MCSAF: AN EXTENSIBLE STATIC ANALYSIS FRAMEWORK FOR
THE MATLAB LANGUAGE

by
Jesse Doherty

School of Computer Science
McGill University, Montréal

August 2011

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright(©) 2011 Jesse Doherty

Abstract

MaTLAB ® is a popular language for scientific and numerical programymiDespite its
popularity, there are few active projects providing opesiddor MATLAB related compiler
research. This thesis provides thfeL AB Static Analysis Frameworl/csAF, the goal of
which is to simplify the development of new compiler tools FMATLAB.

The McL AB project was started in order to develop such tools in the fiopattract-
ing further research. The goal of the project is to providextensible compiler toolkit for
MATLAB and scientific programming. It is intended to explore the piteion challenges
unique to MATLAB and to explore new language features that could help sfgepto-
grammers be more productive. One piece of functionalityighparticularly important for
compiler research is the ability to perform static analyg/ghout the information provided
by static analyses, program transformations and optimizsatand automated programmer
feedback would not be possible.

In order to make the development of static analyses simgies,thesis contributes
a framework for creating static analyses for th@am™AaB language. This framework is
intended to make writing analyses easier by providing conetionality and API for de-
veloping such analyses. It also aims to make analysis dewedot easier by providing an
intermediate representation callMtLAST, which provides simpler syntax and explicitly
exposes some of MLAB’s semantics. In order to give analysis writers a head stame
example analyses are provided. These include simple asaly®ended to demonstrate the
use of the framework, and some more complicated analyséptbade basic semantic
information about MATLAB programs.

In addition to the framework making development of analysewler, MCcSAF is also
designed to be extended to new language features. Not amthedramework be extended,

but existing analyses can also be extended. This allows thatkvas previously done for
analyzing MATLAB code to be applied to future language extensions.

Résum é

MAaTLAB ® est un langage de programmation science etérique utili€ autant en
industrie que dans le milieu acahique. Malge cette popular, peu de project de rer-
cherhe orété entreprise dans le but de produire une suite de compilption MATLAB .
Cette tlese contribue ldcL AB Static Analysis FrameworkyIcSAF, qui a I'objectif de
simplifier le ceveloppement des nouveaux outils de compilation poarIMB .

Le projetMcL AB fait suitea ce manque, dans I'espoir d’attiser les recherches sur ce
sujet. L'objectif principale ceésume au éveloppent d’une trousse de compilation exten-
sible pour MATLAB et les langage de programmation pour science. Le projet ettén
par des éfis de compilation uniqua MATLAB, et par lexploration de nouvelles structures
syntaxical argliorant lexgrience de programmation scientifique. L'une des fonctiten
cher au domaine de la compilation est I'hakila performer des analyses statique de pro-
gramme. Sans ces informations que nous procures lanaftggust, une grande partie des
transformations et autres optimisatiorssge lors du processus de compilation ne serait
pas possible.

Pour rendre la @lveloppent des analyses statique plus simple, cettetbontribue un
cadre pour d@&er des analyses statique pour le langage'MB. L'objectif de ce cadre
est de rendre la programmation des analyses plus simpleuenigsant les fonctionna-
lités de base et une API pougwklopper de telles analyses. Un autre objectif est de eendr
le développent des analyses plus simple en fournissant unesesgation interédiaire,
McLAST, qui fourni une syntaxe plus simple est qui expose E®mantiques de Mr-
LAB. Pour aider legcrivains d’analyse, quelques exemples d’analyse somifuen plus,
guelques analyses utiles s@galement fournis. Ces analyses fournissent des inforngatio
de base reiea les €mantiques de MrLAB. lIs ont des application partout dans le projet.

L'objectif final du cadre est @tre extensible. Le framework doit fonctionner avec des
nouvelles structure de langue. Sa veut dire que les progeampeuvent &er des nou-
velles analyses pour ces extension, et que les analysesigtaient pour le langage de
base, peugtre adapter aux nouvelles structure.

Acknowledgements

| would like to thank my supervisor, Laurie Hendren, whogghtstandards and demand
for clear descriptions have helped shape my work and myngriti

| would also like to thank the entir®cL AB team. In particular | would like to ac-
knowledge contributions by the following members: M.Sadsint Soroush Radpour, who
has taken responsibility for continued development on thmel KAnalysis; M.Sc. graduate
Toheed Aslam for being the first to use the Kind Analysis, amdhelping to inspire its
creation; and finally, M.Sc. student Anton Dubrau for beimg first major user oMcSsAF,
and for putting up with my constant delays.

Of course | would also like to thank my friends and family, wesupport and constant
prodding provided the motivation to complete this thesis@m as possible.

Finally, 1 would like to thank my loving wife Jessica GanteBhe has put up with
my constant preoccupation with MLAB and compilers, and with the occasional minor
depression that resulted from learning some new disturti@ajure” of MATLAB .

This work was supported, in part, by the Natural Scienceskargineering Research
Council of Canada (NSERC).

Vi

Table of Contents

Abstract i
Résune il
Acknowledgements v
Table of Contents Vil
List of Figures Xi
List of Tables XV
Table of Contents XVii
1 Introduction 1
1.1 Contributions. e 4
1.2 Outline e e e 4
2 Background 7
2.1 TheMcLABProject i i 7
2.2 The MATLAB language. it 8
3 Intermediate Representations 11
3.1 Formalisms. 12
3.1.1 JastAdd Abstract Grammars. 12
3.1.2 Grammar Specifications 000 14

Vil

3.2 MCAST . . 15

3.21 EXpressions 15
3.2.2 Statements. 18
3.2.3 Program Structure. 21
3.24 OVeIVIEW. . . . o o e e e e 22
3.3 MCLAST . . . o o e e e 22
3.3 1 EXpressions 23
3.3.2 Multi-Assign Statements Lo 26
3.3.3 Conditional Expressions 28
3.34 FOrLoopS o e 28
3.35 |IfStatements. 30
3.3.6 Assignment Statements 31
3.3.7 CheckScalar Statement 31
3.3.8 Validator 32

4 Simplifications 33
4.1 Organizationand Execution. 34
4.1.1 Dependencies. e e 34
4.2 Simple Assignment e e 35
4.3 CSLLeftExpansion. 36
4.4 Multi-Assignment Simplification 38
4.5 Left-Hand Side simplification. 39
4.6 For Loop Simplification 43
4.7 Simplelf Statements. 45
4.8 Array Short-Circuit simplification. 46
4.9 Conditional Simplification. 49
4.10 Right-Hand Side Simplification. 51
4.10.1 Short-Circuit Expression simplification 52

4.11 Full Simplification 60

viii

5 Intraprocedural Analysis Framework

5.1 Basic Traversal Mechanism.
52 AnalysisTypes.
5.2.1 Flow-Data Representation.
5.2.2 Common Implementation.
5.2.3 Depth-firstAnalysis.
5.2.4 Structural Analysis
5.2.5 Implemented Analyses.

6 Analysis Framework Extensibility

6.1 Classification of Extensions.

6.2 How Extensions are SupportedMtSAF

6.2.1 ExampleExtension.
6.2.2 Otherlssues.
6.3 Summary. e e

7 Related Work

7.1 Soot. e
7.2 JastAdd.
7.3 MATLAB RelatedWork.
7.4 McLABRelatedWork

8 Conclusions and Future Work

8.1 FutureWork.

Appendices
A Full Reaching Definitions Analysis Code
B Variable Use Collector Code

C Full Maybe Live Variable Analysis Code

117

121

127

Bibliography 131

List of Figures

1.1 TheMcLABsSyStem. e 3
3.1 Front-end andIcLAST generation. 12
3.2 McAsT top level expression definition 15
3.3 McAsT LValue expression definition 16
3.4 McAsT unary and binary specification portion. 17
3.5 McAST miscellaneous expressions. 18
3.6 MCAST expression statement. 18
3.7 McAsT declaration statement. L. 19
3.8 McAsT assignmentstatement o oL 19
3.9 McAsT control statements. Lo oo 20
3.10 McAST program StrucCture v v v e e e 21
3.11 McLAST LValuegrammar v i e 24
3.12 McLAST RValuegrammar. 26
3.13 NewMcLAST RvValuenodes. 26
3.14 McLAST multi-assigngrammar. 28
3.15 McLAST condition expressiongrammar. 28
3.16 MCLAST for loopgrammar 29
3.17 McLAST if statementgrammar 31
3.18 McCLAST assignment statementgrammar 31
3.19 McLAST assignment statementgrammar 32
4.1 Front-endwithIRgeneration. 33
4.2 Dependency tree for simplifications 36

Xi

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

CSL leftexpansion pseudocode 37

CSLexpansion. i e 37
Multi-Assignment simplification pseudocode 39
Multi-assignment simplificationexample 39
Simplifyingi f statement pseudocode 46
Array short-circuiting simplification pseudocode 47
Simplify function pseudocode for array short-cirqugtisimplification . . . 48
Condition simplification pseudocode. 50
Conditional simplificationexample. 51
Right-hand side simplification pseudocade. 53
Right-hand side simplificationexample 54
Naive short-circuitexpansion. 55
Short-circuit patterns for assignments. 57
Short-circuit patterns foff statements 58
Excerpt of AST class hierarchy. 62
Excerpt ofAbstractNodeCaseHandler ~ demonstrating default behaviour. 63
Example traversal counting statements. 64
Flow-data class hierarchy. 67
Class hierarchy snippet for depth-firstanalysis. 72
Depth-firstaseASTNode(...) sourcecode. 73
Shell of example depth-first analysismeCollector 75
caseAssignStmty(...) andcaseName(...) for NameCollector 76
caseParameterizedExpr(...) for NameCollector 77
FullNameCollector definition 78
Class hierarchy snippet for structural analysis 81
Forward data flow farf statements. 83
Forward data flow faswitch statements 84
Forward data flow fokhileloops 86
Forward data flow faror loops 87
Stepsto creatinganew flowanalysis 88

xii

5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28

Shell of the reaching definitions implementation. 89
Implementation aflerger for reaching definitions 89
Implementation aherge(...) for reaching definitions 90
Implementation ofopy(...) methods for reaching definitions. 90
Implementation for reaching definition’s constructor. 91
Implementation afewlnitialFlow() for reaching definitions 91
Implementation ofaseAssignStmt(...) for reaching definitions 93
Implementation ofasestmt(...) for reaching definitions 93
Backward data flow farf statements. 96
Backward data flow faswitch statements L. 97
Backward data flow fathi leloops 98
Backward data flow fdror loops L. 99

6.1 ActualNodeCaseHandler andAbstractNodeCaseHandler source code. . 104

6.2
6.3

Class hierarchy for forward analyses including exteitisatietails 106
Class hierarchy of the extended node case handler. 108

Xiii

Xiv

List of Tables

5.1 Methods in th&lowSet<D> interface 68
5.2 New methods in thebstractFlowSet<D> interface 68
5.3 Methods in th&lowMap<K,v> interface 69
54 Merginginterfaces. 70
5.5 Operation methods in thstractFlowMap<D> interface. 70
5.6 Methods inthenalysis interface. 71
5.7 Methods in thestructuralAnalysis interface 79
5.8 Data members in defined BystractStructuralAnalysis 80
5.9 Methods associated with branching analyses. 82
5.10 AbstractStructuralForwardAnalysis.LoopFlowsets methods. 85
5.11 AbstractStructuralBackwardAnalysis.LoopFlowsets methods 95

XV

XVi

List of Listings

A.1 ReachingDefs analysiscode.

B.1 Variable use collector co
C.1 MaybeLive analysis code

de

Xvii

XVili

Chapter 1
Introduction

MATLAB is a popular programming language among scientists anchegei. It pro-
vides high-level matrix operations that are useful to dtsés Its dynamic type system can
also make code more natural to write, allowing programmeravbid declaration state-
ments and reuse variables when appropriat@TIMB also includes a large collection of
libraries and toolboxes that add useful features. All oséhieatures give MrLAB a low
initial learning curve and good productivity. This is retied in MATLAB’s very large and
increasing user base. The most recent data from MathWoksssthat the number of
users of MaTLAB was 1 million in 2004, with the number of users doubling evegyto 2
years!

Despite this initial ease of adoption, once programs becmoie complex or perfor-
mance becomes a concernAM.AB ceases to be easy to use. For instance the dynamic
semantics can make programs difficult to understand andropadt performance. To
overcome performance issues a programmer must write tbe& in such a way as to take
advantage of MTLAB's core matrix operations. This can lead to code that is everem
difficult to understand.

Some of the responsibility for performance can be taken ambyptimizing Ahead-of-
Time (AOT) or Just-in-Time (JIT) compiler. This can let a grammer focus on expressing
their ideas in a natural and clear way. Static tools can adsoded to help a programmer

1From www.mathworks.com/company/newsletters/news_notes/cl evescorner/jan06.pdf

www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf

Introduction

better understand their programs. These tools could peaviibrmation about the pro-

grams they are writing, such as where possible performaneenbiguity problems may

occur. There can also be tools to aid in code maintenancedwding automated refac-

toring features. New language features could be added ¢égpgagrammers new tools and
abstractions to use, making it easier to express some ideas.

In order for a compiler to perform optimizations or to prawiteedback to program-
mers, it must analyze the program source code. Making sualyses easier to write
requires a simple, well-defined Intermediate Represemt#li®) and analysis framework.
This framework should also allow new language extensionséoand adapt existing anal-
yses. In spite of MTLAB’s popularity, and the apparent need for static analysesethas
been no publicly available framework for creating stati@lgses for the MTLAB pro-
gramming language. This thesis provides such a framewbelyftL AB Static Analysis
Framework, otMcSAF. McSAF was created as part of tihdcL AB project to satisfy these
requirements. The goal of the framework is to make new apalgasy to write and easy
to extend to new language features.

The McL AB project was started to create and explore compiler toolsdi@ntific com-
puting. The goal is to improve performance and usefulnesscatific programming
languages, with a focus on AtLAB. Further details concerning thdcL AB project are
presented irfsection2.1.

A diagram providing an overview of the project and main cimitions of this thesis is
given inFigure 1.1 The main contributions of this thesis are outlined in theygrea of the
diagram. The basic structure of thdcL AB system is as follows. MTLAB source code
is taken in by the front-end, which produces an abstractagytree (AST) representing
the input. We refer to this AST a®cAsST. Prior to the contributions made by this thesis,
McasT was fed directly into one of three back-ends. These back-efttier produce
MATLAB source, ®BRTRAN source, or execute the program. The contributions of tieisigh
add extra steps between the front-end and the back-&dssT is fed into a static analysis
in order to determine basic information about the prograims information is then used
to simplify the AST into a lower level representation of thiegmal input, calledVICLAST.
McLAST can then be further analyzed, producing new informationaly, McLAST and
the analysis information are given to a back-end to prodoe@léesired output.

2

Thesis Contribution

|
|

| I Analysis
, MCLAST Y | Information

ﬁ:ort

ran

Figure 1.1 The McL AB system

Introduction

This thesis focuses on the design and implementatidvagAF.

1.1 Contributions

The goal of this thesis is to provide a framework for creasitagic analyses for thiélcL AB
project. To this end, this thesis makes three main contdbst First, we have done an
exploration of MATLAB’s semantics. This was a necessary first step because the anal
sis framework needs to accurately capturam/aB’s semantics. Since MrLAB has no
formal specification, this involved interpreting docuneidn and experimenting with the
current version of the official MTLAB environment.

Our second contribution is a well defined and simplified imiediate representation
and procedure for producing it. ThdcL AB front-end produces an abstract syntax tree
after parsing a progranMcAsST is too complex and causes the analysis writing process to
be overly complicated. The simplifiddcLAST also makes some of MLAB’s semantics
more explicit. This takes some of the burden of understanATLAB’s semantics off of
the analysis writer.

Our final contribution is the static analysis framework. Traamework is designed to
make analyses easy to write. It is also intended to accomimdalaguage extensions. It
does this by allowing existing analyses to be incorporatéa mew language extensions
with minimal effort.

1.2 Outline

This thesis is split into 8 chapters (including this introthry chapter).Chapter2 gives
background information necessary for this thesis. Thituhes a discussion of important
tools used in théVicL AB project. It also includes a discussion of thexMAB language.
In Chapter3we introduce the IR. First we introduce the high-level ABIEAST, produced
by the front-end. Next we descrilddcLAST, a simplified IR designed as a contribution of
this thesis Chapter4 continues the discussion of the IR by describing the transdtions
used to producdcLAST from McAST. Chapter5 discusses the final contribution of this
thesis, the analysis framework and description of some plaanalyses. This discussion

4

1.2. Outline

is continued irChapter6 with the description of the extensibility of the framewoFRinally,
Chapter7 discusses related work ahapter8 presents our conclusions.

Introduction

Chapter 2
Background

This chapter provides background information that is hélpf understanding the re-
mainder of this thesis. We start with a brief descriptionVifL AB, the project to which
McsAF belongs. Next we give an overview of some parts offvaB that are not trivial
to understand.

2.1 The McL AB Project

McL aB? is an extensible compiler framework for WILAB . It consists of a front-end, a
static back-end, and various code generation targets.eTthegets include pretty printing
MATLAB source, BRTRAN source generated from inputtedavLAB code, and a virtual
machine(VM) and just-in-time(JIT) compiler.

The McL AB project was created to explore compiler techniques and aeguiage
features in the domain of scientific computingAMAB is a very popular language among
scientists and engineers, but due to it's closed source eoptiptary nature it is difficult
for the compiler community to explore and experiment withMtcL AB provides an open
source framework that allows such work to be done.

One ofMcL AB’s goals is to explore new language extensions. To this éed/tL AB
project has been created with extensibility in mind. It useés and designs that allow for

1http://www.sable.mcgill.(;a/m(;lab/

http://www.sable.mcgill.ca/mclab/

Background

new features to be added to the core language. As part of djecprthe first language
extension was created. This extension is called AspettMB [TAH10]. As the name
suggests, it adds aspect-oriented programming to tkeLWB language.

2.2 The MATLAB language

The MATLAB programming language is a high-level dynamic languagedorerical com-
putation. MATLAB’s goal is to provide programmers with easy access to polweuimeri-
cal procedures. It does this by having a rich library of hig¥el procedures and allowing
a flexible programming style. The flexible programming stglesupported by dynamic
semantics such as dynamic typing.

MATLAB is a closed sourced, proprietary programming environmgéne language is
defined by the current reference implementatiand official documentatioijats]. There
is no publicly available formal specification. In additidghe language has evolved fairly
organically. Over time, new features have been added amuidaye semantics have been
tweaked. This has led to an eclectic mix of language feammdsconfusing semantics.

We will list and describe some of the MILAB's features that are relevant to the content
of this thesis. For more about theAViLAB language, see the official sitéfth].

Ambiguous Syntax
MATLAB’s syntax does not differentiate between function calls amey accesses.
For example, the expressiefij) could be either a call to a function namedvith
arguments andj, or it could be an accesstoindgy of arrayx. This cannot be
distinguished syntactically.

Dynamic Name Binding
An identifier use can refer to either a function call or valeahccess. Which kind
of use cannot be determined syntactically. Furthermoreannot be distinguished
purely statically, it actually becomes a run-time propefiyis issue leads to the need
for Kind Analysis described aSection5.2.5

2For the purposes of this project, we are usingMaB version 7.12.0.635 (R2011a)

2.2. The MATLAB language

Dynamic Types

Types and matrix shapes are dynamic. Matrices can even bsssxtwith any num-
ber of dimensional indices, independent of the number otdsions the matrix was
created with. Matrices will also grow automatically whesiggaing to an index that

is out of bounds. Matrices are by definition a homogeneous skaticture. They
can only contain one type of data. AVLAB also has heterogeneous data structures
such as cell arrays and structures. The types containedby thata structures are of
course determined at run-time, and can change throughf¢hef lihe data structure.

For Loops
All for loops in MATLAB are for-each loops. The loop domain is the columns of the
result of the loop domain expression, treated as a 2 dimealsioatrix. More detail
is given inSection3.2.2

End Expression
Theend expression represents the last index of a dimension of ag ardexed with
a certain number of dimensions. We say t¢he binds to the array it is being used
to index. The complexity arises because ¢he expression does not have to appear
directly as the index expression, it can appear as a sulessipn. For example in
the following expression:

A(2,f(end))

If we assumen is an array with valug1,2,3;4,5,6;7,8,9] andf is a function
that computed (x) = x— 1, then theend will evaluate to9 and A will be indexed
with (2,8) . Recall that for an array with N dimensions, indexing with n < N
dimensions will cause the dimension to be interpreted as having a size equal
to the product of the sizes of dimensionghroughN. Theend’s value depends
on what array it is bound to, which dimension it is being usedntlex and how
many dimensions are being used. This expression has irtiphsaor determining
the kind of identifiers, and as such receives special treatmehe Kind Analysis.
There is partial documentation available for this exp@ssn MATLAB'’s official

Background

documentatioh

Comma-Separated Lists Comma-Separated lists(CSLs) are primarily a syntactic aiéme
in MATLAB . As their name suggests, they are lists of expressionsaepdry com-
mas. They are used as input and return parameter lists. Bomg& the statement
[a,b]=foo(n,x,y+4,m); uses two CSLs, one for the argumentside and one
to specify where to assign the two return values from caligeg..) . However,
the evaluation of some expressions can result in what weC&lll expansion. This
means that an individual expression in a CSL, when evaluatéidexpand at run-
time to be multiple entries in that list. This results in theet number of input or
return parameters being known only at run-time. For exanpé&following code is
equivalent to the previous assignment statement.

cl = {x,y+4};

c2 = cell(1,2);
[c2{:}]=foo(n,c1{:},m);
[a,b]=c2{:};

A W N P

Note, on line 3, the use @b in the return parameters awrd in the input parame-
ters. Notice that1 only covers two of the input parameters. The results1gf ,
which are the values of andy+4, will be incorporated into the input parameter
CSL. The exact number of input and output parameters canndéteemined sim-
ply by inspecting this line. For more information regardi@§Ls, see MTLAB's
documentatiohon the subject.

3http://www.mathworks.(:om/help/techdoc/ref/end.html
4http://www.mathworks.com/help/techdoc/matlab_prog/b r2js35-1.html

10

http://www.mathworks.com/help/techdoc/ref/end.html
http://www.mathworks.com/help/techdoc/matlab_prog/br2js35-1.html

Chapter 3
Intermediate Representations

Intermediate representations (IRs) are an important coemgerof a compiler. They are
used to represent the program at various stages of conopilaBompilers have multiple
levels of IRs, each suited to different tasks. For instandggh-level IR is useful in the
front-end of a compiler. Such an IR will closely match thegoral structure of the input
program, which makes it simpler to generate directly fromrse code. However, a high-
level IR can be cumbersome to work with when performing asedyor transformations.
A lower-level IR would be more appropriate for these tasksower-level IR will contain
simpler expressions and statements and will explicitlyomepimportant semantics. This
will simplify the task of writing analyses or transformat® by reducing the number of
cases that need to be handled.

TheMcL AB project uses tree-based IRs, taking the form of Abstracts&yhtees(ASTS).
A tree-based IR was chosen over a graph-based one to fieciikéensibility and main-
tain high-level structural information throughout the qmlation process. Such structural
information includes loops anid statements. These structures can be represented in a
graph-based IR by reducing them to program jumps. That agproan be useful if the
source language contaigsto statements which allow the creation of arbitrary control
flow graphs. Since MTLAB does not haveoto statements such a reduction was not
needed and so a structural, tree-based IR was chosen.

The McL AB project has two IRs. The first is a high-level AST calleldAST. The
second a low-level AST calleMcLAST, the design of which is a contribution of this

11

Intermediate Representations

thesis.McAST is produced by the front-end. A simplification procedurenest applied to
it, to produceMcLAST. This process is depicted Fgure 3.1

Front-End

|
|
Scanner ‘ o ‘ !
* m > —> McAST —>| Simplifications — McLAST '
| |
|
|
|

Parser |

Figure 3.1 Front-end and MCLAST generation

In this chapter we describe the structureMfAsT and the structure and design of
McLAsT. The description oMcAST is given first inSection3.2 This is to give a good
base for understanding the simplified IR. It includes a higel description of th&cAST
structure and discussion McAST’s abstract grammar. A description bfcLAST is then
given in Section3.3. This description includes a grammatical presentationaddcus-
sion of design choicesChapter4 describes the simplification procedure used to generate
McLAST.

3.1 Formalisms

In this chapter we rely on two formalisms to describe the IRs.this section, we will
describe these formalisms.

3.1.1 JastAdd Abstract Grammars

The first formalism used is the JastAddH071 abstract grammar specification format.
This format is used to define the AST structure of the IRs. TistAtll system uses this
specification to generate Java classes representing fieeedif AST node types. These
classes will export a well defined API for construction aral/érsal determined by their
specification. This means that to understand the AST classtste and AP, it is sufficient
to understand JastAdd specifications. The abstract grasnamarspecified in files with

12

3.1. Formalisms

extensionast . JastAdd is a Java-based tool, and as such, these speaifgatcorporate
some Java syntax and types.

As we said, these specifications are used to define AST nodhese &re two types of
nodes that can be defined: abstract nodes and concrete Wodabstract node results in
an abstract class, which can’t be instantiated. A simpleeraddhis type can be specified
as follows:

abstract Program;

Here we are defining the Program node fidcAST. More information on this node is
available inSection3.2.3

A simple non-abstract node is defined by omitting dhstrract keyword.

A node can also be defined to be a subtype of another node. Ulttigoe relationship
is directly mapped toAVA’s subclass relationship. It is specified in the followingywa

EmptyProgram : Program;

This example specifies the concrete n@detyProgram , which is a type ofrogram ,
so we specify it as a subtype. Note that an abstract node atasdde a subtype of another
node.

A node can also be specified to have children. There are f@astpf children pos-
sible: single child, optional child, list child, and typeaken child. All children, except
the typed token child, will be AST node types. The followingmple from the JastAdd
documentation, slightly modified, has one of each child.

E: A = A[B] C = <D:String>;

This specifies a concrete node calledvhich is a subtype of node type E has four
children, one of type, an optional child of type, a list child containing nodes of type
and a typed token child namexof type string . The typed tokens allow AST nodes to
contain children that use Java types, rather than simply A&Ie types. Note that abstract
nodes can also be specified with children. Also note thaedimenode subtype relationship
matches the Java subclass relationship, when a node isypsudftanother node that has
children, the subtype node will inherit these children.

Children can also be specified with names. This allows Jastddgenerate a more

13

Intermediate Representations

meaningful API for the nodes. An example of a node with nantéldien is the assignment
statement, which defines a left- and right-hand side.

AssignStmt : Stmt ;= LHS:Expr RHS:Expr;

3.1.2 Grammar Specifications

In Section3.3we describe the restrictions theicLAST has overMcAST. Some of these
restrictions are in fact only logical restrictions. By thi®wnean, the AST specification
for McLAST is more permissive than the actual specificationMm . AST. We describe
these added restrictions by relying on a more standard gearapecification. The given
grammar does contain some syntactic elements, but shoulenioterpreted as a grammar
for parsing. These specifications are used to define restrsobn the actual AST definition.
For example, the AST definition forf statements ilMcLAST is the same as the definition

for MCAST.
IfStmt : Stmt ::= IfBlock * [ElseBlock];
IfBlock ::= Condition:Expr Stmt *

ElseBlock ::= Stmt *)

This definition allows multiples! sei f blocks and an optionall se. It also allows
arbitrary expressions in the condition.

McLAsT defines a more restrictive statement, but doesn’t define new AST nodes to
enforce it. These restrictions are specified in the follgxgnammar.

IfStmt := if (CondExpStmt*end

| if(CondExpStmt*elseStmt*end

This specification restricts airf statement to not allow! sei f, and to restrict the
condition expression, which is further specifiedSection3.3.3

14

3.2. McAST

3.2 McAST

The front-end process produckiAST from given source codeVIcAST is the high-level
IR being used by th&/cL AB project. It is the starting point for the simplified IRCLAST.
The simplification procedure mentionedfigure 3.1 operates oMcAST. There are also
some basic static analyses that operate on it, in partjahlKind Analysis described in
Section5.2.5 Describing the structure will give a good base for undeiditag MCLAST’S
structure and the simplification procedure. It will alsogggome context for understanding
the complexities thaWcLAST exposes.

McAsT will be described in a bottom-up fashion. The presentatsospiit into three
levels, expressions, statements, and program structure.

3.2.1 Expressions

Expressions are the basic building blocks of program#/dnsT there are several different
types of expressions. The top-level definition for expr@ssiis given inFigure 3.2. It
defines four types of expressions; literals, LValues, uoggrations and binary operations.
There are several other types of expressions that are deddater in this section.
abstract Expr,;

abstract LiteralExpr : Expr;

abstract LValueExpr : Expr;

abstract UnaryExpr : Expr ::= Operand:Expr;
abstract BinaryExpr : Expr = LHS:Expr RHS:Expr;

Figure 3.2 McAST top level expression definition

Literal Expressions

The literal expressions are the simplest expressionsadlail They represent numerical
literal values and string literal values. For examyeappearing in source code would be
represented by an instancelaf iteralExpr , Which is one possible literal expression.

15

Intermediate Representations

LValue expressions

LValue expressions are expressions that can appear onftheatel side of assignments.
Since they are expressions, they can also appear in anylotaion an expression can
appear. A section of specification for these expressionséengn Figure 3.3.

NameExpr : LValueExpr ::= Name;

ParameterizedExpr : LValueExpr ::= Target:Expr Arg:Expr *
CellindexExpr : LValueExpr ::= Target:Expr Arg:Expr *;
DotExpr : LValueExpr := Target:Expr Field:Name;

MatrixExpr : LValueExpr ::= Row *;

Name ::= <ID : String>;

Row ::= Element:Expr *;

Figure 3.3 McAST LValue expression definition

The most basic LValue expression is the name expressiorchvaninply consists of a
name.

The parameterized, cell index and dot expressions all hiawias structures. They
each contain a target that can be any expression. This aitmesmplex expressions such
asfoo(2).bar(3) . This expression is a parameterized expression with aesargument,

3, and a complex targefpo(2).oar . The target is itself a dot expression, accessing the
field bar and having a target that is a simple parameterized expresslee expression as

a whole is interpreted as: access the third value in the atagd in the fieldbar of the
structure stored in the second entry in the arfoay.

The parameterized and cell index expressions also conggsrof arbitrary expressions
for their arguments. This allows for even more complex esgians such as
foo(FOOBAR()).bar(FOOBAR()) . This expression has a similar structure to the previous
example, but instead of simple literal values as argumémstwo parameterized expres-
sions have another parameterized expressions as an afgumen

The matrix expression is truly an LValue when it is a singh smntaining non-matrix
expression LValues, such @sb] . It can also be used to represent matrix definitions of
the form

[1,2,3; 4,5,6]

16

3.2. McAST

where rows are delimited by semicolons and elements of roqve®immas. The reason this
is considered an LValue expression is discussed furth&eution3.2.2when describing
assignment statements.

Recall that the cell index and dot expressions also have daspeplicit property.
When used in a Comma-Separated List (CSL), they can undergo Q&ingwn, as de-
scribed inSection2.2

Unary and Binary expressions

Unary and binary expressions represent various operatiénportion of the specifica-
tion for these expressions is given kigure 3.4. The unary and binary expressions are
each defined by an abstract node defining the left- and righttlsides. Each type of
unary or binary expression is then specified by a concrete tiaat extendsnaryExpr or
BinaryExpr

abstract UnaryExpr : Expr ::= Operand:Expr;

UMinusExpr : UnaryExpr;
UPIlusExpr : UnaryExpr

abstract BinaryExpr : Expr := LHS:Expr RHS:Expr;
PlusExpr : BinaryExpr;
MinusExpr : BinaryExpr;

Figure 3.4 McAST unary and binary specification portion

Obviously the unary and binary expressions will containteaty expressions as their
operands. This can lead to similar complexities to onesws@lrsome LValue expressions.

Remaining Expressions

The specification for the remaining expressions is givefgure 3.5.

The range expression represents the colon notation forigfiange vectors. An ex-
ample of these expressionslig:10 , which evaluates to a vector contain all odd numbers
from 1 to 10. The expression contains a lower and upper bond@a optional increment.
These can all be arbitrary expressions.

17

Intermediate Representations

RangeExpr : Expr := Lower:Expr [Incr:Expr] Upper:Expr;
ColonExpr : Expr;

EndExpr : Expr;

CellArrayExpr : Expr ::= Row *

FunctionHandleExpr : Expr := Name;

LambdaExpr : Expr := InputParam:Name * Body:Expr;

Figure 3.5 McAST miscellaneous expressions

The colon expression is used only as an argument to a panareéeter cell index
expression and only for indexing. The expression represenange from 1 to the size of
the dimension it is indexing.

The end expression has a similar use to the colon expression. lesepts the last
index of the dimension of the array in which it is used. As axptd inSection2.2, it is
more complex than the colon expression because it can beassedub-expression in the
index expression. To summarize the complexity,eat expression binds to a particular
array access in a non obvious way. Furthermore it has intfitsiin the Kind Analysis
described irbections.2.5

The function handle and lambda expressions are used tcedwwattion handles of
named and anonymous functions. The lambda expression hsiscd input parameter
names and a single body expression.

3.2.2 Statements

Statements introduce various declarations, control floavieses of expressions, including
assignments. The simplest statement that involves expnssis the expression statement.
The specification rules for this expression are giveRigure 3.6.

abstract Stmt;

ExprStmt . Stmt .= Expr,
Figure 3.6 MCAST expression statement

There are two types of declaration statements: global argigbent. The specification

18

3.2. McAST

for these is given irFigure 3.7. The global and persistent statements declare the names in
the statement as either global or persistent variableseotisely.

GlobalStmt : Stmt ::= Name *
PersistentStmt : Stmt ::= Name *

Figure 3.7 McAST declaration statement

The assignment statement is defined in the specificatiorosantFigure 3.8. It sim-
ply contains left-hand and right-hand side expressiongrdshould only ever be LValue
expressions in the left-hand side expression. This is eatbby a weeding procedure. The
semantics here are fairly straight forward: evaluate thletrhand side to get a value, eval-
uate the left-hand side to get a location and store the valtieei location. A complexity
arises from the fact that matrix expressions are LValueesgons. In this case, the ma-
trix is expected to have only one row and only contain LValypressions. The weeding
procedure mentioned previously will enforce this struetdVhen a matrix expression ap-
pears on the left-hand side of an assignment expressioasgignment is interpreted as a
multi-assignment statement. This means the expressiomeoright-hand side is expected
to return multiple values, and those values are stored inoitetions resulting from the
LValue expressions in the matrix expression.

AssignStmt : Stmt ;= LHS:Expr RHS:Expr;
Figure 3.8 McAST assignment statement

The final types of statements are control flow statements. speeification for these
statements is give iRigure 3.9.

Thebreak , continue andreturn Statements are simple control flow statements that
operate in loops or functions. Thai | e statement consists of a conditional expression and
a list of statements representing the body of the loop. Timelitonal expression can be
arbitrarily complex.

A for statement contains an assignment statement. This assitjstaéement is as-
sumed to only contain a name expression on the left-hand ¥idewill refer to this name

19

Intermediate Representations

BreakStmt : Stmt;

ContinueStmt : Stmt;

ReturnStmt : Stmit;

WhileStmt : Stmt ::= Expr Stmt *
ForStmt : Stmt ::= AssignStmt Stmt *

IfStmt : Stmt ::= IfBlock * [ElseBlock];
TryStmt : Stmt = TryStmt:Stmt * CatchStmt:Stmt =
SwitchStmt : Stmt ::= Expr SwitchCaseBlock * [DefaultCaseBlock];

IfBlock ::= Condition:Expr Stmt *
ElseBlock ::= Stmt *;

SwitchCaseBlock ::= Expr Stmt *
DefaultCaseBlock ::= Stmt *;

Figure 3.9 McAST control statements

expression as the loop variable. The right-hand side cataroarbitrary expressions. The

way it is interpreted is as follows. The value of the rightitiaide is interpreted as an array
and this array is treated as two dimensional. The loop weitbite over this two dimensional

array, assigning each column to the loop variable for eaglation. These semantics are
not obvious, but only becomes a problem because arbitrgmesgions are allowed in the

right-hand side of this assignment statemelicLAST forces the semantics to be made
explicit in the code by limiting the right-hand side to be aga expression.

Theif statement consists of a list of if-blocks and an optiona¢-@eck. Each if-
block after the first is considered ahsei f , with the else-block being the final se. The
following is an examplef statement with two if-blocks, and an else-block.

if E1
body1();
el seif E2
body2();
el se
body3();
end

The primaryi f is the first if-block, the:| sei f is the second if-block. This structure means
that analyses and transformations have to deal with cofdnelwith an arbitrary number

20

3.2. McAST

of branches. It would be much simplet if statements only caused binary branching. The
example could be rewritten to only use binary branching aodl@viook like the following.
if E1
body1();
el se
if E2
body2();
el se
body3();
end
end

Thetry statement consists of the body of the try followed by the bafdyre catch.

A switch statement contains the expression being switched list of case blocks, and
a default block. The case blocks each have an expressiontth ragainst and a body of
statements.

3.2.3 Program Structure

In order to define a program there must be some top level ateitd the AST. This struc-
ture represents the different types oRM.AB files and gives a way of combining multiple
files into one tree. The specification for this structure mmamin Figure 3.10 We however
do not discuss classes in this thesis.

CompilationUnits ::= Program *;

abstract Program;

Script : Program ::= HelpComment * Stmt *;

FunctionList : Program := Function *;

Function ::= OutputParam:Name * <Name:String> InputParam:Name *
HelpComment* Stmt * NestedFunction:Function *

Figure 3.10 McAST program structure

The compilation units represent a collection of programprdgram represents aAl-
LAB file. A program can either be a script or a function file. A scgpnply contains a

21

Intermediate Representations

list of statements. A function file is represented by a fuorctist. The function list simply
consists of a list of functions.

The definition of a function is slightly complex. The impaortgarts of the definition
are that it has a list of names representing the output paeasye string for the name of
the function, a list of names for the input parameters, a hufdstatements and a list of
nested functions.

3.2.4 Overview

McAsT has a number of sources of potential complexity. This inetuarbitrarily complex
expressions, the use efid expressionsi or loops with complicated semantics, cumber-
somei f statement structure. Another important issue to note ietlseno explicit array
indexing or function call expressions. This is due to the igionby between function calls
and array indexing. This issue cannot be completely solisttally and is discussed later
is Sectionb.2.5

McLAST is intended to avoid some of the complexities present indheMcAsT.

3.3 McLAST

The design ofMIcLAST incorporates a number of simplifications that were foundulse
in the JIT and Fortran code generation. It also includes Hiicgtions that enforce and
expose M\TLAB semantics and simplify analysis writing.

In this section we describe the design@éLAST. The description is separated into five
sections, each dealing with different portions of the Speation. Two of these sections
deal with expressions and are grouped together. The otres tieal with statements and
are separate.

These sections also include grammar definitions and Jastpéddfications for those
portions ofMcLAST. This is done to make the restrictions and additions moré&aixand
to give a reference for what can be expected from an instahdcoAsT that respects
those restrictions.

In addition to definingicLAST, there needs to be a way of generating it. In order to do

22

3.3. MCLAST

that, a collection of simplifications were implemented. 3é&simplifications are described
in Chapter4.

The goal of this section is to express what portion8MeL. AST are more restricted, and
to justify the need for these restrictions

3.3.1 Expressions

Most programming languages allow arbitrarily complex egsions. This allows program-
mers to write more concise code. However, such expressioasow-level IR can be dif-
ficult for compiler and analysis writers to reason about. pogions ofMcLAST that deal
with expressions will be discussed in two parts. First wewls expressions that compute
memory locations; we call such expressions LValue expoassiThese expressions appear
on the left-hand side of assignment statements and evaldte location that is being
assigned to. Next we discuss expressions that computd gatuas which we call Rvalue
expressions.

LValue expressions

LValue expressions compute the memory locations that aigraed to by assignment state-
ments. The complexity of these expressions comes from thi@iclyg of indexing and field
accesses, and the use of RValue expressions to computevaldes. Such an expression
is illustrated in the following example.

A(at+b,a).e(foo()) = value;

In this assignment statement the left-hand side is a coniplalue expression. The
expression computes as follows:

1. the arrayn is indexed by the result afrb anda
2. the indexing results in a structure with a fieldvhich is acceessed

3. this field contains an array, which is indexed by the va&saiiting from the expres-
sionfoo()

23

Intermediate Representations

It is the indexed location in the final array that is assigreed t

There are two sources of complexity in these expressions.fifdt is the inclusion of
arbitrary RValue expressions and the second is the chaafiimglexing and field accessing.
Fortunately it is simple to restrict these expressions abttiey can only include RValue
expressions that are either literal values, or variables.

The issue of chaining array indexing and field accesses is tnoublesome. Because
MATLAB has no semantics for storing references to memory locattidmsot possible to
break apart such chains. One could add new language fe&tuhesIR to make it possible,
but we decided this would add too much complexity. As a reshdined indexing and field
accesses are allowed McLAST.

These restriction can be summarized as the following:

e LValues can contain only variable names, indexing, or fielckases
e the computation of indexes is restricted to literal valuesimple variable access

These restriction are expresseddgure 3.11. Indexingis essentially a restriction of
the parameterized expression describe8antion3.2.1

LValue := NameExpr
| Indexing
| Access
Indexing := NameExpr(NameOrVal)
| AccesgNameOrVal)
Access := LValueName
NameOrVal := NameExpr
| LiteralExpr

Figure 3.11 MCcLAST LValue grammar

24

3.3. MCLAST

These name expressions will also be required to be variaohes, rather than function
names. A name is considered a variable name if the Kind Arsatiescribed irSection
5.2.5can determine it is a variable name.

RValue expressions

RValues expressions can be arbitrarily complex expressioMATLAB .

To make matters more complicated, althoughmvaB defines a simple precedence
based left-to-right evaluation ordefor expressions, there is a bug in the implementation
that breaks this ordérWe implement a correct left-to-right evaluation order.

This evaluation order allow®cLAST to have a simple definition of allowed RValue
expressions. IMcLAST, an RValue can consist of at most one complex operation.€rhes
operations can consist of a function call, operator usegximd), field access, or range
expressions. Note however theficLAST does not allow scalar short-circuiting boolean
operators &&,||) at all. The reason for this is that such operators contapiiai control
flow, which adds tremendous complexity. Further discussioshort-circuiting boolean
operators and how they are removed are present8ddtiord.10.1

Another complexity that arises from RValues is comma-saealrlist (CSL) expansion.
This was described iBection3.2.1 Expressions that can undergo CSL expansion are not
necessarily obvious. To simplify this situation, we intnod theCSLExpr TheCSLEXxpr
is essentially a name expression, but specifies that it nuigtiergo CSL expansion. This
new expression is included in the RValue description.

Finally, as was described iBection2.2, end expressions cause some complexity. To
simplify this complexity,end expressions are not allowed McLAST. To replace them
we introduce a new expression called ExedCallExpr This expression is an explicitd
expression that captures the bound expression being iddéxe number of dimensions
being used, and what index thed appeared in. A simple example of a non explicit end
expression is the following:

A(1, end,2)

1http://www.mathworks.com/heIp/techdoc/matlabfprog/f 0-40063.html
2The current implementation (7.12.0.635 (R2011a)) costaibug when evaluating expressions contain-
ing function calls with global side effects. Mathworks hasepted a bug report for this issue.

25

http://www.mathworks.com/help/techdoc/matlab_prog/f0-40063.html

Intermediate Representations

Where the arraw is indexed with 3 dimensions where the second dimensiondisxied
with anend expression. IrMcLAST this would be represented as the following:

t = EndCall(A, 3, 2);
AL, t, 2)

Note the use of the temporaryto avoid complex expressions.

The restricted RValue definition is shown in the grammar nalé-igure 3.12 and
the extra node specification is givenkigure 3.13 In this ruleNamerepresents names,
NameOrValkepresents names or values, & represents unary or binary operators other
than short-circuiting boolean operators.

RValue := NameOrVal
| NameExpr(NameOrVal)

| NameExpr.Name

| NameExpr.Name(NameOrVal)

| NameOrValOP NameOrVal

| OP NameOrVal

| NameOrVal NameOrVal NameOrVal
| NameOrVal NameOrVal

| CSLExpr

| EndCallExpr

Figure 3.12 McLAST RValue grammar

EndCallExpr: Expr ::= Array:Expr <NumDim : i nt > <WhatDim : int>;
CSLExpr : NameExpr;

Figure 3.13 New McLAST RValue nodes

3.3.2 Multi-Assign Statements

One convenient feature of theAVILAB language is that it allows functions to have multiple
return parameters. We will call assignment statementsat@apt multiple return values

26

3.3. MCLAST

multi-assign statements. This feature can be helpful foggammers but, like complex
expressions, multi-assign statements can cause diffiantiycomplexity for compiler de-
velopers.

The left-hand side of assignments can have arbitrary esiores designating storage
locations, or LValues. In the case of multi-assign statamtire complexity is increased by
having multiple, possibly related, arbitrary expressiappearing in one statement. CSL
expanding expressions can also appear in multi-assigens¢gits. An example of such a
statement follows to illustrate the point.

[a,b(a),a,c.e(a)] = somefunction();

In this example we have four LValue expressions, two of whaoh simply the variable
a, and the other two depending on the two different valuesdhgdts assigned. Writing
analyses to deal with general multi-assign statementsldmdome very cumbersome. The
solution is to restrict the types of LValues allowed in a maalisign statement.

The restrictions we decided on are intended to make anagaser to write. To that
end we made multi-assign statements as simple as possib/cUAST, a multi-assign
statement can only contain simple variable names on thénéeftl side. This is further
restricted by allowing a name to appear at most once on ttibdefd side. This means that
an analysis need not be concerned with the complexities ti-amsign statements, and
can treat it as a set of very simple assignments.

A special case for multi-assign statements has to do withrdpaith CSL expressions.
In order to assign to a CSL expression, it must be the only espe on the left-hand side
of a multi-assign statement. In order to assign to a CSL expgrekpression, it must also
be the only expression on the left-hand side of a multi-asstgtement and must have a
CSL expression on the right-hand side.

These restrictions are represented in a grammar rule fagremsent statements pre-
sented irFigure 3.14

Note that the names must also be unique, a property not exgegsin grammatr.

27

Intermediate Representations

MultiAssignStmt := [(NameExpr|CSLExpr) '] = RValue
| [LValug = CSLExpr

Figure 3.14 McLAST multi-assign grammar

3.3.3 Conditional Expressions

The boolean expressions in conditional statements such asdwhi | e statements are
another source of complexity. ThdcL A JIT, McJiT, will simplify conditionals by
pulling any expression more complex than a simple name lgnkut into a temporary.
It was decided that such an aggressive simplification waslesirable in the front end.
Instead we allow a single relational operator to be presep¢tform comparisons between
variables.

This allows for a simple definition of conditional expressgowhich is expressed in the
CondExpgrammar rule irFigure 3.15 This figure also includes th& hileStmtdefinition.

WhileStmt := while(CondExpStmt*end

CondExp := NameOrVal
| ~NameOrVval
| NameOrVaRelOp NameOrVal

Figure 3.15 MCLAST condition expression grammar

3.3.4 For Loops

A for loop in MATLAB is in fact a for-each loop. This means that the loop variable w
iterate over the elements of some fixed sequence of elemirgsomplexity of d or loop
comes from how the sequence can be defined.

28

3.3. MCLAST

A for loop is made up of two components, the loop variable assighstatement and
the loop body. The left-hand side of the assignment stateraeine loop variable and the
right-hand side is an expression that defines the sequebesatarated over. The expression
can be any arbitrary RValue expression resulting in some of@array. The sequence that
is iterated over is defined to be the columns of the right-r&dd array value. What this
means is that if the array is a row vector then each elemeevéctor is iterated over.
If the array is a column vector, then only the single columitegated over. If the array is
a two dimensional matrix then each column in the matrix isated over. If the array is
an array of greater than two dimensions, then it is treatedta® dimensional matrix in a
way similar to what is described Bection2.2.

These semantics are not obvious, and the arbitrary expressan be difficult to ana-
lyze. What is desired is to have alir loops be in a simple form. We call this simple form,
rangef or loops. Rangeor loops aref or loops whose sequence expression can only be
a range expression consisting of literals or variable uSeshf or loops are illustrated in
the following example.

for i = 1:2:x
BODY
end

Wherex is a variable.
These simple rangeor loops can be defined by the grammar ruleBigure 3.16

ForStmt := for NameExpr = SimpleRangeExprStmt® end

SimpleRangeExpr:= NameOrVal NameOrVal
| NameOrVal NameOrVal NameOrVal

Figure 3.16 McLAST f or loop grammar

A for loop that does not fit this pattern can be rewritten to do sa. ekample, the
following contains & or loop that is not a rangeor loop.

29

Intermediate Representations

A = [1,2,3; 4,5,6];

for i = A
display(i);
end

This code loops through the columnsénd prints out the following:

Thefor loop can be rewritten to be a simple rarige loop. You would get the fol-
lowing code.
A = [1,2,3; 4,5,6];
for j =13
i = AC.));
display(i);
end

This code has the same output, would be vaMidLAST and exposes what the values
of i will be.

3.3.5 |If Statements

Thei f statement defined bycAST in Section3.2.2has extra complexity due to inclusion

of el sei f in the actual structure. Fortunately arsei f is not a needed structure and can
be simplified away. To this end/cLAST does not allowel sei f, and instead has a simpler

definitions for if statements. This is definition is giverFigure 3.17

30

3.3. MCLAST

IfStmt := if (CondExpStmt*end
| if(CondExpStmt*elseStmt*end

Figure 3.17 McLAST if statement grammar

3.3.6 Assignment Statements

Even with simplified expressions, assignment statemeritsawbitrary simplified expres-

sion on both the left and right side can be complicatddcLAST restricts assignment
statements to simplify them a little more. An assignmertest&nts can either be a multi-
assign statement, or it has a variable on the left or a variabliteral on the right. This

definition is given inFigure 3.18

AssignmentStmt:= MultiAssignStmt
| Name = RValue
| LValue=NameOrVal

Figure 3.18 MCLAST assignment statement grammar

3.3.7 Check Scalar Statement

There are some operations representedddAsT andMcLAST that have implied run-time
checks. One check occurscAsT but notMcLAST. This check is to see if the operands
of a scalar short-circuiting operator is in fact scalar.c8ifMicLAST does not allow these
operators and instead relies on explicit control flow, thplied check is not present. To
allow us to remedy this situation, we introduce a new stateéjrte CheckScalarStmt

The definition for this statement is givenkingure 3.19

31

Intermediate Representations

CheckScalarStmt: Stmt ::= NameExpr;

Figure 3.19 MCLAST assignment statement grammar

3.3.8 \Validator

Since McLAST is specified by an AST definition and a collection of logicadtretions
placed on the AST, it is possible to construct an AST that sdme¢s£onform toMCLAST’S
specification. The simplifications describeddhapter4 are designed to guarantee that the
result does conform. However, if arbitrary transformasi@me performed on an AST that
has been simplified, it may no longer conform. There should &y to ensure that a
given AST instance conforms to tidcLAST specification.

To solve this problem, we have provided a validator. Thisdedbr traverses a given
AST instance and ensures that it conforms to the grammaifgagion provided in this
chapter. The validator only takes syntactic properties &auicount. It does not validate that
a given name refers to a variable and not a function.

32

Chapter 4
Simplifications

In Chapter3 we explained and justified a collection of restrictions fog McL AB IR.
These restrictions represent the definitiorMifLAST. The goal ofMcLAST is to provide
a representation of a program that is simpleMuL AB developers to work with. In order
for this representation to be useful, there must be a way méging the IR. The original
structure of the front-end simply produc8tAsT when compiling. In order to generate
McLAST, we have added a new phase to the front-end. This is illestratFigure 4.1
This new phase performs the simplifying transformatioresieel to produc#/cLAST from
McAsST. In this chapter we describe the organization and execuatidhe simplifications
followed by a description of each transformation.

Simplification Phase

source | i End McAST Arg{;gis

Simplifier

b

MCcAST
+

N

kind info

Transformation 1
Transformation 2
é

Transformation N

MCLAST

.

Figure 4.1 Front-end with IR generation

33

Simplifications

4.1 Organization and Execution

In order to make the transformation process more modularsangdler to implement we
split it into several separate simplifications. Each of ¢hesnplifications relate to some
aspect of the IR definition. Splitting the transformatiogess also has the benefit of
allowing subsets of the process to be applied, rather thaayal requiring the full trans-
formation. For example, the simplification that enforceae rangef or loops can be
applied in isolation. Of course, for some simplificatiortswould not be correct to say
the simplification was applied unless certain other singaifons were also applied. For
example, one might want to apply the simplification that etés no complex conditional
expressions inf andwhi | e statements. In order for this transformation to be consid-
ered fully applied, one would have to expand element-wisetstircuiting expressions.
This expansion is performed by a separate transformatiomaVe the simple conditional
transformation applied correctly, one should first apply ttansformation that expands
element-wise short-circuiting expressions. The shaguting expansion could have been
incorporated into the conditional simplification, but tiwsuld have increased implemen-
tation complexity. There also may be a need to have these-sincuiting expressions
expanded without requiring the full conditional simplifiicen.

4.1.1 Dependencies

In order to make it simpler to ensure that a given simplifaais fully applied, they have
been organized into a dependency graph. This graph isatestto being a directed acyclic
graph (DAG). The framework was not created with support fgelic dependencies in
mind.

To enforce the dependencies, a class calegliier ~ was implemented. In addition,
each simplification is implemented as a class extendbagractSimplification . The
AbstractSimplification class requires that each simplification have a method called
getDependencies that returns a set of dependencies. In order to use the §ienpdin in-
stance must be constructed with a given set of simplificatiorperform. The simplifier
will then perform a depth first traversal of the dependencyG#oducing a list of sim-

34

4.2. Simple Assignment

plifications, avoiding duplication. Executing the simmétions in the order of the list will
ensure that all dependencies will be met. To make it simpl@etform any given simpli-
fication and its dependencies, each simplification hggsartSet ~ static method. This
method returns a singleton set containing the simplificatself.

The dependency DAG is shown Figure 4.2 The rest of this chapter is spent de-
scribing each of these simplifications. To make the desonpsimpler we present the
simplifications in a dependency satisfying order. The diagtabels each simplification
with the section where it is described.

If a new simplification is added in the future then two stepsdch&o be followed to
ensure that it works with all other simplifications. First simplifications that the new
one depends on must be listed in d&Dependencies method of the new dependency.
Second, each simplification that would now depend on the imeplication needs to add
the new dependency to what is returned by thetibDependencies

4.2 Simple Assignment

One of the simplest transformation is to ensure singlegassént statements are simplified.
This means that such assignments will not have a complexesgijon on both the left- and
right-hand side. The simple assignment simplification egsthat all single-assignments
have at most, either a complex expression on the left, or onée right, but not both.
Multi-assignment statements are dealt with in anothestaamation, presented Bection
4.4

This simplification is very straight forward. It simply fin@dl non-multi assignment
statements and checks if both sides are complex. If botls siceindeed complex, then it
converts the statement into two assignments by introduzingw temporary variable. So
for example, if we have the code:

E1 = By

WhereE; andE; are both complex expressions, the simplification will proglthe follow-

35

Simplifications

CSL Simple
left IF
(4.3) (4.‘7)
Simple Multi Short-Circuit
Assign Assign arrays
(4.2) (4.4) (4.8)

FOR COND
(4.6) (4.9)

Right
(4.10)

FULL
(4.11)

Figure 4.2 Dependency tree for simplifications

ing code:

t = Eqy;
Ex = t;

wheret is a fresh temporary variable.

4.3 CSL Left Expansion

This simplification is intended to fulfill the CSL restrictiaescribed irSection3.3.2for
the left-hand side of assignments. In particular it affectsti-assignment statements. This
is because CSL expansion on the left-hand side of assignroantenly occur in multi-
assignment statements.

36

© 00 N O OB~ WN P

=R
[N)

4.3. CSL Left Expansion

The procedure for this simplification is fairly simple. Itdescribed in the pseudocode
in Figure 4.3,

function CSL_Left simplification(program p)
for each multi-assign stmt s in p
| = new empty list of statements
for each expression e in LHS of s in left-right order
if e is a possibly expanding expression
replace e with fresh CSL temp t

add [e]=t; to |
end
end
add all statements in | immediately after s

end
Where a possibly expanding expression is defined to be eittedl imdexing expression or
a structure access.

Figure 4.3 CSL left expansion pseudocode

This transformation is done indiscriminately. With moreagé information it would
be possible to either avoid such transformations, or reviirsm when it is known that no
expansion would occur. With such information it could alsofdmssible to replace CSL
variables with a fixed number of normal variables. Howevemaalysis to obtain such
information is beyond the scope of this thesis.

Figure 4.4 presents some example code before and after simplificatiotice the CSL
expressiorcsL[to] . This syntax represents a CSL variable occurrence. Theblana
guestion has name .

[a,CSL[t0],c] = foo();

[a.b{:}c] = foo(); becomes [b{}] = CSL[t0];

Figure 4.4 CSL expansion

This assignment statement will be simplified in the follogvimay. We start by creating
a new empty list that will contain new assignment statements. Each exumessithe
left-hand side of the assignment will be examined. Fus#ill be seen. This expression
can't possibly undergo CSL expansion, so we move to the ngxiesgion. Nowb{:}
will be examined. This expression can undergo CSL expansionwe replace it with

37

Simplifications

the CSL temporargsL[to] . We create a new assignment statement to get the value out
of CcsL[to] and put it inb{:} . This assignment will bgb{:}] = CSL[t0]; . We put

this new statement at the end of our list Now we move to the next expression on the
left-hand side of the original assignment, whicleisThis expression can’'t undergo CSL
expansion, so we skip it. There are no other expressionsatniee so now take all the new
assignment statements linand insert them immediately after the modified multi-return
statement, which gives the result in the example.

4.4 Multi-Assignment Simplification

The multi-assignment simplification enforces the constsann the left-hand side of multi-
assignments described $ection3.3.2 These constraints require that there be only simple
variables without repetition on the left-hand side of malisignment statements.

This simplification requires that the CSL left expansion difigation, described in
Sectiond.3, be performed. This is because this simplification is wmiteeextract offending
left-hand side expressions into simple temporary vargablean expression can undergo
CSL expansion then it cannot be replaced by a non CSL variable CEL left expansion
simplification ensures that there are no expressions oreftiednd side that can undergo
CSL expansion.

Given that we can assume that the CSL expanding expressivasalvaady been re-
moved, the implementation of this simplification is strafghward. The basic procedure
is to traverse the left-hand side expressions in left totriger and replace each non sim-
ple name expression or repeated names with a temporanphlariihen we assign each
temporary to the appropriate removed expression in the sadee. The only minor com-
plexity comes from enforcing non-duplicate variables withreplacing every variable.
Pseudocode for this transformation is showikigure 4.5.

Once this transformation is done, we can ensure that alli+asgignment statements
will be simple to work with. The order of evaluation for eactpeession will also be made
explicit and the actual assignments in the multi-assigriroan be interpreted in any order.

To demonstrate this simplification, we give a simple exanipl€igure 4.6. In this
example, there are two expressions on the left-hand sidetwghiould be removed. The

38

© 0 N O OB~ WN PP

11
12
13
14
15
16
17
18

4.5. Left-Hand Side simplification

for each multi-assignment statement s
| = new empty list of statements
N = new empty set of names
for each expression e in left-hand side of s from left-right
if e is name
if eeN
replace e with fresh temporary t
add e=t; to |
el se
add e to N
end
el se
replace e with fresh temporary t
add e=t; to |
end
end
add statements in | after s
end

Figure 4.5 Multi-Assignment simplification pseudocode

first isb.c because it isn't a simpl&ameExpr. The second is third expressiom, This
expression is a simpleameExpr, but, sincea already appeared in the left-hand side of this
assignment, it needs to be extracted. These two expressi@nsplaced by temporaries
andtl , respectively, and two new assignment statements ardedser

[a,t0,t1] = foo();

b.c = t0;
a = ti;

[a,b.ca] = foo(); becomes

Figure 4.6 Multi-assignment simplification example

4.5 Left-Hand Side simplification

The McLAST specification requires more constraints on the left-hadd sf assignments
than what is enforced by the CSL left and multi-assignmenpbfications. In particu-
lar, it requires that no expression on the left-hand sidectemain arguments that are not
either variable names or literals. For instance this wogdhato the arguments of an

39

Simplifications

indexing expression on the left-hand side of an assignmiénte have a simple assign-
ment such ag(3+4)= 3 , the index values+4 is not a simple variable use, so it will be
extracted into a temporary. The multi-assignment simpliian is a dependency for the
left-hand side simplification, and so will already enforbestfor multi-assignment state-
ments. So all this transformation needs to simplify is semdsignments. This is a major
reason why this dependency exists. The dependency couldencgmoved because the
multi-assignment simplification introduces new simpleigiements. If the left-hand side
simplification is not guaranteed to be run after the mulsigrsment simplification, then
there may be expressions on the left-hand sides that darsimelified. Alternatively, the
left-hand side simplification could be made more complex actdially deal with multi-
assignment statements. This was deemed undesirable doattadded complexity and
because the dependency seems to be a natural one.

The left-hand side simplification could be implemented inirapte way by replac-
ing every argument or subexpression in the left-hand sidle tsmps. This would satisfy
McLAST’s constraints for the left-hand side of assignments. Uuofately such a sim-
ple transformation would create excessive temporary blasa For instance, if we have
the statemeni()= b . Thei on the left hand side may be a variable, in which case we
wouldn’t want to extract it. However, thecould also be referring to a function, such as the
built-in functioni that returns the unit imaginary number. Such a simple toansition
would also have the consequence of causing the simplifit&ioever reach a fixed-point
if repeatedly applied. In such a situation it would extrdttlee temporary variables put
in place by the previous application, replacing them witbremore temporaries. To avoid
these problems the simplification needs to be implementddmore care. To do this we
require information about what names refer to variablesturately there is a static anal-
ysis that computes such information. This analysis is dale Kind Analysis DHR1]]
and is used to estimate the kind of a given identifier. In paldir the analysis can estimate
if an identifier is a variable or a function. There are sitoiasi where it cannot determine
this information for some identifiers. When it can’t determthe exact kind of an identi-
fier it is simply extracted. The Kind Analysis has the nicegaxy that the way temporary
variables are added ensures that the analysis will alwaggreze them as variables. In ad-
dition, each temporary variable is tagged as a temporahgeitR. This is so new temporary

40

4.5. Left-Hand Side simplification

variables can be recognized in the IR without re-analyziegarogram. More information
about the analysis can be seerSections.2.5

The procedure for performing this simplification would beagghtforward except for
the presence ofnd expressions. As described 8ection2.2, the end expression binds
to the tightest enclosing array or cell array indexing. Sarnfend is bound to a given
indexing expressiom, and we extract all sub-expressionsefthen it would be diffi-
cult to find what expression thend binds to after the transformation. It would also
not be simple to have a separate transformation that rentbesnd expressions, or
makes the binding explicit. This is because of side effeétsr an expression such as
a(foo()).b(end,42) wherea is a variable andbo is a function, it would be tempting to
write a(foo()).b(end(a(foo()).b,2,1),42) whereend(a(foo()).b,2,1) represents
the explicit binding. Performing such a transformation Wiahen caus#o() to be eval-
uated more than once. This is wasteful and incorrect dueltoedfects.

To have a simplification that does a correct transformationld require duplication
of functionality implemented in the left and right-handesisimplifications. Instead, each
of these simplifications handle tked in their own implementation. The functionality for
removingend is similar in both left and right, so it was factored out anddiby both.

The strategy for performing this simplification is to extrat complex parameters into
temporaries. If they are CSL expanding parameters, theyxdracged into CSL tempo-
raries. At the same time, the expression being extractedaiscked forend expressions
that bind to the target of the parameters. It is replaced artlexplicitend and we record
that the explicitend is associated with the bound target. Once all indices arevechand
the expression being indexed is completely simplified glieit end expressions are made
to bind to the simplified target. New assignments are addeth&extracted expressions
before the statement being simplified. The procedure is dstrated through an example.

We will start off with an assignment statement that has dfawmplex left-hand side,
containing arend expression.

a(foo(),3).b(4,bar(end),v) = 42;

We will be simplifying the expression on the left-hand sidglos assignment. This
expression is ®@arameterizedExpr with the target being(foo(),3).b . Further more,

41

Simplifications

N

w

since thisParameterizedExpr is the left-hand side of an assignment, it must be indexing
the array given by its target. Since it isarameterizedExpr itS arguments may contain
anend expression that binds to the array being indexed. For the ehkhe argument,
we will assume thalbar is a function, so th@arameterizedExpr ~ does indeed contain an
end expression that binds to it. The binding of tleisd must made explicit, we do this by
replacing it with an explicit end. This results in the follmg partially transformed code.

a(foo(),3).b(4,bar(end(?,2,3))) = 42;

Notice that the explicit end contains?a instead of an expression giving the array it
is bound to. This is because we do not yet have the fully siregliexpression that gives
the desired array. For now, we will have to keep track of thut tlaat thisend will bind to
the simplified version o#(foo(),3).b . Now that we have made all thed expressions
explicit, we continue by extracting complex sub-expressityom the partially simplified
expression.

This statement has two expressions that need to be renfov@d, andbar(end(?,2,3))
The target of thearameterizedExpr ~ being simplified needs to be computed first, which
meandoo() needs to be computed first. To reflect thos() needs to be extracted first.
It is replaced by a new temporary and a new assignment statamereated for it. This
results in the following code.
t0 = foo();
a(to,3).b(4,bar(end(?,2,3)),v) = 42;

Next, we will extrachar(end(?,2,3)) from the indices o&(t0,3).b . This results in
the following code.
t0 = foo();
t1 = bar(end(?,2,3));
a(t0,3).b(4,t1,v) = 42;

This leaves the left-hand side of the original assignmeaiestient fully simplified.
However, we are still left with the partially transformedpéigit end expression. At this
point, we have the fully simplified expression that thel binds to, and we can complete

42

4.6. For Loop Simplification

the transformation. This results in the following fully tisformed code.

tl = foo();
t2 = bar(4, end(a(t1,3).b, 2, 3), v);
a(t1,3).b(4,t2,v) = 42;

4.6 For Loop Simplification

Afor loopin MATLAB can be somewhat complex. In particular, whadaloop is actually
looping over may not be clear. #or loop with the form
for i = E
BODY
end

will first evaluate the expressian It will then treat the resulting array as two dimen-
sional. The loop will loop through the columns, assigningreeolumn to the loop variable
i . For this reasonMcLAST requires that there only be simple rarige loops. That is to
say,f or loops with a start, stop, and optional step number. The |la@okle will loop over
the numbers between start and stop, rather than arbitrargs/arhis restriction still allows
us to perform all the same computations, but forces the leagasitics to be explicit.

The goal of the or loop simplification is to transform arbitrafywr loops into simple
rangef or loops. At the same time we want to expose the loop semantittseadriginal
loop.

The procedure for this simplification is straightforwarad. @erform the transformation
we find each or statement thatisn’t already a rarnge loop, and modify the loop variable
assignment, adding necessary temporaries and assigntoexgose the semantics. We
will demonstrate the procedure with an example. Each stepeoéxample is justified to
demonstrate validity of the transformation.

We start with a simple generic for loop.

43

Simplifications

for i = E
BODY
end
We assume that the expressipiis not a range expression. We don’t wish to evaluate
multiple times. To this end, we first extract it into a varabT his results in the following
equivalent code.
t1=E;
for i =11
BODY
end
Next, we need to add computations for the limits of the rangp.| As we mentioned pre-
viously, MATLAB will treat the array being looped over as two dimensional laog over
each column. The transformed range loop will instead loggr tive number of columns.
The number of columns is simple to compute. For this, we aketadvantage of the built-
in size function. This function is used to return the sizes of theeathsions of a given
array. It can be called in a way that expects two return valinessecond return value will
be the desired number of columns. We add these computattbetor loop.

t1=E;

[t2,t3] = size(tl);

for i =11
BODY

end

t2 will contain the size of the first dimension, a value thattisictually neededs will be
the desired number of columns.

Obviously this is still the equivalent loop, since we havéyadded a single new side
effect-less statement.

We can now modify the loop to be a range loop. As we said, thp Vaid range over
the number of columns. This range will ha3 . We will also need to ensure that the
loop variable contains the appropriate value, which willthe appropriate column from
the original array.

44

4.7. Simple If Statements

t1=E;
[t2,t3] = size(tl);
for t4 = 1:t3
i = t1(:,t4);
BODY
end

Now there is one extra detail that needs to be covered byith@ification. When the
loop domain of & or loop is empty, the loop variable will actually be given théws] ,
which is a 0x O double array. In order to capture this, we add an assignmeinttdh the
value[] immediately before the loop.

t1=E;
[t2,t3] = size(tl);
=0
for t4 = 1:t3
i = t1(:,t4);
BODY
end

This is the final result of our transformation. The loop is reogimple rangeéor loop,
ranging over the number of columns in the original loop domd@he original loop variable
is given the value of the appropriate column at the start ohé@ration. This results in a
loop that performs the same iterations as the original leapept the loop values are now
made more explicit.

4.7 Simple If Statements

The simple f statement transformation is a straightforward simplif@atBecausé&/cLAST
does not allowel sei f statements, they need to be simplified into explicit nestestate-
ments. The procedure is straightforward. For evergtatement containing amsei f , we
remove the firstl sei f, create a newf out of it and put any remainingl sei f and the
el se from the originali f into it. We then put this newf into a newel se of the original

i f. Pseudocode for the procedure is givekigure 4.7

45

Simplifications

a b~ W N P

© 0 N O O~ WN PP

=R
[N)

12

for each if statement s in original program
if s has elseifs

simplify(s)
end
end

function simplify(s):
ei = the first elseif in s
ni = a newif statement
set ni condition to ei condition
set ni then block to ei then block
set ni elseifs to s elseifs without ei
set ni el se block to s elseblock i f one exists
remove all elseifs from s
renove el se block from s
add an el se block to s containing only ni

simplify(ni)
end

Figure 4.7 Simplifying i f statement pseudocode

This simple transformation allows us to assume alstatements will only béf el se
statements. This assumption has greatly simplified impheation of other simplifications.

4.8 Array Short-Circuit simplification

In MATLAB there are two forms of short-circuit operations. The firshesstandard short-
circuit operationg&and|| . These operators work with scalar values of type logicaéseh
will be dealt with in aSection4.10 The second type is the array logical operatend
| . In normal expressions, these are not short-circuitinggyTdnly become short-circuiting
when in the conditional of anf orwhi | e statement. They will also not be short-circuiting
if they are nested inside an expression that isR'da] expression. Because these operators
are only short-circuiting in special circumstances, wefqren the simplification in this
transformation, rather than in a general way with&kend|| operators.

The goal of this simplification is to expose the control flowraduced by these short-
circuit operators. We also wish to maintain the correct seiog of these operators. The
important semantics to consider are constraints on sizeshagde of operands. If both

46

© 0 N O O~ WN PP

o e =
A w N PR O

4.8. Array Short-Circuit simplification

operands are to be evaluated, then both operands musttevazn array of the same size
and shape.

Another important consideration is that these operat@satr recommended for use in
short-circuiting situations. They are however acceptablé even desirable in non short-
circuiting situations. Because of this recommendation, axeHocused on performing an
accurate, safe, and simple transformation at some coshtbme performance.

The transformation has two steps. The first step extractialy short-circuiting ex-
pressions for the conditions of andwhi | e statements. It replaces them with a temporary
variable, assumed to contain the result of the expressidre second step expands the
short-circuit control flow and generates the statementspeesent it. These statements are
generated to ensure that the final result will be assignedetaésired temporary variable.
The statements will be inserted before thieor whi | e they were extracted from. The
insertion process in particular is greatly simplified by #i@plification ofi f statements.
Pseudocode for the process is giverfrigure 4.8.

for each if or while statement s
¢ = the condition expression of s
if cis a & or | expression

t = fresh temporary
replace ¢ with t

| = new list of statements
if cis a & expression

simplify(c,&,l,t)
el se
simplify(c,|,1,t)
end
add statements in | before s
end
end
Thesimplify(...) function is given inFigure 4.9.

Figure 4.8 Array short-circuiting simplification pseudocode

We will demonstrate this procedure with an example. The¥alhg code contains an

47

Simplifications

© 0 N O OB~ WN P

WWWWWWRNNRNRNNNMNNRNNNDEREERRRR R B P B
AR WONRPOO®ONO0OOR~WDNRLR,OO©O®NOUNWNLEPRP O

function simplify(exp, op, I, t)
L = left operand of exp
R = right operand of exp
t1 = fresh temporary
if Lis a & or | expression
simplify(L, operator of L, I, t1)
el se
add t1 = L; to |
end
1 =
t2 = fresh temporary
if Ris a & or | expression
simplify(R, operator of R, I1, t2
el se
add t2 = R to 11
end
add t = t1 op t2; to I1
if opis |

new empty list of expressions

)

add the following if statement to I,

replacing 11 with the appropriate value

if tl
t=t1;
else
11
end’
el se

add the following if statement to |,

replacing 11 with the appropriate value

if tl
11
else
t=t1;
end’
end
end

Figure 4.9 Simplify function pseudocode for array short-circuiting simplification

48

© 00 N oo g~ W N P

e < e =
o 00 A W N B O

4.9. Conditional Simplification

array short-circuit expression.

if A& (B | C

foo();

end

The implied logic is that, firsh is evaluated. If that array only containge values,
then the short-circuit expressi@ | C is evaluated. The evaluation of this expressions
means that firsB is evaluated. If this array only contaimse values, therc does not
need to be evaluated. Otherwise, we must evalaaliethe array that evaluated to didn't
contain allrue values, then we wouldn’t have needed to evaluate the relsé @Xpression.
Simplifying all this logic out, using the procedure desedhin this section, results in the
following code.

t1 = A
if tl
t3 = B;
if t3
t2 = t3;
el se
t4 = C;
t2 = t3 | t4;
end
10 = t1 & t2;
el se
t0 = ti1,;
end
if to
foo();
end

4.9 Conditional Simplification

Even after performingf statement and array short-circuit simplificatiom, andwhi | e
statements can still contain complex conditional expoessi According to the IR defini-
tion, these conditional expressions should only be lisgnadriable uses or comparisons of

49

Simplifications

© 0 N O O WN P

NN NNRRRRRRRR R R
W NP O ®O©O®WwNOOUuMWNIERO

variable uses or literals.

The transformation to enforce this constraint is a simple. dhuses the Kind Analysis
to distinguish names that are definitely variables in ordeavioid excessive temporaries.
Pseudocode for this transformation is giverrigure 4.10. The procedure is to check each
conditional expression and extract it if it is not a simpl@mssion.

for each if or while statement s
new list of statements
condition expression of s
f ¢ is not a variable name
if cis a <, > <= >= expression
i f left operand L of ¢ is not a variable
t = fresh temporary
replace L with t
add t = L; to |
end
i f right operand R of c is not a variable
t = fresh temporary
replace R with t
add t = R; to |
end
el se
t = fresh temporary
replace ¢ with t

I
c
[

add t = c to |
end
add statements in | before s
end

end

Figure 4.10 Condition simplification pseudocode

A simple example of this simplification is given Figure 4.11 In this example, the
conditional expressiotioo()+2)>X is simplified. Note that in the result of this example,
the expressiomo()+2 is left unsimplified on the right-hand side of an assignmdihtis
is because simplifying this expression is left to subsegtransformations.

50

4.10. Right-Hand Side Simplification

t0 = foo()+2;
i f (foo()+2)>X t1 = X;
bar(); if t1>t2
end becomes bar();
end

Figure 4.11 Conditional simplification example

4.10 Right-Hand Side Simplification

As with left-hand side expressions, tMcLAST specification requires that no expression
contain any sub expression that is not either a literal oriabke use. Meeting this require-
ment is the goal of the right-hand side simplification. Athglifications discussed to this
point are dependencies of the right-hand side simplificatidaving these dependencies
will greatly simplify the right-hand side simplification. his is because all these depen-
dencies have the effect of having all complex expressiopesd as either expressions on
the right-hand side of assignments, or as expressiongrstats. Af or statement can also
contain complex expressions in its loop variable assigrnimt) since the or loop simpli-
fication has run, only range expressions need to be condithere. All other expressions
can assumed to be simplified already.

The basic procedure is to take right-hand side expressiothi®@pression statements
and remove complex sub expressions. These sub expresseoreptaced by temporary
variable uses and statements to perform the correct cotigoutapresenting the expression
and assigning the value to the temporary are created. Ttesrstats are then simplified
further.

There are four types of complex expressions that must bevwednand dealt with in
different ways. The first are basic complex expressionssé& legpressions are simply uses
of operators, and function calls, This also includes array eell array construction such
as[1 2 3 4] . Such expressions are simply moved into temporaries anghassnts are
created from the expression to the temporary.

The second type of complex expressions are CSL expandingssipns as parameters.
As in Section4.3, CSL expansion must be treated in a special way. CSL expanaion c

51

Simplifications

occur if an appropriate expression is used as an argumentiex.i These expressions are
be extracted into CSL temporaries.

The third type of expressions considered ane expressions. As was described in
Sectiord.5, anend expression binds to the tightest array indexing contaittiegn. When
simplifying a given expression, if aand can bind to it, then it must be searched éox
expressions. Thend expressions will need to be dealt with in the same way thatwere
in Sectiord.5.

The final type of expressions are short-circuit expressitmS$ectiorn4.8 some short-
circuit expressions were dealt with. These short-circygressions were the array short-
circuit expressions using tlkeand| operators. These operators will only be short-circuiting
when used inside the condition of ahorwhi | e. Since they have already been simplified,
they do not need to be dealt with here. There are howevertlséillscalar short-circuit
operators& and|| . These operators will be short-circuiting anywhere, sy tineist be
simplified. We describe the procedure for simplifying thegpressions in more detail
in Section4.10.1 For now, it is sufficient to explain that simplifying thesepeessions
will expose the control flow caused by the short-circuit hatar. This will cause new
statements to be created.

The procedure is to simplify each needed statement, thamsigely simplify each
statement generated by simplifying that statement. Thiisggnerate a list of simplified
statements, the last of which is the simplified originalestaént. This list of statements is
then inserted in place of the original statement. Pseudotmdthis procedure is given in
Figure4.12

We give an example to demonstrate the recursive proceduseniplifying a right-hand
side expression. This example is giverFigure 4.13

4.10.1 Short-Circuit Expression simplification

Scalar short-circuit expressions need to be expanded te makKicit the control flow they
represent. These expressions can appear in any other gxpreend can contain arbitrary
sub-expressions. Because of this, simplifying short-direypressions must be done at
the same time as other expressions are simplified. It woulgrbferable to have this

52

~N o o b~ N R

© 0O N O OB~ WN P

4.10. Right-Hand Side Simplification

function rightSimplification(program)
for each statement s in program
| = new list of statements
simplifyStmt(s, |)
replace s with statements in |
end
end

function simplifyStmt(s, |)
i f s is assignment
e = right-hand side of s
simplifyExpr(e, |)
el se if s is expression statement
e = expression in s
simplifyExpr(e, |)
else if s is for statement
e = right-hand side of assignment in s
simplifyExpr(e, |)
end
append simplified s to |
end

For the sake of claritysimplifyExpr(...) is describe through an examplehigure 4.13
This example illustrates one iteration of the recursiveepss, which results in new assign-
ment statements. These new statements will be simplifigddum subsequent iterations.

Figure 4.12 Right-hand side simplification pseudocode

transformation separate from the right-hand side simplifor, but this would require a
cyclic dependency between the short-circuit expressionglgication and the right-hand
side simplification.

There are important issues to consider when expanding-shiouit expressions. The
expansion should avoid causing duplicate code, the tremsit code should not be signif-
icantly larger than the original code. Creation of new terapes should be reduced. The
association between the terms in a short-circuit exprasssbould be preserved as much
as possible. And of course AtLAB semantics should be preserved.

These concerns sometimes compete with each other. Fonaestine goal of main-
taining the association between terms is to make it obvicuest werms have already been
evaluated and what their truth values are when evaluatingeeifsc term. To this end, it
would be preferable to transform= (A && B)|| (C && D) into the code shown iRig-

53

Simplifications

X = A(foo(1+2),bar(end));

The statement in this example is an assignment statemer) wieans that the

right-hand side expression will be simplified &gplifyExpr(...) . The rest of
this example demonstrates this procedure.
Note the use of thesnd expression as an argument bar(.) . This

end expression is bound ta and will need to be made explicit in this
pass of the simplification. We will also be removing the esprens
foo(1+2) and bar(end), resulting in new assignment statements. This
first iteration of the recursive procedure results in thelofeing code:

t0 = foo(1+2);
t1 = bar(end(A,1,1));
X = A(t0,t1);

Note that this result contains two new assignment statesribat require further
simplification on their right-hand side. These are simpliffarther by calling
the simplifyStmty(...) procedure, given ifrigure 4.12, on each of them recur-
sively.

Figure 4.13 Right-hand side simplification example

ure4.14 Lines 5-9 and 12-16 are duplicates of each other. As theeegmn gets larger,
more duplication will occur. This conflicts with reducingdsexpansion.

Avoiding code duplication is an important concern. The iagriime of code analysis
will grow with respect to code size. Duplicating functiorllsacan create difficulty for a
context sensitive interprocedural analysis. Because sf tinde duplication is avoided in
this transformation. There is however, still an attempt tontain the association between
some terms in the expression.

The procedure for simplifying can be explained using soraasiormation patterns.
This procedure would be a special case ofdinelifyExpr ~ function. Rather than per-
forming the simplification described iRigure 4.13 simplifyExpr would detect that a
short-circuiting expression is being simplified and indteae this procedure. These pat-
terns are presented next.

Some notes need to be made concerning the simplification atadion used. First,

54

© 0 N O OB~ WN PP

16
17

4.10. Right-Hand Side Simplification

if A
if B
t = true;
el se
if C
t = D;
el se
t = false;
end
end
el se
if C
t = D;
el se
t = false;
end
end

Figure 4.14 Naive short-circuit expansion

due to the conditional simplification iBection4.9 and the procedure of the right-hand
side simplification, we can assume that all short-circugregsions are in statements of
the formt=EXP. Wheret is some temporary. In the patterns, the notati@xP] scand
[t,EXP] are used. These represent the short-circuit and non sincuitcsimplification,
respectively, of the given expression with the resultingipated value stored in temporary
t.

We start the procedure off by simplifyingexP] sc, which will give us the simplified
version oft=exP. Patterns for performing these simplifications are givef/igure 4.15
These patterns match based on the expression ineie] sc nhotation. They will either
produce an f statement requiring further short-circuit simplificatican new expression
requiring short-circuit simplification, or the same exiea requiring non short-circuit
simplification. It is important to note that alf statements produced by this simplification
will have a very particular pattern. They will only contaiimple assignments of boolean
literals to a temporary variable. These statements are further dealt with by patterns
in Figure 4.16 When a pattern switches from short-circuit simplificationnon short-
circuit simplification, the transformation also insert<igeckScalarStmt statement for
the temporary holding the result of the expression. This s@tement enforces that the

55

Simplifications

result computed by the transformed code must be a scalag.vAllding this statement is
necessary because thie statements produced will not enforce this constraint. Ttaeie
behaviour of this statement is left undefined. In a virtuathiae, this statement could be
executed as a run-time check of the given variable. In a ntatie setting, such aglcFOR,

a program may be statically rejected if it cannot guararitaedll such checks pass. In this
case, thecheckScalarStmt has no run-time behaviour.

Since these patterns are recursive, we briefly discussration of the procedure.
These patterns terminate when pattéiis reached. This occurs when an expression does
not have &s&, || , or~ as its main operator.

Consider the simplification gfEXP] sc. Take the three-tupléf|| ,#&&#)exp of the
counts of|| , && and" in the expressioaxP. Each pattern will create new expressions that
require simplification, e.dtEXP] sc. The three-tuple#| ,#&&#)exp, corresponding
to the new expression will be lexicographically less thandhginal three-tuple. This will
cause the simplification to always reach patt&rn

The patterns fronfrigure 4.15can generatef statements with conditional expressions
that require simplificationsFigure 4.16 presents patterns to simplify theise statements.
These patterns only consider the conditional expressiohedff statement. They will ei-
ther produce a newf statement requiring further simplification, or pull out #wpression
for simplifying by the previous patterns.

An important note is that patterhappears to introduce duplicated code. kReSE
PART>appears twice in the result of the pattern. This is indeedpdication of code but it
is tightly controlled. Thesef statements are only produced by the previous patterns. The
<ELSE PART>0f thosei f statements will only contain a single assignment of a baolea
literal to a temporary variable. These patterns for singpid thei f statements will not
produce arkELSE PART>more complex than what it is given, so it preserves this prop-
erty. It guarantees that only a single simple assignmetdratnt is duplicated. This is an
acceptable duplication.

These patterns will terminate when patt&s reached. This pattern will always be
reached for the same reason that the previous patternsisemiWWhen patterdis reached,
simplification will continue using the previous patterngic® those patterns terminate, the
overall procedure will terminate.

56

4.10. Right-Hand Side Simplification

if [LE 1] sc
[tLE 2] sc
1. [LE 1 && B sc j el se
t = false;
end

if [t'E 1] sc
[tLE 2] sc
o [tE 1|l E 2lsc = else

t = true;
end

3. [L7El s = [LE] sc

if [LE 1] sc
[t'E 2] sc
4. [L(E 1 && B)] sc —> else
t = true;
end

5. L(E 11 E 2l sc = ['E 1 && "Ejlsc
[t.E]
6. [LEl sc —> CheckScalarStmt(t):

Figure 4.15 Short-circuit patterns for assignments

To demonstrate this procedure, we will use these patterssplify the expression
(A && B)&& C. The process will start off as the following:

1 [t,(A && B) && C] sc

The main operator here is the &g This matches with patterh from Figure 4.15

57

Simplifications

[any

a A W N

if [LtE 1 && BJ
<THEN PART>
el se
<ELSE PART>
end

if t°(E 1 E
<THEN PART>
el se
<ELSE PART>
end

if [tE] sc
<THEN PART>
el se

<ELSE PART>
end

2)]

if [t E 1]lsc
if [t E 2]sc
<THEN PART>
el se
<ELSE PART>
end
el se
<ELSE PART>
end

if [t'E
<THEN PART>
el se
<ELSE PART>
end

[LE] sc
if ot

<THEN PART>
el se

<ELSE PART>
end

Figure 4.16 Short-circuit patterns for i f statements

This results in the following:

if [LA && B]

[t.C] sc
el se

t = false;
end

SC

1 && "Ej]

Here we will be working with the patterns for statements, given iRigure 4.16 Again,
the main operator is @& This means we will be using pattetnin 4.16 resulting in the

58

© 00 N o g~ W N P

© 00 N O O B~ W N P

L i =
A w N B O

4.10. Right-Hand Side Simplification

following:

if [tLA] sc
if [tB] sc
[t.C] sc
el se
t = false;
end
el se
t = false;
end

At this stage, all we have are simple name expressions ledfiniplify. Rather than
go through all the steps needed to completely simplify, wi ayiply all the remaining
patterns at once. The patterns that apply are palémwm 4.16and6 from 4.15 We also
perform the final step of simplifying, which is to simplifya] , [t,B] , and[t,C] into
t=A; , t=B; , andt=C; .

This gives us the following code.

t = A
CheckScalarStmt(t);
ift
t = B;
CheckScalarStmt(t);
ift
t =G
CheckScalarStmt(t);
el se
t = false;
end
el se
t = false;
end

59

Simplifications

4.11 Full Simplification

The final simplification is the full simplification. This is @@lly just a dummy simpli-
fication in that it doesn’t perform any transformation. Thepgmose for it, is to have one
simplification that is guaranteed to execute all other siicptions. It does this by be-
ing a dependent of all simplifications that don’t otherwis@dndependents. In the current
implementation the only simplification that falls into thategory is the right-hand side
simplification. If other such simplifications were addecertthey would be listed in full
simplification’s dependencies. As it stands, the full sifigation acts as a more appropri-
ate starting point than the right-hand side simplificationftilly simplifying the AST.

60

Chapter 5
Intraprocedural Analysis Framework

In order for a compiler to perform optimizations or provideéback to programmers,
it must have a way to automatically reason about the programgjiven. This is done
by creating static analyses that are used to infer infoonatbout a given program. These
analyses usually fit into one of a few categories. They candwe-ifisensitive or flow-
sensitive. If they are flow-sensitive then they can be fodsar backwards.There are also
intraprocedural and interprocedural flavours of theses Tesis focuses on the intrapro-
cedural flavour of these analyses.

Different analyses will often require the same functiayaliFor instance, all analy-
ses require a way of visiting nodes in the IR. This is speadlifor flow-insensitive and
flow-sensitive and further specialized for forward and leeid flow-sensitive analyses.
This kind of basic functionality should not be rewritten feach analysis. Instead, as a
contribution of this thesis, a framework for developindistanalyses has been developed.

This static analysis framework is intended to make it simfide programmers to de-
velop new analyses. It does this by defining the differenesypf analyses and providing
an implementation of basic procedures. Another goal is thenitaextensible to new lan-
guage extensions. This goal has two requirements, the Warketself should be usable
to create new analyses for a language extension, and olgsasashould be adaptable to
new extensions.

In this chapter we will be presenting the design of the anslframework. Section
5.1 describes the basic traversal mechanism used by all asalyiges is followed by a

61

Intraprocedural Analysis Framework

description of the different types of analysesSiections.2. In Sectiorns.2.5 some analysis
created forMcL AB using this analysis framework are described. FinallyCimapter6
we describe how the framework and existing analyses can temaed to new language
extensions.

5.1 Basic Traversal Mechanism

The analysis framework is designed to work with the IR; it carubed with botiMcAsT
andMcLAST. The analyses created using the framework are going to neay af travers-
ing the IR. This traversal can take different forms; it can kmnaple traversal of the tree
structure, such as a depth-first traversal, or it can be @&rsal/where some nodes are
visited repeatedly, for instance to compute a fixed-poinafflow-sensitive analysis.

/\

/\

|ForStmt| |ExprStmt| |ReturnStmt| |AssignStmt| |CheckScaIarStmt|

The grey classCheckScalarStmt is an AST node that is part dflcLAST and not
McAsT. All white classes in this diagram are part of bdtlcLAST andMcAST.

Figure 5.1 Excerpt of AST class hierarchy

The framework accommodates different traversals by implgimg a variant of the
visitor pattern. The IR consists of instances of differgmiets of AST nodes. The types
form a class hierarchy, an excerpt of which is depicteigure 5.1 To facilitate traversal,
we have created a Java interface caledeCaseHandler that consists of methods of the
form void caseStmt(Stmt node) . There is one such method for every AST class. We
have also provided a simple abstract implementation calbedactNodeCaseHandler
This implementation provides default behaviour for eacthencase. This default behaviour
is that for each AST class, the node case for that class sifophards to the node case
of its parent class. The forwarding is done by calling theedas the parent class with

62

0 ~N O Ok WN B

5.1. Basic Traversal Mechanism

the input from the case for the given class. We demonstragewtith an excerpt from
AbstractNodeCaseHandler ~ for the AssignStmt andStmt classes. This excerpt is given
in Figure 5.2 Notice on line 3, theaseAssignStmt(...) is forwarding up to the case
belonging to its parent classssignStmt

public voi d caseAssignStmt(AssignStmt node)

{

caseStmt(node);

}

public void caseStmt(Stmt node)

{
caseASTNode(node);

}

Figure 5.2 Excerpt of AbstractNodeCaseHandler demonstrating default behaviour

Figure 5.1 shows that thessignStmt node type extends th&mt node type. As de-

scribed previously, this means the default behavioukéeeAssignstmty...) is to for-
ward tocaseStmt(...) , Which is done by passing the argument fresmeAssignStmt-
(..) to caseStmt(...) . The definition for thecaseAssignStmit(...) method demon-

strates the forwarding behaviour. This method takes in staite ofAssignStmt and calls
caseStmt(...) with that instance.

It should be noted thatSTNode is the root type of the AST class hierarchy. Téent
class is a top level node type, which directly extemdgNode, so thecaseStmt(...)
will forward to caseASTNode(...) . The AbstractNodeCaseHandler leaves thecase-
ASTNode(...) method unimplemented.

Each AST class implements a method caledyze that takes alodeCaseHandler
as an argument. These methods will call the appropriate naske of the given handler,
passing itself to the handler. For example, here is the cogidementing theanalyze
method in theassignStmt class.

public void analyze(NodeCaseHandler handler)

{

handler.caseAssignStmt(this);

}

63

Intraprocedural Analysis Framework

22
23
24
25

In order to create a particular traversal, a programmer siéedreate a specialized
NodeCaseHandler . The different types of analyses are implemented in thismagrbut a
programmer can directly create a traversal. To demongtristprocess we present a simple
traversal, callegtmtCounter , that counts the number of statements in a given AST. Code
for this traversal is given iBigure 5.3.

public class StmtCounter extends AbstractNodeCaseHandler

{

private int count = O;
privat e StmtCounter()

{

super ();

}

public static int countStmts(ASTNode tree)
{

tree.analyze(new StmtCounter());

}

public void caseASTNode(ASTNode node)

{
for(int i = 0; i<node.getNumcChild(); i++)
node.getChild(i).analyze(this);
}

public voi d caseStmt(Stmt node)

{

count++;
caseASTNode(node);

}
}

Figure 5.3 Example traversal counting statements

To use this class, a programmer simply needs to call thec stegthodcountStmts
This method creates a new instance of the traversal and gtarainalysis off.

This traversal will visit all nodes in the tree in depth-ficstler, and count each state-
ment node. There are two important details to note from tkasrgle. The first thing is the
caseASTNode(...) implementation. In this example, this method does the dttagersal
over the tree, looping through and visiting each of a nodeiklen. SincestmtCounter
extendsibstractNodeCaseHandler , all cases that are not overridden will forward up until

64

5.1. Basic Traversal Mechanism

they reach this case. This means that the default behavwo#ST nodes will be to sim-
ply traverse through their children. This is a common patighen implementing traver-
sals. The flow-insensitive traversal is implemented sintathis, and the flow-sensitive
traversals have a similaasseASTNode(...) with other behaviour implemented for control
structures like loops and conditionals.

The second thing to notice is tl@seStmt(...) method. Besides theaseASTNode-

(..) , this is the only case implemented ByntCounter . Again, sinceStmtCounter
extendsAbstractNodeCaseHandler , all node types that are descendantsteft will for-

ward up to this case. So this case will capture all statemevrtich gives a good place

to perform the count. One should also notice that this implaiation ofcaseStmit...-

) forwards tocaseASTNode(...) . This is because there are some statements, such as if
statements, that can contain other statements. We wistsitaalli of the statements con-
tained in other statements, so we need to visit the childfargiven statement. To do this,

we simply forward tacaseASTNode(...)

ThestmtCounter example does have some inefficiencies. It will visit all drein of a
given node, even children that cannot be or contain statemé&or example, the children
of an expression cannot be or contain statements. Thisceimoiig can be overcome by
providing specialized implementations of appropriateesa3o avoid visiting unnecessary
expression children one could add the following method ¢odlass.

public voi d caseExpr(Expr node)

{

return;

This method will prevent all children of any expression frbeing visited.

The example can be refined further, but the original versaroncise and correct, and
demonstrates how simple it can be to create new travershis.nfechanism is also used
by the simplifications presented @hapter4. There is a specialized traversal created for
all simplifications. This traversal implements the rewritechanisms as well as the AST
traversal. Each simplification extends this simplificaticaversal, implementing its own

65

Intraprocedural Analysis Framework

behaviour for the appropriate node cases.

5.2 Analysis Types

We have seen how the basic traversal mechanism is implethant used. The basic
API is defined by thelodeCaseHandler interface, and default behaviour is implemented
by AbstractNodeCaseHandler . New traversals can be created by extendiagract-
NodeCaseHandler , providing an implementation faraseASTNode(...) and overriding
any needed methods. In the analysis framework, an analysiactively an implemen-
tation of a traversal. As was mentioned earlier, differamlgses tend to require similar
behaviour. The framework provides a standard API for amalyad implementations of
basic procedures. These implementation details are sgittbe different types of analy-
ses supported by the framework. The types of analyses ¢lyrsaipported are depth-first
traversal, and forwards and backwards structural flowigseasinalyses.

One element that is common to all analyses is that they pedame form of data.
This data needs a way of being represented in analyses. Th&ilaalso be manipulated
by common procedures implemented in the framework. Thiswmédee data should have a
common interface, and some useful implementations.

This section continues by first describing, $ection5.2.1, the definition and imple-
mentation of different analysis data representatid®ection5.2.2 continues with the im-
plementation details common to all types of analysisSéttion5.2.3we describe those
details unique to dept-first analyses. This includes a sneghmple analysis to demon-
strate the process of creating a new depth-first analySection5.2.4 describes details
unique to structural analyses. A simple forward structarellysis is presented to demon-
strate creating a new structural analysis.

5.2.1 Flow-Data Representation

An analysis is written to produce information about the paogbeing analyzed. As we will
see in later sections, the analysis classes are generie tygk of information produced.
An analysis of typestructuralAnalysis<D> is an analysis that produces information of

66

5.2. Analysis Types

typeD. To make the framework as general as possible, the infoomatn be of any type.
However, the type of information often falls into certairteggories. One example is an
analysis that produces, for every program point, a set aalbkas that must be defined
at that program point. Alternatively, for every program mgoithe analysis could have
produced a map from variable names to their types. To makkemgnting analyses that
produce such information easier, the framework definesfades and implementations for
basic flow-data. A class hierarchy for flow-data structunewiged by the framework is
given inFigure 5.4.

 hioact!

e , 7K: Gbject!
D:0Object, 'V:0bject,
ces>™ <<interfaCe>>|" =

<<interfaCe>>
FlowSet FlowMap
iic:Gbjec

| oo , - , [o | coje
1D:0bject, 1 D:0bject, 'LV:Object, 1V:0bject,

HashSetFlowSet TreeSetFlowSet ITreeMapFIowMapr - IHashMapFIowMap

Figure 5.4 Flow-data class hierarchy

TheFlowData<D> interface is the base type for all predefined flow-data reprasgions.
This type represents a collection of data of typeThe interface is primarily intended to
tag a class as representing flow-data. As such, it defines tiwodse

In addition to this basic interface, the framework also mfes two more specific inter-
faces, one for sets and the other for maps. For each of thesdstract implementation is
provided to make creating new implementations simpler.diitéon, each of these inter-
faces also has a concrete implementation.

The set interfaceslowSet<D> defines a few additional methods related to manipulating
data within the set. A list of these methods is provided@able5.1

The abstract implementation BibwSet<D> provides some inefficientimplementations
of some the methods defined bigwData andFlowSet , but most methods are left abstract.
This is because methods liked andisEmpty are too implementation specific to be imple-

67

Intraprocedural Analysis Framework

FlowSet<D> | copy() returns a copy of the data
void | copy(FlowSet<? super D> dest) | copies the flow-data into a
destination flow-data
void | clear() clears the collection of data
boolean | isEmpty() checks if there is no data
int | size() returns the size of the colle¢-
tion
void | add(D obj) adds the given object
boolean | remove(Object obj) removes the given object
boolean | contains(Object obj) checks if the object is in the
set
Iterator<D> iterator() returns an iterator over the el-
ements of the set

Table 5.1 Methods in the FlowSet<D> interface

mented in the abstract versiokbstractFlowSet does however provide some other useful
methods. As we will see iBection5.2.4 when doing flow-sensitive analysis, the analysis
needs to define a way of merging two flow-data. When dealingseith, merging can often
take the form of a union or intersection. ThisstractFlowSet provides implementations

of union, intersection, and set difference to make impleimgra merge simpler. A list of
these methods can be seeable5.2. Each of these operations has two versions. The first
version operates on the given set an@ér and puts the result in the given set. The second
version operates on the given set amgbr and puts the result idest . This behaves as
thoughdest is cleared before the result is put into it.

void union(FlowSet<? ext ends D> 0)

void union(FlowSet<? ext ends D> o,FlowSet<? super D> dest)

void | intersection(FlowSet<? extends D> o)

void intersection(FlowSet<? ext ends D> o,FlowSet<? super D> dest)
void difference(FlowSet<? ext ends D> 0)

void difference(FlowSet<? ext ends D> o,FlowSet<? super D> dest)

Table 5.2 New methods in the AbstractFlowSet<D> interface

Finally there are two concrete implementationsofvSet , HashSetFlowSet<D> and
TreeSetFlowSet<D> . These implementations are backed byaahSet andTreeSet re-

68

5.2. Analysis Types

spectively. They implement their functionality mainly bglying on the functionality of
the set that backs it.
The framework also provides map versions of flow-data. The mgerface and its

associated implementations are similar to the set onese®re some differences though.

FlowMap<K,V> represents flow-data that is a map from some typef keys to some type,

v, of values. In addition, a flow map should be considered a gbtrespect to its keys.

FlowMap<K,v> defines some additional methods. These methods are similae tset
methods, but are geared towards maps. A list of these meihgilgen inTable5.3. One
difference to note is the lack of an iterator method. Thetwoiwever thekeySet method
that provides a set view of the map, containing the keys offrtap. This set can be iterated

over.
FlowMap<D> | copy() returns a copy of the data
void | copy(FlowMap<K,V> dest) copies the flow-data into a
destination flow-data
void | clear() clears the collection of data
boolean | iSEmpty() checks if there is no data
int | size() returns the size of the colleg-
tion
void | put(K key, V value) associates the value to the key
in the map
boolean | remove(Object key) removes the entry for the
given key
boolean | removeKeys(Collection<?> keys) removes all keys from given
collection
boolean | containsKey(Object key) checks if the map contains an
entry for the given key
V | get(Object key) gets the value associated with
the given key, if it exists
Set<K> | keySet() gets a set view of the mapis
keys

Table 5.3 Methods in the FlowMap<K,V> interface

The abstract implementation of the flow map is very similah®abstract implementa-
tion of the flow set. The biggest difference is in how the uraoil intersection operations

69

Intraprocedural Analysis Framework

are implemented. Since the flow map is only considered a getins of its keys, there
needs to be a way of performing these operations on two mapstiare a key but differ in
its value. To define this behaviour the framework relies amitwerfacesMergable<e> and
Merger<E> . A brief summary of these interfaces is providediable5.4. TheMergable<E>
interface is implemented by objects that can be merged witieshing of types. They pro-
vide a merge method that returns the merged value MEnger<eE> interface represents an
object that can merge two objects of type

TheMergable<E> Interface
| E| merge(E 0) | merges and the given value |

TheMerger<e> Interface
| E| merge(E o1, E 02) | mergesl ando2 |

Table 5.4 Merging interfaces

When performing a union or intersection operation, eithee@er must be available,
or the values in the maps must implemesmrtgable<v> . A Merger can be available either
by providing one to a constructor of a concrete map, or byi§peg one to a variant of
the operation’s method. A list of the operation’s methodsvided inTable5.5

void union(FlowMap<K,V> other)

void union(Merger<V> m, FlowMap<K,V> other)

void union(FlowMap<K,V> other, FlowMap<K,V> dest)

void union(Merger<V> m, FlowMap<K,V> other, FlowMap<K,V> dest)

void intersection(FlowMap<K,V> other)

void | intersection(Merger<V> m, FlowMap<K,V> other)

void intersection(FlowMap<K,V> other, FlowMap<K,V> dest)

void intersection(Merger<VV> m, FlowMap<K,V> other, FlowMap<K V> dest)
void difference(FlowMap<K,V> other)

void difference(FlowMap<K,V> other, FlowMap<K,V> dest)

Table 5.5 Operation methods in the AbstractFlowMap<D> interface

The framework also provides concrete implementations tw fnap. These imple-
mentations are thBashMapFlowMap<K,V> andTreeMapFlowMap<K,V> . They are backed

70

5.2. Analysis Types

by aHashMap and TreeMap respectively, and implement their functionality by relyion
the set that backs them.

These data-flow representations are used in examples toledee implementation of
new analyses iections.2.3andSections.2.4 More complex representations are used in
the examples ilsection5.2.5

5.2.2 Common Implementation

An analysis is implemented by visiting the nodes of an AST ja@dorming some actions
on particular node types. The basic traversal mechaniswide® a basis for doing this.
However, when performing an analysis, it would be usefuladeehmore information about
the node being visited. Information such as knowing whervargexpression is the condi-
tion for awhi | e or ani f. This information is not available from the type of the noli¢e
want our analyses to have this extra detail available. We\aént our analyses to have a
common API. To these ends, we define a new interfasalysis , which provides more
detailed node case methods and a common API. A summary ofitteslaAP| methods and
traversal methods is given fable5.6.

APl Methods
void | analyze() performs the analysis
ASTNode | getTree() gets the tree being analyzed
boolean | isAnalyzed() checks if the analysis has been exe-
cuted or not
void | setCallBack(NodeCaseHandler h) sets theNodeCaseHandler used as
a callback when visiting a node

Traversal Methods
void caseCondition(Expr condExpr)
void | caseWhileCondition(Expr condExpr)
void | caselfCondition(Expr condExpr)
void | caseLoopVar(AssignStmt loopVar)
void caseSwitchExpr(Expr switchExpr)

Table 5.6 Methods in the Analysis interface

One detall to note is theetCallBack(NodeCaseHandler handler) method. This

71

Intraprocedural Analysis Framework

method sets thBodeCaseHandler to pass to an AST nodeialyze(...) method. For
the most part it is sufficient to ignore this functionality, teeat it as though the callback
is always the analysis itself. This functionality is prosito allow more sophisticated
behaviour. For instance, the structural analyses defingelethat implement theode-
CaseHandler interface. These helpers are set as the callback, and adetaseaintain
invariants pertaining to flow-data. Each case method in #ipen performs some book
keeping, then forwards to the same case of the analysis.rébnés enough to know that
those invariants are maintained, and not care about howgthm advanced cases, such
features can be useful. It's also important to be aware aehietails when extending the
framework. For more information on extensibility, S€bapter6.

5.2.3 Depth-first Analysis

The simplest form of analysis supported by the frameworkésdepth-first analysis. This
type of analysis is intended to traverse the tree structitieecAST, visiting each node in
a depth-first order. The depth-first analysis type can be tesedplement flow-insensitive
analyses.

This type of analysis is implemented by extending MstractDepthFirstAnaly-
sis<A> class. TheAbstractDepthFirstAnalysis implements theanalysis interface
and extend@bstractNodeCaseHandler . This relationship is depicted Fgure 5.5.

<<interface>>
AbstractNodeCaseHandler Analysis

1 T

AbstractDepthFirstAnalysis

Figure 5.5 Class hierarchy snippet for depth-first analysis

It should be noted thaibstractDepthFirstAnalysis<A> is generic with the type
variableA. This is important because it also provides a new methedinitialFlow(-
) . The newlnitialFlow() method returns a value of type representing an initial flow

72

0 ~N O Ok WN PP

5.2. Analysis Types

value. This type variable represents the type of data beangpated by the analysis. It is
an unbounded type variable, but in practise, it will usubltya subclass ¢flowData . The
reason it is kept unbounded is to increase flexibility forftiaenework.
SinceAbstractDepthFirstAnalysis extendsAbstractNodeCaseHandler it inherits
all the default traversal behaviour. It extends this behiavivith default implementations
of the new case methods defined by tmalysis interface. The behaviour for these new
cases is to forward to the case associated with the type aftiuenent that the case accepts.
For instanceaseLoopVar(AssignStmt loopVar) accepts anssignStmt . So the default
behaviour will be to forward teaseAssignStmt(...) . ThecaseWnhileCondition(...)
and caselfCondition(...) are exceptions to this. These cases are specialized version
of caseCondition(...) so they will both forward t@aseCondition(...) by default.
The most important feature @bstractDepthFirstAnalysis is that it implements a
caseASTNode(...) method. The implementation of this method provides thedtagver-
sal for this type of analysisFigure 5.6 presents the source code for this method. The
caseASTNode(...) method takes in thesSTNode being visited. For each child of that
node, that child is analyzed. So to reiterate, sile@ractDepthFirstAnalysis extends
AbstractNodeCaseHandler ~, and due to its implementation ofhseASTNode(...) , the
default behaviour for every node is to simply analyze alldren of that node.

public voi d caseASTNode(ASTNode node)
{

for(int i = 0; i<node.getNumcChild(); i++){
i f (node.getChild(i) != null)
node.getChild(i).analyze(callback);

}

Figure 5.6 Depth-first caseASTNode(...) source code

AbstractDepthFirstAnalysis also defines some new methods and fields for storing
and accessing the data being produced by the analysis.vilpgoa map from AST nodes
to the data being computed. This allows data to be associatiedny desired node.

In order to implement a new depth-first analysis, a programmest create a concrete
class that extendabstractDepthFirstAnalysis . To create this class, a programmer

73

Intraprocedural Analysis Framework

must
e select an analysis data type
e implement an appropriatewlnitialFlow method
e implement an appropriate constructor

This will result in an analysis that will traverse the entiree visiting each node in
depth-first order. To get the analysis to perform a usefll the programmer must override
appropriate case methods. The analysis will usually bupllaw-data, and can associate
flow-data with particular nodes in the tree.

To demonstrate the process of implementing a depth-firdysisawe will present a
simple example analysis. This analysis is intended to codik names that are assigned to.
It will perform two tasks. First, for each assignment stagatrin the tree, it will associate
all names that are assigned to by that assignment statemém aissignment statement.
Second, it will collect in one set, all names that are assigoén the entire AST.

We will be storing a name assring . Since we will be dealing with sets of strings,
we can use the predefinedshsetFlowSet for our flow-data. In particular, we can make
our flow-data be of typeélashSetFlowSet<String> , a flow-set containing strings. Recall
that this class was defined 8ection5.2.1

This lets us create the shell of our analysis, which will béedaNameCollector . The
code so far is given ifrigure 5.7.

This shell contains &ashSetFlowSet field and two accessor methods. One of these
methods is for accessing a set of all names, the other is é@samng the set of names for a
given assignment. If the assignment has no names assowiditeit] it returnsnull . This
implementation assumes that tfwvSet 's map is being used to associate the set to each
assignment statement.

The analysis, as it stands now, will only traverse the ASWwdih’'t actually collect any
names. To add the name collecting behaviour, we need toideespecific case methods.

74

© 0 N O OB~ WN PP

NN NRNNNNRERRRRRRRPRP PR
O U A WNPO O ®SNODOUDMWNIERO

5.2. Analysis Types

public class NameCollector
ext ends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>

{
privat e HashSetFlowSet<String> fullSet;

publ i ¢ NameCollector(ASTNode tree)
{

super (tree);
fullSet = new HashSetFlowSet<String>();

}

publ i ¢ HashSetFlowSet<String> newlnitialFlow()

{

return new HashSetFlowSet<String>();

}
publ i ¢ Set<String> getAllNames()

{
return fullSet.getSet();

}
publ i c Set<String> getNames(AssignStmt node)

{
HashSetFlowSet<String> set = flowSets.get(node);

if(set == null)
return null;

el se
return set.getSet();

Figure 5.7 Shell of example depth-first analysis NameCollector

We will implement our desired behaviour as follows:

for each AssignStmt s in the AST

currentSet = new set

collect all nhames in LHS being assigned to into currentSet

flowSets[s] = currentSet

add currentSet to fullSet

In order to do this, we start by implementing@seAssignStmt(...) and acase-

Name(...) . ThecaseAssignStmi(...) will be used to setupurrentSet as well as set a
flag that keeps track of whether or not the analysis is in tiiénkend side of an assignment.
The assignment case will then traverse into its left-hadd,3gnoring the right-hand side.
Finally, it will map the result to the current node and adaithe total result. Thease-

75

Intraprocedural Analysis Framework

© 0 N O OB~ WN P

e N < =
o A WNRE O

Name(...) method will be used to add to the current flow-set. It will odlythis when it
is in the left-hand side of an assignment. This results irctdue inFigure 5.8 being added
to theNameCollector class.

private bool ean inLHS = fal se;
public voi d caseName(Name node)

{
i f(inLHS)
currentSet.add(node.getID());
}

public voi d caseAssignStmt(AssignStmt node)

{
inLHS = true;
currentSet = newlnitialFlow();
analyze(node.getLHS());
flowSets.put(node,currentSet);
fullSet.addAll(currentSet);
inLHS = fal se;

Figure 5.8 caseAssignStmt(...) and caseName(...) for NameCollector

This implementation is a good first attempt. It will captummgle assignments, and
it will even capture multi-assignment statements. Thefgoisever a problem with it. It
ignores the fact that names can appear on the left-hand sateassignment, but not be a
name being assigned to. For example, the following line deawill produce botha" and
"o" for names being assigned to.

a(b) = 42:

This is incorrect since is not being assigned to. This can happen when the name is
used as an argument, for example, as an index to an arrayl-ar@g. For brevity we will
focus on simple array indexing. To solve this problem, wadrteeavoid looking at names
occurring in the arguments of an indexing expression. INAB&, indexing expressions
are represented BarameterizedExpr . To avoid going into the arguments of an indexing
expression, we need to writecaseParameterizedExpr(...) . The implementation will
simply ignore the arguments and traverse into the targaessmpn of the indexing. The
method is presented iRigure 5.9, and will be added to the class. This method simply

76

A W N P

5.2. Analysis Types

passes the target of the parametrization for analysisrilggnthe arguments.

publ i c voi d caseParameterizedExpr(ParameterizedExpr node)

{
analyze(node.getTarget());

}

Figure 5.9 caseParameterizedExpr(...) for NameCollector

A similar caseCellindexExpr(...) and DotExpr method would also be needed to
avoid the other incorrect name inclusions.
The full code for the class definition afameCollector can be seen ifigure 5.10

5.2.4 Structural Analysis

Structural flow analysis is the core part of the analysis &aork. This type of analysis
can be used to compute complex information to approximatdirae behaviour of a given
program. The implementation of these analyses is necBssaosre complex. They re-
qguire deeper knowledge of the languages semantics, as svitileaability to approximate
run-time behaviour of the program. These issues come iatowhen dealing with control
structures in the language, structures suchfasi | e, andf or statements. The frame-
work provides generic implementations of the proceduressgary for implementing a
structural analysis.

Structural analysis requires a more complex APl and morailddtinformation about
nodes. To capture this, we define an interface for strucanallysis. This interface is called
StructuralAnalysis<A> , and it extends thenalysis interface. It provides an API for
accessing analysis results, accessing current flow-dadananipulating flow-data. It also
provides some additional cases for finer grained treatmiembades. These new methods
are summarized ifmable5.7.

The framework also provides an abstract implementatiostoctural analyses. This
abstract implementation, call@@stractStructuralAnalysis provides constructors and
implementations for most of the APl methods. This impleragah is similar to the\bs-
tractDepthFirstAnalysis implementation. It also provides a protected methad
analyze(ASTNode node) . This method is intended to abstract away from the basic

77

Intraprocedural Analysis Framework

public class NameCollector
ext ends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>

{

}

privat e HashSetFlowSet<String> fullSet;
private bool ean inLHS = fal se;
publ i ¢ NameCollector(ASTNode tree)

{
super (tree);
fullSet = new HashSetFlowSet<String>();
}
publ i ¢ HashSetFlowSet<String> newlnitialFlow()
{
return new HashSetFlowSet<String>();
}
publ i c Set<String> getAllNames()
{
return fullSet.getSet();
}
publ i c Set<String> getNames(AssignStmt node)
{
HashSetFlowSet<String> set = flowSets.get(node);
if(set == null)
return null;
el se
return set.getSet();
}

publ i c voi d caseName(Name node)
{

i f(inLHS)

currentSet.add(node.getID());
}

public voi d caseAssignStmt(AssignStmt node)
{

inLHS = true;

currentSet = newlnitialFlow();

analyze(node.getLHS());

flowSets.put(node,currentSet);

fullSet.addAll(currentSet);

inLHS = fal se;

}
public voi d caseParameterizedExpr(ParameterizedExpr node)
{
analyze(node.getTarget());
}

Figure 5.10 Full NameCollector definition

78

5.2. Analysis Types

API| Methods
Map<ASTNode,A> | getOutFlowSets() gets out flow-data
Map<ASTNode,A> | getinFlowSets() gets in flow-data
void | merge(A inl, A in2, A out) merges two flow-data putting
the result into a third
void | copy(A source, A dest) copies the flow source flow-
data into dest
A | getCurrentOutSet() gets the current out data being
worked on
void | setCurrentOutSet(A outSet) sets the current out data
A | getCurrentinSet() gets the current in data
void | setCurrentlnSet(A inSet) sets the current in data
A | newlnitialFlow() gives an initial approximation
for data

Traversal Methods
void caseLoopVarAsinit(AssignStmt loopVar)
void caseLoopVarAsUpdate(AssignStmt loopVar)
void caseLoopVarAsCondition(AssignStmt loopVar)

Table 5.7 Methods in the StructuralAnalysis interface

traversal mechanism. The forward and backwards implertiensaalso use it to ensure
that the flow-data is setup appropriately. When an analyssi\eo analyze a particular
node, this method should be used rather than relying on thie baversal mechanism.
There are, however, times when an analysis needs to caleantethiod directly on a node.
In this situation, it is the programmers responsibility tesere that the flow-data is setup
appropriately. This is to ensure that case methods can denmepted assuming that they
have appropriate flow-data.

As with AbstractDepthFirstAnalysis , this implementation doesn’t provide a con-
cretenewlnitialFlow method. It also doesn’t provideraerge, or copy method. This
is because these details are specific to individual analyBesmerge method should be
implemented to reflect the abstraction being computed byatiadysis. Theopy method
should take into account if the copy should be deep or shalllhwese are implementation
details that require a deeper knowledge of the analysigheriiten.

79

Intraprocedural Analysis Framework

AbstractStructuralAnalysis also defines a number of protected data members for
use by the different implementations. These data membersuanmarized imable5.8.
These members have to do with the data being computed bywbe gnalysis. A standard
analysis will fill the outFlowSets andinFlowSets with appropriate data for each AST
node that has data defined for it. It will compute the valuesolat or in flow-data for
a given node on the in or out flow-data, respectively, of theeginode. The way this
dependency is defined depends on what flavor of flow analy$isirgy defined. Further
details on how these data members are used is presenteith lisrsection.

A | currentOutSet the out data for the node currently being
worked on
A | currentinSet the in data for the node currently being
worked on
Map<ASTNode,A> | outFlowSets a map from nodes to their associated out data
Map<ASTNode,A> | inFlowSets a map from nodes to their associated in data
ASTNode | tree the AST being operated on

Table 5.8 Data members in defined by AbstractStructuralAnalysis

Unlike AbstractDepthFirstAnalysis , AbstractStructuralAnalysis does not pro-
vide an implementation fotaseASTNode(...) . This is because structural analyses are
split into two flavours, forwards and backwards. Each of éhi#ggvours will require its
own implementation otaseASTNode(...) . The forwards and backwards analyses are
implemented in a similar way. For each, we define a generéaatbsmplementation and a
simple abstract implementation. The general implemeamagirovides an implementation
for the basic APl methods. It also provides an implementatiy some traversal meth-
ods, including loops and conditionals. These implememnatifor the traversal methods
are what makes analyses derived from these classes, fldysagaln the case of the loop
casesgcaseForstmt(...) and caseWhileStmt(...) , they provide the fixed-point com-
putation procedure. These general implementations reptrése core functionality that is
needed for these types of analyses. This functionalitylsHmeiapplicable to most analyses
of this type, and most programmers should not have to owethiem.

The simple implementations go beyond this core functityalihey implement certain
behaviour that would not be applicable to all analyses. ®etfaviour includes how to deal

80

5.2. Analysis Types

with continue andbreak statements. These implementations represent the fuatition
needed to write analyses that do not need more complex lmehra¥ihey were provided to
make analyses simpler to write, requiring less duplicatiboode.

<<interface>>
NodeCaseHandler

_________________ 5

<<interface>>
Analysis

7

<<interface>>
AbstractNodeCaseHandler | StructuralAnalysis

|AbstractStructuralAnalysis |

|AbstractStructuraIForwardAnalysis | |AbstractStructuralBacwardAnalysis |

|AbstractsimplestructuraIForwardAnalysis | |AbstractSimpIeStructuralBacwardAnalysis |

Figure 5.11 Class hierarchy snippet for structural analysis

Forward Analysis

A structural flow analysis is intended to flow informationdbgh a program in a particular
direction. In the case of a forward analysis, the directibfiaw is forward through the
program. To accomplish this, thebstractStructuralAnalysis defines data members
that represent the in and out flow. In a forward analysis, th#ow at a given node is
the information flowing into that node. When creating a fodvanalysis, a programmer
must define how a given node’s out flow is defined in terms ofmitBaw. In the frame-
work, this is done by overriding appropriate node cases hénimplementation of these
overridden node cases, the programmer must useuthetinSet ~ and compute a value
for currentoutSet . By default, if no overriding implementation is given, thefiow will
passed along to the out flow directly. Providing appropriatplementations of desired
node cases is only one step of implementing a flow-sensitigéyais. A list of all the steps
involved in creating a new flow analysis is givenAigure 5.16

81

Intraprocedural Analysis Framework

To create a forward analysis, a programmer must exteésdactStructuralFor-
wardAnalysis . This class implements the basic computations to perforonaard flow
analysis. These computations include basic traversal mfomanching code, splitting and
merging non-looping branching code, and the fixed-pointmatations for looping code.
These computations are implemented in the case methodarious node types.

ThecaseASTNode(...) implements the basic traversal. It does this by loopingubho
the children of a given node and using the providedyze(ASTNode node) method.
Recall that this method deals with basic traversal and alacagtees that theirrentin-

Set is set to the previouaurrentOutSet

The caselfStmit(...) andcaseSwitchStmt(...) implement the behaviour for non-
looping branching code. The statement behaviour provides what we call branching
analysis. This means that, if the analysis writer wishesy ttan provide a different out
flow for when the if condition is true or false. This would bengoin an implementation
of caselfCondition(...) . When a programmer provides true and false flow-dzaks:-
IfStmtg...) will ensure that each branch of the will have the appropriate in flow-data.
The branching flow-data can be set and accessed through thedsealescribed iffable
5.9

void | setTrueFalseOutSet(A tSet, A fSet) sets both true and false flows [at
once
void | unsetTrueFalseOutSet() unsets both true and false flows
A | getTrueOutSet() gets the true flow
A | getFalseOutSet() gets the false flow

Table 5.9 Methods associated with branching analyses

The procedure for dealing withf statements is summarized by the diagrarkigure
5.12 This diagram illustrates how data is flowed through a tylpica The flow of data
is represented by the arrows. First the condition is andlytteen the resulting out flow
from that is used to analyze tlieenpart andelsepart. In the diagram the dashed arrow
labelled “true flow” represents the true out flow and the ddstreow labelled “false flow”
represents the false out flow. The results of tien and elseparts are then fed into the
merge operation, depicted by the box containimg symbol. This merged result is the out

82

5.2. Analysis Types

flow for thei f statement.

The procedure for dealing witkwitch statements is similar to the one for state-
ments. However, there is no branching analysisstatch statements. The diagram il-
lustrating the data flow is given iRigure 5.13 Keep in mind that, in MTLAB, acase
can contain an arbitrary expression, and the result of atialy it is used to decide if the
case body is evaluated. Also recall that, unlike in C or Jéwae is no fall through in
MATLAB’S switch statements, they simply execute the matching case’s batipathing

else.
In
if —<COND> — =
l 12
= o
Sl 5
3 v
2! <THEN PART>
I
else v >
A
<ELSE PART>
L
end
Out
Figure 5.12 Forward data flow for i f statements
ThecaseForStmty(...) andcaseWhilestmt(...) implement the procedures for loop-

ing code. These procedures perform fixed-point computsiteond ensure that data is
flowed correctly. This fixed-point computation is made mooeplex by the presence
of continue andbreak statements. These statements can disrupt the normal flowghr
the body of a loop. To manage these we provide a stack cabedtack . This stack
holds data associated with the loops being processed. @tasgistored in an instance of
a nested class calledopFlowsets . A LoopFlowsets instance contains a reference to the
loop node it's associated with, the in flow for that loop, awd tists of flow-data that store

83

Intraprocedural Analysis Framework

In

|_l

switch <SWITCH EXP>

case — <CASE EXP 1>
\
<BODY 1>
.
case — <CASEEXP 2>
<BODY 2> v
I—’ N
otherwise |
<BODY 3> v
>

end |

v

Out

Figure 5.13 Forward data flow for switch statements

the out flows of altontinue andbreak statements relevant to the loop. A list of the meth-
ods provided by this class is give Table5.10 The cases for loops setup.@opFlowsets
instance for the current loop and push it omapStack . The cases also make use of
two abstract methods declared BystractStructuralForwardAnalysis . These meth-
ods areprocessBreaks() andprocessContinues() , each of which returns flow-data of
type A. The intention is for a programmer to implement appropriat@BreakStmt(-

...) andcaseContiueStmt(...) methods that add data to the top of thepStack . A
programmer must also implement threcessBreaks() ~ andprocessContinues() meth-
ods. They should somehow combine all data from the apprepligt in the head of the
loopStack

84

5.2. Analysis Types

Providing a simple implementation of these methods is thim fiuegus of Abstract-
SimpleStructuralForwardAnalysis . The implementation for the two case methods will
copy the in flow for the node and add it to the appropriate ligha head of the stack.
The process methods are implemented to use the merge aperaterge all data in the
appropriate list. These implementations should be satmfa for many analysis imple-

mentations.
void | initLists() initializes flow lists
void | addContinueSet(A flowSet) add a flow to theontinue list
void | addBreakSet(A flowSet) add a flow to thevreak list
List<A> | getBreakOutSets() returns theoreak list
A | getLoopInFlow() returns the loop in flow
void | setLoopInSet(A loopInFlow) sets the loop in flow
List<A> | getContinueOutSets() returns thecontinue list
ASTNode | getLoopNode() returns the associated loop node
void | setLoopNode(ASTNode loopNode) sets the associated loop node
NOTE: theList being used here is the definedjbya.util.List , NOotast.List

Table 5.10 Methods provided by AbstractStructuralForwardAnalysis.LoopFlowsets

The flow of data for a basiehi | e loop is depicted irFigure 5.14 Thewhi | e loop
being depicted contains twontinue and twobreak Statements. The boxes containi@g
andB represenprocessContinues() andprocessBreaks() respectively.

The fixed-point computation operates by storing the previ@sult of analyzing the
condition check, and comparing it with the new result. Iiytlaee equal then a fixed-point
is reached, then the rest of the computation continuesywibe another iteration of the
fixed-point computation is executed.

It should be noted that this diagram has some dependenaysissthe merge at the
top of the diagram takes the in flow for the loop and the flow ltegyfrom analyzing the
body. The fixed-point check requires the out flow from the ¢tonl to be compared to
the previous out of the condition. On the first iteration af fixed-point computation, the
body has not yet been analyzed, and there is no previousfaaltiee condition. In order to
bootstrap this process, the framework usesthenitialFlow() method to approximate
the result from the body, and the first fixed-point check ipgkd. This value should be

85

Intraprocedural Analysis Framework

designed to be safe for this purpose.

In

X

!

while <COND>

A

continue

\ 4
break C

A A

X

continue ——

X
A
oy}

break

l

Out

end

Figure 5.14 Forward data flow for whi | e loops

The procedure for analyzingfar loop is very similar. The main difference is that
instead of a simple condition, faor loop has a loop variable. A diagram depicting the
procedure is given ifrigure 5.15 The diagrams shows that analyzing the loop variable,
depicted byLV, is split into its three phases: initialization, conditioheck, and update.
Recall that in MhTLAB, afor loop is always a for-each loop. The domain of the loop
variable is determined by the result of an arbitrarily coaxpexpression. The framework
is designed to work wittMcAsST, but a programmer must understand the semantics of the
for loop. It is their responsibility to write their analysis telave correctly when dealing
with such complex or loops. The simplified IRMcLAST, describe inrChapter3, and the

86

5.2. Analysis Types

associated simplifications @hapter4, expose these semantiddcLAST guarantees that
all f or loops are simple range loops of the foror i = start:step:stop . This makes
f or loops much simpler to deal with.

In

>

A

Y \ 4
for <LV> |INIT |COND |UPDATE
| A

yes /k no
FP
N

continue

\ 4
break C

X

A
continue ——

X
A
oy}

break

l

Out

end

Figure 5.15 Forward data flow for f or loops

These implementations should be adequate for most analpspsogrammer should
generally not have to implement their own versions or evek iato the source code for
these methods.

To demonstrate the process of creating an analysis, weniraseexample analysis
and step through the process. The example being implementeel well known reaching
definitions analysis. We will define this analysis as follows

87

Intraprocedural Analysis Framework

For every statemessi for every variables defined
by the program, compute the set of all assignment
statements that assigni@nd reacts.

We will call our analysiReachingDefs . To implement this analysis we will complete
the tasks listed irFigure 5.16 We will start by picking a flow-data representation and
merge operation.

e pick a flow-data representation

e define a merge operation

e define a copy operation

e define an initial flow

e define appropriate node cases

e define other necessary traversal methods

e ensure that data is copied and stored when

needed

Figure 5.16 Steps to creating a new flow analysis

Based on the description of the analysis, we will define our-iiata as a mapping from
variable names to sets of assignment statements. Eachetdteiill have such flow-data
associated with it. They will have both the flow-data fromdrsefevaluating the statement
and after. Recall that the analysis framework provides a Wwayapping particular AST
nodes to flow-data. We will implement this data represeoricds aHashMapFlowMap<String,
Set<AssignStmt>> . This lets us create a shell for our analysis. Code for thil shgiven
in Figure 5.17. Note that we are extendingpstractSimpleStructuralForwardAnal-
ysis , and storing data asashMapFlowMap<String, Set<AssignStmt>> . We are using
AbstractSimpleStructuralForwardAnalysis because it gives a more complete imple-
mentation, and because the methods it provides are addqu#tes analysis. More detail
regarding this is given later in this section.

Recall fromSection5.2.1that to use one of the merge operations providedhixy
tractFlowMap , either the value type must implemewérgable or an implementation of

88

o O~ WN PP

0 N o O WN PP

5.2. Analysis Types

public cl ass ReachingDefs
ext ends AbstractSimpleStructuralForwardAnalysis
<HashMapFlowMap<String,Set<AssignStmt>>>

Figure 5.17 Shell of the reaching definitions implementation

Merger must be provided. Since set does not implema&ngable we will have to provide
aMerger implementation.

We are going to be using the union operation for merging, aadvant ouMerger to
union the two sets it is given. We want union because when twgrpm paths reach a
confluence point, such as two branches of ajnall definitions that reached that point on
either path will reach immediately after the confluence poille implement oumerger
as an anonymous class instance stored as a private memberaidlysis we are writing.
The code for our implementation is givenfigure 5.18

private Merger merger = new Merger<Set<AssignStmt>>(){
publ i ¢ Set<AssignStmt> merge(Set<AssignStmt> s1, Set<AssignSt mt> s2)

{

Set<AssignStmt> ms = new HashSet<AssignStmt>(sl);
ms.addAll(s2);
return ms;

Figure 5.18 Implementation of Merger for reaching definitions

With this definition of a merger we can define our merge opemnat\e will use the
union(...) method defined bybstractFlowMap . This makes our merge operation very
short to write. The code for this method is giverFigure 5.19

Next we must define eopy(...) method. Since our flow-map contains mutable data,
we will want to perform a deeper copy thabstractFlowMap provides. This will involve
creating a newlashMapFlowMap, going through all the keys in the original map and putting
the key with a copied set into the out map. We also define aesiagumentopy(...)
that returns a copy of the input, for convenience. Code faemeethods is given iRigure

89

Intraprocedural Analysis Framework

© 00 N O OB~ W N P

e e N i T =
o U~ WNRFE O

public voi d merge(HashMapFlowMap<String,Set<AssignStmt>> inl,
HashMapFlowMap<String,Set<AssignStmt>> in2,
HashMapFlowMap<String,Set<AssignStmt>> out)
{
inl.union(merger, in2, out);
}
Figure 5.19 Implementation of merge(...) for reaching definitions
5.20
public void copy(HashMapFlowMap<String,Set<AssignStmt>> in,
HashMapFlowMap<String,Set<AssignStmt>> out)
{
if(in == out)
return;
out.clear();
for(String i : in.keySet())
out.put(i, new HashSet<AssignStmt>(in.get(i)));
}
publ i ¢ HashMapFlowMap<String,Set<AssignStmt>>
copy(HashMapFlowMap<String,Set<AssignStmt>> in)
{
HashMapFlowMap<String,Set<AssignStmt>> out = in.emptyM ap();
copy(in, out);
return out;
}

Figure 5.20 Implementation of copy(...) methods for reaching definitions

Defining anewlnitialFlow(...) method is slightly more complicated. The way we
defined the analysis implies that variables that have navgen defined should map to an
empty set. This means our map should always contain entiedlfvariables defined in
the program. One easy way to do this is to rely onNaeeCollector analysis written
in Section5.2.3 Recall this analysis provides the set of all variable nansdmed in the
program, and for each assignment, a set of variables defindmabassignment. We will
use the former to define our initial flow, and the latter in onalgsis. In order to have
this information available we need to run and store NhseCollector . We will add a
field to ReachingDefs to store the analysis, and run it in the constructor. We wdba
compute and store a prototypical initial flow in the constouc Code for the constructor

90

© 00 N O OB~ WN P

=R
[N)

A W N P

5.2. Analysis Types

and declarations of the needed data members is providétyure 5.21. The resulting

definition fornewlnitialFlow() is very simple. Its code is given iAgure 5.22
privat e HashMapFlowMap<String,Set<AssignStmt>> startMap;
privat e NameCollector nameCollector;
publ i ¢ ReachingDefs(ASTNode tree)
{
super (tree);
startMap = new HashMapFlowMap<String,Set<AssignStmt>>(merger);
nameCollector= new NameCollector(tree);
nameCollector.analyze();
for(String var : nameCollector.getAllNames())
startMap.put(var, new HashSet<AssignStmt>());
}
Figure 5.21 Implementation for reaching definition’s constructor
publ i ¢ HashMapFlowMap<String,Set<AssignStmt>> newlnitialFlo w()
{
return copy(startMap);
}

Figure 5.22 Implementation of newlnitialFlow() for reaching definitions

Finally we can define the appropriate node cases neededfantlysis. When defining
our node cases, it's important to make sure that data is dame stored correctly. The
framework only guarantees thairrentinFlow is set to the appropriate flow data. It
doesn't ensure that this data is not shared. The previous cmad have stored a reference
to the flow-data somewhere else. In this case, modifying #ta @ill change the result
for the previous node. To avoid modifying data associatet wiher nodes, care must be
taken to have a correct and consistent copying strategy.sifhglest such strategy is to
copy everywhere. This is not done by the framework to alloagpgmmers to share data
when they are sure it's safe in order to save memory and cgytiyire.

It's also important to ensure that data is being associatédappropriate nodes. If care
is not taken, then some data can be lost.

For the reaching definitions analysis we only need to defiedases. The first, and
most important case tsseAssignStmt(...) . This case will do the work of updating the

91

Intraprocedural Analysis Framework

flow information for the variables defined by this stateméniill use theNameCollector

we ran in the constructor to get the variables that are defwgdtie given assignment. It
will then create a new set containing only the giverignStmt node and associate it with
each of the defined variables. This means that immediatedy tifis point, each of those
variables only has one reaching definition. The case will tdke care of storing the in and
out flow to the given node, and copying appropriately. Weestbe flow information in the
inFlowSets andoutFlowSets maps, this is so it is available after the analysis is run.

Our copying strategy will be to assume the flow-data cominig safe to store but not
safe to modify. This means we will make a copy of the in flowadatr modification. This
modified flow data becomes our out flow-data and is storedtflowSets for the given
node. This means that the in flow-data of a given node can bredhéth the out flow-
data of a predecessor node. It is however not always going ghbred. This is because
the predefinedaseForstmt(...) , caseWhileStmt(...) , caselfStmt(...) , andcase-
SwitchStmit(...) all perform aggressive copying to ensure no incorrect biebav

The definition of the analysis also requires that each setéhrave an associated reach-
ing definitions mapping. The predefined cases always perfioisrmapping, and so does
our caseAssignStmiy...) . In order to have all other statements mapped to reaching def
inition data, we can define @aseStmt(...) method. Recall fronSection5.1 that this
method will only be executed by other statements with unddfrase methods. The defi-
nition for this method will be very simple, it will associattee in flow to the node, assign
the out flow to be the in flow, and associated the out flow to thdenoNo copying is
done, which is consistent with the assumption made for opyiog strategy incase-
AssignStmt(...) . The code foraseAssignStmitf...) is given inFigure 5.23and the
code forcasestmt(...) is given inFigure 5.24

This is sufficient to define owReachingDefs analysis. A listing of the complete source
code for this analysis is provided AppendixA.

This example demonstrates the steps needed to define a ngwisndt should be
noted that this example is naive, in that it does not take actmunt the far reaching side
effects possible in MTLAB . For instance we ignoreval expressions that can cause new
definitions. We also ignore that any function call can causg definitions. A full and
rigorous analysis would be more complex, and would rely erésults of other analyses,

92

5.2. Analysis Types

public voi d caseAssignStmt(AssignStmt node)
{
inFlowSets.put(node, currentinSet);
currentOutSet = copy(currentOutSet);
Set<String> defVars = nameCollector.getNames(node);
for(String n : defVars){
Set<AssignStmt> newDefSite = new HashSet<AssignStmt>();
newDefSite.add(node);
currentOutSet.put(n, newDefSite);

}

outFlowSets.put(node, currentOutSet);

Figure 5.23 Implementation of caseAssignStmt(...) for reaching definitions

public voi d caseStmt(Stmt node)

{
inFlowSets.put(node, currentinSet);
currentOutSet = currentinSet;
outFlowSets.put(node, currentOutSet);
}

Figure 5.24 Implementation of caseStmt(...) for reaching definitions

such as the Kind Analysis describeSection5.2.5 Such an analysis is outside the scope
of this section.

Backward Analysis

The implementation of a backward analysis is very similaa forward analysis. Concep-
tually they are also very similar, the main difference beimat, where a forward analysis
flows information forward through the program, a backwardlgsis flows it backwards.
This means that instead of defining the out flow in terms of tH#oiv, a programmer must
define the in flow in terms of the out flow. The steps for creaéingackwards analysis are
the same as the ones given for forward analysésgare 5.16

To create a backward analysis, a programmer must extigsn@ctStructuralBack-
wardAnalysis . This class is similar t@bstractStructuralForwardAnalysis , but pro-
vides implementation details specific to backwards analyse

93

Intraprocedural Analysis Framework

As with other analysis typesaseASTNode(...) implements the basic traversal. It will
loop through the children of the given node in reverse ordealyzing each one in turn.
Like in a forward analysis, thanalyze(ASTNode node) method is used to analyze a given
node. Unlike forward analyses, the default implementadibiinis method guarantees that
currentOutSet IS set to the previouaurrentinSet . This enforces the backwards nature
of such an analysis.

The caseASTNode(...) method provides default behaviour for non-branching code.
Behaviour for branching code is given tgselfstmt(...) , caseSwitchStmt(....) , case-
WhileStmt(...) , andcaseForStmt(...) . In principle, these work very similar to their
forwards analysis counterparts, but obviously with thection of flow reversed. There
are some important details that differ between the two vessiso we will provide brief
descriptions.

The caselfStmit(...) for backwards analyses does not provide branching analysis
functionality. Besides this difference, theselfStmt(...) and caseSwitchStmit(...)
are very similar to their forwards counterparts. Diagraeyresenting how information
flows through these statements are giveRigure 5.25andFigure 5.26respectively.

The loop cases differ more from their forwards versions, gared to the other cases.
This is due to the added complexity of performing a fixed-pa@omputation, and due
to continue andbreak statements. LikebstractStructuralForwardAnalysis , Abs-
tractStructuralBackwardAnalysis uses a stack calledopStack to keep track of loop
flow-data. It also provides a nested class implementatiar@fFlowsets . This imple-
mentation stores the AST node and out flow-data for the loapgb&nalyzed. It is also
used for storing and accessing data for dealing witghk andcontinue Statements. In a
backwards analysis, eableak statement and eachntinue statement for a given loop
are expected to have the same out flow, respectively. ConstyjueopFlowsets only
stores a single out flow fasreak statements and a single out flow famtinue state-
ments for the given loop. A summary of the methods providedhiy implementation
of LoopFlowsets is given inTable5.11. The out flow forbreak statements is set by the
setupBreaks() ~ method, which is called at the beginning of the loop case. dutdlow
for continue statements is set by thetupContinues() method, which is called before
analyzing the body of the loop in each iteration of the fixeihpcomputation. Diagrams

94

5.2. Analysis Types

depicting the flow of information throughhi | e andf or statements are given fgure
5.27andFigure 5.28

Like for forward analyses, the framework provides a simgisteact implementation
for backward analyses call@@stractSimpleStructuralBackwardAnalysis . This class
provides implementations for methods relatingpteak andcontinue statements. It pro-
vides asetupBreaks() implementation that simply sets the out setharak statements
to the current out flow. The implementation festupContinues() does the same for
continue statements. The implementations for theak andcontinue cases sets the in
flow to the appropriate out flow from the head of tbepStack , performing a copy of the
data for safety.

A | getBreakOutFlow() returns the out flow-data farreak
statements in this loop
void | setBreakOutFlow(A outFlow) sets the out flow-data fobreak
statements in this loop
A | getLoopOutFlow() returns the out flow-data for the cur-
rent loop
void | setLoopOutFlow(A outFlow) sets the out flow-data for the current
loop
A | getContinueOutFlow() returns the out flow-data for
continue Statements in this loop
void | setContinueOutFlow(A outFlow) sets the out flow-data faontinue
statements in this loop
ASTNode | getLoopNode() returns the AST node for the current
loop
void | setLoopNode(ASTNode loopNode) sets the AST node for the current
loop

Table 5.11 Methods provided by AbstractStructuralBackwardAnalysis.LoopFlowsets

To demonstrate the implementation of a backwards analgdise-variable analysis
has been created and included as an example in the frameivoeksource code for this
analysis is also provided iAppendixC. This implementation uses a depth first analysis
calleduseCollector . This analysis is similar to theameCollector ~ given inFigure 5.1Q
but instead of collecting all name that are assigned to,liects all names that are used
as possible variable accesses. To accomplish this, thgsialses the kind analysis to

95

Intraprocedural Analysis Framework

determine if a name is a variable or not. The kind analysigieflip describe inSection
5.2.5 The source code fasseCollector is given inAppendixB.

%
B

<THEN PART>

I
else |

<ELSE PART>

S

end

I
Out

Figure 5.25 Backward data flow for i f statements

Important Points

In order to implement a correct flow analysis, it's importémtremember a few things.
These are summarized here.

e A programmer must keep NM'LAB semantics in mind. This is particularly important
when dealing withMcAST instead ofVICLAST.

e A programmer must ensure that the contract for in and out flate-is respected.
For a forwards analysis this means haviugentOutFlow set to the appropriate
value at the end of a case method. It also means that, whersingtanalyze...)
to analyze a particular sub-node (e.g. calling a case mdtiratiat node directly),
the currentinFlow IS set to an appropriate value for that node. For a backwards
analysis, the contract is reversed.

96

5.2. Analysis Types

In

—

switch <SWITCH EXP>

*_\

case <CASE EXP 1>

>

<BODY 1>

1
case <CASE EXP 2>

>

<BODY 2>
| S

otherwise \
<BOEY 3>

end

I
Out

Figure 5.26 Backward data flow for switch statements

e Itis a programmer’s responsibility to copy flow-data apprately. The contract for
flow-data only says that the datadmrentinFlow Or currentOutFlow IS appropri-
ate, not that they are safe to modify.

5.2.5 Implemented Analyses

Besides the example analyses discussed in this chaptempartant analyses have been
created as part of this thesis. These analyses were cregbedvide information to other
parts of the compiler. The first analysis is the Kind Analysiee second is the Handle
Propagation Analysis.

The Kind Analysis has been mentioned throughout this théispgovides basic infor-

97

Intraprocedural Analysis Framework

In

yes VAL

while <COND>

>

continue <«—

—-break — C |-

> B H continue - <«—

—»-break

o

end

Out
Figure 5.27 Backward data flow for whi | e loops

mation about the kind of a given identifier. By this, we mean digen identifier refers
to a function or a variable. At every statement in the progréma Kind Analysis can be
queried to check if a given identifier name is considered &k or function. These are
represented by the valusARandFUN. When the analysis cannot determine the exact
kind for an identifier, it will assign it the kindD. The analysis also detects certain errors,
such as when an identifier is used as both a variable and adan&urther information on
this analysis can be found in the Kind Analysis pap&rR11].

The Handle Propagation Analysis was created as a step tewarndtructing an accu-
rate call graph for MTLAB programs. It identifies handle creation sites and propagate
the handle information through the program. This allowseotinalyses to determine if

98

5.2. Analysis Types

RN

no
FP
Y Y A

for <LV> |INIT [COND |UPDATE

> <]
I
continue <—
—-break —H C [«
> B H continue - <«—
—»-break
)
end
Out

Figure 5.28 Backward data flow for f or loops

a parameterized expression can in fact be a function cadpittethe target not being an
obvious function.

The source code for these analyses are include as part dfiche\B project. They
represent fundamental analyses, and are a practical apphof this analysis framework.

99

Intraprocedural Analysis Framework

100

Chapter 6
Analysis Framework Extensibility

Up to this point we have discussed the analysis frameworkercontext of the MT-
LAB language. ThéVicL AB framework is intended to be extensible to new language fea-
tures. This means that the analysis framework must also tems&kle. This section de-
scribes the extensibility of the analysis framework.

First of all, we must define what we mean by extensibility. Elgetem is designed to
be extensible in the sense of creating new language extensiheMcL AB framework
defines a root language based oam™AB called NaTLAB. This root language is defined
by thenatlab Java package. A language extension represents a new langaagd off
of another language, called the base language. The newdgaguill then extend the
scanner, parser, and AST definitions from the base langUdgese three components have
been created using tools that make such extensions simptedte. The important thing
to note is that these extensions should be considered $sefara the languages they are
based on. Itis this type of extensibility that we have focuse for the analysis framework.

6.1 Classification of Extensions

There are three basic types of language extension, witticelep the analysis framework.

The first, is a language extension that adds new AST node#hésg nodes do not play a
part in any analysis. These are nodes that either have nansemantent, such as a new
comment node, or are nodes that analyses will never enapantd as syntactic sugar that

101

Analysis Framework Extensibility

gets desugared before analyses are run. This type of exteissiery simple to implement.
Such an extension simply needs to include all necessaryffdesits base language, in-
cluding AST files, other JastAdd files, necessary Java class éind the scanner and parser
files. Note that if the base language is itself an extensianother language, then all files
that are needed from the deeper base language must alsdumethcAlso note that this
inclusion does not mean the files are copied. Instead, the facess of the extension lan-
guage needs to have access to them, either for inclusior idastAdd, scanner, or parser
code generation process, or as part of the Java class path.aDneeded files are included,
the extension needs to define its new AST nodes. As an exarhibles dype of extension,
a model language extension, calledxtension1 , has been created, and is available in the
McL AB project. This extension defines a new nadstmt that is intended to be a unary
increment statement. This new statement is treated ascsigrgagar and is desugared into
an assignment statement. For example, will be desugared inta=a+1.

The other two types of language extensions involve addirgadohatwill play a part
in analyses. They are distinguished by the type of nodesalidy The first of these other
types will only add nodes that don’t introduce new forms aftcol flow. This could include
new operators or new types of simple statements. An exanfiplesatype of extension is
provided in theMcL AB project. The name of this exampledsextension2 . It is actually
an extension ofxExtensionl and demonstrates the process of extending a language that is
itself an extensionExExtension2 doesn’t add new nodes, but instead changes the meaning
of IncStmt . In this extensionncStmt is no longer syntactic sugar. This means that the
analysis framework needs to be extended to take the newrsaténto account. In addition
to extending the framework, any analyses that will be usethénextension also need
to be extended. To demonstrate tlEgExtension2 includes an extended version of the
NameCollector analysis described iections.2.3 The process of extending the analysis
framework in this way is straight forward and would be a goaddidate for automation.
Extending individual analyses, on the other hand, reqlinesvliedge of the analyses being
extended, and of the semantics related to any added AST nodes

The final type of language extension is one that adds new aloihdkv nodes. An
example of this type of extension would be adding a new pradlr loop. This is the
most complex form of language extensions. It requires thatanalysis framework be

102

6.2. How Extensions are SupportedftSAF

extended to include new fixed-point computations and prapetrol flow traversal for
the new nodes being added. On the bright side, this shouldlystapture all the added
semantics of these nodes, allowing existing analyses teée without extending them to
handle the new control flow nodes.

6.2 How Extensions are Supported in MCSAF

The rest of this chapter discusses hblwsAF was designed to allow these types of exten-
sions. In particular we focus on the second and third typamgliage extensions, since the
first type is achieved mostly thanks to the JastAdd tool.

The extensibility of the framework is built into the packagiof the classes and the class
hierarchy. The node case handler related classes beloig todecases package, the
analysis classes belong to theilysis package. In order to understand the extensibility of
McsAF, we need to describe the class hierarchy in more detail.€ldhetsils are the crux of
the framework’s extensibility. The sub-class relatiopsiepresented by those hierarchies is
still correct; there are however additional classes aretfates mixed in. These additional
classes and interfaces provide the actual definitions apttmentations for NTLAB and
any extensions. The classes we've talked about so far ag@ystire user-facing names
for those components. An analysis programmer should onhg @ be concerned with
those classes, not any of the additional classes discussleid isection. These user-facing
classes are in fact basically empty except for code to sp#wafimplementation class that
contains its content and other boiler plate code needed t@icompile and run correctly.

In order to make the structure more concrete, we demonstratigh the hierarchy
behind forward analyses. This include tkiedeCaseHandler down to AbstractStruc-
turalForwardAnalysis . AbstractSimpleStructuralForwardAnalysis is not included
for the sake a brevity. The user-facing class hierarchy Hesé¢ classes can be seen in
Figure5.11

To start we focus on the node case handlers. Recall that slasisged to this por-
tion of the framework are located in tihedecases package. This package contains one
user-facing interfacefNodeCaseHandler , and one user-facing abstract clasbstract-
NodeCaseHandler . Since these are user-facing, they will be basically emfgir content

103

Analysis Framework Extensibility

will come from corresponding files in thedecases.natlab package. The correspond-
ing files areNatlabNodeCaseHandler ~ and NatlabAbstractNodeCaseHandler . Itis the
files innodecases.natlab ~ that contain the actual contemtatiabNodeCaseHandler ~ con-
tains all the method definitions described3action5.1, andNatlabAbstractNodeCase-
Handler contains all the default implementatiom&deCaseHandler andAbstractNode-
CaseHandler simply contain code to define the interface or class and dxtie@ corre-
spondinghodecases.natlab version. Source code for the actual implementatioxooie-
CaseHandler andAbstractNodeCaseHandler are given inFigure 6.1

package nodecases;

public interface NodeCaseHandler
ext ends nodecases.natlab.NatlabNodeCaseHandler

{
}

package nodecases;

public abstract class AbstractNodeCaseHandler
ext ends nodecases.natlab.NatlabAbstractNodeCaseHandler
{

}

Figure 6.1 Actual NodeCaseHandler and AbstractNodeCaseHandler source code

Of course, since the hierarchy relationship depicte&igure 5.11 must hold,Abs-
tractNodeCaseHandler must implement thelodeCaseHandler interface. The source
code only states thabstractNodeCaseHandler ~ extends\atlabAbstractNodeCaseHandler
and doesn’t mention any interface. FarstractNodeCaseHandler to implementNode-
CaseHandler , NatlabAbstractNodeCaseHandler must implement it. In general, only
user-facing names should appear in source code, and whsiblgosnterface references
should be used instead of class references. An obvious &xeép this is the definition of
the user-facing classes and interfaces, which must useothaser-facing names.

The analysis classes are defined in a similar way. The fudlsdteerarchy of the node
cases and forward analysis related classes is depictédure 6.2

One difference with some of the analysis classes is thatedine abstract analysis

104

6.2. How Extensions are SupportedftSAF

implementations define some constructors, the user-fa@ngions must also have those
constructors defined. The behaviour will simply call ager version of the constructor.

6.2.1 Example Extension

So how can this be extended? As was stated, a language extensst be completely
separate from its base language. Let’s say that we aremgesatanguage extension called
EXT, which extends WTLAB. This extension defines a new node tyeestmt extending
stmt , and we want to extend the analysis framework to handle #visnode. Here we will
focus on extending the node case handler.

The very first thing that must be done is tlabStmt must be given amnalyze(-
NodeCaseHandler handler) method. This method must call tlkeseFooStmt(...) on
the handler. This is done by using a JastAdd aspect, defihmgnethod. The example
extensiorexExtension2 has this defined by itaSTAnalyze.jadd file.

Since the base node case handler didn’'t havaeseFooStmt(...) , we will need to
extend the node case handler interface. To do this we crea¢gvanterface ExtNode-
CaseHandler , which is part of thenodecases.ext package. This new interface extends
NatlabNodeCaseHandler , and include a new case methadeFooStmt(FooStmt node)

In order for this extended interface to be used, a new versiafodeCaseHandler
must be created. Like theAMLAB NodeCaseHandler , this should be in th@odecases
package. The new one should be identical to the base veesioept, instead of extending
nodecases.natlab.NatlabNodeCaseHandler , it will extend nodecases.ext.ExtNode-
CaseHandler .

AbstractNodeCaseHandler should be extended in a similar way, by creatig
AbstractNodeCaseHandler . This should include the default forwarding behaviour for
caseFooStmty(...) , Which will forward tocaseStmt(...) . A new AbstractNodeCase-
Handler is created in a way similar to how the n@WwdeCaseHandler was created.

By judiciously including correct files in the build procedse tExT language code will
have access to its node case handling classes, which isdluelextended versions.

1The build processes fdxExtensionl andExExtension2 demonstrate how to include base lan-
guage classes correctly. See the directogyab/Project/languages in the McL AB project for these
two extensions.

105

Analysis Framework Extensibility

nodecasesl

natlabl

<<interface>>

NatlabNodeCaseHandler

<<interface>>
NodeCaseHandler

| NatlabAbstractNodeCaseHandler |

A

|AbstractNodeCaseHandler |

analysisl

natlabl

<<interface>>

NatlabAnalysis

A

1
<<interface>>
Analysis

A

<<interface>>

NatlabStructuralAnalysis

NatlabAbstractStructuralAnalysis

JaY

1
<<interface>>
StructuralAnalysis

|Abstract$ tructuralAnalysis

1
NatlabAbstractStructuralForwardAnalysis |

]
|AbstractStructuralForwardAnalysis |

Figure 6.2 Class hierarchy for forward analyses including extensability details

106

6.2. How Extensions are SupportedftSAF

This process allows any node case handlers written for the lamguage, such as the
statement counter described3ectiorb.1, to run in EXT. This is because such code should
only have used the user-facing names. For example, tharsatecounter was imple-
mented by extendingbstractNodeCaseHandler . In EXT AbstractNodeCaseHandler
includescaseFooStmt(...) with default forwarding behaviour.

Of course, if the new nodes require special behaviour in drnye@se traversals or
analyses, then they would need to be extended. For exanglewcStmt needed spe-
cial behaviour in thedameCollector ~ analysis, since it defines a new name. That is why
ExExtension2 includes an extended version RamecCollector called ExtendedName-
Collector . This demonstrates the process of extending an existingsasi#o work with
a new language extension.

In Figure 6.3, the class hierarchy for the node cases kmHs given. It should be
noted that all the classes in thedecases.natlab package are located in theaRLAB
language, and are not copied into theTE TheExtNodeCaseHandler ~andExtAbstract-
NodeCaseHandler classes are located in thecElanguage, and only include definitions for
the added node. ThédeCaseHandler andAbstractNodeCaseHandler files are new files
existing in EXT. They are identical to NTLAB's versions of these files, except they extend
the classes in theodecases.ext ~ package. The class path when compiling and executing
code in the KT language, should be set so that these newer versiomsie€aseHandler
andAbstractNodeCaseHandler ~ take priority over MTLAB’s versions.

6.2.2 Other Issues

When extending, there are some extra considerations to be afveFirst of all, the struc-
tural forward analyses rely on a helper node case handlEdoadalysisHelper . The
cases in this class receive the callback fromagatyze(...) call, perform some book-
keeping, and forward to the same case in the analysis benfigrmed. The behaviour of
this class is very simple, and should be obvious from itss®aode. In fact this code would
also be a good candidate for automated code generation. Wiéendeng the analysis
framework, theAnalysisHelper ~ andBackwardsAnalysisHelper must be extended ap-
propriately. TheExExtension2 language extension includes examples of extending these

107

Analysis Framework Extensibility

nodecaseﬂ
natlabl ext
<<interface>>
NatlabNodeCaseHandler
<<interface>>
ExtNodeCaseHandler
<<interface>>
NodeCaseHandler
SRR | ERERIRIRRIRIRRER RN A\

1
NatlabAbstractNodeCaseHandler |

A

| ExtAbstractNodeCaseHandler |

A

|AbstractNodeCaseHandIer

Note that theNodeCaseHandler andAbstractNodeCaseHandler classes are new
versions of those classes, included xTE

Figure 6.3 Class hierarchy of the extended node case handler

two classes.

Creating a major language extension, one containing newaldluw and loops, which
requires the use of previous analyses, some of which reguirew node case implemen-
tations, and requiring new analyses to be written is not dlgask. Such an extension
requires knowledge of the framework, analyses, and seosaotiboth MaTLAB and the
extension language. In such a case, the framework providesaaway of implementing
the extension, and it does so in a way that can cleanly sepdratxtended functionality
from the base functionality.

108

6.3. Summary

6.3 Summary

The analysis framework described in this chapter@hdpter5 provides a way of defining
new intraprocedural analyses for theaM.AB language. It allows a programmer to create
several different types of analyses, ranging from simptedrsals to flow-sensitive analyses
with fixed-point computations. It also defines a basic treakemechanism that has become
a useful tool in other parts of tidcL AB project. This framework also provides a means to
adapt to new language extensions. For simple extensicai&ws for very simple adapta-
tion. When more complex extensions are needed, it providesaway of performing that
extension, which avoid the need to re-implement or copy thieeeframework. To demon-
strate the process of creating language extensions, two@gasextensions are provided.
These extensions are nanm®dxtensionl andExExtension2 . They are available as part
of the McL AB project, and can be found in the directatiylab/Project/languages

109

Analysis Framework Extensibility

110

Chapter 7
Related Work

The McL AB Static Analysis Framework is an extensible framework feating static
analyses for the MTLAB language. This is the first open framework created for analyz
ing MATLAB. There have been other projects that provide such a frankefworother
languages. There have also been other projects that hal@med static analysis on
MATLAB, but with no focus on making the analysis system an open maséaol. In this
chapter, we will discuss some of the existing work that esddab the contributions of this
thesis.

7.1 Soot

Soot[VRHS 99 is an optimization framework for Java. This framework wasated as
an open research tool. LiKdcL AB, Soot provides different intermediate representations.
It also provides a framework for creating static analysext® an open source tool, and
more information can be found at the project home page

7.2 JastAdd

The JastAdd toolkit is designed for creating extensible miters. This toolkit was used in
the development oicL AB. One feature of JastAdd that was not discussed in greal detai

1http://www.sable.mcgill.ca/soot/

111

http://www.sable.mcgill.ca/soot/

Related Work

in this thesis is its attribute grammar system. JastAdaalia developer to define attributes
as part of their AST grammar. These attributes are effdgtivenctions operating on the
AST nodes. They can be used to propagate information thrthegtree and they can even
be defined in a circular fashion. The JastAdd system prowadised-point computation
for calculating the results of such circular attributes.

JastAdd’s attribute system provides a low level means diopming analysis on an
AST. It is up to the compiler writer to use these tools and tetthe semantics of the
language they are implementing into account, in order taterany meaningful analyses. It
isn’t a full dataflow analysis framework. However, some WolkHMEQ9] has been done
to implement flow analysis for Java using the JastAdd extémsiava compileEfHO74.

7.3 MATLAB Related Work

In the past, there has also been some work towards compilingtMs. There was the
Falcon projectRP99 DRG'95], which aimed to compile MTLAB code into FORTRAN.
Falcon focuses on type inference and code inlining to predtaRTRAN code.

The Magica tool)B0Z focuses on type inference for matrix operations and fomsti
It not only infers the intrinsic type of matrices, suchi@s2 , double , or char ; but also
matrix sizes and shapes. Magica is part of a largerMB compiler project, and is used
for performing code optimizations.

Another compiler project for MTLAB is MaJIC [AP0Z. MaJIC incorporates a Just-
In-Time(JIT) compiler component. This allows it to achiesgeedups similar to those
produced by Falcon, without sacrificing the interactiveunaof MATLAB .

There has also been some work towards source-to-soursédrarationspP99. These
transformations are intended to improve performance bypgekdvantage of more efficient
ways of writing MATLAB code. This is possible because there are certain languaiyede
that MATLAB performs more efficiently than others. For instance, usiogs$ in MATLAB
can result in fairly slow code. If the looping code can be r&em to take advantage of
MATLAB’S vector operations, it can greatly improve execution dpée fact, there is offi-

112

7.4. McL AB Related Work

cial documentatiohdescribing manual techniques for vectorizing code.

These projects differ from this thesis in that their mainlgeas to improve the per-
formance of MATLAB programs. McsAF, on the other hand, was created with the goal
of creating an open tool for researching compiler techrsgnescientific programming. In
fact the techniques used in these other projects could leareimplemented usingcsAF.

7.4 MclL AB Related Work

More recently, theVicL AB project has produced work related to optimizing and comgili
MATLAB code.McFOR [Li09] is a static back-end that produces®rRAN code.MCcFOR
uses type inference to produce efficieHTRAN code. It estimates array shapes and sizes
in order eliminate array reallocation and array bounds k$i@n order to reduce execution
overhead. Work on this portion @flcL AB is an ongoing project. The new work is being
based off of, and incorporatégcsAr and the work done towards this thesis.

McaiT [CBHV1(] takes a dynamic approach toAVILAB compilation. It incorporates
a virtual machine calledMcvm that acts as an interpreter. It uses profiling information
to determine when to initiate just-in-time compilation, evé it produces LLVMLat0Z]
machine codeMcJIT can take advantage of run-time information to produce stized
versions of compiled functionsMicvm and McJiT use the front-end portion d¥icL AB
in order to scan and parse inputtedAMAB. The analyses performed ycJiT were
implemented separately from work done in this thesis. Tiswork currently being done
to incorporate some of the contributions of this thesis imtowvm. The first step of this
effort is making the Kind Analysis information availablette VM.

2http://www.mathworks.com/support/tech— notes/1100/11 09.html

113

http://www.mathworks.com/support/tech-notes/1100/1109.html

Related Work

114

Chapter 8
Conclusions and Future Work

MATLAB is a popular language for scientific and numerical programygmDue to its
closed source and proprietary nature, there is a high oadrteeresearching compiler tech-
niques targeted towards MLAB and scientific languages. ThMcL AB project tries to
overcome this by developing open tools and frameworks aiat@dATLAB compiler re-
search. As part of this project, and the topic of this thaseshave developed thdcL AB
Static Analysis Framework. The analysis framework is desigto make it simple to de-
velop new analyses for MLAB programs. It was also designed to allow the framework
and existing analyses to be extended to new language feature

Developing this framework has required an investigatioMefTLAB semantics. This
investigation was necessary because there is no officiaifggaion for MATLAB ; the lan-
guage is defined by the latest implementation and a collectienformal documentation.

It has also involved the definition of a simplified intermedieepresentation for MrLAB,
calledMcLAST. McLAST is a restricted version d¥IcAST. This representation was nec-
essary to make creating analysis simpler. It accomplighisdy restricting the complexity
of expressions and statements, and exposing someaof M3 's semantics, making them
more explicit.

Having definedVIcCLAST, it was also necessary to implement a transformation to sim-
plify McAST into McLAST. We also developed a tool for verifying that a given AST
satisfieSMICLAST’s restrictions.

The framework itself is an intraprocedural static analysssnework. It allows for

115

Conclusions and Future Work

several different types of analyses to be written. Theskid®ca simple traversal based
analysis that can be used to implement context insensitiedyses. Fixed-point based
flow-sensitive analyses can also be written. These flowHsangnalyses can be either
forward or backward analyses.

Using this framework some example analyses were createdidition, some generally
useful analyses have also been created. In particular,ititieAhalysis was created and is
used in other parts d¥lcL AB project.

The contributions of this thesis provide important tools fisture research into com-
piler techniques targeting MrLAB and scientific programming. They will facilitate future
development of program analyses by providing simpler ancene@gposed semantics, by
providing a framework for simplifying the task of creatingch analyses, example analy-
ses that use this framework, and fundamental analysesdhatrovide basic information
to future analyses.

8.1 Future Work

McsAF is already being used icL AB in an integral way, but the developmentMEsAF
has opened up avenues for future work. The most obvious wadk is to continue using
McsAF to create new analyses. Either implementing standard seslysing the frame-
work, or by creating entirely new analyses related tatMAB and scientific programming.
It would also mean creating new language extensions anthganalyses for them.

Another excellent opportunity for future work is the deyateent of an interprocedural
component of the analysis framework. Some work has already Hone towards this goal.
This work includes the Handle Propagation Analysis, whiasereated as a step towards
creating an accurate call graph forAvLAB programs.

Finally, there is also the opportunity to create tools thiditease the burden of creating
new language extensions. Much of the code that needs to hemfor a language exten-
sion follows a very precise pattern. Tools could be creategeherate this code, allowing
the creator of an extension to focus on the design of the Hetuguage extension.

116

© 00 N o o M~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Appendix A
Full Reaching Definitions Analysis Code

package natlab.toolkits.analysis.test;

i mport
i mport
i mport
i mport

analysis. *;
ast. *;
java.util.Set;
java.util.HashSet;

public cl ass ReachingDefs

ext

pri

ends

AbstractSimpleStructuralForwardAnalysis<HashMapFlow Map<String,
Set<AssignStmt>>>

vat e Merger merger = new Merger<Set<ASTNode>>(){

publ i c Set<ASTNode> merge(Set<ASTNode> sl1, Set<ASTNode> s2)

{
Set<ASTNode> ms = new HashSet<ASTNode>(sl);
ms.addAll(s2);
return ms;

117

Full Reaching Definitions Analysis Code

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61

privat e HashMapFlowMap<String,Set<AssignStmt>> startMap;
privat e NameCollector nameCollector;

publ i ¢ ReachingDefs(ASTNode tree)
{
super (tree);
startMap = new HashMapFlowMap<String,Set<AssignStmt>>(merger);
nameCollector= new NamecCollector(tree);
namecCollector.analyze();
for(String var : nameCollector.getAllNames())
startMap.put(var, new HashSet<AssignStmt>());

public void merge(HashMapFlowMap<String,Set<AssignStmt>> inl,
HashMapFlowMap<String,Set<AssignStmt>> in2,
HashMapFlowMap<String,Set<AssignStmt>> out)

inl.union(merger, in2, out);

public void copy(HashMapFlowMap<String,Set<AssignStmt>> in,
HashMapFlowMap<String,Set<AssignStmt>> out)

if(in == out)

118

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

return;

out.clear();
for(String i : in.keySet())
out.put(i, new HashSet<AssignStmt>(in.get(i)));

publ i ¢ HashMapFlowMap<String,Set<AssignStmt>>
copy(HashMapFlowMap<String,Set<AssignStmt>> in)

{
HashMapFlowMap<String,Set<AssignStmt>> out =
new HashMapFlowMap<String,Set<AssignStmt>>();
copy(in, out);
return out;
}

publ i ¢ HashMapFlowMap<String,Set<AssignStmt>> newlnitialFlo

{
return copy(startMap);

public voi d caseAssignStmt(AssignStmt node)
{
inFlowSets.put(node, currentinSet);
currentOutSet = copy(currentinSet);
Set<String> defVars = nameCollector.getNames(node);

for(String n : defVars)
Set<AssignStmt> newDefSite = new HashSet<AssignStmt>();
newDefSite.add(node);
currentOutSet.put(n, newDefSite);

}

outFlowSets.put(node, currentOutSet);

119

w()

Full Reaching Definitions Analysis Code

99 public voi d caseStmt(Stmt node)

100 {

101 inFlowSets.put(node, currentinSet);
102 currentOutSet = currentinSet;

103 outFlowSets.put(node, currentOutSet);
104 }

105

106}

Listing A.1 ReachingDefs analysis code

120

© 00 N o o M~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Appendix B
Variable Use Collector Code

package natlab.toolkits.analysis.test;

i mport java.util. *

i mport ast. *;

i mport analysis. *;

i mport natlab.toolkits.analysis.varorfun. *

public class UseCollector
ext ends AbstractDepthFirstAnalysis<HashSetFlowSet<String>>

privat e VFPreorderAnalysis kindAnalysis;

privat e HashSetFlowSet<String> fullSet;
private bool ean inLHS = fal se;

publ i ¢ UseCollector(ASTNode tree)

{
super (tree);
fullSet = new HashSetFlowSet<String>();
kindAnalysis = new VFPreorderAnalysis(tree);

kindAnalysis.analyze();

121

Variable Use Collector Code

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

publ i ¢ HashSetFlowSet<String> newlnitialFlow()

{

return new HashSetFlowSet<String>();

publ i c Set<String> getAllUses()

{

return fullSet.getSet();

publ i ¢ Set<String> getUses(Stmt node)

{

HashSetFlowSet<String> set = flowSets.get(node);
if(set == null)

return new HashSet<String>();
el se

return set.getSet();

public void caseAssignStmt(AssignStmt node)

{

HashSetFlowSet<String> prevSet = currentSet;
inLHS = true;
currentSet = newlnitialFlow();

analyze(node.getLHS());

122

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

inLHS = fal se;
analyze(node.getRHS());

flowSets.put(node, currentSet);
fullSet.addAll(currentSet);

i f(prevSet != null)
prevSet.addAll(currentSet);
currentSet = prevSet;

public voi d caseStmt(AssignStmt node)

{

public voi d caseParameterizedExpr(ParameterizedExpr node)

{

HashSetFlowSet<String> prevSet = currentSet;

currentSet = newlnitialFlow();

caseASTNode(node);

flowSets.put(node, currentSet);
fullSet.addAll(currentSet);

i f(prevSet I= null)
prevSet.addAll(currentSet);
currentSet = prevSet;

analyzeAsNotLHS(node.getArgs());
analyze(node.getTarget());

123

Variable Use Collector Code

99 }

100

101 /INOT: More cases would be needed to make complete.

102

103 | *x

104 * Checks if the name is possible a variable, and not the target
105 *» of an assignment; if it is, adds it.

106 * [

107 public voi d caseNameExpr(NameExpr node)

108 {

109 i f(linLHS){

110 i f(maybeVar(node))

111 currentSet.add(node.getName().getiD());

112 }

113 }

114

115 | *x

116 * Helper method to analyze a given node, making sure it is
117 * treated like it isn't the target of an assignment. It saves an d
118 * restores the state of {@code inLHS}

119 * |

120 private voi d analyzeAsNotLHS(ASTNode node)

121 {

122 bool ean bakInLHS = inLHS;

123 inLHS = fal se;

124 analyze(node);

125 inLHS = bakInLHS;

126 }

127

128 | *x

129 * A helper method to abstract away the test to see if an name
130 * expression might be a variable.

131 * [

132 publ i c bool ean maybeVar(Expr expr)

133 {

134 i f(expr instanceof NameExpr){

135 NameExpr nameExpr = (NameExpr)expr;

124

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152 '}

i f (nameExpr.tmpVar)
return true;
el se{
Name name = nameExpr.getName();
i f (kindAnalysis.getFlowSets().containsKey(name)){
kindAnalysis.analyze();
}
VFDatum kind =
kindAnalysis.getFlowSets().get(name).contains(
nameExpr.getName().getID()
)i
return (kind'= null) && (kind.isVariable() || kind.isID());

return false;

Listing B.1 Variable use collector code

125

Variable Use Collector Code

126

© 00 N o o M~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Appendix C

Full Maybe Live Variable Analysis Code

package natlab.toolkits.analysis.test;

i mport analysis. *;

i mport natlab.toolkits.analysis.varorfun.

i mport ast. *;

i mport java.util.Set;
i mport java.util.HashSet;

public class MaybeLive
ext ends

AbstractSimpleStructuralBackwardAnalysis<HashSetFlo

127

wSet<String>>

Full Maybe Live Variable Analysis Code

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

pri vat e NameCollector nameCollector;
privat e UseCollector useCollector;

publ i ¢ MaybeLive(ASTNode tree)

{
super (tree);
namecCollector = new NameCollector(tree);
nameCollector.analyze();
useCollector = new UseCollector(tree);
useCollector.analyze();

}

public voi d merge(HashSetFlowSet<String> inl,
HashSetFlowSet<String> in2,
HashSetFlowSet<String> out)

inl.union(in2, out);

publ i c voi d copy(HashSetFlowSet<String> in,
HashSetFlowSet<String> out)

in.copy(out);

128

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
08

* method.

* [
publ i ¢ HashSetFlowSet<String> copy(HashSetFlowSet<String> in
{

return in.copy();

| **

* The initial flow is an empty set. Initially, no variables are
* live.

* [

publ i ¢ HashSetFlowSet<String> newlnitialFlow()

{

return new HashSetFlowSet<String>();

| *x
* Creates the in-flow for an assignment statement. It uses the
* {@link NameCollector} and {@link UseCollector} to find the
* variable names to remove and add, respectively. It associat
* the out and resulting in to the given node.
* |
public voi d caseAssignStmt(AssignStmt node)
{
outFlowSets.put(node, currentOutSet);
/[HashSetFlowSet<String> workinglnFlow = copy(currentO
Ih;
currentinSet = copy(currentOutSet);

Set<String> defVars = nameCollector.getNames(node);
Set<String> useVars = useCollector.getUses(node);

for(String def : defVars)
currentinSet.remove(def);

for(String use : useVars)
currentinSet.add(use);

129

es

utSet

Full Maybe Live Variable Analysis Code

99 inFlowSets.put(node, currentinSet);
100

101 }

102

103

104

105

106

107 public void caseStmt(Stmt node)

108 {

109 outFlowSets.put(node, currentOutSet);
110 HashSetFlowSet mylnSet = copy(currentOutSet);
111

112 caseAST(node);

113

114 Set<String> useVars = useCollector.getUses(node);
115

116 for(String use : useVars)

117 myInSet.add(use);

118

119 currentinSet = mylnSet;

120 inFlowSets.put(node, currentinSet);
121 }

122

123 '}

Listing C.1 MaybeLive analysis code

130

Bibliography

[APO2]

[CBHV10]

[DHR11]

[DRG'95]

[EHO74]

[EHO7b]

George Alnasi and David PaduaMaJIC: compiling MATLAB for speed
and responsivenestn PLDI '02: Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implemeniaierlin,
Germany, 2002, pages 294-303. ACM, New York, NY, USA.

Maxime Chevalier-Boisvert, Laurie Hendren, and Clagebfugge. Opti-
mizing MATLAB through just-in-time specialization. limternational Con-
ference on Compiler Constructiphlarch 2010, pages 46-65.

Jesse Doherty, Laurie Hendren, and Soroush Radpourd &nhalysis for
MATLAB. In OOPSLA 2011, pages 99-118.

L. Derose, L. De Rose, K. Gallivan, K. Gallivan, E. Gallopas, E. Gal-
lopoulos, B. Marsolf, B. Marsolf, D. Padua, and D. Padua. FALC@N
MATLAB interactive restructuring compiler. lhanguages and Compilers
for Parallel Computing 1995, pages 269-288. Springer-Verlag.

Torbprn Ekman and @rel Hedin. The JastAdd extensible Java compiler
In OOPSLA '07: Proceedings of the 22nd annual ACM SIGPLAN cenfer
ence on Object-oriented programming systems and apphicgtMontreal,
Quebec, Canada, 2007, pages 1-18. ACM, New York, NY, USA.

Torbprn Ekman and @rel Hedin.The JastAdd system - modular extensible
compiler constructionSci. Comput. Program69:14-26, December 2007.

131

http://doi.acm.org/10.1145/512529.512564
http://doi.acm.org/10.1145/1297105.1297029
http://portal.acm.org/citation.cfm?id=1321774.1321798

Bibliography

[JBO2] Pramod G. Joisha and Prithviraj Banerjee. Magica: Awsok tool for
inferring types in MATLAB. Technical report, Department deEtrical and
Computer Engineering, Northwestern University, Oct 2002.

[Lat02] Chris Lattner. LLVM: An Infrastructure for Multi-Sige Optimization.
Master’s thesis, Computer Science Dept., University ohdiis at Urbana-
Champaign, Urbana, IL, Dec 2003eehttp://llvm.cs.uiuc.edu

[Li09] Jun Li. McFOR: A MATLAB to FORTRAN 95 compiler. Master'thesis,
August 2009.
[Mata] Matlab. Official matlab documentation Home page

http://www.mathworks.com/help/techdoc/

[Matb] Matlab. The Language Of Technical Computing Home page
http://www.mathworks.com/products/matlab/

[MP99] Vijay Menon and Keshav Pingali. A case for sourceeldvansformations in
MATLAB. In In Proceedings of the Second Conference on Domain-Specific
Languages1999, pages 53-65.

[NNHMEQ9] Emma Nilsson-Nyman, &el Hedin, Eva Magnusson, and Taibj Ekman.
Declarative intraprocedural flow analysis of Java souragecoElectron.
Notes Theor. Comput. Sc238:155-171, October 2009.

[RP99] Luiz De Rose and David Padugechniques for the translation of MATLAB
programs into Fortran 9&ACM Trans. Program. Lang. Sys21(2):286—-323,
1999.

[TAH10] Anton Dubrau Toheed Aslam, Jesse Doherty and Laldeadren. Aspect-
matlab: An aspect-oriented scientific programming languagAOSD ’10:
Proceedings of the 9th international conference on Aspeefated software
developmentRennes and St. Malo, France, 2010, pages 181-192. ACM,
New York, NY, USA.

132

http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/help/techdoc/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://portal.acm.org/citation.cfm?id=1628315.1628373
http://doi.acm.org/10.1145/316686.316693

Bibliography

[VRHS'99] Raja Valee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam nEée
Gagnon, and Phong C&oot - a java optimization framewarkn Proceed-
ings of CASCON 1999999, pages 125-135.

133

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Outline

	Background
	The McLab Project
	The Matlab language

	Intermediate Representations
	Formalisms
	JastAdd Abstract Grammars
	Grammar Specifications

	Mcast
	Expressions
	Statements
	Program Structure
	Overview

	Mclast
	Expressions
	Multi-Assign Statements
	Conditional Expressions
	For Loops
	If Statements
	Assignment Statements
	Check Scalar Statement
	Validator

	Simplifications
	Organization and Execution
	Dependencies

	Simple Assignment
	 CSL Left Expansion
	Multi-Assignment Simplification
	Left-Hand Side simplification
	For Loop Simplification
	Simple If Statements
	Array Short-Circuit simplification
	Conditional Simplification
	Right-Hand Side Simplification
	Short-Circuit Expression simplification

	Full Simplification

	Intraprocedural Analysis Framework
	Basic Traversal Mechanism
	Analysis Types
	Flow-Data Representation
	Common Implementation
	Depth-first Analysis
	Structural Analysis
	Implemented Analyses

	Analysis Framework Extensibility
	Classification of Extensions
	How Extensions are Supported in Mcsaf
	Example Extension
	Other Issues

	Summary

	Related Work
	Soot
	JastAdd
	Matlab Related Work
	McLab Related Work

	Conclusions and Future Work
	Future Work

	Full Reaching Definitions Analysis Code
	Variable Use Collector Code
	Full Maybe Live Variable Analysis Code
	Bibliography

