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Abstract

The Java programming language requires array reference range checks at run time
to guarantee a program’s safe execution. If the array index exceeds the range, the
run-time environment must throw an IndexOutOfBoundsException at the precise
program point where the array reference occurs. Compilers generate conditional
branch instructions for implementing array bounds checks. A branch instruction
has great performance penalties in modern pipelined architectures. Also, it makes
many other optimizations difficult. For array-intensive applications, array bounds
checks may cause a heavy run-time overhead, and thus it is beneficial to eliminate
all checks which a static analysis can prove to be unneeded. Array bounds checks
are required by some other languages such as Ada and Fortran, and some bounds
check elimination algorithms have been developed for these kinds of languages. How-
ever, these algorithms are not directly applicable for Java applications because of the
precise-exception requirement of the language.

We present a new approach to eliminate array bounds checks in Java by using
static analyses. Our approach is based upon a flow-sensitive intraprocedural analysis
called variable constraint analysis (VCA). VCA collects constraints between locals
related to array references. The array bounds check problem is formulated as solving
a system of difference constraints. The analysis builds a small constraint graph for
each important point in a method, and then computes the shortest-path weight of
the graph. The shortest-path weights from upper bound to array index and from the
index to lower bound indicates the safety of checks. Using VCA as the base analysis,
we also show how two further analyses can improve the results of VCA. Array field
analysis is applied on each class and provides information about some arrays stored in
fields, while rectangular array analysis is an interprocedural analysis to approximate
the shape of arrays, and is useful for finding rectangular (non-ragged) arrays.
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We have implemented all three analyses using the Soot bytecode optimization/anno-
tation framework and we transmit the results of the analysis to virtual machines using
class file attributes. We have modified the Kaffe JIT, and IBM’s High Performance

Compiler for Java (HPCJ) ! to make use of these attributes, and we demonstrate
significant speed-ups.

!The experiment on HPCJ was conducted by Clark Verbrugge.
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Résumé

Le langage Java vérifie les valeurs des indices de tableaux durant l'exécution pour
garantir une exécution sture. Sil'indice est supérieur a la taille du tableau, I’environne-
ment d’exécution produit une exception IndexOutOfBoundsException a l’endroit
précis du programme ot I'indice de tableau fautif apparait. Les compilateurs génerent
des instructions de branchements conditionnels pour implémenter cette vérification.
Une instruction de branchement est tres pénalisante dans les architectures en pipeline
modernes, et rend difficiles beaucoup d’autres optimisations. Pour les applications qui
utilisent beaucoup de tableaux, la vérification des limites de tableaux peut causer une
importante augmentation du temps d’exécution, et il serait donc bénéfique d’éliminer
toutes les vérifications qu’une analyse statique révélerait inutiles. Les vérifications de
limites de tableaux sont nécessaires pour certains langages comme Ada et Fortran, et
des algorithmes d’élimination ont été développés pour ceux-ci. Or ces algorithmes ne
sont pas directement applicables a Java de par la présence du mécanisme d’exceptions
du langage.

Nous présentons une nouvelle approche pour éliminer les vérifications de limites
de tableaux en Java par des analyses statiques. Notre approche est basée sur une
analyse intraprocédurale et "flow-sensitive” appellée analyse a contraintes variables
(VCA). La VCA collecte les contraintes entre variables locales liées aux indices de
tableaux. Le probleme des vérifications de limites de tableaux est formulé comme un
systeme de différence de potentiels. L’analyse construit un petit graphe de contraintes
pour chaque point important de la méthode et calcule la valeur du plus court chemin
du graphe. Les valeurs des plus courts chemins de la limite supérieure a la valeur de
I'indice et de l'indice a la limite inférieure indiquent 1'utilité de la vérification. En
utilisant VCA comme analyse de base, nous montrons aussi comment deux analy-
ses plus poussées peuvent améliorer les résultats. L’analyse des champs tableauz est
appliquée sur chaque classe et fournit des informations sur certains tableaux utilisés
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dans les champs, tandis que I"analyse de tableaux rectangulaires est une analyse inter-
procédurale d’approximation de la forme des tableaux multi-dimensionnels, qui est
utile pour trouver les tableaux rectangulaires.

Ces trois analyses ont été implémentées avec la structure d’optimisation et d’anno-
tation Soot grace a laquelle nous transmettons les résultats de nos analyses aux ma-
chines virtuelles Java par le biais des attributs des fichiers classes. Nous avons modifié
le JIT de Kaffe, ainsi que le High Performance Compiler for Java (HPCJ) d’'IBM 2
pour utiliser ces attributs et nous montrons les améliorations significatives qui en
résultent.

2L’expérience sur HPCJ a été réalisée par Clark Verbrugge.
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Chapter 1

Introduction

The Java programming language is becoming increasingly popular for the implemen-
tation of a wide variety of application programs, including loop-intensive programs
that use arrays. Java offers many desirable features such as object-oriented software
design, cross-platform portability, safe execution, and many support class libraries.
By programming in Java, a programmer can increase productivity while writing safe
code. Also the program can be written once and run everywhere. These attractive
features, however, cause performance penalties. The object-oriented feature relies on
virtual method calls; the cross-platform portability is accomplished by interpreting
and/or just-in-time compiling bytecode; and the safety is secured by various com-
piler and run-time checks, e.g, class file verification, array bounds checks, null pointer
checks, and type checks. Because of these expensive operations, a Java program
usually is much slower than its counterpart in C/C++.

A Java program is compiled to a class file in bytecode format. The bytecode class
file is executed by a virtual machine (VM). The Java programming language has its
own specification [10], which defines the syntax and semantics of the language. The
Java virtual machine specification [17] defines the bytecode format and the run-time
support environment. The bytecode class file can be executed in several ways. In
an internet environment, the class file is loaded and executed by a virtual machine.
The VM can interpret the bytecode, or use a Just-In-Time compiler to translate
the bytecode to native code and execute it by hardware directly. In this case, the
interpretation and/or compilation time contributes to the total execution time of the
program. In other fields, such as scientific computations and real-time applications,



all the class files of the application can be compiled to native code by an Ahead-
Of-Time (AOT) compiler before execution. In this case, the compilation time can
usually be ignored.

To speed up the execution of Java programs, a general approach is to build a
sophisticated virtual machine, which includes a class file loader and verifier, an in-
terpreter and/or JIT compiler(s), and a garbage collector. A naive JIT compiler [15]
translates bytecode to native code without performing many optimizations ( it may
perform some simple optimizations within basic blocks ). Sophisticated JIT compilers
[5, 30, 1, 11] apply traditional and adaptive optimizations on the process of transla-
tion. It has been proved that Just-In-Time compilation makes the execution of Java
programs much faster than interpretation. Because the compilation time accounts a
part of the program execution time, a JIT compiler can not afford many advanced
optimizations which are usually expensive.

Another approach to improve the performance of Java programs is to optimize
the bytecode and perform relatively expensive analyses statically. The optimizations
can target either space reduction, which removes unused fields and methods from
class files, or performance improvement. Many traditional analyses can be applied
to bytecode and produce good-quality bytecode class files. Such optimizations in-
clude common subexpression elimination, deadcode removal, static inlining, and so
on. Another group of analysis results cannot be reflected by transforming bytecode
directly, for example, array bounds check elimination, type check removal, and stack
object allocation. But these analysis results can be used by a virtual machine or an
Ahead-Of-Time compiler ( the optimizations can be built in AOT compilers ). The
analyses are not limited in compilation from bytecode to native code, they can also
improve memory management, task organization, and so on. This approach moves
the performance burden from running time to static compilation time, and allows us
to optimize the class file once for reuse by many VMs at any time.

The focus of this thesis is on reducing the run-time overhead caused by array
bounds check instructions ( and partially null pointer check instructions ). We are
using static analyses to analyze Java applications at the bytecode level. The results
are encoded in the class file as attributes. A JIT or AOT compiler understands the
attributes and removes the bounds check instructions which are marked as unneces-
sary. The algorithm can also be implemented in an AOT compiler. Although the
algorithm was developed for Java, it also can be implemented in compilers for other
imperative languages which require array bounds checks.



The rest of this chapter is organized as follows. Section 1.1 introduces the prob-
lem of array bounds check elimination in Java. Section 1.2 describes the framework
on which our analyses are implemented. Thesis contribution and organization are
presented in Sections 1.3 and 1.4.

1.1 Array bounds checks in Java: the problem

In languages like C, a major source of potential errors is illegal memory accesses. For
example, writing to the region outside of an array can cause unanticipated conse-
quences. Java provides secure and safe execution of programs. As part of the safety
system, array bounds checks are used to detect memory violations due to illegal array
accesses. The Java language specification requires that an exception has to be raised
for any array access in which the array index expression evaluates to be out of bounds.
Figure 1.1 gives several examples that raise IndexOutOfBoundsExceptions. In ad-
dition to the IndexOutOfBoundsException exception, an array reference will throw
a NullPointerException if the array object is null, and the virtual machine will
not check the array bounds. The Java language specification also requires that the
exception has to be thrown at the precise point where the exception happens because
user code can catch such exceptions or dump stack traces for debugging purposes.
Execution of an array reference bytecode ( e.g, iaload, istore ) needs a null pointer
check first, and then checks of both lower and upper bounds. The lower bound of
an array reference is fixed to the constant 0, and the upper bound is 1 less than the
array length stored in the array object. Both lower and upper bounds checks must
be satisfied. The exceptions for lower and upper bounds checks are the same.

int a = new int[10];
(1) al[-1] = ...; // lower bound out of range
(2) al10] = ...; // upper bound out of range

(3) for (i=0; i<=a.length; i++)
alil ... ; // upper bound out of range

Figure 1.1: IndexOutOfBoundsException examples



A direct implementation of checks for one array reference adds three conditional
branch instructions: 1) if the address of the array object equals zero, branch to a
routine raising a null pointer exception, 2) if the index is less than zero, raise an
array bounds out of range exception, and 3) after reading in the array length, if the
index is greater than the array length minus 1, raise an array bounds out of range
exception. Some well-known techniques can reduce three branch instructions to one
in most of modern architectures ( e.g, x86, PPC ). The null pointer check does not
need an explicit check instruction when the hardware is capable of catching memory
accesses to the first page ( page address starting from zero ). Usually the array
length field is located near the object head. Thus, reading in the field from a null
object would cause a hardware trap and the trap handler would raise a null pointer
exception. Lower and upper bounds checks can be implemented by one unsigned
comparison instruction because any negative integer is greater than any positive one
when it is treated as an unsigned integer.

Although we can use the above techniques to reduce the cost of checks, at least
one conditional branch instruction is still needed for each array access. A naive JI'T or
AOT compiler inserts checks for each array access, which is clearly inefficient. These
checks cause a program to execute slower due to both direct and indirect effects of the
bounds check. The direct effect is that the bounds check is usually implemented via
comparison and branch instructions, and thus each array access has this additional
overhead. The indirect effect is that these checks also limit further optimizations
because the Java virtual machine specification requires precise exception handling.
This limits code movement and also limits many effective loop transformations which
are commonly used in high-performance C and Fortran compilers [21]. Furthermore,
this same precise exception requirement limits program transformations that optimize
the run-time checks. For example, checks cannot be moved to earlier program points
if this changes the exception behavior of the program.

The problem of eliminating array bounds checks has been studied for other lan-
guages and static analyses have been shown to be quite successful[12, 13, 16]. How-
ever, array bounds check analysis in Java presents several special challenges. Firstly,
the length of an array is determined dynamically, when the array is allocated, and thus
the length ( or upper bound ) of the array may not be a known constant. Secondly,
arrays in Java are objects, and these objects may be passed as references through
method calls, or may be stored as a field of some objects. Thus, there may be a
non-obvious correspondence between the allocation site of an array and the accesses



to the array. Thirdly, multidimensional arrays in Java are not necessarily rectangu-
lar, and so reasoning about the lengths of higher dimensions is not simple. Finally,
techniques that require transforming the program or inserting checks at other earlier
program points are not as applicable in Java as in other languages with less strict
semantics about exceptions.

Figure 1.2(a) shows a piece of code which needs two checks for two array references.
Some well-known algorithms[12, 13, 16] can merge two checks to one as in 1.2(h).
Although the change reduces two checks to one, the new code does not have same
exception behavior as original one. Consider that the length of the array is 4. In (a)
the exception is raised before the second array access a[5], and in (b) the exception
happens before the first reference. The problem is that a user may write a try-catch
clause to catch the exception and do some recover work. The catch statement would
get different value of i for the two different cases. The second treatment violates the
precise exception requirement of the Java language.

int a = new int[k]; int a = new int[k];
; if a.length <= i ; if a.length <= i+l
; raise exception ; raise exception
alil... ; alil... ;

; 1f a.length <= i+l ali+1]... ;

; raise exception
ali+1]... ;

(a) original checks (b) merged check

Figure 1.2: A precise-exception example

Multidimensional arrays are the most common data structures in scientific com-
putation. Vectors and matrices in linear algebra are represented as one- and two-
dimensional arrays ( we have used a few in our benchmarks ). To make Java as
competitive as C and Fortran, operations on multidimensional arrays must be per-
formed efficiently. In C or other languages, a two-dimensional array is allocated in a
contiguous memory block as in Figure 1.3(a). However, Java defines a multidimen-
sional array as an array of arrays. See Figure 1.3(b) which is a legal array shape in



Java. Sub-arrays are independent and can have different lengths. To deal with this,
a reference to the second dimension in source code is implemented in bytecode by
two array references, as in Figure 1.4. The bytecode instruction set provides only
one-dimensional array access and accesses to multidimensional arrays are performed
one dimension at a time. This definition makes the multidimensional array be a very
loose structure, and the sub-arrays may not all be the same length, or sub-arrays may
be references to the same array object (aliased), or they could even be null.

0 1 2 3 4 5

A W N - O

(a) A two-dimensional array in C

0

1
27||||||
3

4

A

two-dimensional array in Java

(b)

Figure 1.3: Compare multidimensional array shapes

1.1.1 Eliminating unnecessary array bounds checks in Java

This thesis describes a flow-sensitive, intraprocedural algorithm called variable con-
straint analysis ( VCA for short ) that can prove that many array references are safe,
without transforming the original program. The algorithm collects differences con-
straints, and builds a constraint graph for each array reference. Then it uses the
graph to infer the relationship between the index of the array reference and the ar-
ray’s length. The algorithm was designed carefully to take advantage of the fact that



int[J[] I = new int[10]1[10];
I[2][3] = 10;
a) Java source code

bipush 10

bipush 10
multianewarray <[[1> 2 (2)
astore_1

aload_1

iconst_2

aaload

iconst_3

bipush 10

iastore

b) Bytecode

$r1 = multinewarray int[10][10];
$r2 = $ri1[2];
$r2[3] = 10;

c) More readable JIMPLE code
Figure 1.4: A reference to two-dimensional array in Java

variables used in index expressions often have very short lifetimes, and thus build-
ing graphs for only live variables of interest leads to very small graphs. Further, we
tuned the worklist algorithm to reduce the number of iterations. As a result, the
actual running time is linear in the size of the method being analyzed.

We have improved the base VCA algorithm using two additional analyses: array
field analysis is applied to each class and provides information about some arrays
stored in fields, while rectangular array analysis is an interprocedural analysis based
on call graphs to approximate the shapes of arrays.

Java is a class-based object-oriented language. Each class can declare fields, and
each field has a modifier which defines the access privilege to it. Array field analysis



takes advantage of the fact that updates to final or private fields are limited. A
final type field can only be assigned once in its declaring class. A private field can
only be assigned in the declaring class. By analyzing assignments to such fields, we
can often identify fields which always hold some constant length array objects. Such
information can pass the bound of methods and be utilized by all methods of the
class.

For programs using multidimensional arrays, VCA does not know any information
about sub-arrays. Even if the programmer knows all sub-arrays have the same length,
a conservative approach must assume that sub-arrays may have different lengths.
Rectangular array analysis aims to determine if an array is guaranteed to be rectan-
gular, i.e. all sub-arrays have the same length. Rectangular array information can be
used to make VCA more powerful by allowing VCA to include sub-array accesses.

All three analyses have been implemented using the Soot bytecode optimization
framework[34, 33|, but could be easily implemented in other compilers with good
intermediate representations. The Soot framework converts bytecode from class files
into a typed 3-address representation called JIMPLE, and the analysis is implemented
on this representation. In order to convey the results of the analysis to virtual ma-
chines we use the tagging/attributing capabilities of Soot to tag each array access
instruction to indicate if the lower bound and/or upper bound checks can be elimi-
nated. Moreover, a simple intraprocedural null pointer analysis generates null pointer
check attributes about array references. The Soot framework then produces bytecode
output, with the tag information stored in the attributes section of the class files. Vir-
tual machines or ahead-of-time bytecode-to-nativecode compilers can then use these
attributes to avoid emitting bounds checks based on the attributes. We have instru-
mented both the Kaffe JIT and IBM HPCJ ahead-of-time compiler to read these
attributes.

We have experimented with 10 benchmark programs, including 5 specJVM bench-
marks, 3 kernels from the scimark? suite' and 2 array-based benchmarks we imple-
mented according to standard algorithms. First, we measured the complexity of our
base VCA analysis, measuring both the maximum and average sizes of the constraint
graphs, and the average number of times each block was analyzed. These results show
that the analysis is practical, with small graph sizes ( maximum size 13 ) and a low
number of iterations ( average always less than 3 ). We then measured the dynamic
behavior of array bounds checks and compared the synthetic case when all bounds

! Available at http://math.nist.gov/scimark?.



checks are removed ( an upper bound of what could be achieved with static analysis
) and the results of our analysis. Not surprisingly, we found that it was much harder
to eliminate upper array bounds checks than lower array bounds checks. We showed
that the base VCA algorithm could eliminate from 3% to 60% of both the lower and
upper bounds checks for array references, while adding the array field analysis and
rectangular array analysis improved these results. In five of the benchmarks we could
eliminate 60% or more checks and in three of those cases we eliminate more than
99% of the checks. We also provide run-time speed-ups, and we showed significant
speed-ups for both the Kaffe VM and IBM’s HPCJJ.

1.2 Soot: background

We implemented algorithms on the Soot framework because it provides a stackless,
typed, 3-address intermediate representation. All analyses work on this IR. Some
Soot utility classes alleviate the work of development. Furthermore, the analysis
results are passed to class files using Soot’s attribute annotation functionality.

Soot is a Java bytecode optimization and annotation framework|28, 34]. Soot
reads in a bytecode class file, converts it to an intermediate representation form
called JIMPLE, which is a typed 3-address code. Static analyses and transformations
are performed on the JIMPLE IR. After that, the JIMPLE IR is written back to the

class file bytecode format.

In Soot, a bytecode class is represented with a SootClass object. Fields and
methods are represented as SootField and SootMethod objects, respectively. A
SootMethod object may have a method body, which consists of a chain of JIMPLE
statements. Analyses can either directly optimize the JIMPLE statements by chang-
ing instructions ( e.g. peephole optimizations, CSE, and static inlining ), or encode
results in class file attributes which can be used by a Java virtual machine ( e.g.
bounds checks and null pointer checks ).

1.2.1 JIMPLE: a typed 3-address IR

JIMPLE is a 3-address ( stackless ) intermediate representation of bytecode. It sim-
plifies the representation of more than two hundred types of bytecode instructions
to about seventeen types of JIMPLE statements. A JIMPLE statement is a typical



3-address code, which is suitable for many analyses and optimizations. Readers can
get detailed description from [33]. Here I would like to describe some features used
for the analyses presented in this thesis.

Locals in JIMPLE code are typed by a static type inference system[8]. The
operands of a statement have declared types. Based on these types we can deter-
mine if a method involves arrays by examining the types of its locals.

A static analysis on JIMPLE is simplified since each JIMPLE statement has only
one complex feature. Figure 1.5 shows an example. An assignment from a field
reference to an array reference is achieved by using a local variable. The focus of the
first statement is the field reference, and the second statement emphasizes the array
reference.

alil = o.f; $r1 = o.f;
alil = $r1;
a) Java code b) Jimple code

Figure 1.5: Example of JIMPLE representation

To further improve the results of analysis, local variables are split using def-
use/use-def webs, which is a simple alternative to SSA form. Figure 1.6 shows an
example of the original Java code and the resulting JIMPLE code. It should be clear
that two assignments to variable a are split to two unrelated variables r1 and r2.

a = new int[10]; rl = new int[10];
ali]l] = ... ; ri[il1] = ...;
a=o0.f; r2 = o.f;

alil = ... ; r2[il] = ...;

a) Java code b) Jimple code

Figure 1.6: Example of DU-UD webs

10



1.2.2 Intraprocedural analysis tool classes

For a method with bytecode, the Soot framework provides various control graphs,
with or without exception edges, on the unit base or basic blocks, and so on. A
set of well-implemented tool classes makes data-flow analyses ( flow-sensitive or flow-
insensitive ) easy ( see the package soot.jimple.toolkits ).

Here, I describe a few classes used by VCA:

BlockGraph implements a control-flow graph ( CFG ) for a method body where
the nodes of the graph are basic blocks.

BackwardFlowAnalysis provides the fixed point iteration functionality required
by all backward flow analyses. VCA extends the BackwardFlowAnalysis to
compute live locals related to array references.

ForwardBranchedFlowAnalysis provides functionality for branched forward flow
analysis. A branched flow analysis can propagate different information to the
successors/predecessors of a node ( e.g., a conditional branch instruction ).
VCA uses a customized version of this class, which has special operations such
as ordering graph nodes and widening edge weights.

1.2.3 Call graphs

Virtual method calls are resolved at run time, which means the exact type of a receiver
may not be known at compilation time. However, for closed-world applications, the
class hierarchy can be statically computed. Class hierarchy analysis ( CHA ) [7]
provides a set of potential receiver types for a virtual method call. Moreover, rapid
type analysis ( RTA ) [2] and variable type analysis ( VTA ) [31, 32] can make the
type set smaller.

Based on the results of CHA, a conservative call graph can be built for a Java
application. Whole-program ( interprocedural ) analyses need the call graph as a
backbone. Soot has implementations of CHA, RTA, and VTA, and builds a conser-
vative call graph for other analyses. Our rectangular array analysis is based on the
call graph provided by the Soot framework.
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1.2.4 Class file annotations

Soot can also be used as a bytecode annotation framework[24]. Because the bytecode
is a relatively high-level instruction set, it hides some low-level operations behind the
bytecode instructions. For example, a virtual machine implicitly performs the array
bounds checks for array access bytecodes, such as iaload, iastore, etc. However,
at the bytecode level, even if we know that an array access bytecode has an index in
the safe range, it is impossible to represent such information in the bytecode itself.
The attributes of a class file provide an alternative way to pass the results of a static
analysis, which cannot be conveyed by the bytecode, to the underlying systems. A
JIT or ahead-of-time compiler can then generate more efficient native code when it
uses the annotation information. Figure 1.7 shows the internal structure of the Soot
annotation framework.

Based on this idea, the results of our analyses are encoded in the attributes of a
class file. The modified Kaffe JIT and HPCJ can use these attributes to optimize the
native code they produce. The details of annotation goes beyond this thesis, but the
modification of JIT compiler to utilize the attributes is described in Chapter 3.

1.3 Thesis Contributions

We have designed a new algorithm to prove the safety of array references in general
Java programs. In our algorithm difference constraints, which are program-point-
specific, are used to approximate the run-time value relationships among local vari-
ables. A constraint guarantees that, at the respective program point, a variable’s
run-time value is less than or equal to another variable’s run-time value plus/minus
a constant integer. If an index expression has a constraint that is bound to a value
less than the length of an array object, the upper bound check can be removed at the
run-time. Similarly, the lower bound check is redundant when the index is greater
than or equal to the constant 0.

The basic Variable Constraint Analysis analyzes the code of one method. It con-
structs a constraint graph at each important program point. By using some special
techniques ( e.g. ordering CFG, widening edges, and liveness analysis ), the analysis
propagates constraint graphs along the control-flow graph of the method until reach-
ing a fixed point. The relationships of variables can be inferred from the constraint
graphs. VCA is also extended to take advantage of the information from our array
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field analysis and rectangular array analysis. We have implemented the algorithm in
the Soot framework. General and array-intensive benchmarks are analyzed to demon-
strate the effectiveness and efficiency of the algorithm. The results are encoded in the
class file attributes via Soot’s annotation functionality. We also demonstrate how to
make a JIT compiler be aware of such attributes, and experiments on the Kaffe VM
and IBM’s HPCJ showed significant speed-ups.

In summary, the main contributions of this thesis are:

e Definition of the constraint graph and operations on it. We demonstrate how
the array bounds check problem can be represented by a system of difference
constraints, and how to solve the system by finding the shortest-path weight in
the corresponding constraint graph. We also use several techniques to minimize
the overhead of the analysis.

e Design of the array bounds check elimination algorithm, which includes three
analyses:

1. Variable Constraint Analysis (VCA) is an intraprocedural analysis which
builds and solves constraint graphs in the scope of one method. VCA also
serves as the basis for the two extended analyses.

2. Array field analysis analyzes the assignments to a class field with specific
modifiers. The analysis is performed in the scope of a Java class.

3. Rectangular array analysis is for finding the shape of multidimensional
arrays. It is an interprocedural analysis based on the call graph of a whole
application. The analysis builds an array type graph and tracks down array
shapes from paths leading to a method parameter or a local variable.

The results of array field analysis and rectangular array analysis help the VCA
improve the analysis of both one-dimensional and multidimensional arrays.

e Implementation of the algorithm in the context of Soot. The algorithm is im-
plemented in pure Java language.

e Experiments on real JVMs. 1 defined the format of array bounds check at-
tributes and modified Kaffe JIT compiler to use the attributes. The annotated
class files were also provided to Clark Verbrugge at IBM Toronto Lab who
performed the experiments using IBM’s HPCJ ahead-of-time compiler.
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1.4 Thesis Organization

The remainder of the thesis is structured as follows. We present our algorithm in
Chapter 2. The base wariable constraint analysis is presented in Section 2.1, the
array field analysis and rectangular array analysis are presented in Section 2.2 and 2.3,
respectively. We also discuss some enhancements made to the VCA in Section 2.4.
Related null pointer analysis is described in Section 2.5. Experimental results are
given in Chapter 3, where the modification of Kaffe JIT compiler is also described.
The related work is discussed in Chapter 4, and conclusions are in Chapter 5.
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Chapter 2

Analyses

In this chapter we introduce the three analyses used in our approach. The Variable
Constraint Analysis is presented first because it serves the basis of the other two
analyses. Then two extensions, array field analysis and rectangular array analysis,
are described after VCA. Also, some extensions we made on VCA are introduced
later, although they do not have obvious effects on our results. In the last section,
we briefly describe an intraprocedural analysis for eliminating null pointer checks. In
some cases eliminating array bounds checks requires inserting null pointer checks if
the array reference cannot be shown to be non-null.

Each analysis is illustrated by graphs and examples. All examples are given in
Java or JIMPLE form.

2.1 Variable Constraint Analysis

The objective of our wvariable constraint analysis is to determine the relationships
between array index expressions and the bounds of the array. In Java, an array
reference of the form a[i] is in bounds if 0 <1 < a.length — 1. 1f the array reference
is out of bounds, an ArrayIndexOutOfBoundsException must be thrown, and this
exception must be thrown in the correct context.

The relationships between variables can be represented as difference constraints.
A system of difference constraints has a corresponding constraint graph. Finding
the shortest-path weights in the graph gives a solution to the system. Our base
analysis uses a variable constraint graph ( VCG ) to represent difference constraints
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between variables. The VCG is a weighted, directed graph, in which nodes represent
variables, constants, or other symbolic representations; and each edge has a weight to
represent the difference constraint from the source to destination node. The analysis
is intraprocedural and flow-sensitive. Each program point of interest (control-flow join
points and array references ) has a VCG to approximate the relationships between
variables. These VCGs are propagated through the control-flow graph by using an
optimistic worklist-based flow analysis. When the analysis reaches a fixed point, the
distance in the VCG from an array variable to its index expression can be solved as
the single-source shortest path problem. By reducing the size of the graphs, careful
design of the worklist strategy, and the appropriate use of widening operators, we
have developed an efficient and scalable analysis.

In the remainder of this section we introduce the concept of the variable constraint
graph which is the essence of our algorithm. Then we describe the data-flow analysis,
and finally we outline the techniques we used to improve the algorithm’s performance.

2.1.1 Systems of difference constraints

Systems of difference constraints can be used to solve the general linear-programming
problem[6](p.539-p543). A constraint is a simple linear inequality of the form

T —x; < ¢,y

where z;, x; are unknown variables and ¢ is a constant. A solution to a set of
difference constraints is a vector (1, %y, ,x,) which satisfies the constraints:

Ty — T < ¢

Ty — x; < ¢

Tp1 — Tp S Cn—1

Now we show how systems of difference constraints can represent the array bounds
check problem. Figure 2.1 is a piece of code from an insertion sorting program. Our
goal is to prove three array references (except the first one) are safe, and thus no
bounds checks are necessary for them. The corresponding JIMPLE 3-address code
is in Figure 2.2(a). Figure 2.2(b) lists the difference constraints generated by each
statement. For example, an assignment 7 = ¢ — 1 produces two difference constraints:
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j—1i < —1andi—j <1; the array reference a[i| generates 0 —i <0 and i —a < —1,
where a represents the array length ( because an out-of-bounds index expression can
not pass the bounds checks of the array reference ); and so on. The confluence point
and special assignment ( j = j — 1 ) need special operations ( e.g. merge and update
) to maintain the correctness of the analysis, we will talk about these in more detail
later.

key = alil;
j=1-1;
while (j>=0 && aljl>key)
{
alj+1]=aljl;
J77s

Figure 2.1: A VCG example: Java source code

By walking through the instruction sequence, we can collect several difference
constraints before an array reference. In the example given in Figure 2.2(a), we have
five difference constraints before statement $il = a[j| ( temporarily assuming there
is no flow-joint point at label_1 ):

0-2<0
1—a < —1
j—1< -1
1—j <1
0-7<0

where 4, j, and a are variables, the 0 on the left side of inequality is a special node
representing the lower bound of array references.

A system of difference constraints can be represented as a weighted, directed
constraint graph, and a solution can be obtained by finding shortest-path weights in
the graph. Given a system of difference constraints at the beginning of this section,
the corresponding constraint graph is a weighted, directed graph G = (V, E), where

V = {wg,v1,09,- -, 0, }
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key = alil; 0-1<=0 i-ac<=-1
j=1-1; j-—i<=-1 i-j<=1
label_1: merge (G1, G2)
if (j<0)
goto exit;
0-3<=0
$i1 = aljl; 0-3j<=0 j-ac<=-1
if ($i1 <= key)
goto exit;
$i2 = j + 1; $i2 - j <=1 j - $i2 <= -1
$i3 = aljl; 0-3j<=0 j-ac<=-1
al$i2] = $i3; 0 - $i2 <=0 $i2 - a <= -1
j=3-1 update(j, -1)
goto label_1;
exit
(a) JIMPLE code (b) Difference constraints

Figure 2.2: A VCG example: JIMPLE code and difference constraints

and

E = {(vi,v;) 1 x; — ;i < ¢} U{(vo,v1), (v, v2), -, (vo,vn) }-

Each vertex v; in the graph, for ¢ = 1,2,---  n, corresponds to the variable x;. An
extra node vy makes all v; reachable from it. The edge weight of (vg,v;) is ini-
tialized to 0. If the constraint graph G contains no negative-weight cycle, then
X = (0(vo,v1),d(vg,v2), -+ ,0(vg,vy,)) is a feasible solution for the system of dif-
ference constraints, where §(u,v) is the shortest-path weight from u to v.

In our problem definition, however, we do not need to find a solution to all variables
in the system of difference constraints. The shortest-path weight from the array
variable node to the index expression node is sufficient to prove whether the upper
bound check of an array reference is safe or not. Formally, if §(a,i) < —1, ai] has a
safe upper bound check; if §(i,0) < 0, a[i] has the safe lower bound check. Figure 2.3
shows the corresponding constraint graph before the statement $il = a[j], where
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d(a,j) = —2 and §(j,0) = 0. Therefore, the a[j] can be proved to be safe.

Figure 2.3: The constraint graph before $i1 = a[j]

2.1.2 Variable constraint graphs

Given the JIMPLE 3-address representation of a method body, we build a control-
flow graph ( CFG ) of basic blocks, where a statement with an array reference breaks
a basic block into two smaller ones. Thus, the array accessing statement will always
appear at the top of a basic block. Each basic block is associated with an input VCG.
Difference constraints are collected when going through statements in the block. The
new constraints are incorporated into the constraint graph directly. At the exit of the
block, an output VCG is produced, and passed to successors as their input VCGs.
We define a variable constraint graph as follows:

A node in a variable constraint graph represents one of:

e an int type local which is related to some array index or array object length;
e an array type local which is used to represent the length of the array;
e a 0 node representing the lower bound of array references; or

e an abstract representation for fields, array elements, and common sub expres-
sions (used only in Section 2.4).
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A directed edge in a variable constraint graph is associated with an abstraction value
which is one of:

e |, the edge is uninitialized;
e an integer constant; or

e T, there is no constant constraint from the source to the destination.

The weights associated to edges are comparable. The integer constants are in the
order of ordinary integers. For any constant ¢, the ordering | < ¢ < T holds. The
1 weight is a special case, it is only used to represent the graph as uninitialized (
or never visited ). As we can see later, the iteration on a control-flow graph follows
the graph’s pseudo-topological order, and the first input graph’s edges are initialized
to T, we never operate on an uninitialized graph except merging it with some other
initialized graphs.

From a system of difference constraints to a variable constraint graph, a variable
on the left hand side of an inequality has a corresponding node in the graph. The
graph can be viewed as full-connected. If there is an inequality of i — 5 < ¢, the
corresponding edge from j to ¢ is associated with weight c¢. Other edges without
corresponding constraints have weight T. Using this representation, we show how
constraints are generated and how to operate on the constraint graph in following
text.

Constraint generation

When going through a statement, some constraints may be generated ( and some may
be killed, which is explained later ). We have seen a few examples in Figure 2.2 how
statements generate difference constraints. Generally, an assignment may build con-
straints between its right and left hand side variables. An array reference expression
bounds its index expression in the range of 0 to array length minus 1. For branch in-
structions, different constraints are produced according to the outcome of the branch
condition. We define the constraint generation here for different types of statements
and expressions. Other effects of the statements, such as killing constraints of a node,
are discussed afterwards. In our rules, ¢ is an integer constant, ¢ and j are integer
variables related to some array references, a is an array type variable and represents
the array object length.
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1 =c
Assigning an integer to a local variable generates two constraints: ¢+ —0 < ¢ and
0 — 2 < —c. The constraint graph is changed by adding an edge from node 0 to
1 with weight ¢ and a reversed edge with weight —c.

Cc
TN
—C

We do not create a node for each integer constant appearing in statements, but
represent the constraint as edges to/from the 0 node with adjusted weights.
This approach ensures the graph size manageable, and more important, the 0
node can connect two variables which have no direct edges between them.

1 =3+ c
The statement also generates two constraints: ¢ — j < cand j —¢ < —c. The
edges added to the graph are following:

Cc
TN
—C

1 = a.length
The arraylength is a bytecode instruction which gets length of an array. The
expression can be views as a variable like others. In our representation, the
array variable a is used to represent the length of array. Then the constraints
generated from the statement are © —a < 0 and a — 7 < 0. The edges in the
graph are:

0
/\C
S
0
a = new T[c]

A new expression assigns the variable on the left hand side the length of c.
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a =

afi]

It has the same effect as the assignment a.length = c¢. Using a to represent
a.length, the constraints from the new statement are a — 0 < cand 0 —a < —c.

new T[i]
This statement has the same effect as statement a.length = i, and constraints
generated are a — 7 < 0 and 7 —a < 0.

We know that the JVM check the bounds of an array reference. If the index i
is not in the range of bounds, the JVM throws an ArrayIndexOutOfBounds-
Exception and exits the normal execution path. So, on the normal execution
path, the index ¢ must have passed the bounds checks after the array reference
ali]. Then the array reference expression produces two constraints: 0 — i < 0
and i — a < —1, which can be represented as following edges:

if (i <)
The ifit conditional branch instruction has two out paths. In this example,
the TRUE path has constraint ¢ — j < —1, and the FALSE path has constraint
j —1 < 0. We can use the same way to derive constraints from other branch
conditions such as ifeq, ifgt, ifge, and ifie.

t=3& ¢

Some constraints are not obvious in the statement. An arithmetic and expres-
sion of j & ¢ will make the expression value no more than c if ¢ is a positive
integer. Then two hidden constraints, 0 — 7 < 0 and 7 — 0 < ¢, are derived from
this statement.

Two special cases have no constraint generation, but need special operations on

the graph. We discuss them here, and the operations are described in next subsection.

1 =1+ ¢

A loop induction variable increases or decreases itself. The rules above can only
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generate difference constraints between different variables, and obviously none
can be applied directly on this case. The assignment, however, can be written
in another form by using a temporary variable:

! .
1 =1+¢

1=1

In this way we can find suitable rules for the new statements. In fact, it has
same effect as increasing i’s in-edges’ weights by ¢ and decreasing its out-edges’
weights by ¢ after bypassing the temporary variable i’ in the graph. We defined
an operation update to handle the changes in the graph due to these kinds of
assignments.

When a variable i is assigned a new value, its old constraints have to be removed
before new constraints are added ( except i = i + ¢ where the update function
performs this operation implicitly ). Instead of removing old constraints of i
directly, however, we take a special operation detachnode to bypass the node 1.
If the right hand side expression is one of the cases above, the new constraints
are added in the graph, otherwise, we do not take any action.

Constraint graph operations

The implementation of the constraint graph can use either the adjacency-list repre-
sentation for sparse graphs, or the adjacency-matrix representation for dense graphs.
Because the graph size is relatively small, we implemented the graph as a collection of
adjacency lists. As we introduced before, an edge’s weight can have different values.
1 indicates the edge is uninitialized. However, in our analysis, iterating the CFG in
its pseudo-topological order ensures that only all edges of an uninitialized graph can
be L at the same time. Once the graph is initialized, its edges can never be L again.
Thus, in our representation, L is indicated by a state variable of the graph. In an
initialized graph, a physical edge of a pair of nodes has an integer constant weight,
otherwise, it means the pair has a virtual edge with weight T. In following text, we
assume an initialized graph is full-connected with physical or virtual edges. The edge
weight is an integer constant or T.

No matter what kind of representation we use, however, the functionality of the
constraint graph is independent of the implementation. In the following text, we
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introduce these functions ( or primitives ) in further detail. All operations are only
applied on an initialized graph where the edge weight cannot be L.

Creating a graph:

When we do flow-analysis, only variables related to some array references need
to be examined. As can be seen later, at an interesting program point, if the
set of variables under examination does not change, then the graph node set
will not change. The creation function accepts a set of variables as vertices.
The graph does not provide any functionality to add or delete variables. Graph
edges can be set to T for the entry block’s input graph, or the graph state
variable is set to L which means the graph is in an uninitialized state.

Adding a constraint:
When collecting a new constraint, we add a new edge to the constraint graph.
The addition will make the graph have more than one ( physical or virtual )
edge from a source to a destination. However, we only need to keep one edge for
each pair of source and destination, which has the smallest weight, to guarantee
that both constraints hold. It can be proved as follows. Two edges can be
written as two constraints:

i—j < (2.1)
i—j < (2.2)

where ¢; < ¢y. If inequality 2.1 is true, 2.2 is automatically true. Then inequal-
ity 2.2 is redundant.

When adding an edge to a graph, we keep the one with the smaller weight. The
abstract value T is greater than any other values.

addedge (from, to, weight)
oldweight = edge(from, to).weight

if (oldweight > weight)
edge(from, to).weight = weight

Deleting a constraint:
When a constraint does not hold anymore, the corresponding edge weight should
be changed to reflect the removal of the constraint. The edge weight is set to T
in the graph. Right now, a constraint is deleted only in detachnode operation.
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delete_edge(from, to)
edge (from, to).weight = TOP

Updating a node’s in and out edges:
For an expression ¢ = ¢ 4+ ¢, we do not kill the node 7. Rather, all in-edges’
weights are increased by ¢, and all out-edges’ weights are decreased by ¢, to
reflect the constraint changes. For example, there is an existing inequality of
i —a < ¢, and we use i represent the new value of i after the assignment
t =1+ c. We have constraints:

1—a<c

.l .
1 —1<¢

from which we can easily get i — a < ¢; + ¢. The weight of in-edge from a is
added by c¢. The same process can be used to derive the out-edge changes.

update (node, c)
for each predecessor p of node
edge(p,node) .weight += c;

for each successor s of node
edge(node,s) .weight -= c;

Detaching a node:
When a variable is assigned a new value, its old constraint edges should be
removed before adding new ones. However, the edges may be part of some
paths connecting other nodes, and we wish to retain this information. Thus, the
detachnode primitive first builds edges from each predecessor to each successor,
and then removes all in and out edges.

detachnode (node)
for each predecessor p of node
for each successor s of node
edge(p, s).weight = edge(p,node) .weight
+ edge(a,node) .weight
delete_edge (p,node)

for each successor s of node
delete_edge (node,s)
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Making the shortest path:
A constraint graph also provides methods to find the shortest path between two
nodes or of all pairs. It implements the single-source shortest paths and all-pairs
shortest paths algorithms|[6]. If the method detects a negative cycle existing in
paths, it aborts the operation. This is a conservative decision. As can be seen
in following text, there should not be any negative cycles at reachable program
points after reaching the fixed point.

Merging two graphs

At confluence points we must merge VCGs coming from more than one prede-
cessor. All predecessor graphs will have the same set of nodes, but their edges
may have different weights. Thus, merging graphs is done by simply merg-
ing edge weights. Note that this is different than adding an edge to a graph.
Adding edges implies the new and old constraints are existing at the same time
(in logic, they are AND relationship ), and the tighter one gives the most precise
information. Merging edges means different constraints from multiple paths are
all possible ( they are OR relationship ). So the merged constraint should be
able to contain all possibilities, as thus we must use the weakest constraint. One
or more VCGs from predecessors may not be initialized. When an initialized
graph ( not L ) is merged with an uninitialized graph ( L ), we simply take the
initialized one. The complete merging table is given in Table 2.1.

I N R
L L cl T
c2 || 2 | MAX(cl, ¢2) | T
T T T T

Table 2.1: Merge two edge weights

It is important to note that when computing the merge of an edge p — ¢ from
two graphs GG1 and G2 we need not use the value stored on the edges, rather
we can get a more precise answer by using the shortest path. Thus, we merge
the shortest path from p to ¢ in G1 with the shortest path from p to ¢ in G2.

merge (G1, G2)
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if Gl is uninitialized
return a copy of G2
if G2 is uninitialized
return a copy of G1
make G1, G2 be the shortest-path graphs

G = make a copy of G1i

for each edge e of G1

el = Gl.e.weight
e2 = G2.e.weight
if el is TOP or e2 is TOP
G.e.weight = TOP
else
G.e.weight = MAX ( Gl.e.weight, G2.e.weight )
return G

Negative Cycles

In a directed constraint graph with negative edge weights, it is possible that a negative
cycle exists at some points of the data-flow analysis, before the fixed-point is reached.
However, after reaching the fixed point, every reachable point in the program should
have a graph without negative cycles. For example, if a negative path from a to b
to ¢, and back to a, as in the figure 2.4, the edge weight is w,, wy, and w. while
we + wy + w, < 0. So we have

b—a<w,
c—b<w
a—c<w,

Adding both sides, we get 0 < w,+wy,+w,, which is a contradiction to the assumption.

It is possible to have a graph with negative cycles for programs with unreachable
code due to useless branches. For example:
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w

Figure 2.4: A negative cycle

if (1 < j) {
if (j < 1) {
P: ...
}

}

would lead to a negative cycle at program point P: ( see Figure 2.5 ), but of course
this point is never reached. In the presence of negative cycles in a path, we cannot
compute the shortest path weight for nodes in the path. Leaving them unchanged is
a conservative approach to keep the correctness of the analysis.

Figure 2.5: The negative cycle at P:

Properities of a constraint graph

After seeing how the array bounds check problem is converted to solving systems of
difference constraints and the difference constraints are encoded in a wvariable con-
straint graph, we would like to study some properties of the constraint graph. A
variable constraint graph has the following important properties.

Directed Edges: Instead of keeping equality relationships, an assignment state-
ment produces two directed edges between nodes. The first five cases of con-
straint generation generates two edges between nodes with reversed directions.
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The branch instructions and array references generate asymmetric edges. But
all edges are directed and weighted. This approach unifies the graph represen-
tation for the constraints from different sources.

Inequality edges are transitive: A path from a; to a, can be represented by a
series of constraints, for example the constraints in Figure 2.6 are:

ay — a1 < un

ag — az < wy

Qp — Ap—1 S Wp—1

By summing both sides, we can derive the constraint a,, —a; < w; + wy +
-+« 4+ w,_1, which implies the dashed edge from a; to a, with weight ZTI w;.
The transitive property simplifies graph operations. Any new constraints are
added directly as edges. The edge nodes, however, can indirectly get constraints
from other nodes connected in the graph. We can lazily perform some other
operations , such as detaching a node, computing the shortest path, as required.

ﬂz» _..._‘.’.\‘J:_l._.;@

Figure 2.6: Transitivity of inequality edges

Shortest path gives the tightest constraint: Several paths may exist from a
source to a destination node in the graph. Each path represents some constraints
from different sources. However, only the shortest path gives the most accurate
approximation. Any non-shortest paths are conservative estimations; they are
correct, but not as precise.

Because the inequality graph is transitive, it has the advantage of preserving
constraints when some variables are redefined. Figure 2.7(a) gives an example of four
statements.
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sO0:i=742;
sl:ali] =---;
§2:10 =+
s3:alj]=---;
(a) a basic block

(b) the constraint graph before sl

(c) the constraint graph before s2

W

/@5

) the constraint graph before s3

Figure 2.7: The status of constraint graph changes

Figure 2.7(b), (¢), and (d) show the constraint graphs before the statement s1,
s2, and s3, respectively. We are interested in the graph before s3 because it has an
array access and we want to know whether j is in the bounds. The other two graphs
only reflect the constraint changes.

The statement s1 generates the constraint i —a < —1, which makes a path from
a to 7, and 0 —1i < 0. The path from a to j implies the constraint j —a < —3
by adding its edge weights. Statement s2 detaches the node i from the graph by
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bypassing it. Before the statement s3, ¢ has lost its constraints from a and j, but the
path from a to 7, which goes through i, is shortcut by a new edge directly from a to
j with weight —3. Thus the constraint j —a < —3 is preserved before s3, even when
© was redefined. Therefore, the upper bound check for s3 can be proved to be safe
( we can not derive the safe lower bound from this simple example, because it only
implies 0 — 7 < 2 ).

So far, we can conclude some advantages of using constraint graphs for array
bounds check elimination, although there are many other abstractions that can be
used too. The constraint graph offers several advantages, including;:

1. As we explained in above text, a constraint graph can represent and preserve
indirect constraints, even when a variable is redefined.

2. It has a unified representation for constraints from difference sources, e.g. as-
signments, conditional branches, and array references.

3. The lower and upper bounds relationships can be represented in the same graph.
Array object, index, and constant 0 are encoded in the same graph.

4. Tt is flexible, and can be extended to hold other information. For example, in
Section 2.4, we show how to include information about the second dimension of
rectangular arrays and common sub-expressions.

Certainly, the variable constraint graph has some weakness. It can not represent
some subtle constraints that we can infer from semantics of the language. A typical
limitation is that it is hard to represent other arithmetic operations such as multiply
and division.

2.1.3 Data-flow analyses

To understand how a method manipulates its data, we can apply data-flow analyses
on the code of a method body. We developed two data-flow analyses in our algorithm.
A special live-local analysis, which is relatively simple, determines which locals are
relevant to array references. A more complicated analysis performs abstract execution
of the method, and gets a conservative approximation of constraints among live locals.
The first analysis limits the number of nodes in a constraint graph and therefore
reduces the computation of the second analysis.
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Array-related liveness analysis

A variable constraint graph contains nodes of locals and edges between them. The size
of the graph can be reduced by including only those locals that are used to compute
an index or an array object length in the future. A smaller constraint graph allows
faster computation of shortest paths, and may also reduce the number of iterations
required for the fixed-point computation.

In our liveness analysis, a variable is live at a program point if there is an exe-
cution path from this program point to an array reference expression such that the
constraints collected by using constraint generating rules defined in section 2.1.2 can
form a path from the variable to the array index or array object length in the corre-
sponding constraint graph. We briefly say that the variable is relevant to some array
references. Our goal is to determine that whether we need to add a constraint col-
lected at this point to the constraint graph by consulting the liveness of the variable.

We formulate the analysis as follows:

Partial ordering for approximation domain
In this analysis, we have a set of int or array type local variables. The extended
analysis includes fields, array elements, and common sub-expressions. The par-
tial ordering of the set is from empty set ( L ) to the full set of variables ( T ).
It is best represented by following picture, assuming the method has int type
locals (iq,149, -+ , i) and array type locals (a1, a9, ,a,) :




Problem statement
We already defined the liveness of a local in the above paragraph.

Direction
As with ordinary liveness analysis, it is a backward flow analysis.

Confluence operator
At the flow-joint point, we are take union operator

outset = sety U sets,

because a local is live at this program point if it is live in any paths from this
statement.

Equations for instructions

Table 2.2 provides the key flow functions. The first column gives the types
of statements or expressions that may generate or kill live locals. The second
and third column should be used together. Only when at least one of the
local(s) in the condition set are live, does the statement generate live locals
in the gen set. Note that array references generate live locals without any
conditions. The statement ¢ = 7 + ¢ needs no operations because the variable
is increasing/decreasing itself. For any assignment statements that are not the
case listed in the table, the left hand side variable is removed from the set.

| stmt/expr | cond [ gen | kill |

1=74+c 1 J 7
1 = a.length |1 a 7
a=new T[] | a i a
ali] a,i

i Gop)) |ij i
t=1+c

P= - i

Table 2.2: Liveness for array references

When going through a statement s, we retrieve the cond(s), gen(s), and kill(s).
The equations for computing IN and OUT sets are changed to reflect the con-
ditions.

34



OUT[s]= ] INIp]

pEsuccs]

if cond[s] = ¢ or cond[s| N OUT[s| # ¢
IN[s] = gen[s] U (OUT[s] — kill[s])
else
IN[s] = OUT[s| — kill[s]
The starting approximation
The analysis starts with the safe approximation. Because the analysis is back-
ward, all nodes’ out sets are initialized as ¢.

Now we look back the example in Figure 2.2. Although variable $i1 and key can be
int type variables, there is no path leading them to an array reference. We do not
collect constraints produced by the if ($il < key) statement.

One can easily extend the liveness analysis to accommodate other special nodes,
such as class fields, array elements, and common sub-expressions.

Variable Constraint Analysis

We use a forward, flow-sensitive, optimistic data-flow analysis to approximate a vari-
able constraint graph for each important point in a method body. We named the
analysis as variable constraint analysis, or VCA.

VCA is based on the control-flow graph of basic blocks as we explained before. An
instruction with an array reference appears on the top of the basic block. The entry
of each basic block is associated with a VCG. The initial state of each graph has L
state, except the entry point graph which has all T edges. The analysis is driven by
a worklist algorithm which computes an output VCG based on the input VCG and
the effect of the statements in the basic block. When processing a conditional branch
statement, it may generate different constraints for the target block and the next
block. After reaching a fixed point, the information for each array access statement,
S, is encoded by the VCG associated basic block starting with S.

Now we define the variable constraint analysis formally:

Partial ordering of approximation domain
At any program point the set of interesting variables is known from array-
related liveness analysis, so the set of nodes is fixed. There is one node for each
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variable of interest, plus a node representing the constant 0. The abstraction
computed by our analysis is all-pairs shortest paths of a wariable constraint
graph. But instead of computing the shortest paths at every program point, we
only perform such computation at the confluence point. In other places, we do
simple operations on the graph. The abstract information that changes is the
weights associated to edges. For any constant ¢, the ordering | Cc¢C c+1LC
c+2C...Cmaxint C T must hold.

Problem statement
A pair of nodes (i,7) has the shortest path weight of ¢ from j to i at a pro-
gram point P if the symbolic execution of the program can guarantee that the
constraint ¢+ — j < ¢ holds at any time when it reaches the program point P.

Direction
The wvariable constraint analysis is a forward flow-analysis. Moreover, it requires
the node of the CFG must be visited in its pseudo-topological order because
the analysis is simulating the execution of the program. The dominators of a
node must be visited before that node. Recall that we initialize the entry point
graph to T and other graphs to L. By keeping the topological order, the input
VCG of a basic block can never be | when we start to go through it.

Moreover, the analysis is flow-sensitive. When going through a conditional
branch statement, different constraints may be produced for different out paths
of the branch. The flow function of if statement adds different edges to the
target and next graphs.

Confluence operator
At a confluence point P, we use a set of output graphs from predecessors ( Gj,
Go, -+, G, ) and the old input graph oldgraph(P) to compute the new input
graph newgraph(P). We firstly call the merge operation to union all output
graphs from predecessors:

newgraph = copy of G1

for i = 2 ton
newgraph = merge( newgraph, Gi )

Then we apply a special operation called widening on each new graph edge
weight by comparing it to the old graph edge weight.
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widen(newgraph, oldgraph)

The widening operation looks at the changing trend of an edge weight. If the
weight is increasing, we set it to T directly. But if the new weight is less
than the old weight, we will discard the new weight and use the old one. The
widening technique speeds up the symbolic execution and also stops infinite
loops correctly. We will explain it in detail later.

Equations for instructions

The base analysis deals only with local variables. It is obvious that the integer
locals cannot be aliased, nor can they be modified by method calls. The array
objects referenced by array type locals have the same properties. We only deal
with the first dimension of arrays in our base analysis. Once an array object
was created, the only way to change the array size is to re-allocate a new array
object. Then, the array lengths can be treated as integer locals in the same
way. Thus, the effect of each statement on a VCG is quite straightforward. The
flow function for each kind of relevant JIMPLE statement is given in Table 2.3.
Variables 7, 7 and a represent nodes in the graph, and ¢ is an integer constant.
Each graph has a node for the constant 0.

The first column shows the kinds of statement which have effect on a VCG. The
second column lists the constraints can be generated from the statement in the
first column. The third column shows the node of which constraints should be
bypassed. The last column gives operations on the constraint graph according
to the statement. We always check the liveness of variables before performing
the flow-through function for a statement. Only when the variables are live, the
operations on the graph are performed.

The rules in Table 2.3 use several primitives, which were defined in section
2.1.2. The kinds of statement that can affect constraint graphs depend on
the semantics of languages. Table 2.3 defines some basic statements for Java.
One can also add more complicated ones if they do not violate the language
semantics. We will show a few extension in section 2.4.

The starting approximation
As we stated before, the edges of entry point VCG are initialized to T, which
is the safe solution. Other VCGs’ edges are set to L.

Briefly, the implementation of the analysis uses a heap ( implemented as Bounded-
PriorityList ) to maintain the topological order of blocks in the control-flow graph.
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stmts gen ‘ detach ‘ operations
i=c i—0<c i detachnode(i)
0—i< —c addedge(0,i,c)
addedge(i,0,—c)
i=J+c i—j<c i detachnode(i)
j—i< —c addedge(j,i,c)
addedge(i,j,—c)
i =a.length |1 —a<0 i detachnode(i)
a—1i<0 addedge(a,i,0)
addedge(i,a,0
a=new Tl |la—0<c¢ |a detachnode(a)
0—a<—c addedge(0,a,c)
addedge(a,0,—c)
a=mnew T[] |a—1i<0 a detachnode(a)
i —1<0 addedge(i,a,0)
addedge(a,i,0)
ali] i—a< -1 addedge(a,i,-1)
0—:2<0 addedge(i,0,0)
if (i < ) target:
i—7<-1 addedge(j,i,-1)
else:
j—i<0 addedge(i,j,0)
i = j&ec i—0<c i addedge(0, i, ¢)
0—-i<0 addedge(i, 0, 0)
update(i,c)

t=14+c

7 = .-

detachnode(i)

Table 2.3: Statements generating constraints
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The VCGs are associated to the edges of the CFG instead of being attached to the
blocks directly. Each head of the CFG has an auxiliary edge as its incoming edge.
The input graph of a block comes from merging all graphs on its incoming edges. The
output graph is associated to each outgoing edge. A block with a branch as the last
instruction would produce two different output graphs for its two out-edges, which
makes the analysis conditional. A block also keeps the input graph after merging the
incoming edges’ graphs. To better understand the variable constraint analysis, we
provide the pseudo-code in Figure 2.8, some functions used by worklist are defined




in the later paragraph introducing the BoundedPriorityList class.

The flowThrough function take an input VCG and goes through a basic block.
It operates on the VCG according the flow functions in table 2.3, and updates the
VCGs associated to the block’s out-edges. It returns the set of successor blocks whose
incoming edge’s VCG has changed. When going through a basic block, some variables
added in the temporary graph may be not live at the end of block, we detach those
nodes when updating out-edges’ VCGs.

2.1.4 Improving the performance of the algorithm

A naive implementation of the algorithm requires a large volume of computation to
reach the fixed point. We can analyze the expensive parts of the algorithm. There
are two factors dominating the performance of the algorithm: the variable constraint
graph size and the time that the data-flow analysis takes to reach the fixed point.
In this section, we describe some techniques we have used to reduce the performance
overheads in our algorithm.

Limiting the size of constraint graphs

The running time of computing the shortest path on a graph depends on the number of
nodes and the number of edges. Since we cannot directly control the number of edges,
we reduce the number of nodes, which subsequently reduces the number of edges. The
array-related liveness analysis keeps the node size minimal. The experiment shows
the average node size is less than 10 and the maximum node size never exceeds 13

for the base VCA.

Widening edges at confluence points

Given the long chains in the ordering for edge weights, the ordinary fixed-point com-
putation is too expensive. We reduce the number of iterations by applying a widening
at loop entry points. At these points we replace the ordinary merge operation which
uses the maximum value with a widening implemented as follows. If an edge’s previ-
ous weight was not L and the current weight increases, the edge is set to T. Thus,
it is clear that an edge’s weight at loop headers can change two times at most along
the same execution path. The following is the pseudo-code for the operation.
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units = make PseudoTopologicalOrder of the CFG
worklist = make BoundedPriorityList of units

/* initializes all VCGs to BOTTOM. */
for each edge of CFG
{
edge’s VCG = new VCG with live locals of
edge’s source node
edge’s VCG is set to BOTTOM
+

/* initializes the entry VCGs to TOP. */
for the incoming edge of CFG heads
edge’s VCG is set to TOP

/* performs iterative flow-analysis. */
while not worklist.isEmpty()
{

Block block = worklist.removeFirst()
prevVCG = block’s input VCG

if the block has only 1 incoming edge
beforeVCG = copy of incoming edge’s VCG

else

{
beforeVCG = merge all incoming edges’ graphs
widen ( beforeVCG, prevVCG )

}

block’s input VCG = copy of beforeVCG

List changedSuccs = flowThrough ( block, beforeVCG )

add all elements of changedSuccs to the worklist

Figure 2.8: Pseudo-code of the worklist algorithm
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widen(newgraph, oldgraph)
for each edge of oldgraph and newgraph
do
if oldgraph’s edge weight is BOTTOM
continue;

if oldgraph’s edge weight is less
than newgraph’s edge weight
set newgraph’s edge to TOP.
done

A subtle effect of widening edge weights is that it can stop the flow-analysis quickly
and correctly on an infinite loop. For example, a programmer may unintentionally
write an infinite for loop as in Figure 2.9. Without widening edge (7,0) at the loop

int i=0;
label_1:
if ( i >= a.length)
for ( int i=0; i<a.length; i-- ) goto exit
i=1i-1;

goto label_1

exit:

Figure 2.9: An infinite for loop

entry label 1, §(7,0) is increased by 1 for each iteration over the loop body. The
analysis cannot ever reach the fixed point. However, the widening function can find
out that 6(7,0) is increasing when the analysis visits label_1 the second time, then
set §(4,0) to T, and the analysis stops correctly.

Ordering the nodes of a CFG

Walking through a CFG in its pseudo-topological order can speed up data-flow anal-
ysis. However, a simple depth-first search ( DFS ) algorithm cannot guarantee an

41



optimal order for the successors of a loop exit node.

For our analysis, we prefer to visit the loop body before the loop exit. To enforce
a good ordering we perform a DFS from exiting nodes of the CFG in reverse order
first; then the DFS from the starting node can consult the order of reversed DFS
when it meets a loop exit allowing us to put loop body nodes before loop exits.

Our worklist algorithm puts the successors of a node, whose out set changes, onto
the worklist for re-calculation. The worklist is handled as a heap using the order
computed as above. By enforcing this order we ensure that inner loops reach a fixed-
point before the outer loops. Experiments show this is very effective way of making
our data-flow analysis run efficiently.

The worklist is implemented as the class BoundedPriorityList which provides
several methods:

public BoundedPriorityList(List list)
The constructor accepts a list as the fulllist (universal set), the order of each
element is decided by its index in the list. The fulllist is a list of blocks in an
optimal topological order computed as above. This list is used to keep the index
of each element, another linked list is created as the worklist. All elements in
fulllist are added to the worklist in order.

public boolean isEmpty()
The method returns true if the worklist is empty, otherwise returns false.

public Object removeFirst()
This method removes the first element in the worklist and returns it to the
caller.

public void add(Object toadd)
When a block needs re-computation, it is put back to the worklist. However,
unlike the usual worklist which adds the node to the end of the list, this method
will find the right place in the worklist by its index. All elements are kept the
order in worklist as the same order in the fulllist.

2.1.5 Running time analysis

The performance of our algorithm is decided by two factors: the size of constraint
graphs and the number of iterations required to reach a fixed-point. The nodes of a

42



constraint graph consists of locals, therefore, the graph size is bounded by the number
of locals in a method. Liveness analysis can limit the graph size even further, and
our experiments confirm the graphs are small in practice.

For a control-flow graph without cycles, the data-flow analysis takes linear time
to reach the fixed point. However, most of methods contain loops. At a loop entry,
the special widening step of comparing an edge weight with before makes the edge
weight reach a fixed-point quickly. An edge weight can not change more than twice
because of visiting the same path. So the upper bound of the analysis depends on
the depth of loops and the number of nodes in the loops. It can be represented as
IN| + 32 2IFPH1 « | LN|, where N is the total number of nodes in a CFG, LD is the
loop depth, and LN is the number of nodes in the loop. Theoretically, the worst case
may have exponential running time in the loop depth. However, in our experiments,
the practical running time is linear in the size of the method body with a constant
less than 3.

2.1.6 Revisiting the example

Now we revisit the example in Figure 2.2 with consideration of control-flow informa-
tion. Figure 2.10 shows the program’s control-flow graph of basic blocks. Note that
each statement with array reference shows on the top of a basic block. The blocks
are labeled from A to G.

First of all, we perform the array-related liveness analysis on the control-flow
graph. The live-local set is marked before each basic block, in which the constant
node of 0 is added. The optimal topological order of the CFG is (A, B,C, D, E, F, G).
The VCA creates a constraint graph G, for each edge (u, v) in the CFG with the node
set before block v. All graphs are initialized to L except the block A’s input graph
G a4, which is set to T. The analysis iterates the blocks in their pseudo-topological
order. But after visiting the block F, it will visit B instead of (G since the block B is
added in the worklist and it becomes the first one with higher priority than G.

Now we look at the flow-joint point at block B in detail. The first iteration over
block B has only one initialized input graph G,p in Figure 2.11(a). After going
through blocks B, C, D, E, and F, Grp was initialized as in Figure 2.11(b). The
merged input graph Gp is same as G45. Now the flow analysis reaches the fixed
point. In this example, §(j,0) = 1 in Gy although there is a statement j = j — 1 in
block F. The reason is that, in block E, the reference a[j] always produces constraint
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l (a,1i,0)

Al key=ali]
j=i-1

if(j<0)
goto exit

@& j, (1)
Cl sit=alj]
if ($il<=key)

goto exit \ 0

@, j, 0) G L exit: J

N

Dl gi2=j+1 l

J

(a, j, $i2, 0)

E[ $iz=alj] ]
(a, j, $i2, 0)

Pl a[si2] = $i3
J=]-1
goto label_1

Figure 2.10: Control-flow graph of basic blocks

44



0—j < 0 which may eliminate other paths of §(j,0) < 0. At the fixed point, the input
VCGs of block C, E, and F correctly give the shortest path weights: d(a,j) = —2
and 6(7,0) =0 in G¢ and Gg, §(a,$i2) = —1 and 6($i2,0) = —1 in Gr. Thus, array
references in these blocks were proved to be safe.

(a)—— (a)——

(1) (1)
N
(@) G\ (b) Gg

Figure 2.11: VCGs of the block B

2.2 Array Field Analysis

The base analysis only looks at locals and analyzes the body of each method ( in-
traprocedural ). It does not know any information from outside of the method, such
as fields or method parameters. There are no communications between methods. In
Java applications, programmers may use fields to hold some constant value for code
modularity and clarity. For example, some fields are initialized in constructors and
are never changed again, or fields are assigned in some methods and used by others.
To explore the full relationships of fields and on different methods is non-trivial, and
needs whole program information. The analysis in our algorithm looks for special
cases where a field holds a fixed length array object. This information allows us to
extend the VCA analysis to include these fields.

A class field with modifier final or private can only be assigned a value in the
class declaring that field. A final type field has more restrictions, it is assigned by a
variable initializer in the source code. That means the assignment can only be in the
constructors ( <clinit> or <init> ) of the declaring class. The array field analysis
maintains a one-to-one map from classes to field information tables. For a class, each
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array type field with the private or final modifier has an entry in the table, and a
value is assigned to that field. The value can be L, an integer constant ¢, or T. A
field fdeclared in a class C'is represented as C.fno matter the fis static or non-static.

For each class C, array field analysis examines the class fields. Let Fo be the set
of array-type fields modified by private or final declared in C. If F is non-empty,
then a table 7¢ is created, and for each f € F¢ an entry 7¢[f] is created and initialized
to L. Each method m declared in C' is then considered. Since the Soot framework
provides typed locals, and ensures that a putfield or putstatic is always in the
form of an assignment from a local to a field, a simple pre-scan of the types of locals
of m can be used to avoid further processing of methods that cannot change the value
of any f € F¢. For each method m that might change an array field, the body of m
is scanned. Let f = ¢ be an assignment to some f € Fn. A value §(¢) is computed
as follows:

1. If ¢ is a newarray or multianewarray operation, then extract the array length
expression d and return 6(d).

2. 1f £ is a local variable, the UD-DU chains provided by the Soot framework are
used to locate the definitions of /. If £ has more than one definition point, return
T, otherwise for a definition ¢ = z return §(x).

3. If 7 is an integer constant ¢, return c.

4. Otherwise, return T.

Figure 2.12 is the pseudo-code for the process. The while loop ends when the length
value is not BOTTOM (_L). The table information 7¢[f] is then updated by merging
the existing value for 7¢[f] with the computed 0(¢) according to Table 2.4; note that
d(¢) is never L.

L L] cl | T
c2|c2| cl:cl==c2 | T

T : otherwise
T T T T

Table 2.4: The rule for updating the field table.

When the intraprocedural VCA analysis meets an array type field read of the form
a=o.f; where o has type of class C, it consults the array field analyzer to get the value
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length = BOTTOM;
usestmt = currentStatement;
local = currentStatement.RHS;

while length is BOTTOM

{
List defs = getDefsOfAt(local, usestmt);
if (defs.size != 1)
{
length = TOP;
break;
}
usestmt = (DefinitionStmt)defs.get(0);
tmp_rhs = usestmt.getRHS;
case tmp_rhs is a NewArrayExpression
{
size = tmp_rhs.getSize;
case size is an integer constant
length = size;
case size is a local
local = size;
others
length = TOP;
b
case tmp_rhs is an integer constant
length = tmp_rhs;
case tmp_rhs is a local
local = tmp_rhs;
others
length = TOP;
+

Figure 2.12: Tracking down the array length.
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associated to the field C.f. If the field has a constant value ¢, we can analyse this
statement as if it was a = new T[c] (see rule in Table 2.3).

Our experience shows that this usually happens for a field with an initializer, where
all assignments are made in the constructors. For simplicity, our implementation of
array field analysis focuses only on the first dimension of array objects.

2.3 Rectangular Array Analysis

Another opportunity to improve VCA lies in rectangular arrays. Because multidi-
mensional arrays in Java can be ragged, it is more difficult to get good array bounds
analysis for multidimensional arrays. However, in scientific programs arrays are most
often rectangular. Thus, we have developed a whole-program analysis using the call
graph to identify rectangular arrays that are passed to methods as parameters.

Java defines a very loose structure for multidimensional arrays. A multidimen-
sional array object can have a ragged shape (different rows in an array may have
different lengths); sub-arrays can be sparse in memory or aliased; and array objects
can be assigned to variables of type java.lang.0bject. All of these properties make
array bounds analysis hard. ( recall the figure 1.3(b), which is an example of aliased
sub-arrays. )

In order to find all arrays that are rectangular, we must find all cases where a
rectangular array is allocated, and we must track those allocations to their eventual

uses.

Consider the example in Figure 2.13, the new_copy method is taken from the
scimark2 benchmark. If we only analyze the method new_copy, it is not possible
to say that all array references are safe because we do not know the array object
passed to the parameter A are rectangular or not. However, if we know that the
parameter A always holds rectangular arrays from all method calls, then we would be
sure N equals to the length of any A[i], which is the programmer’s assumption. The
rectangular array analysis tracks the array shape at each method calls of new_copy,
and in this case can safely conclude that all method calls will pass a rectangular array
to new_copy.
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public class C

{
public static void main(String[] args)
{
double[][] A = new double[10][9];
double[][] B = new_copy(A);
}
protected static double[][] new_copy(double A[1[])
{
int M = A.length;
int N = A[0].length;
double T[][] = new double[M][N];
for (int i=0; i<M; i++)
{
int[] Ti = T[il;
int[] Ai = A[il;
for (int j=0; j<N; j++)
Til[j] = Ai[j1;
}
return T;
}
}

Figure 2.13: Rectangular array example.

2.3.1 Call graphs

In section 1.2.3, we mentioned that the Soot provides the call graph of an Java
application. The call graph has one node for each method reachable from any start-
ing method, which can be the main method of an application, or the start or run
method of a runnable thread. The user can specify a set of starting methods. Each
node ( method ) has a list of call sites, which are invokestatic, invokespecial,
invokevirtual and invokeinterface bytecode instructions. The receiver of the
invokestatic is resolved by the javac compiler and it has only one target. The
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invokespecial has a fixed target also. For virtual method calls, invokevirtual
and invokeinterface, the call graph provides a set of all possible targets. The
edges of the graph connect each call site to its possible target methods. More details
about call graphs can be found in [31].

An algorithm based on the call graph is a conservative approximation because it
does not know the exact call target which is resolved at the run-time. If a method is
reachable, all targets of its call sites must be marked as reachable. Our rectangular
array analysis builds an array type graph based on the call graph. For each reachable
method, it first recovers the rectangular array initializer as explained in section 2.3.2.
It then constructs a propagation graph where nodes consist of locals, method param-
eters, and method returns. KEdges are then added between nodes when values are
passed, such as assignments and method calls. Creation sites for rectangular arrays
are marked as TRUE. If a nodes changes shape it is marked as FALSE. All nodes
reachable from FALSE nodes are marked as FALSE. The remaining nodes reach-
able from TRUE nodes are marked as TRUE. Nodes marked with TRUE after the
analysis represent variables referring to a rectangular arrays.

2.3.2 Recover array initializers

Before constructing the array type graph, we have to look at some special cases. If
a programmer allocates a new multidimensional array using a statement of the form
new int[10] [10], this instruction is translated into a multianewarray bytecode
instruction which allocates rectangular arrays. However, a multidimensional array
initializer is compiled by javac or jikes as individual allocations to give a potentially
ragged array of array objects. An array of arrays is created, then each element is
assigned a sub-array object. Figure 2.14(a) shows a typical Java example, and Figure
2.14(b) shows the resulting bytecode.

We use a simple pattern matcher that can find this idiom and recover a rectangular
array’s creation from its sparse representation to a dense one, as shown in Figure
2.14(c). The pattern matcher is a state machine which identifies the patterns as in
Figure2.14(b). Table 2.5 gives a simplified state table for identifying two-dimensional
arrays, which is the current implementation.

The input of the state machine is a sequence of JIMPLE instructions of a method.
The start state 0 accepts a statement of r1 = new (A[])[c];. We briefly describe
the operations at each state:
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newarray (int[])[2];
= newarray (int)[1];

$r3 = newarray (int)[1];

a
$r2

$r2[0] = 1;

alo] = $r2;

int[1[1 a = {{1}, $r3[0] = 2;

{23}}; all] = $r3;

a) An array
initializer

b) Compiled code by

javac and jikes

a = multianewarray
int[2][1];

$r2 = al0];

$r2[0] = 1;

$r3 = al[1];

$r3[0] = 2;

c) Recovered code

Figure 2.14: Recover the creation of rectangular arrays

state | input goto

0 rl = new (A[])[c] 1

1 r2 = new A[d] 2

2 |2 = 2
rlfe] =12 (e=c-1) |3
rife] =12 (e=€' +1) | 1

3 end

Table 2.5: The state machine for matching two-dimensional arrays.

State 0 records the base type A, the length ¢, and the left hand side variable r1.

State 1 accepts a statement of array creation. The base type is checked with the

recorded type A in state 0, the sub-array r2 and the length d are recorded.

State 2 goes to different states according to the input statement. It could be the
initialization of the sub-array r2, in which case, it will continue on state 2.

Or it is a store to the first dimension of the array object r1, the array index

e is checked with the array length c.

It also ensures the reference index is

incremental by 1 (e = € + 1) if it does not reach the array length.

State 3 returns the length of the second dimension d if the pattern is matched,

otherwise it returns -1.

For any exceptional inputs, the state machine jumps to the state 3 and returns -1.
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2.3.3 Array type graphs

After finding all the creation sites for rectangular arrays, we then build an array type
propagation graph to find which variables must be associated with rectangular arrays.
The graph has following nodes:

1. Two special nodes for TRUE and FALSE. Marking another node is achieved
by adding an edge between it and one of the special nodes.

2. Method locals that are multidimensional arrays. Consider the example in Figure
2.13, the method new_copy in the class C has a local M. The local M is represented
as C.new_copy. M.

3. Method parameters whose types are multidimensional arrays. The parameters
are handled in the same way as locals. The parameter A in the example is
represented by C.new_copy.A.

4. Method returns whose types are multidimensional arrays. In our example, the
return of method new_copy is represented as C.new_copy.return.

5. Class fields. As in array field analysis, an array type field £ of the class C
is represented as C.f whether f is static or non-static.

Then we define rules to add edges to the graph according to the types of the
statements. In general, assignment statements and invoke expressions add edges
between nodes in the graph. Some special cases will add edges between normal nodes
and the special nodes TRUE or FALSE. Only multidimensional array type variables
are considered in this analysis. In following rules, lower-case letters are locals, and
by default, they are referred in a method C.m.

1. a = newAli|[j]
This is a site that creates a rectangular array. We add an edge between C.m.a
and the special node TRUE.

2. a=1>
For a general assignment, we add an edge between nodes C.m.a and C.m.b. The
b is either a local or a parameter.
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. alil =10
If a is a multidimensional array type local, a store into it adds an edge between
C.m.a and the special node FALSE.

. on(a,b,...)

An invocation expression needs more explanation. Let C), be the set of possible
receiver classes of this call site, and p0, p1, ... be the parameters of the method
n. For each C" of C,, we add edges between C.m.a and C'.n.p0, C.m.b and
C'.n.pl1, and so on.

.a=on(..)
An assignment from a method return adds edges between C.m.a and the return
of each possible target, C".n.return.

. return a

A return expression adds edges between C.m.a and C.m.return.

.t.f=aora=tf
Field references add edges between C.m.a and T.f where the class T declares
the field £.

.a=(A)b

For the assignment with a cast expression, we check the static type of a and b. If
both locals are multidimensional arrays and have the same dimension number,
the statement is treated as a normal assignment a = b, otherwise, C.m.a and
C.m.b are connected to the FALSE node. This is a conservative approach to
reduce the complexity of the analysis because array types can be casted from
and to java.lang.0bject in Java.

If a local gets a return value from a method which is out of our analysis context

(i.e. we only analyze the application code without library code ), we make a conser-

vative assumption and connect the variable to the FALSE node. Parameters of the

method invocation are treated in the same way. Figure 2.15 gives the propagation

graph of the example in Figure 2.13.

After building the propagation graph, we want to find all nodes which are reached

starting at the TRUE node ( were allocated as rectangular ), and are not reached

starting at the FALSE node ( may have become ragged ). We achieve this as follows:

first we traverse the graph, starting from the FALSE node, marking these nodes as
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( C.main.A) ( C.new_copy.T)

(C.new_copy.@ (C.new_copy.retura

( C.main.B )

Figure 2.15: Propagation graph

reachable from FALSE. Then we traverse the graph starting at the TRUE node,
finding all reachable nodes that are not marked FALSE. This set indicates that the

members are always assigned rectangular arrays. The pseudo-code is listed in Figure
2.16.

To use rectangular array information, the constraint graph has some special nodes
to represent the sub-arrays. In our rectangular example ( figure 2.13 ), a special node
Al is used to represent the second dimension length of A. When the VCA meets
a statement of a = A[i] and A is a multidimensional array, it checks the true node
set generated by the rectangular array analysis. When the node is in the true set,
directed edges are added between node a and A[. In the example, since the VCA
analysis will determine that local variable N is equal to A], it is possible to determine
that all array references are safe in the program.

2.4 Other Enhancements

Besides the multidimensional arrays, the variable constraint graph can be extended
to accommodate some extra nodes, such as class fields and array references. We have
done this in a very conservative way, assuming the worst-case aliasing and side-effect
information. With these conservative assumptions we did not find much improvement
in the result. More accurate side-effect information may improve the situation.
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Set startNodes = successors of FALSE node
add startNodes to falseSet
add startNodes to workList

while workList is not empty
node = workList.removeFirst
Set succs = successors of node
for each succ in succs
if falseSet does not contain succ
add succ to falseSet
add succ to workList

(a) marking FALSE nodes

Set startNodes = successors of TRUE node
for each node of startNodes
if falseSet does not contain node
add node to trueSet
add node to workList

while worklist is not empty
node = workList.removeFirst
Set succs = successors of node
for each succ in succs
if falseSet does not contain node
and trueSet does not contain node
add node to trueSet
add node to workList

(b) marking TRUE nodes

Figure 2.16: Traverse the graph.
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We did following extension to our intraprocedural algorithm. In the liveness anal-
ysis, we also add fields, array elements, and common sub expressions as locals to the
live local sets. For example, a.f, afi], and 7 * j can be added into the live local sets
and the constraint graph can add edges connecting them to other nodes.

But it should be conservative when dealing with an assignment to a field or array
element since we do not have alias information. Detailed operations are:

If a is an array type local, all array elements of a[*] should be killed. If it is a
reference type local, all fields of a.f should be killed.

afi] = -
Since we do not know any alias information, all array reference nodes should be

killed. However, if we use the type information of a, we only need to kill the
same type arrays’ elements.

When i is an integer variable. Array elements of «[i] should be killed, and all
expressions containing z, such as 7 % j, should be killed.

af = -

Fields of *.f should be killed. Because the declaring class of a field is resolved
by the compiler, f in this statement should be understood as T.f where T is
its declaring class, rather to be interpreted as a symbolic name f.

m(a)
When an array or reference type local is passed to a method, all related fields

and array elements should be killed since we do not know the alias information
and the side effect of the method call.

a.m()

A virtual method call passes the caller as the first parameter to the callee
implicitly, then it has to take the same action as m(a).

In our experiment, the enhancements increased the constraint graph size dra-
matically, but the results has very few improvements. In Java applications, method
invocations happen very often, thus the life time of a field in the graph is very short.
Basically fields get killed again and again. The same situation happens to array
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elements. The side-effect analysis and alias analysis may help us to make less conser-
vative assumptions when dealing with assignments and method calls.

2.5 Null Pointer Analysis

Eliminating array bounds checks is often related to eliminating null pointer checks.
Each array reference, for example a[i], must first check that the array object refer-
enced by a is non-null. In many modern compilers null pointer checks are performed
by handling the associated hardware trap if a null pointer is dereferenced. In this case
the machine architecture guarantees a hardware exception if any very low memory
addresses are read or written. In order to do the upper array bounds check the length
of the array must be accessed, and since the length of the array is usually stored at
a small offset from the object address, this access will trap if a is null. Thus, the
array bounds check gives a null pointer check for free. If the array bounds check is
eliminated, then it may be necessary to insert an explicit null pointer check ( since
the address of a[i] may be sufficiently large to avoid the null pointer trap, even if a
is null ).

Our nullness analysis is a fairly straightforward flow-sensitive intraprocedural anal-
ysis that is implemented as an extension of the BranchedForwardFlowAnalysis class
that is part of the Soot API. The basic idea is that variable a is non-null after state-
ments of the form a = new T(); and statements that refer to a.f or a[i]. We also
infer nullness information from condition checks of the form if (a == null). Since
the nullness analysis is intraprocedural we make conservative assumptions about the
effect of method calls.
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Chapter 3

Experimental Results

We have implemented the algorithm in the context of the Soot framework'. In this
chapter we present and discuss the experimental results that we have obtained. The
results are grouped into three categories:

1. We measured the dynamic characteristics of the variable constraint analysis in
terms of two most important factors affecting the algorithm’s performance: the
size of variable constraint graphs and the number of iterated blocks to reach the
fixed point.

2. In section 3.5, we show the results of the base intraprocedural analysis, followed
by the array field analysis and rectangular array analysis as they are added in
separately, and finally combined. The results are presented as percentages of
lower and upper bound checks that can be proved safe.

3. Our analyses results are encoded in the attributes of class files. To measure the
real impact to the run-time performance of Java programs, we modified Kaffe
JIT and HPCJ compiler to read and take advantages of such attributes. The
run-time measurements show speed-ups in most of benchmarks.

In section 3.1, we briefly introduce the implementation of array bounds checks
in a JVM at first, which often interleaves with the null pointer checks. Also we
describe the experimental environment and methodologies. Then we show the static
and dynamic characteristics of benchmarks. We measured two important factors of

LA brief overview of the code organization is given in Appendix A
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the analysis, which show the algorithm runs in linear time with respect to the size
of the method body. Finally, we describe in detail how to define the structure of the
array bounds check attributes and make a VM take advantage such attributes.

3.1 Experimental Method

Our algorithm is implemented in the Soot framework as an independent package which
can be found in soot.jimple.toolkits.annotation.arraybounds. A wrapper is
created to let the Soot main method call the analysis according the command options.
In this section, we introduce our profiling methodology used in our experiment, and
the hardware and software environment in which the experiment is conducted.

To measure the characteristics of benchmarks and the results of the analysis, we
need a profiler to tell us the run-time results. This was done by inserting instructions
increasing an integer counter before each bytecode which requires array bounds check
or null pointer check.

The experiment was conducted on two environments. The first one uses Kaffe
open VM 1.05 with JIT engine 3 running on a dual Pentium 1T 400M PC with 384M
memory, Linux OS kernel 2.2.8, and glibc-2.1.3. We measured the benchmark char-
acteristics and profiling information on Kaffe VM. We also modified the Kaffe JIT
compiler to take advantage of attributes and compared the results with no attributes.
The second part of experiment is conducted on IBM’s High Performance Compiler for
Java (HPCJ), which runs on a Pentium III 500M PC with 192M memory, Windows
NT operating system. The HPCJ ahead-of-time compiler understands the attributes
and generate improved code for the benchmark class files. We measured the perfor-
mance changes with/without attributes.

3.2 Benchmarks

We chose several benchmarks including both general and numerical ones: as well as
SpecJVM and scimark2, LCS, an implementation of a Longest Common Subsequence
algorithm, and MCO, an algorithm for finding an optimal order of matrix multiplica-
tion. Here a brief description of each of the benchmarks is presented ( the description
of first five benchmarks comes from [29] ).
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db : The db benchmark performs multiple database functions on memory resident
database. It reads in a 1 MB file which contains records with names, addresses
and phone numbers of entities and a 19KB file called scr6 which contains a
stream of operations to perform on the records in the file.

jack : Jack is a Java parser generator. The workload consists of a file named jack.jack,
which contains instructions for the generation of jack itself. This is fed to jack
so that the parser generates itself multiple times.

javac : This is the Java compiler from the JDK 1.0.2.

mpegaudio : This is an application that decompresses audio files that conform to
the ISO MPEG Layer-3 audio specification. From our experiments, we know
this benchmark uses arrays heavily.

raytrace : This is a raytracer that works on a scene depicting a dinosaur.

scimark?2 : SciMark 2.0 is a Java benchmark for scientific and numerical computing.
It measures several computational kernels which include FFT, SOR, LU matrix
factorization, Monte Carlo integration, and Sparse matrix multiply. In our
experiment, we measured the run-time improvement on the first three kernels
since the algorithm can prove most of their array references safe.

MCO This is an algorithm computing the matriz-chain multiplication problem. The
function name is called Matrix-Chain-Order ( see [6](p.306) ).

LCS This algorithm finds a maximum-length common subsequence of two sequences.
Both of MCO and LCS algorithm use two-dimensional arrays as main data
structures.

The benchmarks are characterized by their size, array reference density, and the
run-time overhead caused by array bounds checks. Table 3.1 shows benchmark charac-
teristics. All numbers are collected from benchmark code ( excluding the class libraries
). The third column describes the size of benchmark as the number of bytecodes of
class files in the package. FFT, LU, and SOR are packaged together in “scimark2”.
They share some common classes, the total size of the “scimark2” package is showed
in the cell. The last two columns, density and overhead, show dynamic measurements
of the benchmarks. The problem size of benchmarks from “SpecJVM98” are set as
100. The execution of benchmarks from “scimark2” is specified as “LARGE”. LCS
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and MCO both have loop size of 3000, which makes the benchmarks run long enough
to reduce the effect of VM initialization. The density is a count of how many array
references per second occur in the benchmark ( not including class libraries ). It is a
rough estimate of the potential benefit of array bounds check elimination. The last
column shows the overhead caused by array bounds check instructions. To measure
the overhead, we modified Kaffe JI'T to turn off generating bounds check instructions
for benchmark code, then compare the time without checks against with checks.

‘ name H source ‘ #bytecode density ‘ overhead ‘
db SpecJVM98 14526 | 1,074,979/s 0.4%
jack SpecJVM98 31604 29,962/s 1.1%
javac SpecJVM98 54897 73,861/s 3.8%
mpegaudio || SpecJVM98 47265 | 19,531,665/s 22.3%
raytrace SpecJVM98 19359 | 1,054,832/s 1.7%
FFT scimark?2 8,667,504/5 5.1%
LU scimark2 2303 | 23,120,315/s -0.9%
SOR scimark2 14,528,328 /s 11.3%
LCS 255 | 58,384,589/ 13.9%
MCO 418 | 33,659,647 /s 15.1%

Table 3.1: Characteristics of the benchmarks

The Spec benchmarks are relatively large, while the other five benchmarks are
relatively small. From the density of array references and the run-time overhead of
bounds checks, we can see ‘mpegaudio’ has a large overhead, as do LCS, MCO and
three sub-benchmarks in scimark2. (The LU benchmark exhibits a negative overhead,
which is probably due to the impact of instruction caches after we removed bounds
check instructions, we also find such impact in later experiments.) These benchmarks
are all typical examples of array-intensive programs. Other benchmarks in our study
serve as examples of normal programs which are less array intensive, but also reflect
the dynamic characteristics of the algorithm in the next section.

3.3 Dynamic characteristics of the algorithm

As we analyzed in the section 2.1.5, the theoretical upper bound of the wvariable
constraint analysis can be exponential. To understand the real cost of the algorithm,
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we chose to measure two factors: the constraint graph size and the number of blocks
iterated by the worklist algorithm.

Table 3.2 shows some of the dynamic properties of our algorithm applied to the
different benchmarks. The Blocks column gives the number of basic blocks in the
program, while the NonZero Blocks column gives the number of blocks that have
non-empty live sets for local variables, and so non-empty constraint graphs. Only
NonZero blocks were used in the calculation of average and maximum constraint
graph sizes, and every ( non-empty ) constraint graph includes at least one node for
the constant zero. From this, the size of the constraint graphs is quite reasonable:
average size never exceeds 10 nodes, and maximum size no more than 13. These are
quite practical factors.

Name Graph size | Blocks Iter | NonZero

(avg) | (max) (avg) | Blocks
db 3.17 6 280 | 1.28 89
jack 2.5 6 2076 | 1.04 1892
javac 2.45 6 3347 | 1.27 1631
mpegaudio | 3.42 10 6987 | 1.10 6670
raytrace 2.56 6 626 | 1.31 476
scimark?2 5.8 12 388 | 1.79 301
LCS 9 13 59 2.8 55
MCO 4.6 11 98 2.0 95

Table 3.2: Characteristics of the algorithm

The Iter column is the average number of times a block is processed as the analysis
iterates toward a fixed point. It is a good indicator how long the analysis will run,
and suggests that in a practical sense the running time of our algorithm is linear in
the code size. There is an impact due to loop nesting; in small benchmarks, LCS,
MCO and scimark2, the code bodies are dominated by nested loops and hence, the
factor is higher than other benchmarks. Nevertheless, the factor remains relatively
small overall.
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3.4 Array Bounds Check Attributes

After the analysis phase the flow information is associated with JIMPLE statements.
The next step is to propagate this information so that it will be embedded in the
class file attributes. This is done by first tagging the JIMPLE statements, and then
specifying a tag aggregator which packs all the tags for a method into one aggregated
tag. The process of tagging/attributing is described in [23].

We first outline the attribute as it eventually appears in the generated class file.
The structure of the array bounds attribute is quite straightforward. It has the name
"ArrayNullCheckAttribute". Figure 3.1 shows the format of the array bounds check
attribute as it will be generated for the class files.

array_null_check_attribute

{

u2 attribute_name_index;

u4 attribute_length;

u3 attributelattribute_length/3];
h

Figure 3.1: Array Bounds Check Attribute

The value of attribute_name_index is an index into the class file’s constant pool.
The corresponding entry at that index is a CONSTANT_Utf8 string representing the
name "ArrayNullCheckAttribute". The value of attribute_length is the length
of the attribute data, excluding the initial six bytes. The attribute[] field is a table
that holds the array bound check information. The attribute_length is 3 times
larger than the table size. Each entry consists of a PC (the first two bytes) and the
attribute data (last one byte), totaling three bytes. These pairs are sorted in the
table by ascending PC value.

The least two bits of the attribute data are used to flag the safety for the two array
bounds checks. The bit is set to 1 if the check is needed. The null check information
is incorporated into the array bounds check attribute. The third lowest bit is used
to represent the null check info. Other bits are unused and are set to zero. The
array reference is non-null and the bounds checks are safe only when the value of the
attribute is zero.
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After generating the annotated class file, we need to make a JVM aware of at-
tributes and have it use them to improve its generated native code. We modified
both Kaffe’s OpenVM 1.0.5 JIT and IBM’s HPCJ ahead-of-time compiler to take
advantage of the array bound attributes. Below we describe the modifications needed
for Kaffe. The modifications to HPCJ are similar.

The KaffeVM JIT reads in class files, verifies them, and produces native code on
demand. It uses the "_methods’ structure to hold method information. We added a
field to the "_methods’ structure to hold the array bounds check attribute. Figure 3.2
shows the data structure.

typedef struct _methods {

soot_attr attrTable;
} methods;

typedef struct _soot_attr{

u2 size;

soot_attr_entry* entries;
} soot_attr;

typedef struct _soot_attr_entry {
u2 pc;
ul attribute;

} soot_attr_entry;

Figure 3.2: Modified Kaffe Internal Structure

When the VM reads in the array bounds check attribute of the Code attribute,
it allocates memory for the attribute. The <PC, data> pairs are then stored in the
attribute table. The pairs were already sorted by PC when written into the class file,
so no sorting has to be done now.

The Kaffe JIT uses a large switch statement to generate native code for bytecodes.
It goes through the bytecodes sequentially. We use the current PC as the key to look
up the array bounds check attribute in the table before generating code for array
references. Because attribute pairs are sorted by ascending PC, and bytecodes are
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processed sequentially, we can use an index to keep the current entry in the attribute
table and use it to find the next entry instead of searching the whole table. Figure
3.3 gives the pseudo-code.

idx = 0;
case TALOAD:

if (attr_table_size > 0) {
/* the method has attributes. */
attr = entries[idx].attribute;
idx++;
if (attr & 0x03)
/* generates bounds check instr. */
check_array_index(..);
else
if (attr & 0x04)
/* null pointer check instr. x/
explicit_check_null(..);
}

else
/* normal path */
check_array_index(..);

Figure 3.3: Using attributes in KaffeVM

In section 2.5, we discussed the subtle relationship between array bounds check and
null pointer check for an array references. Here, we turn off bounds check instructions
when the array reference is non-null and both bounds are safe. We also insert null
check instructions at the place where bounds check instructions can be removed but
the null check is still needed. The check_array_index function emits following code
for checking array bounds:

cmp regl, [reg2+off]
jge outofboundserror

and the explicit_check_null generates instructions for checking null pointers:

cmp regl, O
je nullpointerexception
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HPCJ uses a slightly different scheme to handle bounds checks. If array bounds
checks are required, a test-and-branch code sequence is inserted prior to the array
access :

mov eax, [ebx+offset]
cmp eax,edx
jge outofboundserror

When only bounds checks are proved to unneed, the null pointer check is accomplished
by a test instruction:

test eax, [eax]

The reason for using different check instructions in two experiments is that we utilized
existing routines in the two systems.

3.5 Dynamic Results and Discussion

Figure 3.4(a) shows the percentage of bounds checks that our basic intraprocedural
analysis is able to detect as safe to remove. Note that these are dynamic statistics,
obtained by instrumenting the class files and inserting profiling instructions before
each array reference bytecode. Lower bounds and upper bounds are measured sepa-
rately in the first two bars for each benchmark, while the last bar gives the percentage
of array references with both safe checks.

The intraprocedural algorithm can determine that a fairly high percentage of
the lower bound checks are safe. Safety of upper bound checks is more difficult to
ascertain. Still, the results for the array-intensive benchmarks (rightmost five) are
encouraging; these are the benchmarks which will benefit the most, and also in which
we achieve the best results.

Figure 3.4(b) gives the percentage of cases where both upper and lower bounds
checks could be determined to be safe. The second and third bars are from the basic
intraprocedural algorithm augmented with either array field analysis or rectangular
array analysis; the last bar represents the intraprocedural algorithm with both array
field and rectangular array analyses.

By analyzing the fields holding constant length array objects, the intraprocedural
analysis can get more information about field accesses. The success of this method,
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(b) Improvements due to field and shape analyses (both bounds safe)

Figure 3.4: Dynamic Results of VCA

however, depends on the application: ‘mpegaudio’ and ‘raytrace’ improve greatly,
while others are more or less unaffected ( Figure 3.4(b) ). Rectangular array analysis
also proves to be very application-dependent. It is of benefit only to those benchmarks
using multidimensional arrays. LU, SOR, and LCS and MCO improve dramatically
with the addition of this analysis.

The last experiment shows the result of the combined use of field and rectangular
analyses. Because these are essentially independent analyses, the combined improve-
ment is close to the sum of the improvements seen individually. With most of our
benchmarks this brings the percentage of checks we could eliminate to 50% or more;
again, array-intensive benchmarks fare best, and in some cases we identify almost
100% of array bounds checks as safe.

Relative run-time performance improvements for the instrumented versions of the
Kaffe JIT and HPCJ are given in Figure 3.5. Both systems were modified to read the
array attribute information stored within the class file and to apply that data during
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code generation.
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Figure 3.5: Speed-ups for Kaffe and HPCJ

If an array access is deemed safe from the attribute information, no such checks
are created—this is done during actual (just-in-time) code generation for Kaffe, and
at an internal, intermediate stage for HPCJ. In the latter case, this eliminates the
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potential array bounds exception that may restrict subsequent internal optimizations,
resulting in different code output. For this reason we present results with and without
HPCJ’s own optimizations applied.

Finally, note that every array access is an object access, and so null pointer checks
are also required at these points. Depending on machine architecture and how ob-
jects are organized, this check can be combined with the array bounds check, and
so removing the latter may require inserting explicit null pointer checks [23]. Best
performance results therefore occur when both kinds of checks are eliminated. Our
results include this optimization.

In each case the result of using the intraprocedural analysis combined with both
field and rectangular analyses is compared with the effect of artificially disabling
all bounds checks. A couple of cases (LU in Kaffe, FFT in HPCJ (opt)) exhibit
interesting anomalous results that we have been able to attribute to code cache effects.
In all other cases, however, we achieve significant performance increases, roughly
corresponding to the quality of information we were able to collect.
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Chapter 4

Related Work

Array bounds check optimization has been performed for other languages, such as
Pascal, Fortran, and Ada[22], for a long time. We first discuss some related work
developed on other languages. These algorithms can not be directly applied to Java
programs because of its unique requirement of precise exceptions ( Ada shares this
same property ). However, another unique property of Java is that multidimensional
arrays are defined as array of arrays, which prevents many existing methods from
applying on Java. New solutions have been emerging since the introduction of Java.
We will discuss more details in the following text.

W.H.Harrison[14] described an algorithm for value ranges analysis. The algorithm
consists of two mechanisms called range propagation and range analysis. Range prop-
agation uses the data and the conditional structure of a program to derive and propa-
gate symbolic range information. Targeting complex control flow structures ( loops ),
range analysis tracks the changes applied to a variable at each point in a loop of the
program. The information is used to derive a range of values for the loop variable.
The resulting range information can be used to eliminate unnecessary tests and pro-
duce diagnostic information. While this was a novel idea to reduce redundant tests
at that time, the simple mechanical propagation of symbolic value can only prove a
small part of safe checks.

The problem of run-time overhead of array bounds checks was first addressed by
Markstein et. al. [18]. R. Gupta[l2, 13| extended their work by using data-flow
analysis to eliminate redundant checks, propagate checks out of loops, and combine
multiple checks into a single check. The algorithm has the same principle as partial
redundancy elimination. It relies on hoisting check instructions to the earlier point.
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Several kinds of checks can be subsumed: identical checks, checks with identical
bounds, and checks with identical subscript expressions. Kolte et.al. [16] extended
Gupta’s algorithm in a partial redundancy elimination framework. A fundamental
assumption of the algorithms is that the exception can be thrown at the point before
original exception point ( remember that Figure 1.2(b) showed such an example ).
This assumption is acceptable when working on languages that do not require precise
exceptions. Java does not allow an exception to happen before the place it really
should be. However, a more basic problem with this type of algorithm is that the
language should be able to express and modify checks explicitly, where bytecode
instructions can not do that.

There are several algorithms targeting different problems involved in removing
bounds check overhead for Java. Scientific computing programs use multidimensional
arrays. Because of Java’s loose multidimensional array structure, it is very hard
to optimize such programs. Moreira et.al. [21, 19, 20] designed an Array package
for two- and three-dimensional arrays. The package provides Fortran 90-like array
functionality ( all array operations are performed through method calls ). Internally,
a multidimensional array is implemented by a one-dimensional array. To achieve
good performance, an inlining technique is used to reduce the overhead caused by
method calls, and a special regioning or loop-versioning technique is used to create
safe regions for array accesses, and thus, remove unneeded array bounds checks. The
algorithm only works on loops and relies on underlying virtual machine to be aware
of the Array package and perform unusual optimizations on it.

Some JIT compilers perform array bounds check elimination when translating
bytecode to native code. The Intel JIT[5] performs analysis to approximate the range
that an array might access within a loop. In the case of a known range, a special check-
free loop body is created, while the bounds check code is inserted outside the loop.
The IBM JIT[30] uses the same technique called loop versioning, but also has a data-
flow analysis to analyze checks not in a loop. The data-flow analysis is an extension
of Gupta’s algorithm. Both of two compilers have to obey the precise exception
requirement of Java. A basic policy is to not moving checks over any bytecode which
has side-effect ( e.g., memory access, bytecode may cause other exceptions ). Loop
versioning also can cause code explosion. So the application of the optimization is
limited by some parameters: the code size of loop body, the innermost loops, and so

on.

More recently, Bodik et. al. [3] presented an algorithm called ABCD ( Eliminating
Array Bounds Checks on Demand ) for general Java applications, The algorithm uses
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a different form of constraint graphs to solve bounds checks. The algorithm first
splits locals’ definitions and uses according the value range constraints. It builds an
extended SSA ( static single assignment ) form for a method body. In this e-SSA
form, all uses of a variable would have the same value range which can be derived
from the program. For example, assignments can change a variable’s value range as in
ordinary SSA form, and array references and conditional branches can also bound the
value range of the index or condition variables in the scope after them. Thus, these
statements are treated as assignments in the SSA algorithm. The e-SSA guarantees
that all uses ( by name ) of a variable are bounded by the same constraints, the value
range, at the run-time. The value range could be an approximation. Based on the new
form, a constraint graph is constructed, where nodes are locals and constants, and
weighted edges are constraints representing inequality relationship between nodes.
To infer the relationship between array and index, the shortest path between them
is solved by a customized depth first search algorithm which specially handles the ¢
nodes in the graph. If the shortest path length is less than zero, the upper bound
check for that array reference is unneeded. The lower bound can be eliminated if the
weight of the shortest path from array index to the node of constant 0 is greater or
equal to 0. At each control flow joint point (¢ node), the weakest constraint has to
be taken.

Our VCA shares some similarities with theirs, both are using inequality graphs to
represent constraints. However, there are several differences between our algorithm
and ABCD approach:

1. The ABCD algorithm is based on an extended SSA form, and uses one graph to
summarize constraints from all statements in a method. Thus, the control-flow
information is included in the constraint graph. Our VCA approach does not
rely on any underlying program representation form, it uses a fixed number of
small program-point specific constraint graphs.

2. Based on e-SSA form, the ABCD algorithm can be used in a demand-driven
manner. Each demand (query) is solved individually, and may be performed
on selected array references that occur in hot spots. Each query is relatively
inexpensive. The VCA approach is designed to prove all array references at
once. It builds constraint graphs and solves constraints in relatively expensive
costs, but the results are available for all array references immediately.

3. The VCA approach keeps constraints of lower and upper bounds in the same
graph, which is not the case in the ABCD approach.
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4. ABCD is capable of catching partial redundant bounds checks. VCA is not able
to do that currently.

5. In some cases, a program-point specific graph can hold some implicit constraints
where a summary graph based on a SSA representation form cannot. Figure
4.1 illustrates this point. Given the program segment in Figure 4.1(a), our
VCA algorithm builds the constraint graph shown in Figure 4.1(b), whereas
the ABCD algorithm builds the graph shown in Figure 4.1(c). Note that in the
ABCD graph, constraints are only encoded along the direction of the control
flow (for example, the assignment i = k + 2; results only in one edge, from k
to i). Given this graph, it is not possible to find the safe upper bound at p2.
However, since VCA collects a separate graph for p2, and the constraint gained
from pl is also applied to 7 and g, it is possible to show that the bounds are
safe at program point p2.

6. In our algorithm, the constraint graph serves as the basis of other two analyses.
We can see, for certain type applications, the impacts of the analyses are sig-
nificant. Currently it is not clear how class fields and multidimensional arrays
information can be used to help the ABCD algorithm.

VCA may not be faster than the ABCD algorithm, although the techniques we
used make our algorithm run at a reasonable speed. In some SPEC JVM98 bench-
marks, VCA can prove nearly same percentages of safe upper bound checks as reported
in [3]. With array field analysis and rectangular array analysis, VCA can outperform
ABCD significantly. Experiments show that VCA with rectangular array analysis
is very effective on micro benchmarks using two-dimensional arrays. We also think
the approach of formulating a problem in constraint graphs and solving it by using
data-flow analysis can be useful for other problems.

The general idea of using the single-source shortest-path of an inequality graph
to solve systems of difference constraints has been stated in [6](p.539-p.545).

R. Shaham et. al. [27, 26] described an algorithm for identifying live regions of
arrays to detect array memory leaks in Java. In their work, the representation and
analysis are very similar as our VCA. Constraint graphs and data-flow analyses are
used to compute inequalities between variables. However, their focus is on finding
relationships between special class fields across method boundaries based on super-
graphs of a few particular library classes. Although the supergraph can make our
field analysis more powerful, our VCA approach focuses on intraprocedural analysis

73



i=k+2;

pl: afi] ...; ! b 1

s @40 @

p2: afj] ...; -1 @ '1\®

(a) example (b) apart of VCA  (c) ABCD graph
graph before p2 for all statements

Figure 4.1: Comparing the VCA and ABCD constraint graphs.

for general Java applications, and we handle different statements in more detail. An-
other important aspect of our VCA approach is that we use different techniques to
reduce the cost of data-flow analysis, such as limiting constraint graph node size, and
enforcing iteration in pseudo-topological order.

Compared with other algorithms, our VCA works on bytecode level and does not
change the program. The analysis results are encoded in the class file attributes.
Thus, there are no problems with precise exception semantics. It is capable of pre-
serving information from various sources. Although it uses a relatively sophisticated
abstraction for the data-flow analysis, the techniques used in the algorithm reduce
the overhead to a minimum. VCA can be very easily extended to take advantage of
results from other analyses. We demonstrated how the two extended algorithms can
improve the analysis results dramatically for array intensive benchmarks.

Ghemawat et. al. [9] described an algorithm called field analysis which exploits
the declared access restrictions placed on fields in a modular language. Java programs
are based on classes. Classes, fields, and methods have modifiers which limit access
to them. Some fields with modifiers private, or final can only be accessed in a
limited scope. By scanning the code in the scope, all possible value or object that
a field can hold at the run-time is determinable. They implemented the algorithm
in the Swift optimizing compiler [25]. The analysis results is used by other analyses
for object inlining, stack allocation, and synchronization removal. They reported an
average 7% speedups.

To target the scientific programs which use multidimensional arrays frequently, our
rectangular array analysis provides very important information to the VCA, which
helps the conservative VCA remove almost hundred per cent bounds checks in some
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typical applications. To the best of our knowledge, very few other works takes advan-
tage of knowing array shapes. Further, we believe the array shape information can
also help memory layout of array objects in a virtual machine[4].
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Chapter 5

Conclusions

In this thesis we have presented a collection of techniques for eliminating array bounds
checks in Java. Our base analysis, variable constraint analysis (VCA), is a flow-
sensitive intraprocedural analysis that approximates the constraints between impor-
tant program variables at program points corresponding to array access statements.
The analysis has been made efficient by reducing the size of the graphs, choosing an
appropriate worklist order, and applying a widening at loop entry points. As shown
in the experimental results, the size of the graphs is small (around 10 nodes for our
benchmarks), and the average number of iterations per basic block is always less than
3.

In order to improve the precision of the base VCA analysis, we have described
two additional techniques. Array field analysis is applied to each class to find those
array type fields that always hold an array with a fixed constant length. Rectangular
array analysis is applied to whole programs to find those variables that always refer
to rectangular, non-ragged, arrays. Given the information from these analyses, the
intraprocedural VCA analysis was improved to include information about fields, and
upper dimensions for multidimensional arrays.

Our analyses were implemented in the Soot optimization/annotation framework,
and we provided dynamic results that showed the effectiveness of the base VCA
analysis and the incremental improvements due to field and rectangular array analysis.
These results were quite encouraging and demonstrated that almost all checks could
be eliminated for those benchmarks with very regular computations. We also provided
experimental results for Kaffe and IBM’s HPCJ to demonstrate that significant run-
time savings can be achieved as a result of the analysis.
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Our next phase of work will be to integrate a side-effect analysis into the frame-
work, and improve upon information for arrays stored in objects. To extend constraint
graphs to represent other arithmetic operations is a very interesting topic.
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Appendix A

Implementation classes in Soot

Classes implementing three analyses locate in the directory rooted from Soot project:
%SO00TDIRY%/soot/jimple/toolkits/annotation/arraycheck/. The class files are
listed below:

Array2ndDimensionSymbol. java
ArrayBoundsChecker. java
ArrayBoundsCheckerAnalysis. java
ArrayIndexLivenessAnalysis. java
ArrayReferenceNode. java
BoolValue. java
BoundedPriorityList. java
ClassFieldAnalysis. java
ExtendedHashMutableDirectedGraph. java
FlowGraphEdge. java
IntContainer. java
MethodLocal. java
MethodParameter. java
MethodReturn. java
RectangularArrayFinder. java
WeightedDirectedEdge. java
WeightedDirectedSparseGraph. java

The ArrayBoundsChecker class is a wrapper handling parameters and calling
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other analyses. The ArrayBoundsCheckerAnalysis implements VCA, and the Weighted-
DirectedSparseGraph implements VCG. The ClassFieldAnalysis and Rectangular-
ArrayFinder implement array field analysis and rectangular array analysis
respectively. Other classes are utility classes.
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