA algorithm builds the onstraint graph shown in Figure 4.1(b), whereasthe ABCD algorithm builds the graph shown in Figure 4.1(). Note that in theABCD graph, onstraints are only enoded along the diretion of the ontrolow (for example, the assignment i = k + 2; results only in one edge, from kto i). Given this graph, it is not possible to �nd the safe upper bound at p2.However, sine VCA ollets a separate graph for p2, and the onstraint gainedfrom p1 is also applied to i and q, it is possible to show that the bounds aresafe at program point p2.6. In our algorithm, the onstraint graph serves as the basis of other two analyses.We an see, for ertain type appliations, the impats of the analyses are sig-ni�ant. Currently it is not lear how lass �elds and multidimensional arraysinformation an be used to help the ABCD algorithm.VCA may not be faster than the ABCD algorithm, although the tehniques weused make our algorithm run at a reasonable speed. In some SPEC JVM98 benh-marks, VCA an prove nearly same perentages of safe upper bound heks as reportedin [3℄. With array �eld analysis and retangular array analysis, VCA an outperformABCD signi�antly. Experiments show that VCA with retangular array analysisis very e�etive on miro benhmarks using two-dimensional arrays. We also thinkthe approah of formulating a problem in onstraint graphs and solving it by usingdata-ow analysis an be useful for other problems.The general idea of using the single-soure shortest-path of an inequality graphto solve systems of di�erene onstraints has been stated in [6℄(p.539-p.545).R. Shaham et. al. [27, 26℄ desribed an algorithm for identifying live regions ofarrays to detet array memory leaks in Java. In their work, the representation andanalysis are very similar as our VCA. Constraint graphs and data-ow analyses areused to ompute inequalities between variables. However, their fous is on �ndingrelationships between speial lass �elds aross method boundaries based on super-graphs of a few partiular library lasses. Although the supergraph an make our�eld analysis more powerful, our VCA approah fouses on intraproedural analysis73
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Figure 4.1: Comparing the VCA and ABCD onstraint graphs.for general Java appliations, and we handle di�erent statements in more detail. An-other important aspet of our VCA approah is that we use di�erent tehniques toredue the ost of data-ow analysis, suh as limiting onstraint graph node size, andenforing iteration in pseudo-topologial order.Compared with other algorithms, our VCA works on byteode level and does nothange the program. The analysis results are enoded in the lass �le attributes.Thus, there are no problems with preise exeption semantis. It is apable of pre-serving information from various soures. Although it uses a relatively sophistiatedabstration for the data-ow analysis, the tehniques used in the algorithm reduethe overhead to a minimum. VCA an be very easily extended to take advantage ofresults from other analyses. We demonstrated how the two extended algorithms animprove the analysis results dramatially for array intensive benhmarks.Ghemawat et. al. [9℄ desribed an algorithm alled �eld analysis whih exploitsthe delared aess restritions plaed on �elds in a modular language. Java programsare based on lasses. Classes, �elds, and methods have modi�ers whih limit aessto them. Some �elds with modi�ers private, or final an only be aessed in alimited sope. By sanning the ode in the sope, all possible value or objet thata �eld an hold at the run-time is determinable. They implemented the algorithmin the Swift optimizing ompiler [25℄. The analysis results is used by other analysesfor objet inlining, stak alloation, and synhronization removal. They reported anaverage 7% speedups.To target the sienti� programs whih use multidimensional arrays frequently, ourretangular array analysis provides very important information to the VCA, whihhelps the onservative VCA remove almost hundred per ent bounds heks in some74



typial appliations. To the best of our knowledge, very few other works takes advan-tage of knowing array shapes. Further, we believe the array shape information analso help memory layout of array objets in a virtual mahine[4℄.
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Chapter 5Conlusions
In this thesis we have presented a olletion of tehniques for eliminating array boundsheks in Java. Our base analysis, variable onstraint analysis (VCA), is a ow-sensitive intraproedural analysis that approximates the onstraints between impor-tant program variables at program points orresponding to array aess statements.The analysis has been made eÆient by reduing the size of the graphs, hoosing anappropriate worklist order, and applying a widening at loop entry points. As shownin the experimental results, the size of the graphs is small (around 10 nodes for ourbenhmarks), and the average number of iterations per basi blok is always less than3. In order to improve the preision of the base VCA analysis, we have desribedtwo additional tehniques. Array �eld analysis is applied to eah lass to �nd thosearray type �elds that always hold an array with a �xed onstant length. Retangulararray analysis is applied to whole programs to �nd those variables that always referto retangular, non-ragged, arrays. Given the information from these analyses, theintraproedural VCA analysis was improved to inlude information about �elds, andupper dimensions for multidimensional arrays.Our analyses were implemented in the Soot optimization/annotation framework,and we provided dynami results that showed the e�etiveness of the base VCAanalysis and the inremental improvements due to �eld and retangular array analysis.These results were quite enouraging and demonstrated that almost all heks ouldbe eliminated for those benhmarks with very regular omputations. We also providedexperimental results for Ka�e and IBM's HPCJ to demonstrate that signi�ant run-time savings an be ahieved as a result of the analysis.76



Our next phase of work will be to integrate a side-e�et analysis into the frame-work, and improve upon information for arrays stored in objets. To extend onstraintgraphs to represent other arithmeti operations is a very interesting topi.
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Appendix AImplementation lasses in Soot
Classes implementing three analyses loate in the diretory rooted from Soot projet:%SOOTDIR%/soot/jimple/toolkits/annotation/arrayhek/. The lass �les arelisted below:Array2ndDimensionSymbol.javaArrayBoundsCheker.javaArrayBoundsChekerAnalysis.javaArrayIndexLivenessAnalysis.javaArrayRefereneNode.javaBoolValue.javaBoundedPriorityList.javaClassFieldAnalysis.javaExtendedHashMutableDiretedGraph.javaFlowGraphEdge.javaIntContainer.javaMethodLoal.javaMethodParameter.javaMethodReturn.javaRetangularArrayFinder.javaWeightedDiretedEdge.javaWeightedDiretedSparseGraph.javaThe ArrayBoundsCheker lass is a wrapper handling parameters and alling82



other analyses. The ArrayBoundsChekerAnalysis implements VCA, and the Weighted-DiretedSparseGraph implements VCG. The ClassFieldAnalysis and Retangular-ArrayFinder implement array field analysis and retangular array analysisrespetively. Other lasses are utility lasses.
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