
MCIDE: A MATLAB IDE POWERED BY DYNAMIC ANALYSIS

by

Ismail Badawi

School of Computer Science

McGill University, Montréal

March 8, 2016

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2016 Ismail Badawi

Abstract

MATLAB R© is a popular dynamic scientific programming language. The typical MAT-

LAB user is not a software professional; it is chiefly used among scientists, engineers, and

students, and enjoys wide adoption in large part because of its high level syntax and wide

array of libraries for many problem domains in the sciences. The inexperience of many

MATLAB programmers, coupled with the ill-specified and often counterintuitive seman-

tics of the language, leads to MATLAB code in the wild that is difficult to understand and

maintain.

In this thesis, we present McIDE, an integrated development environment for MATLAB

programming. McIDE provides tools to help MATLAB programmers write better programs,

among them automated refactorings and code navigation features like "jump to definition".

It is also opinionated about MATLAB code, and tries to recognize common anti-patterns

and either warn about or eliminate them.

McIDE is built up of several largely independent components wired together by a thin

graphical interface. Some of these components are pre-existing, such as a MATLAB parser

provided by the McLAB compiler toolkit, and others are contributions of this thesis, such

as a dynamic call graph collection mechanism for MATLAB code, and a layout-preserving

code transformation engine.

A theme of McIDE’s implementation is reliance on runtime information, since purely

static information is often insufficient if we wish to support the development of arbitrary

MATLAB code, including its more dynamic features.

i

ii

Résumé

MATLAB R© est un langage de programmation dynamique populaire chez les scienti-

fiques. L’utilisateur typique de MATLAB n’est pas un programmeur professionnel ; MAT-

LAB est principalement utilisé par des scientifiques, des ingénieurs et des étudiants, et doit

sa popularité en grande mesure à sa syntaxe de haut niveau et à son éventail de librairies

pour toutes sortes de domaines dans les sciences. Le manque d’expérience des program-

meurs MATLAB, combiné à sa sémantique mal spécifiée et souvent contraire à l’intuition,

mène à du code MATLAB qui est difficile à comprendre et maintenir.

Dans cette thèse, nous présentons McIDE, un environnement de développement intégré

pour MATLAB. McIDE fournit des outils visant à aider les programmeurs MATLAB à écrire

de meilleurs programmes, incluant des remaniements automatiques et des fonctions de na-

vigation de code, par exemple permettant de sauter à la définition d’une fonction. McIDE

a aussi des avis très arrêtés sur le code MATLAB, et tente de reconnaître des motifs problé-

matiques courants et soit d’avertir le programmeur ou de les éliminer automatiquement.

McIDE est composé de plusieurs composants plus-ou-moins autonomes, connectés par

une interface graphique assez mince. Certains de ces composants existaient déjà, tel qu’un

parseur de MATLAB fournit par le projet McLAB, tandis que d’autres forment les contribu-

tions de cette thèse, comme un mécanisme pour découvrir le graphe d’appels dynamiques

de code MATLAB, et un outil pour transformer du code de manière à préserver sa mise en

page.

À travers la mise en oeuvre de McIDE, un thème courant est la dépendance sur de

l’information récoltée en cours d’exécution, puisque l’information statique est souvent in-

suffisante si nous souhaitons supporter le développement de code MATLAB arbitraires, in-

cluant ses fonctions plus dynamiques.

iii

iv

Acknowledgements

I’d like to thank my advisor Laurie Hendren, who displayed a lot of patience in the face

of constant delays, even when it wasn’t clear whether I was making forward progress.

I’d like to thank the Sable lab members and alumni I’ve interacted with during the

time that I’ve spent here – among them Anton Dubrau, Matthieu Dubet, Xu Li, Vineet

Kumar, Rahul Garg, Sameer Jagdale, Faiz Khan, Sujay Kathrotia, Vincent Foley-Bourgon

and Erick Lavoie.

I’d particularly like to thank my friends Jerina Harizaj and Lei Lopez, who were positive

forces in my life during periods where I felt very frustrated and dispirited.

Finally, I’d like to thank my parents, my brother and my sister for their lifelong support

and encouragement.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis outline . 3

2 Background and Overview 5

2.1 McLab toolkit . 5

2.2 Overall design . 6

2.2.1 Syntax checking and static analysis 7

2.2.2 Refactoring . 7

2.2.3 MATLAB shell . 9

2.2.4 Profiling . 12

vii

3 Dynamic Call Graph Construction 13

3.1 MATLAB features complicating static call graph computation 14

3.2 Call graph tracing instrumentation . 15

3.3 Dealing with builtin and library functions 22

3.4 Instrumentation performance overhead . 24

3.4.1 Benchmarks . 24

3.4.2 Results . 25

3.5 Minimizing overhead . 25

3.5.1 Handle propagation analysis . 25

3.5.1.1 Application of handle propagation analysis 33

3.5.2 Avoiding builtin call instrumentation 34

3.5.3 Checking type of function arguments at runtime 36

3.5.4 Optimized runtime functions . 37

3.6 Related work . 38

4 Layout-Preserving Refactorings 39

4.1 Motivation . 40

4.2 The transformation API . 42

4.3 Synchronizing ASTs and token streams 42

4.4 Dealing with freshly synthesized code . 45

4.5 Putting it all together . 45

4.6 Heuristics for handling indentation and comments 47

4.6.1 Indentation . 47

4.6.2 Comments . 48

4.7 Niggling details: delimiters, parentheses 49

4.8 Case studies: inline variable, extract function 50

4.9 Related work . 52

4.9.1 HaRe . 52

4.9.2 Other approaches . 54

viii

5 Survey of Dynamic Features 55

5.1 MCBENCH . 56

5.2 Scripts . 58

5.3 eval and variants . 58

5.3.1 Manipulating related variables . 59

5.3.2 Restricted calls to eval . 60

5.3.3 Two-argument form . 61

5.3.4 evalc . 61

5.3.5 feval . 62

5.4 Workspace manipulation . 62

5.4.1 evalin and assignin . 63

5.4.2 clear and clearvars . 64

5.5 Introspection . 65

5.5.1 exist . 65

5.5.2 who and whos . 66

5.6 Lookup path modification . 66

5.7 Motivation for eliminating uses of dynamic features 68

5.7.1 Impact on static analysis and program comprehension 68

5.7.2 Performance . 68

5.8 Related work . 69

5.8.1 Dynamic feature survey . 69

5.8.2 Dynamic feature elimination . 70

6 Conclusions and Future Work 73

6.1 Future Work . 73

Appendices

Bibliography 75

ix

x

List of Figures

2.1 Example of the communication involved to implement on-the-fly syntax

checking. 8

2.2 Example of the communication involved to implement refactorings. 9

2.3 Example of the communication involved to implement the MATLAB shell. . 11

3.1 Superior/inferior type relationships for MATLAB. An arrow points from a

to b if a is superior to b. 14

3.2 The runtime components of the callgraph tracer. 17

3.3 The application code. 19

3.4 The same code after instrumentation. 20

3.5 The generated trace. 21

3.6 The generated call graph. 22

3.7 Code to handle builtins at runtime. 23

3.8 Handle propagation analysis abstract values. 30

3.9 A code snippet where a variable is used and assigned to in the same statement. 34

4.1 An example of the lossy parsing and unparsing roundtrip. 41

4.2 The Transformer API, encoded as a Java interface 42

4.3 A trivial implementation of the Transformer API 43

4.4 An illustration of wacky commenting practices. 48

4.5 Using runtime checks and AST traversal to examine the context. 50

4.6 An example illustrating the need for synthesized parentheses. 50

4.7 The original implementation of the Inline Variable refactoring using plain

AST operations, and the new implementation against the Transformer API. 51

xi

4.8 The implementation of the Extract Function refactoring using the trans-

former API . 53

xii

List of Tables

3.1 Call graph instrumentation benchmarks. 26

3.2 Instrumentable expressions in each benchmark. The number in each cell

represents the number of expressions instrumented for a given benchmark

by a given version of our approach, with the number in parentheses denot-

ing how many of those appear inside loops. 27

3.3 Running times of the instrumented code with different optimizations enabled. 28

3.4 Handle propagation analysis rules for computing gen(E). 31

3.5 Handle propagation analysis rules for assignments. 34

5.1 File count per project distribution. 58

xiii

xiv

Chapter 1

Introduction

MATLAB R© is a popular dynamic programming language used for scientific and numer-

ical programming. It has a very large (and growing) user base, especially in education,

research and engineering applications. A key aspect contributing to the language’s appeal

is its accessibility; features like a read-eval-print loop, dynamic typing, compact and famil-

iar syntax for manipulating arrays and matrices, easy plotting, access to efficient libraries

for many problem domains and extensive online documentation make MATLAB a good

language for prototyping.

Despite all this, MATLAB has its warts. Initially conceived as a simple way for students

to use FORTRAN linear algebra libraries without having to learn FORTRAN1, the language

has grown in complexity over the years, with more and more features bolted on. And with

only a black box proprietary reference implementation in lieu of any sort of language spec-

ification, the semantics of the language can often be inscrutable, particularly around edge

cases. MATLAB’s aforementioned accessibility is also a double-edged sword, as the typi-

cal MATLAB programmer is apt not to have much of a background in computer science or

professional software development, so that large swaths of MATLAB code available online,

either in the form of example code or libraries, are not of a very high quality.

This thesis reports on the design and implementation of McIDE, an integrated devel-

opment environment for MATLAB implemented on top of infrastructure provided by the

1www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

1

www.mathworks.com/company/newsletters/articles/the-origins-of-matlab.html

Introduction

McLAB compiler toolkit [CLD+10]. In addition to providing many traditional IDE fea-

tures such as easy code navigation and support for refactorings, McIDE also aims to im-

prove the state of MATLAB code in the wild, be it in terms of performance, complexity,

or amenableness to static analysis, by recognizing common anti-patterns in MATLAB code

and warning about them.

1.1 Contributions

The major contributions of this thesis are as follows.

A mechanism for computing a dynamic call graph of MATLAB code: Many traditional

code navigation features provided by IDEs, such as "jump to declaration" or "find

callers", rely on call graph information. However, MATLAB’s semantics make it dif-

ficult to statically compute a program’s call graph. We present a dynamic profiling

approach to measure a MATLAB program’s call graph, and describe some optimiza-

tions we implemented to reduce the overhead of the instrumentation required for the

profiling.

A technique for carrying out layout preserving code transformations: One of the most

useful features commonly provided by IDEs is automated refactoring support. The

most natural and straightforward way to implement a refactoring is as a tree transfor-

mation on a program’s abstract syntax tree. However, such transformations are lossy,

as the textual layout of the source code, including comments, indentation and other

whitespace, are lost in the process. We report on the design and implementation of

a library which enables arbitrary source code transformations to be specified at the

AST level, while the underlying machinery transparently takes care of preserving the

layout of the affected text.

A study of the usage of MATLAB’s dynamic features in the wild: MATLAB supports many

highly dynamic features, such as the eval family of functions, which complicate

static analysis, harm performance, and often make code harder to reason about. We

2

1.2. Thesis outline

describe the semantics of these features in detail, and report the results of a study of

a large corpus of MATLAB code, investigating the usage patterns of these features.

An open implementation: McIDE is developed fully in the open, on top of the open

source McLAB compiler toolkit for MATLAB. Some of the reusable infrastructure

pieces, such as the layout preserving transformation engine, are implemented di-

rectly as part of the toolkit, while the IDE itself is available as a separate open source

project2.

1.2 Thesis outline

The rest of the thesis is structured as follows. Chapter 2 provides some necessary back-

ground information and describes the overall structure of our IDE. The next three chapters

comprise largely independent in-depth explorations into its different components.

• Chapter 3 explains our approach to computing a dynamic call graph for MATLAB

programs, which is used to power the IDE’s code navigation features.

• Chapter 4 describes our layout preserving program transformation library, which is

used to implement the mechanics of the refactoring transformations supported by

McIDE.

• Chapter 5 presents our investigation into the usage of MATLAB’s dynamic features.

Finally, Chapter 6 concludes the thesis and describes some opportunities for future

work.

2www.sable.mcgill.ca/mclab/projects/mcide/

3

www.sable.mcgill.ca/mclab/projects/mcide/

Introduction

4

Chapter 2

Background and Overview

2.1 McLab toolkit

The McLAB toolkit is a collection of useful tools and infrastructure for dealing with MAT-

LAB code. It includes a MATLAB parser, and an intraprocedural static analysis framework

with some useful foundational analyses provided out of the box, such as reaching defini-

tions and the kind analysis for MATLAB [DHR].

It actually includes much more, including call graph construction and sophisticated type

and shape inference. However, much of this prior work was motivated by the ultimate goal

of compiling MATLAB to a static language such as FORTRAN or X10. In this context, it

was considered acceptable to carve out a reasonable subset of MATLAB code and rule out

any code considered too dynamic or "wild" to map cleanly onto static semantics. Thus,

many of the more sophisticated analyses assume that many of the features of MATLAB that

are difficult to handle simply don’t occur.

Since we wish to support the development of arbitrary MATLAB code, many of these

assumptions don’t hold for us, leaving many components of the toolkit off-limits for us.

A related issue is that since we wish to manipulate and reason about MATLAB source

code, we find ourselves working directly with high-level ASTs, eschewing simplifications

or lower-level IRs.

5

Background and Overview

2.2 Overall design

McIDE wires together many independent components into a coherent whole. While it runs

locally on the user’s computer, its interface is browser-based, and largely centered around

an instance of the Ace editor1, a well-known open source embeddable text editor compo-

nent. This browser-based interface contains almost no important logic; instead, it reacts

to user actions by sending HTTP requests to a server process, which then dispatches the

work to the appropriate component. These components, such as the parser, static analyz-

ers, automated refactorers, and so on, are all implemented as separate standalone tools,

which simply accept input and produce output. The dispatcher orchestrates these compo-

nents, typically by spawning them as child processes and monitoring their standard output

and error streams (shelling out to them, in Unix parlance), although other means of inter-

process communication would also work. This can be seen as a kind of service-oriented

architecture.

There are several advantages to structuring McIDE in this way. For one thing, it re-

moves the need to grapple with a large monolithic codebase. The different components can

be developed and maintained in isolation, and also reused in different ways, for example

as command line utilities, or as text editor plugins. Arbitrary, pre-existing components can

also be integrated into McIDE, with only a little effort required to wrap them in a suitable

interface. For example, various bits of functionality, such as the parser, are provided by

pre-existing components of the McLAB toolkit, and exposed to McIDE via simple shell

script wrappers.

The browser-based interface is harder to justify. It is not really a given that implement-

ing the interface using HTML and JavaScript is preferable to writing a traditional native

desktop application using one of the popular cross-platform UI toolkits. The main reason

is that a natural next step is to generalize McIDE to be a proper web application – a "cloud"

IDE, accessible over the Internet – and that less engineering effort would be required to port

it to that setting. The client-server separation also enforces in some sense that the interface

logic be decoupled from the domain logic.

1http://ace.c9.io/

6

http://ace.c9.io/

2.2. Overall design

The remainder of this section shows some specific examples of how different compo-

nents are integrated at a high-level.

2.2.1 Syntax checking and static analysis

One of McIDE’s basic features is on-the-fly syntax checking. As the user types, the con-

tents of the editor are periodically sent off to the server as a "parse" request. Upon receiving

this request, the server spawns the McLAB toolkit’s MATLAB parser, ultimately returning

to the frontend either a serialized AST which can be used as input to other components,

or a list of syntax errors, each with associated line and column location information, to be

overlaid in the margins of the editor.

This workflow is sketched out in Figure 2.1. At the top, the user has just finished typing

in some code. The client sends an HTTP request to the server with the code as the request

body. The server calls the parser wrapper script, passing in the name of a temporary file

containing the code. The script prints some errors on standard output, and the server uses

these to build a JSON response that it returns to the client, which uses it to display an error

marker at the offending line, with the error messages displayed on mouse over.

2.2.2 Refactoring

McIDE supports many automated refactorings, such as Extract Function or Inline Variable.

A refactoring can be viewed as a function taking as input some code and a user selection

(e.g. a highlighted region) and returning either the transformed code or an error. This fits

nicely into our model. When the user selects some code and selects a refactoring action

from a menu, the frontend sends the project path, the selection, and the choice of refactoring

off to the server as a "refactor" request. (It sends project paths rather than sending the code

directly in case the refactoring affects multiple files). This request is dispatched to the

appropriate refactoring tool, which responds either with a list of errors, or with a mapping

from affected file names to new contents.

This workflow is sketched out in Figure 2.2. The user has highlighted an assignment

statement and selected the "Inline Variable" action from the context menu. The client sends

an HTTP request to the server with the choice of refactoring, the active file, and the selec-

7

Background and Overview

Figure 2.1 Example of the communication involved to implement on-the-fly syntax checking.

tion (using a format like <start-line>,<start-column>-<end-line>,<end-column>).

The server forwards the request to the inline variable tool. In this case, the wrapper script

happens to write a response of the appropriate format to standard output, so the server just

forwards it along back to the client, which updates the state of the editor to reflect the

changes.

Beyond the big picture communication here, the actual mechanics of carrying out these

refactorings are explored more deeply in Chapter 4.

8

2.2. Overall design

Figure 2.2 Example of the communication involved to implement refactorings.

2.2.3 MATLAB shell

McIDE features a MATLAB shell, which is implemented by interacting directly with a

running MATLAB or Octave instance. The actual communication is largely implemented

by an external library, which works by spawning off a server written in MATLAB, and

sending code to it over a message queue. The server executes the given code via eval,

and responds with a message including any output (including paths to figures, which are

transparently saved to the filesystem) or errors produced by the execution.

9

Background and Overview

When the user starts working on a project, such a MATLAB server is initialized in the

background, and a command prompt is presented to the user alongside the editor. Any

commands entered are sent off to the dispatching server as a "shell command" request,

which forwards them along to the MATLAB server, and returns the results back to the

frontend, which can display output and error messages in its shell, and open new browser

windows or tabs to display figures.

McIDE also interacts with the MATLAB server behind the scenes for various reasons.

• When a function is called, MATLAB loads the function’s code from the filesystem and

caches the function. This cache is refreshed each time the command prompt is shown,

so that if a function is modified, MATLAB will notice that the last modified timestamp

has changed and reload the function. Due to the nature of our communication with

the MATLAB server, this refresh mechanism doesn’t happen. For situations like these,

MATLAB provides the rehash builtin function to force the caches to be refreshed.

McIDE therefore prepends a call to rehash to every command entered by the user

before sending it off.

• After each command entered by the user, McIDE appends a call to the save MAT-

LAB builtin function in order to store the state of the interpreter session to a hidden

file associated with the project. When the same project is loaded later, this session

file is loaded via the builtin load function, so that all the variables are preserved.

A nice bonus is that the format of the files produced by save and loaded by load

are compatible across MATLAB and Octave, so the backend can be changed in the

settings menu without losing any active sessions.

• The proprietary MATLAB implementation provides a workspace browser, a graphi-

cal window allowing the user to view (and modify) all the variables in the current

workspace. To replicate this functionality, McIDE makes use of the MATLAB builtin

function whos, which lists all the variables in scope.

The overall workflow is sketched out in Figure 2.3. The user types in a call to the func-

tion test, which is the one being edited, and presses the return key. The client sends an

HTTP request to the server with the code to run. The server wraps the user’s code with

10

2.2. Overall design

Figure 2.3 Example of the communication involved to implement the MATLAB shell.

some code of its own as described above, and sends the execution request to an instance of

the MATLAB server, which has been pre-initialized to execute in the project’s workspace.

The MATLAB server responds with information about whether the code triggered any er-

rors (here the request was successful), what the output was (here "2" surrounded by some

whitespace), and whether there were any figures (not in this case). The server sends this

response back to the client, which displays the result of the command in the shell.

11

Background and Overview

2.2.4 Profiling

A big theme of McIDE’s implementation is the reliance on runtime information, since pre-

cise static information is often difficult to come by if we wish to handle arbitrary MATLAB

code. When a project is created or imported, McIDE automatically creates a special file

called mcide_entry_point.m, in which the user is asked to implement a function that exer-

cises as much of the project’s code as possible. Periodically, and also in response to certain

user actions, a profiling run is triggered, in the form of a "profile" request sent off to the

server. In response, an instrumented version of the project is created via a source-to-source

transformation, and the entry point function is invoked (via the same mechanism used to

implement the MATLAB shell) to gather runtime information.

Currently, the main user of this mechanism is the the dynamic call graph generator

described in Chapter 3, where the profiling run records the targets of each call site, but

the same mechanism could be used to gather, for instance, runtime types, or performance

profiling information.

12

Chapter 3

Dynamic Call Graph Construction

Modern IDEs provide many useful code navigation facilities, for instance allowing

users to jump from a call site to the declaration of the called function, or to find all the

call sites of a particular function definition. The reliability of such features is contingent on

the availability of accurate call graph information. However, MATLAB’s dynamic typing

and dynamic features complicate the problem of statically computing a precise call graph.

Previous work on MATLAB call graph construction operated on a MATLAB subset,

carefully ruling out those features which aren’t amenable to static analysis, with the ulti-

mate goal of compiling MATLAB to a statically typed language such as FORTRAN or X10

[DH12]. As we mean to support regular MATLAB development, carving out such a subset

is not an acceptable approach.

In this chapter, we present our approach to computing an accurate call graph for ar-

bitrary MATLAB code. Rather than relying on static analysis, we extract this information

dynamically, by instrumenting the input programs and tracing their actual execution on a

MATLAB implementation. This allows us to provide precise code navigation even in the

presence of features that have traditionally been hard to reason about statically, such as

calls to eval. This precision comes at the cost of soundness, as the computed call graphs

are correct only with respect to a set of recorded program runs, and some extra work for

the programmer, whose responsibility it becomes to provide entry points into the project

that cover enough code to be useful.

13

Dynamic Call Graph Construction

3.1 MATLAB features complicating static call graph com-

putation

MATLAB supports a limited form of function overloading or specialization. In particular,

it has a notion of superior and inferior types. While the precise rules governing this re-

lation are not documented anywhere, Dubrau and Hendren, after exhaustively exercising

each case, produced a diagram (reproduced in Figure 3.1) describing the superior and in-

ferior relationships between the different builtin types [DH12]. This relation is not a total

ordering, as, for example, a given integer type is neither superior nor inferior to the other

integer types.

single

double cha r

logical

in t8 in t16 in t32 in t64 u in t8 u in t16u in t32 u in t64

function_handle

s t ruc t cell

anObject

Figure 3.1 Superior/inferior type relationships for MATLAB. An arrow points from a to b if a is

superior to b.

When a function call is evaluated, the arguments are evaluated first, and their types

influence the function lookup. In particular, MATLAB identifies the most superior argu-

ment type – preferring the type of the leftmost superior argument in case there is not a

14

3.2. Call graph tracing instrumentation

unique superior type – and uses this as the call site’s "dominant type", say char. Then, a

function defined in any directory named @char/ on MATLAB’s path will have priority over

other user-defined functions with the same name (with the exception of functions nested

inside the call site’s enclosing function). Thus, in order to statically compute a call graph

in the presence of specialized functions, we need to carry out type inference analysis to

approximate these lookup semantics.

Although MATLAB’s functions are not quite first-class, a special kind of object called a

function handle can be used as a reference to a function, either named or anonymous. These

handles can be stored in variables, as well as passed and returned from functions. Thus, in

order to statically compute a call graph in the presence of function handles, interprocedural

analysis is required to track which variables might hold function handles, and also which

functions each of these might point to.

In addition to these more traditional challenges, MATLAB supports many highly dy-

namic features that complicate any form of static analysis. Among these are the evaluation

of arbitrary strings as code via calls to the eval family of functions, and a function lookup

mechanism that involves crawling the filesystem at runtime – starting from a current direc-

tory that can be changed at runtime – in search of applicable call targets. More attention is

paid to these in Chapter 5.

3.2 Call graph tracing instrumentation

Since static analysis of MATLAB code is difficult and easily misled in the presence of

dynamic features, we rely on dynamic analysis to extract information that is sufficiently

precise for our needs. Denker et al. [DGL06] identify different approaches available to

dynamic analysis tool developers for gathering runtime data:

• Source code modification and, relatedly, logging services. This is the approach we

ultimately use, as we discuss later.

• Bytecode modification or instrumenting the virtual machine. This requires knowl-

edge of the internals of the MATLAB virtual machine, and as the reference MATLAB

implementation is a proprietary closed-source black box, this isn’t an option for us.

15

Dynamic Call Graph Construction

• Method wrappers. This refers to some mechanism for introducing code to be exe-

cuted before, after, or instead of a function. Our particular source-to-source transfor-

mation, described later, can be seen of an instance of this technique.

• Debuggers. While the reference MATLAB implementation does include a debugger,

we prefer not to couple ourselves too tightly to it, as it is not under our control.

The most natural and portable approach is source code modification. We can implement

it using the infrastructure provided as part of the McLAB toolkit.

The high-level idea is to insert logging statements before every possible call site, and

at the start of every function or script. After executing the transformed code, we can post-

process the logs and match up call sites with their targets, since the target will follow the

call in the log. We define a unique identifier identi f ier(n) for every call site and call target

n; this consists of the name of n (the variable name if it’s a variable, the function name if

it’s a function definition, the script name if it’s a script, and the string <lambda> if it’s an

anonymous function expression), the file it’s contained in and its position (line and column)

within that file. This format comes in handy when it comes to implementing navigation

features in an IDE, as these typically take a textual range (e.g. a mouse selection) as input.

The transformation depends on a few functions (listed in Figure 3.2) being available at

runtime. The mclab_callgraph_init and mclab_callgraph_log functions are straight-

forward; the former takes a path to a log file, creates it and makes a handle to it globally

accessible, while the latter takes a string and writes it to the file.

mclab_callgraph_log_then_run is more complicated; it takes a string, a variable (which

is possibly a function handle) and a variable number of arguments. If the given variable is a

function handle (either a function handle expression, or a variable that contains a function

handle), then we log the string to the file, and in either case we forward the arguments to

the variable.

Assuming these runtime functions are available, we traverse the whole project and per-

form the following transformations.

• For every function or script f , we insert a call to mclab_callgraph_log as the first

statement, passing the string enter followed by identi f ier(f).

16

3.2. Call graph tracing instrumentation

function mclab_callgraph_init(logfile)

global fid

fid = fopen(logfile, ’a’);

end

function mclab_callgraph_log(s)

global fid;

fprintf(fid, ’%s\n’, s);

end

function varargout = mclab_callgraph_log_then_run(s, f, varargin)

if isa(f, ’function_handle’)

mclab_callgraph_log(s);

end

[varargout{1:nargout}] = f(varargin{:});

end

Figure 3.2 The runtime components of the callgraph tracer.

• For every anonymous function definition f , we replace the body b of the anony-

mous function with a call to mclab_callgraph_log_then_run, passing the string

enter followed by identi f ier(f) as the first argument, and the original expression

b wrapped in an anonymous function expression taking no arguments as the second

argument.

• We replace every function call n (as identified by the kind analysis) with a call to

mclab_callgraph_log_then_run, passing the string call followed by identi f ier(n)

as the first argument, a handle to the target function as the second argument, and

copies of the original arguments as the rest of the arguments.

One caveat here is that there can be functions whose return value depends on the

current execution context. For instance, nargin and nargout are builtin functions

that return the number of input and output parameters passed to the current func-

tion. If we call these functions inside mclab_callgraph_log_then_run instead of

the original function, they won’t necessarily return the same value. As such, we

avoid instrumenting calls to these functions, among other reflective functions such

as narginchk and inputname. This doesn’t really impact our precision, since these

functions just return values, and can’t for example call back into application code.

17

Dynamic Call Graph Construction

• While the kind analysis distinguishes between function calls and variable accesses, it

doesn’t distinguish among the latter between array accesses and function handle in-

vocations. In order to accurately trace control flow through function handles, we also

instrument variable accesses in the same way as for function calls, only rather than

passing in a function handle expression as the second argument, we just pass in the

variable. At runtime, mclab_callgraph_log_then_run makes use of MATLAB’s

reflective features to identify function handles, and only logs the call event in those

cases. One small detail here is that an array access might have a colon literal as one

of its arguments, and passing it to a function instead will cause MATLAB to generate

an error at runtime. In order for the transformation to be correct, we go through and

replace any colon literals with colon string literals.

Finally, in order to trigger a tracing execution, an entry point is needed – that is, a

piece of code that will attempt to exercise as much of the subject code as possible. This

is handed off to the tracing machinery, which will first instrument the project as described

(in a temporary folder), create a temporary file to hold the trace, and invoke MATLAB, first

calling mclab_callgraph_init with the path to the log file, and then the entry point. Once

the execution is over, the trace is processed, and call graph edges are identified by looking

for call events that are immediately followed by an enter event.

Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6 together show an end-to-end example.

• Figure 3.3 shows the application code. for_each_file recursively traverses a di-

rectory tree (using the builtin function dir as a primitive) and invokes a passed-in

handler for each file with the given extension, making use of the helper functions

string_ends_with and is_in along the way. code_size calls for_each_file,

passing in a handle to the nested function add_size as the handler. In MATLAB,

nested functions are closures, so that add_size can read and write to the total_size

variable in the enclosing scope. In this way, code_size adds up the sizes of all the

m-files in the current directory.

• Figure 3.4 shows the same code after instrumentation (with all instances of the

mclab_callgraph_ prefix omitted for brevity).

18

3.2. Call graph tracing instrumentation

• Figure 3.5 shows the generated trace, using an invocation of code_size() as the

entry point. Some events are omitted for brevity.

• Finally, Figure 3.6 shows the call graph produced by processing the trace and match-

ing up call and enter events. The call graph is in JSON format, mapping, for each

covered call site, the call site’s identifier to an array of function identifiers.

function for_each_file(root, extension, handler)

files = dir(root);

for i = 1:numel(files)

file = files(i);

if ~is_in({’.’, ’..’}, file.name) && file.isdir

for_each_file(fullfile(root, file.name), extension, handler)

elseif string_ends_with(extension, file.name)

handler(file)

end

end

end

function b = string_ends_with(suffix, s)

b = strfind(s, suffix) == length(s) - length(suffix) + 1;

end

function b = is_in(strings, string)

b = ~isempty(find(ismember(strings, string)));

end

function code_size

total_size = 0;

function add_size(file)

total_size = total_size + file.bytes;

end

for_each_file(’.’, ’.m’, @add_size);

disp(total_size);

end

Figure 3.3 The application code.

19

Dynamic Call Graph Construction

function [] = for_each_file(root, extension, handler)

_log(’enter for_each_file@for_each_file.m:1,10’);

files = _log_then_run(’call dir@for_each_file.m:2,11’, @dir, root);

for i = (1 : _log_then_run(’call numel@for_each_file.m:3,13’, @numel,

files))

file = _log_then_run(’call files@for_each_file.m:4,12’, files, i);

if ((~_log_then_run(’call is_in@for_each_file.m:5,9’, @is_in, {’.’,

’..’}, file.name)) && file.isdir)

_log_then_run(’call for_each_file@for_each_file.m:6,7’,

@for_each_file, _log_then_run(’call

fullfile@for_each_file.m:6,21’, @fullfile, root, file.name),

extension, handler)

elseif _log_then_run(’call string_ends_with@for_each_file.m:7,12’,

@string_ends_with, extension, file.name)

_log_then_run(’call handler@for_each_file.m:8,7’, handler, file)

end

end

end

function [b] = string_ends_with(suffix, s)

_log(’enter string_ends_with@for_each_file.m:13,14’);

b = (_log_then_run(’call strfind@for_each_file.m:14,7’, @strfind, s,

suffix) == ((_log_then_run(’call length@for_each_file.m:14,29’,

@length, s) - _log_then_run(’call length@for_each_file.m:14,41’,

@length, suffix)) + 1));

end

function [b] = is_in(strings, string)

_log(’enter is_in@for_each_file.m:17,14’);

b = (~_log_then_run(’call isempty@for_each_file.m:18,8’, @isempty,

_log_then_run(’call find@for_each_file.m:18,16’, @find,

_log_then_run(’call ismember@for_each_file.m:18,21’, @ismember,

strings, string))));

end

function [] = code_size()

_log(’enter code_size@code_size.m:1,10’);

total_size = 0;

_log_then_run(’call for_each_file@code_size.m:7,3’, @for_each_file,

’.’, ’.m’, @add_size);

_log_then_run(’call disp@code_size.m:8,3’, @disp, total_size);

function [] = add_size(file)

_log(’enter add_size@code_size.m:3,12’);

total_size = (total_size + file.bytes);

end

end

Figure 3.4 The same code after instrumentation.

20

3.2. Call graph tracing instrumentation

enter code_size@code_size.m:1,10

call for_each_file@code_size.m:7,3

enter for_each_file@for_each_file.m:1,10

...

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

...

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

...

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

...

call handler@for_each_file.m:8,7

enter add_size@code_size.m:3,12

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

...

call handler@for_each_file.m:8,7

enter add_size@code_size.m:3,12

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

...

call handler@for_each_file.m:8,7

enter add_size@code_size.m:3,12

call is_in@for_each_file.m:5,9

enter is_in@for_each_file.m:17,14

...

call string_ends_with@for_each_file.m:7,12

enter string_ends_with@for_each_file.m:13,14

Figure 3.5 The generated trace.

21

Dynamic Call Graph Construction

{

"for_each_file@code_size.m:7,3": [

"for_each_file@for_each_file.m:1,10"

],

"handler@for_each_file.m:8,7": [

"add_size@code_size.m:3,12"

],

"is_in@for_each_file.m:5,9": [

"is_in@for_each_file.m:17,14"

],

"string_ends_with@for_each_file.m:7,12": [

"string_ends_with@for_each_file.m:13,14"

]

}

Figure 3.6 The generated call graph.

3.3 Dealing with builtin and library functions

The abovementioned instrumentation can’t be applied to MATLAB builtin functions. It

could potentially be applied to library functions, assuming their source code was available

and they were written in MATLAB and not native code. That being said, if the goal is to

enable useful code navigation features, then instrumenting library functions is of dubious

utility. In any case, during the course of a profiling run, control flow is likely to be passed to

a builtin or otherwise uninstrumented function, which could then call back into the project

code, for instance via a passed-in function handle, a method call on a passed-in object, or

the use of MATLAB’s reflective features, possibly using passed-in arguments to compute

names of functions to call. Without taking care to handle this correctly, then in the presence

of such code, our approach will be unsound, even with respect to the recorded execution.

As an illustrative example, consider the builtin function arrayfun, which takes a func-

tion handle f and an array a and applies f to each element in a, returning an array of the

outputs, analogously to the map function in functional languages. A call to arrayfun pass-

ing in a handle to a user-defined function f will manifest in the produced call graph as an

edge linking the call to arrayfun with f directly, which isn’t quite correct. That infor-

mation may still be useful for code navigation purposes, with the understanding that we’re

tracking how control flow jumps through application code, rather than focusing specifically

22

3.3. Dealing with builtin and library functions

on call sites and their targets, but there again that’s beyond the scope of a call graph com-

putation. A bigger problem occurs if f itself calls a builtin function c, as control would

flow back to arrayfun which would invoke f again, linking together the call to c with f .

Unlike the previous case, this has no practical application, and is just wrong.

To preserve the soundness of our approach even in such cases, we rely on more of

MATLAB’s reflective features. In particular, the functions builtin function allows us to

inspect the contents of a function handle at runtime, and determine which function it points

to, the path to the file in which that function was defined if applicable, and whether or not

it’s a builtin function. Using this facility, we modify mclab_callgraph_log_then_run as

shown in Figure 3.7 to insert extra markers in the call trace in order to distinguish calls

to builtin functions. These markers are ignored by the call graph construction step, but

their presence in the trace separates builtin call sites from user-defined function entrances,

avoiding the addition of the problematic edges.

function varargout = mclab_callgraph_log_then_run(s, f, varargin)

if isa(f, ’function_handle’)

mclab_callgraph_log(s);

info = functions(f);

% empty in Octave, ’MATLAB built-in function’ in MATLAB

builtin = strcmp(info.type, ’simple’) && ...

(isempty(info.file) || strcmp(info.file, ’MATLAB built-in

function’));

else

builtin = false;

end

if builtin

mclab_callgraph_log(’builtin start’);

end

[varargout{1:nargout}] = f(varargin{:});

if builtin

mclab_callgraph_log(’builtin end’);

end

end

Figure 3.7 Code to handle builtins at runtime.

23

Dynamic Call Graph Construction

3.4 Instrumentation performance overhead

A priori, we expect the instrumented code to run at least an order of magnitude or two

slower than the original code, the main culprit being the wrapping of every single function

call or variable access with a call to an auxiliary function. In order to get a sense of the

magnitude of the overhead, we run some benchmarks with and without instrumentation.

3.4.1 Benchmarks

We run our experiments on a set of 29 MATLAB benchmarks. 23 of these are part of the

McLAB project’s standard benchmark suite, which was collected from various sources, in-

cluding the FALCON and OTTER projects, Chalmers University of Technology, the MAT-

LAB Central File Exchange, and the ACM CALGO library. These benchmarks are mostly

numerical algorithms, heavy on loops and array reads and writes, and not so heavy on

function calls or function handles. Most MATLAB code looks like this, so measuring and

minimizing overhead on such code is important. However, it’s also important to evaluate

our approach on code where the tracing would reveal useful information. To that end, we

also include seven additional benchmarks in our suite. Six of these are numerical solvers, a

class of programs where it is common to operate on function handles. These are the same

benchmarks used by Lameed and Hendren to evaluate their work on optimizing feval

implementations [LH13].

These benchmarks are described briefly in Table 3.1. In Table 3.2, we include some

simple static metrics to help understand the following experimental results. Since instru-

menting a function call or array access adds an overhead proportional to the number of

times it is executed, we note, for each benchmark, how many calls or accesses are in-

strumented (this is the first number in each column), and how many of these are inside

loops (this is the number in parentheses in each column). Note that this is computed is

a relatively simple-minded way, and doesn’t catch, for example, calls or accesses inside

functions which are called inside loops. Nevertheless, this can be an interesting metric.

The "Naive" column refers to the instrumentation described thus far. We then show how

each optimization described later in this section affects this metric (in other words, how

24

3.5. Minimizing overhead

many expressions we are able to avoid instrumenting). These are the "+ Prop", "- Builtins",

and "+ Checks" columns; their specific meanings are described in the following section.

3.4.2 Results

The results are shown in Table 3.3. All the programs were executed on a machine with

an Intel R© CoreTM i7 CPU @ 2.4 GHz and 8 GB of memory, running OS X 10.10, using

MATLAB version R2014b. For each benchmark, we show the running times of the original

code in seconds, and the slowdown of each instrumented version relative to the original

code. The columns refer to the same versions as in Table 3.2, and the specific meaning of

the "Better runtime" is given in the following section.

For the naive instrumentation described thus far, we see that the slowdown can be ex-

treme for some benchmarks, with six of the benchmarks (capr, carni, dich, diff, fiff and

mbrt) undergoing a three order of magnitude slowdown. All of these are in the numerical

category, and can be optimized. The functional benchmarks all see a slowdown between

one and two orders of magnitude. While we’re able to optimize them slightly, they tend to

stay within the same order of magnitude.

3.5 Minimizing overhead

The bulk of the runtime overhead of our approach stems from instrumenting each function

call and variable access, which is ultimately caused by our inability to precisely distinguish

arrays from function handles statically. Yet arrays are apt to be much more common than

function handles, so that the cost of instrumenting each array access is disproportionate

relative to the benefit. Thus, we apply a few different techniques to try and minimize the

amount of array accesses that require instrumentation.

3.5.1 Handle propagation analysis

While the McLAB toolkit doesn’t provide any facilities for performing interprocedural

static analysis on arbitrary MATLAB code, we can still track the flow of function handles

through a single function. For each use of a variable, we can estimate whether the variable

25

Dynamic Call Graph Construction

Name Description

adpt Adaptive quadrature via Simpson’s rule
arsim Simulates autoregressive model
bbai Babai estimation algorithm
bubble Bubble sort
capr Computes capacitance of a transmission line via finite dif-

ference and Gauss-Seidel methods
clos Calculates transitive closure of a directed graph
create Simulated maximum likelihood statistical regression
crni Solves heat equation via Crank-Nicholson
dich Solves Laplace’s equation via Dirichlet
diff Calculates diffraction pattern of monochromatic light
fdtd Applies finite-difference time domain technique
fft Computes discrete fast Fourier transform on complex data
fiff Calculates finite difference solution to wave equation
lgdr Calculates derivatives of Legendre polynomials
mbrt Computes Mandelbrot sets
mcpi Computes π via Monte Carlo method
nb1d Simulates 1-dimensional n-body problem
nb3d Simulates 3-dimensional n-body problem
numprime Sieve of Eratosthenes
optstop Solves optimal stopping problem
quadrature Integrates function via quadrature
scra Computes reduced-rank approximation of matrix
spqr Computes semi-pivoted QR decomposition of matrix

bisect Finds root of scalar function via bisection method
gaussQuad Composite Gauss-Legendre quadrature
newton Finds root of scalar function via Newton’s method
odeEuler Integrates first order ODE via Euler’s method
odeMidpt Integrates first order ODE via midpoint method
odeRK4 Integrates first order ODE via Runge-Kutta
sim_anl Minimizes function via simulated annealing

Table 3.1 Call graph instrumentation benchmarks.

26

3.5. Minimizing overhead

Name Naive + Prop - Builtins + Checks

adpt 31 (21) 15 (8) 1 (1) 1 (1)
arsim 19 (9) 12 (3) 2 (2) 1 (1)
bbai 13 (8) 13 (8) 7 (5) 2 (2)
bubble 7 (4) 6 (3) 4 (3) 1 (0)
capr 37 (29) 19 (11) 12 (10) 5 (3)
clos 2 (1) 2 (1) 1 (1) 1 (1)
create 86 (79) 66 (59) 48 (48) 45 (45)
crni 25 (19) 18 (12) 10 (8) 2 (2)
dich 25 (9) 11 (3) 1 (1) 1 (1)
diff 14 (10) 14 (10) 1 (1) 1 (1)
fdtd 39 (30) 9 (0) 1 (0) 1 (0)
fft 17 (14) 10 (7) 6 (5) 1 (0)
fiff 22 (21) 18 (17) 1 (1) 1 (1)
lgdr 21 (15) 12 (6) 3 (3) 3 (3)
mbrt 11 (3) 11 (3) 2 (1) 2 (1)
mcpi 3 (2) 3 (2) 1 (0) 1 (0)
nb1d 26 (12) 25 (11) 9 (4) 5 (0)
nb3d 35 (20) 20 (7) 6 (5) 3 (0)
numprime 3 (2) 3 (2) 1 (0) 1 (0)
optstop 15 (14) 9 (8) 6 (5) 6 (5)
quadrature 2 (1) 2 (1) 2 (1) 2 (1)
scra 48 (35) 40 (27) 25 (21) 17 (13)
spqr 48 (35) 35 (27) 21 (21) 13 (13)

bisect 31 (7) 31 (7) 6 (2) 4 (2)
gaussQuad 53 (4) 18 (2) 4 (1) 4 (1)
newton 16 (5) 16 (5) 3 (2) 3 (2)
odeEuler 7 (4) 4 (1) 2 (1) 2 (1)
odeMidpt 10 (7) 5 (2) 3 (2) 3 (2)
odeRK4 7 (4) 7 (4) 5 (4) 5 (4)
sim_anl 19 (8) 12 (8) 4 (2) 4 (2)

Table 3.2 Instrumentable expressions in each benchmark. The number in each cell represents

the number of expressions instrumented for a given benchmark by a given version of

our approach, with the number in parentheses denoting how many of those appear

inside loops.

27

Dynamic Call Graph Construction

Benchmark Original Naive + Prop - Builtins + Checks Better runtime
(s) Slowdowns

adpt 0.994 96.1 73.6 1.03 1.15 1.06
arsim 0.252 4.09 2.78 1.03 1.03 1.01
bbai 0.112 1.09 1.10 1.06 1.05 1.09
bubble 0.003 3.11 3.12 2.74 3.79 3.15
capr 10.7 1570 267 267 3.72 3.16
clos 0.358 1.08 0.99 1.01 1.07 1.01
create 0.033 2.36 2.62 1.49 1.63 1.78
crni 15.4 1040 470 485 1.07 1.17
dich 3.79 5340 2950 1.02 1.04 1.02
diff 1.24 1690 1660 1.02 1.05 0.98
fdtd 1.11 2.82 1.08 1.05 1.07 1.03
fft 1.95 283 145 144 2.54 2.11
fiff 4.83 2190 18.1 0.942 0.922 0.998
lgdr 0.014 3.29 2.53 1.87 1.87 1.69
mbrt 2.08 1490 1500 4.17 4.28 4.05
mcpi 0.007 2.96 2.97 2.08 1.95 2.12
nb1d 8.74 6.64 6.77 2.09 1.03 0.96
nb3d 0.737 2.85 2.09 1.14 1.03 1.03
numprime 0.005 2.31 2.36 2.72 2.70 2.78
optstop 0.048 2.46 2.48 1.59 1.81 2.35
quadrature 0.004 3.25 3.24 3.24 3.32 3.56
scra 0.134 1.42 1.35 1.14 1.12 1.14
spqr 0.119 1.38 1.28 1.09 1.15 1.15

bisect 0.761 61.3 60.8 24.1 22.9 17.9
gaussQuad 1.63 26.1 24.6 13.8 14.0 10.2
newton 1.26 42.1 41.7 22.5 22.4 16.3
odeEuler 0.519 814 686 696 677 580
odeMidpt 0.553 717 628 684 658 510
odeRK4 0.478 710 624 619 641 475
sim_anl 0.682 61.6 56.2 18.6 18.6 13.9

Geometric mean 32.0 21.8 6.50 4.00 3.72

Table 3.3 Running times of the instrumented code with different optimizations enabled.

28

3.5. Minimizing overhead

holds only data, or a function handle, or possibly a complex data structure with a mix of

data and handles. Where we’re able to determine that a variable is definitely an array con-

taining only data, we can avoid instrumenting it. Some prior work had been done in this

direction inside the McLAB framework in the form of an intraprocedural handle propaga-

tion analysis – work which we formalized and whose implementation we completed.

The handle propagation analysis aims to compute, at each program point, which vari-

ables possibly contain function handles. It’s common to characterize MATLAB as a lan-

guage where everything is a matrix – even a scalar value is actually a 1x1 matrix. Function

handles, however, are not matrices. Broadly, we distinguish between handles and struc-

tured data such as arrays, structs or cell arrays. Then among these two categories we make

some further distinctions. In particular, the analysis deals with abstract values defined as

follows.

• A variable could contain a function handle created via a function handle expression

@f, which simply creates a handle to named function f. If so, we associate with the

variable the abstract value NAMED(f), keeping track of the name it points to.

• A variable could contain a function handle created via an anonymous function @(x)expr(x).

If so, we associate with the variable the abstract value ANON(n), where n is a refer-

ence to the anonymous function node in the AST.

• A variable could contain a function handle we don’t have further information about.

Typically this would happen if it was assigned the result of a call to a builtin function

known to return handles. In that case we associate with the variable the abstract value

HANDLE, abbreviated as H.

• A variable could contain structured data (for example a cell array), every element of

which is a function handle. If so, we associate with it the abstract value DHO (data,

handle only).

• A variable could contain structured data where the elements are known to definitely

not be handles. If so, we associate with it the abstract value DO (data only).

29

Dynamic Call Graph Construction

⊥

ANON NAMED

H

DO DHO

DWH

⊤

Figure 3.8 Handle propagation analysis abstract values.

• A variable could contain structured data which is a mix of handles and data, or where

we don’t know anything about the content. If so, we associate with the variable the

abstract value DWH (data with handles).

In addition to these, we have ⊤ and ⊥ values, where ⊤ is the most general value, and ⊥

means the value is as yet undefined. The handle propagation analysis is an intraprocedural

forward dataflow analysis. At each program point, it associates with each variable name a

single abstract value. The merge operation is the join ∨ of the partial order illustrated in

Figure 3.8.

The analysis operates on a regular MATLAB AST, using MCSAF, the McLAB toolkit’s

static analysis framework. When we encounter an assignment statement S, we first examine

the top-level expression E on the right hand side, and compute from it an abstract value

gen(E). The rules for this are summarized in Table 3.4, and explained in more detail

below.

In Table 3.4 and in what follows, we write in(id) to refer to the abstract value associated

with the identifier id in the in set of S, and kind(id) to refer to the kind analysis result for that

identifier (either FN or VAR, meaning the variable refers to a function or not, respectively).

While the analysis is intraprocedural over user-defined functions, an attempt is made to

avoid imprecision caused by calls to builtin functions in the form of a table in f o, mapping,

for a few hundred builtin functions, their name to an abstract value representing their return

value.

We consider the following cases for E.

• E is a function handle expression, or an anonymous function definition. In that case

30

3.5. Minimizing overhead

Expression E Abstract value gen(E)
@name NAMED(name) (1)
@(..)... ANON(@(..)...) (2)
id in(id) if kind(id) =VAR (3)

in f o(id) if kind(id) = FN ∧ id ∈ in f o (4)
⊤ if kind(id) = FN ∧ id 6∈ in f o (5)

id(. . .) in f o(id) if kind(id) = FN ∧ id ∈ in f o (6)
⊤ if kind(id) = FN ∧ id 6∈ in f o (7)
in f o(f) if in(id) = NAMED(f)∧ f ∈ in f o (8)
⊤ if in(id) ∈ {H,ANON,NAMED} (9)
in(id) otherwise (10)

id{. . .} DO if in(id) = DO (11)
id. · · · H if in(id) = DHO (12)
id.(. . .) ⊤ if in(id) = DWH (13)
{E1, . . . ,En} struct(

{

gen(E1), . . . ,gen(En)
}

) (14)
[E1, . . . ,En]
any other expression DO (15)

Table 3.4 Handle propagation analysis rules for computing gen(E).

we simply generate the appropriate NAMED or ANON abstract value. This corre-

sponds to rules (1) and (2).

• E is a use of an identifier id. In MATLAB, the parentheses can be omitted from a

function call – but not a function handle invocation – if no arguments are passed.

Thus E is either a variable access, or a call to named function. The kind analysis is

enough to distinguish between the two cases. If it’s a variable, we simply propagate

forward whatever information we had (rule (3)). If it’s a call to a function with has

an entry in in f o, we use it (rule (4)). Otherwise, it’s a call to an unknown function

which might return anything, so we use ⊤ (rule (5)).

• E is a parameterized expression id(. . .). As in the previous case, E could be a call to

named function which we either have information about or not – rules (6) and (7) in

Table 3.4 are identical to rules (4) and (5).

Because of the parentheses, this might be a function handle invocation. If in(id) =

NAMED(f) – that is, a handle to a named function f – and we have an entry for f

31

Dynamic Call Graph Construction

in in f o, then we can use it (rule (8)). If we don’t know anything about f , or if id

contains a handle we don’t know anything about, then we treat this as an arbitrary

function call and use ⊤ (rule (9)).

Otherwise, id refers to a variable containing data – either an array or a cell array (but

not a struct, because structs can’t be accessed with parentheses). Arrays in MATLAB

can’t contain function handles. Cell arrays can contain handles, but indexing a cell

array with parentheses (rather than braces) doesn’t return the contained data directly,

instead returning a set of cells. Thus in this case we can again simply propagate

forward the information we already had for id (rule (10)).

• E could be a cell array indexing expression id{. . .}, or struct access expression id. · · ·

or id.(. . .). We treat all of these cases the same way. If id is known to only contain

data (DO), then all of its elements only contain data, so we can use DO again (rule

(11)). If id is known to only contain handles (DHO), then anything we pull out of

it is necessarily a handle, so we can use H (rule (12)). Otherwise, what we pull out

might be data or a handle, and thus we use ⊤ (rule (13)).

• E could be an array or cell array literal. For this case, we define a helper function

struct operating on abstract values (which we will reuse for the assignment cases

later on). In particular, it takes in a set of abstract values and, interpreting them as the

indvidual elements of an array or cell array a, returns an abstract value representing

a itself. If all the elements are data only, then the whole is data only. If the elements

are all handles, or data containing handles, then the whole is data containing handles.

Otherwise, the whole is data that might contain either data or handles. struct is

defined as follows.

struct(V) =

DO if V = {DO}

DHO if V ⊆ {H,NAMED,ANON,DHO}

DWH otherwise

32

3.5. Minimizing overhead

For this case, we traverse the literal and compute the abstract values for each of the

constituent expressions, finally merging them together with struct (rule (14)).

• E could be any other expression. The ones we haven’t considered yet include arith-

metic and logical expressions, as well as numeric, string, colon and range literals.

All of these either are or operate on data only (rule (15)).

Table 3.5 shows how gen(E) is used to compute the new abstract value for the variable

being assigned to. In each case, id is the main identifier being assigned to in S. The out

set of S is the same as the in set, with the value for id replaced by value in the right hand

column. We distinguish just two cases for S.

• id is assigned to directly, as in id = E for some expression E. In this case we simply

take gen(E) to be the new abstract value for id, replacing whatever was there before.

• id is having one of its elements or fields assigned to. The idea here is that we know

id to be some sort of data structure, and only one of its elements is changing. For

example, if in(id) = DO, and E evaluates to a function handle, then id is now a mix

of data and handles.

We model this succinctly by running gen(E) through our struct helper function from

earlier. Given a single input value like this, struct will simply coalesce handle values

to DHO, and ⊤ to DWH, and otherwise return its input. If in(id) is one of the

data abstract values, then we just merge in(id) with the value returned by struct.

If in(id) = ⊤ for whatever reason, then we still know that after S, id will not be a

handle, so we use DWH, the most general data value.

3.5.1.1 Application of handle propagation analysis

For our purposes, given a parameterized expression id(. . .), we only need to instrument it

if out(id) ∈ {NAMED,ANON,H,⊤}. We make the decision based on the abstract value

associated with the variable in the statement’s out set, rather than its in set. To see why,

consider the function in Figure 3.9. Since a is a function parameter, we conservatively

33

Dynamic Call Graph Construction

Assignment out(id)
id = E gen(E)
id. · · ·= E in(id)∨ struct({gen(E)}) if in(id) ∈ {DWH,DHO,DO}
id{. . .}= E DWH otherwise
id.(. . .) = E

id(. . .) = E

Table 3.5 Handle propagation analysis rules for assignments.

assign it the value ⊤. Once it is assigned to on line 3, it gets the value DWH, so we would

know not to instrument it, but before that statement, its value is still ⊤, so we would have

to instrument it. If a were a handle, however, then the assignment on line 3 would cause a

runtime error. By using the value in the out set, we can avoid over instrumenting in these

cases.

1 function f(a)

2 for i = 4:1000

3 a(i) = a(i-1) + a(i-2) + a(i-3);

4 end

5 end

Figure 3.9 A code snippet where a variable is used and assigned to in the same statement.

The "+ Prop" column in Table 3.2 shows how many expressions remain instrumented

with this enhancement applied, and the corresponding column in Table 3.3 shows the per-

formance of the instrumented code as a slowdown relative to the original uninstrumented

code. In general the analysis is very effective, weeding out many array accesses, and lead-

ing to big performance boosts; the capr benchmark, for example, runs nearly an order of

magnitude faster, going from a 1578x slowdown in the naive version to a 293x slowdown.

3.5.2 Avoiding builtin call instrumentation

MATLAB code tends to be fraught with calls to builtin functions, and instrumenting these

won’t give much benefit, since we don’t have access to their source code. However, because

MATLAB builtin functions can be shadowed by user-defined functions with the same name,

34

3.5. Minimizing overhead

or specialized via the mechanism described in Sec. 3.1, we can’t necessarily tell statically

whether a given function call is a call to a builtin function. Because of this, the naive

instrumentation goes ahead and instruments every function call, even if it likely is a call to

a builtin.

While we can’t statically determine the target of a function call to check whether it’s

a builtin, we can examine the application’s code, as well as any library code it depends

on, in order to gather a list A of user-defined functions whose names conflict with builtin

functions. In MATLAB, a function’s name is the name of the file it’s defined in (less the

extension), so this is just a simple filesystem traversal. Then, during instrumentation, when

we encounter a potential call to a builtin function, we check whether the name of the func-

tion appears in A. If it doesn’t, then we can safely avoid instrumenting the call. One

assumption here is that we have access to all the code the user is apt to run; this is not un-

reasonable, given that the user is requesting a call graph, and so is likely willing to provide

all the relevant code.

We make a special exception for the builtin function feval, which is often used to in-

voke function handles instead of the regular function call syntax. There are two reasons for

its prevalence. For one thing, in addition to accepting function handles to invoke, feval

also accepts names of functions as strings, and it has become idiomatic in MATLAB for

library code to offer similar interfaces – accepting either handles or strings and forwarding

them to feval – when a user-specified function is needed. feval is also prevalent for his-

torical reasons. Function handles were added to the language with the release of MATLAB

6 in 2000, but initially could only be invoked via feval. Support for invoking function

handles with the regular function call syntax was not added until the release of MATLAB 7

in 2004. Given all this, we can almost view feval as an alternative syntax for a function

call. We therefore instrument all calls to feval.

As an aside, in Sec. 3.3, we discussed the complications caused by instrumenting calls

to builtin functions. Even though we decide here not to instrument direct calls to builtins,

those complications still arise, because function handles can point to builtin functions, and

in those cases the same problem traces – with call events that don’t have a corresponding

enter event – can happen. Thus, the changes to the runtime described in that section are

still necessary.

35

Dynamic Call Graph Construction

The "- Builtins" column in Table 3.2 shows how many expressions remain instrumented

with this enhancement applied (in addition to the handle propagation analysis described in

the previous section) and the corresponding column in Table 3.3 shows the performance

of the instrumented code as a slowdown relative to the original uninstrumented code. The

effect of this optimizations depends on how heavily the benchmark relied on builtin func-

tions, but it is in general very effective, in many cases (e.g. dich, diff) reducing the overhead

to near 0.

3.5.3 Checking type of function arguments at runtime

Our instrumentation speculatively wraps each variable access in a function call in case the

variable is a function handle. A runtime check to determine whether it is occurs inside this

auxiliary function. This simplifies the transformation, but is clearly wasteful if the variable

turns out to be a plain array variable, especially if the variable is accessed more than once.

Since MATLAB is used a lot for numerical computations, MATLAB code tends to be heavy

on loops, such that array variables are often accessed repeatedly, magnifying the overhead.

Intuitively, we should be able to check the type of a given variable only once, and avoid

instrumenting accesses to it at all if it’s not a function handle.

However, this presents a complication in terms of implementation complexity. Wrap-

ping each variable access in a function call is a very simple transformation to make, as it

just involves replacing an expression AST node with another. If we start introducing con-

ditionals, the transformation becomes a lot more intrusive, since MATLAB does not support

any kind of conditional expression (such as the ternary ?: operator in C-based languages),

only conditional statements. Thus, inserting checks at the right places while preserving the

order of operations requires destructuring the code into a kind of three-address form.

The handle propagation analysis is precise enough in practice if we restrict ourselves

to a single function – a lot of the imprecision occurs when arrays are passed around as

function parameters. As a simple middle ground, we create two instrumented versions of

each function. In the first version (S for slow), we seed the handle propagation analysis

with the conservative assumption that any of the function parameters might be a function

handle (this is the same assumption we’ve been using thus far). In the second (F for fast),

36

3.5. Minimizing overhead

we seed it with the assumption that all of the function parameters are definitely just plain

data arrays. We then instrument both versions independently.

If both versions are the same, then there’s nothing to do. Otherwise, we replace the

body of the function with an if statement, with S as the then branch, and F as the else

branch. The condition checks at runtime, for each input parameter p with at least one use

instrumented in S, whether p is a function handle (using the MATLAB builtin function isa).

The "+ Checks" column in Table 3.2 shows how many expressions remain instrumented

along the fast path where the check reveals there are actually no handles, and the corre-

sponding columns in Table 3.3 shows the performance of the instrumented code with these

and all previous enhancements applied. For our more typical MATLAB benchmarks that

are heavy on array operations, this drastically reduces the overhead. For the benchmarks

that do use function handles, the effect on performance is predictably negligible.

3.5.4 Optimized runtime functions

The optimizations described thus far aim to reduce the number of expressions requiring

instrumentation. This helps tremendously on our numerical benchmarks, where the call

graphs are actually empty, or contain a single edge linking a call from the benchmark’s

driver function to the benchmark itself; in these cases, we can reduce the overhead to be

negligible. For those expressions where instrumentation is actually needed, however, we

also investigate the runtime overhead associated with each function call.

After some profiling on a long-running benchmark, we identify the following bottle-

necks.

• Our runtime uses the fprintf functions to log call and enter events to a log file. It

turns out that by default, MATLAB’s implementation of fprintf flushes the output

buffer each time the function is called, so that each of these calls is actually hitting

the filesystem. For builtin functions, this happens three times per call.

In addition to the usual ’w’ and ’a’ writing modes, MATLAB’s fopen function also

accepts ’W’ and ’A’, which behave similarly to their lowercase counterparts, ex-

cept that the output buffer is not flushed until it either reaches capacity or the file is

37

Dynamic Call Graph Construction

closed (via the fclose function). Simply making this one character change in the

mclab_callgraph_init functions leads to a 1.5x speedup.

• Function calls in MATLAB are quite expensive. The mclab_callgraph_log_then_run

calls mclab_callgraph_log to do the writing – inlining this call leads to a signifi-

cant performance boost.

The "Better runtime" column in Table 3.3 shows the performance of the instrumented

code with these enhancements applied.

3.6 Related work

Seeking to work around the difficulties posed by JavaScript’s dynamic features, Wei and

Ryder [WR13] present a blended static and dynamic analysis framework. The idea is to

use an instrumented JavaScript engine to execute tests covering the code we wish to an-

alyze (the existence of tests with sufficient coverage is assumed); this "dynamic phase"

collects information like the dynamic calling structure of the program, the types of created

objects, and any code that is dynamically loaded. A "static phase" then uses the collected

execution traces to build a call graph and guide static analysis. This hybrid approach was

found to have better performance and accuracy than purely static approaches on selected

benchmarks.

Motivated by the same problem of powering code navigation features in an IDE setting,

Feldthaus et al. present a static field-based flow analysis for JavaScript [FSS+13]. In the

face of JavaScript’s dynamism, they eschew soundness, instead focusing on the efficient

construction of approximate call graphs, which through empirical evaluation seem to be

good enough in practice.

Our handling of builtin functions was inspired by Ali and Lhoták’s work on application-

only call graph construction [AL12], in which they study the problem of preserving the

soundness of a Java call graph in the presence of unanalyzed library code.

38

Chapter 4

Layout-Preserving Refactorings

A refactoring is a code transformation that changes the structure of the code while

preserving its semantics, and can often naturally be thought of as a transformation over

the structure of an abstract syntax tree. However, from the perspective of a programmer

using a refactoring tool, a refactoring is ultimately a textual transformation. It is impor-

tant to reconcile these two conceptions of refactorings; purely working in terms of ASTs,

while technically correct from a semantics perspective, is apt to lose a lot of information

about the textual layout of the code, while purely working in terms of text is apt to make

implementations of individual refactorings very brittle, hard to reason about, and hard to

maintain.

In this chapter, we present our approach to the problem of implementing layout pre-

serving refactorings. We allow refactorings to be implemented in terms of a minimalist

tree transformation API, which hides the mechanics of layout preservation. As refactoring

writers specify tree-level changes, minimal text-level changes are transparently computed

from them. This simplifies the implementations of individual refactorings, allowing them

to remain oblivious to the program text and to operate at a higher level of abstraction,

without compromising their practicality for end-users.

39

Layout-Preserving Refactorings

4.1 Motivation

Setting aside questions of semantics preservation, a refactoring is most naturally thought of

as a transformation on abstract syntax trees. For instance, a refactoring like Extract Method

can be boiled down to high-level steps like these:

1. Synthesize a new function with the provided name

2. Move the selected sequence of statements from the target function to the new function

3. For each variable which is live at the input of the new function, add a corresponding

input parameter to the function (or possibly a global variable declaration)

4. For each variable which is live at the end of the new function, add a corresponding

output parameter to the function

5. Synthesize a new function call with the appropriate number of input and output ar-

guments

6. Insert this function call in the target function, at the position of the original sequence

of statements

These steps are agnostic to program text. Given this, a natural structure for a refactoring

tool consists of parsing code, then performing transformations on its AST, and then pretty

printing the transformed AST to retrieve source code to present to the programmer. Many

refactoring tools – particularly ones developed for research purposes, where practicality is

often a non-goal – operate this way.

The problem with such approaches is that by construction the AST does not contain

enough information to accurately reconstruct the input source code. Typically among the

casualties are indentation and other whitespace, along with comments and syntactic sugar.

Figure 4.1 shows a MATLAB program and the result of parsing and then pretty-printing

it using the McLAB toolkit. The two programs are behaviorally equivalent, but contain

many syntactic differences. The comment associated with the cube function has moved

below the header. The four-space indentation has been changed to two-space indentation.

40

4.1. Motivation

% cube takes a number x and returns

its cube.

function y = cube(x)

% This is a nested function that

computes the square of a

value.

function v = square(u)

v = u * u;

end

y = x * square(x);

end

function [y] = cube(x)

% cube takes a number x and

returns its cube.

% This is a nested function that

computes the square of a value.

y = (x * square(x));

function [v] = square(u)

v = (u * u);

end

end

Figure 4.1 An example of the lossy parsing and unparsing roundtrip.

Each binary expression has been wrapped in parentheses. The output parameters have been

wrapped in square brackets. The nested function square has been moved – in MATLAB,

nested functions have the same scope irrespective of where they are declared, so during

parsing they are all moved to the end of their enclosing functions as a simplification step.

Users of an automated refactoring tool are unlikely to be accepting of such invasive

changes to a program’s text. As such, it is important for any refactoring tool to be aware of

the layout of the program when performing refactorings. For a given AST transformation,

it should endeavor to perform the minimal textual changes needed to reflect the transfor-

mation in the program text. In particular, unaffected portions of the program should not

undergo any textual changes.

Despite this, it is still convenient to express refactorings as tree transformations. Refac-

torings would be much harder to implement and maintain if they had to be expressed as

textual transformations, or as a mixture of tree and text transformations that had to be kept

in sync.

Our goal is to be able to implement refactorings purely as tree transformations, and to

have minimal textual changes automatically computed from them. In order to accomplish

this, we introduce a simple transformation API, which exposes a small set of tree manipula-

tion operations. Instead of directly manipulating AST nodes, refactorings are implemented

in terms of this API. Behind the scenes, the implementation of the API includes logic that

keeps track of the input program text in addition to the AST, and keeps the two in sync.

41

Layout-Preserving Refactorings

4.2 The transformation API

Intuitively, all AST manipulation can be boiled down to a series of node deletions and

insertions. A replace operation is also convenient, and as we will discuss further in the

next section, our approach requires us to also take on the responsibility of copying nodes.

Finally, an operation to recover the transformed source code is also needed. Figure 4.2

shows how these operations are encoded as a Java interface. In order to demonstrate that

these operations are just conventional tree manipulation operations, Figure 4.3 shows a

trivial implementation of the interface that just falls back on the operations exposed by

the AST, ignoring layout concerns; note the close correspondence between the two sets of

operations.

public interface Transformer {

void replace(ASTNode<?> node, ASTNode<?> newNode);

void remove(ASTNode<?> node);

void insert(ASTNode<?> node, ASTNode<?> newNode, int i);

<T extends ASTNode<?>> T copy(T node);

String reconstructText();

}

Figure 4.2 The Transformer API, encoded as a Java interface

4.3 Synchronizing ASTs and token streams

At a high level, our approach to layout preservation works as follows. Given a MATLAB

source file, we start by tokenizing the source code using a MATLAB lexer, yielding a stream

of tokens. Notably, this lexer does not drop any tokens, preserving both whitespace and

comments. Since some MATLAB constructs are whitespace-sensitive, and since keeping

comments intact when compiling MATLAB to another language was considered a useful

feature, the McLAB toolkit already includes such a lexer; however, adapting this approach

to other languages may involve the use of a specialized lexer.

Alongside the token stream, we use a MATLAB parser to parse the same source file,

yielding an abstract syntax tree. Our aim is to allow refactoring writers to specify edits

42

4.3. Synchronizing ASTs and token streams

public class BasicTransformer implements Transformer {

private Program program;

public BasicTransformer(Program program) {

this.program = program;

}

public void replace(ASTNode<?> node, ASTNode<?> newNode) {

node.getParent().setChild(newNode,

node.getParent().getIndexOfChild(node));

}

public void remove(ASTNode<?> node) {

node.getParent().removeChild(node.getParent().getIndexOfChild(node));

}

public void insert(ASTNode<?> node, ASTNode<?> newNode, int i) {

node.insertChild(newNode, i);

}

public <T extends ASTNode<?>> T copy(T node) {

return (T) node.fullCopy();

}

public String reconstructText() {

return program.getPrettyPrinted();

}

}

Figure 4.3 A trivial implementation of the Transformer API

to the abstract syntax tree, and to have those edits be transparently reflected in the token

stream. In the end, when the time comes to present the transformed source back to the user,

we can simply concatenate all the tokens instead of pretty printing the AST.

In order for this to work, there are two "primitives" that we rely on. First, we need

to be able to identify, for a particular AST node (which may be a node from the original

program, or a copy of a node, or a brand new synthesized node), the portion of the token

stream corresponding to that node. Second, we need to be able to make local modifications

to just that portion of the stream, without compromising our ability to later look up nodes

in the modified stream.

To bridge the gap between the token stream and the AST, we use position information.

43

Layout-Preserving Refactorings

Each token consists of a fragment of text together with a line and column position where

it occurs in the source code. Each AST node, assuming it was produced by the parsing

process and not manually synthesized after the fact, also contains position information. As

an initial link between the source text and the AST, we can simply create a table that maps

line and column positions to the corresponding token in the stream. When we need to

retrieve the portion of the token stream for a given node, we can simply look up the token

corresponding to its start position, look up the node token corresponding to its end position,

and take all the tokens in between.

One potential complication here is that the mapping could become stale as the token

stream is modified. For instance, if we were to simply keep an array of tokens and map

positions to indices into the array, then as the stream is edited and tokens are shifted around,

indices would no longer point to the same token. In some cases we may be able to update

the mapping as we edit the stream, but that approach quickly becomes brittle and hard to

reason about.

In order to avoid this complication, and also to satisfy our requirement of supporting

local edits to the token stream, it is necessary to carefully consider the data structure we

will use to represent the token stream. A natural choice is a doubly linked list. The values

in our table can be references to individual nodes in the list, which will remain valid even

as their positions within the list change. Also, since each node contains a reference to its

predecessor and successor within the list, we can cheaply support edits like removing a

sequence of tokens, or inserting a sequence of tokens before or after a particular token.

A common operation when implementing refactorings is to copy an AST node. Since

this approach associates mutable state (a portion of the token stream) with each node, it’s

not enough to simply copy the node; the corresponding token stream fragment should be

also be copied, and the copy associated with the newly copied node, in order to ensure that

we can clearly distinguish the original from the copy and manipulate them independently.

This is the motivation for including the copy operation in the Transformer interface shown

in Figure 4.2.

That suffices for correlating the token stream with the AST of the original source text,

but we need to be able to maintain this mapping as the token stream is edited, code is moved

around or copied, and new code is synthesized.

44

4.4. Dealing with freshly synthesized code

4.4 Dealing with freshly synthesized code

It is common for refactorings to insert new code into the program which wasn’t present in

the original source text. For example, in the case of extract method, a new function call is

synthesized to replace the extracted statements, a new function is synthesized to hold them,

and that new function might also contain some synthetic statements like global variable

declarations to ensure semantics are preserved. These pose a problem since there is no

original text to tokenize in this case.

The natural intuition is to somehow leverage the output of the pretty printer to recover

some text that we may integrate into the token stream. If we simply pretty print the new

AST, we get a program fragment as a string that we can then feed to the lexer. However,

since these synthetic AST nodes don’t have position information, we can’t easily associate

nodes with their portion of the token stream. We can associate the top-level tree with the

entire fragment, but subtrees pose a problem.

One way to deal with this would be to pretty print the new AST to recover the program

text, then parse the text again to get back an AST that has position information, and then

proceed as before. This is viable, but it implies that all new nodes would have to be synthe-

sized through the tree transformation API – nodes that are synthesized by the caller directly

couldn’t be used, since they wouldn’t have the necessary position information.

In the interest of keeping the API surface small, we instead implement a tokenizing

pretty printer, which is a version of the pretty printer that emits sequences of tokens instead

of entire strings. This can be implemented as a straightforward recursive traversal of the

AST; for each node, we synthesize a sequence of tokens, and at the same time associate

that sequence with the node for later use.

4.5 Putting it all together

Given a program P, the lexer produces a stream S of tokens t1, . . . , tn. For a given token

ti in S, we write text(ti) for the token’s text content, startpos(ti) for the token’s starting

position, and endpos(ti) for the token’s ending position. Given the same P, the parser

produces an AST T . For each AST node n in T , we overload our previous definitions

45

Layout-Preserving Refactorings

and write startpos(n) for the node’s starting position, and endpos(n) for the node’s ending

position, which are the same as the starting and ending positions of the first and last tokens

corresponding to n, respectively. We take all of these as inputs; these are conventionally

provided by a typical lexer and parser.

We start by creating a doubly linked list L with a node for each token in the token

stream. We write head(L) and tail(L) for the head and tail nodes of L, respectively. Given

a node n, we write token(n) for the token associated with n, prev(n) for its predecessor

node in L, and next(n) for its successor node in L. We then define a mapping P from

source positions to nodes in L; for each node n in L, we map both startpos(token(n)) and

endpos(token(n)) to n.

A token stream fragment f = 〈start(f),end(f)〉 is a pair of nodes in L: a starting node

start(f) and an ending node end(f). Given an AST node n in T , we ultimately need

to be able to retrieve (or synthesize) a corresponding token stream fragment. For a node

n occurring in the original AST produced by the parser, the corresponding token stream

fragment is 〈P[startpos(n)],P[endpos(n)]〉, but as alluded to in the previous sections, this

won’t be accurate when dealing with synthetic nodes, or copies of nodes. To handle these,

we allow a node’s token stream fragment to be set explicitly, skipping the lookup in P.

This facility is used by the tokenizing pretty printer, and in the implementation of the copy

operation. We write f ragment(n) to retrieve the token stream fragment associated with

node n, if any.

Now when it comes to getting at a token stream fragment corresponding to a given AST

node n, we distinguish between the following cases.

1. n is a node from the original program, existing in the original AST produced by the

parser. In that case, the corresponding fragment is just 〈P[startpos(n)],P[endpos(n)]〉.

2. n is a synthetic node we’re seeing for the first time. In that case, we invoke the

tokenizing pretty printer on n, which will output another doubly linked list L′. Now

the corresponding fragment is 〈head(L′), tail(L′)〉.

3. n is a synthetic node we’ve seen before. In that case, the corresponding fragment is

f ragment(n).

46

4.6. Heuristics for handling indentation and comments

4. n is a copy of another node. In this case, the corresponding fragment is again

f ragment(n).

4.6 Heuristics for handling indentation and comments

Our approach of correlating AST nodes with fragments of the original program text and

performing local edits to the token stream lets us easily preserve the layout of the unaffected

portions of the code, as well as the internal layout of the affected portions. However, care

must still be taken when dealing with code at the boundary between affected and unaffected.

For instance, when inserting a statement in the body of a deeply nested control structure,

we should pick an appropriate amount of indentation to match the surrounding code – but

the program indentation might be inconsistent, or there might not be any surrounding code

in a particular file. Statements can also have comments associated with them, and ideally

these should be moved alongside their subjects – but since comments are largely free-form,

there is no easy way to identify which comments are associated with a given statement. In

both cases, we rely on heuristics to try and do something sensible.

4.6.1 Indentation

When moving statements or functions, we attempt to match the surrounding indentation.

Given a simple statement node n, we compute its indentation level by taking start(f ragment(n))

and searching backwards along its predecessor nodes until a non-whitespace or newline to-

ken t is reached. Then the token stream fragment corresponding to the indentation is

〈next(t), prev(start(f ragment(n)))〉 (which is possibly empty). For a multiline construct

like a function or a loop, we compute the indentation of each line and take the common

prefix. When inserting a node, we try to guess the appropriate amount of indentation to

insert by applying the following heuristic.

1. Special case: if we’re inserting a statement between two semicolon or comma sepa-

rated statements on the same line, then there’s no indentation to add.

2. Otherwise, look for a predecessor or successor AST node and copy its indentation.

47

Layout-Preserving Refactorings

function_call() % This comment spans multiple lines

another_call() % and lies adjacent to many statements

some_core_code() % but should be considered associated with

% the first function call.

Figure 4.4 An illustration of wacky commenting practices.

3. Otherwise, look for a statement or function list elsewhere in the file, and copy the

indentation of the first node there.

4. Otherwise, there is nothing to go on – a more sophisticated approach might inspect

different files in the project, but each token stream is tied to a single file – so we fall

back to an arbitrary (potentially configurable) default of four spaces.

4.6.2 Comments

In order to represent an association between a comment and a language construct, we sim-

ply extend the token stream fragment associated with the construct to include the comment.

Note that this implies the portion of the program text including the construct and the com-

ment must be contiguous, which might be problematic; for example, consider the (artificial)

case in Figure 4.4, where multiple aligned inline comments are meant to be associated with

the first statement. We choose not to handle such cases; at the least, it would dispropor-

tionately complicate the implementation, as each node might have several disparate token

stream fragments associated with it.

Comments can be associated with any kind of language construct, including functions,

scripts, classes, methods, statements and even individual expressions. Comments associ-

ated with a node are also implicitly associated with its ancestor nodes, so that, for instance,

moving a function call also moves any comments associated with its arguments. In each

case, when an operation is performed on a node, we inspect the surrounding code to gather

any associated comments. Given a node, our heuristic is as follows.

1. For a statement or an expression, we include the trailing inline comment, if any.

Given the node n, we take end(f ragment(n)), which is a node in L, and search

forwards along its successor nodes, skipping over any space or tab (but not newline)

48

4.7. Niggling details: delimiters, parentheses

tokens. If we reach a comment, which the lexer will have grouped into a single token

t, we replace end(f ragment(n)) by t. Otherwise we’ll reach either a newline, the end

of the file, or some other text token, in which case we stop.

2. For all nodes, we also include any preceding line comments. Given a node n, we take

start(f ragment(n)), which is a node in L, and search backwards along its predeces-

sor nodes, skipping any whitespace tokens, including newline tokens. For each line

comment token t we encounter, we replace start(f ragment(n)) by t and continue,

stopping only when we encounter a text token, or the start of the file.

4.7 Niggling details: delimiters, parentheses

In addition to moving existing pieces of code around and dealing with newly created code,

in some cases the transformation engine also needs to synthesize new code.

Various MATLAB language constructs are represented in the AST by delimited lists. For

instance, function bodies are newline or semicolon delimited lists of statements, function

definitions contain comma-delimited lists of input and output parameter names, and array

accesses or function calls contain comma or space delimited lists of arguments. Since these

delimiters are purely syntactic, they are not represented in the AST. As such, in order to

support manipulating delimited lists, the transformation engine needs to transparently deal

with delimiters. For example, adding a second argument to a function call – represented

in code by adding an expression node to a list of expressions – requires inserting a comma

before the text corresponding to the expression. Similarly, removing an argument requires

removing the corresponding comma.

Since the Transformer API takes all parameters as ASTNode<?>, the root of the AST

node class hierarchy, it doesn’t necessarily know which delimiters to use. One way to ad-

dress this would be to have the Transformer API expose different operations to manipulate

statement lists, argument lists, and parameter lists, but that would entail a much larger API

surface – a disportionate cost for what should be a minor concern. Instead, the transforma-

tion engine handles this by inspecting the AST fragments handed to the insert and remove

operations. By inspecting the structure of the AST and performing some runtime checks to

49

Layout-Preserving Refactorings

private boolean isInputParamList(ASTNode<?> node) {

return node.getParent() instanceof Function &&

((Function) node.getParent()).getInputParams() == node;

}

Figure 4.5 Using runtime checks and AST traversal to examine the context.

x = 1 + 2

y = x * x
y = (1 + 2) * (1 + 2);

Figure 4.6 An example illustrating the need for synthesized parentheses.

determine the context we’re operating in, we can distinguish between the different cases we

need to handle. For example, Figure 4.5 shows a small method we can use to tell whether

an arbitrary AST node actually represents the input parameter list of a function; in that

case, we would know to use commas as delimiters, and also to surround the list with square

brackets as needed.

Another case where the transformation engine may need to synthesize extra code is

the preservation of operator precedence. Figure 4.6 shows a motivating example – if we

want to inline the x variable, the expression on the right hand side needs to be wrapped in

parentheses. This should ideally be transparent to the calling code, where this should be

simply a call to the replace operation. As a simple heuristic to handle cases like these,

the transformation engine checks during the copy operation whether the copied node is a

binary expression, and wraps it with parentheses if they’re not already there.

4.8 Case studies: inline variable, extract function

The Inline Variable refactoring is relatively simple; it takes an assignment statement as

input, and replaces each use of the assigned variable with the expression on the right hand

side before removing the assignment. Figure 4.7 shows a pre-existing implementation of

this refactoring (skipping over the portions of the code dealing with the correctness of the

transformation), followed by an equivalent implementation against the transformation API.

This comparison shows that the changes required to adapt this refactoring and make it

50

4.8. Case studies: inline variable, extract function

public class InlineVariable extends Refactoring {

private AssignStmt definition;

// constructors, correctness checks, ...

public void apply() {

UseDefDefUseChain udduChain =

definition.getMatlabProgram().analyze().getUseDefDefUseChain();

for (Name name : udduChain.getUses(definition)) {

name.getParent().setChild((Name) name.fullCopy(),

node.getParent().getIndexOfChild(name));

}

definition.getParent().removeChild(

definition.getParent().getIndexOfChild(definition);

}

}

public class InlineVariable extends Refactoring {

private AssignStmt definition;

// constructors, correctness checks, ...

public void apply() {

Transformer transformer = context.getTransformer(definition);

UseDefDefUseChain udduChain =

definition.getMatlabProgram().analyze().getUseDefDefUseChain();

for (Name name : udduChain.getUses(definition)) {

transformer.replace(name.getParent(),

transformer.copy(definition.getRHS()));

}

transformer.remove(definition);

}

}

Figure 4.7 The original implementation of the Inline Variable refactoring using plain AST oper-

ations, and the new implementation against the Transformer API.

layout-preserving are minimal. The resulting code is also arguably clearer, with the low-

level AST manipulation replaced with calls to methods with intention revealing names,

so that these changes are not particularly invasive either; they are the sort of reasonable

transformations a programmer might make while refactoring his code for clarity.

The Extract Function refactoring is slightly more involved. Figure 4.8 shows how the

mechanics of the transformations are implemented against the transformation API. Even

51

Layout-Preserving Refactorings

though the refactoring moves AST nodes around, copies nodes, and mixes in synthetic

code with the original text, the code is completely oblivious to text, instead leaning on the

Transformer to do the heavy lifting.

4.9 Related work

4.9.1 HaRe

The work that most closely resembles ours is HaRe, a refactoring tool for Haskell [Li06].

It uses a similar approach of synchronizing an AST with a token stream; program analyses

are carried out using the AST, but program transformations are carried out on the token

stream alongside the AST, and source positions are used to bridge the two.

Rather than using a tokenizing pretty printer for synthesized code, the output of the

regular pretty printer is used, together with a scheme where the concatenated tokens are

re-lexed to obtain correct positions which are then used to update the position information

of existing AST nodes.

Similar heuristics for associating comments with program structures are also presented.

There are some extra constraints that apply for Haskell programs, as these can be writ-

ten in a layout-sensitive style where indentation is significant, so that care must be taken to

ensure that the new code is behaviorally equivalent to the original after it has gone through

the layout preservation machinery. To address this, an explicit "layout adjustment" algo-

rithm is presented which is run after each refactoring, adding or removing whitespace as

needed to restore the meaning of the input program.

The API exposed by HaRe for carrying out transformations is quite a bit larger than

ours, as each of adding code, removing code and updating existing code is handled by

a family of functions that deal with different AST node types – whereas, as described

in Sec. 4.2, one of our design goals was to minimize the API surface, so that existing

refactorings could be updated to be layout-preserving without much effort expended in

rewriting. This difference might just be a consequence of the underlying differences in

parsing tools and AST representations that our implementations are built on top of.

52

4.9. Related work

public class ExtractFunction extends Refactoring {

private StatementRange extractionRange;

private Function enclosingFunction;

private String extractedFunctionName;

// constructors, correctness checks, ...

// Synthesizes a call to the extracted function. Since there is no

// code to preserve, it doesn’t use the transformation API.

private Stmt makeCallToExtractedFunction() { /* ... */ }

// Determines the extracted function’s input parameters

private List<String> inputVars() { /* ... */ }

// Determines the extracted function’s output parameters

private List<String> outputVars() { /* ... */ }

// Determines the global variables used by the extracted function

private List<String> globalVars() { /* ... */ }

public void apply() {

Transformer transformer = context.getTransformer(enclosingFunction);

Function extracted = new Function(extractedFunctionName);

for (Stmt stmt : extractionRange) {

transformer.insert(extracted.getStmts(), transformer.copy(stmt),

extracted.getNumStmt());

}

extracted.addInputParams(inputVars());

extracted.addOutputParams(outputVars());

for (String var : globalVars()) {

transformer.insert(extracted.getStmts(), new GlobalStmt(var), 0);

}

List<Function> functionList = ((FunctionList)

enclosingFunction.getParent()).getFunctions();

transformer.insert(functionList, extracted,

functionList.getIndexOfChild(enclosingFunction) + 1);

for (int i = 0; i < extractionRange.size(); ++i) {

transformer.remove(extractionRange.getStartStatement());

}

transformer.insert(extractionRange.getEnclosingStatementList(),

makeCallToExtractedFunction(), extractionRange.getStartIndex());

}

Figure 4.8 The implementation of the Extract Function refactoring using the transformer API

53

Layout-Preserving Refactorings

4.9.2 Other approaches

De Jonge and Visser [dJV12] present an algorithm for layout preservation in refactoring

transformations. While the token stream is used to access the layout structure surrounding

a given AST node, it is not modified in parallel with the AST; instead, the source code is

reconstructed afterwards using a combination of the original program text, pretty printed

text, and the application of a tree differencing algorithm to detect insertions and deletions.

An attempt is made to formalize the problem and prove the algorithm correct within that

formalization; by contrast, we are largely describing an implemention.

Waddington and Yao [WY05] tackled the same problem, which they termed "the prob-

lem of style disruption", with Proteus, their refactoring tool for C and C++. Their approach

was to use a specialized AST called a "Literal-Layout AST (LL-AST)", where literals, to-

ken and whitespace nodes are interspersed alongside the regular nodes. Enhancing the AST

with layout information has also been the theme of a few other approaches to this problem

[KLN+09].

The Eclipse JDT contains infrastructure for modifying code at two levels – a lower-level

API for describing text manipulation primitives, and a higher-level AST rewriting API,

which accepts descriptions of changes to AST nodes and uses the text manipulation API to

try and perform the textual changes required to represent the AST changes. The approach is

similar to ours in spirit; one big difference is that since our approach is implemented largely

as a standalone tool, we rely solely on lexing and parsing as primitives, while Eclipse’s

implementation benefits from more sophisticated integration with a scriptable text editor.

54

Chapter 5

Survey of Dynamic Features

MATLAB supports many heavily dynamic features that are problematic for static anal-

ysis, and which at present are either ignored or rejected by different components of the

McLab toolkit. These include

• scripts, which have error prone scoping semantics compared to functions

• arbitrary dynamic code evaluation via eval

• dynamic function calls via feval

• dynamic workspace manipulation either by deleting variables via clear or clearvars

or assigning to them via assignin or evalin

• dynamic workspace inspection via exist, who or whos

• dynamic modification of the function lookup path via cd, path, addpath, rmpath

In this chapter, we examine each of these, giving a brief primer on their semantics

and investigating how frequently they occur, and common patterns in their usage. Similar

invstigations for other dynamic programming languages such as JavaScript [RHBV11] and

Ruby [FhDAF09] have shown that in practice, such dynamic features tend to be used in

very restricted ways which aren’t actually difficult to reason about statically, and we find

that the same holds for MATLAB.

55

Survey of Dynamic Features

5.1 MCBENCH

The following sections present usage metrics for various dynamic features supported by

MATLAB. These were gathered using MCBENCH, a tool that that allows users to perform

structural queries against a large body of MATLAB code1. It works by storing on the filesys-

tem an XML version of each MATLAB file in its corpus – the McLAB toolkit includes a

facility to serialize MATLAB abstract syntax trees as XML (an example is given in listings

Listing 5.1 and Listing 5.2) – and allowing XPath queries against them. XPath turns out

to be quite a useful sort of domain specific language in this context, capable of expressing

many useful queries. MCBENCH also defines a few XPath extension functions and predi-

cates in order to make certain queries more natural. An initial (obsolete) implementation

of MCBENCH is described in more detail in [Rad12].

function f = fro(M)

% calculates the frobenius norm

f = sqrt(sum(sum(M.^2)));

end

Listing 5.1 A simple MATLAB function...

MCBENCH’s corpus of MATLAB code consists of projects downloaded from the MAT-

LAB Central File Exchange, an online repository run by MathWorks where MATLAB pro-

grammers share their code. Of these, we selected the 5000 top rated projects and the

5000 most downloaded projects. After discarding duplicates and programs that couldn’t

be parsed by our MATLAB frontend, we were left with 4099 projects, containing together

24565 functions and 2955 scripts. The projects cover a wide variety of application areas,

and include both library and application code. The projects vary in size from single files to

several hundred; a rough size distribution is given in Table 5.1.

1MCBENCH is accessible at http://mcbench.cs.mcgill.ca.

56

http://mcbench.cs.mcgill.ca

5.1. MCBENCH

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<CompilationUnits id="0">

<FunctionList col="1" fullpath="fro.m" id="1" line="1">

<Function col="1" id="2" line="1">

<Name col="14" id="3" line="1" nameId="fro"/>

<InputParamList>

<Name col="18" id="4" line="1" nameId="M"/>

</InputParamList>

<OutputParamList>

<Name col="10" id="5" line="1" nameId="f"/>

</OutputParamList>

<StmtList>

<AssignStmt col="3" id="6" line="3" outputSuppressed="true">

<NameExpr col="3" id="7" kind="VAR" line="3">

<Name col="3" id="8" line="3" nameId="f"/>

</NameExpr>

<ParameterizedExpr col="7" id="9" line="3">

<NameExpr col="7" id="10" kind="FUN" line="3">

<Name col="7" id="11" line="3" nameId="sqrt"/>

</NameExpr>

<ParameterizedExpr col="12" id="12" line="3">

<NameExpr col="12" id="13" kind="FUN" line="3">

<Name col="12" id="14" line="3" nameId="sum"/>

</NameExpr>

<ParameterizedExpr col="16" id="15" line="3">

<NameExpr col="16" id="16" kind="FUN" line="3">

<Name col="16" id="17" line="3" nameId="sum"/>

</NameExpr>

<EPowExpr col="20" id="18" line="3">

<NameExpr col="20" id="19" kind="VAR" line="3">

<Name col="20" id="20" line="3" nameId="M"/>

</NameExpr>

<IntLiteralExpr col="23" id="21" line="3" value="2"/>

</EPowExpr>

</ParameterizedExpr>

</ParameterizedExpr>

</ParameterizedExpr>

</AssignStmt>

</StmtList>

</Function>

</FunctionList>

</CompilationUnits>

Listing 5.2 ...and its XML serialization.

57

Survey of Dynamic Features

Project size in files Number of projects
Single (1) 2444
Small (2-9) 1371
Medium (10-49) 261
Large (50-99) 17
Very large (100+) 6

Table 5.1 File count per project distribution.

5.2 Scripts

MATLAB scripts are files containing a sequence of statements (as opposed to function def-

initions). Like functions, scripts can be invoked, executing each of their statements in turn;

this is done using the same syntax as for function calls. Unlike functions, however, scripts

don’t execute in their own workspace (or scope); instead, scripts execute directly in their

caller’s workspace, and thus have read and write access to any variables in scope there.

Also, scripts don’t have an explicit parameter-passing mechanism; rather, one can simply

ensure all the required variables exist in the calling workspace.

Within a function, a use of an identifier that isn’t declared in the same file (either as an

input, output, global, persistent, or local variable, or a subfunction or nested function) must

refer to a named function somewhere on MATLAB’s search path. Inside a script, however,

an undeclared identifier could also refer to a variable in the workspace of the script’s caller.

This complicates intraprocedural static analysis for scripts.

As an aside, one surprising consequence of the way scripts are executed is that scripts

almost behave as though they were inlined in the calling code. For example, a script could

contain a break or continue statement, and if that script were invoked inside a loop, then

those statements would apply to that loop.

5.3 eval and variants

The eval function evaluates MATLAB code passed to it as a string. This code is almost

arbitrary, and can have side-effects, such as the creation of new variables, although function

58

5.3. eval and variants

//ParameterizedExpr[is_call(’eval’)]

Listing 5.3 MCBENCH query that finds calls to eval

definitions are not allowed. Calls to eval that occur within anonymous functions, nested

functions, or functions containing nested functions are not allowed to create new variables.

Any outputs from the evaluated code are returned via MATLAB’s variable-length output

argument list mechanism.

eval also permits a two-argument form. Normally, if the evaluation throws an error, it

is silently ignored; if a second argument is passed, then it is evaluated instead in case of

errors. This two-argument form is deprecated and undocumented and can almost always

be replaced by MATLAB’s try ... catch exception handling mechanism. Nevertheless,

it still enjoys some use.

We start by finding all calls to eval using the query from Listing 5.3. (Here is_call

is a MCBENCH-specific XPath extension that leverages kind analysis results to distinguish

function calls from array accesses). This yields 1049 occurrences across 202 projects, or

4.93% of the projects in the corpus. We inspect these to try and distinguish different use

cases.

5.3.1 Manipulating related variables

The most common pattern is to use eval to create or manipulate sets of related variables by

calling it inside a loop, using the loop variable to construct its input argument. An example

is shown in Listing 5.4; here, the effect of the loop is to store values in three arrays, n,

s2, and Z, which are then used later in the code. Rather than assigning to elements of

these arrays, intermediate variables are created via calls to eval, and the arrays are built

up incrementally using array concatenation in the last statement of the loop. The many

intermediate variables created along the way are not referenced again after the loop.

We will call such calls array-like; array-like calls to eval can almost always be refac-

tored to use arrays, cell arrays or structures.

Without some sort of string analysis, it is difficult to nail down exactly how many of the

calls follow this pattern. We estimate the amount by searching for calls to eval that appear

59

Survey of Dynamic Features

%Levene’s Procedure.

n=[];s2=[];Z=[];

indice=Y(:,2);

for i=1:k

Ye=find(indice==i);

eval([’Y’ num2str(i) ’=Y(Ye,1);’]);

eval([’mY’ num2str(i) ’=mean(Y(Ye,1));’]);

eval([’n’ num2str(i) ’=length(Y’ num2str(i) ’) ;’]);

eval([’s2’ num2str(i) ’=(std(Y’ num2str(i) ’).^2) ;’]);

eval([’Z’ num2str(i) ’= abs((Y’ num2str(i) ’) - mY’ num2str(i) ’);’]);

eval([’xn= n’ num2str(i) ’;’]);

eval([’xs2= s2’ num2str(i) ’;’]);

eval([’x= Z’ num2str(i) ’;’]);

n=[n;xn];s2=[s2;xs2];Z=[Z;x];

end

Listing 5.4 An iterative numerical procedure implemented using repeated calls to eval instead

of arrays.

inside a for-loop, and that have as descendents either calls to num2str or int2str where

the argument is the loop variable, or calls to sprintf where the loop variable appears

somewhere. This is difficult to express in XPath, so we cheat a little by introducing an

extension function called loopvars(), which computes the set of loop variable names in

the current context by walking up the AST, finding for statements and inspecting their

header. The resulting query is given in Listing 5.5, reports 300 occurrences across 33

benchmarks, or nearly a third of all calls to eval.

This is an underestimate, since the query only matches calls where the argument string

is constructed syntactically inside the argument list; for instance, the query won’t match

calls where the string interpolation is hidden behind a function call, or if the call is of the

form eval(s) where s was previously defined according to our criteria. It may be possible

to annotate the XML form of the AST with enough semantic information (for instance, UD

chains) to enable more sophisticated queries.

5.3.2 Restricted calls to eval

As mentioned, calls to eval ocurring within anonymous functions, nested functions, or

functions containing nested functions are not allowed to create variables. Such calls turn

60

5.3. eval and variants

//ParameterizedExpr[is_call(’eval’) and

count(.//ParameterizedExpr[

(is_call(’num2str’, ’int2str’) and arg(1)/Name/@nameId=loopvars()) or

(is_call(’sprintf’) and .//Name/@nameId=loopvars())

]) > 0]

Listing 5.5 MCBENCH query that estimates calls to eval that use the loop index

//ParameterizedExpr[is_call(’eval’) and (

ancestor::LambdaExpr or

count(ancestor::Function) > 1 or

(count(ancestor::Function) = 1 and ancestor::Function//Function)

)]

Listing 5.6 MCBENCH query that matches calls to eval occuring within anonymous functions,

nested functions, or functions containing nested functions

out to be relatively uncommon, occurring 31 times across 18 benchmarks. The relevant

query is given in Listing 5.6.

5.3.3 Two-argument form

We find only 19 occurrences of eval’s two-argument form, across 7 benchmarks. The

second argument is always a string literal, and contains typical error-case code like breaking

out of a loop, or setting a flag variable indicating an error occurred, or printing an error

message.

In one case, this is used to distinguish between MATLAB versions; the first argument

is a string literal containing a call to a builtin function, but with a signature valid only for

MATLAB 6.0 or later.

5.3.4 evalc

The evalc function behaves similarly to eval, but also captures any command window

output from the evaluation and returns it as a character array as an additional output argu-

ment.

61

Survey of Dynamic Features

//ParameterizedExpr[is_call(’feval’) and (

name(arg(1))=’StringLiteralExpr’ or

name(arg(1))=’FunctionHandleExpr’

)]

Listing 5.7 MCBENCH query that matches superfluous calls to feval

MCBENCH only found twelve calls to evalc. Of these, five are passed string literals.

Four ignore the return value, the only feature distinguishing evalc from eval. In one

case the output is captured and immediately passed to fprintf. The one legitimate use

involves capturing and parsing the output of the MATLAB built-in dbtype function, which

only displays its output instead of returning it.

5.3.5 feval

The feval function takes a function — either a function handle or a name as a string — and

a variable number of arguments, and evaluates that function on those arguments, returning

whatever the function returns.

We find 457 calls to feval across 136 benchmarks. At a glance, many of these bench-

marks are concerned with solvers or optimization problems, which are a natural fit for

feval, allowing callers to pass in arbitrary functions.

If the first argument is a string literal, or a function handle expression, then the call to

feval is completely superfluous. We find 12 such calls, across 5 benchmarks. The relevant

query is given in Listing 5.7.

5.4 Workspace manipulation

In MATLAB, workspaces (i.e. scopes) store the values of variables. There is a base

workspace on which REPL commands operate, along with a workspace for each func-

tion call (analogous to a stack frame). MATLAB supports dynamically manipulating these

workspaces via the builtin functions clear, clearvars, evalin, and assignin.

62

5.4. Workspace manipulation

5.4.1 evalin and assignin

The evalin function behaves similarly to eval, but takes an extra parameter indicating

the workspace in which the evaluation should happen. This parameter can be ’base’,

indicating the MATLAB base workspace, or ’caller’, indicating the workspace of the

caller function. assignin is a restricted version of evalin; rather than support arbitrary

code execution, the function takes a variable name as a string and a value, together with

a workspace to operate on — again either ’base’ or ’caller’ — and assigns the given

value to the given variable in the given workspace.

We find 169 calls to evalin across 58 benchmarks. Of these, 124 operate on the base

workspace, and 43 operate on the caller workspace. (Of the two remaining calls, one takes

the workspace to operate on as a function parameter, and the other seems to contain an

error — the first argument is a reference to a variable which isn’t defined anywhere). For

assignin, we find 176 calls across 52 benchmarks, 167 operating on the base workspace,

and only 9 on the caller workspace. We notice among these a few patterns, but no one

majority case.

• Operating on the base workspace is sometimes used in lieu of global variables, or in

lieu of explicit function parameters.

• Another pattern is that of the "setup function"; a function that creates a few variables

in the base or caller workspace, making them available to be used at the MATLAB

command window.

• It seems common for libraries providing programming utilities to operate on the

caller’s workspace. For instance, a common pattern in MATLAB functions is to use

the nargin or exist builtin functions to tell whether a particular input parameter was

passed, and to fall back to a default value if not. One library function encapsulates

this logic, using evalin to carry it out in the caller’s workspace given a parameter

name and default value. Another library provides a function called keep as a coun-

terpart to the clear statement; where clear removes the given variables from the

workspace, keep removes all but the given variables from the workspace. keep is

63

Survey of Dynamic Features

implemented by scanning the caller’s workspace via evalin, then constructing an

invocation of the clear statement to be evaluated in the caller’s workspace.

5.4.2 clear and clearvars

The clear function is used to remove items from the current workspace, and providing

they’re not declared global, freeing them from memory. When called with no arguments, it

removes all variables from the workspace. Alternatively, it can be passed a variable number

of variable names or regular expressions matching variables names to remove. Finally, it

also recognizes some special parameters that refer to types of names of clear, such as ’all’,

’classes’, or ’global’. clearvars is similar but has even more options to control which

names to remove.

We find 1236 calls to clear across 386 benchmarks, and only 13 calls to clearvars.

Of the calls to clear, only one uses the no argument form, and only one uses the regular

expression facility. 103 calls use the clear all form. The rest explicitly pass in a sequence

of variable names to remove.

These results seem slightly implausible, since a very common pattern is for MAT-

LAB scripts to begin by clearing the workspace. This discrepancy is caused by imprecise

kind analysis results for scripts [DHR]. Since scripts execute in the context of the call-

ing workspace, the conservative approach is to assume that any given identifier potentially

refers to a variable from the outer scope, rather than a builtin or library function. Because

of this, calls to clear inside scripts aren’t identified as such, and are assumed to be possible

variable references. It may be possible to devise a more sophisticated interprocedural kind

analysis that considers the possible workspaces that a script may execute in, but this would

be difficult (because for instance, computing a call graph for MATLAB is difficult).

Since the difference is significant here, we also consider possible references to variables

called clear occurring inside scripts. The relevant query is given in Listing 5.8. This yields

950 occurrences across 346 benchmarks. Of these, 26 use the no-argument form, and 682

use the clear all form.

64

5.5. Introspection

//ParameterizedExpr[

name(target())=’NameExpr’ and

target()/Name/@nameId=’clear’ and

target()/@kind=’LDVAR’ and

ancestor::Script

]

Listing 5.8 MCBENCH query that matches possible calls to clear

5.5 Introspection

MATLAB supports dynamic introspection via the exist, who and whos functions.

5.5.1 exist

The former takes an identifier as a string and checks whether it exists, and if so what

its kind is – variable, path, MEX-file, Simulink model, builtin, protected function file,

folder or class. A name might exist with more than one kind, in which case MATLAB’s

documentation specifies a largely arbitrary order of evaluation that determines which kind

is returned. The function also permits a two-argument form, where the second argument is

a string specifying which kind to check – either ’builtin’, ’class’, ’dir’, ’file’, or

’var’.

We find 1177 calls to exist across 377 benchmarks. Of these, 939 are passed a string

literal as the first argument, 241 use the one-argument form, and 936 use the two-argument

form. With the two-argument form, the second argument is always a string literal; ’var’

in 657 cases, ’file’ in 220 cases, ’dir’ in 51 cases, and ’class’ and ’builtin’ in 4

cases each.

A common pattern is to check for the existence of certain input arguments. MATLAB

allows a function to be called with fewer arguments than are specified in the function’s

parameter list; in this way, some parameters can be made optional. We can check for this

kind of use by finding calls to ’exist’ where the first parameter is a string literal whose

value is equal to the name of one in the input parameters. The relevant query is given in

listing Listing 5.9. We find that 481 calls, across 167 benchmarks, are of this form, which

65

Survey of Dynamic Features

//ParameterizedExpr[is_call(’exist’) and

arg(1)/@value = ancestor::Function/InputParamList/Name/@nameId

]

Listing 5.9 MCBENCH query that matches calls to exist that check for the existence of input

parameters

shouldn’t be too hard for an interprocedural analysis (assuming we can resolve the call

graph difficulty to begin with) to reason about statically. It would be possible to rewrite

calls of this form to simple comparisons against nargin, a builtin MATLAB function that

returns the number of input parameters passed in to the caller’s enclosing function, but it’s

not clear that this would be worthwhile, or easier to deal with in any significant way.

5.5.2 who and whos

The who function can be used to list variables, either in the current workspace, a given m-

file, or the global scope. The whos variant behaves similarly but also includes information

about the sizes and types of each variable. These functions are useful during interactive

development at the command prompt, but, perhaps unsurprisingly, they turn out not to be

as popular inside functions and scripts, with only 4 calls to the former and 23 to the latter.

5.6 Lookup path modification

When the MATLAB runtime needs to look up a function or script, it searches first the current

directory the process is executing in, then the MATLAB search path, a set of directories

containing MATLAB code. Both of these can be modified dynamically at runtime; the

cd function changes the current directory, and the path, addpath and rmpath functions

can be used to modify the search path. Use of these functions can complicate call graph

construction; the state of the filesystem must be taken into account somehow.

The cd function changes the current directory. It takes a single string argument rep-

resenting the new directory; this can be an absolute or relative path, possibly containing

symbolic .. or . notation, denoting a parent directory or a current directory, respectively.

cd can also be invoked without arguments. If the call site includes an output argument, then

66

5.6. Lookup path modification

cd returns the absolute path to the present working directory as a string. If not, it writes the

path to standard output.

We find 187 calls to cd across 64 benchmarks. Most often, cd is used to get at data that

the program depends on; the working directory is changed to a data folder, and functions

such as load or textread are then used to read in the data, passing in only the file name,

without any leading directory names. In many cases, cd is called again immediately after

loading the data, so as to restore the original working directory. Rather than carrying out

this sort of dance, it would be preferable to load the required data using a path relative to

the starting working directory.

The addpath function can be used to insert directories either at the start or end of

the MATLAB search path. It takes a variable number of strings as arguments, optionally

followed by the string ’-begin’ or ’-end’, denoting whether to insert the directories at

the start or end of the path. The default behavior is to add them at the start. It returns the

old path.

The rmpath function removes a directory from the search path. It takes a single string

argument and returns nothing.

The path function is more powerful; it can be used to add paths to the start or end of the

search path, but it can also be passed a string array representing a list of folders to replace

the search path entirely. It returns the old path. This function can also be used to read the

path, without modifying it.

Finally, there also exists a restoredefaultpath function that discards any modifica-

tions to the search path, and a savepath function that persists any modifications to the

search path to be used by future MATLAB sessions.

We find 20 calls to addpath across 16 benchmarks, 4 calls to rmpath across 4 bench-

marks, 31 calls to path across 15 benchmarks – 18 of which use the two-argument form

equivalent to addpath, and 13 the one-argument form replacing the path. We find no calls

to restoredefaultpath or savepath.

67

Survey of Dynamic Features

5.7 Motivation for eliminating uses of dynamic features

While dynamic features are very powerful, for instance enabling metaprogramming tech-

niques that aren’t otherwise possible, they also have many drawbacks.

5.7.1 Impact on static analysis and program comprehension

Compilers and related tools rely on various static analyses to estimate the runtime behavior

of programs. Such analyses are typically conservative, preferring to deduce weaker prop-

erties that are guaranteed to always hold for all inputs over stronger properties that might

not always hold, even if the latter would be more useful. This ensures the soundness of any

ensuing program transformations (such as optimizations) predicated on those analyses.

Highly dynamic features tend to confuse traditional static analysis techniques. For ex-

ample, a call to eval can have nearly arbitrary side effects. Without knowing the exact

values passed as arguments – information which is rarely knowable statically – encoun-

tering a call to eval forces a conservative analysis to invalidate all the knowledge it has

gathered thus far and fall back on safe assumptions. As clients consume the analysis infor-

mation, this imprecision leads to missed optimization opportunities in compilers, crippled

code navigation features in IDEs, and spurious warnings in static analyzers, among others.

eval is an easy example to pick on, being the most general and powerful dynamic con-

struct, but other dynamic features also lead to imprecision. Changing the function lookup

path obsoletes static information gathered about the call graph. Reaching into another

function’s workspace and assigning to a variable invalidates information about identifier

lookup, making it hard to distinguish between array accesses and function calls. Loading

data via calls to the load function complicates reasoning about the shapes of arrays.

5.7.2 Performance

One of the main observations of this section is that many uses of dynamic features are

completely superfluous, and could be equivalently written using simpler, less powerful

constructs of the language. In those cases, it makes sense to consider the performance

characteristics of the two approaches.

68

5.8. Related work

As an example, one of the principal patterns identified concerns using repeated calls

to the eval family of functions in a loop in lieu of using arrays. The code in Listing 5.4

calls eval, invoking the full machinery of the interpreter, no fewer than eight times per loop

iteration, even though each of these could be replaced by two or three array operations. This

has a huge impact on performance. As a preliminary test, we manually replaced each call

to eval in that benchmark with equivalent code using arrays. The transformed benchmark

achieved a 56x speedup over the original.

Beyond interpreter overhead, code that restricts itself to features that are easier to rea-

son about statically is apt to be better understood by compilers, which rely on sophisti-

cated static analysis to identify candidates for optimization. This is not irrelevant; several

MATLAB compilers exist, and recent versions of the proprietary MATLAB implementation

include a JIT compiler.

5.8 Related work

5.8.1 Dynamic feature survey

This study is inspired in part by Furr et al.’s work on profile-guided static typing for Ruby

[FhDAF09], where one of the major insights was that although highly dynamic semantics

can theoretically lead to code which is hard to reason about, dynamic features tend to be

used is much more restricted ways in practice. Similar studies done for JavaScript by

Ratanaworabhan et al. [RLZ10] and Richards et al. [RHBV11, RLBV10] have reached

similar conclusions. Because JavaScript is so ubiquitous on the web, one can instrument

a web browser and visit popular web pages to obtain all sorts of dynamic metrics. The

same is unfortunately not true in our case; although we have easy access to a large body of

MATLAB code, it is not trivial in general to determine how to execute it, which is why we

had to restrict ourselves to static metrics.

69

Survey of Dynamic Features

5.8.2 Dynamic feature elimination

Furr et al. [FhDAF09] present a dynamic profiling approach to eliminate uses of Ruby’s

dynamic features like eval, send and method_missing, with the aim is making code more

amenable to static analysis. They use a profiling run to gather information at each dynamic

use site, for instance the actual arguments passed to eval, or the actual missing methods

for which method_missing was invoked, and use this to replace the usage sites with spe-

cialized code for each observed argument (along with runtime checks to emit warnings in

case the arguments used don’t conform to the profiling run).

In the wake of the abovementioned studies conducted by Richards et al. [RLBV10,

RHBV11], there has been some work on eliminating uses of eval in JavaScript. The

common thread is exploiting patterns in the way eval tends to be used, be it for parsing

JSON strings, executing third party code, or accessing or modifying object properties with

computed names.

Jensen et al.’s Unevalizer tool [JJM12] integrates a refactoring component with a static

whole-program value dataflow analysis. When the analysis detects dataflow into a possible

call to eval, it triggers the refactoring component, passing in all the information it has

gathered so far about the values of variables. Guided by knowledge of common patterns,

the refactoring component attempts to replace the code with a static equivalent if possible.

If so, the analysis resumes until all calls to eval are eliminated; if not, the tool aborts with

an error. Their approach enjoys moderate success, but is hindered by the imprecision of

their static analysis in various cases.

Meawad et al.’s [MRMV12] Evalorizer tool instruments all calls to eval, intercepting

and logging all the strings passed at each call site. For each particular call site, each ar-

gument string is taken to be valid JavaScript and parsed into an AST. The different ASTs

are then merged together and generalized in different ways in order to construct a "recog-

nizer" tree associated with that call site, which is then used to generate patches containing

replacement code. The replacement code contains a runtime guard clause checking that the

passed in argument matches the pattern observed for this call site – this can be done with a

regular expression in most cases. If it does, then safer but equivalent code is run; if not, a

fallback case contains the original call to eval (or optionally an exception, if the tool is so

70

5.8. Related work

configured). This approach turns out to be fruitful, and the patched code runs with minimal

performance overhead.

71

Survey of Dynamic Features

72

Chapter 6

Conclusions and Future Work

This thesis introduced McIDE, a MATLAB IDE powered by the McLAB compiler

toolkit, and with a focus on powering features through exploiting runtime information

rather than relying solely on static analysis. We provided an overview of McIDE’s design,

which consists of largely independent components wired together through a thin browser-

based graphical interface. We described our dynamic call graph collection mechanism, and

the analyses and optimizations we implemented to minimize the performance overhead of

the instrumented code. We presented a technique for performing code transformations in a

layout-preserving fashion, which allows McIDE to provide some usable automated refac-

torings out of the box, and future refactoring implementers to reuse the transformation

infrastructure to do the same. Finally, we described MATLAB’s dynamic features in detail

and presented a study of their usage in the wild.

6.1 Future Work

We present here some ideas for possible further work for the continued development of

McIDE. The common thread is finding more useful ways to exploit runtime information.

Dynamic feature elimination The dynamic feature survey we conducted pointed to a few

patterns where dynamic code could easily be rewritten using more static analysis

friendly constructs. It may be hard to do this in general, but one could tackle the

73

Conclusions and Future Work

problem of replacing the array-like uses of eval with straightforward loops, or elim-

inating uses of cd where the aim is only to refer to data to be loaded from the filesys-

tem.

Making code more ameanable to static analysis would also make it more suitable

as input to static backends of the McLAB toolkit, which operate on the MATLAB

subset supported by the MATLAB Tamer, which rules out features like eval. If static

compilation is a goal for the user, then more work is this vein could help compatibility

along.

Dynamic code visualizations IDEs are in a position to provide alternate perspectives on

the code beyond the traditional file explorer view, and runtime information could be

particularly useful in this setting.

As low hanging fruit, the call graph information described in this thesis could be used

to show execution stack traces as a tree and enable jumping directly to any function

invoked along the way.

Relevant runtime information could be overlaid onto source code in order to aid pro-

gram understanding – expressions could be annotated with runtime types (or even

values), perhaps via tooltips or comments introduced into the code if requested; lines

of code could be annotated with timing information, for instance by coloring bot-

tlenecks differently as to make them stand out; the profiling machinery could work

backwards from errors in the execution to highlight the problematic code paths.

74

Bibliography

[AL12] Karim Ali and Ondřej Lhoták. Application-only call graph construction. In

Proceedings of the 26th European Conference on Object-Oriented Program-

ming, Beijing, China, 2012, ECOOP’12, pages 688–712. Springer-Verlag,

Berlin, Heidelberg.

[CLD+10] Andrew Casey, Jun Li, Jesse Doherty, Maxime Chevalier-Boisvert, To-

heed Aslam, Anton Dubrau, Nurudeen Lameed, Amina Aslam, Rahul Garg,

Soroush Radpour, Olivier Savary Belanger, Laurie Hendren, and Clark Ver-

brugge. Mclab: an extensible compiler toolkit for matlab and related lan-

guages. In Proceedings of the Third C* Conference on Computer Science

and Software Engineering, MontrÃ c©al, Quebec, Canada, 2010, C3S2E ’10,

pages 114–117. ACM, New York, NY, USA.

[DGL06] Marcus Denker, Orla Greevy, and Michele Lanza. Higher abstractions for dy-

namic analysis. In In 2nd International Workshop on Program Comprehension

through Dynamic Analysis (PCODA 2006), 2006, pages 32–38.

[DH12] Anton Willy Dubrau and Laurie Jane Hendren. Taming MATLAB. In

Proceedings of the ACM international conference on Object oriented pro-

gramming systems languages and applications, Tucson, Arizona, USA, 2012,

OOPSLA ’12, pages 503–522. ACM, New York, NY, USA.

75

http://doi.acm.org/10.1145/1822327.1822343

Bibliography

[DHR] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind analysis for MAT-

LAB. In Proceedings of the 2011 ACM International Conference on Object

Oriented Programming Systems Languages and Applications, OOPSLA ’11,

pages 99–118. ACM.

[dJV12] Maartje de Jonge and Eelco Visser. An algorithm for layout preservation in

refactoring transformations. In Anthony Sloane and Uwe Aßmann, editors,

Software Language Engineering, volume 6940 of Lecture Notes in Computer

Science, pages 40–59. Springer Berlin Heidelberg, 2012.

[FhDAF09] Michael Furr, Jong hoon (David) An, and Jeffrey S. Foster. Profile-guided

static typing for dynamic scripting languages. In OOPSLA, 2009, pages 283–

300.

[FSS+13] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip.

Efficient construction of approximate call graphs for JavaScript IDE services.

In Proceedings of the 2013 International Conference on Software Engineer-

ing, San Francisco, CA, USA, 2013, ICSE ’13, pages 752–761. IEEE Press,

Piscataway, NJ, USA.

[JJM12] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the

eval that men do. In Proc. 21st International Symposium on Software Testing

and Analysis (ISSTA), July 2012.

[KLN+09] Róbert Kitlei, László Lövei, Tamás Nagy, Zoltán Horváth, and Tamás Kozsik.

Layout preserving parser for refactoring in Erlang. Acta Electrotechnica et

Informatica, 9(3):54–63, July 2009.

[LH13] Nurudeen A. Lameed and Laurie J. Hendren. Optimizing MATLAB feval

with dynamic techniques. In Proceedings of the 9th Symposium on Dynamic

Languages, Indianapolis, Indiana, USA, 2013, DLS ’13, pages 85–96. ACM,

New York, NY, USA.

[Li06] Huiqing Li. Refactoring Haskell Programs. PhD thesis, University of Kent,

2006.

76

Bibliography

[MRMV12] Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. Eval be-

gone!: Semi-automated removal of eval from JavaScript programs. In Pro-

ceedings of the ACM International Conference on Object Oriented Program-

ming Systems Languages and Applications, Tucson, Arizona, USA, 2012,

OOPSLA ’12, pages 607–620. ACM, New York, NY, USA.

[Rad12] Soroush Radpour. Understanding and refactoring the MATLAB language.

Master’s thesis, August 2012.

[RHBV11] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that

men do: A large-scale study of the use of eval in JavaScript applications.

In Preceedings of the 25th European Conference on Object-oriented Pro-

gramming, Lancaster, UK, 2011, ECOOP’11, pages 52–78. Springer-Verlag,

Berlin, Heidelberg.

[RLBV10] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analy-

sis of the dynamic behavior of JavaScript programs. In Proceedings of the

2010 ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, Toronto, Ontario, Canada, 2010, PLDI ’10, pages 1–12. ACM,

New York, NY, USA.

[RLZ10] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JSMeter:

Comparing the behavior of JavaScript benchmarks with real web applications.

In Proceedings of the 2010 USENIX Conference on Web Application Devel-

opment, Boston, MA, 2010, WebApps’10, pages 3–3. USENIX Association,

Berkeley, CA, USA.

[WR13] Shiyi Wei and Barbara G. Ryder. Practical blended taint analysis for

JavaScript. In Proceedings of the 2013 International Symposium on Soft-

ware Testing and Analysis, Lugano, Switzerland, 2013, ISSTA 2013, pages

336–346. ACM, New York, NY, USA.

[WY05] Daniel G Waddington and Bin Yao. High-fidelity C/C++ code transformation.

Electronic Notes in Theoretical Computer Science, 141(4):35–36, 2005.

77

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Thesis outline

	Background and Overview
	McLab toolkit
	Overall design
	Syntax checking and static analysis
	Refactoring
	Matlab shell
	Profiling

	Dynamic Call Graph Construction
	Matlab features complicating static call graph computation
	Call graph tracing instrumentation
	Dealing with builtin and library functions
	Instrumentation performance overhead
	Benchmarks
	Results

	Minimizing overhead
	Handle propagation analysis
	Application of handle propagation analysis

	Avoiding builtin call instrumentation
	Checking type of function arguments at runtime
	Optimized runtime functions

	Related work

	Layout-Preserving Refactorings
	Motivation
	The transformation API
	Synchronizing ASTs and token streams
	Dealing with freshly synthesized code
	Putting it all together
	Heuristics for handling indentation and comments
	Indentation
	Comments

	Niggling details: delimiters, parentheses
	Case studies: inline variable, extract function
	Related work
	HaRe
	Other approaches

	Survey of Dynamic Features
	McBench
	Scripts
	eval and variants
	Manipulating related variables
	Restricted calls to eval
	Two-argument form
	evalc
	feval

	Workspace manipulation
	evalin and assignin
	clear and clearvars

	Introspection
	exist
	who and whos

	Lookup path modification
	Motivation for eliminating uses of dynamic features
	Impact on static analysis and program comprehension
	Performance

	Related work
	Dynamic feature survey
	Dynamic feature elimination

	Conclusions and Future Work
	Future Work

	Bibliography

