
MCSAF: AN EXTENSIBLE STATIC ANALYSIS FRAMEWORK FOR
THE MATLAB LANGUAGE

by

Jesse Doherty

School of Computer Science

McGill University, Montŕeal

August 2011

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright c© 2011 Jesse Doherty

Abstract

MATLAB R© is a popular language for scientific and numerical programming. Despite its

popularity, there are few active projects providing open tools for MATLAB related compiler

research. This thesis provides theMcL AB Static Analysis Framework,McSAF, the goal of

which is to simplify the development of new compiler tools for MATLAB .

TheMcL AB project was started in order to develop such tools in the hopes of attract-

ing further research. The goal of the project is to provide anextensible compiler toolkit for

MATLAB and scientific programming. It is intended to explore the compilation challenges

unique to MATLAB and to explore new language features that could help scientific pro-

grammers be more productive. One piece of functionality that is particularly important for

compiler research is the ability to perform static analysis. Without the information provided

by static analyses, program transformations and optimizations, and automated programmer

feedback would not be possible.

In order to make the development of static analyses simpler,this thesis contributes

a framework for creating static analyses for the MATLAB language. This framework is

intended to make writing analyses easier by providing core functionality and API for de-

veloping such analyses. It also aims to make analysis development easier by providing an

intermediate representation calledMcLAST , which provides simpler syntax and explicitly

exposes some of MATLAB ’s semantics. In order to give analysis writers a head start,some

example analyses are provided. These include simple analyses intended to demonstrate the

use of the framework, and some more complicated analyses that provide basic semantic

information about MATLAB programs.

In addition to the framework making development of analysessimpler,McSAF is also

designed to be extended to new language features. Not only can the framework be extended,

i

but existing analyses can also be extended. This allows workthat was previously done for

analyzing MATLAB code to be applied to future language extensions.

ii

Résum é

MATLAB R© est un langage de programmation science et numérique utiliśe autant en

industrie que dans le milieu académique. Malgŕe cette popularit́e, peu de project de rer-

cherhe ońet́e entreprise dans le but de produire une suite de compilationpour MATLAB .

Cette th̀ese contribue leMcL AB Static Analysis Framework,McSAF, qui a l’objectif de

simplifier le d́eveloppement des nouveaux outils de compilation pour MATLAB .

Le projetMcL AB fait suiteà ce manque, dans l’espoir d’attiser les recherches sur ce

sujet. L’objectif principale ce ŕesume au d́eveloppent d’une trousse de compilation exten-

sible pour MATLAB et les langage de programmation pour science. Le projet est motivé

par des d́efis de compilation uniquèa MATLAB , et par lexploration de nouvelles structures

syntaxical aḿeliorant lexṕerience de programmation scientifique. L’une des fonctionnalité

cher au domaine de la compilation est l’habilité a performer des analyses statique de pro-

gramme. Sans ces informations que nous procures lanalyse statique, une grande partie des

transformations et autres optimisations désiŕe lors du processus de compilation ne serait

pas possible.

Pour rendre la d́eveloppent des analyses statique plus simple, cette thèse contribue un

cadre pour cŕeer des analyses statique pour le langage MATLAB . L’objectif de ce cadre

est de rendre la programmation des analyses plus simple en fournissant les fonctionna-

lit és de base et une API pour développer de telles analyses. Un autre objectif est de rendre

le développent des analyses plus simple en fournissant une représentation interḿediaire,

McLAST , qui fourni une syntaxe plus simple est qui expose les sémantiques de MAT-

LAB . Pour aider leśecrivains d’analyse, quelques exemples d’analyse sont fournis. En plus,

quelques analyses utiles sontégalement fournis. Ces analyses fournissent des informations

de base relíeeà les śemantiques de MATLAB . Ils ont des application partout dans le projet.

iii

L’objectif final du cadre est d’être extensible. Le framework doit fonctionner avec des

nouvelles structure de langue. Sa veut dire que les programmeur peuvent cŕeer des nou-

velles analyses pour ces extension, et que les analyses qui existaient pour le langage de

base, peut̂etre adapter aux nouvelles structure.

iv

Acknowledgements

I would like to thank my supervisor, Laurie Hendren, whose high standards and demand

for clear descriptions have helped shape my work and my writing.

I would also like to thank the entireMcL AB team. In particular I would like to ac-

knowledge contributions by the following members: M.Sc. student Soroush Radpour, who

has taken responsibility for continued development on the Kind Analysis; M.Sc. graduate

Toheed Aslam for being the first to use the Kind Analysis, and for helping to inspire its

creation; and finally, M.Sc. student Anton Dubrau for being the first major user ofMcSAF,

and for putting up with my constant delays.

Of course I would also like to thank my friends and family, whose support and constant

prodding provided the motivation to complete this thesis assoon as possible.

Finally, I would like to thank my loving wife Jessica Ganten.She has put up with

my constant preoccupation with MATLAB and compilers, and with the occasional minor

depression that resulted from learning some new disturbing“feature” of MATLAB .

This work was supported, in part, by the Natural Sciences andEngineering Research

Council of Canada (NSERC).

v

vi

Table of Contents

Abstract i

Résuḿe iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xv

Table of Contents xvii

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 4

2 Background 7

2.1 TheMcL AB Project . 7

2.2 The MATLAB language. 8

3 Intermediate Representations 11

3.1 Formalisms . 12

3.1.1 JastAdd Abstract Grammars. 12

3.1.2 Grammar Specifications. 14

vii

3.2 McAST . 15

3.2.1 Expressions. 15

3.2.2 Statements. 18

3.2.3 Program Structure. 21

3.2.4 Overview . 22

3.3 McLAST . 22

3.3.1 Expressions. 23

3.3.2 Multi-Assign Statements. 26

3.3.3 Conditional Expressions. 28

3.3.4 For Loops. 28

3.3.5 If Statements. 30

3.3.6 Assignment Statements. 31

3.3.7 Check Scalar Statement. 31

3.3.8 Validator . 32

4 Simplifications 33

4.1 Organization and Execution. 34

4.1.1 Dependencies. 34

4.2 Simple Assignment. 35

4.3 CSL Left Expansion. 36

4.4 Multi-Assignment Simplification. 38

4.5 Left-Hand Side simplification. 39

4.6 For Loop Simplification. 43

4.7 Simple If Statements. 45

4.8 Array Short-Circuit simplification . 46

4.9 Conditional Simplification . 49

4.10 Right-Hand Side Simplification. 51

4.10.1 Short-Circuit Expression simplification. 52

4.11 Full Simplification . 60

viii

5 Intraprocedural Analysis Framework 61

5.1 Basic Traversal Mechanism. 62

5.2 Analysis Types . 66

5.2.1 Flow-Data Representation. 66

5.2.2 Common Implementation. 71

5.2.3 Depth-first Analysis . 72

5.2.4 Structural Analysis. 77

5.2.5 Implemented Analyses. 97

6 Analysis Framework Extensibility 101

6.1 Classification of Extensions. 101

6.2 How Extensions are Supported inMcSAF 103

6.2.1 Example Extension. 105

6.2.2 Other Issues. 107

6.3 Summary . 109

7 Related Work 111

7.1 Soot . 111

7.2 JastAdd . 111

7.3 MATLAB Related Work. 112

7.4 McL AB Related Work . 113

8 Conclusions and Future Work 115

8.1 Future Work. 116

Appendices

A Full Reaching Definitions Analysis Code 117

B Variable Use Collector Code 121

C Full Maybe Live Variable Analysis Code 127

ix

Bibliography 131

x

List of Figures

1.1 TheMcL AB system. 3

3.1 Front-end andMcLAST generation. 12

3.2 McAST top level expression definition. 15

3.3 McAST LValue expression definition. 16

3.4 McAST unary and binary specification portion. 17

3.5 McAST miscellaneous expressions. 18

3.6 McAST expression statement. 18

3.7 McAST declaration statement. 19

3.8 McAST assignment statement. 19

3.9 McAST control statements. 20

3.10 McAST program structure . 21

3.11 McLAST LValue grammar . 24

3.12 McLAST RValue grammar . 26

3.13 NewMcLAST RValue nodes. 26

3.14 McLAST multi-assign grammar . 28

3.15 McLAST condition expression grammar. 28

3.16 McLAST for loop grammar . 29

3.17 McLAST if statement grammar. 31

3.18 McLAST assignment statement grammar. 31

3.19 McLAST assignment statement grammar. 32

4.1 Front-end with IR generation. 33

4.2 Dependency tree for simplifications. 36

xi

4.3 CSL left expansion pseudocode. 37

4.4 CSL expansion. 37

4.5 Multi-Assignment simplification pseudocode. 39

4.6 Multi-assignment simplification example. 39

4.7 Simplifyingif statement pseudocode. 46

4.8 Array short-circuiting simplification pseudocode. 47

4.9 Simplify function pseudocode for array short-circuiting simplification . . . 48

4.10 Condition simplification pseudocode. 50

4.11 Conditional simplification example. 51

4.12 Right-hand side simplification pseudocode. 53

4.13 Right-hand side simplification example. 54

4.14 Naive short-circuit expansion. 55

4.15 Short-circuit patterns for assignments. 57

4.16 Short-circuit patterns forif statements. 58

5.1 Excerpt of AST class hierarchy. 62

5.2 Excerpt ofAbstractNodeCaseHandler demonstrating default behaviour. . 63

5.3 Example traversal counting statements. 64

5.4 Flow-data class hierarchy. 67

5.5 Class hierarchy snippet for depth-first analysis. 72

5.6 Depth-firstcaseASTNode(...) source code. 73

5.7 Shell of example depth-first analysisNameCollector 75

5.8 caseAssignStmt(...) andcaseName(...) for NameCollector 76

5.9 caseParameterizedExpr(...) for NameCollector 77

5.10 FullNameCollector definition . 78

5.11 Class hierarchy snippet for structural analysis. 81

5.12 Forward data flow forif statements. 83

5.13 Forward data flow forswitch statements. 84

5.14 Forward data flow forwhile loops . 86

5.15 Forward data flow forfor loops . 87

5.16 Steps to creating a new flow analysis. 88

xii

5.17 Shell of the reaching definitions implementation. 89

5.18 Implementation ofMerger for reaching definitions 89

5.19 Implementation ofmerge(...) for reaching definitions. 90

5.20 Implementation ofcopy(...) methods for reaching definitions. 90

5.21 Implementation for reaching definition’s constructor. 91

5.22 Implementation ofnewInitialFlow() for reaching definitions. 91

5.23 Implementation ofcaseAssignStmt(...) for reaching definitions. 93

5.24 Implementation ofcaseStmt(...) for reaching definitions. 93

5.25 Backward data flow forif statements . 96

5.26 Backward data flow forswitch statements. 97

5.27 Backward data flow forwhile loops . 98

5.28 Backward data flow forfor loops . 99

6.1 ActualNodeCaseHandler andAbstractNodeCaseHandler source code. . 104

6.2 Class hierarchy for forward analyses including extensability details 106

6.3 Class hierarchy of the extended node case handler. 108

xiii

xiv

List of Tables

5.1 Methods in theFlowSet<D> interface . 68

5.2 New methods in theAbstractFlowSet<D> interface 68

5.3 Methods in theFlowMap<K,V> interface 69

5.4 Merging interfaces . 70

5.5 Operation methods in theAbstractFlowMap<D> interface. 70

5.6 Methods in theAnalysis interface . 71

5.7 Methods in theStructuralAnalysis interface 79

5.8 Data members in defined byAbstractStructuralAnalysis 80

5.9 Methods associated with branching analyses. 82

5.10 AbstractStructuralForwardAnalysis.LoopFlowsets methods. 85

5.11 AbstractStructuralBackwardAnalysis.LoopFlowsets methods 95

xv

xvi

List of Listings

A.1 ReachingDefs analysis code. 117

B.1 Variable use collector code. 121

C.1 MaybeLive analysis code. 127

xvii

xviii

Chapter 1

Introduction

MATLAB is a popular programming language among scientists and engineers. It pro-

vides high-level matrix operations that are useful to scientists. Its dynamic type system can

also make code more natural to write, allowing programmers to avoid declaration state-

ments and reuse variables when appropriate. MATLAB also includes a large collection of

libraries and toolboxes that add useful features. All of these features give MATLAB a low

initial learning curve and good productivity. This is reflected in MATLAB ’s very large and

increasing user base. The most recent data from MathWorks shows that the number of

users of MATLAB was 1 million in 2004, with the number of users doubling every1.5 to 2

years.1

Despite this initial ease of adoption, once programs becomemore complex or perfor-

mance becomes a concern, MATLAB ceases to be easy to use. For instance the dynamic

semantics can make programs difficult to understand and can impact performance. To

overcome performance issues a programmer must write their code in such a way as to take

advantage of MATLAB ’s core matrix operations. This can lead to code that is even more

difficult to understand.

Some of the responsibility for performance can be taken on byan optimizing Ahead-of-

Time (AOT) or Just-in-Time (JIT) compiler. This can let a programmer focus on expressing

their ideas in a natural and clear way. Static tools can also be used to help a programmer

1Fromwww.mathworks.com/company/newsletters/news_notes/cl evescorner/jan06.pdf .

1

www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf

Introduction

better understand their programs. These tools could provide information about the pro-

grams they are writing, such as where possible performance or ambiguity problems may

occur. There can also be tools to aid in code maintenance by providing automated refac-

toring features. New language features could be added to give programmers new tools and

abstractions to use, making it easier to express some ideas.

In order for a compiler to perform optimizations or to provide feedback to program-

mers, it must analyze the program source code. Making such analyses easier to write

requires a simple, well-defined Intermediate Representation (IR) and analysis framework.

This framework should also allow new language extensions touse and adapt existing anal-

yses. In spite of MATLAB ’s popularity, and the apparent need for static analysis, there has

been no publicly available framework for creating static analyses for the MATLAB pro-

gramming language. This thesis provides such a framework, theMcL AB Static Analysis

Framework, orMcSAF. McSAF was created as part of theMcL AB project to satisfy these

requirements. The goal of the framework is to make new analyses easy to write and easy

to extend to new language features.

TheMcL AB project was started to create and explore compiler tools forscientific com-

puting. The goal is to improve performance and usefulness ofscientific programming

languages, with a focus on MATLAB . Further details concerning theMcL AB project are

presented inSection2.1.

A diagram providing an overview of the project and main contributions of this thesis is

given inFigure1.1. The main contributions of this thesis are outlined in the grey area of the

diagram. The basic structure of theMcL AB system is as follows. MATLAB source code

is taken in by the front-end, which produces an abstract syntax tree (AST) representing

the input. We refer to this AST asMcAST. Prior to the contributions made by this thesis,

McAST was fed directly into one of three back-ends. These back-ends either produce

MATLAB source, FORTRAN source, or execute the program. The contributions of this thesis

add extra steps between the front-end and the back-ends.McAST is fed into a static analysis

in order to determine basic information about the program. This information is then used

to simplify the AST into a lower level representation of the original input, calledMcLAST .

McLAST can then be further analyzed, producing new information. Finally, McLAST and

the analysis information are given to a back-end to produce the desired output.

2

*.m

ASTMc

Back
Ends

FortranMatlab VMMc

Analyses

Analysis
Information

Kind
Analysis

Kind
Information

Simplifications

Front
End

Mc LAST

T
he

si
s

C
on

tr
ib

ut
io

n

Figure 1.1 The McL AB system

3

Introduction

This thesis focuses on the design and implementation ofMcSAF.

1.1 Contributions

The goal of this thesis is to provide a framework for creatingstatic analyses for theMcL AB

project. To this end, this thesis makes three main contributions. First, we have done an

exploration of MATLAB ’s semantics. This was a necessary first step because the analy-

sis framework needs to accurately capture MATLAB ’s semantics. Since MATLAB has no

formal specification, this involved interpreting documentation and experimenting with the

current version of the official MATLAB environment.

Our second contribution is a well defined and simplified intermediate representation

and procedure for producing it. TheMcL AB front-end produces an abstract syntax tree

after parsing a program.McAST is too complex and causes the analysis writing process to

be overly complicated. The simplifiedMcLAST also makes some of MATLAB ’s semantics

more explicit. This takes some of the burden of understanding MATLAB ’s semantics off of

the analysis writer.

Our final contribution is the static analysis framework. Theframework is designed to

make analyses easy to write. It is also intended to accommodate language extensions. It

does this by allowing existing analyses to be incorporated into new language extensions

with minimal effort.

1.2 Outline

This thesis is split into 8 chapters (including this introductory chapter).Chapter2 gives

background information necessary for this thesis. This includes a discussion of important

tools used in theMcL AB project. It also includes a discussion of the MATLAB language.

In Chapter3 we introduce the IR. First we introduce the high-level AST,McAST, produced

by the front-end. Next we describeMcLAST , a simplified IR designed as a contribution of

this thesis.Chapter4 continues the discussion of the IR by describing the transformations

used to produceMcLAST from McAST. Chapter5 discusses the final contribution of this

thesis, the analysis framework and description of some example analyses. This discussion

4

1.2. Outline

is continued inChapter6 with the description of the extensibility of the framework.Finally,

Chapter7 discusses related work andChapter8 presents our conclusions.

5

Introduction

6

Chapter 2

Background

This chapter provides background information that is helpful in understanding the re-

mainder of this thesis. We start with a brief description ofMcL AB, the project to which

McSAF belongs. Next we give an overview of some parts of MATLAB that are not trivial

to understand.

2.1 The Mc L AB Project

McL AB1 is an extensible compiler framework for MATLAB . It consists of a front-end, a

static back-end, and various code generation targets. These targets include pretty printing

MATLAB source, FORTRAN source generated from inputted MATLAB code, and a virtual

machine(VM) and just-in-time(JIT) compiler.

The McL AB project was created to explore compiler techniques and new language

features in the domain of scientific computing. MATLAB is a very popular language among

scientists and engineers, but due to it’s closed source and proprietary nature it is difficult

for the compiler community to explore and experiment with it. McL AB provides an open

source framework that allows such work to be done.

One ofMcL AB ’s goals is to explore new language extensions. To this end, theMcL AB

project has been created with extensibility in mind. It usestools and designs that allow for

1http://www.sable.mcgill.ca/mclab/

7

http://www.sable.mcgill.ca/mclab/

Background

new features to be added to the core language. As part of the project, the first language

extension was created. This extension is called AspectMATLAB [TAH10]. As the name

suggests, it adds aspect-oriented programming to the MATLAB language.

2.2 The MATLAB language

The MATLAB programming language is a high-level dynamic language for numerical com-

putation. MATLAB ’s goal is to provide programmers with easy access to powerful numeri-

cal procedures. It does this by having a rich library of high-level procedures and allowing

a flexible programming style. The flexible programming styleis supported by dynamic

semantics such as dynamic typing.

MATLAB is a closed sourced, proprietary programming environment.The language is

defined by the current reference implementation2 and official documentation[Mata]. There

is no publicly available formal specification. In addition,the language has evolved fairly

organically. Over time, new features have been added and language semantics have been

tweaked. This has led to an eclectic mix of language featuresand confusing semantics.

We will list and describe some of the MATLAB ’s features that are relevant to the content

of this thesis. For more about the MATLAB language, see the official site[Matb].

Ambiguous Syntax

MATLAB ’s syntax does not differentiate between function calls andarray accesses.

For example, the expressionx(i,j) could be either a call to a function namedx, with

argumentsi andj , or it could be an access to index(i,j) of arrayx. This cannot be

distinguished syntactically.

Dynamic Name Binding

An identifier use can refer to either a function call or variable access. Which kind

of use cannot be determined syntactically. Furthermore, itcannot be distinguished

purely statically, it actually becomes a run-time property. This issue leads to the need

for Kind Analysis described asSection5.2.5.

2For the purposes of this project, we are using MATLAB version 7.12.0.635 (R2011a)

8

2.2. The MATLAB language

Dynamic Types

Types and matrix shapes are dynamic. Matrices can even be accessed with any num-

ber of dimensional indices, independent of the number of dimensions the matrix was

created with. Matrices will also grow automatically when assigning to an index that

is out of bounds. Matrices are by definition a homogeneous data structure. They

can only contain one type of data. MATLAB also has heterogeneous data structures

such as cell arrays and structures. The types contained by these data structures are of

course determined at run-time, and can change through the life of the data structure.

For Loops

All for loops in MATLAB are for-each loops. The loop domain is the columns of the

result of the loop domain expression, treated as a 2 dimensional matrix. More detail

is given inSection3.2.2.

End Expression

Theend expression represents the last index of a dimension of an array indexed with

a certain number of dimensions. We say theend binds to the array it is being used

to index. The complexity arises because theend expression does not have to appear

directly as the index expression, it can appear as a sub-expression. For example in

the following expression:

A(2,f(end))

If we assumeA is an array with value[1,2,3;4,5,6;7,8,9] and f is a function

that computesf (x) = x− 1, then theend will evaluate to9 andA will be indexed

with (2,8) . Recall that for an arrayA with N dimensions, indexingA with n < N

dimensions will cause thenth dimension to be interpreted as having a size equal

to the product of the sizes of dimensionsn throughN. The end’s value depends

on what array it is bound to, which dimension it is being used to index and how

many dimensions are being used. This expression has implications for determining

the kind of identifiers, and as such receives special treatment in the Kind Analysis.

There is partial documentation available for this expression in MATLAB ’s official

9

Background

documentation3.

Comma-Separated ListsComma-Separated lists(CSLs) are primarily a syntactic element

in MATLAB . As their name suggests, they are lists of expressions separated by com-

mas. They are used as input and return parameter lists. For example the statement

[a,b]=foo(n,x,y+4,m); uses two CSLs, one for the arguments tofoo and one

to specify where to assign the two return values from callingfoo(...) . However,

the evaluation of some expressions can result in what we callCSL expansion. This

means that an individual expression in a CSL, when evaluated,will expand at run-

time to be multiple entries in that list. This results in the exact number of input or

return parameters being known only at run-time. For example, the following code is

equivalent to the previous assignment statement.

1 c1 = {x,y+4};

2 c2 = cell(1,2);

3 [c2{:}]=foo(n,c1{:},m);

4 [a,b]=c2{:};

Note, on line 3, the use ofc2 in the return parameters andc1 in the input parame-

ters. Notice thatc1 only covers two of the input parameters. The results ofc1{:} ,

which are the values ofx and y+4 , will be incorporated into the input parameter

CSL. The exact number of input and output parameters cannot bedetermined sim-

ply by inspecting this line. For more information regardingCSLs, see MATLAB ’s

documentation4 on the subject.

3http://www.mathworks.com/help/techdoc/ref/end.html
4http://www.mathworks.com/help/techdoc/matlab_prog/b r2js35-1.html

10

http://www.mathworks.com/help/techdoc/ref/end.html
http://www.mathworks.com/help/techdoc/matlab_prog/br2js35-1.html

Chapter 3

Intermediate Representations

Intermediate representations (IRs) are an important components of a compiler. They are

used to represent the program at various stages of compilation. Compilers have multiple

levels of IRs, each suited to different tasks. For instance, ahigh-level IR is useful in the

front-end of a compiler. Such an IR will closely match the original structure of the input

program, which makes it simpler to generate directly from source code. However, a high-

level IR can be cumbersome to work with when performing analyses or transformations.

A lower-level IR would be more appropriate for these tasks. Alower-level IR will contain

simpler expressions and statements and will explicitly expose important semantics. This

will simplify the task of writing analyses or transformations by reducing the number of

cases that need to be handled.

TheMcL AB project uses tree-based IRs, taking the form of Abstract Syntax Trees(ASTs).

A tree-based IR was chosen over a graph-based one to facilitate extensibility and main-

tain high-level structural information throughout the compilation process. Such structural

information includes loops andif statements. These structures can be represented in a

graph-based IR by reducing them to program jumps. That approach can be useful if the

source language containsgoto statements which allow the creation of arbitrary control

flow graphs. Since MATLAB does not havegoto statements such a reduction was not

needed and so a structural, tree-based IR was chosen.

The McL AB project has two IRs. The first is a high-level AST calledMcAST. The

second a low-level AST calledMcLAST , the design of which is a contribution of this

11

Intermediate Representations

thesis.McAST is produced by the front-end. A simplification procedure is then applied to

it, to produceMcLAST . This process is depicted inFigure3.1.

*.m
Scanner

Parser
ASTMc Simplifications Mc LAST

Front−End

Figure 3.1 Front-end and McLAST generation

In this chapter we describe the structure ofMcAST and the structure and design of

McLAST . The description ofMcAST is given first inSection3.2. This is to give a good

base for understanding the simplified IR. It includes a high-level description of theMcAST

structure and discussion ofMcAST’s abstract grammar. A description ofMcLAST is then

given in Section3.3. This description includes a grammatical presentation anda discus-

sion of design choices.Chapter4 describes the simplification procedure used to generate

McLAST .

3.1 Formalisms

In this chapter we rely on two formalisms to describe the IRs. In this section, we will

describe these formalisms.

3.1.1 JastAdd Abstract Grammars

The first formalism used is the JastAdd [EH07b] abstract grammar specification format.

This format is used to define the AST structure of the IRs. The JastAdd system uses this

specification to generate Java classes representing the different AST node types. These

classes will export a well defined API for construction and traversal determined by their

specification. This means that to understand the AST class structure and API, it is sufficient

to understand JastAdd specifications. The abstract grammars are specified in files with

12

3.1. Formalisms

extension.ast . JastAdd is a Java-based tool, and as such, these specifications incorporate

some Java syntax and types.

As we said, these specifications are used to define AST nodes. There are two types of

nodes that can be defined: abstract nodes and concrete nodes.An abstract node results in

an abstract class, which can’t be instantiated. A simple node of this type can be specified

as follows:

abstract Program;

Here we are defining the Program node forMcAST. More information on this node is

available inSection3.2.3.

A simple non-abstract node is defined by omitting theabstract keyword.

A node can also be defined to be a subtype of another node. This subtype relationship

is directly mapped to JAVA ’s subclass relationship. It is specified in the following way:

EmptyProgram : Program;

This example specifies the concrete nodeEmptyProgram , which is a type ofProgram ,

so we specify it as a subtype. Note that an abstract node couldalso be a subtype of another

node.

A node can also be specified to have children. There are four types of children pos-

sible: single child, optional child, list child, and typed token child. All children, except

the typed token child, will be AST node types. The following example from the JastAdd

documentation, slightly modified, has one of each child.

E: A ::= A [B] C * <D:String>;

This specifies a concrete node calledE, which is a subtype of node typeA. E has four

children, one of typeA, an optional child of typeB, a list child containing nodes of typeC,

and a typed token child namedD of type String . The typed tokens allow AST nodes to

contain children that use Java types, rather than simply ASTnode types. Note that abstract

nodes can also be specified with children. Also note that since the node subtype relationship

matches the Java subclass relationship, when a node is a subtype of another node that has

children, the subtype node will inherit these children.

Children can also be specified with names. This allows JastAddto generate a more

13

Intermediate Representations

meaningful API for the nodes. An example of a node with named children is the assignment

statement, which defines a left- and right-hand side.

AssignStmt : Stmt ::= LHS:Expr RHS:Expr;

3.1.2 Grammar Specifications

In Section3.3 we describe the restrictions thatMcLAST has overMcAST. Some of these

restrictions are in fact only logical restrictions. By this we mean, the AST specification

for McLAST is more permissive than the actual specification forMcLAST . We describe

these added restrictions by relying on a more standard grammar specification. The given

grammar does contain some syntactic elements, but should not be interpreted as a grammar

for parsing. These specifications are used to define restrictions on the actual AST definition.

For example, the AST definition forif statements inMcLAST is the same as the definition

for McAST.

IfStmt : Stmt ::= IfBlock * [ElseBlock];

IfBlock ::= Condition:Expr Stmt * ;

ElseBlock ::= Stmt * ;

This definition allows multipleelseif blocks and an optionalelse. It also allows

arbitrary expressions in theif condition.

McLAST defines a more restrictiveif statement, but doesn’t define new AST nodes to

enforce it. These restrictions are specified in the following grammar.

I f Stmt := i f (CondExp)Stmt∗end

| i f (CondExp)Stmt∗elseStmt∗end

This specification restricts anif statement to not allowelseif, and to restrict the

condition expression, which is further specified inSection3.3.3.

14

3.2. McAST

3.2 Mc AST

The front-end process producesMcAST from given source code.McAST is the high-level

IR being used by theMcL AB project. It is the starting point for the simplified IRMcLAST .

The simplification procedure mentioned inFigure 3.1operates onMcAST. There are also

some basic static analyses that operate on it, in particular, the Kind Analysis described in

Section5.2.5. Describing the structure will give a good base for understandingMcLAST ’s

structure and the simplification procedure. It will also give some context for understanding

the complexities thatMcLAST exposes.

McAST will be described in a bottom-up fashion. The presentation is split into three

levels, expressions, statements, and program structure.

3.2.1 Expressions

Expressions are the basic building blocks of programs. InMcAST there are several different

types of expressions. The top-level definition for expressions is given inFigure 3.2. It

defines four types of expressions; literals, LValues, unaryoperations and binary operations.

There are several other types of expressions that are described later in this section.

abstract Expr;
abstract LiteralExpr : Expr;
abstract LValueExpr : Expr;
abstract UnaryExpr : Expr ::= Operand:Expr;
abstract BinaryExpr : Expr ::= LHS:Expr RHS:Expr;
...

Figure 3.2 McAST top level expression definition

Literal Expressions

The literal expressions are the simplest expressions available. They represent numerical

literal values and string literal values. For example42 appearing in source code would be

represented by an instance ofIntLiteralExpr , which is one possible literal expression.

15

Intermediate Representations

LValue expressions

LValue expressions are expressions that can appear on the left-hand side of assignments.

Since they are expressions, they can also appear in any otherlocation an expression can

appear. A section of specification for these expressions is given inFigure3.3.

NameExpr : LValueExpr ::= Name;
ParameterizedExpr : LValueExpr ::= Target:Expr Arg:Expr * ;
CellIndexExpr : LValueExpr ::= Target:Expr Arg:Expr * ;
DotExpr : LValueExpr ::= Target:Expr Field:Name;
MatrixExpr : LValueExpr ::= Row * ;

Name ::= <ID : String>;
Row ::= Element:Expr * ;

Figure 3.3 McAST LValue expression definition

The most basic LValue expression is the name expression, which simply consists of a

name.

The parameterized, cell index and dot expressions all have similar structures. They

each contain a target that can be any expression. This allowsfor complex expressions such

asfoo(2).bar(3) . This expression is a parameterized expression with a single argument,

3, and a complex target,foo(2).bar . The target is itself a dot expression, accessing the

field bar and having a target that is a simple parameterized expression. The expression as

a whole is interpreted as: access the third value in the arraystored in the fieldbar of the

structure stored in the second entry in the arrayfoo .

The parameterized and cell index expressions also contain lists of arbitrary expressions

for their arguments. This allows for even more complex expressions such as

foo(FOOBAR()).bar(FOOBAR()) . This expression has a similar structure to the previous

example, but instead of simple literal values as arguments,the two parameterized expres-

sions have another parameterized expressions as an argument.

The matrix expression is truly an LValue when it is a single row containing non-matrix

expression LValues, such as[a,b] . It can also be used to represent matrix definitions of

the form

[1,2,3; 4,5,6]

16

3.2. McAST

where rows are delimited by semicolons and elements of rows by commas. The reason this

is considered an LValue expression is discussed further inSection3.2.2when describing

assignment statements.

Recall that the cell index and dot expressions also have a special implicit property.

When used in a Comma-Separated List (CSL), they can undergo CSL expansion, as de-

scribed inSection2.2.

Unary and Binary expressions

Unary and binary expressions represent various operations. A portion of the specifica-

tion for these expressions is given inFigure 3.4. The unary and binary expressions are

each defined by an abstract node defining the left- and right-hand sides. Each type of

unary or binary expression is then specified by a concrete node that extendsUnaryExpr or

BinaryExpr .

abstract UnaryExpr : Expr ::= Operand:Expr;
UMinusExpr : UnaryExpr;
UPlusExpr : UnaryExpr
...
abstract BinaryExpr : Expr ::= LHS:Expr RHS:Expr;
PlusExpr : BinaryExpr;
MinusExpr : BinaryExpr;
...

Figure 3.4 McAST unary and binary specification portion

Obviously the unary and binary expressions will contain arbitrary expressions as their

operands. This can lead to similar complexities to ones seenwith some LValue expressions.

Remaining Expressions

The specification for the remaining expressions is given inFigure3.5.

The range expression represents the colon notation for defining range vectors. An ex-

ample of these expressions is1:2:10 , which evaluates to a vector contain all odd numbers

from 1 to 10. The expression contains a lower and upper bound and an optional increment.

These can all be arbitrary expressions.

17

Intermediate Representations

RangeExpr : Expr ::= Lower:Expr [Incr:Expr] Upper:Expr;
ColonExpr : Expr;
EndExpr : Expr;
CellArrayExpr : Expr ::= Row * ;
FunctionHandleExpr : Expr ::= Name;
LambdaExpr : Expr ::= InputParam:Name * Body:Expr;

Figure 3.5 McAST miscellaneous expressions

The colon expression is used only as an argument to a parameterized or cell index

expression and only for indexing. The expression represents a range from 1 to the size of

the dimension it is indexing.

The end expression has a similar use to the colon expression. It represents the last

index of the dimension of the array in which it is used. As explained inSection2.2, it is

more complex than the colon expression because it can be usedas a sub-expression in the

index expression. To summarize the complexity, anend expression binds to a particular

array access in a non obvious way. Furthermore it has implications in the Kind Analysis

described inSection5.2.5.

The function handle and lambda expressions are used to create function handles of

named and anonymous functions. The lambda expression has a list of input parameter

names and a single body expression.

3.2.2 Statements

Statements introduce various declarations, control flow and uses of expressions, including

assignments. The simplest statement that involves expressions is the expression statement.

The specification rules for this expression are given inFigure3.6.

abstract Stmt;

ExprStmt : Stmt ::= Expr;

Figure 3.6 McAST expression statement

There are two types of declaration statements: global and persistent. The specification

18

3.2. McAST

for these is given inFigure 3.7. The global and persistent statements declare the names in

the statement as either global or persistent variables, respectively.

GlobalStmt : Stmt ::= Name * ;
PersistentStmt : Stmt ::= Name * ;

Figure 3.7 McAST declaration statement

The assignment statement is defined in the specification section in Figure 3.8. It sim-

ply contains left-hand and right-hand side expressions. There should only ever be LValue

expressions in the left-hand side expression. This is enforced by a weeding procedure. The

semantics here are fairly straight forward: evaluate the right-hand side to get a value, eval-

uate the left-hand side to get a location and store the value in the location. A complexity

arises from the fact that matrix expressions are LValue expressions. In this case, the ma-

trix is expected to have only one row and only contain LValue expressions. The weeding

procedure mentioned previously will enforce this structure. When a matrix expression ap-

pears on the left-hand side of an assignment expression, theassignment is interpreted as a

multi-assignment statement. This means the expression on the right-hand side is expected

to return multiple values, and those values are stored in thelocations resulting from the

LValue expressions in the matrix expression.

AssignStmt : Stmt ::= LHS:Expr RHS:Expr;

Figure 3.8 McAST assignment statement

The final types of statements are control flow statements. Thespecification for these

statements is give inFigure3.9.

The break , continue and return statements are simple control flow statements that

operate in loops or functions. Thewhile statement consists of a conditional expression and

a list of statements representing the body of the loop. The conditional expression can be

arbitrarily complex.

A for statement contains an assignment statement. This assignment statement is as-

sumed to only contain a name expression on the left-hand side. We will refer to this name

19

Intermediate Representations

BreakStmt : Stmt;
ContinueStmt : Stmt;
ReturnStmt : Stmt;
WhileStmt : Stmt ::= Expr Stmt * ;
ForStmt : Stmt ::= AssignStmt Stmt * ;
IfStmt : Stmt ::= IfBlock * [ElseBlock];
TryStmt : Stmt ::= TryStmt:Stmt * CatchStmt:Stmt * ;
SwitchStmt : Stmt ::= Expr SwitchCaseBlock * [DefaultCaseBlock];

IfBlock ::= Condition:Expr Stmt * ;
ElseBlock ::= Stmt * ;

SwitchCaseBlock ::= Expr Stmt * ;
DefaultCaseBlock ::= Stmt * ;

Figure 3.9 McAST control statements

expression as the loop variable. The right-hand side can contain arbitrary expressions. The

way it is interpreted is as follows. The value of the right-hand side is interpreted as an array

and this array is treated as two dimensional. The loop will iterate over this two dimensional

array, assigning each column to the loop variable for each iteration. These semantics are

not obvious, but only becomes a problem because arbitrary expressions are allowed in the

right-hand side of this assignment statement.McLAST forces the semantics to be made

explicit in the code by limiting the right-hand side to be a range expression.

The if statement consists of a list of if-blocks and an optional else-block. Each if-

block after the first is considered anelseif, with the else-block being the finalelse. The

following is an exampleif statement with two if-blocks, and an else-block.

if E1

body1();

elseif E2

body2();

else

body3();

end

The primaryif is the first if-block, theelseif is the second if-block. This structure means

that analyses and transformations have to deal with controlflow with an arbitrary number

20

3.2. McAST

of branches. It would be much simpler ifif statements only caused binary branching. The

example could be rewritten to only use binary branching and would look like the following.

if E1

body1();

else

if E2

body2();

else

body3();

end

end

The try statement consists of the body of the try followed by the bodyof the catch.

A switch statement contains the expression being switched on, a list of case blocks, and

a default block. The case blocks each have an expression to match against and a body of

statements.

3.2.3 Program Structure

In order to define a program there must be some top level structure to the AST. This struc-

ture represents the different types of MATLAB files and gives a way of combining multiple

files into one tree. The specification for this structure is shown inFigure3.10. We however

do not discuss classes in this thesis.

CompilationUnits ::= Program * ;
abstract Program;
Script : Program ::= HelpComment * Stmt * ;
FunctionList : Program ::= Function * ;
Function ::= OutputParam:Name * <Name:String> InputParam:Name *

HelpComment * Stmt * NestedFunction:Function * ;

Figure 3.10 McAST program structure

The compilation units represent a collection of programs. Aprogram represents a MAT-

LAB file. A program can either be a script or a function file. A script simply contains a

21

Intermediate Representations

list of statements. A function file is represented by a function list. The function list simply

consists of a list of functions.

The definition of a function is slightly complex. The important parts of the definition

are that it has a list of names representing the output parameters, a string for the name of

the function, a list of names for the input parameters, a bodyof statements and a list of

nested functions.

3.2.4 Overview

McAST has a number of sources of potential complexity. This includes arbitrarily complex

expressions, the use ofend expressions,for loops with complicated semantics, cumber-

someif statement structure. Another important issue to note is there is no explicit array

indexing or function call expressions. This is due to the ambiguity between function calls

and array indexing. This issue cannot be completely solved statically and is discussed later

is Section5.2.5.

McLAST is intended to avoid some of the complexities present in the full McAST.

3.3 Mc LAST

The design ofMcLAST incorporates a number of simplifications that were found useful

in the JIT and Fortran code generation. It also includes simplifications that enforce and

expose MATLAB semantics and simplify analysis writing.

In this section we describe the design ofMcLAST . The description is separated into five

sections, each dealing with different portions of the specification. Two of these sections

deal with expressions and are grouped together. The other three deal with statements and

are separate.

These sections also include grammar definitions and JastAddspecifications for those

portions ofMcLAST . This is done to make the restrictions and additions more explicit and

to give a reference for what can be expected from an instance of McLAST that respects

those restrictions.

In addition to definingMcLAST , there needs to be a way of generating it. In order to do

22

3.3. McLAST

that, a collection of simplifications were implemented. These simplifications are described

in Chapter4.

The goal of this section is to express what portions ofMcLAST are more restricted, and

to justify the need for these restrictions

3.3.1 Expressions

Most programming languages allow arbitrarily complex expressions. This allows program-

mers to write more concise code. However, such expressions in a low-level IR can be dif-

ficult for compiler and analysis writers to reason about. Theportions ofMcLAST that deal

with expressions will be discussed in two parts. First we discuss expressions that compute

memory locations; we call such expressions LValue expressions. These expressions appear

on the left-hand side of assignment statements and evaluateto the location that is being

assigned to. Next we discuss expressions that compute actual values which we call RValue

expressions.

LValue expressions

LValue expressions compute the memory locations that are assigned to by assignment state-

ments. The complexity of these expressions comes from the chaining of indexing and field

accesses, and the use of RValue expressions to compute indexvalues. Such an expression

is illustrated in the following example.

A(a+b,a).e(foo()) = value;

In this assignment statement the left-hand side is a complexLValue expression. The

expression computes as follows:

1. the arrayA is indexed by the result ofa+b anda

2. the indexing results in a structure with a fielde, which is acceessed

3. this field contains an array, which is indexed by the value resulting from the expres-

sion foo()

23

Intermediate Representations

It is the indexed location in the final array that is assigned to.

There are two sources of complexity in these expressions. The first is the inclusion of

arbitrary RValue expressions and the second is the chainingof indexing and field accessing.

Fortunately it is simple to restrict these expressions so that they can only include RValue

expressions that are either literal values, or variables.

The issue of chaining array indexing and field accesses is more troublesome. Because

MATLAB has no semantics for storing references to memory locationsit is not possible to

break apart such chains. One could add new language featuresto the IR to make it possible,

but we decided this would add too much complexity. As a resultchained indexing and field

accesses are allowed inMcLAST .

These restriction can be summarized as the following:

• LValues can contain only variable names, indexing, or field accesses

• the computation of indexes is restricted to literal values or simple variable access

These restriction are expressed inFigure 3.11. Indexingis essentially a restriction of

the parameterized expression described inSection3.2.1.

LValue := NameExpr

| Indexing

| Access

Indexing := NameExpr(NameOrVal∗)

| Access(NameOrVal∗)

Access := LValue.Name

NameOrVal := NameExpr

| LiteralExpr

Figure 3.11 McLAST LValue grammar

24

3.3. McLAST

These name expressions will also be required to be variable names, rather than function

names. A name is considered a variable name if the Kind Analysis described inSection

5.2.5can determine it is a variable name.

RValue expressions

RValues expressions can be arbitrarily complex expressions in MATLAB .

To make matters more complicated, although MATLAB defines a simple precedence

based left-to-right evaluation order1 for expressions, there is a bug in the implementation

that breaks this order2. We implement a correct left-to-right evaluation order.

This evaluation order allowsMcLAST to have a simple definition of allowed RValue

expressions. InMcLAST , an RValue can consist of at most one complex operation. These

operations can consist of a function call, operator use, indexing, field access, or range

expressions. Note however thatMcLAST does not allow scalar short-circuiting boolean

operators (&&,||) at all. The reason for this is that such operators contain implicit control

flow, which adds tremendous complexity. Further discussionof short-circuiting boolean

operators and how they are removed are presented inSection4.10.1.

Another complexity that arises from RValues is comma-separated list (CSL) expansion.

This was described inSection3.2.1. Expressions that can undergo CSL expansion are not

necessarily obvious. To simplify this situation, we introduce theCSLExpr. TheCSLExpr

is essentially a name expression, but specifies that it mightundergo CSL expansion. This

new expression is included in the RValue description.

Finally, as was described inSection2.2, end expressions cause some complexity. To

simplify this complexity,end expressions are not allowed inMcLAST . To replace them

we introduce a new expression called theEndCallExpr. This expression is an explicitend

expression that captures the bound expression being indexed, the number of dimensions

being used, and what index theend appeared in. A simple example of a non explicit end

expression is the following:

A(1, end,2)

1http://www.mathworks.com/help/techdoc/matlab_prog/f 0-40063.html
2The current implementation (7.12.0.635 (R2011a)) contains a bug when evaluating expressions contain-

ing function calls with global side effects. Mathworks has accepted a bug report for this issue.

25

http://www.mathworks.com/help/techdoc/matlab_prog/f0-40063.html

Intermediate Representations

Where the arrayA is indexed with 3 dimensions where the second dimension is indexed

with anend expression. InMcLAST this would be represented as the following:

t = EndCall(A, 3, 2);

A(1, t, 2)

Note the use of the temporaryt to avoid complex expressions.

The restricted RValue definition is shown in the grammar rulein Figure 3.12, and

the extra node specification is given inFigure 3.13. In this ruleNamerepresents names,

NameOrValrepresents names or values, andOP represents unary or binary operators other

than short-circuiting boolean operators.

RValue := NameOrVal

| NameExpr(NameOrVal∗)

| NameExpr.Name

| NameExpr.Name(NameOrVal∗)

| NameOrValOP NameOrVal

| OP NameOrVal

| NameOrVal: NameOrVal: NameOrVal

| NameOrVal: NameOrVal

| CSLExpr

| EndCallExpr

Figure 3.12 McLAST RValue grammar

EndCallExpr: Expr ::= Array:Expr <NumDim : int> <WhatDim : int>;
CSLExpr : NameExpr;

Figure 3.13 New McLAST RValue nodes

3.3.2 Multi-Assign Statements

One convenient feature of the MATLAB language is that it allows functions to have multiple

return parameters. We will call assignment statements thataccept multiple return values

26

3.3. McLAST

multi-assign statements. This feature can be helpful for programmers but, like complex

expressions, multi-assign statements can cause difficultyand complexity for compiler de-

velopers.

The left-hand side of assignments can have arbitrary expressions designating storage

locations, or LValues. In the case of multi-assign statements the complexity is increased by

having multiple, possibly related, arbitrary expressionsappearing in one statement. CSL

expanding expressions can also appear in multi-assign statements. An example of such a

statement follows to illustrate the point.

[a,b(a),a,c.e(a)] = somefunction();

In this example we have four LValue expressions, two of whichare simply the variable

a, and the other two depending on the two different values thata gets assigned. Writing

analyses to deal with general multi-assign statements could become very cumbersome. The

solution is to restrict the types of LValues allowed in a multi-assign statement.

The restrictions we decided on are intended to make analyseseasier to write. To that

end we made multi-assign statements as simple as possible. In McLAST , a multi-assign

statement can only contain simple variable names on the left-hand side. This is further

restricted by allowing a name to appear at most once on the left-hand side. This means that

an analysis need not be concerned with the complexities of multi-assign statements, and

can treat it as a set of very simple assignments.

A special case for multi-assign statements has to do with dealing with CSL expressions.

In order to assign to a CSL expression, it must be the only expression on the left-hand side

of a multi-assign statement. In order to assign to a CSL expanding expression, it must also

be the only expression on the left-hand side of a multi-assign statement and must have a

CSL expression on the right-hand side.

These restrictions are represented in a grammar rule for assignment statements pre-

sented inFigure3.14.

Note that the names must also be unique, a property not represented in grammar.

27

Intermediate Representations

MultiAssignStmt := [(NameExpr|CSLExpr)+] = RValue

| [LValue] = CSLExpr

Figure 3.14 McLAST multi-assign grammar

3.3.3 Conditional Expressions

The boolean expressions in conditional statements such asif andwhile statements are

another source of complexity. TheMcL AB JIT, McJIT , will simplify conditionals by

pulling any expression more complex than a simple name look-up out into a temporary.

It was decided that such an aggressive simplification was notdesirable in the front end.

Instead we allow a single relational operator to be present to perform comparisons between

variables.

This allows for a simple definition of conditional expressions, which is expressed in the

CondExpgrammar rule inFigure3.15. This figure also includes theWhileStmtdefinition.

WhileStmt := while(CondExp)Stmt∗end

CondExp := NameOrVal

| ∼ NameOrVal

| NameOrValRelOp NameOrVal

Figure 3.15 McLAST condition expression grammar

3.3.4 For Loops

A for loop in MATLAB is in fact a for-each loop. This means that the loop variable will

iterate over the elements of some fixed sequence of elements.The complexity of afor loop

comes from how the sequence can be defined.

28

3.3. McLAST

A for loop is made up of two components, the loop variable assignment statement and

the loop body. The left-hand side of the assignment statement is the loop variable and the

right-hand side is an expression that defines the sequence tobe iterated over. The expression

can be any arbitrary RValue expression resulting in some type of array. The sequence that

is iterated over is defined to be the columns of the right-handside array value. What this

means is that if the array is a row vector then each element in the vector is iterated over.

If the array is a column vector, then only the single column isiterated over. If the array is

a two dimensional matrix then each column in the matrix is iterated over. If the array is

an array of greater than two dimensions, then it is treated asa two dimensional matrix in a

way similar to what is described inSection2.2.

These semantics are not obvious, and the arbitrary expressions can be difficult to ana-

lyze. What is desired is to have allfor loops be in a simple form. We call this simple form,

rangefor loops. Rangefor loops arefor loops whose sequence expression can only be

a range expression consisting of literals or variable uses.Suchfor loops are illustrated in

the following example.

for i = 1:2:x

BODY

end

Wherex is a variable.

These simple rangefor loops can be defined by the grammar rules inFigure3.16.

ForStmt := f or NameExpr= SimpleRangeExpr Stmt∗ end

SimpleRangeExpr:= NameOrVal: NameOrVal

| NameOrVal: NameOrVal: NameOrVal

Figure 3.16 McLAST for loop grammar

A for loop that does not fit this pattern can be rewritten to do so. For example, the

following contains afor loop that is not a rangefor loop.

29

Intermediate Representations

A = [1,2,3; 4,5,6];

for i = A

display(i);

end

This code loops through the columns ofA and prints out the following:

i =

1

4

i =

2

5

i =

3

6

Thefor loop can be rewritten to be a simple rangefor loop. You would get the fol-

lowing code.

A = [1,2,3; 4,5,6];

for j = 1:3

i = A(:,j);

display(i);

end

This code has the same output, would be validMcLAST and exposes what the values

of i will be.

3.3.5 If Statements

Theif statement defined byMcAST in Section3.2.2has extra complexity due to inclusion

of elseif in the actual structure. Fortunately anelseif is not a needed structure and can

be simplified away. To this end,McLAST does not allowelseif, and instead has a simpler

definitions for if statements. This is definition is given inFigure3.17

30

3.3. McLAST

I f Stmt := i f (CondExp)Stmt∗end

| i f (CondExp)Stmt∗elseStmt∗end

Figure 3.17 McLAST if statement grammar

3.3.6 Assignment Statements

Even with simplified expressions, assignment statements with arbitrary simplified expres-

sion on both the left and right side can be complicated.McLAST restricts assignment

statements to simplify them a little more. An assignment statements can either be a multi-

assign statement, or it has a variable on the left or a variable or literal on the right. This

definition is given inFigure3.18.

AssignmentStmt:= MultiAssignStmt

| Name= RValue

| LValue= NameOrVal

Figure 3.18 McLAST assignment statement grammar

3.3.7 Check Scalar Statement

There are some operations represented inMcAST andMcLAST that have implied run-time

checks. One check occurs inMcAST but notMcLAST . This check is to see if the operands

of a scalar short-circuiting operator is in fact scalar. SinceMcLAST does not allow these

operators and instead relies on explicit control flow, the implied check is not present. To

allow us to remedy this situation, we introduce a new statement, theCheckScalarStmt .

The definition for this statement is given inFigure3.19.

31

Intermediate Representations

CheckScalarStmt: Stmt ::= NameExpr;

Figure 3.19 McLAST assignment statement grammar

3.3.8 Validator

SinceMcLAST is specified by an AST definition and a collection of logical restrictions

placed on the AST, it is possible to construct an AST that doesnot conform toMcLAST ’s

specification. The simplifications described inChapter4 are designed to guarantee that the

result does conform. However, if arbitrary transformations are performed on an AST that

has been simplified, it may no longer conform. There should bea way to ensure that a

given AST instance conforms to theMcLAST specification.

To solve this problem, we have provided a validator. This validator traverses a given

AST instance and ensures that it conforms to the grammar specification provided in this

chapter. The validator only takes syntactic properties into account. It does not validate that

a given name refers to a variable and not a function.

32

Chapter 4

Simplifications

In Chapter3 we explained and justified a collection of restrictions for theMcL AB IR.

These restrictions represent the definition ofMcLAST . The goal ofMcLAST is to provide

a representation of a program that is simple forMcL AB developers to work with. In order

for this representation to be useful, there must be a way of generating the IR. The original

structure of the front-end simply producedMcAST when compiling. In order to generate

McLAST , we have added a new phase to the front-end. This is illustrated in Figure 4.1.

This new phase performs the simplifying transformations needed to produceMcLAST from

McAST. In this chapter we describe the organization and executionof the simplifications

followed by a description of each transformation.

Kind
Analysis

T
ra

ns
fo

rm
at

io
n

1

T
ra

ns
fo

rm
at

io
n

2

T
ra

ns
fo

rm
at

io
n

N

Front−End

Simplifier

Simplification Phase

kind info

McLASTsource McAST +
McAST

Figure 4.1 Front-end with IR generation

33

Simplifications

4.1 Organization and Execution

In order to make the transformation process more modular andsimpler to implement we

split it into several separate simplifications. Each of these simplifications relate to some

aspect of the IR definition. Splitting the transformation process also has the benefit of

allowing subsets of the process to be applied, rather than always requiring the full trans-

formation. For example, the simplification that enforces simple rangefor loops can be

applied in isolation. Of course, for some simplifications, it would not be correct to say

the simplification was applied unless certain other simplifications were also applied. For

example, one might want to apply the simplification that enforces no complex conditional

expressions inif and while statements. In order for this transformation to be consid-

ered fully applied, one would have to expand element-wise short-circuiting expressions.

This expansion is performed by a separate transformation. To have the simple conditional

transformation applied correctly, one should first apply the transformation that expands

element-wise short-circuiting expressions. The short-circuiting expansion could have been

incorporated into the conditional simplification, but thiswould have increased implemen-

tation complexity. There also may be a need to have these short-circuiting expressions

expanded without requiring the full conditional simplification.

4.1.1 Dependencies

In order to make it simpler to ensure that a given simplification is fully applied, they have

been organized into a dependency graph. This graph is restricted to being a directed acyclic

graph (DAG). The framework was not created with support for cyclic dependencies in

mind.

To enforce the dependencies, a class calledSimplifier was implemented. In addition,

each simplification is implemented as a class extendingAbstractSimplification . The

AbstractSimplification class requires that each simplification have a method called

getDependencies that returns a set of dependencies. In order to use the simplifier, an in-

stance must be constructed with a given set of simplifications to perform. The simplifier

will then perform a depth first traversal of the dependency DAG producing a list of sim-

34

4.2. Simple Assignment

plifications, avoiding duplication. Executing the simplifications in the order of the list will

ensure that all dependencies will be met. To make it simpler to perform any given simpli-

fication and its dependencies, each simplification has agetStartSet static method. This

method returns a singleton set containing the simplification itself.

The dependency DAG is shown inFigure 4.2. The rest of this chapter is spent de-

scribing each of these simplifications. To make the description simpler we present the

simplifications in a dependency satisfying order. The diagram labels each simplification

with the section where it is described.

If a new simplification is added in the future then two steps need to be followed to

ensure that it works with all other simplifications. First all simplifications that the new

one depends on must be listed in thegetDependencies method of the new dependency.

Second, each simplification that would now depend on the new simplification needs to add

the new dependency to what is returned by theirgetDependencies .

4.2 Simple Assignment

One of the simplest transformation is to ensure single-assignment statements are simplified.

This means that such assignments will not have a complex expression on both the left- and

right-hand side. The simple assignment simplification ensures that all single-assignments

have at most, either a complex expression on the left, or one on the right, but not both.

Multi-assignment statements are dealt with in another transformation, presented inSection

4.4.

This simplification is very straight forward. It simply findsall non-multi assignment

statements and checks if both sides are complex. If both sides are indeed complex, then it

converts the statement into two assignments by introducinga new temporary variable. So

for example, if we have the code:

E1 = E2;

WhereE1 andE2 are both complex expressions, the simplification will produce the follow-

35

Simplifications

(4.2) (4.4) (4.8)

Multi
Assign

Short−Circuit
arrays

Simple
Assign

CSL
left

Simple
IF

(4.9)
CONDFOR

(4.6)
Left
(4.5)

Right

(4.7)(4.3)

FULL

(4.10)

(4.11)

Figure 4.2 Dependency tree for simplifications

ing code:

t = E 1;

E2 = t;

wheret is a fresh temporary variable.

4.3 CSL Left Expansion

This simplification is intended to fulfill the CSL restrictiondescribed inSection3.3.2for

the left-hand side of assignments. In particular it affectsmulti-assignment statements. This

is because CSL expansion on the left-hand side of assignmentscan only occur in multi-

assignment statements.

36

4.3. CSL Left Expansion

The procedure for this simplification is fairly simple. It isdescribed in the pseudocode

in Figure4.3.

1 function CSL_Left_simplification(program p)
2 for each multi-assign stmt s in p
3 l = new empty list of statements
4 for each expression e in LHS of s in left-right order
5 if e is a possibly expanding expression
6 replace e with fresh CSL temp t
7 add [e]=t; to l
8 end
9 end

10 add all statements in l immediately after s
11 end

Where a possibly expanding expression is defined to be either acell indexing expression or
a structure access.

Figure 4.3 CSL left expansion pseudocode

This transformation is done indiscriminately. With more shape information it would

be possible to either avoid such transformations, or reverse them when it is known that no

expansion would occur. With such information it could also be possible to replace CSL

variables with a fixed number of normal variables. However ananalysis to obtain such

information is beyond the scope of this thesis.

Figure4.4presents some example code before and after simplification.Notice the CSL

expressionCSL[t0] . This syntax represents a CSL variable occurrence. The variable in

question has namet0 .

[a,b{:},c] = foo(); becomes
[a,CSL[t0],c] = foo();
[b{:}] = CSL[t0];

Figure 4.4 CSL expansion

This assignment statement will be simplified in the following way. We start by creating

a new empty listl that will contain new assignment statements. Each expression in the

left-hand side of the assignment will be examined. First,a will be seen. This expression

can’t possibly undergo CSL expansion, so we move to the next expression. Nowb{:}

will be examined. This expression can undergo CSL expansion,so we replace it with

37

Simplifications

the CSL temporaryCSL[t0] . We create a new assignment statement to get the value out

of CSL[t0] and put it inb{:} . This assignment will be[b{:}] = CSL[t0]; . We put

this new statement at the end of our listl . Now we move to the next expression on the

left-hand side of the original assignment, which isc. This expression can’t undergo CSL

expansion, so we skip it. There are no other expressions to examine so now take all the new

assignment statements inl and insert them immediately after the modified multi-return

statement, which gives the result in the example.

4.4 Multi-Assignment Simplification

The multi-assignment simplification enforces the constraints on the left-hand side of multi-

assignments described inSection3.3.2. These constraints require that there be only simple

variables without repetition on the left-hand side of multi-assignment statements.

This simplification requires that the CSL left expansion simplification, described in

Section4.3, be performed. This is because this simplification is written to extract offending

left-hand side expressions into simple temporary variables. If an expression can undergo

CSL expansion then it cannot be replaced by a non CSL variable. The CSL left expansion

simplification ensures that there are no expressions on the left-hand side that can undergo

CSL expansion.

Given that we can assume that the CSL expanding expressions have already been re-

moved, the implementation of this simplification is straightforward. The basic procedure

is to traverse the left-hand side expressions in left to right order and replace each non sim-

ple name expression or repeated names with a temporary variable. Then we assign each

temporary to the appropriate removed expression in the sameorder. The only minor com-

plexity comes from enforcing non-duplicate variables without replacing every variable.

Pseudocode for this transformation is shown inFigure4.5.

Once this transformation is done, we can ensure that all multi-assignment statements

will be simple to work with. The order of evaluation for each expression will also be made

explicit and the actual assignments in the multi-assignment can be interpreted in any order.

To demonstrate this simplification, we give a simple examplein Figure 4.6. In this

example, there are two expressions on the left-hand side which should be removed. The

38

4.5. Left-Hand Side simplification

1 for each multi-assignment statement s
2 l = new empty list of statements
3 N = new empty set of names
4 for each expression e in left-hand side of s from left-right
5 if e is name
6 if e ∈ N
7 replace e with fresh temporary t
8 add e=t; to l
9 else

10 add e to N
11 end
12 else
13 replace e with fresh temporary t
14 add e=t; to l
15 end
16 end
17 add statements in l after s
18 end

Figure 4.5 Multi-Assignment simplification pseudocode

first is b.c because it isn’t a simpleNameExpr. The second is third expression,a. This

expression is a simpleNameExpr, but, sincea already appeared in the left-hand side of this

assignment, it needs to be extracted. These two expressionsare replaced by temporariest0

andt1 , respectively, and two new assignment statements are inserted.

[a,b.c,a] = foo(); becomes

[a,t0,t1] = foo();
b.c = t0;
a = t1;

Figure 4.6 Multi-assignment simplification example

4.5 Left-Hand Side simplification

TheMcLAST specification requires more constraints on the left-hand side of assignments

than what is enforced by the CSL left and multi-assignment simplifications. In particu-

lar, it requires that no expression on the left-hand side cancontain arguments that are not

either variable names or literals. For instance this would apply to the arguments of an

39

Simplifications

indexing expression on the left-hand side of an assignment.If we have a simple assign-

ment such asA(3+4)= 3 , the index value3+4 is not a simple variable use, so it will be

extracted into a temporary. The multi-assignment simplification is a dependency for the

left-hand side simplification, and so will already enforce this for multi-assignment state-

ments. So all this transformation needs to simplify is simple assignments. This is a major

reason why this dependency exists. The dependency could notbe removed because the

multi-assignment simplification introduces new simple assignments. If the left-hand side

simplification is not guaranteed to be run after the multi-assignment simplification, then

there may be expressions on the left-hand sides that don’t get simplified. Alternatively, the

left-hand side simplification could be made more complex andactually deal with multi-

assignment statements. This was deemed undesirable due to that added complexity and

because the dependency seems to be a natural one.

The left-hand side simplification could be implemented in a simple way by replac-

ing every argument or subexpression in the left-hand side with temps. This would satisfy

McLAST ’s constraints for the left-hand side of assignments. Unfortunately such a sim-

ple transformation would create excessive temporary variables. For instance, if we have

the statementA(i)= b . The i on the left hand side may be a variable, in which case we

wouldn’t want to extract it. However, thei could also be referring to a function, such as the

built-in function i that returns the unit imaginary number. Such a simple transformation

would also have the consequence of causing the simplification to never reach a fixed-point

if repeatedly applied. In such a situation it would extract all the temporary variables put

in place by the previous application, replacing them with even more temporaries. To avoid

these problems the simplification needs to be implemented with more care. To do this we

require information about what names refer to variables. Fortunately there is a static anal-

ysis that computes such information. This analysis is called the Kind Analysis [DHR11]

and is used to estimate the kind of a given identifier. In particular the analysis can estimate

if an identifier is a variable or a function. There are situations where it cannot determine

this information for some identifiers. When it can’t determine the exact kind of an identi-

fier it is simply extracted. The Kind Analysis has the nice property that the way temporary

variables are added ensures that the analysis will always recognize them as variables. In ad-

dition, each temporary variable is tagged as a temporary in the IR. This is so new temporary

40

4.5. Left-Hand Side simplification

variables can be recognized in the IR without re-analyzing the program. More information

about the analysis can be seen inSection5.2.5.

The procedure for performing this simplification would be straightforward except for

the presence ofend expressions. As described inSection2.2, the end expression binds

to the tightest enclosing array or cell array indexing. So ifan end is bound to a given

indexing expressione, and we extract all sub-expressions ofe, then it would be diffi-

cult to find what expression theend binds to after the transformation. It would also

not be simple to have a separate transformation that removesthe end expressions, or

makes the binding explicit. This is because of side effects.For an expression such as

a(foo()).b(end,42) wherea is a variable andfoo is a function, it would be tempting to

write a(foo()).b(end(a(foo()).b,2,1),42) whereend(a(foo()).b,2,1) represents

the explicit binding. Performing such a transformation would then causefoo() to be eval-

uated more than once. This is wasteful and incorrect due to side effects.

To have a simplification that does a correct transformation would require duplication

of functionality implemented in the left and right-hand side simplifications. Instead, each

of these simplifications handle theend in their own implementation. The functionality for

removingend is similar in both left and right, so it was factored out and used by both.

The strategy for performing this simplification is to extract all complex parameters into

temporaries. If they are CSL expanding parameters, they are extracted into CSL tempo-

raries. At the same time, the expression being extracted is searched forend expressions

that bind to the target of the parameters. It is replaced withan explicitend and we record

that the explicitend is associated with the bound target. Once all indices are removed and

the expression being indexed is completely simplified, all explicit end expressions are made

to bind to the simplified target. New assignments are added for the extracted expressions

before the statement being simplified. The procedure is demonstrated through an example.

We will start off with an assignment statement that has a fairly complex left-hand side,

containing anend expression.

1 a(foo(),3).b(4,bar(end),v) = 42; %Where v is a variable

We will be simplifying the expression on the left-hand side of this assignment. This

expression is aParameterizedExpr with the target beinga(foo(),3).b . Further more,

41

Simplifications

since thisParameterizedExpr is the left-hand side of an assignment, it must be indexing

the array given by its target. Since it is aParameterizedExpr its arguments may contain

an end expression that binds to the array being indexed. For the sake of the argument,

we will assume thatbar is a function, so theParameterizedExpr does indeed contain an

end expression that binds to it. The binding of thisend must made explicit, we do this by

replacing it with an explicit end. This results in the following partially transformed code.

1 a(foo(),3).b(4,bar(end(?,2,3))) = 42;

Notice that the explicit end contains a? instead of an expression giving the array it

is bound to. This is because we do not yet have the fully simplified expression that gives

the desired array. For now, we will have to keep track of the fact that thisend will bind to

the simplified version ofa(foo(),3).b . Now that we have made all theend expressions

explicit, we continue by extracting complex sub-expressions from the partially simplified

expression.

This statement has two expressions that need to be removed,foo() andbar(end(?,2,3)) .

The target of theParameterizedExpr being simplified needs to be computed first, which

meansfoo() needs to be computed first. To reflect this,foo() needs to be extracted first.

It is replaced by a new temporary and a new assignment statement is created for it. This

results in the following code.

1 t0 = foo();

2 a(t0,3).b(4,bar(end(?,2,3)),v) = 42;

Next, we will extractbar(end(?,2,3)) from the indices ofa(t0,3).b . This results in

the following code.

1 t0 = foo();

2 t1 = bar(end(?,2,3));

3 a(t0,3).b(4,t1,v) = 42;

This leaves the left-hand side of the original assignment statement fully simplified.

However, we are still left with the partially transformed explicit end expression. At this

point, we have the fully simplified expression that theend binds to, and we can complete

42

4.6. For Loop Simplification

the transformation. This results in the following fully transformed code.

1 t1 = foo();

2 t2 = bar(4, end(a(t1,3).b, 2, 3), v);

3 a(t1,3).b(4,t2,v) = 42;

4.6 For Loop Simplification

A for loop in MATLAB can be somewhat complex. In particular, what afor loop is actually

looping over may not be clear. Afor loop with the form

for i = E

BODY

end

will first evaluate the expressionE. It will then treat the resulting array as two dimen-

sional. The loop will loop through the columns, assigning each column to the loop variable

i . For this reason,McLAST requires that there only be simple rangefor loops. That is to

say,for loops with a start, stop, and optional step number. The loop variable will loop over

the numbers between start and stop, rather than arbitrary values. This restriction still allows

us to perform all the same computations, but forces the loop semantics to be explicit.

The goal of thefor loop simplification is to transform arbitraryfor loops into simple

rangefor loops. At the same time we want to expose the loop semantics ofthe original

loop.

The procedure for this simplification is straightforward. To perform the transformation

we find eachfor statement that isn’t already a rangefor loop, and modify the loop variable

assignment, adding necessary temporaries and assignmentsto expose the semantics. We

will demonstrate the procedure with an example. Each step ofthe example is justified to

demonstrate validity of the transformation.

We start with a simple generic for loop.

43

Simplifications

for i = E

BODY

end

We assume that the expressionE is not a range expression. We don’t wish to evaluateE

multiple times. To this end, we first extract it into a variable. This results in the following

equivalent code.

t1=E;

for i = t1

BODY

end

Next, we need to add computations for the limits of the range loop. As we mentioned pre-

viously, MATLAB will treat the array being looped over as two dimensional andloop over

each column. The transformed range loop will instead loop over the number of columns.

The number of columns is simple to compute. For this, we will take advantage of the built-

in size function. This function is used to return the sizes of the dimensions of a given

array. It can be called in a way that expects two return values, the second return value will

be the desired number of columns. We add these computation tothefor loop.

t1=E;

[t2,t3] = size(t1);

for i = t1

BODY

end

t2 will contain the size of the first dimension, a value that isn’t actually needed.t3 will be

the desired number of columns.

Obviously this is still the equivalent loop, since we have only added a single new side

effect-less statement.

We can now modify the loop to be a range loop. As we said, the loop will range over

the number of columns. This range will be1:t3 . We will also need to ensure that the

loop variable contains the appropriate value, which will bethe appropriate column from

the original array.

44

4.7. Simple If Statements

t1=E;

[t2,t3] = size(t1);

for t4 = 1:t3

i = t1(:,t4);

BODY

end

Now there is one extra detail that needs to be covered by this simplification. When the

loop domain of afor loop is empty, the loop variable will actually be given the value [] ,

which is a 0×0 double array. In order to capture this, we add an assignment toi with the

value[] immediately before the loop.

t1=E;

[t2,t3] = size(t1);

i = [];

for t4 = 1:t3

i = t1(:,t4);

BODY

end

This is the final result of our transformation. The loop is nowa simple rangefor loop,

ranging over the number of columns in the original loop domain. The original loop variable

is given the value of the appropriate column at the start of each iteration. This results in a

loop that performs the same iterations as the original loop,except the loop values are now

made more explicit.

4.7 Simple If Statements

The simpleif statement transformation is a straightforward simplification. BecauseMcLAST

does not allowelseif statements, they need to be simplified into explicit nestedif state-

ments. The procedure is straightforward. For everyif statement containing anelseif, we

remove the firstelseif, create a newif out of it and put any remainingelseif and the

else from the originalif into it. We then put this newif into a newelse of the original

if. Pseudocode for the procedure is given isFigure4.7

45

Simplifications

1 for each if statement s in original program
2 if s has elseifs
3 simplify(s)
4 end
5 end

1 function simplify(s):
2 ei = the first elseif in s
3 ni = a new if statement
4 set ni condition to ei condition
5 set ni then block to ei then block
6 set ni elseifs to s elseifs without ei
7 set ni else block to s elseblock if one exists
8 remove all elseifs from s
9 remove else block from s

10 add an else block to s containing only ni
11 simplify(ni)
12 end

Figure 4.7 Simplifying if statement pseudocode

This simple transformation allows us to assume allif statements will only beif else

statements. This assumption has greatly simplified implementation of other simplifications.

4.8 Array Short-Circuit simplification

In MATLAB there are two forms of short-circuit operations. The first isthe standard short-

circuit operations&&and|| . These operators work with scalar values of type logical. These

will be dealt with in aSection4.10. The second type is the array logical operators& and

| . In normal expressions, these are not short-circuiting. They only become short-circuiting

when in the conditional of anif or while statement. They will also not be short-circuiting

if they are nested inside an expression that isn’t a& or | expression. Because these operators

are only short-circuiting in special circumstances, we perform the simplification in this

transformation, rather than in a general way with the&& and|| operators.

The goal of this simplification is to expose the control flow introduced by these short-

circuit operators. We also wish to maintain the correct semantics of these operators. The

important semantics to consider are constraints on size andshape of operands. If both

46

4.8. Array Short-Circuit simplification

operands are to be evaluated, then both operands must evaluate to an array of the same size

and shape.

Another important consideration is that these operators are not recommended for use in

short-circuiting situations. They are however acceptableand even desirable in non short-

circuiting situations. Because of this recommendation, we have focused on performing an

accurate, safe, and simple transformation at some cost to run-time performance.

The transformation has two steps. The first step extracts allarray short-circuiting ex-

pressions for the conditions ofif andwhile statements. It replaces them with a temporary

variable, assumed to contain the result of the expression. The second step expands the

short-circuit control flow and generates the statements to represent it. These statements are

generated to ensure that the final result will be assigned to the desired temporary variable.

The statements will be inserted before theif or while they were extracted from. The

insertion process in particular is greatly simplified by thesimplification ofif statements.

Pseudocode for the process is given inFigure4.8.

1 for each if or while statement s
2 c = the condition expression of s
3 if c is a & or | expression
4 t = fresh temporary
5 replace c with t
6 l = new list of statements
7 if c is a & expression
8 simplify(c,&,l,t)
9 else

10 simplify(c,|,l,t)
11 end
12 add statements in l before s
13 end
14 end

Thesimplify(...) function is given inFigure4.9.

Figure 4.8 Array short-circuiting simplification pseudocode

We will demonstrate this procedure with an example. The following code contains an

47

Simplifications

1 function simplify(exp, op, l, t)
2 L = left operand of exp
3 R = right operand of exp
4 t1 = fresh temporary
5 if L is a & or | expression
6 simplify(L, operator of L, l, t1)
7 else
8 add t1 = L; to l
9 end

10 l1 = new empty list of expressions
11 t2 = fresh temporary
12 if R is a & or | expression
13 simplify(R, operator of R, l1, t2)
14 else
15 add t2 = R to l1
16 end
17 add t = t1 op t2; to l1
18 if op is |
19 add the following if statement to l,
20 replacing l1 with the appropriate value
21 ’if t1
22 t=t1;
23 else
24 l1
25 end’
26 else
27 add the following if statement to l,
28 replacing l1 with the appropriate value
29 ’if t1
30 l1
31 else
32 t=t1;
33 end’
34 end
35 end

Figure 4.9 Simplify function pseudocode for array short-circuiting simplification

48

4.9. Conditional Simplification

array short-circuit expression.

1 if A & (B | C)

2 foo();

3 end

The implied logic is that, firstA is evaluated. If that array only containstrue values,

then the short-circuit expressionB | C is evaluated. The evaluation of this expressions

means that firstB is evaluated. If this array only containstrue values, thenC does not

need to be evaluated. Otherwise, we must evaluateC. If the array thatA evaluated to didn’t

contain alltrue values, then we wouldn’t have needed to evaluate the rest of the expression.

Simplifying all this logic out, using the procedure described in this section, results in the

following code.

1 t1 = A;

2 if t1

3 t3 = B;

4 if t3

5 t2 = t3;

6 else

7 t4 = C;

8 t2 = t3 | t4;

9 end

10 t0 = t1 & t2;

11 else

12 t0 = t1;

13 end

14 if t0

15 foo();

16 end

4.9 Conditional Simplification

Even after performingif statement and array short-circuit simplification,if andwhile

statements can still contain complex conditional expressions. According to the IR defini-

tion, these conditional expressions should only be literals, variable uses or comparisons of

49

Simplifications

variable uses or literals.

The transformation to enforce this constraint is a simple one. It uses the Kind Analysis

to distinguish names that are definitely variables in order to avoid excessive temporaries.

Pseudocode for this transformation is given inFigure4.10. The procedure is to check each

conditional expression and extract it if it is not a simple expression.

1 for each if or while statement s
2 l = new list of statements
3 c = condition expression of s
4 if c is not a variable name
5 if c is a <, >, <=, >= expression
6 if left operand L of c is not a variable
7 t = fresh temporary
8 replace L with t
9 add t = L; to l

10 end
11 if right operand R of c is not a variable
12 t = fresh temporary
13 replace R with t
14 add t = R; to l
15 end
16 else
17 t = fresh temporary
18 replace c with t
19 add t = c to l
20 end
21 add statements in l before s
22 end
23 end

Figure 4.10 Condition simplification pseudocode

A simple example of this simplification is given inFigure 4.11. In this example, the

conditional expression(foo()+2)>X is simplified. Note that in the result of this example,

the expressionfoo()+2 is left unsimplified on the right-hand side of an assignment.This

is because simplifying this expression is left to subsequent transformations.

50

4.10. Right-Hand Side Simplification

if (foo()+2)>X
bar();

end
becomes

t0 = foo()+2;
t1 = X;
if t1>t2

bar();
end

Figure 4.11 Conditional simplification example

4.10 Right-Hand Side Simplification

As with left-hand side expressions, theMcLAST specification requires that no expression

contain any sub expression that is not either a literal or a variable use. Meeting this require-

ment is the goal of the right-hand side simplification. All simplifications discussed to this

point are dependencies of the right-hand side simplification. Having these dependencies

will greatly simplify the right-hand side simplification. This is because all these depen-

dencies have the effect of having all complex expressions exposed as either expressions on

the right-hand side of assignments, or as expressions statements. Afor statement can also

contain complex expressions in its loop variable assignment but, since thefor loop simpli-

fication has run, only range expressions need to be considered here. All other expressions

can assumed to be simplified already.

The basic procedure is to take right-hand side expressions and expression statements

and remove complex sub expressions. These sub expressions are replaced by temporary

variable uses and statements to perform the correct computation representing the expression

and assigning the value to the temporary are created. The statements are then simplified

further.

There are four types of complex expressions that must be removed and dealt with in

different ways. The first are basic complex expressions. These expressions are simply uses

of operators, and function calls, This also includes array and cell array construction such

as [1 2 3 4] . Such expressions are simply moved into temporaries and assignments are

created from the expression to the temporary.

The second type of complex expressions are CSL expanding expressions as parameters.

As in Section4.3, CSL expansion must be treated in a special way. CSL expansion can

51

Simplifications

occur if an appropriate expression is used as an argument or index. These expressions are

be extracted into CSL temporaries.

The third type of expressions considered areend expressions. As was described in

Section4.5, anend expression binds to the tightest array indexing containingthem. When

simplifying a given expression, if anend can bind to it, then it must be searched forend

expressions. Theend expressions will need to be dealt with in the same way that they were

in Section4.5.

The final type of expressions are short-circuit expressions. In Section4.8 some short-

circuit expressions were dealt with. These short-circuit expressions were the array short-

circuit expressions using the& and| operators. These operators will only be short-circuiting

when used inside the condition of anif or while. Since they have already been simplified,

they do not need to be dealt with here. There are however stillthe scalar short-circuit

operators&& and || . These operators will be short-circuiting anywhere, so they must be

simplified. We describe the procedure for simplifying theseexpressions in more detail

in Section4.10.1. For now, it is sufficient to explain that simplifying these expressions

will expose the control flow caused by the short-circuit behaviour. This will cause newif

statements to be created.

The procedure is to simplify each needed statement, then recursively simplify each

statement generated by simplifying that statement. This will generate a list of simplified

statements, the last of which is the simplified original statement. This list of statements is

then inserted in place of the original statement. Pseudocode for this procedure is given in

Figure4.12.

We give an example to demonstrate the recursive procedure for simplifying a right-hand

side expression. This example is given inFigure4.13

4.10.1 Short-Circuit Expression simplification

Scalar short-circuit expressions need to be expanded to make explicit the control flow they

represent. These expressions can appear in any other expression, and can contain arbitrary

sub-expressions. Because of this, simplifying short-circuit expressions must be done at

the same time as other expressions are simplified. It would bepreferable to have this

52

4.10. Right-Hand Side Simplification

1 function rightSimplification(program)
2 for each statement s in program
3 l = new list of statements
4 simplifyStmt(s, l)
5 replace s with statements in l
6 end
7 end

1 function simplifyStmt(s, l)
2 if s is assignment
3 e = right-hand side of s
4 simplifyExpr(e, l)
5 else if s is expression statement
6 e = expression in s
7 simplifyExpr(e, l)
8 else if s is for statement
9 e = right-hand side of assignment in s

10 simplifyExpr(e, l)
11 end
12 append simplified s to l
13 end

For the sake of clarity,simplifyExpr(...) is describe through an example inFigure4.13.
This example illustrates one iteration of the recursive process, which results in new assign-
ment statements. These new statements will be simplified further in subsequent iterations.

Figure 4.12 Right-hand side simplification pseudocode

transformation separate from the right-hand side simplification, but this would require a

cyclic dependency between the short-circuit expressions simplification and the right-hand

side simplification.

There are important issues to consider when expanding short-circuit expressions. The

expansion should avoid causing duplicate code, the transformed code should not be signif-

icantly larger than the original code. Creation of new temporaries should be reduced. The

association between the terms in a short-circuit expressions should be preserved as much

as possible. And of course MATLAB semantics should be preserved.

These concerns sometimes compete with each other. For instance, the goal of main-

taining the association between terms is to make it obvious what terms have already been

evaluated and what their truth values are when evaluating a specific term. To this end, it

would be preferable to transformt = (A && B)|| (C && D) into the code shown inFig-

53

Simplifications

%assume A is a variable and foo and bar are functions
X = A(foo(1+2),bar(end));

The statement in this example is an assignment statement, which means that the
right-hand side expression will be simplified bysimplifyExpr(...) . The rest of
this example demonstrates this procedure.
Note the use of theend expression as an argument tobar(...) . This
end expression is bound toA and will need to be made explicit in this
pass of the simplification. We will also be removing the expressions
foo(1+2) and bar(end) , resulting in new assignment statements. This
first iteration of the recursive procedure results in the following code:

t0 = foo(1+2);
t1 = bar(end(A,1,1));
X = A(t0,t1);

Note that this result contains two new assignment statements that require further
simplification on their right-hand side. These are simplified further by calling
thesimplifyStmt(...) procedure, given inFigure 4.12, on each of them recur-
sively.

Figure 4.13 Right-hand side simplification example

ure 4.14. Lines 5-9 and 12-16 are duplicates of each other. As the expression gets larger,

more duplication will occur. This conflicts with reducing code expansion.

Avoiding code duplication is an important concern. The running time of code analysis

will grow with respect to code size. Duplicating function calls can create difficulty for a

context sensitive interprocedural analysis. Because of this, code duplication is avoided in

this transformation. There is however, still an attempt to maintain the association between

some terms in the expression.

The procedure for simplifying can be explained using some transformation patterns.

This procedure would be a special case of thesimplifyExpr function. Rather than per-

forming the simplification described inFigure 4.13, simplifyExpr would detect that a

short-circuiting expression is being simplified and instead use this procedure. These pat-

terns are presented next.

Some notes need to be made concerning the simplification and notation used. First,

54

4.10. Right-Hand Side Simplification

1 if A
2 if B
3 t = true;
4 else
5 if C
6 t = D;
7 else
8 t = false;
9 end

10 end
11 else
12 if C
13 t = D;
14 else
15 t = false;
16 end
17 end

Figure 4.14 Naive short-circuit expansion

due to the conditional simplification inSection4.9 and the procedure of the right-hand

side simplification, we can assume that all short-circuit expressions are in statements of

the formt=EXP . Wheret is some temporary. In the patterns, the notation[t,EXP] SC and

[t,EXP] are used. These represent the short-circuit and non short-circuit simplification,

respectively, of the given expression with the resulting computed value stored in temporary

t .

We start the procedure off by simplifying[t,EXP] SC, which will give us the simplified

version oft=EXP . Patterns for performing these simplifications are given inFigure 4.15.

These patterns match based on the expression in the[t,EXP] SC notation. They will either

produce anif statement requiring further short-circuit simplification, a new expression

requiring short-circuit simplification, or the same expression requiring non short-circuit

simplification. It is important to note that allif statements produced by this simplification

will have a very particular pattern. They will only contain simple assignments of boolean

literals to a temporary variable. Theseif statements are further dealt with by patterns

in Figure 4.16. When a pattern switches from short-circuit simplification to non short-

circuit simplification, the transformation also inserts aCheckScalarStmt statement for

the temporary holding the result of the expression. This newstatement enforces that the

55

Simplifications

result computed by the transformed code must be a scalar value. Adding this statement is

necessary because theif statements produced will not enforce this constraint. The exact

behaviour of this statement is left undefined. In a virtual machine, this statement could be

executed as a run-time check of the given variable. In a more static setting, such asMcFOR,

a program may be statically rejected if it cannot guarantee that all such checks pass. In this

case, theCheckScalarStmt has no run-time behaviour.

Since these patterns are recursive, we briefly discuss termination of the procedure.

These patterns terminate when pattern6 is reached. This occurs when an expression does

not have a&&, || , or ˜ as its main operator.

Consider the simplification of[t,EXP] SC. Take the three-tuple〈#|| ,#&&,#˜ 〉EXPof the

counts of|| , &&, and˜ in the expressionEXP. Each pattern will create new expressions that

require simplification, e.g.[t,EXP 2] SC. The three-tuple〈#|| ,#&&,#˜ 〉EXP2 corresponding

to the new expression will be lexicographically less than the original three-tuple. This will

cause the simplification to always reach pattern6.

The patterns fromFigure4.15can generateif statements with conditional expressions

that require simplifications.Figure 4.16presents patterns to simplify theseif statements.

These patterns only consider the conditional expression oftheif statement. They will ei-

ther produce a newif statement requiring further simplification, or pull out theexpression

for simplifying by the previous patterns.

An important note is that pattern1 appears to introduce duplicated code. The<ELSE

PART>appears twice in the result of the pattern. This is indeed a duplication of code but it

is tightly controlled. Theseif statements are only produced by the previous patterns. The

<ELSE PART>of thoseif statements will only contain a single assignment of a boolean

literal to a temporary variable. These patterns for simplifying theif statements will not

produce an<ELSE PART>more complex than what it is given, so it preserves this prop-

erty. It guarantees that only a single simple assignment statement is duplicated. This is an

acceptable duplication.

These patterns will terminate when pattern3 is reached. This pattern will always be

reached for the same reason that the previous patterns terminate. When pattern3 is reached,

simplification will continue using the previous patterns. Since those patterns terminate, the

overall procedure will terminate.

56

4.10. Right-Hand Side Simplification

1. [t,E 1 && E2] SC ⇒

if [t,E 1] SC

[t,E 2] SC

else
t = false;

end

2. [t,E 1 || E 2] SC ⇒

if [t,˜E 1] SC

[t,E 2] SC

else
t = true;

end

3. [t,˜˜E] SC ⇒ [t,E] SC

4. [t,˜(E 1 && E2)] SC ⇒

if [t,E 1] SC

[t,˜E 2] SC

else
t = true;

end

5. [t,˜(E 1 || E 2)] SC ⇒ [t,˜E 1 && ˜E2] SC

6. [t,E] SC ⇒
[t,E]
CheckScalarStmt(t);

Figure 4.15 Short-circuit patterns for assignments

To demonstrate this procedure, we will use these patterns tosimplify the expression

(A && B)&& C. The process will start off as the following:

1 [t,(A && B) && C] SC

The main operator here is the an&&. This matches with pattern1 from Figure 4.15.

57

Simplifications

1.

if [t,E 1 && E2]
<THEN PART>

else
<ELSE PART>

end

⇒

if [t, E 1] SC

if [t, E 2] SC

<THEN PART>
else

<ELSE PART>
end

else
<ELSE PART>

end

2.

if [t,˜(E 1 || E 2)]
<THEN PART>

else
<ELSE PART>

end

⇒

if [t,˜E 1 && ˜E2]
<THEN PART>

else
<ELSE PART>

end

3.

if [t,E] SC

<THEN PART>
else

<ELSE PART>
end

⇒

[t,E] SC

if t
<THEN PART>

else
<ELSE PART>

end

Figure 4.16 Short-circuit patterns for if statements

This results in the following:

1 if [t,A && B] SC

2 [t,C] SC

3 else

4 t = false;

5 end

Here we will be working with the patterns forif statements, given inFigure 4.16. Again,

the main operator is a&&. This means we will be using pattern1 in 4.16, resulting in the

58

4.10. Right-Hand Side Simplification

following:

1 if [t,A] SC

2 if [t,B] SC

3 [t,C] SC

4 else

5 t = false;

6 end

7 else

8 t = false;

9 end

At this stage, all we have are simple name expressions left tosimplify. Rather than

go through all the steps needed to completely simplify, we will apply all the remaining

patterns at once. The patterns that apply are pattern3 from 4.16and6 from 4.15. We also

perform the final step of simplifying, which is to simplify[t,A] , [t,B] , and[t,C] into

t=A; , t=B; , andt=C; .

This gives us the following code.

1 t = A;

2 CheckScalarStmt(t);

3 if t

4 t = B;

5 CheckScalarStmt(t);

6 if t

7 t = C;

8 CheckScalarStmt(t);

9 else

10 t = false;

11 end

12 else

13 t = false;

14 end

59

Simplifications

4.11 Full Simplification

The final simplification is the full simplification. This is actually just a dummy simpli-

fication in that it doesn’t perform any transformation. The purpose for it, is to have one

simplification that is guaranteed to execute all other simplifications. It does this by be-

ing a dependent of all simplifications that don’t otherwise have dependents. In the current

implementation the only simplification that falls into thatcategory is the right-hand side

simplification. If other such simplifications were added, then they would be listed in full

simplification’s dependencies. As it stands, the full simplification acts as a more appropri-

ate starting point than the right-hand side simplification for fully simplifying the AST.

60

Chapter 5

Intraprocedural Analysis Framework

In order for a compiler to perform optimizations or provide feedback to programmers,

it must have a way to automatically reason about the programsit is given. This is done

by creating static analyses that are used to infer information about a given program. These

analyses usually fit into one of a few categories. They can be flow-insensitive or flow-

sensitive. If they are flow-sensitive then they can be forwards or backwards.There are also

intraprocedural and interprocedural flavours of these. This thesis focuses on the intrapro-

cedural flavour of these analyses.

Different analyses will often require the same functionality. For instance, all analy-

ses require a way of visiting nodes in the IR. This is specialized for flow-insensitive and

flow-sensitive and further specialized for forward and backward flow-sensitive analyses.

This kind of basic functionality should not be rewritten foreach analysis. Instead, as a

contribution of this thesis, a framework for developing static analyses has been developed.

This static analysis framework is intended to make it simpler for programmers to de-

velop new analyses. It does this by defining the different types of analyses and providing

an implementation of basic procedures. Another goal is to make it extensible to new lan-

guage extensions. This goal has two requirements, the framework itself should be usable

to create new analyses for a language extension, and old analyses should be adaptable to

new extensions.

In this chapter we will be presenting the design of the analysis framework. Section

5.1 describes the basic traversal mechanism used by all analyses. This is followed by a

61

Intraprocedural Analysis Framework

description of the different types of analyses inSection5.2. In Section5.2.5, some analysis

created forMcL AB using this analysis framework are described. Finally, inChapter6

we describe how the framework and existing analyses can be extended to new language

extensions.

5.1 Basic Traversal Mechanism

The analysis framework is designed to work with the IR; it can be used with bothMcAST

andMcLAST . The analyses created using the framework are going to need away of travers-

ing the IR. This traversal can take different forms; it can be asimple traversal of the tree

structure, such as a depth-first traversal, or it can be a traversal where some nodes are

visited repeatedly, for instance to compute a fixed-point for a flow-sensitive analysis.

The grey class,CheckScalarStmt is an AST node that is part ofMcLAST and not
McAST. All white classes in this diagram are part of bothMcLAST andMcAST.

Figure 5.1 Excerpt of AST class hierarchy

The framework accommodates different traversals by implementing a variant of the

visitor pattern. The IR consists of instances of different types of AST nodes. The types

form a class hierarchy, an excerpt of which is depicted inFigure5.1. To facilitate traversal,

we have created a Java interface calledNodeCaseHandler that consists of methods of the

form void caseStmt(Stmt node) . There is one such method for every AST class. We

have also provided a simple abstract implementation calledAbstractNodeCaseHandler .

This implementation provides default behaviour for each node case. This default behaviour

is that for each AST class, the node case for that class simplyforwards to the node case

of its parent class. The forwarding is done by calling the case for the parent class with

62

5.1. Basic Traversal Mechanism

the input from the case for the given class. We demonstrate this with an excerpt from

AbstractNodeCaseHandler for the AssignStmt andStmt classes. This excerpt is given

in Figure 5.2. Notice on line 3, thecaseAssignStmt(...) is forwarding up to the case

belonging to its parent class,AssignStmt .

1 public void caseAssignStmt(AssignStmt node)
2 {
3 caseStmt(node);
4 }
5 public void caseStmt(Stmt node)
6 {
7 caseASTNode(node);
8 }

Figure 5.2 Excerpt of AbstractNodeCaseHandler demonstrating default behaviour

Figure 5.1 shows that theAssignStmt node type extends theStmt node type. As de-

scribed previously, this means the default behaviour forcaseAssignStmt(...) is to for-

ward tocaseStmt(...) , which is done by passing the argument fromcaseAssignStmt-

(...) to caseStmt(...) . The definition for thecaseAssignStmt(...) method demon-

strates the forwarding behaviour. This method takes in an instance ofAssignStmt and calls

caseStmt(...) with that instance.

It should be noted thatASTNode is the root type of the AST class hierarchy. TheStmt

class is a top level node type, which directly extendsASTNode, so thecaseStmt(...)

will forward to caseASTNode(...) . The AbstractNodeCaseHandler leaves thecase-

ASTNode(...) method unimplemented.

Each AST class implements a method calledanalyze that takes aNodeCaseHandler

as an argument. These methods will call the appropriate nodecase of the given handler,

passing itself to the handler. For example, here is the code implementing theanalyze

method in theAssignStmt class.

public void analyze(NodeCaseHandler handler)

{

handler.caseAssignStmt(this);

}

63

Intraprocedural Analysis Framework

In order to create a particular traversal, a programmer needs to create a specialized

NodeCaseHandler . The different types of analyses are implemented in this manner, but a

programmer can directly create a traversal. To demonstratethis process we present a simple

traversal, calledStmtCounter , that counts the number of statements in a given AST. Code

for this traversal is given isFigure5.3.

1 public class StmtCounter extends AbstractNodeCaseHandler
2 {
3 private int count = 0;
4 private StmtCounter()
5 {
6 super();
7 }
8

9 public static int countStmts(ASTNode tree)
10 {
11 tree.analyze(new StmtCounter());
12 }
13

14 public void caseASTNode(ASTNode node)
15 {
16 for(int i = 0; i<node.getNumChild(); i++)
17 node.getChild(i).analyze(this);
18 }
19

20 public void caseStmt(Stmt node)
21 {
22 count++;
23 caseASTNode(node);
24 }
25 }

Figure 5.3 Example traversal counting statements

To use this class, a programmer simply needs to call the static methodcountStmts .

This method creates a new instance of the traversal and starts the analysis off.

This traversal will visit all nodes in the tree in depth-firstorder, and count each state-

ment node. There are two important details to note from this example. The first thing is the

caseASTNode(...) implementation. In this example, this method does the actual traversal

over the tree, looping through and visiting each of a node’s children. SinceStmtCounter

extendsAbstractNodeCaseHandler , all cases that are not overridden will forward up until

64

5.1. Basic Traversal Mechanism

they reach this case. This means that the default behaviour for AST nodes will be to sim-

ply traverse through their children. This is a common pattern when implementing traver-

sals. The flow-insensitive traversal is implemented similar to this, and the flow-sensitive

traversals have a similarcaseASTNode(...) with other behaviour implemented for control

structures like loops and conditionals.

The second thing to notice is thecaseStmt(...) method. Besides thecaseASTNode-

(...) , this is the only case implemented byStmtCounter . Again, sinceStmtCounter

extendsAbstractNodeCaseHandler , all node types that are descendants ofStmt will for-

ward up to this case. So this case will capture all statements, which gives a good place

to perform the count. One should also notice that this implementation ofcaseStmt(...-

) forwards tocaseASTNode(...) . This is because there are some statements, such as if

statements, that can contain other statements. We wish to visit all of the statements con-

tained in other statements, so we need to visit the children of a given statement. To do this,

we simply forward tocaseASTNode(...) .

TheStmtCounter example does have some inefficiencies. It will visit all children of a

given node, even children that cannot be or contain statements. For example, the children

of an expression cannot be or contain statements. This shortcoming can be overcome by

providing specialized implementations of appropriate cases. To avoid visiting unnecessary

expression children one could add the following method to the class.

...

public void caseExpr(Expr node)

{

return;

}

...

This method will prevent all children of any expression frombeing visited.

The example can be refined further, but the original version is concise and correct, and

demonstrates how simple it can be to create new traversals. This mechanism is also used

by the simplifications presented inChapter4. There is a specialized traversal created for

all simplifications. This traversal implements the rewritemechanisms as well as the AST

traversal. Each simplification extends this simplificationtraversal, implementing its own

65

Intraprocedural Analysis Framework

behaviour for the appropriate node cases.

5.2 Analysis Types

We have seen how the basic traversal mechanism is implemented and used. The basic

API is defined by theNodeCaseHandler interface, and default behaviour is implemented

by AbstractNodeCaseHandler . New traversals can be created by extendingAbstract-

NodeCaseHandler , providing an implementation forcaseASTNode(...) and overriding

any needed methods. In the analysis framework, an analysis is effectively an implemen-

tation of a traversal. As was mentioned earlier, different analyses tend to require similar

behaviour. The framework provides a standard API for analyses and implementations of

basic procedures. These implementation details are split over the different types of analy-

ses supported by the framework. The types of analyses currently supported are depth-first

traversal, and forwards and backwards structural flow-sensitive analyses.

One element that is common to all analyses is that they produce some form of data.

This data needs a way of being represented in analyses. The data will also be manipulated

by common procedures implemented in the framework. This means the data should have a

common interface, and some useful implementations.

This section continues by first describing, inSection5.2.1, the definition and imple-

mentation of different analysis data representations.Section5.2.2continues with the im-

plementation details common to all types of analysis. InSection5.2.3we describe those

details unique to dept-first analyses. This includes a simple example analysis to demon-

strate the process of creating a new depth-first analysis.Section5.2.4 describes details

unique to structural analyses. A simple forward structuralanalysis is presented to demon-

strate creating a new structural analysis.

5.2.1 Flow-Data Representation

An analysis is written to produce information about the program being analyzed. As we will

see in later sections, the analysis classes are generic in the type of information produced.

An analysis of typeStructuralAnalysis<D> is an analysis that produces information of

66

5.2. Analysis Types

typeD. To make the framework as general as possible, the information can be of any type.

However, the type of information often falls into certain categories. One example is an

analysis that produces, for every program point, a set of variables that must be defined

at that program point. Alternatively, for every program point, the analysis could have

produced a map from variable names to their types. To make implementing analyses that

produce such information easier, the framework defines interfaces and implementations for

basic flow-data. A class hierarchy for flow-data structures provided by the framework is

given inFigure5.4.

Figure 5.4 Flow-data class hierarchy

TheFlowData<D> interface is the base type for all predefined flow-data representations.

This type represents a collection of data of typeD. The interface is primarily intended to

tag a class as representing flow-data. As such, it defines no methods.

In addition to this basic interface, the framework also provides two more specific inter-

faces, one for sets and the other for maps. For each of these, an abstract implementation is

provided to make creating new implementations simpler. In addition, each of these inter-

faces also has a concrete implementation.

The set interface,FlowSet<D> defines a few additional methods related to manipulating

data within the set. A list of these methods is provided inTable5.1.

The abstract implementation ofFlowSet<D> provides some inefficient implementations

of some the methods defined byFlowData andFlowSet , but most methods are left abstract.

This is because methods likeadd andisEmpty are too implementation specific to be imple-

67

Intraprocedural Analysis Framework

FlowSet<D> copy() returns a copy of the data
void copy(FlowSet<? super D> dest) copies the flow-data into a

destination flow-data
void clear() clears the collection of data

boolean isEmpty() checks if there is no data
int size() returns the size of the collec-

tion
void add(D obj) adds the given object

boolean remove(Object obj) removes the given object
boolean contains(Object obj) checks if the object is in the

set
Iterator<D> iterator() returns an iterator over the el-

ements of the set

Table 5.1 Methods in the FlowSet<D> interface

mented in the abstract version.AbstractFlowSet does however provide some other useful

methods. As we will see inSection5.2.4, when doing flow-sensitive analysis, the analysis

needs to define a way of merging two flow-data. When dealing withsets, merging can often

take the form of a union or intersection. TheAbstractFlowSet provides implementations

of union, intersection, and set difference to make implementing a merge simpler. A list of

these methods can be seen inTable5.2. Each of these operations has two versions. The first

version operates on the given set andother and puts the result in the given set. The second

version operates on the given set andother and puts the result indest . This behaves as

thoughdest is cleared before the result is put into it.

void union(FlowSet<? extends D> o)

void union(FlowSet<? extends D> o,FlowSet<? super D> dest)

void intersection(FlowSet<? extends D> o)

void intersection(FlowSet<? extends D> o,FlowSet<? super D> dest)

void difference(FlowSet<? extends D> o)

void difference(FlowSet<? extends D> o,FlowSet<? super D> dest)

Table 5.2 New methods in the AbstractFlowSet<D> interface

Finally there are two concrete implementations ofFlowSet , HashSetFlowSet<D> and

TreeSetFlowSet<D> . These implementations are backed by aHashSet andTreeSet re-

68

5.2. Analysis Types

spectively. They implement their functionality mainly by relying on the functionality of

the set that backs it.

The framework also provides map versions of flow-data. The map interface and its

associated implementations are similar to the set ones. There are some differences though.

FlowMap<K,V> represents flow-data that is a map from some type,K, of keys to some type,

V, of values. In addition, a flow map should be considered a set with respect to its keys.

FlowMap<K,V> defines some additional methods. These methods are similar to the set

methods, but are geared towards maps. A list of these methodsis given inTable5.3. One

difference to note is the lack of an iterator method. There ishowever thekeySet method

that provides a set view of the map, containing the keys of themap. This set can be iterated

over.

FlowMap<D> copy() returns a copy of the data
void copy(FlowMap<K,V> dest) copies the flow-data into a

destination flow-data
void clear() clears the collection of data

boolean isEmpty() checks if there is no data
int size() returns the size of the collec-

tion
void put(K key, V value) associates the value to the key

in the map
boolean remove(Object key) removes the entry for the

given key
boolean removeKeys(Collection<?> keys) removes all keys from given

collection
boolean containsKey(Object key) checks if the map contains an

entry for the given key
V get(Object key) gets the value associated with

the given key, if it exists
Set<K> keySet() gets a set view of the map’s

keys

Table 5.3 Methods in the FlowMap<K,V> interface

The abstract implementation of the flow map is very similar tothe abstract implementa-

tion of the flow set. The biggest difference is in how the unionand intersection operations

69

Intraprocedural Analysis Framework

are implemented. Since the flow map is only considered a set interms of its keys, there

needs to be a way of performing these operations on two maps that share a key but differ in

its value. To define this behaviour the framework relies on two interfaces,Mergable<E> and

Merger<E> . A brief summary of these interfaces is provided isTable5.4. TheMergable<E>

interface is implemented by objects that can be merged with something of typeE. They pro-

vide a merge method that returns the merged value. TheMerger<E> interface represents an

object that can merge two objects of typeE.

TheMergable<E> Interface
E merge(E o) mergeso and the given value

TheMerger<E> Interface
E merge(E o1, E o2) mergeso1 ando2

Table 5.4 Merging interfaces

When performing a union or intersection operation, either aMerger must be available,

or the values in the maps must implementMergable<V> . A Merger can be available either

by providing one to a constructor of a concrete map, or by specifying one to a variant of

the operation’s method. A list of the operation’s methods isprovided inTable5.5

void union(FlowMap<K,V> other)

void union(Merger<V> m, FlowMap<K,V> other)

void union(FlowMap<K,V> other, FlowMap<K,V> dest)

void union(Merger<V> m, FlowMap<K,V> other, FlowMap<K,V> dest)

void intersection(FlowMap<K,V> other)

void intersection(Merger<V> m, FlowMap<K,V> other)

void intersection(FlowMap<K,V> other, FlowMap<K,V> dest)

void intersection(Merger<V> m, FlowMap<K,V> other, FlowMap<K ,V> dest)

void difference(FlowMap<K,V> other)

void difference(FlowMap<K,V> other, FlowMap<K,V> dest)

Table 5.5 Operation methods in the AbstractFlowMap<D> interface

The framework also provides concrete implementations for flow map. These imple-

mentations are theHashMapFlowMap<K,V> andTreeMapFlowMap<K,V> . They are backed

70

5.2. Analysis Types

by a HashMap andTreeMap respectively, and implement their functionality by relying on

the set that backs them.

These data-flow representations are used in examples to describe the implementation of

new analyses inSection5.2.3andSection5.2.4. More complex representations are used in

the examples inSection5.2.5.

5.2.2 Common Implementation

An analysis is implemented by visiting the nodes of an AST andperforming some actions

on particular node types. The basic traversal mechanism provides a basis for doing this.

However, when performing an analysis, it would be useful to have more information about

the node being visited. Information such as knowing when a given expression is the condi-

tion for awhile or anif. This information is not available from the type of the node.We

want our analyses to have this extra detail available. We also want our analyses to have a

common API. To these ends, we define a new interface,Analysis , which provides more

detailed node case methods and a common API. A summary of the added API methods and

traversal methods is given inTable5.6.

API Methods
void analyze() performs the analysis

ASTNode getTree() gets the tree being analyzed
boolean isAnalyzed() checks if the analysis has been exe-

cuted or not
void setCallBack(NodeCaseHandler h) sets theNodeCaseHandler used as

a callback when visiting a node

Traversal Methods
void caseCondition(Expr condExpr)

void caseWhileCondition(Expr condExpr)

void caseIfCondition(Expr condExpr)

void caseLoopVar(AssignStmt loopVar)

void caseSwitchExpr(Expr switchExpr)

Table 5.6 Methods in the Analysis interface

One detail to note is thesetCallBack(NodeCaseHandler handler) method. This

71

Intraprocedural Analysis Framework

method sets theNodeCaseHandler to pass to an AST node’sanalyze(...) method. For

the most part it is sufficient to ignore this functionality, or treat it as though the callback

is always the analysis itself. This functionality is provided to allow more sophisticated

behaviour. For instance, the structural analyses define helpers that implement theNode-

CaseHandler interface. These helpers are set as the callback, and are used to maintain

invariants pertaining to flow-data. Each case method in the helper performs some book

keeping, then forwards to the same case of the analysis. Generally it’s enough to know that

those invariants are maintained, and not care about how, though in advanced cases, such

features can be useful. It’s also important to be aware of these details when extending the

framework. For more information on extensibility, seeChapter6.

5.2.3 Depth-first Analysis

The simplest form of analysis supported by the framework is the depth-first analysis. This

type of analysis is intended to traverse the tree structure of the AST, visiting each node in

a depth-first order. The depth-first analysis type can be usedto implement flow-insensitive

analyses.

This type of analysis is implemented by extending theAbstractDepthFirstAnaly-

sis<A> class. TheAbstractDepthFirstAnalysis implements theAnalysis interface

and extendsAbstractNodeCaseHandler . This relationship is depicted inFigure5.5.

Figure 5.5 Class hierarchy snippet for depth-first analysis

It should be noted thatAbstractDepthFirstAnalysis<A> is generic with the type

variableA. This is important because it also provides a new method,newInitialFlow(-

) . ThenewInitialFlow() method returns a value of typeA, representing an initial flow

72

5.2. Analysis Types

value. This type variable represents the type of data being computed by the analysis. It is

an unbounded type variable, but in practise, it will usuallybe a subclass ofFlowData . The

reason it is kept unbounded is to increase flexibility for theframework.

SinceAbstractDepthFirstAnalysis extendsAbstractNodeCaseHandler it inherits

all the default traversal behaviour. It extends this behaviour with default implementations

of the new case methods defined by theAnalysis interface. The behaviour for these new

cases is to forward to the case associated with the type of theargument that the case accepts.

For instancecaseLoopVar(AssignStmt loopVar) accepts anAssignStmt . So the default

behaviour will be to forward tocaseAssignStmt(...) . ThecaseWhileCondition(...)

andcaseIfCondition(...) are exceptions to this. These cases are specialized versions

of caseCondition(...) so they will both forward tocaseCondition(...) by default.

The most important feature ofAbstractDepthFirstAnalysis is that it implements a

caseASTNode(...) method. The implementation of this method provides the basic traver-

sal for this type of analysis.Figure 5.6 presents the source code for this method. The

caseASTNode(...) method takes in theASTNode being visited. For each child of that

node, that child is analyzed. So to reiterate, sinceAbstractDepthFirstAnalysis extends

AbstractNodeCaseHandler , and due to its implementation ofcaseASTNode(...) , the

default behaviour for every node is to simply analyze all children of that node.

1 public void caseASTNode(ASTNode node)
2 {
3 //visit each child node in forward order
4 for(int i = 0; i<node.getNumChild(); i++){
5 if(node.getChild(i) != null)
6 node.getChild(i).analyze(callback);
7 }
8 }

Figure 5.6 Depth-first caseASTNode(...) source code

AbstractDepthFirstAnalysis also defines some new methods and fields for storing

and accessing the data being produced by the analysis. It provides a map from AST nodes

to the data being computed. This allows data to be associatedwith any desired node.

In order to implement a new depth-first analysis, a programmer must create a concrete

class that extendsAbstractDepthFirstAnalysis . To create this class, a programmer

73

Intraprocedural Analysis Framework

must

• select an analysis data type

• implement an appropriatenewInitialFlow method

• implement an appropriate constructor

This will result in an analysis that will traverse the entiretree visiting each node in

depth-first order. To get the analysis to perform a useful task, the programmer must override

appropriate case methods. The analysis will usually build up flow-data, and can associate

flow-data with particular nodes in the tree.

To demonstrate the process of implementing a depth-first analysis, we will present a

simple example analysis. This analysis is intended to collect all names that are assigned to.

It will perform two tasks. First, for each assignment statement in the tree, it will associate

all names that are assigned to by that assignment statement to the assignment statement.

Second, it will collect in one set, all names that are assigned to in the entire AST.

We will be storing a name as aString . Since we will be dealing with sets of strings,

we can use the predefinedHashSetFlowSet for our flow-data. In particular, we can make

our flow-data be of typeHashSetFlowSet<String> , a flow-set containing strings. Recall

that this class was defined inSection5.2.1.

This lets us create the shell of our analysis, which will be called NameCollector . The

code so far is given inFigure5.7.

This shell contains aHashSetFlowSet field and two accessor methods. One of these

methods is for accessing a set of all names, the other is for accessing the set of names for a

given assignment. If the assignment has no names associatedwith it, it returnsnull . This

implementation assumes that theflowSet ’s map is being used to associate the set to each

assignment statement.

The analysis, as it stands now, will only traverse the AST. Itwon’t actually collect any

names. To add the name collecting behaviour, we need to override specific case methods.

74

5.2. Analysis Types

1 public class NameCollector
2 extends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>
3 {
4 private HashSetFlowSet<String> fullSet;
5 public NameCollector(ASTNode tree)
6 {
7 super(tree);
8 fullSet = new HashSetFlowSet<String>();
9 }

10 public HashSetFlowSet<String> newInitialFlow()
11 {
12 return new HashSetFlowSet<String>();
13 }
14 public Set<String> getAllNames()
15 {
16 return fullSet.getSet();
17 }
18 public Set<String> getNames(AssignStmt node)
19 {
20 HashSetFlowSet<String> set = flowSets.get(node);
21 if(set == null)
22 return null;
23 else
24 return set.getSet();
25 }
26 }

Figure 5.7 Shell of example depth-first analysis NameCollector

We will implement our desired behaviour as follows:

for each AssignStmt s in the AST

currentSet = new set

collect all names in LHS being assigned to into currentSet

flowSets[s] = currentSet

add currentSet to fullSet

In order to do this, we start by implementing acaseAssignStmt(...) and acase-

Name(...) . ThecaseAssignStmt(...) will be used to setupcurrentSet as well as set a

flag that keeps track of whether or not the analysis is in the left-hand side of an assignment.

The assignment case will then traverse into its left-hand side, ignoring the right-hand side.

Finally, it will map the result to the current node and add it to the total result. Thecase-

75

Intraprocedural Analysis Framework

Name(...) method will be used to add to the current flow-set. It will onlydo this when it

is in the left-hand side of an assignment. This results in thecode inFigure5.8being added

to theNameCollector class.

1 private boolean inLHS = false;
2 public void caseName(Name node)
3 {
4 if(inLHS)
5 currentSet.add(node.getID());
6 }
7

8 public void caseAssignStmt(AssignStmt node)
9 {

10 inLHS = true;
11 currentSet = newInitialFlow();
12 analyze(node.getLHS());
13 flowSets.put(node,currentSet);
14 fullSet.addAll(currentSet);
15 inLHS = false;
16 }

Figure 5.8 caseAssignStmt(...) and caseName(...) for NameCollector

This implementation is a good first attempt. It will capture simple assignments, and

it will even capture multi-assignment statements. There ishowever a problem with it. It

ignores the fact that names can appear on the left-hand side of an assignment, but not be a

name being assigned to. For example, the following line of code will produce both"a" and

"b" for names being assigned to.

a(b) = 42;

This is incorrect sinceb is not being assigned to. This can happen when the name is

used as an argument, for example, as an index to an array, or cell-array. For brevity we will

focus on simple array indexing. To solve this problem, we need to avoid looking at names

occurring in the arguments of an indexing expression. In theAST, indexing expressions

are represented byParameterizedExpr . To avoid going into the arguments of an indexing

expression, we need to write acaseParameterizedExpr(...) . The implementation will

simply ignore the arguments and traverse into the target expression of the indexing. The

method is presented inFigure 5.9, and will be added to the class. This method simply

76

5.2. Analysis Types

passes the target of the parametrization for analysis, ignoring the arguments.

1 public void caseParameterizedExpr(ParameterizedExpr node)
2 {
3 analyze(node.getTarget());
4 }

Figure 5.9 caseParameterizedExpr(...) for NameCollector

A similar caseCellIndexExpr(...) and DotExpr method would also be needed to

avoid the other incorrect name inclusions.

The full code for the class definition ofNameCollector can be seen inFigure5.10.

5.2.4 Structural Analysis

Structural flow analysis is the core part of the analysis framework. This type of analysis

can be used to compute complex information to approximate run-time behaviour of a given

program. The implementation of these analyses is necessarily more complex. They re-

quire deeper knowledge of the languages semantics, as well as the ability to approximate

run-time behaviour of the program. These issues come into play when dealing with control

structures in the language, structures such asif, while, andfor statements. The frame-

work provides generic implementations of the procedures necessary for implementing a

structural analysis.

Structural analysis requires a more complex API and more detailed information about

nodes. To capture this, we define an interface for structuralanalysis. This interface is called

StructuralAnalysis<A> , and it extends theAnalysis interface. It provides an API for

accessing analysis results, accessing current flow-data, and manipulating flow-data. It also

provides some additional cases for finer grained treatment of nodes. These new methods

are summarized inTable5.7.

The framework also provides an abstract implementation forstructural analyses. This

abstract implementation, calledAbstractStructuralAnalysis provides constructors and

implementations for most of the API methods. This implementation is similar to theAbs-

tractDepthFirstAnalysis implementation. It also provides a protected methodvoid

analyze(ASTNode node) . This method is intended to abstract away from the basic

77

Intraprocedural Analysis Framework

1 public class NameCollector
2 extends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>
3 {
4 private HashSetFlowSet<String> fullSet;
5 private boolean inLHS = false;
6 public NameCollector(ASTNode tree)
7 {
8 super(tree);
9 fullSet = new HashSetFlowSet<String>();

10 }
11 public HashSetFlowSet<String> newInitialFlow()
12 {
13 return new HashSetFlowSet<String>();
14 }
15 public Set<String> getAllNames()
16 {
17 return fullSet.getSet();
18 }
19 public Set<String> getNames(AssignStmt node)
20 {
21 HashSetFlowSet<String> set = flowSets.get(node);
22 if(set == null)
23 return null;
24 else
25 return set.getSet();
26 }
27 public void caseName(Name node)
28 {
29 if(inLHS)
30 currentSet.add(node.getID());
31 }
32 public void caseAssignStmt(AssignStmt node)
33 {
34 inLHS = true;
35 currentSet = newInitialFlow();
36 analyze(node.getLHS());
37 flowSets.put(node,currentSet);
38 fullSet.addAll(currentSet);
39 inLHS = false;
40 }
41 public void caseParameterizedExpr(ParameterizedExpr node)
42 {
43 analyze(node.getTarget());
44 }
45 }

Figure 5.10 Full NameCollector definition

78

5.2. Analysis Types

API Methods
Map<ASTNode,A> getOutFlowSets() gets out flow-data
Map<ASTNode,A> getInFlowSets() gets in flow-data

void merge(A in1, A in2, A out) merges two flow-data putting
the result into a third

void copy(A source, A dest) copies the flow source flow-
data into dest

A getCurrentOutSet() gets the current out data being
worked on

void setCurrentOutSet(A outSet) sets the current out data
A getCurrentInSet() gets the current in data

void setCurrentInSet(A inSet) sets the current in data
A newInitialFlow() gives an initial approximation

for data

Traversal Methods
void caseLoopVarAsInit(AssignStmt loopVar)

void caseLoopVarAsUpdate(AssignStmt loopVar)

void caseLoopVarAsCondition(AssignStmt loopVar)

Table 5.7 Methods in the StructuralAnalysis interface

traversal mechanism. The forward and backwards implementations also use it to ensure

that the flow-data is setup appropriately. When an analysis needs to analyze a particular

node, this method should be used rather than relying on the basic traversal mechanism.

There are, however, times when an analysis needs to call a case method directly on a node.

In this situation, it is the programmers responsibility to ensure that the flow-data is setup

appropriately. This is to ensure that case methods can be implemented assuming that they

have appropriate flow-data.

As with AbstractDepthFirstAnalysis , this implementation doesn’t provide a con-

cretenewInitialFlow method. It also doesn’t provide amerge , or copy method. This

is because these details are specific to individual analyses. Themerge method should be

implemented to reflect the abstraction being computed by theanalysis. Thecopy method

should take into account if the copy should be deep or shallow. These are implementation

details that require a deeper knowledge of the analysis being written.

79

Intraprocedural Analysis Framework

AbstractStructuralAnalysis also defines a number of protected data members for

use by the different implementations. These data members are summarized inTable5.8.

These members have to do with the data being computed by the given analysis. A standard

analysis will fill theoutFlowSets and inFlowSets with appropriate data for each AST

node that has data defined for it. It will compute the values for out or in flow-data for

a given node on the in or out flow-data, respectively, of the given node. The way this

dependency is defined depends on what flavor of flow analysis isbeing defined. Further

details on how these data members are used is presented laterin this section.

A currentOutSet the out data for the node currently being
worked on

A currentInSet the in data for the node currently being
worked on

Map<ASTNode,A> outFlowSets a map from nodes to their associated out data
Map<ASTNode,A> inFlowSets a map from nodes to their associated in data

ASTNode tree the AST being operated on

Table 5.8 Data members in defined by AbstractStructuralAnalysis

Unlike AbstractDepthFirstAnalysis , AbstractStructuralAnalysis does not pro-

vide an implementation forcaseASTNode(...) . This is because structural analyses are

split into two flavours, forwards and backwards. Each of these flavours will require its

own implementation ofcaseASTNode(...) . The forwards and backwards analyses are

implemented in a similar way. For each, we define a general abstract implementation and a

simple abstract implementation. The general implementation provides an implementation

for the basic API methods. It also provides an implementation for some traversal meth-

ods, including loops and conditionals. These implementations for the traversal methods

are what makes analyses derived from these classes, flow-analyses. In the case of the loop

cases,caseForStmt(...) andcaseWhileStmt(...) , they provide the fixed-point com-

putation procedure. These general implementations represent the core functionality that is

needed for these types of analyses. This functionality should be applicable to most analyses

of this type, and most programmers should not have to override them.

The simple implementations go beyond this core functionality. They implement certain

behaviour that would not be applicable to all analyses. Suchbehaviour includes how to deal

80

5.2. Analysis Types

with continue andbreak statements. These implementations represent the functionality

needed to write analyses that do not need more complex behaviour. They were provided to

make analyses simpler to write, requiring less duplicationof code.

Figure 5.11 Class hierarchy snippet for structural analysis

Forward Analysis

A structural flow analysis is intended to flow information through a program in a particular

direction. In the case of a forward analysis, the direction of flow is forward through the

program. To accomplish this, theAbstractStructuralAnalysis defines data members

that represent the in and out flow. In a forward analysis, the in flow at a given node is

the information flowing into that node. When creating a forward analysis, a programmer

must define how a given node’s out flow is defined in terms of its in flow. In the frame-

work, this is done by overriding appropriate node cases. In the implementation of these

overridden node cases, the programmer must use thecurrentInSet and compute a value

for currentOutSet . By default, if no overriding implementation is given, the inflow will

passed along to the out flow directly. Providing appropriateimplementations of desired

node cases is only one step of implementing a flow-sensitive analysis. A list of all the steps

involved in creating a new flow analysis is given inFigure5.16

81

Intraprocedural Analysis Framework

To create a forward analysis, a programmer must extendAbstractStructuralFor-

wardAnalysis . This class implements the basic computations to perform a forward flow

analysis. These computations include basic traversal of non-branching code, splitting and

merging non-looping branching code, and the fixed-point computations for looping code.

These computations are implemented in the case methods for various node types.

ThecaseASTNode(...) implements the basic traversal. It does this by looping through

the children of a given node and using the providedanalyze(ASTNode node) method.

Recall that this method deals with basic traversal and also guarantees that thecurrentIn-

Set is set to the previouscurrentOutSet .

ThecaseIfStmt(...) andcaseSwitchStmt(...) implement the behaviour for non-

looping branching code. Theif statement behaviour provides what we call branching

analysis. This means that, if the analysis writer wishes, they can provide a different out

flow for when the if condition is true or false. This would be done in an implementation

of caseIfCondition(...) . When a programmer provides true and false flow-data,case-

IfStmt(...) will ensure that each branch of theif will have the appropriate in flow-data.

The branching flow-data can be set and accessed through the methods described inTable

5.9.

void setTrueFalseOutSet(A tSet, A fSet) sets both true and false flows at
once

void unsetTrueFalseOutSet() unsets both true and false flows
A getTrueOutSet() gets the true flow
A getFalseOutSet() gets the false flow

Table 5.9 Methods associated with branching analyses

The procedure for dealing withif statements is summarized by the diagram inFigure

5.12. This diagram illustrates how data is flowed through a typical if. The flow of data

is represented by the arrows. First the condition is analyzed, then the resulting out flow

from that is used to analyze thethenpart andelsepart. In the diagram the dashed arrow

labelled “true flow” represents the true out flow and the dashed arrow labelled “false flow”

represents the false out flow. The results of thethenandelseparts are then fed into the

merge operation, depicted by the box containing a⊲⊳ symbol. This merged result is the out

82

5.2. Analysis Types

flow for theif statement.

The procedure for dealing withswitch statements is similar to the one forif state-

ments. However, there is no branching analysis forswitch statements. The diagram il-

lustrating the data flow is given inFigure 5.13. Keep in mind that, in MATLAB , a case

can contain an arbitrary expression, and the result of evaluating it is used to decide if the

case body is evaluated. Also recall that, unlike in C or Java,there is no fall through in

MATLAB ’s switch statements, they simply execute the matching case’s body and nothing

else.

if <COND>

In

Out

<THEN PART>

end

<ELSE PART>

else

true flow
fa

ls
e

flo
w

Figure 5.12 Forward data flow for if statements

ThecaseForStmt(...) andcaseWhileStmt(...) implement the procedures for loop-

ing code. These procedures perform fixed-point computations and ensure that data is

flowed correctly. This fixed-point computation is made more complex by the presence

of continue andbreak statements. These statements can disrupt the normal flow through

the body of a loop. To manage these we provide a stack calledloopStack . This stack

holds data associated with the loops being processed. This data is stored in an instance of

a nested class calledLoopFlowsets . A LoopFlowsets instance contains a reference to the

loop node it’s associated with, the in flow for that loop, and two lists of flow-data that store

83

Intraprocedural Analysis Framework

switch <SWITCH EXP>

case <CASE EXP 1>

case <CASE EXP 2>

otherwise

<BODY 3>

<BODY 1>

<BODY 2>

end

In

Out

Figure 5.13 Forward data flow for switch statements

the out flows of allcontinue andbreak statements relevant to the loop. A list of the meth-

ods provided by this class is give inTable5.10. The cases for loops setup aLoopFlowsets

instance for the current loop and push it ontoloopStack . The cases also make use of

two abstract methods declared byAbstractStructuralForwardAnalysis . These meth-

ods areprocessBreaks() andprocessContinues() , each of which returns flow-data of

type A. The intention is for a programmer to implement appropriatecaseBreakStmt(-

...) andcaseContiueStmt(...) methods that add data to the top of theloopStack . A

programmer must also implement theprocessBreaks() andprocessContinues() meth-

ods. They should somehow combine all data from the appropriate list in the head of the

loopStack .

84

5.2. Analysis Types

Providing a simple implementation of these methods is the main focus ofAbstract-

SimpleStructuralForwardAnalysis . The implementation for the two case methods will

copy the in flow for the node and add it to the appropriate list at the head of the stack.

The process methods are implemented to use the merge operator to merge all data in the

appropriate list. These implementations should be satisfactory for many analysis imple-

mentations.

void initLists() initializes flow lists
void addContinueSet(A flowSet) add a flow to thecontinue list
void addBreakSet(A flowSet) add a flow to thebreak list

List<A> getBreakOutSets() returns thebreak list
A getLoopInFlow() returns the loop in flow

void setLoopInSet(A loopInFlow) sets the loop in flow
List<A> getContinueOutSets() returns thecontinue list
ASTNode getLoopNode() returns the associated loop node

void setLoopNode(ASTNode loopNode) sets the associated loop node

NOTE: theList being used here is the defined byjava.util.List , notast.List

Table 5.10 Methods provided by AbstractStructuralForwardAnalysis.LoopFlowsets

The flow of data for a basicwhile loop is depicted inFigure 5.14. Thewhile loop

being depicted contains twocontinue and twobreak statements. The boxes containingC

andB representprocessContinues() andprocessBreaks() respectively.

The fixed-point computation operates by storing the previous result of analyzing the

condition check, and comparing it with the new result. If they are equal then a fixed-point

is reached, then the rest of the computation continues, otherwise, another iteration of the

fixed-point computation is executed.

It should be noted that this diagram has some dependency issues. The merge at the

top of the diagram takes the in flow for the loop and the flow resulting from analyzing the

body. The fixed-point check requires the out flow from the condition to be compared to

the previous out of the condition. On the first iteration of the fixed-point computation, the

body has not yet been analyzed, and there is no previous valuefor the condition. In order to

bootstrap this process, the framework uses thenewInitialFlow() method to approximate

the result from the body, and the first fixed-point check is skipped. This value should be

85

Intraprocedural Analysis Framework

designed to be safe for this purpose.

...

continue

...

break

...

continue

...

break

...

FP

C

B

while <COND>

end

yes

In

Out

no

Figure 5.14 Forward data flow for while loops

The procedure for analyzing afor loop is very similar. The main difference is that

instead of a simple condition, afor loop has a loop variable. A diagram depicting the

procedure is given inFigure 5.15. The diagrams shows that analyzing the loop variable,

depicted byLV , is split into its three phases: initialization, conditioncheck, and update.

Recall that in MATLAB , a for loop is always a for-each loop. The domain of the loop

variable is determined by the result of an arbitrarily complex expression. The framework

is designed to work withMcAST, but a programmer must understand the semantics of the

for loop. It is their responsibility to write their analysis to behave correctly when dealing

with such complexfor loops. The simplified IR,McLAST , describe inChapter3, and the

86

5.2. Analysis Types

associated simplifications inChapter4, expose these semantics.McLAST guarantees that

all for loops are simple range loops of the formfor i = start:step:stop . This makes

for loops much simpler to deal with.

B

...

continue

...

break

...

continue

...

break

...

INIT COND UPDATE<LV>for

end

FP

C

Out

In

yes no

Figure 5.15 Forward data flow for for loops

These implementations should be adequate for most analyses. A programmer should

generally not have to implement their own versions or even look into the source code for

these methods.

To demonstrate the process of creating an analysis, we present an example analysis

and step through the process. The example being implementedis the well known reaching

definitions analysis. We will define this analysis as follows:

87

Intraprocedural Analysis Framework

For every statements, for every variablevdefined

by the program, compute the set of all assignment

statements that assign tov and reachs.

We will call our analysisReachingDefs . To implement this analysis we will complete

the tasks listed inFigure 5.16. We will start by picking a flow-data representation and

merge operation.

• pick a flow-data representation

• define a merge operation

• define a copy operation

• define an initial flow

• define appropriate node cases

• define other necessary traversal methods

• ensure that data is copied and stored when
needed

Figure 5.16 Steps to creating a new flow analysis

Based on the description of the analysis, we will define our flow-data as a mapping from

variable names to sets of assignment statements. Each statement will have such flow-data

associated with it. They will have both the flow-data from before evaluating the statement

and after. Recall that the analysis framework provides a way of mapping particular AST

nodes to flow-data. We will implement this data representation as aHashMapFlowMap<String,

Set<AssignStmt>> . This lets us create a shell for our analysis. Code for this shell is given

in Figure 5.17. Note that we are extendingAbstractSimpleStructuralForwardAnal-

ysis , and storing data asHashMapFlowMap<String, Set<AssignStmt>> . We are using

AbstractSimpleStructuralForwardAnalysis because it gives a more complete imple-

mentation, and because the methods it provides are adequatefor this analysis. More detail

regarding this is given later in this section.

Recall fromSection5.2.1 that to use one of the merge operations provided byAbs-

tractFlowMap , either the value type must implementMergable or an implementation of

88

5.2. Analysis Types

1 public class ReachingDefs
2 extends AbstractSimpleStructuralForwardAnalysis
3 <HashMapFlowMap<String,Set<AssignStmt>>>
4 {
5 ...
6 }

Figure 5.17 Shell of the reaching definitions implementation

Merger must be provided. Since set does not implementMergable we will have to provide

a Merger implementation.

We are going to be using the union operation for merging, and we want ourMerger to

union the two sets it is given. We want union because when two program paths reach a

confluence point, such as two branches of anif, all definitions that reached that point on

either path will reach immediately after the confluence point. We implement ourMerger

as an anonymous class instance stored as a private member of the analysis we are writing.

The code for our implementation is given inFigure5.18.

1 private Merger merger = new Merger<Set<AssignStmt>>(){
2 public Set<AssignStmt> merge(Set<AssignStmt> s1, Set<AssignSt mt> s2)
3 {
4 Set<AssignStmt> ms = new HashSet<AssignStmt>(s1);
5 ms.addAll(s2);
6 return ms;
7 }
8 };

Figure 5.18 Implementation of Merger for reaching definitions

With this definition of a merger we can define our merge operation. We will use the

union(...) method defined byAbstractFlowMap . This makes our merge operation very

short to write. The code for this method is given inFigure5.19.

Next we must define acopy(...) method. Since our flow-map contains mutable data,

we will want to perform a deeper copy thanAbstractFlowMap provides. This will involve

creating a newHashMapFlowMap, going through all the keys in the original map and putting

the key with a copied set into the out map. We also define a single argumentcopy(...)

that returns a copy of the input, for convenience. Code for these methods is given inFigure

89

Intraprocedural Analysis Framework

1 public void merge(HashMapFlowMap<String,Set<AssignStmt>> in1,
2 HashMapFlowMap<String,Set<AssignStmt>> in2,
3 HashMapFlowMap<String,Set<AssignStmt>> out)
4 {
5 in1.union(merger, in2, out);
6 }

Figure 5.19 Implementation of merge(...) for reaching definitions

5.20

1 public void copy(HashMapFlowMap<String,Set<AssignStmt>> in,
2 HashMapFlowMap<String,Set<AssignStmt>> out)
3 {
4 if(in == out)
5 return;
6 out.clear();
7 for(String i : in.keySet())
8 out.put(i, new HashSet<AssignStmt>(in.get(i)));
9 }

10 public HashMapFlowMap<String,Set<AssignStmt>>
11 copy(HashMapFlowMap<String,Set<AssignStmt>> in)
12 {
13 HashMapFlowMap<String,Set<AssignStmt>> out = in.emptyM ap();
14 copy(in, out);
15 return out;
16 }

Figure 5.20 Implementation of copy(...) methods for reaching definitions

Defining anewInitialFlow(...) method is slightly more complicated. The way we

defined the analysis implies that variables that have not yetbeen defined should map to an

empty set. This means our map should always contain entries for all variables defined in

the program. One easy way to do this is to rely on theNameCollector analysis written

in Section5.2.3. Recall this analysis provides the set of all variable names defined in the

program, and for each assignment, a set of variables defined by that assignment. We will

use the former to define our initial flow, and the latter in our analysis. In order to have

this information available we need to run and store theNameCollector . We will add a

field to ReachingDefs to store the analysis, and run it in the constructor. We will also

compute and store a prototypical initial flow in the constructor. Code for the constructor

90

5.2. Analysis Types

and declarations of the needed data members is provided inFigure 5.21. The resulting

definition fornewInitialFlow() is very simple. Its code is given inFigure5.22.

1 private HashMapFlowMap<String,Set<AssignStmt>> startMap;
2 private NameCollector nameCollector;
3 public ReachingDefs(ASTNode tree)
4 {
5 super(tree);
6 startMap = new HashMapFlowMap<String,Set<AssignStmt>>(merger);
7 nameCollector= new NameCollector(tree);
8 nameCollector.analyze();
9 for(String var : nameCollector.getAllNames())

10 startMap.put(var, new HashSet<AssignStmt>());
11 }

Figure 5.21 Implementation for reaching definition’s constructor

1 public HashMapFlowMap<String,Set<AssignStmt>> newInitialFlo w()
2 {
3 return copy(startMap);
4 }

Figure 5.22 Implementation of newInitialFlow() for reaching definitions

Finally we can define the appropriate node cases needed for the analysis. When defining

our node cases, it’s important to make sure that data is copied and stored correctly. The

framework only guarantees thatcurrentInFlow is set to the appropriate flow data. It

doesn’t ensure that this data is not shared. The previous node could have stored a reference

to the flow-data somewhere else. In this case, modifying the data will change the result

for the previous node. To avoid modifying data associated with other nodes, care must be

taken to have a correct and consistent copying strategy. Thesimplest such strategy is to

copy everywhere. This is not done by the framework to allow programmers to share data

when they are sure it’s safe in order to save memory and copying time.

It’s also important to ensure that data is being associated with appropriate nodes. If care

is not taken, then some data can be lost.

For the reaching definitions analysis we only need to define two cases. The first, and

most important case iscaseAssignStmt(...) . This case will do the work of updating the

91

Intraprocedural Analysis Framework

flow information for the variables defined by this statement.It will use theNameCollector

we ran in the constructor to get the variables that are definedby the given assignment. It

will then create a new set containing only the givenAssignStmt node and associate it with

each of the defined variables. This means that immediately after this point, each of those

variables only has one reaching definition. The case will also take care of storing the in and

out flow to the given node, and copying appropriately. We store the flow information in the

inFlowSets andoutFlowSets maps, this is so it is available after the analysis is run.

Our copying strategy will be to assume the flow-data coming inis safe to store but not

safe to modify. This means we will make a copy of the in flow-data for modification. This

modified flow data becomes our out flow-data and is stored inoutFlowSets for the given

node. This means that the in flow-data of a given node can be shared with the out flow-

data of a predecessor node. It is however not always going to be shared. This is because

the predefinedcaseForStmt(...) , caseWhileStmt(...) , caseIfStmt(...) , andcase-

SwitchStmt(...) all perform aggressive copying to ensure no incorrect behaviour.

The definition of the analysis also requires that each statement have an associated reach-

ing definitions mapping. The predefined cases always performthis mapping, and so does

our caseAssignStmt(...) . In order to have all other statements mapped to reaching def-

inition data, we can define acaseStmt(...) method. Recall fromSection5.1 that this

method will only be executed by other statements with undefined case methods. The defi-

nition for this method will be very simple, it will associatethe in flow to the node, assign

the out flow to be the in flow, and associated the out flow to the node. No copying is

done, which is consistent with the assumption made for our copying strategy incase-

AssignStmt(...) . The code forcaseAssignStmt(...) is given inFigure 5.23and the

code forcaseStmt(...) is given inFigure5.24.

This is sufficient to define ourReachingDefs analysis. A listing of the complete source

code for this analysis is provided inAppendixA.

This example demonstrates the steps needed to define a new analysis. It should be

noted that this example is naive, in that it does not take intoaccount the far reaching side

effects possible in MATLAB . For instance we ignoreeval expressions that can cause new

definitions. We also ignore that any function call can cause new definitions. A full and

rigorous analysis would be more complex, and would rely on the results of other analyses,

92

5.2. Analysis Types

1 public void caseAssignStmt(AssignStmt node)
2 {
3 inFlowSets.put(node, currentInSet);
4 currentOutSet = copy(currentOutSet);
5 Set<String> defVars = nameCollector.getNames(node);
6 for(String n : defVars){
7 Set<AssignStmt> newDefSite = new HashSet<AssignStmt>();
8 newDefSite.add(node);
9 currentOutSet.put(n, newDefSite);

10 }
11 outFlowSets.put(node, currentOutSet);
12 }

Figure 5.23 Implementation of caseAssignStmt(...) for reaching definitions

1 public void caseStmt(Stmt node)
2 {
3 inFlowSets.put(node, currentInSet);
4 currentOutSet = currentInSet;
5 outFlowSets.put(node, currentOutSet);
6 }

Figure 5.24 Implementation of caseStmt(...) for reaching definitions

such as the Kind Analysis describe inSection5.2.5. Such an analysis is outside the scope

of this section.

Backward Analysis

The implementation of a backward analysis is very similar toa forward analysis. Concep-

tually they are also very similar, the main difference beingthat, where a forward analysis

flows information forward through the program, a backward analysis flows it backwards.

This means that instead of defining the out flow in terms of the in flow, a programmer must

define the in flow in terms of the out flow. The steps for creatinga backwards analysis are

the same as the ones given for forward analyses inFigure5.16.

To create a backward analysis, a programmer must extendAbstractStructuralBack-

wardAnalysis . This class is similar toAbstractStructuralForwardAnalysis , but pro-

vides implementation details specific to backwards analyses.

93

Intraprocedural Analysis Framework

As with other analysis types,caseASTNode(...) implements the basic traversal. It will

loop through the children of the given node in reverse order,analyzing each one in turn.

Like in a forward analysis, theanalyze(ASTNode node) method is used to analyze a given

node. Unlike forward analyses, the default implementationof this method guarantees that

currentOutSet is set to the previouscurrentInSet . This enforces the backwards nature

of such an analysis.

The caseASTNode(...) method provides default behaviour for non-branching code.

Behaviour for branching code is given bycaseIfStmt(...) , caseSwitchStmt(...) , case-

WhileStmt(...) , andcaseForStmt(...) . In principle, these work very similar to their

forwards analysis counterparts, but obviously with the direction of flow reversed. There

are some important details that differ between the two versions, so we will provide brief

descriptions.

The caseIfStmt(...) for backwards analyses does not provide branching analysis

functionality. Besides this difference, thecaseIfStmt(...) andcaseSwitchStmt(...)

are very similar to their forwards counterparts. Diagrams representing how information

flows through these statements are given inFigure5.25andFigure5.26respectively.

The loop cases differ more from their forwards versions, compared to the other cases.

This is due to the added complexity of performing a fixed-point computation, and due

to continue andbreak statements. LikeAbstractStructuralForwardAnalysis , Abs-

tractStructuralBackwardAnalysis uses a stack calledloopStack to keep track of loop

flow-data. It also provides a nested class implementation ofLoopFlowsets . This imple-

mentation stores the AST node and out flow-data for the loop being analyzed. It is also

used for storing and accessing data for dealing withbreak andcontinue statements. In a

backwards analysis, eachbreak statement and eachcontinue statement for a given loop

are expected to have the same out flow, respectively. Consequently LoopFlowsets only

stores a single out flow forbreak statements and a single out flow forcontinue state-

ments for the given loop. A summary of the methods provided bythis implementation

of LoopFlowsets is given inTable5.11. The out flow forbreak statements is set by the

setupBreaks() method, which is called at the beginning of the loop case. Theout flow

for continue statements is set by thesetupContinues() method, which is called before

analyzing the body of the loop in each iteration of the fixed-point computation. Diagrams

94

5.2. Analysis Types

depicting the flow of information throughwhile andfor statements are given inFigure

5.27andFigure5.28.

Like for forward analyses, the framework provides a simple abstract implementation

for backward analyses calledAbstractSimpleStructuralBackwardAnalysis . This class

provides implementations for methods relating tobreak andcontinue statements. It pro-

vides asetupBreaks() implementation that simply sets the out set forbreak statements

to the current out flow. The implementation forsetupContinues() does the same for

continue statements. The implementations for thebreak andcontinue cases sets the in

flow to the appropriate out flow from the head of theloopStack , performing a copy of the

data for safety.

A getBreakOutFlow() returns the out flow-data forbreak

statements in this loop
void setBreakOutFlow(A outFlow) sets the out flow-data forbreak

statements in this loop
A getLoopOutFlow() returns the out flow-data for the cur-

rent loop
void setLoopOutFlow(A outFlow) sets the out flow-data for the current

loop
A getContinueOutFlow() returns the out flow-data for

continue statements in this loop
void setContinueOutFlow(A outFlow) sets the out flow-data forcontinue

statements in this loop
ASTNode getLoopNode() returns the AST node for the current

loop
void setLoopNode(ASTNode loopNode) sets the AST node for the current

loop

Table 5.11 Methods provided by AbstractStructuralBackwardAnalysis.LoopFlowsets

To demonstrate the implementation of a backwards analysis,a live-variable analysis

has been created and included as an example in the framework.The source code for this

analysis is also provided inAppendixC. This implementation uses a depth first analysis

calledUseCollector . This analysis is similar to theNameCollector given inFigure5.10,

but instead of collecting all name that are assigned to, it collects all names that are used

as possible variable accesses. To accomplish this, the analysis uses the kind analysis to

95

Intraprocedural Analysis Framework

determine if a name is a variable or not. The kind analysis is briefly describe inSection

5.2.5. The source code forUseCollector is given inAppendixB.

if <COND>

In

Out

<THEN PART>

end

else

<ELSE PART>

Figure 5.25 Backward data flow for if statements

Important Points

In order to implement a correct flow analysis, it’s importantto remember a few things.

These are summarized here.

• A programmer must keep MATLAB semantics in mind. This is particularly important

when dealing withMcAST instead ofMcLAST .

• A programmer must ensure that the contract for in and out flow-data is respected.

For a forwards analysis this means havingcurrentOutFlow set to the appropriate

value at the end of a case method. It also means that, when not usinganalyze(...)

to analyze a particular sub-node (e.g. calling a case methodfor that node directly),

the currentInFlow is set to an appropriate value for that node. For a backwards

analysis, the contract is reversed.

96

5.2. Analysis Types

switch <SWITCH EXP>

case <CASE EXP 1>

case <CASE EXP 2>

otherwise

<BODY 3>

<BODY 1>

<BODY 2>

In

end

Out

Figure 5.26 Backward data flow for switch statements

• It is a programmer’s responsibility to copy flow-data appropriately. The contract for

flow-data only says that the data incurrentInFlow or currentOutFlow is appropri-

ate, not that they are safe to modify.

5.2.5 Implemented Analyses

Besides the example analyses discussed in this chapter, two important analyses have been

created as part of this thesis. These analyses were created to provide information to other

parts of the compiler. The first analysis is the Kind Analysis, the second is the Handle

Propagation Analysis.

The Kind Analysis has been mentioned throughout this thesis. It provides basic infor-

97

Intraprocedural Analysis Framework

...

continue

...

break

...

continue

...

break

...

B

while <COND>

end

FP

C

In

Out

yes no

Figure 5.27 Backward data flow for while loops

mation about the kind of a given identifier. By this, we mean if agiven identifier refers

to a function or a variable. At every statement in the program, the Kind Analysis can be

queried to check if a given identifier name is considered a variable or function. These are

represented by the valuesVARandFUN. When the analysis cannot determine the exact

kind for an identifier, it will assign it the kindID. The analysis also detects certain errors,

such as when an identifier is used as both a variable and a function. Further information on

this analysis can be found in the Kind Analysis paper [DHR11].

The Handle Propagation Analysis was created as a step towards constructing an accu-

rate call graph for MATLAB programs. It identifies handle creation sites and propagates

the handle information through the program. This allows other analyses to determine if

98

5.2. Analysis Types

B

...

continue

...

break

...

continue

...

break

...

C

FP

INIT COND UPDATE<LV>for

end

Out

In

yes no

Figure 5.28 Backward data flow for for loops

a parameterized expression can in fact be a function call, despite the target not being an

obvious function.

The source code for these analyses are include as part of theMcL AB project. They

represent fundamental analyses, and are a practical application of this analysis framework.

99

Intraprocedural Analysis Framework

100

Chapter 6

Analysis Framework Extensibility

Up to this point we have discussed the analysis framework in the context of the MAT-

LAB language. TheMcL AB framework is intended to be extensible to new language fea-

tures. This means that the analysis framework must also be extensible. This section de-

scribes the extensibility of the analysis framework.

First of all, we must define what we mean by extensibility. Thesystem is designed to

be extensible in the sense of creating new language extensions. TheMcL AB framework

defines a root language based on MATLAB called NATLAB . This root language is defined

by thenatlab Java package. A language extension represents a new language based off

of another language, called the base language. The new language will then extend the

scanner, parser, and AST definitions from the base language.These three components have

been created using tools that make such extensions simple tocreate. The important thing

to note is that these extensions should be considered separate from the languages they are

based on. It is this type of extensibility that we have focused on for the analysis framework.

6.1 Classification of Extensions

There are three basic types of language extension, with relation to the analysis framework.

The first, is a language extension that adds new AST nodes, butthese nodes do not play a

part in any analysis. These are nodes that either have no semantic content, such as a new

comment node, or are nodes that analyses will never encounter, such as syntactic sugar that

101

Analysis Framework Extensibility

gets desugared before analyses are run. This type of extension is very simple to implement.

Such an extension simply needs to include all necessary filesfrom its base language, in-

cluding AST files, other JastAdd files, necessary Java class files, and the scanner and parser

files. Note that if the base language is itself an extension ofanother language, then all files

that are needed from the deeper base language must also be included. Also note that this

inclusion does not mean the files are copied. Instead, the build process of the extension lan-

guage needs to have access to them, either for inclusion in the JastAdd, scanner, or parser

code generation process, or as part of the Java class path. Once all needed files are included,

the extension needs to define its new AST nodes. As an example of this type of extension,

a model language extension, calledExExtension1 , has been created, and is available in the

McL AB project. This extension defines a new nodeIncStmt that is intended to be a unary

increment statement. This new statement is treated as syntactic sugar and is desugared into

an assignment statement. For example,a++ will be desugared intoa=a+1 .

The other two types of language extensions involve adding nodes thatwill play a part

in analyses. They are distinguished by the type of nodes theyadd. The first of these other

types will only add nodes that don’t introduce new forms of control flow. This could include

new operators or new types of simple statements. An example of this type of extension is

provided in theMcL AB project. The name of this example isExExtension2 . It is actually

an extension ofExExtension1 and demonstrates the process of extending a language that is

itself an extension.ExExtension2 doesn’t add new nodes, but instead changes the meaning

of IncStmt . In this extensionIncStmt is no longer syntactic sugar. This means that the

analysis framework needs to be extended to take the new statement into account. In addition

to extending the framework, any analyses that will be used inthe extension also need

to be extended. To demonstrate this,ExExtension2 includes an extended version of the

NameCollector analysis described inSection5.2.3. The process of extending the analysis

framework in this way is straight forward and would be a good candidate for automation.

Extending individual analyses, on the other hand, requiresknowledge of the analyses being

extended, and of the semantics related to any added AST nodes.

The final type of language extension is one that adds new control flow nodes. An

example of this type of extension would be adding a new parallel for loop. This is the

most complex form of language extensions. It requires that the analysis framework be

102

6.2. How Extensions are Supported inMcSAF

extended to include new fixed-point computations and propercontrol flow traversal for

the new nodes being added. On the bright side, this should usually capture all the added

semantics of these nodes, allowing existing analyses to be used without extending them to

handle the new control flow nodes.

6.2 How Extensions are Supported in Mc SAF

The rest of this chapter discusses howMcSAF was designed to allow these types of exten-

sions. In particular we focus on the second and third type of language extensions, since the

first type is achieved mostly thanks to the JastAdd tool.

The extensibility of the framework is built into the packaging of the classes and the class

hierarchy. The node case handler related classes belong to the nodecases package, the

analysis classes belong to theanalysis package. In order to understand the extensibility of

McSAF, we need to describe the class hierarchy in more detail. These details are the crux of

the framework’s extensibility. The sub-class relationship represented by those hierarchies is

still correct; there are however additional classes and interfaces mixed in. These additional

classes and interfaces provide the actual definitions and implementations for NATLAB and

any extensions. The classes we’ve talked about so far are simply the user-facing names

for those components. An analysis programmer should only have to be concerned with

those classes, not any of the additional classes discussed in this section. These user-facing

classes are in fact basically empty except for code to specify the implementation class that

contains its content and other boiler plate code needed for it to compile and run correctly.

In order to make the structure more concrete, we demonstrateit with the hierarchy

behind forward analyses. This include theNodeCaseHandler down toAbstractStruc-

turalForwardAnalysis . AbstractSimpleStructuralForwardAnalysis is not included

for the sake a brevity. The user-facing class hierarchy for these classes can be seen in

Figure5.11.

To start we focus on the node case handlers. Recall that classes related to this por-

tion of the framework are located in thenodecases package. This package contains one

user-facing interface,NodeCaseHandler , and one user-facing abstract class,Abstract-

NodeCaseHandler . Since these are user-facing, they will be basically empty.Their content

103

Analysis Framework Extensibility

will come from corresponding files in thenodecases.natlab package. The correspond-

ing files areNatlabNodeCaseHandler andNatlabAbstractNodeCaseHandler . It is the

files innodecases.natlab that contain the actual content.NatlabNodeCaseHandler con-

tains all the method definitions described inSection5.1, andNatlabAbstractNodeCase-

Handler contains all the default implementations.NodeCaseHandler andAbstractNode-

CaseHandler simply contain code to define the interface or class and extend the corre-

spondingnodecases.natlab version. Source code for the actual implementation ofNode-

CaseHandler andAbstractNodeCaseHandler are given inFigure6.1.

package nodecases;

public interface NodeCaseHandler
extends nodecases.natlab.NatlabNodeCaseHandler

{
}

package nodecases;

public abstract class AbstractNodeCaseHandler
extends nodecases.natlab.NatlabAbstractNodeCaseHandler

{
}

Figure 6.1 Actual NodeCaseHandler and AbstractNodeCaseHandler source code

Of course, since the hierarchy relationship depicted inFigure 5.11 must hold,Abs-

tractNodeCaseHandler must implement theNodeCaseHandler interface. The source

code only states thatAbstractNodeCaseHandler extendsNatlabAbstractNodeCaseHandler ,

and doesn’t mention any interface. ForAbstractNodeCaseHandler to implementNode-

CaseHandler , NatlabAbstractNodeCaseHandler must implement it. In general, only

user-facing names should appear in source code, and when possible, interface references

should be used instead of class references. An obvious exception to this is the definition of

the user-facing classes and interfaces, which must use the non user-facing names.

The analysis classes are defined in a similar way. The full class hierarchy of the node

cases and forward analysis related classes is depicted inFigure6.2.

One difference with some of the analysis classes is that, since the abstract analysis

104

6.2. How Extensions are Supported inMcSAF

implementations define some constructors, the user-facingversions must also have those

constructors defined. The behaviour will simply call thesuper version of the constructor.

6.2.1 Example Extension

So how can this be extended? As was stated, a language extension must be completely

separate from its base language. Let’s say that we are creating a language extension called

EXT, which extends NATLAB . This extension defines a new node typeFooStmt extending

Stmt , and we want to extend the analysis framework to handle this new node. Here we will

focus on extending the node case handler.

The very first thing that must be done is thatFooStmt must be given ananalyze(-

NodeCaseHandler handler) method. This method must call thecaseFooStmt(...) on

the handler. This is done by using a JastAdd aspect, defining the method. The example

extensionExExtension2 has this defined by itsASTAnalyze.jadd file.

Since the base node case handler didn’t have acaseFooStmt(...) , we will need to

extend the node case handler interface. To do this we create anew interface,ExtNode-

CaseHandler , which is part of thenodecases.ext package. This new interface extends

NatlabNodeCaseHandler , and include a new case methodcaseFooStmt(FooStmt node) .

In order for this extended interface to be used, a new versionof NodeCaseHandler

must be created. Like the NATLAB NodeCaseHandler , this should be in thenodecases

package. The new one should be identical to the base version,except, instead of extending

nodecases.natlab.NatlabNodeCaseHandler , it will extend nodecases.ext.ExtNode-

CaseHandler .

AbstractNodeCaseHandler should be extended in a similar way, by creatingExt-

AbstractNodeCaseHandler . This should include the default forwarding behaviour for

caseFooStmt(...) , which will forward tocaseStmt(...) . A new AbstractNodeCase-

Handler is created in a way similar to how the newNodeCaseHandler was created.

By judiciously including correct files in the build process, the EXT language code will

have access to its node case handling classes, which includes the extended versions.1

1The build processes forExExtension1 andExExtension2 demonstrate how to include base lan-
guage classes correctly. See the directorymclab/Project/languages in theMcL AB project for these
two extensions.

105

Analysis Framework Extensibility

Figure 6.2 Class hierarchy for forward analyses including extensability details

106

6.2. How Extensions are Supported inMcSAF

This process allows any node case handlers written for the base language, such as the

statement counter described inSection5.1, to run in EXT. This is because such code should

only have used the user-facing names. For example, the statement counter was imple-

mented by extendingAbstractNodeCaseHandler . In EXT AbstractNodeCaseHandler

includescaseFooStmt(...) with default forwarding behaviour.

Of course, if the new nodes require special behaviour in any of these traversals or

analyses, then they would need to be extended. For example, the IncStmt needed spe-

cial behaviour in theNameCollector analysis, since it defines a new name. That is why

ExExtension2 includes an extended version ofNameCollector called ExtendedName-

Collector . This demonstrates the process of extending an existing analysis to work with

a new language extension.

In Figure 6.3, the class hierarchy for the node cases in EXT is given. It should be

noted that all the classes in thenodecases.natlab package are located in the NATLAB

language, and are not copied into the EXT. TheExtNodeCaseHandler andExtAbstract-

NodeCaseHandler classes are located in the EXT language, and only include definitions for

the added node. TheNodeCaseHandler andAbstractNodeCaseHandler files are new files

existing in EXT. They are identical to NATLAB ’s versions of these files, except they extend

the classes in thenodecases.ext package. The class path when compiling and executing

code in the EXT language, should be set so that these newer versions ofNodeCaseHandler

andAbstractNodeCaseHandler take priority over NATLAB ’s versions.

6.2.2 Other Issues

When extending, there are some extra considerations to be aware of. First of all, the struc-

tural forward analyses rely on a helper node case handler called AnalysisHelper . The

cases in this class receive the callback from ananalyze(...) call, perform some book-

keeping, and forward to the same case in the analysis being performed. The behaviour of

this class is very simple, and should be obvious from its source code. In fact this code would

also be a good candidate for automated code generation. When extending the analysis

framework, theAnalysisHelper andBackwardsAnalysisHelper must be extended ap-

propriately. TheExExtension2 language extension includes examples of extending these

107

Analysis Framework Extensibility

Note that theNodeCaseHandler andAbstractNodeCaseHandler classes are new
versions of those classes, included in EXT.

Figure 6.3 Class hierarchy of the extended node case handler

two classes.

Creating a major language extension, one containing new control flow and loops, which

requires the use of previous analyses, some of which requiring new node case implemen-

tations, and requiring new analyses to be written is not a small task. Such an extension

requires knowledge of the framework, analyses, and semantics of both MATLAB and the

extension language. In such a case, the framework provides aclear way of implementing

the extension, and it does so in a way that can cleanly separate the extended functionality

from the base functionality.

108

6.3. Summary

6.3 Summary

The analysis framework described in this chapter andChapter5 provides a way of defining

new intraprocedural analyses for the MATLAB language. It allows a programmer to create

several different types of analyses, ranging from simple traversals to flow-sensitive analyses

with fixed-point computations. It also defines a basic traversal mechanism that has become

a useful tool in other parts of theMcL AB project. This framework also provides a means to

adapt to new language extensions. For simple extensions, itallows for very simple adapta-

tion. When more complex extensions are needed, it provides a clear way of performing that

extension, which avoid the need to re-implement or copy the entire framework. To demon-

strate the process of creating language extensions, two example extensions are provided.

These extensions are namedExExtension1 andExExtension2 . They are available as part

of theMcL AB project, and can be found in the directorymclab/Project/languages .

109

Analysis Framework Extensibility

110

Chapter 7

Related Work

TheMcL AB Static Analysis Framework is an extensible framework for creating static

analyses for the MATLAB language. This is the first open framework created for analyz-

ing MATLAB . There have been other projects that provide such a framework for other

languages. There have also been other projects that have performed static analysis on

MATLAB , but with no focus on making the analysis system an open research tool. In this

chapter, we will discuss some of the existing work that relates to the contributions of this

thesis.

7.1 Soot

Soot[VRHS+99] is an optimization framework for Java. This framework was created as

an open research tool. LikeMcL AB, Soot provides different intermediate representations.

It also provides a framework for creating static analyses. Soot is an open source tool, and

more information can be found at the project home page1.

7.2 JastAdd

The JastAdd toolkit is designed for creating extensible compilers. This toolkit was used in

the development ofMcL AB. One feature of JastAdd that was not discussed in great detail

1http://www.sable.mcgill.ca/soot/

111

http://www.sable.mcgill.ca/soot/

Related Work

in this thesis is its attribute grammar system. JastAdd allows a developer to define attributes

as part of their AST grammar. These attributes are effectively functions operating on the

AST nodes. They can be used to propagate information throughthe tree and they can even

be defined in a circular fashion. The JastAdd system providesa fixed-point computation

for calculating the results of such circular attributes.

JastAdd’s attribute system provides a low level means of performing analysis on an

AST. It is up to the compiler writer to use these tools and to take the semantics of the

language they are implementing into account, in order to create any meaningful analyses. It

isn’t a full dataflow analysis framework. However, some work[NNHME09] has been done

to implement flow analysis for Java using the JastAdd extensible Java compiler[EH07a].

7.3 MATLAB Related Work

In the past, there has also been some work towards compiling MATLAB . There was the

Falcon project[RP99, DRG+95], which aimed to compile MATLAB code into FORTRAN.

Falcon focuses on type inference and code inlining to produce FORTRAN code.

The Magica tool[JB02] focuses on type inference for matrix operations and functions.

It not only infers the intrinsic type of matrices, such asint32 , double , or char ; but also

matrix sizes and shapes. Magica is part of a larger MATLAB compiler project, and is used

for performing code optimizations.

Another compiler project for MATLAB is MaJIC [AP02]. MaJIC incorporates a Just-

In-Time(JIT) compiler component. This allows it to achievespeedups similar to those

produced by Falcon, without sacrificing the interactive nature of MATLAB .

There has also been some work towards source-to-source transformations[MP99]. These

transformations are intended to improve performance by taking advantage of more efficient

ways of writing MATLAB code. This is possible because there are certain language features

that MATLAB performs more efficiently than others. For instance, using loops in MATLAB

can result in fairly slow code. If the looping code can be rewritten to take advantage of

MATLAB ’s vector operations, it can greatly improve execution speed. In fact, there is offi-

112

7.4. McL AB Related Work

cial documentation2 describing manual techniques for vectorizing code.

These projects differ from this thesis in that their main goal was to improve the per-

formance of MATLAB programs.McSAF, on the other hand, was created with the goal

of creating an open tool for researching compiler techniques in scientific programming. In

fact the techniques used in these other projects could have been implemented usingMcSAF.

7.4 Mc L AB Related Work

More recently, theMcL AB project has produced work related to optimizing and compiling

MATLAB code.McFOR [Li09] is a static back-end that produces FORTRAN code.McFOR

uses type inference to produce efficient FORTRAN code. It estimates array shapes and sizes

in order eliminate array reallocation and array bounds checks, in order to reduce execution

overhead. Work on this portion ofMcL AB is an ongoing project. The new work is being

based off of, and incorporatesMcSAF and the work done towards this thesis.

McJIT [CBHV10] takes a dynamic approach to MATLAB compilation. It incorporates

a virtual machine calledMcVM that acts as an interpreter. It uses profiling information

to determine when to initiate just-in-time compilation, where it produces LLVM[Lat02]

machine code.McJIT can take advantage of run-time information to produce specialized

versions of compiled functions.McVM andMcJIT use the front-end portion ofMcL AB

in order to scan and parse inputted MATLAB . The analyses performed byMcJIT were

implemented separately from work done in this thesis. Thereis work currently being done

to incorporate some of the contributions of this thesis intoMcVM . The first step of this

effort is making the Kind Analysis information available tothe VM.

2http://www.mathworks.com/support/tech-notes/1100/11 09.html

113

http://www.mathworks.com/support/tech-notes/1100/1109.html

Related Work

114

Chapter 8

Conclusions and Future Work

MATLAB is a popular language for scientific and numerical programming. Due to its

closed source and proprietary nature, there is a high overhead to researching compiler tech-

niques targeted towards MATLAB and scientific languages. TheMcL AB project tries to

overcome this by developing open tools and frameworks aimedat MATLAB compiler re-

search. As part of this project, and the topic of this thesis,we have developed theMcL AB

Static Analysis Framework. The analysis framework is designed to make it simple to de-

velop new analyses for MATLAB programs. It was also designed to allow the framework

and existing analyses to be extended to new language features.

Developing this framework has required an investigation ofMATLAB semantics. This

investigation was necessary because there is no official specification for MATLAB ; the lan-

guage is defined by the latest implementation and a collection of informal documentation.

It has also involved the definition of a simplified intermediate representation for MATLAB ,

calledMcLAST . McLAST is a restricted version ofMcAST. This representation was nec-

essary to make creating analysis simpler. It accomplishes this by restricting the complexity

of expressions and statements, and exposing some of MATLAB ’s semantics, making them

more explicit.

Having definedMcLAST , it was also necessary to implement a transformation to sim-

plify McAST into McLAST . We also developed a tool for verifying that a given AST

satisfiesMcLAST ’s restrictions.

The framework itself is an intraprocedural static analysisframework. It allows for

115

Conclusions and Future Work

several different types of analyses to be written. These include a simple traversal based

analysis that can be used to implement context insensitive analyses. Fixed-point based

flow-sensitive analyses can also be written. These flow-sensitive analyses can be either

forward or backward analyses.

Using this framework some example analyses were created. Inaddition, some generally

useful analyses have also been created. In particular, the Kind Analysis was created and is

used in other parts ofMcL AB project.

The contributions of this thesis provide important tools for future research into com-

piler techniques targeting MATLAB and scientific programming. They will facilitate future

development of program analyses by providing simpler and more exposed semantics, by

providing a framework for simplifying the task of creating such analyses, example analy-

ses that use this framework, and fundamental analyses that can provide basic information

to future analyses.

8.1 Future Work

McSAF is already being used inMcL AB in an integral way, but the development ofMcSAF

has opened up avenues for future work. The most obvious work to do is to continue using

McSAF to create new analyses. Either implementing standard analyses using the frame-

work, or by creating entirely new analyses related to MATLAB and scientific programming.

It would also mean creating new language extensions and writing analyses for them.

Another excellent opportunity for future work is the development of an interprocedural

component of the analysis framework. Some work has already been done towards this goal.

This work includes the Handle Propagation Analysis, which was created as a step towards

creating an accurate call graph for MATLAB programs.

Finally, there is also the opportunity to create tools that will ease the burden of creating

new language extensions. Much of the code that needs to be written for a language exten-

sion follows a very precise pattern. Tools could be created to generate this code, allowing

the creator of an extension to focus on the design of the actual language extension.

116

Appendix A

Full Reaching Definitions Analysis Code

1 package natlab.toolkits.analysis.test;

2

3 import analysis. * ;

4 import ast. * ;

5 import java.util.Set;

6 import java.util.HashSet;

7

8 / **

9 * A simple forward analysis example, computing reaching defi nitions.

10 *

11 * @author Jesse Doherty

12 * /

13 public class ReachingDefs

14 extends

15 AbstractSimpleStructuralForwardAnalysis<HashMapFlow Map<String,

16 Set<AssignStmt>>>

17 {

18 private Merger merger = new Merger<Set<ASTNode>>(){

19 public Set<ASTNode> merge(Set<ASTNode> s1, Set<ASTNode> s2)

20 {

21 Set<ASTNode> ms = new HashSet<ASTNode>(s1);

22 ms.addAll(s2);

23 return ms;

24 }

117

Full Reaching Definitions Analysis Code

25 };

26

27 private HashMapFlowMap<String,Set<AssignStmt>> startMap;

28 private NameCollector nameCollector;

29

30 public ReachingDefs(ASTNode tree)

31 {

32 super(tree);

33 startMap = new HashMapFlowMap<String,Set<AssignStmt>>(merger);

34 nameCollector= new NameCollector(tree);

35 nameCollector.analyze();

36 for(String var : nameCollector.getAllNames())

37 startMap.put(var, new HashSet<AssignStmt>());

38 }

39

40 / **

41 * Defines the merge operation for this analysis.

42 *

43 * This implementation uses the union method defined by {@link

44 * AbstrcatFlowMap}. Note that the union method deals with the

45 * cases where {@literal in1==in2}, {@literal in1==out} or

46 * {@literal in2==out}.

47 * /

48 public void merge(HashMapFlowMap<String,Set<AssignStmt>> in1,

49 HashMapFlowMap<String,Set<AssignStmt>> in2,

50 HashMapFlowMap<String,Set<AssignStmt>> out)

51 {

52 in1.union(merger, in2, out);

53 }

54

55 / **

56 * Creates a copy of the FlowMap with copies of the contained set .

57 * /

58 public void copy(HashMapFlowMap<String,Set<AssignStmt>> in,

59 HashMapFlowMap<String,Set<AssignStmt>> out)

60 {

61 if(in == out)

118

62 return;

63 out.clear();

64 for(String i : in.keySet())

65 out.put(i, new HashSet<AssignStmt>(in.get(i)));

66 }

67

68 / **

69 * Creates a copy of the given flow-map and returns it.

70 * /

71 public HashMapFlowMap<String,Set<AssignStmt>>

72 copy(HashMapFlowMap<String,Set<AssignStmt>> in)

73 {

74 HashMapFlowMap<String,Set<AssignStmt>> out =

75 new HashMapFlowMap<String,Set<AssignStmt>>();

76 copy(in, out);

77 return out;

78 }

79

80 public HashMapFlowMap<String,Set<AssignStmt>> newInitialFlo w()

81 {

82 return copy(startMap);

83 }

84

85 public void caseAssignStmt(AssignStmt node)

86 {

87 inFlowSets.put(node, currentInSet);

88 currentOutSet = copy(currentInSet);

89 Set<String> defVars = nameCollector.getNames(node);

90

91 for(String n : defVars){

92 Set<AssignStmt> newDefSite = new HashSet<AssignStmt>();

93 newDefSite.add(node);

94 currentOutSet.put(n, newDefSite);

95 }

96 outFlowSets.put(node, currentOutSet);

97 }

98

119

Full Reaching Definitions Analysis Code

99 public void caseStmt(Stmt node)

100 {

101 inFlowSets.put(node, currentInSet);

102 currentOutSet = currentInSet;

103 outFlowSets.put(node, currentOutSet);

104 }

105

106 }

Listing A.1 ReachingDefs analysis code

120

Appendix B

Variable Use Collector Code

1 package natlab.toolkits.analysis.test;

2

3 import java.util. * ;

4 import ast. * ;

5 import analysis. * ;

6 import natlab.toolkits.analysis.varorfun. * ;

7

8 / **

9 * @author Jesse Doherty

10 * /

11 public class UseCollector

12 extends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>

13 {

14 private VFPreorderAnalysis kindAnalysis;

15

16 private HashSetFlowSet<String> fullSet;

17 private boolean inLHS = false;

18

19 public UseCollector(ASTNode tree)

20 {

21 super(tree);

22 fullSet = new HashSetFlowSet<String>();

23 kindAnalysis = new VFPreorderAnalysis(tree);

24 kindAnalysis.analyze();

121

Variable Use Collector Code

25 }

26

27 public HashSetFlowSet<String> newInitialFlow()

28 {

29 return new HashSetFlowSet<String>();

30 }

31

32 / **

33 * Gets a set of all uses for the given tree.

34 * /

35 public Set<String> getAllUses()

36 {

37 return fullSet.getSet();

38 }

39 / **

40 * Gets a set of uses in the given statement.

41 * /

42 public Set<String> getUses(Stmt node)

43 {

44 HashSetFlowSet<String> set = flowSets.get(node);

45 if(set == null)

46 return new HashSet<String>();

47 else

48 return set.getSet();

49 }

50

51 / **

52 * Finds all uses in the given assignment. It makes sure that the

53 * target of the assignment isn’t considered a use.

54 * /

55 public void caseAssignStmt(AssignStmt node)

56 {

57 HashSetFlowSet<String> prevSet = currentSet;

58 inLHS = true;

59 currentSet = newInitialFlow();

60

61 analyze(node.getLHS());

122

62 inLHS = false;

63 analyze(node.getRHS());

64

65 flowSets.put(node, currentSet);

66 fullSet.addAll(currentSet);

67

68 if(prevSet != null)

69 prevSet.addAll(currentSet);

70 currentSet = prevSet;

71 }

72

73 / **

74 * Finds all uses in the given statement.

75 * /

76 public void caseStmt(AssignStmt node)

77 {

78 HashSetFlowSet<String> prevSet = currentSet;

79 currentSet = newInitialFlow();

80

81 caseASTNode(node);

82

83 flowSets.put(node, currentSet);

84 fullSet.addAll(currentSet);

85

86 if(prevSet != null)

87 prevSet.addAll(currentSet);

88 currentSet = prevSet;

89 }

90

91 / **

92 * Makes sure that targets of assignments aren’t considered

93 * uses. Also makes sure that the arguments are seen.

94 * /

95 public void caseParameterizedExpr(ParameterizedExpr node)

96 {

97 analyzeAsNotLHS(node.getArgs());

98 analyze(node.getTarget());

123

Variable Use Collector Code

99 }

100

101 //NOT: More cases would be needed to make complete.

102

103 / **

104 * Checks if the name is possible a variable, and not the target

105 * of an assignment; if it is, adds it.

106 * /

107 public void caseNameExpr(NameExpr node)

108 {

109 if(!inLHS){

110 if(maybeVar(node))

111 currentSet.add(node.getName().getID());

112 }

113 }

114

115 / **

116 * Helper method to analyze a given node, making sure it is

117 * treated like it isn’t the target of an assignment. It saves an d

118 * restores the state of {@code inLHS}

119 * /

120 private void analyzeAsNotLHS(ASTNode node)

121 {

122 boolean bakInLHS = inLHS;

123 inLHS = false;

124 analyze(node);

125 inLHS = bakInLHS;

126 }

127

128 / **

129 * A helper method to abstract away the test to see if an name

130 * expression might be a variable.

131 * /

132 public boolean maybeVar(Expr expr)

133 {

134 if(expr instanceof NameExpr){

135 NameExpr nameExpr = (NameExpr)expr;

124

136 if(nameExpr.tmpVar)

137 return true;

138 else{

139 Name name = nameExpr.getName();

140 if (kindAnalysis.getFlowSets().containsKey(name)){

141 kindAnalysis.analyze();

142 }

143 VFDatum kind =

144 kindAnalysis.getFlowSets().get(name).contains(

145 nameExpr.getName().getID()

146);

147 return (kind!= null) && (kind.isVariable() || kind.isID());

148 }

149 }

150 return false;

151 }

152 }

Listing B.1 Variable use collector code

125

Variable Use Collector Code

126

Appendix C

Full Maybe Live Variable Analysis Code

1 package natlab.toolkits.analysis.test;

2

3 import analysis. * ;

4 import natlab.toolkits.analysis.varorfun. * ;

5

6 import ast. * ;

7

8

9 import java.util.Set;

10 import java.util.HashSet;

11

12 / **

13 * Performs a naive Live Variable analysis. It ignores the poss ibility

14 * of variables being used by function calls, script calls, and

15 * evals. Basically it ignores dynamic behaviour and the lack o f

16 * scope.

17 *

18 * @author Jesse Doherty

19 * /

20 public class MaybeLive

21 extends

22 AbstractSimpleStructuralBackwardAnalysis<HashSetFlo wSet<String>>

23 {

24

127

Full Maybe Live Variable Analysis Code

25 private NameCollector nameCollector;

26 private UseCollector useCollector;

27

28

29 public MaybeLive(ASTNode tree)

30 {

31 super(tree);

32

33 nameCollector = new NameCollector(tree);

34 nameCollector.analyze();

35 useCollector = new UseCollector(tree);

36 useCollector.analyze();

37 }

38

39 / **

40 * Merges the two sets by using the union defined by {@link

41 * HashSetFlowSet}.

42 * /

43 public void merge(HashSetFlowSet<String> in1,

44 HashSetFlowSet<String> in2,

45 HashSetFlowSet<String> out)

46 {

47 in1.union(in2, out);

48 }

49

50 / **

51 * Copies {@code in} into {@code out} by using {@code in}’s {@co de

52 * copy(...)} method.

53 * /

54 public void copy(HashSetFlowSet<String> in,

55 HashSetFlowSet<String> out)

56 {

57 in.copy(out);

58 }

59

60 / **

61 * Returns a copy of {@code in} by using it’s {@code copy()}

128

62 * method.

63 * /

64 public HashSetFlowSet<String> copy(HashSetFlowSet<String> in)

65 {

66 return in.copy();

67 }

68

69 / **

70 * The initial flow is an empty set. Initially, no variables are

71 * live.

72 * /

73 public HashSetFlowSet<String> newInitialFlow()

74 {

75 return new HashSetFlowSet<String>();

76 }

77

78 / **

79 * Creates the in-flow for an assignment statement. It uses the

80 * {@link NameCollector} and {@link UseCollector} to find the

81 * variable names to remove and add, respectively. It associat es

82 * the out and resulting in to the given node.

83 * /

84 public void caseAssignStmt(AssignStmt node)

85 {

86 outFlowSets.put(node, currentOutSet);

87 //HashSetFlowSet<String> workingInFlow = copy(currentO utSet

88 //);

89 currentInSet = copy(currentOutSet);

90

91 Set<String> defVars = nameCollector.getNames(node);

92 Set<String> useVars = useCollector.getUses(node);

93

94 for(String def : defVars)

95 currentInSet.remove(def);

96 for(String use : useVars)

97 currentInSet.add(use);

98

129

Full Maybe Live Variable Analysis Code

99 inFlowSets.put(node, currentInSet);

100

101 }

102

103 / **

104 * Creates the in-flow for an arbitrary statement. Uses the {@l ink

105 * UseCollector} to find names to add to the flow.

106 * /

107 public void caseStmt(Stmt node)

108 {

109 outFlowSets.put(node, currentOutSet);

110 HashSetFlowSet myInSet = copy(currentOutSet);

111

112 caseAST(node);

113

114 Set<String> useVars = useCollector.getUses(node);

115

116 for(String use : useVars)

117 myInSet.add(use);

118

119 currentInSet = myInSet;

120 inFlowSets.put(node, currentInSet);

121 }

122

123 }

Listing C.1 MaybeLive analysis code

130

Bibliography

[AP02] George Alḿasi and David Padua.MaJIC: compiling MATLAB for speed

and responsiveness. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002

Conference on Programming language design and implementation, Berlin,

Germany, 2002, pages 294–303. ACM, New York, NY, USA.

[CBHV10] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Opti-

mizing MATLAB through just-in-time specialization. InInternational Con-

ference on Compiler Construction, March 2010, pages 46–65.

[DHR11] Jesse Doherty, Laurie Hendren, and Soroush Radpour. Kind analysis for

MATLAB. In OOPSLA, 2011, pages 99–118.

[DRG+95] L. Derose, L. De Rose, K. Gallivan, K. Gallivan, E. Gallopoulos, E. Gal-

lopoulos, B. Marsolf, B. Marsolf, D. Padua, and D. Padua. FALCON: A

MATLAB interactive restructuring compiler. InLanguages and Compilers

for Parallel Computing, 1995, pages 269–288. Springer-Verlag.

[EH07a] Torbj̈orn Ekman and G̈orel Hedin. The JastAdd extensible Java compiler.

In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN confer-

ence on Object-oriented programming systems and applications, Montreal,

Quebec, Canada, 2007, pages 1–18. ACM, New York, NY, USA.

[EH07b] Torbj̈orn Ekman and G̈orel Hedin.The JastAdd system - modular extensible

compiler construction. Sci. Comput. Program., 69:14–26, December 2007.

131

http://doi.acm.org/10.1145/512529.512564
http://doi.acm.org/10.1145/1297105.1297029
http://portal.acm.org/citation.cfm?id=1321774.1321798

Bibliography

[JB02] Pramod G. Joisha and Prithviraj Banerjee. Magica: A software tool for

inferring types in MATLAB. Technical report, Department of Electrical and

Computer Engineering, Northwestern University, Oct 2002.

[Lat02] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.

Master’s thesis, Computer Science Dept., University of Illinois at Urbana-

Champaign, Urbana, IL, Dec 2002.Seehttp://llvm.cs.uiuc.edu .

[Li09] Jun Li. McFOR: A MATLAB to FORTRAN 95 compiler. Master’sthesis,

August 2009.

[Mata] Matlab. Official matlab documentation. Home page

http://www.mathworks.com/help/techdoc/ .

[Matb] Matlab. The Language Of Technical Computing. Home page

http://www.mathworks.com/products/matlab/ .

[MP99] Vijay Menon and Keshav Pingali. A case for source-level transformations in

MATLAB. In In Proceedings of the Second Conference on Domain-Specific

Languages, 1999, pages 53–65.

[NNHME09] Emma Nilsson-Nyman, G̈orel Hedin, Eva Magnusson, and Torbjörn Ekman.

Declarative intraprocedural flow analysis of Java source code. Electron.

Notes Theor. Comput. Sci., 238:155–171, October 2009.

[RP99] Luiz De Rose and David Padua.Techniques for the translation of MATLAB

programs into Fortran 90. ACM Trans. Program. Lang. Syst., 21(2):286–323,

1999.

[TAH10] Anton Dubrau Toheed Aslam, Jesse Doherty and LaurieHendren. Aspect-

matlab: An aspect-oriented scientific programming language. InAOSD ’10:

Proceedings of the 9th international conference on Aspect-oriented software

development, Rennes and St. Malo, France, 2010, pages 181–192. ACM,

New York, NY, USA.

132

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://portal.acm.org/citation.cfm?id=1628315.1628373
http://doi.acm.org/10.1145/316686.316693

Bibliography

[VRHS+99] Raja Valĺee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne

Gagnon, and Phong Co.Soot - a java optimization framework. In Proceed-

ings of CASCON 1999, 1999, pages 125–135.

133

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Outline

	Background
	The McLab Project
	The Matlab language

	Intermediate Representations
	Formalisms
	JastAdd Abstract Grammars
	Grammar Specifications

	Mcast
	Expressions
	Statements
	Program Structure
	Overview

	Mclast
	Expressions
	Multi-Assign Statements
	Conditional Expressions
	For Loops
	If Statements
	Assignment Statements
	Check Scalar Statement
	Validator

	Simplifications
	Organization and Execution
	Dependencies

	Simple Assignment
	 CSL Left Expansion
	Multi-Assignment Simplification
	Left-Hand Side simplification
	For Loop Simplification
	Simple If Statements
	Array Short-Circuit simplification
	Conditional Simplification
	Right-Hand Side Simplification
	Short-Circuit Expression simplification

	Full Simplification

	Intraprocedural Analysis Framework
	Basic Traversal Mechanism
	Analysis Types
	Flow-Data Representation
	Common Implementation
	Depth-first Analysis
	Structural Analysis
	Implemented Analyses

	Analysis Framework Extensibility
	Classification of Extensions
	How Extensions are Supported in Mcsaf
	Example Extension
	Other Issues

	Summary

	Related Work
	Soot
	JastAdd
	Matlab Related Work
	McLab Related Work

	Conclusions and Future Work
	Future Work

	Full Reaching Definitions Analysis Code
	Variable Use Collector Code
	Full Maybe Live Variable Analysis Code
	Bibliography

