
MCFOR: A MATLAB TO FORTRAN 95 COMPILER

by

Jun Li

School of Computer Science

McGill University, Montréal

Auguest 2009

a thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Copyright c© 2010 by Jun Li

Abstract

The high-level array programming language MATLAB is widely used for prototyp-

ing algorithms and applications of scientific computations. However, its dynamically-

typed nature, which means that MATLAB programs are usually executed via an

interpreter, leads to poor performance. An alternative approach would be converting

MATLAB programs to equivalent Fortran 95 programs. The resulting programs could

be compiled using existing high-performance Fortran compilers and thus could pro-

vide better performance. This thesis presents techniques that are developed for our

MATLAB-to-Fortran compiler, McFor, for extracting information from the high-level

semantics of MATLAB programs to produce efficient and reusable Fortran code.

The McFor compiler includes new type inference techniques for inferring intrinsic

type and shape of variables and uses a value-propagation analysis to precisely estimate

the sizes of arrays and to eliminate unnecessary array bounds checks and dynamic

reallocations. In addition to the techniques for reducing execution overhead, McFor

also aims to produce programmer-friendly Fortran code. By utilizing Fortran 95 fea-

tures, the compiler generates Fortran code that keeps the original program structure

and preserves the same function declarations.

We implemented the McFor system and experimented with a set of benchmarks

with different kinds of computations. The results show that the compiled Fortran

programs perform better than corresponding MATLAB executions, with speedups

ranging from 1.16 to 102, depending on the characteristics of the program.

i

ii

Résum é

Le langage de programmation de tableaux de haut niveau MATLAB est large-

ment utilisé afin de faire du prototypage d’algorithmes et des applications de calculs

scientifiques. Cependant, sa nature de type dynamique, ce qui veut dire que les pro-

grammes MATLAB sont habituellement exécutés par un interpréteur, amène une

mauvaise performance. Une approche alternative serait de convertir les programmes

MATLAB aux programmes Fortran 95 équivalents. Les programmes résultants pour-

raient être compilés en utilisant les compilateurs de haute performance Fortran, ainsi

ils peuvent fournir une meilleure performance. Cette thèse présente les techniques qui

sont développées pour notre compilateur MATLAB-à-Fortran, McFor, pour extraire

l’information des hauts niveaux des sémantiques des programmes MATLAB afin de

produire un code Fortran efficace et réutilisable.

Le compilateur McFor inclut de nouvelles techniques de déduction pour inférer

les types et formes intrinsèques des variables et utilise une analyse à propagation

de valeurs pour estimer avec précision la tailles des tableaux de variables et pour

éliminer les vérifications des limites et les réallocations dynamiques superflues de

ces tableaux. En plus de ces techniques de réduction des temps d’exécution, McFor

vise aussi a génèrer du code Fortran convivial pour les développeurs. En utilisant

les avantages de Fortran 95, le compilateur génère du code Fortran qui préserve la

structure originale du programme ainsi que les mêmes déclarations de fonctions.

Nous avons mis en oeuvre le système McFor et l’avons expérimenté avec un

ensemble de tests de performance avec différentes sortes de calculs. Les résultats

montrent que les programmes de Fortran compilés offrent une meilleure performance

que les exécutions MATLAB correspondantes, avec une cadence accélérée de l’ordre

iii

de 1.16 à 102, selon les caractéristiques du programme.

iv

Acknowledgements

I would like to thank my supervisor, Professor Laurie Hendren, for her continual

support, guidance, assistance, and encouragement throughout the research and the

writing of this thesis. This thesis would not have been possible without her support.

I would also like to thank my fellow students of McLab team and Sable research

group for their constructive discussions, valuable comments and suggestions that have

greatly improved this work. In particular, I would like to thank Anton Dubrau for

providing very useful comments on the compiler and extending its features, Alexandru

Ciobanu for implementing the aggregation transformation.

Finally, I am grateful to my parents and my wife for their love and support

throughout my study.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Listings xv

List of Listings xv

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Contributions . 2

1.2.1 Shape Inference . 2

1.2.2 Generate Readable and Reusable Code 3

1.2.3 Design and Implementation of the McFor Compiler 3

1.3 Organization of Thesis . 4

2 Related Work 5

2.1 The MATLAB Language . 5

vii

2.1.1 Language Syntax and Data Structure 5

2.1.2 MATLAB’s Type System . 6

2.1.3 The Structure of MATLAB programs 6

2.2 FALCON Project . 8

2.3 MATLAB Compilers . 10

2.4 Parallel MATLAB Compilers . 12

2.5 Vectorization of MATLAB . 12

2.6 Other MATLAB Projects . 13

2.7 Summary of McFor’s Approach . 14

3 Overview of the McFor Compiler 15

3.1 Structure of the Compiler . 16

3.1.1 MATLAB-to-Natlab Translator 16

3.1.2 Lexer and Parser . 16

3.1.3 Analyses and Transformations 18

3.1.4 Code Generator . 18

3.2 Preparation Phase . 19

3.2.1 Inlining Script M-files . 20

3.2.2 Distinguishing Function Calls from Variables 21

3.2.3 Simplification Transformation 23

3.2.4 Renaming Loop-Variables . 25

3.2.5 Building the Symbol Table . 26

4 Type Inference Mechanism 29

4.1 Type Inference Principles . 29

4.1.1 Intrinsic Type Inference . 29

4.1.2 Sources of Type Inference . 31

4.1.3 Shape Inference . 34

4.2 Type Inference Process . 35

4.2.1 Function Type Signature . 35

4.2.2 Whole-Program Type Inference 36

viii

4.2.3 The Type Inference Algorithm 37

4.3 Intermediate Representation and Type Conflict Functions 38

4.3.1 Disadvantages of SSA Form in Type Inference 39

4.3.2 Type Conflict Functions . 40

4.4 Solving Type Differences . 41

4.4.1 Merging Intrinsic Types . 42

4.4.2 Solving Differences Between Shapes 43

4.5 Type Inference on Type Conflict Functions 45

4.5.1 Type Inference on Apha-functions 46

4.5.2 Type Inference on Beta-functions 46

4.5.3 Type Inference on Lambda-functions 48

4.6 Value Propagation Analysis . 48

4.6.1 Calculate a Variable’s Value 49

4.6.2 Compare Values . 50

4.6.3 Additional Rule for Array Bounds Checking 50

4.7 Determine the Shape at Runtime . 52

4.7.1 Determine the Shape at Runtime 52

4.7.2 Checking Array Bounds and Resizing Array at Runtime . . . 55

4.8 Other Analyses in the Type Inference Process 55

4.8.1 Discover Identifiers That are not Variables 57

4.8.2 Discover the Basic Imaginary Unit of Complex Numbers . . . 57

5 Transformations 59

5.1 Transformations for Array Constructions 59

5.2 Transformations for Linear Indexing 61

5.3 Transformations for Using Arrays as Indices 63

5.4 Transformations for Type Conversions 65

5.4.1 Logical and Character Type in Computations 65

5.4.2 Fortran’s Limited Type Conversions 66

5.5 Aggregation Transformation . 68

ix

6 Performance Evaluation 71

6.1 Description of the Benchmarks . 71

6.2 Performance Results . 73

6.3 Comparison of Compiled Fortran Code to MATLAB 74

6.4 Comparison of Dynamic Reallocation in Fortran and MATLAB . . . 79

6.4.1 Dynamic Reallocation Tests 79

6.4.2 Different Reallocation Strategies Tests 81

6.4.3 Overhead of Passing Dynamically Allocatable Arrays 83

6.5 Summary of Fortran 95 vs. MATLAB 84

6.6 Comparison of Compiled Fortran Code to Octave 84

6.7 Comparison of Compiled Fortran Code to McVM 85

7 Conclusions and Future Work 87

7.1 Conclusions . 87

7.2 Future Work . 88

Appendices

A Supported MATLAB Features 91

Bibliography 93

x

List of Figures

3.1 McFor Compiler Structure with Analyses and Transformations 17

4.1 The Intrinsic Type Lattice.(similar to the lattice used in [JB01]) . . . 30

6.1 Speedup of McFor over MATLAB . 76

6.2 Speedup of McFor over MATLAB on different reallocation sizes (1) . 80

6.3 Speedup of McFor over MATLAB on different reallocation sizes (2) . 80

6.4 Speedup of McFor over MATLAB on different reallocation sizes (3) . 81

6.5 Number of reallocations of different expanding factor 82

6.6 Speedup over MATLAB on different expanding factor 82

xi

xii

List of Tables

3.1 Computing mean of a matrix by script and function 20

3.2 Variables are determined at runtime 23

3.3 Simplify long expression . 26

3.4 Loop variable changes are kept inside the iteration 26

4.1 The result of type functions for operator “+”. 32

4.2 The result of type functions for operators “^”, “.^”. 32

4.3 The result of type functions for operator “:”. 32

4.4 Three ways to dynamically change a variable’s shape 34

4.5 Type conflict function example . 41

4.6 Type inference example. 42

4.7 Converting array concatenation. 44

4.8 A code segment with alpha-function 46

4.9 A code segment with lambda-function 47

4.10 Value-propagation analysis example 1. 51

4.11 Value-propagation analysis example 2 52

5.1 MATLAB array construction and concatenation expressions 60

5.2 Example of using a logical array as an index 65

5.3 Example of using an integer array as an index 66

5.4 Converting logical and character type variables 67

5.5 Type conversion example 2 . 68

6.1 Benchmarks’ execution times (in seconds). 75

6.2 Speedup over MATLAB execution . 75

xiii

xiv

List of Listings

2.1 Example of a MATLAB function . 7

2.2 Example of a MATLAB script . 8

4.1 Example of unpredictable array shape 53

4.2 Fortran code for handling array shape at runtime 54

4.3 MATLAB code segment for array bounds checking and resizing . . . 55

4.4 Fortran code segment for array bounds checking and resizing 56

4.5 The meaning of i, j depends on context 58

5.1 MATLAB code segment of linear indexing 62

5.2 Transformed code segment of linear indexing 62

5.3 Example of using arrays as indices . 64

5.4 Transformed code segment of using arrays as indices 64

5.5 Example of the Aggregation transformation 69

6.1 Passing array with or without its size. 84

xv

xvi

Chapter 1

Introduction

1.1 Introduction

MATLAB R©1 is a popular scientific computing system and array programming lan-

guage. The MATLAB language offers high-level matrix operators and an extensive

set of built-in functions that enable developers to perform complex mathematical

computations from relatively simple instructions. Because of the interpreted nature

of the language and the easy-to-use interactive development environment, MATLAB

is widely used by scientists of many domains for prototyping algorithms and applica-

tions.

The MATLAB language is weakly typed; it does not have explicit type declara-

tions. A variable’s type is implicit from the semantics of its operations and the type

is allowed to dynamically change at runtime. These features raise the language’s level

of abstraction and improve ease of use, but add heavy overheads, such as runtime

type and shape checking, array bounds checking and dynamic resizing, to its inter-

pretive execution. Therefore, MATLAB programs often run much slower than their

counterparts that are written in conventional program languages, such as Fortran.

Fortran programs have other advantages over MATLAB programs. They can be

well integrated with most of the linear algebra libraries, such as BLAS and LAPACK

1MATLAB is a registered trademark of the MathWorks, Inc.

1

Introduction

[ABB+99], which are written in Fortran and used by MATLAB for performing matrix

computations. There are many Fortran parallel compilers that can further optimize

Fortran programs to improve their performance in parallel environments.

Our MATLAB-to-Fortran 95 compiler, McFor, is designed to improve the perfor-

mance of programs and produce readable code for further improvement.

In our McFor compiler, we applied and extended type inference techniques that

were developed in the FALCON [RP99, RP96] and MaJIC [AP02] projects. We used

intrinsic type inference based on the type hierarchy to infer the intrinsic type of all

variables [JB01]. We developed a value propagation analysis associated with our

shape inference to estimate the sizes of the array variables and precisely discover the

statements that need array bounds checks and dynamic reallocations.

We also created several special transformations to support features specific to

MATLAB, such as array concatenations, linear indexing and using arrays as indices.

We utilized the Fortran 95 enhanced features of allocatable arrays to construct the

Fortran code, which preserves the same program structure and function declarations

as in the original MATLAB program.

1.2 Thesis Contributions

In creating the McFor compiler, we have explored the language differences and perfor-

mance differences between MATLAB (version 7.6) and Fortran 95. We have designed

our new approach around two key features: precisely inferring the array shape; and

generating readable and reusable code.

We have built upon ideas from previous projects, such as FALCON and MaJIC.

These previous systems are described in Chapter 2.

1.2.1 Shape Inference

In the executions of compiled Fortran programs, array bounds checking and dynamic

reallocations cause most runtime overheads. In order to generate efficient Fortran

code, our shape inference mechanism aims to infer the array shape as precisely as

2

1.2. Thesis Contributions

possible and eliminate unnecessary array bounds checks.

Our shape inference considers all the cases, where the array shape can be dy-

namically changed (described in Section 4.1.3). We first use a special transformation

to handle the cases where the array shape is changed by array concatenation opera-

tions (described in Section 4.4.2). Then we used a simple value propagation analysis

(described in Section 4.6) to estimate the maximum size of the array, and precisely

discover the array accesses that require array bounds checking and array resizing. As

a result, among all twelve benchmarks, only four benchmarks require array bounds

checking, and only one of them requires dynamic reallocations.

1.2.2 Generate Readable and Reusable Code

We focus on two things to make the code to be more readable and reusable: pre-

serving program structure and keeping the original statements, variable names, and

comments.

In order to preserve the program structure, we translated each user-defined func-

tion into a subroutine, and each subroutine has the same list of parameters as the

original function.

We keep the comments in the programs during the lexing and parsing, and restore

them in the generated Fortran code. We preserve the code structure by translating

MATLAB statements to their closest Fortran statements. We create our own in-

termediate representation instead of using SSA form to avoid the variable renaming

process when converting program to SSA form. We also developed the aggregation

transformation (described in Section 5.5) to remove temporary variables created by

the type inference process and to restore the original statements.

1.2.3 Design and Implementation of the McFor Compiler

The McFor compiler is a part of McLab project2, developed by the Sable research

group3 at McGill University. The design and implementation of the compiler is an

2http://www.sable.mcgill.ca/mclab
3http://www.sable.mcgill.ca

3

Introduction

important contribution of this thesis. The McFor compiler uses McLab’s front end,

which includes the MATLAB-to-Natlab translator, the Natlab Lexer which is specified

by using MetaLexer [Cas09], and the Natlab Parser which is generated by using

JastAdd [EH07].

McFor uses an intermediate representation that consists of the AST and type con-

flict functions (described in Section 4.3), which are acquired from a structure-based

flow analysis. The McFor compiler inlines the script M-files, and performs interproce-

dural type inference on the program. The type inference process is an iterative process

that infers the types and shapes of all variables until reaching a fixed point. The Mc-

For compiler also uses a value propagation analysis to precisely estimate the sizes of

arrays and eliminate unnecessary array bounds checks and dynamic reallocations.

McFor transforms the code that implements MATLAB special features into their

equivalent forms, and generates Fortran 95 code using the type information stored in

the symbol table.

1.3 Organization of Thesis

This thesis describes the main techniques developed for the compilation of MATLAB

programs. The rest of the thesis is organized as follows. Chapter 2 presents back-

ground information on the MATLAB language and discusses some related works in

the area of compilation of MATLAB. Chapter 3 presents the structure of the compiler

and the overall strategy of each phase of the compiler. Chapter 4 discusses the type

inference mechanism, including the intermediate representation, value propagation

analysis, and runtime array shape checking and reallocation. Chapter 5 describes

transformations used for supporting special MATLAB features, such as array con-

structions, linear indexing and using arrays as indices. Chapter 6 reports experimen-

tal results on the performance of our compiler on a set of benchmarks. Chapter 7

summarizes the thesis and suggests possible directions for future research. Finally,

Appendix A provides a list of MATLAB features supported by this compiler.

4

Chapter 2

Related Work

There have been many attempts for improving the performance of MATLAB pro-

grams. The approaches include source-level transformations [MP99, BLA07], trans-

lating MATLAB to C++ [Ltd99], C [MHK+00, HNK+00, Joi03a, Inc08], and Fortran

[RP99, RP96], Just-In-Time compilation [AP02], and parallel MATLAB compilers

[QMSZ98, RHB96, MT97]. In this chapter, we discuss some of those approaches.

At the first, we begin with a brief overview of the MATLAB language, and discuss

its language features, type system, and program structure with code examples.

2.1 The MATLAB Language

The MATLAB language is a high level matrix-based programming language. It was

originally created in 1970s for easily accessing matrix computation libraries written

in Fortran. After years of evolving, MATLAT has achieved immense popularity and

acceptance throughout the engineering and scientific community.

2.1.1 Language Syntax and Data Structure

The MATLAB language has the similar data types, operators, flow control state-

ments as conventional programming languages Fotran and C. In MATLAB, the most

5

Related Work

commonly used data types are logical, char, single, double; but MATLAB also sup-

ports a range of signed and unsigned intergers, from int8/uint8 to int64/uint64. In

addition to basic operators, MATLAB has a set of arithmetic operators dedicated to

matrix computations, such as the element-wise matrix multiplication operator “.*”,

the matrix transpose operator “’”, and the matrix left division operator “\”.

MATLAB has a matrix view of data. The most basic data structure in MATLAB

is the matrix, a two-dimensional array. Even a scalar variable is a 1-by-1 matrix.

Column vectors and row vectors are viewed as n-by-1 and 1-by-n matrices respectively;

and strings are matrices of characters. Arrays that have more than two dimensions

are also supported in MATLAB as well.

MATLAB supports Fortran’s array syntax and semantics, and also provides more

convenient operations, including array concatenation, linear indexing, and using ar-

rays as indices.

Besides arrays, MATLAB provides other two container data structures, structures

and cell arrays, which are used for storing elements with different types. Elements in

structures and cell arrays can be accessed by field names and indices respectively.

2.1.2 MATLAB’s Type System

MATLAB is a dynamically-typed language; it lacks explicit type declarations. A

variable’s data type, including its intrinsic type and array shape, is according to the

value assigned to it, and is allowed to dynamically change at execution time.

In MATLAB, operators can take operands with any data type. Each operator has

a set of implicit data type conversion rules for handling different types of operands that

participate the operations and determine the result’s type. Thus, in an assignment

statement, the left-hand side variable’s data type is implicit from the semantics of

the right-hand side expression.

2.1.3 The Structure of MATLAB programs

A MATLAB program can consist of two kinds of files, function M-files and script

M-files. A function M-file is a user-defined function that contains a sequence of

6

2.1. The MATLAB Language

MATLAB statements and starts with a function declaration. Listing 2.1 shows an

example of a function M-file “adapt.m”, which is taken from benchmark adpt. It

defines the function adapt that takes four arguments and returns three values.

1 function [SRmat, quad, err] = adapt(a, b, sz_guess, tol)

2 %---

3 % This function M-file finds the adaptive quadrature using

4 % Simpson’s rule.

5 %---

6 SRmat = zeros(sz_guess, 6);

7 SRvec = [a b S S tol tol];

8 SRmat(1, 1:6) = SRvec;

9 state = iterating;

10 m = 1;

11 while (state == iterating),

12 m = 1;

13 for l = n:-1:1,

14 p = l;

15 SR0vec = SRmat(p, :);

16 err = SR0vec(5);

17 tol = SR0vec(6);

18

19 if (err < tol),

20 SRmat(p, :) = SR0vec;

21 SRmat(p, 4) = SR1vec(3)+SR2vec(3);

22 SRmat(p, 5) = err;

23 else

24 SRmat(p+1:m+1, :) = SRmat(p:m, :);

25 m = m+1;

26 SRmat(p, :) = SR1vec;

27 SRmat(p+1, :) = SR2vec;

28 state = iterating;

29 end;

30 end;

31 end;

Listing 2.1 Example of a MATLAB function

7

Related Work

1 a = -1;

2 b = 6;

3 sz_guess = 1;

4 tol = 4e-13;

5 for i = 1:10

6 [SRmat, quad, err] = adapt(a, b, sz_guess, tol);

7 end

Listing 2.2 Example of a MATLAB script

The MATLAB language is not only a programming language, but a command

script language used in the MATLAB computing environment. The files containing

a sequence of MATLAB command scripts are called script M-files; they are also used

as modules of MATLAB programs and can be invoked by their filenames. Listing 2.2

shows an example of the script M-file “drv adpt.m”. It initializes four variables and

calls the function adapt defined in “adapt.m” (shown in Listing 2.1), and uses three

variables, SRmat, quad, and err to receive the function’s return values.

2.2 FALCON Project

FALCON [RP99, RP96] is a MATLAB-to-Fortran 90 translator. FALCON applies

type inference algorithms developed for the array programming language APL [WS81,

Bud83, Chi86] and set language SETL [Sch75], and extended the SSA-based symbolic

analysis for analyzing array accesses in Fortran [TP95]. In our McFor compiler, we use

similar principles for type inference but implement them on a different intermediate

representation. In the following, we discuss the major differences between these two

compilers.

Intermediate Representation FALCON uses a static single-assignment (SSA) rep-

resentation as its intermediate representation, and all the inference algorithms

are applied to it. McFor does not use SSA form because SSA form is not suitable

for representing indexed array computations, is inefficient for type inference, and

reduces the program’s readability (described in Section 4.3.1). Instead, McFor

8

2.2. FALCON Project

uses an IR that consists of the abstract syntax tree (AST) and type conflict

functions (described in Section 4.3).

In McFor’s approach, a type conflict functions represents multiple definitions

of a variable that reach a control flow joint point; it thus explicitly captures

potential type changes on this variable. This approach also avoids unnecessary

renaming and generating temporary variables, hence reduces the effort to trace

those variables and rename back to their original names.

Inlining M-files FALCON inlines all script M-files and user-defined functions into

one big function, which may contain multiple copies of the same code segments.

McFor only inlines script M-files, and compiles each user-defined function into

a separate Fortran subroutine.

FALCON’s approach simplifies the type inference process because it only

processes one function; and avoids the complexity of using Fortran to simulate

passing dynamically allocated arrays between functions. But this approach de-

stroys the program structure, hence makes the generated code less readable and

reusable. Furthermore, inlining user-defined functions requires an extra renam-

ing process, thus it adds more differences to the inlined code and further reduces

its readability. Because MATLAB uses pass-by-value convention when passing

arguments to a function, the changes made on input parameters are hidden

inside the function and only output parameters are visible to the caller. There-

fore, extra analysis and renaming processes are needed when inlining function

M-files.

McFor, on the other hand, keeps the user-defined functions and performs

inter-procedural type inference on the program. It creates a database to store

type inference results of all functions along with their function type signatures

extracted from calling contexts.

Code Generation Since FALCON inlines all the user-defined functions, the Fortran

code generated by FALCON has only one program body without any functions

and subroutines.

9

Related Work

On the contrary, Fortran code generated by McFor has the same program

structure as the original MATLAB program. McFor translates the user-defined

functions of the MATLAB program into subroutines and preserve the same

declarations as the original MATLAB functions. Therefore, the generated For-

tran code is much closer to the original MATLAB program, thus has better

readability and reusability.

Because there is no publicly-available version of the FALCON compiler, so we are

not able to compare our results with it.

2.3 MATLAB Compilers

MathWorks distributes a commercial compiler, the most recent version called MAT-

LAB Compiler R©1 [Inc08]. Its previous versions are usually referenced as MCC. This

version of MATLAB Compiler generates executable applications and shared libraries,

and uses a runtime engine, called the MATLAB Compiler Runtime (MCR), to per-

form all the computations. Our testing results show that the executable files that are

generated by this compiler run slower than the interpreted execution of their original

MATLAB programs. From our experiences, we think that the MCR actually is an

instance of MATLAB interpreter that can be activated by the executable file and run

in the background, and the executable file just hands over the MATLAB code to it

and receives the outputs from it. Therefore, we exclude this compiler from the testing

environments for our performance evaluations, and use the ordinary MATLAB exe-

cution engine. We were not able to find any published literature about the MATLB

execution engine, but we assume it is based on an interpreter, perhaps with some

Just-In-Time (JIT) compilations.

MATCOM [Ltd99] is another commercial MATLAB compiler, distributed by

MathTools. MATCOM translates MATLAB code into C++ code and builds a com-

prehensive C++ mathematical library for matrix computations. It generates either

standalone C++ applications or dynamically loadable object files (MEX files) that

1MATLAB Compiler is a registered trademark of the MathWorks, Inc.

10

2.3. MATLAB Compilers

are used as external functions from the MATLAB interpreter. It incorporates with

other integrated development environment (IDE), such as Visual C++, for editing

and debugging, and uses gnuplot to draw 2D/3D graphics. It appears this product is

no longer sold and supported.

MaJIC [AP02], a MATLAB Just-In-Time compiler, is patterned after FALCON.

Its type inference engine uses the same techniques introduced by FALCON but is a

simpler version in order to meet runtime speed requirements. It also performs specula-

tive ahead-of-time compilation on user-defined functions before their calling contexts

are available. It creates a code repository to store parsed/compiled code for each

M-file and monitors the source files to deal with file changes asynchronously. Each

compiled code is associated with a type signature used to match a given invocation.

MaJIC’s code generator uses the same data structure and code generation strategy

as MATLAB compiler MCC version 2. The generated C code calls the MATLAB

C libraries to perform all the computations and runtime type checking. In its JIT,

MaJIC uses vcode [Eng96] as its JIT code emitter.

MENHIR [MHK+00] is a retargetable MATLAB compiler. It generates C or

Fortran code based on the target system description (MTSD), which describes the

target system’s properties and implementation details such as how to implement the

matrix data structures and built-in functions. MTSD allows MENHIR compiler to

generate efficient code that exploits optimized sequential and parallel libraries. This is

mostly a research effort focusing on retargetablility and there is no publicly available

version.

The MATCH [HNK+00] compiler, developed at Northwestern University, is a li-

brary based compiler targeting heterogeneous platform consisting of field-programmable

gate arrays (FPGAs) and digital signal processors (DSPs). The MATCH compiler

parallelizes the MATLAB program based on the directives provided by the user, and

compiles the MATLAB code into C code with calls to different runtime libraries.

MAGICA [JB02] is a type inference engine developed by Joisha and Banerjee

of Northwestern University. It is written in Mathematica2, and is designed as an

add-on module used by MAT2C compiler [Joi03a] for determining the intrinsic type

2Mathematica is a trade mark of Wolfram Research Inc.

11

Related Work

and array shapes of expressions in a MATLAB program. Its approach is based on

the theory of lattices for inferring the intrinsic types [JB01]. MAGICA uses special

expressions called shape-tuple expressions to represent the shape semantics of each

MATLAB operator and symbolically evaluate shape computations at compile time

[JB03, Joi03b].

2.4 Parallel MATLAB Compilers

The Otter [QMSZ98] compiler, developed by Quinn et al. of Oregon State University,

translates MATLAB scripts to C programs with calls to the standard MPI message-

passing library. The compiler detects data parallelism inherent in vector and matrix

operations and generates codes that are suitable for executing on parallel computers.

Ramaswamy et al. [RHB96] developed a compiler for converting a MATLAB

programs into a parallel program based on ScaLAPACK [CDD+95] parallel library

to exploit both task and data parallelism.

The MultiMATLAB [MT97] project extends the MATLAB to distributed memory

multiprocessors computing environment by adding parallel extensions to the program

and providing message passing routines between multiple MATLAB processes.

The McFor compiler does not target parallelization.

2.5 Vectorization of MATLAB

Vectorization is an alternative to compilation. Vectorization uses the same idea as

loop parallelization: if many loop iterations can be done independently, a vector of

the operands can be supplied to a vector operation instead [BLA07].

Menon and Pingali of Cornell University [QMSZ98] observed that translating loop-

based numerical codes into matrix operations can eliminate the interpretive over-

head leading to performance similar to compiled code. They built a mathematical

framework to detect element-wise matrix computations and matrix productions in

loop-based code and replace them by equivalent high-level matrix operations. Their

results showed significant performance gains even when the code is interpreted.

12

2.6. Other MATLAB Projects

Birkbeck et al. [BLA07] proposed a dimension abstraction approach with ex-

tensible loop pattern database for vectorizing MATLAB programs. They used an

extension of data dependence analysis algorithm for correctly vectorizing accumula-

tor variables designed by Allen and Kennedy [AK87, AK02]. Van Beuskum [vB05]

created his vectorizer for Octave [Eat02] using a different algorithm, which vectorizes

for-loops from innermost loop.

2.6 Other MATLAB Projects

Octave [Eat02] is a free MATLAB compatible numeric computing system. The Oc-

tave language is mostly compatible with MATLAB, and extends with new features

used by modern programming languages. Octave is written in C++ and uses C++

polymorphism for handling type checking and type dispatching. Its underlying nu-

merical libraries are C++ classes that wrap the routines of BLAS (Basic Linear Alge-

bra Subprograms), LAPACK (Linear Algebra Package) [ABB+99] and other Fortran

packages. Octave uses gunplot for plotting the results. Since Octave is publicly

available, we have compared the performance between McFor and Octave on a set of

benchmarks.

Scilab [INR09] is another fully developed numeric computing environment, dis-

tributed as open source software by INRIA. However, Scilab language’s syntax is not

compatible with MATLAB. Scilab uses ATLAS as underlying numerical library and

uses its own graphic drawing program.

After compiling the MATLAB to low-level language, the implementation of high-

level operations becomes a dominant factor to the overall performance. McFarlin

and Chauhan [MC07] of Indiana University developed an algorithm to select func-

tions from a target library by utilizing the semantics of the operations as well as the

platform-specific performance characteristics of the library. They applied the algo-

rithm on Octave and tested several BLAS routines. Their results showed significant

performance gains but also indicated that it is insufficient to select library routines

purely based on their abstract properties and many other factors also needs to be

considered.

13

Related Work

2.7 Summary of McFor’s Approach

McFor compiler extends FALCON’s approach of translating MATLAB to Fortran 95

code to gain performance improvement. McFor focuses on precisely inferring the array

shape to reduce runtime overhead of array reallocations and array bounds checking,

and generating readable and reusable code for further improvement. Because Fortran

95 has the closest syntax and semantics of MATLAB, the McFor compiler breaks new

ground and is able to produce both efficient and programmer friendly code.

14

Chapter 3

Overview of the McFor Compiler

The main challenge of the MATLAB-to-FORTRAN compiler is to perform in-

ference on the input programs to determine each variable’s type, shape, and value

range, and transform them into compatible forms for easily and effectively generating

FORTRAN code.

Our McFor compiler is built around following requirements:

1. The McFor compiler should support a subset of MATLAB features that are

commonly used for scientific computations: including all the program control

statements, operators, array indexing (linear indexing, index using logical array

or integer array), array constructions and concatenations. A detailed list of

supported features is provided in Appendix A.

2. The McFor compiler is designed to be used for translating existing MATLAB

programs into Fortran code, so it assumes that the input MATLAB programs

are syntactically and semantically correct. It also assumes that all user-defined

functions are included in the input source file list. Based on those assumptions,

the compiler can apply aggressive type inference rules to obtain better inference

results, thus can generate more effective Fortran code.

In the following sections, we discuss each phase of the McFor compiler (Section

3.1) and the preparation process for the type inference (Section 3.2).

15

Overview of the McFor Compiler

3.1 Structure of the Compiler

The McFor compiler is a part of the McLab project1 and is being developed by mem-

bers of the Sable research group2. McLab is a framework for creating language exten-

sions to scientific languages (such as MATLAB) and building optimizing compilers for

them. McFor is constructed in a conventional way with a series of different phases, as

shown in Figure 3.1. The contributions of this thesis are predominately in the “Anal-

yses and Transformations” and “Code Generator” phases. This section discusses the

main issues and the overall strategy adopted for each phase of the compiler.

3.1.1 MATLAB-to-Natlab Translator

Because the MATLAB language is used for command scripts and as a programming

language at the same time, the syntax of MATLAB is quite convoluted. Since in

command script syntax, the character space is always used as a delimiter, MATLAB

syntax is thus sensitive to spaces; however, in programming language syntax, spaces

are ignored in most cases. As a result, some MATLAB language features cannot

be handled by normal lexing and parsing techniques. Therefore, the McLab team

defined a functionally equivalent subset of MATLAB, called Natlab, which eliminates

most ambiguous MATLAB syntax. The MATLAB-to-Natlab translator is designed

for translating MATLAB programs from MATLAB syntax to Natlab syntax.

3.1.2 Lexer and Parser

The Natlab lexer is specified by using MetaLexer [Cas09], an extensible modular lex-

ical specification language developed by Andrew Casey of McLab team. The Natlab

parser is generated by using JastAdd [EH07], an extensible attribute grammar frame-

work developed by Ekman et al.. McFor uses the same lexer and parser to obtain the

abstract syntax tree (AST) of the input program, then extends the AST with type

inference functions and performs type inference and transformations on it.

1http://www.sable.mcgill.ca/mclab
2http://www.sable.mcgill.ca

16

3.1. Structure of the Compiler

Figure 3.1 McFor Compiler Structure with Analyses and Transformations

17

Overview of the McFor Compiler

3.1.3 Analyses and Transformations

The compiler performs type inference and transformations in this phase. It consists

of two sub-phases: the preparation phase (described in Section 3.2) and the type

inference process (described in Section 4.2).

In the preparation phase, the compiler first inlines the script M-files, then performs

the simplification transformation for breaking down complex expressions to reduce

the complexity of type inference. The compiler then performs structure-based flow

analysis to build symbol tables and create type conflict functions, which are used

for explicitly capturing potential type changes. While building the symbol tables,

the compiler renames variables that are treated as different variables in case-sensitive

MATLAB but as the same variable in case-insensitive Fortran.

The second phase is the type inference process, which is an iterative process that

infers types of all variables until reaching a fixed point, where variables’ types will

not be changed any more. It is an interprocedural type inference: when reaching a

function call, the compiler analyzes the called user-defined function, infers the types

in the callee function, and returns back with the inference result. The compiler builds

a database to store inference results for all inferred user-defined functions along with

their function type signatures extracted from calling contexts. The compiler also

transforms codes with special MATLAB features into their functional equivalent forms

to ease the effort of code generation.

3.1.4 Code Generator

In this final phase, the compiler traverses the AST in lexicographic order, and gener-

ates Fortran code using the type information stored in the symbol table.

After a set of transformations, most of MATLAB code can be straightforwardly

translated into Fortran code. In addition, the Code Generator generates extra variable

declarations directly from the declaration nodes created during the type inference

process. It also generates extra statements to gather command line arguments passing

into the program. For user-defined functions, each of them will be translated into a

Fortran subroutine, which is able to return multiple values as MATLAB function does.

18

3.2. Preparation Phase

Each Fortran subroutine has the same list of parameters as the original user-defined

function.

Because MATLAB uses pass-by-value calling conversion and Fortran uses pass-

by-reference conversion, the user-defined functions need special treatments. For each

parameter that appears in the LHS of any assignments inside the function, the Code

Generator creates an extra local variable to substitute the parameter, and adds an as-

signment statement to copy the value from the new parameter to the original variable.

Therefore, the original parameter becomes a local variable, thus any modifications on

this local copy will not be visible to the caller.

For dynamically-allocated array variables, the compiler also needs to add alloca-

tion and deallocation statements in the proper places. Allocatable arrays are those

variables that need to be dynamically allocated at runtime. In the Fortran code,

the function or subroutine that first uses an allocatable array variable will declare the

variable and deallocate it at the end of the function or subroutine. Every user-defined

subroutine that use an allocatable parameter can allocate or reallocate the variable

freely, but never deallocated it.

The Code Generator is also in charge of choosing proper Fortran implementations

for high-level operators based on the types of the operands. For example, the For-

tran built-in routine MATMUL() employs the conventional O(N3) method of matrix

multiplication, so it performs poorly for larger size matrices. Therefore, the Code

Generator will translate the MATLAB matrix multiplication operator into MAT-

MUL() routine only when the operands’ sizes are smaller than 200-by-200; otherwise,

it will translate the multiplication operator into dgemm() routine of BLAS library,

which has been optimized for computing large size matrices.

3.2 Preparation Phase

MATLAB has relatively simple syntax, higher-level operators and functions, and no

variable declarations; those features make MATLAB very easy to program. But be-

hind the simple syntax is much complex semantics that relies on the actual types

of the operands and variables. In order to reduce the complexity of type inference

19

Overview of the McFor Compiler

and preserve the special behaviors of some MATLAB features, the McFor compiler

goes through a preparation phase before starting the actual type inference. The

preparation phase includes the following parts: inlining script M-files, simplification,

renaming loop variables, building the symbol tables and renaming duplicated vari-

ables.

3.2.1 Inlining Script M-files

A MATLAB program consists of a list of files, called M-files, which include sequences

of MATLAB commands and statements. There are two types of M-files: script and

function M-files. A function M-file is a user-defined function that accepts input

arguments and returns result values. It has a function declaration that defines the

input and output parameters, and variables used inside the function are local to this

function (e.g., Table 3.1 (b)). A script M-file (e.g., Table 3.1 (a)) does not have

function declaration; it does not accept input arguments nor returns results. Calling

a script is just like calling a function where the script filename is used as the function

name. In contrast to the function M-files, variables used inside a script M-file are

associated with the scope of the caller. Table 3.1 shows the difference between them.

Table 3.1(a) shows a script M-file for computing the mean of each row of a two

dimensional matrix A. After executing the script, variables in this script, m, n, i,

and R, will be added into the caller’s scope. Table 3.1(b) shows a function M-file

using same code plus a function declaration. In this case, only the value of output

parameter R will be return to the caller, other variables are invisible to the caller.

1 function R=rowmean(A)

2 [m,n] = size(A) [m,n] = size(A)

3 for i=1:m for i=1:m

4 R(i) = sum(A(i,:))/n R(i) = sum(A(i,:))/n

5 end end

(a) script (b) function

Table 3.1 Computing mean of a matrix by script and function

20

3.2. Preparation Phase

Functions and scripts are just two different ways of packaging MATLAB code.

They are used equally in MATLAB; they can call each other at any time. MATLAB

uses the same syntax for calling functions and script M-files.

A MATLAB program can consist of both script and function M-files. In order to

preserve the script M-files behavior, our McFor compiler handles the script M-files

using the following two rules:

1. If a script is the main entry of the program, then it will be converted into

a function, where the filename is the function name and it has no input and

output parameters.

2. If a script is called by other script or function, then this script will be inlined

into the caller.

The McFor compiler inlines script M-files by traversing the AST of the whole-

program. Because a script does not take any arguments nor return values, the state-

ment of calling a user-defined script “foo.m” will be a standalone expression statement

either in command syntax form: foo, or in function syntax form: foo(). Because ex-

pression statements are represented by a unique type node in the AST, script calls can

thus be discovered while traversing the AST. During the traversal, when the compiler

discovers a statement that is calling a user-defined script, it inlines that script M-file

into the caller by replacing the calling statement node with a copy of that script’s

AST. The compiler then recursively traverses into that new merged AST to discover

further script calls.

3.2.2 Distinguishing Function Calls from Variables

Because MATLAB has two syntax forms for calling functions: command and function

syntax form, an identifier in a MATLAB program may represent a variable, or a call

to a function or a script in command syntax depending on the program context. The

calls to user-defined scripts have been handled during the inlining phase (described

in Section 3.2.1). For those command syntax function calls that are associated with

21

Overview of the McFor Compiler

arguments, the MATLAB-to-Natlab translator (described in Section 3.1.1) has con-

verted them into function syntax. The remaining cases are function calls that have no

input arguments. For example, a user-defined function M-file “foo.m” has function

declaration: “function y=foo()”, then its command syntax function call, foo, looks

just like a variable, and may appear in following situations:

1. As a standalone statement: foo

2. In the right-hand side (RHS) of an assignment statement: x=foo

3. Used as an index of array variable A: A(foo, n)

4. Used as an argument of another function call: Bar(foo, n)

In MATLAB, whether an identifier represents a variable or a function call is

decided at execution time. If an identifier first appears as the left-hand side (LHS) of

an assignment statement, then it is a variable in the whole execution. For example, in

the code segment shown in Table 3.2 (a), since statement S3 will be executed before

S5 at runtime, the identifier “foo” will be treated as a variable. Otherwise if there

exists an intrinsic function with the same name as the identifier, or an M-file with the

same name in the searching path, then it is a function call; if no such function exists,

then it is an undefined variable and will cause a runtime error. When a function

call identifier later appears as a LHS of an assignment statement, then the identifier

becomes a variable, and will stay variable in the rest of execution. For example, if

we change the S3 and S5 as shown in Table 3.2(b), then identifier “foo” is a function

call in S3, and changed to a variable in S5 in the second iteration.

McFor is a batch compiler, it does not have any runtime information about the

program’s execution order; therefore it does not support an identifier having two

meanings in one program. The McFor’s approach is: when an identifier ever appears

as LHS of an assignment statement in the program, then the identifier is a variable.

If a variable in the program has the same name as a user-defined function attached

in the source file list, then McFor will raise a warning, asking user to clarify the use

of that identifier. McFor assumes all user-defined functions and scripts are listed in

22

3.2. Preparation Phase

S1 for i = 1:n for i = 1:n

S2 if (i==1) if (i==1)

S3 foo = i+1 y = foo

S4 else else

S5 y = foo foo = y

S6 end end

S7 end end

(a) (b)

Table 3.2 Variables are determined at runtime

the input source file list; and for unsolved identifiers, it does not look for the same

name M-files in searching path. For the two code segments shown in Table 3.2, if the

input source file list contains “foo.m”, then McFor will give a warning for both cases;

if the input source file list does not contain “foo.m”, then McFor will treat “foo” as

a variable in Table 3.2 (a), and an undefined variable in Table 3.2 (b).

If an identifier has never appeared in the LHS of any assignment, then McFor

treats it as the same way as MATLAB: if the identifier has the same name of an

intrinsic function or a user-defined function, then it is a function call. Otherwise, it

is an undefined variable.

When McFor determines an identifier is a function call, it will convert it into

function syntax, e.g., “foo” will be converted into “foo()”.

3.2.3 Simplification Transformation

Long and complicated expressions require a special treatment before entering the

type inference and transformation phase. The simplification transformation is used

for reducing the complexity of type inference and simplifying the process of code

generation. This phase is designed for the following purposes.

Reducing the complexity of type inference

When performing type inference on a long expression, we need to gather type infor-

mation from all its sub-expressions to derive the final conclusion. A long expression

23

Overview of the McFor Compiler

with complicated structure generates more uncertain elements during the inference

process than simple expressions, thus increases the complexity of making the final

conclusion. By creating temporary variables to represent sub-expressions, we can

use those variables and their symbol table entries to store the type information ac-

quired from those sub-expressions. Therefore, the type inference is split into several

relatively short and simple inference steps with limited complexity.

The need for further transformations

When translating a MATLAB program into Fortran, all the user-defined functions

will be converted into Fortran subroutines, and some MATLAB built-in functions

will also be translated into corresponding Fortran intrinsic subroutines. Because

Fortran subroutine calls do not return any values, thus they cannot be used as ex-

pressions, like its original MATLAB functions calls, by any other expressions. When

a MATLAB function call is used by another expression, this transformation requires

temporary variables to retrieve values from the Fortran subroutine, then put them

back into where they were used. Because those transformations create new temporary

variables, they must be performed before the symbol table is generated. Therefore,

during this simplification phase, we take out function call sub-expressions from long

expressions and transform them into standalone assignment statements. As a result,

the code generator can simply translate the assignment statement into subroutine call

straightforwardly.

Because MATLAB uses the same syntax for function call and array access, and the

simplification process can only recognize sub-expressions based on their structures,

thus this process creates unneeded temporary variables and assignments for array

access sub-expressions. For solving this problem, we design an aggregation phase

(described in Section 5.5) to reverse unnecessary simplifications.

Simplify transformations for linear indexing

MATLAB supports linear indexing, where any element of a matrix can be referred

with a single subscript. This property is widely used in MATLAB programs, espe-

24

3.2. Preparation Phase

cially for row vectors and column vectors, even if they are internally two dimensional

matrices, but indexing by one subscript is very convenient and understandable. How-

ever, in Fortran, each reference to an element of a matrix must specify the indices for

all its dimensions. Therefore, a certain amount of transformations on matrix indexing

must be done when we are compiling MATLAB programs. To simplify those trans-

formations, we create temporary variables, take out matrix access sub-expressions

from long expressions and insert them into standalone assignment statements before

applying the type inference and transformations.

The compiler creates a new temporary variable uniquely for every sub-expression

extracted from a long expression, and inserts the new assignment statement for the

temporary variable immediately above the statement that contains the long expres-

sion. Therefore, the new assignment statements do not change the flow dependence

of the program.

This simplification process is a recursive process on each node of the AST. After

traversing the AST once, all simplifications will have been completed.

Table 3.3 shows an example of the simplification transformation. Table 3.3 (a)

shows a MATLAB assignment statement which has a complicated right hand side

expression. Table 3.3 (b) shows the code in MATLAB syntax after a sequence of

simplification transformations. Variable tmp 4 is created for the function call sub-

expression inside the original RHS expression. Variable tmp 3 is created for simplifying

the argument of the function call. Variable tmp 1 and tmp 2 are created for the

two sub-expressions of that argument respectively. Another transformation has been

performed on variable tmp 2 at statement S2 where tmp 2 represents a column vector

and its RHS is a one dimensional array.

3.2.4 Renaming Loop-Variables

In MATLAB, a loop variable can be assigned to different values inside the loop but

the changes only affect current iteration. When the next iteration starts, the loop

variable will be assigned to the correct value as it has never been changed.

For example, in the code fragment shown in Table 3.4(a), statement S4 changes

25

Overview of the McFor Compiler

B = foo(ones(n, 1)*(1:n)) + C; S1: tmp 1 = ones(n, 1);

S2: tmp 2 (1, :) = (1:n);

S3: tmp 3 = tmp 1 * tmp 2;

S4: tmp 4 = foo(tmp 3);

S5: B = tmp 4 + C;

(a) (b)

Table 3.3 Simplify long expression

the value of loop variable j. The change affects S5, but the for-loop still executes 10

iterations, where j is assigned to 1 to 10 at the beginning of each iteration.

S1 sum = 0; sum = 0;

S2 for j = 1 : 10 for j = 1 : 10

S3 j1 = j;

S4 j = 2 * j; j1 = 2 * j1;

S5 sum = sum + j; sum = sum + j1;

S6 end end

(a) (b)

Table 3.4 Loop variable changes are kept inside the iteration

In order to preserve this behavior, the compiler renames the loop variable when

it appears in LHS of an assignment inside the loop body. Table 3.4 (b) shows the

transformation result of Table 3.4(a) code segment.

3.2.5 Building the Symbol Table

After inlining all the scripts and converting the main script into function, the pro-

gram’s AST becomes a list of sub-trees, one for each function. The compiler then

traverses the whole AST and builds up the symbol table for each function. Every

function has its own symbol table; a symbol table contains all variables which ap-

peared on the left hand sides of assignment statements of that function. Each variable

has a unique symbol table entry containing attribute fields to store the variable’s type

properties, including:

26

3.2. Preparation Phase

• Intrinsic type, which could be logical, integer, real, double precision or complex;

• Shape, which includes the number of dimensions and size of each dimension. A

scalar variable has zero dimensions.

• Value range, which includes the minimum and maximum estimated values.

Because the MATLAB language is case-sensitive for variable names but Fortran

is not, variables composed by same sequence of characters but in different cases are

different variables in MATLAB but are treated as one variable in Fortran. In order

to solve this problem, a variable, before being added into the symbol table, is checked

to see if its case-insensitive version creates a duplicate. If a duplication is discovered,

then the compiler renames the variable in the whole program and adds the renamed

variable into the symbol table.

27

Overview of the McFor Compiler

28

Chapter 4

Type Inference Mechanism

Type inference is the core of the McFor compiler. In this chapter, we present our

type inference mechanism. The type inference principles are described in Section 4.1,

followed by the type inference process (Section 4.2), the intermediate representation

and type conflict functions (Section 4.3). How to solve the type changes between

multiple assignments and type conflict functions is discussed in Section 4.4 and 4.5.

For shape inference, the value propagation analysis is discuss in Section 4.6, and how

to determine variable shape at runtime is discussed in Section 4.7. In Section 4.8, we

describe some additional analyses that are required during the type inference process.

4.1 Type Inference Principles

A variable’s type consists of three parts of information, intrinsic type, shape, and

value range. In this section, we explain the principle of intrinsic type inference, and

the shape inference.

4.1.1 Intrinsic Type Inference

Our approach of determining variables’ intrinsic types follows a mathematical frame-

work based on the theory of lattices proposed by Kaplan and Ullman [KU80]. Pramod

29

Type Inference Mechanism

and Prithviraj also used this framework in their MATLAB type inference engine

MAGICA [JB01, JB02].

The framework uses a lattice of types to form a type hierarchy, where types are

ordered based on the value ranges they can represent. Figure 4.1 shows the MATLAB

intrinsic type lattice used in our type inference. In the lattice, types lower down in the

hierarchy are smaller (in term of the storage space they require) than types higher up

in the hierarchy, and the values represented by a smaller type can also be represent

by any larger type. Therefore, using a larger type to replace a smaller type will not

compromise the program’s correctness. For example, if we can choose the complex

type as the intrinsic type of all variables when translating a MATLAB program into

Fortran code, then the program can still yield the correct result. Because smaller

types are less expensive in term of storage space and execution time, type inference

aims to determine the smallest type for each variable that can represent the value

range the variable contains.

Figure 4.1 The Intrinsic Type Lattice.(similar to the lattice used in [JB01])

In MATLAB, four intrinsic types, logical, char, double, and complex, are com-

30

4.1. Type Inference Principles

monly used in mathematic computations. When translating to Fortran code, a vari-

able will have one of the five Fortran intrinsic types: logical, character, integer, double

precision, and complex. As the lattice shown in Figure 4.1, the complex type is at

the top of the hierarchy, followed by double precision, integer, char, and the logical

type is at the bottom.

Our type inference approach aims to infer the smallest type for a variable that can

represent the value it contains. For example, if we estimate a variable only contains

integer values throughout the whole program, then we will decide the variable has an

integer type. When a variable is assigned to a value with a type different from its

current type, then we will merge those two types based on the type hierarchy, and

use the larger type to be the final type. (The details of the type merging process are

described in the following sections.) This approach can reduce the need for creating

new variables to hold the new type during the type changes.

4.1.2 Sources of Type Inference

The type inference extracts type information from four sources: program constants,

operators, built-in functions, and function calling contexts.

Constants

Program constants provide precise information about intrinsic type, shape, and value;

they provide the starting point of our type inference. For example, constant 10.5 is

a double scalar with the value 10.5.

Operators

MATLAB has three kinds of operators: arithmetic, relational, and logical operators.

Relational and logical operators always return the results of the logical type. But

MATLAB arithmetic operators are highly overloaded; they can accept different types

of operands and yield different types of results. Therefore, we need create a set of

type functions for each operator on different type operands. For example, Table 4.1

shows the result types of type functions of operator “+” for different types of operands.

31

Type Inference Mechanism

Type functions for operators “-”, “*”, “.*”, “/”, “./”, “\”, “.\” have the same result

as operator “+”; and Table 4.2 shows the results of operator “^” and “.^”, where the

“-err-” means the operation it is illegal for operands with those types. Table 4.3

shows the results of operator “:”. The “complex” shown in the tables means the real

and imaginary parts of the complex value are double type.

These tables also show that MATLAB has implicit data-type conversions auto-

matically promoting the logical and char type data into double precision type during

the computations. When integer variables are involved in left and right division

operators, the result will be promoted to double precision type to avoid data loss.

logical char double complex
logical double double double complex

char double double double complex

double double double double complex

complex complex complex complex complex

Table 4.1 The result of type functions for operator “+”.

logical char double complex
logical -err- double double complex

char double double double complex

double double double double complex

complex complex complex complex complex

Table 4.2 The result of type functions for operators “^”, “.^”.

logical char double complex
logical -err- -err- double double

char -err- double -err- -err-

double double -err- double double

complex double -err- double double

Table 4.3 The result of type functions for operator “:”.

32

4.1. Type Inference Principles

MATLAB operators not only define the shape and size information for the result

data, but provide constraints on the type and shape of operand variables. MATLAB

operators have conformability requirements for matrix operands. For example, when

two operands are matrices, operators “*”, “-”, and logical operators require the

operands must have the same shape, and result value will have the same shape as

well. For another group of operators “*”, “\”, and “/”, if two operands are matrices,

then they must be two-dimensional and the sizes of their inner dimensions must equal.

For example, for statement B*C, if variable B has shape of n-by-m, and C has shape of

p-by-q, then m must equal to p and the result will have the shape of n-by-q.

One example of using this kind of constraints is to determine vectors in linear

indexing, like the expression ones(n,1)*(1:n) shown in Table 3.3 (a). The simplifi-

cation phase generates temporary variable tmp 2 to represent the expression (1:n),

which is a one-dimensional array. According to the conformability requirements of

matrix multiplication, tmp 2 must be a two-dimensional matrix where the size of the

first dimension is 1. Therefore, we change the shape of tmp 2 and adjust the subscripts

of tmp 2 in statement S2 into tmp 2(1,:)=(1:n).

Built-in Functions

MATLAB’s built-in functions are also highly overloaded; they accept a varying num-

ber of arguments with different types. But since the built-in functions are well defined

by MATLAB, they can provide precise type information of return results for each com-

bination of input parameters. Thus, the McFor compiler built up a database for the

type inference process that contains all type signatures (described in 4.2.1) of each

built-in function and their corresponding return types.

Calling Context

From each calling context, the compiler gathers the types of all arguments to form

a function type signature (described in 4.2.1), and then uses it to determine which

version of translated code should be executed. When there is no matched version of

code, the compiler then uses those input parameter types to perform type inference

33

Type Inference Mechanism

on the user-defined function.

4.1.3 Shape Inference

The shape of a variable is defined by the total number of dimensions, also called

rank, and the size of each dimension, also called extent. In MATLAB programs,

a variable’s shape can dynamically change in three situations: when a new value

with different shape is assigned to it (e.g., S1, S2 and S3 in Table 4.4(a)), when new

elements are added to a location outside the bounds of the variable (e.g., S4 and S5

in Table 4.4(a)), or when rows and columns are deleted from the variable (e.g., S6

and S7 in Table 4.4(a)). Table 4.4 (a) is a MATLAB code segment that demonstrates

three shape change cases. Table 4.4 (b) lists the shape of the variable A after each

statement is executed.

S1 A = 1 A is a scalar

S2 A = ones(2,3) A is 2x3

S3 A = [A;[1,2,3]] A is 3x3

S4 A(4,1) = 10 A is 4x3

S5 A(4,4:5)=[20,30] A is 4x5

S6 A(:,3) = [] A is 4x4

S7 A(3:4,:) = [] A is 2x4

(a) (b)

Table 4.4 Three ways to dynamically change a variable’s shape

Because some MATLAB operators have different semantics depending on the

shapes of the operands they are using, shape information is a decisive factor for

determining the correct meaning of each operation. For example, a multiplication

expression A*B could mean a matrix multiplication, a simple scalar multiplication, or

a matrix and scalar multiplication depending on the shapes of variable A and B; and

it needs to be translated into different Fortran code accordingly.

One major overhead in the interpretive exectution of MATLAB programs is array

resizing. Because MATLAB does not have array declarations, even if the variable is

initialized at the beginning of the program (e.g., S2 in Table 4.4(a)), its shape can still

34

4.2. Type Inference Process

be changed when the indexed array access is outside the array bounds (e.g., S4 and S5

in Table 4.4(a)). Therefore, a major goal of our shape inference on array variables is

to determine the largest number of dimensions and the largest size of each dimension

that are used on those variables in the program. By using those information, we

can declare the array variables statically or dynamically allocate them once in the

Fortran code; thus the overhead of array dynamically resizing, moving data around,

and checking array bounds can be avoided.

4.2 Type Inference Process

The McFor compiler performs whole-program analysis on the input MATLAB pro-

gram. Because a MATLAB program usually contains several user-defined functions,

interprocedural analysis is necessary for determining the type information of a func-

tion’s output parameters according to each calling context.

4.2.1 Function Type Signature

For a user-defined function with n input parameters, the list of those parameters’

types along with the function name forms the type signature of this function, e.g,

foo{T1, T2, . . . , Tn}. Because of the dynamically-typed nature of MATLAB, function

declarations do not define the types of input parameters, thus a function can be

called by using different types of arguments. Different types of input parameters may

cause different type inference and transformation results on the function, thus we

need create separate copies of the function AST for different calling contexts. We use

function type signatures to determine which version of the function code should be

used for a giving calling context. The McFor compiler uses a database to store all

the function type signatures, along with their corresponding AST root node pointers

and list of output parameters’ types.

35

Type Inference Mechanism

4.2.2 Whole-Program Type Inference

The type inference process starts from the main function’s AST1, traverses every node

of the main function from top to bottom. When encountering a call to a user-defined

function, the compiler first gathers the type information of each argument to form a

function type signature, then compares it with function type signatures stored in the

database. If there is a matched function type signature, the compiler then uses the

corresponding inference result, the list of its output parameters’ types, and continues

the type inference process. If there is no matched type signature, then the compiler

will make a copy of the calling function’s AST, and perform type inference on it with

the new calling context. After finishing type inference on the calling function and

collecting its output parameters’ types, the compiler stores the function type signature

and the inference result into database, then returns to the location where the function

call happened, and continues on the remaining nodes. For nested function calls, the

compiler performs type inference on those functions recursively to generate inference

results for each call.

If a user-defined function is a recursive function, the compiler uses the following

strategy. Because a recursive function must have a code segment that implements

the base case of its recursive algorithm and includes assignments for all its return

variables, the compiler can obtain the types of all return variables from there. There-

fore, in the first inference iteration, the compile ignores recursive function calls and

uses those types inferred from base case code segment as the temporary result. In

the following inference iterations, the compiler will use this temporary result to infer

the final result.

The type inference is performed with structure-based flow analysis on the AST of

the program. For each function, the type inference process is an iterative process that

infers the types of all variables until reaching a fixed point, where variables’ types

will not be changed any more.

1The compiler assumes the first file in the input source file list is the main function of the program

36

4.2. Type Inference Process

4.2.3 The Type Inference Algorithm

In the type inference process, the compiler goes through the program in lexicographic

order, analyzes each assignment statement, and takes following actions according to

the type of statement.

• For an assignment statement whose RHS is a constant:

– Return the intrinsic type and shape of the constant. e.g., 2.5 is a double

scalar, [10, 5] is a one-dimensional integer array of size 2.

• For an assignment statement whose RHS is a variable:

– If the variable is an array with subscripts, First determine the shape it

represents (either a partial array or an element), then return the shape

with the intrinsic type of the variable stored in the symbol table. For

example, if A is integer array of size m-by-n, then A(1,:) is one-dimension

integer array of size n.

– Otherwise, return the intrinsic type and shape of that variable stored in

the symbol table.

• For an assignment statement whose RHS is a computational expression,

– Based on the operands’ intrinsic types and shapes, recursively calculate

the intrinsic type and shape of the expression according to operator result

tables (Table 4.1, 4.2, and 4.3), then return the result.

• For an assignment statement whose RHS is a built-in function:

– Return the result type according to built-in function database. For exam-

ple, randn(m,n) returns a two-dimensional matrix of size m-by-n.

• For an assignment statement whose RHS is a user-defined function:

– Form the function type signature from the calling context, and check it in

the database,

37

Type Inference Mechanism

∗ If there is a match, return the stored result types

∗ Otherwise,

· If it is a recursive call, then ignore this statement.

· Otherwise, perform type inference on the function, return the in-

ference result.

• For an assignment statement whose RHS is alpha-function:

– Perform analysis described in Section 4.5.1

• For an assignment statement whose RHS is beta-function:

– Perform analysis described in Section 4.5.2

• For an assignment statement whose RHS is lambda-function:

– Perform analysis described in Section 4.5.3

• Other non-assignment statement

– If it is a user-defined function call, check the database

∗ if there is a matched type signature, ignore

∗ otherwise, perform type inference on the function

– Otherwise, ignore.

4.3 Intermediate Representation and Type Conflict Func-

tions

The goal of type inference is to determine each variable’s type properties: intrinsic

type, shape, and value range, which will be used by the compiler to generate the

Fortran declarations and to perform optimizations.

MATLAB is a dynamically-typed language; variables can change their types at

runtime. However, in Fortran, a variable can only be statically declared as one type.

38

4.3. Intermediate Representation and Type Conflict Functions

Therefore, every time when a variable’s type changes, we need to either treat the

variable as a new variable, or change the variable’s final type.

This section discusses the usefulness of static single-assignment (SSA) representa-

tion in type inference and introduces type conflict functions to capture type changes.

4.3.1 Disadvantages of SSA Form in Type Inference

In the McFor compiler, we did not use a SSA representation because a SSA represen-

tation cares about the values that variables contain, but type inference cares about

the types of those variables.

A program is in SSA form if every variable only appears as the target of one

assignment where a value is assigned to it, which implies for each use of a variable,

there is only one definition. The SSA representation is designed for separating values

from their locations by creating unique variables to represent each value. Thus, SSA

representation is very effective for value-related optimizing transformations, such as

constant propagation and value numbering. However, type inference aims to solve the

type of each variable, where the type of the value is important, not the value itself.

Also, while translating a program to SSA form, the translation process renames a

variable every time a new value is assigned to the variable. When the value has the

same type as the variable’s, the renaming is unnecessary from type inference’s point of

view. In a normal program, a variable’s type changes far less frequently than its value

changes. Therefore, creating new variables for building an unique relation between a

value and a variable does not make type inference efficient; on the contrary, the new

created variables make the program even more unlike the original one, hence reduce

the program’s readability.

Moreover, translating array computation programs into SSA representation usu-

ally needs complex analysis. The SSA representation efficiently handles scalar vari-

ables and some array variables when they are used without subscripts for representing

whole arrays during the assignment (e.g., A=1, means assigning 1 to all element of ar-

ray A). But, when array variables are used with subscripts for representing partial

arrays (e.g., A(1,:)=1, means assigning 1 to every element in the first row of ar-

39

Type Inference Mechanism

ray A) or an element (e.g., A(1,2)=1), translating them into SSA form requires more

complex analysis to create the unique value-variable relation. MATLAB programs

are designed for matrix computations where array variables are commonly used with

subscripts as targets of assignments; therefore, SSA form is not suitable for handling

MATLAB programs.

4.3.2 Type Conflict Functions

In a MATLAB assignment, if the type of LHS variable is different from the type of the

RHS expression, then we say that there is a type conflict caused by this assignment.

Type conflicts imply potential variable type changes, so they can trigger merging two

types, creating new variables, or other related transformations.

In MATLAB, every assignment can create a type conflict because any assignment

statement can assign a value of any type to a variable regardless the variable’s current

type. Type conflicts can also happen at the control-flow join points. At a control-

flow join point, if there are two or more assignments on the same variable joined

together, then those assignments can create potential type conflicts between them.

By analyzing all the type conflicts that can happen in the program, we can capture

every type change on every variable. In order to explicitly represent type conflicts

happened in the join points, we introduce type conflict functions.

In the first step of type inference, we perform a structure-based flow analysis

to build up use-definition chains and insert type conflict functions. Type conflict

functions are inserted at the each control-flow join point for each variable that has

more than one definition. Those type conflict functions are in the form of x =

φ(pt1, pt2, . . . , ptn), where the x is the variable name, the arguments (pt1, pt2, . . . , ptn)

are pointers pointing to the assignment statements of the variable x that reach this

join point. Those type conflict functions are located at the same places as SSA form’s

phi-functions, but there are no variables renamed during this process.

There are three groups of type conflict functions according to the program struc-

ture they relate to, and each of them implies a different process during the type

inference. The first group of type conflict functions, which we call alpha-functions,

40

4.4. Solving Type Differences

are those created at end of conditional statements (e.g., S10 in Table 4.5 (b)). The

second group of type conflict functions, called beta-functions, are those inserted at

the top of loop statements (e.g., S3 in Table 4.5 (b)). The third group, called lambda-

functions, are those created at end of loop statements (e.g., S13 in Table 4.5 (b)).

Table 4.5 shows a MATLAB code segment (a), and its corresponding code with type

conflict functions (b), and partial result during the type inference process (c).

S1 x=0; x=0; x=0;

S2 for j = 1:5 for i=1:5 for i=1:5

S3 x=beta(S1,S6,S8); x=beta(S1,S6,S8);

S4 k=x; k=x; k=x;

S5 if(i>2) if(i>2) if(i>2)

S6 x = foo(i); x =foo(i); x = foo(i);

S7 else else y = x;

S8 x = bar(i); x = bar(i); else

S9 end end x1 = bar(i);

S10 x = alpha(S6,S8); y = x1;

S11 y = x; y = x; end

S12 end end end

S13 x=lambda(S1,S6,S8) x=lambda(S1,S6,S8)

S14 z=x; z=x; z=x;

(a) (b) (c)

Table 4.5 Type conflict function example

4.4 Solving Type Differences

Type inference is working on the IR and solving the type conflicts created by assign-

ment statements and captured by type conflict functions. For example, Table 4.6(a)

is the MATLAB code segment, and Table 4.6(b) is the IR used by type inference.

Inside the IR, the type inference needs to solve two kinds of cases:

1. When the type of the RHS expression of an assignment is different from the

type of LHS variable, e.g., statements at line 1 and line 4 in Table 4.6(b).

41

Type Inference Mechanism

2. When a variable’s multiple definitions reach a control-flow join point, which is

represented by a type conflict function, e.g., statements at line 3 and line 6 in

Table 4.6(b).

In either case, the compiler will first solve the difference between intrinsic types,

then solve the difference between shapes.

1stiteration 2nditeration
1 sum=0; sum=0; integer double
2 for i = 1:10 for i = 1:10

3 sum=beta(S1,S4) double
4 sum=sum+i/2; sum=sum+i/2; double double
5 end end

6 sum=lambda(S1,S4) double double
(a) (b) (c) (d)

Table 4.6 Type inference example.

4.4.1 Merging Intrinsic Types

In the above two cases, the compiler will choose the largest intrinsic type among

them, based on the type hierarchy described in Section 4.1.1, to be the final intrinsic

type of the variable.

Let’s take the process of inferring the type of variable sum in Table 4.6 as an

example. In the first iteration of type inference process, the variable sum becomes

an integer type variable at assignment of line 1. At line 3, the compiler postpones

the inference on the beta function until the end of the loop because it has forward

reference. At line 4, since the RHS expression has the double type, which is larger

than the integer type, the sum thus becomes a double type variable. At the end of

loop, the compiler processes the beta function of line 3 and lambda function of line

6, and chooses the larger type for sum from line 1 and line 4, which is also the double

type. Then the compiler starts the second iteration of the type inference process.

Since the type of sum is still inferred as the double type, the compiler concludes that

sum is a double type variable.

42

4.4. Solving Type Differences

After type inference, some assignment statements may be illegal in Fortran. For

example, in MATLAB, variables of logical or char types can participate in any arith-

metic computations, but they are forbidden in Fortran. Therefore, we designed an

extra transformation phase (described in Chapter 5) to solve those problems after the

type inference process.

4.4.2 Solving Differences Between Shapes

As described in Section 4.1.3, the shape of a variable can be changed in three situa-

tions, when a new value with different shape is assigned to it (e.g., S1, S2 and S3 in

Table 4.4(a)), when new elements are added to an array outside the bounds of the

variable (e.g., S4 and S5 in Table 4.4(a)), or when rows and columns are deleted from

the variable (e.g., S6 and S7 in Table 4.4(a)). Before performing type inference, the

compiler needs to transform the array concatenation case (e.g., S3 in Table 4.4 (a))

to indexed array assignment form, as described below.

Handle Array Concatenations

In MATLAB, one way of expanding an array is to concatenate new elements or blocks

onto the array, where the new elements and blocks are compatible in size with the

original array. Table 4.7 (a) shows an example that uses the array concatenation.

The array variable mag is initialized to zero rows and two columns at statement S1.

In assignment statement S6, mag concatenates with variable newdata, a two column

vector, and the result is assigned back to mag. The array concatenation usually

happens in a loop; in this example, mag will have 10 rows after the execution.

For the statements that are inside a loop, the current inference mechanism uses

the loop variable to carry the number of iterations, and only infers the statements

once. Because the variable mag doesn’t associate with the loop variable i, it is dif-

ficult to be inferred directly by the current inference mechanism. Therefore, for an

array concatenation expression, we applied an extra transformation to convert the

concatenation to another form of expanding array, using array accesses (S6 in Table

4.7 (b)). Table 4.7 (b) shows the transformed code of Table 4.7 (a). By applying

43

Type Inference Mechanism

value propagation analysis (described in Section 4.6) on transformed code, we can

estimate the value range of variable tmp 1; thus determining the maximum size of

array mag.

S1 mag=zeros(0,2); mag=zeros(0,2);

S2 tmp 1=0;

S3 for i=1:10 for i=1:10

S4 newdata= [i, i+1]; newdata = [i, i+1];

S5 tmp 1 = tmp 1+1;

S6 mag = [mag; newdata]; mag(tmp 1,:) = newdata;

S7 end end

(a) (b)

Table 4.7 Converting array concatenation.

Solving Conflicts Between Shapes

After transforming the array concatenation cases, the conflicts on shapes can be solved

by using the following rules:

1. For an assignment statement whose LHS is a indexed array access: compare the

values of index expressions and the size of array,

• If the indices are outside the bounds of the array, then expand the array

shape accordingly.

• If the values of index expression and size of the array are not comparable,

then add array bounds checking and array resizing code before it.

• Otherwise, ignore.

2. For an assignment statement whose LHS is a array variable without subscripts

and RHS is non-empty array, e.g., A=zeros(3,4):

• If the array variable has never been defined, then use the RHS shape as

its shape.

44

4.5. Type Inference on Type Conflict Functions

• If the RHS shape is different to the LHS shape, then the compiler will

create a new variable and rename the LHS variable and all its appearances

in the rest of program, and add the renamed variable into the symbol table

with the new shape.

• Otherwise, ignore.

3. For an assignment statement whose RHS is empty array:

• Then the compiler will create a new variable, transform the statement into

another assignment that copies all the data from old variable to the new

variable. For example, A(3:4,:)=[] will be transformed into A1=A(1:2,

:). The compiler will then rename the old variable and all its appearances

in the rest of program, and add the renamed variable into the symbol

table with the new shape. The new shape is the variable’s shape minus

the shape represented by LHS array or array access. For example, if array

A is a 4-by-4 matrix, then A1 will be a 2-by-4 matrix.

4. For an assignment statement whose RHS is alpha/beta/lambda functions:

• If there is no renaming happening at all the joined definitions, then use

the largest shape as result shape.

• Otherwise, apply the solution described in Section 4.5.1, 4.5.2, and 4.5.3.

4.5 Type Inference on Type Conflict Functions

During the type inference, when two types cannot be merged together, (which is called

an unsolvable type conflict), a new variable of the new type needs to be created. This

section discusses how the type inference handles unsolvable type conflicts that are

captured by type conflict functions.

45

Type Inference Mechanism

4.5.1 Type Inference on Apha-functions

When the type conflict created by an alpha-function cannot be solved, the compiler

will rename the variables with the new type, and make multiple copies of the following

statements in the same code block and attach each of them into each branch indicated

by the arguments of the alpha-function, and rename them accordingly. Table 4.8

shows an example of solving an alpha-function. Table 4.8 (a) shows a MATLAB code

segment, and its corresponding code with type conflict functions is shown in (b), and

the type inference result is shown in (c). In this case, we assume that assignment S3

and S5 assign different type values to x, and the alpha-function (S7 in Table 4.8 (b))

has an unsolvable type conflict. Therefore, statement S8 in Table 4.8 (a) is duplicated

to statements S4 and S7 in Table 4.8 (c), and variable x of the else-block is renamed

to x1.

S1 x=0; x=0; x=0;

S2 if(i>0) if(i>0) if(i>0)

S3 x = foo(i); x = foo(i); x =foo(i);

S4 else else y = x;

S5 x = bar(i); x = bar(i); else

S6 end end x1 = bar(i);

S7 x = alpha(S3,S5); y = x1;

S8 y = x; y = x; end

(a) (b) (c)

Table 4.8 A code segment with alpha-function

4.5.2 Type Inference on Beta-functions

The beta-functions are used to monitor the changes of variable types inside a loop

and behave as assertions to prevent runtime errors.

The beta-functions are located at the top of the loop when there is a use of the

variable before any new definitions, e.g., S3 in Table 4.5 (b). A beta-function will

not be created if there are no uses of this definition inside the loop. For example, in

46

4.5. Type Inference on Type Conflict Functions

Table 4.5 (b), if there is no statement S4 k=x;, then beta-function at S3 will not be

created. Table 4.9 (b) shows another example of this case.

S1 x=0; x=0; x=0;

S2 for i = 1:5 for i=1:5 for i=1:5

S3 if(i>2) if(i>2) if(i>2)

S4 x = foo(i); x = foo(i); x = foo(i);

S5 else else y = x;

S6 x = bar(i); x = bar(i); else

S7 end end x1 = bar(i);

S8 x = alpha(S6,S8); y = x1;

S9 y = x; y = x; end

S10 end end end

S11 x=lambda(S1,S6,S8) if(EqualType(x,x1)

S12 z=x; z=x; z=x;

S13 else

S14 z=x1;

S15 end

(a) (b) (c)

Table 4.9 A code segment with lambda-function

One of beta-function’s arguments is the variable’s previous definition outside the

loop, and others are forward definitions generated inside the loop. Because those

forward definitions have not been inferred when compiler reaches the beta-function,

the compiler will postpone analyzing the beta-function until it reaches the end of the

loop.

For loops that run more than one iteration, an unsolvable type conflict at a beta-

function means that a variable’s previous definition and forward definition generate

different types and they cannot be merged; as a result, the type of the variable changes

in every iteration. We believe this will cause unpredictable complicated behaviors at

runtime; thus, the compiler will report a compile-time error to alert user to this

problem.

47

Type Inference Mechanism

4.5.3 Type Inference on Lambda-functions

The lambda-functions are located at the end of the loop, e.g., statement S13 of Table

4.5 (b) and S11 of Table 4.9 (b). They are used to monitor the changes between

the last definition before the loop and the new definitions happened inside the loop.

If a beta-function is created (e.g., statement at S3 of in Table 4.5 (b)), then the

corresponding lambda-function has the same arguments and the same behavior as

the beta-function: either they will cause a compile-time error, or be ignored because

type conflicts they had can be solved. If a beta-function is not created and the

lambda-function causes an unsolvable type conflict, then the compiler will perform

the following actions.

The compiler will create multiple versions of variables, and generate a conditional

statement to handle each version of variable at runtime using a type checking func-

tion. Each conditional block will have a copy of the following statements, which

will be renamed accordingly, and make multiple copies of the statements follow the

lambda-function, each copy represents a version of the variable and will be renamed

correspondingly.

Table 4.9 shows an example. Since the S8 in Table 4.9(b) creates a different

version of x, the compiler thus duplicates the S12, and creates an if-else-statement

(S11-S15 in Table 4.9(c)).The type checking function EqualType (x,x1) ensures the

first copy will be executed only when the type of x at that time is as same as the type

of x1. The function EqualType (x,x1) is created by compiler to determine whether

two variables have the same type based on their intrinsic types and shapes.

4.6 Value Propagation Analysis

In MATLAB, indexed array assignments (e.g., A(i)=RHS) have different meanings

according to their indices. If the indices point to a location outside the array bounds,

then the array will be expanded automatically. For example, if array A is a 3-by-3

matrix, then assignment A(4, 5)= 20 expands A to 4-by-5. In order to be able to

compare the index expression and the size of array, the compiler uses a simple value

48

4.6. Value Propagation Analysis

propagation analysis to estimate the value range of each variable and expression, and

propagate them throughout the program.

The goal of this analysis is to estimate the largest size of each array variable, and

find out which array accesses need array bounds checks. Because the goal is not to

eliminate all the array bounds checks, we used a simple approach for this analysis: it

only calculates the values of scalar variables that have one definition, and compares

values that are constant expressions. A constant expression is an expression that

contains only literals and variables which have one definition. We choose this simple

approach because it is difficult to compare expressions that contain variables that

have multiple definitions. Since our IR is not in SSA form, if a variable has multiple

definitions in a program, then it requires extra analysis to determine which value the

variable contains at a certain program point. For index expressions using variables

that have more than one definition, we add explicit array bounds checking code before

it to ensure the access is valid.

4.6.1 Calculate a Variable’s Value

For a variable that has multiple definitions in the program, we use the variable’s name

as its value. Therefore, when an expression uses those variables, we can easily find

out it is not a constant expression.

For a variable that has only one definition, its value is calculated based on the

RHS expression of its assignment. If the RHS expression is a literal, then the literal

is its value. If the RHS expression contains variables, then we apply the values of

those variables to the expression and use the result (a literal or an expression) as the

value of the variable. If the RHS expression contains functions or the expression is

too complicated to be calculated, then we use the variable’s name as its value.

For a loop variable that is assigned to a range expression, we use the first-value

and the last-value of the range expression as the minimum and maximum values of

the loop variable respectively.

49

Type Inference Mechanism

4.6.2 Compare Values

For each indexed array access, we calculate the value of each index expression and

compare it with the size of the array. There are three possible results:

1. If the array has never been defined, then use the value of index expression as

the size of the array.

2. If the two values are comparable, which means they are constant expressions

and either they are literals or they both use the same set of variables, then we

update the size of array by the larger value.

3. If the two values are not comparable, then we add array bounds checking code

in front of this statement.

Table 4.10 shows an example of using this value propagation analysis to determine

the size of array variable “A”. Table 4.10 (a) shows the MATLAB code segment, and

Figure 4.10 (b) shows the translated Fortran code. In this example, variable “n” has

two definitions (S1 and S6), so its value is itself “n”. In the for-loop, loop variable

“i” has value range [1, n], and we can derive that “x” has value range [3, 1+2*n];

therefore, the largest size of array “A” at S4 should be “1+2*n”. Because array “A”

is first defined at S4, we set the array “A” to be size “1+2*n” and add an allocation

code segment before it. At statement S7, the value of index expression is “n+1”, but

this value and the size of array are not constant expressions, because both of them

contain variable “n”, which has multiple definitions. Therefore, the two values are

not comparable. We thus add array bounds checking code in front of S7. (The array

bounds checking code will be explained in Section 4.7.2. Here we use a function,

ArrayBoundsChecking(A, [n+1]), to represent it.)

4.6.3 Additional Rule for Array Bounds Checking

We have performed flow analysis at the first step of the type inference process, and

inserted type conflict functions, each of which represents multiple definitions of a

50

4.6. Value Propagation Analysis

MATLAB Fortran Code Segment variable’s value range
S1 n=floor(11.5); n=floor(10.5); n=[n,n]

S2 for i=1:n DO i = 1, n i=[1,n]

S3 x=1+2*i; x=(1+(2*i)); x=[3,1+2*n]

IF((.NOT.ALLOCATED(A)))THEN

ALLOCATE(A((1+(2*n))));

END IF

S4 A(x)=i; A(x)=i; Size(A)=1+2*n

S5 end END DO

S6 n=fix(n/2); n=fix(n/2); n=[n,n]

ArrayBoundsChecking(A,[n+1]);

S7 A(n+1)=n; A(n+1)=n;

(a) (b) (c)

Table 4.10 Value-propagation analysis example 1.

variable at a control-flow join point. In this analysis, we use one of those functions,

beta-functions, to discover unsafe array accesses. Because a beta-function (e.g., S2

in Table 4.11(b)) means that a variable’s multiple definitions appear inside a loop, it

implies that the value of the variable may change between iterations. Therefore, if

an index expression uses that variable inside the same loop, then its value may also

change between iterations, we thus need to check that index expression with the array

bounds before using it.

Table 4.11 shows an example of this case. Table 4.11 (b) shows the IR after the

compiler performed flow analysis and added type conflict functions. Table 4.11 (c)

shows the Fortran code after the type inference process. In this example, variable x

has two definitions S4 and S6, and is used as an index at statement S12. Because the

array A is first defined at S12 and its size is x according to value propagation analysis,

we add allocation code segment before S12 (shown in Table 4.11 (c)). At statement

of S12, we also know from the beta-functions of S2 that there are multiple definitions

of x inside the same loop. Therefore, we need add array bounds checking code in

front of S12.

51

Type Inference Mechanism

S1 for i = 1:10 for i=1:10 DO i=1,5

S2 x=beta(S4,S6)

S3 if(i<5) if(i<5) IF(i<5)THEN

S4 x=i*2; x=i*2; x=i*2;

S5 else else ELSE

S6 x=(i+1); x=(i+1); x=(i+1);

S7 end end END IF

S8 x=alpha(S4,S6); IF((.NOT.ALLOCATED(A)))THEN

S9 ALLOCATE(A(x))

S10 END IF

S11 ArrayBoundsChecking(A,[x]);

S12 A(x)=i; A(x)=i; A(x)=i;

S13 end end END DO

S14 x=lambda(S4,S6)

(a) (b) (c)

Table 4.11 Value-propagation analysis example 2

4.7 Determine the Shape at Runtime

In the shape inference, the shapes of variables cannot always be determined at compile

time, the compiler thus needs to generate extra code to handle those cases at runtime.

This section discusses the solutions for determining variable shapes, checking array

bounds, and resizing the arrays at runtime.

4.7.1 Determine the Shape at Runtime

In MATLAB, there are four ways to create an array:

1. By using matrix construction expression, e.g., A=[1,2,3,4; 5,6,7,8] constructs

a 2-by-4 matrix;

2. By using special functions: e.g., B=randn(4,4) forms a two-dimensional 4-by-4

matrix with random values; D=repmat(A,2,3) replicates matrix A twice verti-

cally and three times horizontally, thus generates a 4-by-12 matrix;

52

4.7. Determine the Shape at Runtime

1 B=rand(m,n)

2 C=rand(p,q)

3 A = B*C

4 x = A

Listing 4.1 Example of unpredictable array shape

3. By matrix operations: e.g., C=[A;B] vertically concatenates matrix A and B and

results a 6-by-4 matrix; C=A*B creates a 2-by-4 matrix.

4. By using subscripts, e.g., D(4,4)=10 create a 4-by-4 matrix.

The matrix operators and built-in functions that return matrix values have clear

rules for determining the number of dimensions of the result matrices. Therefore, in

all those cases, the compiler can determine the number of dimensions of the result

matrices. However, if the size of an array is not constant but contains variables, then

the meaning of the expression that uses that array may not be determined at compile

time.

For example, in the code segment shown in Listing 4.1, the m-by-n matrix B and

p-by-q matrix C are created at line 1 and 2. If the compiler cannot infer the precise

values of variable m, n, p, and q, then the meaning of the express B*C and shape of A

are also undeterminable at compile time. In order to solve this problem, the compiler

generates extra code to handle all possible cases at runtime. Listing 4.2 shows the

Fortran code segment to replace the statement at line 3 of Listing 4.1. Because the

multiplication operation has two possible results, a scalar or a matrix, two variables A

and A1 are created to represent them respectively. Temporary variables Bd1, Bd2, Cd1,

and Cd2 are used for representing the size of each dimension of B and C. By comparing

those size variables, we can determine the meaning of the multiplication operation.

In the first if-else statement, the if-block is for the case that B and C are both scalars,

and else-block contains three cases and the result matrix A2 is dynamically allocated

accordingly. Because the new code creates two possible results of A, the following

statement, line 4 in Listing 4.1, is duplicated and moved into the two blocks, defined

and renamed accordingly.

53

Type Inference Mechanism

1 INTEGER tmp_1, tmp_2, A, x

2 INTEGER, DIMENSION(:,:), ALLOCATABLE::A1, x1

3 INTEGER Bd1,Bd2,Cd1,Cd2

4

5 ! Bd1~Cd2 are temporary variables used

6 ! to store the size of each dimension of

7 ! B and C at runtime

8 Bd1=size(B,1); Bd2=size(B,2);

9 Cd1=size(C,1); Cd2=size(C,2);

10 ! Handle all possible meanings of A=B*C

11 ! <1>Result is a scalar

12 ! Case 1: all scalar

13 IF(Bd1==1 .AND. Bd2==1 .AND.

14 Cd1==1 .AND. Cd2==1) THEN

15 tmp_1=B(1,1)

16 tmp_2=C(1,1)

17 A=tmp_1*tmp_2

18 x = A

19

20 ELSE ! <2>Result is a matrix

21 ! Case 2: B is a scalar

22 IF(Bd1==1 .AND. Bd2==1) THEN

23 tmp_1=B(1,1)

24 IF(.NOT. ALLOCATED(A1)) THEN

25 ALLOCATE(A1(Cd1,Cd2))

26 END IF

27 A1=tmp_1*C

28

29 ! Case 3: C is a scalar

30 ELSE IF(Cd1==1 .AND. Cd2==1) THEN

31 IF(.NOT. ALLOCATED(A1)) THEN

32 ALLOCATE(A1(Bd1,Bd2))

33 END IF

34 tmp_1=C(1,1)

35 A1=B*tmp_1

36

37 ! Case 4: B,C are matrices

38 ELSE IF (Bd2==Cd1) THEN

39 IF(.NOT. ALLOCATED(A1)) THEN

40 ALLOCATE(A1(Bd1,Cd2))

41 END IF

42 A1=B*C

43 END IF

44 IF(.NOT. ALLOCATED(x1)) THEN

45 ALLOCATE(x1(size(A1,1),size(A1,2)))

46 END IF

47 x1 = A1

48 END IF

Listing 4.2 Fortran code for handling array shape at runtime
54

4.8. Other Analyses in the Type Inference Process

1 for i=1:10

2 if(i<5)

3 x=i*2;

4 else

5 x=i+1;

6 end

7 A(x)=i;

8 end

Listing 4.3 MATLAB code segment for array bounds checking and resizing

4.7.2 Checking Array Bounds and Resizing Array at Runtime

The goal of shape inference is to determine the maximum size of an array. We use

value propagation analysis (described in Section 4.6) to estimate the maximum value

of each index that appears in the indexed-array assignment. Listing 4.3 shows an

example, the value of variable x changes during iterations, thus we need add array

bounds checking code in front of indexed-array assignment at line 7. Listing 4.4

shows the Fortran code segment for array bounds checking and array resizing when it

is necessary. In Listing 4.4, temporary variable Ad1 stores the current size of the first

dimension of array A, and extra array variable A tmp is used for temporarily storing

the old data of array A before it is resized. Before the indexed-array assignment at

line 7, the index of the array access is checked with current array bounds. If the

access is out of bounds, then the array is reallocated to the new size, and the old data

are restored. Therefore, the indexed-array assignment is guaranteed to succeed.

4.8 Other Analyses in the Type Inference Process

This section discusses the analyses which happen during the type inference process.

It includes discovering function calls, illegal identifiers, and the basic imaginary units

of complex numbers.

55

Type Inference Mechanism

1 INTEGER::i,x,

2 INTEGER Ad1, Ad1max

3 INTEGER, DIMENSION(:), ALLOCATABLE::A,A_tmp

4

5 DO i=1,10

6 IF(i<5)THEN

7 x=(i*2);

8 ELSE

9 x=(i+1);

10 END IF

11 ! First time allocation

12 IF(.NOT. ALLOCATED(A1)) THEN

13 ALLOCATE(A(x))

14 Ad1=size(A);

15 END IF

16

17 ! Array bounds checking

18 IF(x>Ad1) THEN

19 ! Using temporary array save old data

20 IF(ALLOCATED(A_tmp)) THEN

21 DEALLOCATE(A_tmp)

22 END IF

23 ALLOCATE(A_tmp(Ad1))

24 A_tmp = A

25

26 ! Resizing the array

27 IF(ALLOCATED(A)) THEN

28 DEALLOCATE(A)

29 END IF

30 Ad1max=x;

31 ALLOCATE(A(Ad1max))

32

33 ! Copy back the old data

34 A(1:Ad1) = A_tmp(1:Ad1)

35 Ad1=Ad1max;

36 END IF

37

38 A(x)=i;

39 END DO

Listing 4.4 Fortran code segment for array bounds checking and resizing

56

4.8. Other Analyses in the Type Inference Process

4.8.1 Discover Identifiers That are not Variables

After solving the script calls, an identifier appearing in the program could be a variable

or a function call as discussed in Section 3.2.2. Whether an identifier is a variable or

a function call is determined during the type inference process.

Before performing type inference, a symbol table has been created for each user-

defined function; all variables, including input and output parameters, in the symbol

table are initialized to have empty type. When the type inference reaches a user-

defined function, the types of input parameters of that function will be updated

based on the calling context.

Type inference traverses each node of a function’s AST from top to bottom. For

every statement, it gathers the use list of the statement, and checks each identifier

which appears in the use list to determine whether it is a variable or not based on

the following rules:

1. If the identifier has an entry in the symbol table and the type stored in that

entry is not empty type, then the identifier is a variable.

2. If the identifier has an entry in the symbol table but the type stored in that

entry is empty type, then there are two possibilities: if its name is included in

the list of built-in functions and user-defined functions, then the compiler will

treat it as a function call and raise an warning; otherwise, it is an uninitialized

variable and the compiler will raise an error.

3. If the identifier has no entry in the symbol table, then there are two possibilities:

if its name is included in the list of built-in functions and user-defined functions,

then it is a function call; otherwise, it is an undefined variable and the compiler

will raise an error.

4.8.2 Discover the Basic Imaginary Unit of Complex Numbers

MATLAB has a convenient way to declare complex constants. For example, a complex

number with a real part of 2 and an imaginary part of 3 could be expressed as 2+3i,

57

Type Inference Mechanism

1 p = 2 + 3 * j;

2 for j=1:5

3 p = 2 + 3 * j;

4 end

Listing 4.5 The meaning of i, j depends on context

2+3j, 2+3*i, or 2+3*j. The letter i or j represents the basic imaginary units of

complex numbers. The imaginary parts of the first two cases are unique and easy to

identify; but in the last two cases, the meaning of those imaginary parts, 3*i, 3*j,

depends on whether the i and j have been defined as variables or not. Listing 4.5

shows one example, where in the statement of line 1, j represents basic imaginary

unit; and in the statement of line 3, j is an integer loop variable defined at line 2,

and RHS of line 3 is an integer expression.

The McFor compiler supports these special uses of those two identifiers. If the

compiler discovers identifier i or j is an undefined or uninitialized variable, then it

will be treated as imaginary units; otherwise, they will be treated as variables.

58

Chapter 5

Transformations

Fortran is the closest conventional language to MATLAB because it uses the

same array syntax and has similar semantics for most array operations. However,

MATLAB has many special features that Fortran does not support. For example,

MATLAB supports linear indexing and using arrays as indices; it has various ways

of constructing arrays; and its operators can take operands of any type. We thus

designed an extra transformation phase to transform those special statements into

functional equivalent forms that can be straightforwardly translated into Fortran by

the code generator. This chapter discusses transformations designed for those special

features, which include transformations for array constructions (Section 5.1), linear

indexing (Section 5.2), using arrays as indices (Section 5.3), and type conversion (Sec-

tion 5.4). Generating readable Fortran code is another goal of the McFor compiler.

The aggregation transformation is designed for this purpose; it is discussed in Section

5.5.

5.1 Transformations for Array Constructions

MATLAB has a very powerful operator [] for building arrays. This brackets operator

is used as array constructor operator for creating a multi-dimensional array in one

assignment, e.g., A=[1,2,3,4; 5,6,7,8] constructs a 2-by-4 matrix. It is also served

59

Transformations

as concatenation operator to concatenate arrays either horizontally, e.g., C=[A,B], or

vertically, e.g., C=[A;B].

Fortran uses the same operator as the array constructor operator, but it can only

create one dimensional arrays. Therefore, we need to transform MATLAB array

construction assignments that create multi-dimensional arrays into multiple Fortran

assignments. Similar transformations are also needed for array concatenation state-

ments. Table 5.1 shows several examples. Table 5.1(a) is the MATLAB code segment,

Table 5.1(b) is the transformed code segment printed in MATLAB syntax. Every

statement in transformed code segment is either a legal Fortran statement or can be

straightforwardly translated into one Fortran statement.

In Table 5.1(a), the RHS of assignment S1 constructs a 2-by-3 array, so this as-

signment is transformed into two separate assignments (S1 and S2 in Table 5.1(b)),

each assignment constructs one row. For the same reason, S3 is transformed into two

assignments (S3 and S4 in Table 5.1(b)). Assignment S5 horizontally concatenates

two 2-by-3 arrays, M1 and M2, into a 2-by-6 array N1. It is transformed into two assign-

ments, which perform concatenation of the first row and the second row separately.

Assignment S7 vertically concatenates three 2-by-3 arrays, M1, M2 and M1 into a 6-by-3

array N2; hence, S7 is transformed into three assignments (S7, S8 and S9 in Table

5.1(b)), each of which saves one array to the proper locations of N2.

S1 M1=[1,2,3; 4,5,6]; M1(1,:)=[1,2,3];

S2 M1(2,:)=[4,5,6];

S3 M2=[M1(2,:); M1(1,:)]; M2(1,:)=M1(2,:);

S4 M2(2,:)=M1(1,:);

S5 N1=[M1,M2]; N1(1,:)=[M1(1,:),M2(1,:)];

S6 N1(2,:)=[M1(2,:),M2(2,:)];

S7 N2=[M1;M2;M1]; N2(1:2,:)=M1;

S8 N2(3:4,:)=M2;

S9 N2(5:6,:)=M1;

(a) (b)

Table 5.1 MATLAB array construction and concatenation expressions

60

5.2. Transformations for Linear Indexing

5.2 Transformations for Linear Indexing

MATLAB supports linear indexing, where any element of an array can be referred

with a single subscript. However, in Fortran, referencing an element of an array must

specify subscripts of all its dimensions. Therefore, we need to transform all the linear

indexing expressions into correct indexing forms.

Linear indexing is commonly used when indexing vectors. In MATLAB, both row

vectors and column vectors are two-dimensional matrices (n-by-1 and 1-by-n matrices

respectively), but they are usually indexed by one subscript in the program. Because

vectors have one dimension whose size is equal to one, those linear indexing expres-

sions can be straightforwardly transformed into a two-subscripts form. In Listing 5.1,

the statement at line 6 shows a linear indexing example where A is a column vector

and B is a row vector. The statement at line 6 in Listing 5.2 is the transformed code.

Another use of linear indexing is to represent a multi-dimensional array in linear

form. This is done by using a colon operator as the single subscript, e.g., A(:). For an

m-by-n array A, A(:) represents a one dimensional array of size m*n, where elements

in array A are listed in column-major order. This linear form is very convenient for

applying calculations on all elements of the array, regardless of the actual structure

the array has. For example, by passing A(:) into built-in function mean() or sum(),

we can get the mean or sum of all elements of A.

A linear form array is also used for assigning a sequence of data to an array in one

statement. Listing 5.1 shows two examples. In the assignment at line 8, a sequence

of numbers is assigned to an m-by-n array D. The RHS of the assignment is a colon

expression (a sequence of numbers from 1 to m*n), and the LHS is the linear form

of an m-by-n array D. In the transformed code (shown in Listing 5.2 line 8-13), we

first create a one dimensional array tmp1 to store the sequence of number, then use a

nested loop to index the array D in column-major order and assign the corresponding

value from tmp1 to D. Assignment at line 10 in Listing 5.1 is a similar example, where

data of an n-by-m array E is assigned to an m-by-n array D in one statement. In the

transformed code (Listing 5.2, line 14 - 23), we do the similar process: first create

a one dimensional array tmp2 to temporarily store the value of array E by a nested

61

Transformations

1 A=zeros(m,1);

2 B=zeros(1,n);

3 D=zeros(m,n);

4 E=zeros(n,m);

5

6 A(3)=B(2)

7

8 D(:)=1:m*n

9

10 D(:)=E(:);

Listing 5.1 MATLAB code segment of linear indexing

1 A=zeros(m,1);

2 B=zeros(1,n);

3 D=zeros(m,n);

4 E=zeros(n,m);

5

6 A(3,1)=B(1,2)

7

8 tmp1=1:m*n

9 for j=1:n

10 for i=1:m

11 D(i,j)=tmp1(i+(j-1)*m);

12 end

13 end

14 for j=1:m

15 for i=1:n

16 tmp2(i+(j-1)*n)=E(i,j);

17 end

18 end

19 for j=1:n

20 for i=1:m

21 D(i,j)=tmp1(i+(j-1)*m);

22 end

23 end

Listing 5.2 Transformed code segment of linear indexing

loop, then assign those values back to D in correct order through another nested loop.

62

5.3. Transformations for Using Arrays as Indices

5.3 Transformations for Using Arrays as Indices

In MATLAB, logical arrays or integer arrays can be used as indices of another arrays.

If an integer array is used as an index, then the values of its elements are used

as subscripts for the indexed array; therefore, the values of all its elements must be

positive integers and must not exceed the size of the indexed array. For example, if D

is [1,3;2,4] and A is another array, then A(D) represents A(1), A(2), A(3), and A(4),

(elements of D are listed in linear indexing form). If A is a 2-by-3 array, then the value

of any element in D should not bigger than 6.

Listing 5.3 and Listings 5.4 shows two examples. In Listing 5.3, at the LHS of

assignment of line 5, integer array D is used as the index for array R. In the trans-

formed code (Listing 5.4, lines 5-11), we create a nested loop to get the value of every

element of D, and convert them into corresponding indices of array R, and perform

the assignment on that element. At assignment of line 7 of Listing 5.3, the same

indexed expression is used at the RHS, and the LHS is a linear form array E. For this

assignment, we use the technique for transforming linear indexing. As shown in the

transformed code (Listing 5.4, line 12-24), we first create a temporary array tmp1 to

save the value of R(D) by using a nested loop, then assign them back to E in correct

order through another nested loop.

When a logical array is used as an index, it has a different meaning: the positions

of the true values in the logical array will become the indices for the indexed array.

For example, if logical array B is [true, false; false, true], and array A has the

same shape as B, then A(B) represents A(1,1), A(2,2). Table 5.2 shows an example of

using logical array as an index. In MATLAB code segment (Table 5.2(a)), variable A

is an m-by-n array, and B is a logical array of the same shape. In the transformed code

segment (Table 5.2(b)), assignment S3 of Table 5.2(a) is transformed into a nested

loop that goes through every element of array A and B in column-major order. Inside

the loop, an extra if-statement checks the element of B to see whether its value is true

or false, and updates the element of A when that value is true.

63

Transformations

1 R = zeros(n, m);

2 E = zeros(n, m);

3 D = ones(m, n);

4

5 R(D)=2;

6

7 E(:)=R(D);

Listing 5.3 Example of using arrays as indices

1 D = ones(m, n);

2

3 for j=1:n

4 for i=1:m

5 i1=mod((D(i,j)-1),m)+1;

6 j1=(D(i,j)+1)/m;

7 R(i1,j1)=2;

8 end

9 end

10

11 for j=1:n

12 for i=1:m

13 i1=mod((D(i,j)-1),m)+1;

14 j1=(D(i,j)+1)/m;

15 tmp1(i+(j-1)*m)= R(i1,j1);

16 end

17 end

18 for j=1:m

19 for i=1:n

20 E(i, j) = tmp1(i+(j-1)*n);

21 end

22 end

Listing 5.4 Transformed code segment of using arrays as indices

In MATLAB, the indexing logical array can have smaller shape than the indexed

array. In this case, the positions of the logical array are counted linearly by column-

major order and then applied on the indexed array in linear index form. For example,

when logical array B is [true, false; false, true], array A is an 3-by-2 array, then A(B)

represents A(1), A(4), which are equivalent to A(1,1), A(2,1).

In our transformation, we first create a one-dimensional logical array to temporar-

ily store the logical array in linear form, then apply it on the indexed array through a

64

5.4. Transformations for Type Conversions

S1 A=randn(m,n); A=randn(m,n);

S2 B=A>0.5; B=A>0.5;

S3 A(B)=0; for j=1:n

S4 for i=1:m

S5 if(B(i,j))

S6 A(i,j)=0;

S7 end

S8 end

S9 end

(a) (b)

Table 5.2 Example of using a logical array as an index

nested loop. Table 5.3 shows another example. In Table 5.3, variable A is an m-by-n

array and B is a p-by-q logical array. In the first nested-loop of the transformed code

segment (Table 5.3(b)), we save the elements of B into a one dimensional array tmp1.

In the second nested-loop, we map the position in A onto array tmp1, and update the

element of A according to the corresponding value in tmp1.

5.4 Transformations for Type Conversions

5.4.1 Logical and Character Type in Computations

MATLAB’s arithmetic operators can take operands of any types, those operands are

automatically converted into compatible types during the computation. Fortran, on

the other hand, has more strict rules for mixing different types of operands in a

computation. Fortran’s arithmetic operators do not take operands that are logical

and character type, they only take operands that are numeric types, such as integer,

real, double precision and complex type. When operands have different numeric types,

implicit type conversion automatically promotes the smaller type to the larger type,

which will also be the type of the computation result.

After the type inference process (described in Section 4.2), every variable will

have been assigned a type; we thus can discover those logical and character type

65

Transformations

S1 A=randn(m,n); A=randn(m,n);

S2 C=randn(p,q); C=randn(p,q);

S3 B=C>0.5; B=C>0.5;

S4 A(B)=0; tmp2=p*q;

S5 for j=1:q

S6 for i=1:p

S7 tmp1(i+(j-1)*p)=B(i,j);

S8 end

S9 end

S10 for j=1:n

S11 for i=1:m

S12 if((i+(j-1)*m<=tmp2)&&(tmp1(i+(j-1)*m)))

S13 A(i,j)=0;

S14 end

S15 end

S16 end

(a) (b)

Table 5.3 Example of using an integer array as an index

variables that are involved in computations. Our solution is to convert variables or

values that have logical and character type into numeric type variables before they

enter the computation. Table 5.4 shows one example. In the transformed Fortran

code shown in Table 5.4(b), integer temporary variable tmp1 is created for converting

logical variable b into integer at S4 and replacing it for the addition operation at S5.

The integer temporary variable tmp2 is created for the same purpose for character

variable c.

5.4.2 Fortran’s Limited Type Conversions

Fortran’s implicit type conversions can also happen when assigning one type of value

to another type of variable, but those type conversions can only happen between

logical and integer, integer and real, integer and double precision, integer and complex,

real and complex types, or double precision and complex types. For example, if n

is an integer variable and b is a logical variable, then an implicit type conversion

66

5.4. Transformations for Type Conversions

LOGICAL::b

CHARACTER::c

REAL::a,d

INTEGER::tmp1, tmp2

S1 a=3.14; a=3.14;

S2 b=a>0; b=a>0;

S3 if(b) if(b)

S4 tmp1=b;

S5 a=a+b; a=a+tmp1;

S6 end end

S7 c=’A’; c=’A’;

S8 tmp2=ICHAR(c);

S9 d=’A’+a; d=tmp2+a;

(a) (b)

Table 5.4 Converting logical and character type variables

happens on both assignments: n=b and b=n. (That is also the reason why we chose

an integer temporary variable in the Table 5.4 example.) However, the character

type cannot be automatically converted to any other types; there are some built-in

functions designed for this purpose. In Table 5.4 example, we use function ICHAR()

to convert character variable c to integer.

After type inference, some assignments may become illegal because of the Fortran

type conversion rules. Table 5.5 shows one of those examples. In the MATLAB

code segment shown in Table 5.5 (a), according to our type inference mechanism,

array b is inferred as real type at S1, and will not change type at S3 since S3’s

RHS has logical type, which is smaller than real type. But since logical cannot be

automatically converted to double precision type in Fortran, we thus need use an

integer type variable tmp1 as the bridge to complete this type conversion.

67

Transformations

DOUBLE PRECISION,DIMENSION(3,3)::B

INTEGER,DIMENSION(3,3)::tmp1

S1 B(3,3)=1.5; B(3,3)=1.5;

S2 tmp1=B>0;

S3 B=B>0 B=tmp1;

(a) (b)

Table 5.5 Type conversion example 2

5.5 Aggregation Transformation

The simplification transformation, as described in Section 3.2.3, generates a consid-

erable number of temporary variables to represent sub-expressions. Those temporary

variables help to reduce the complexity of type inference and transformations, but

cause the target code to be longer and less readable than the original code. Also, some

of those temporary variables are unneeded, e.g., those for array access expressions,

and some are only used to simplify the type inference and become useless afterward.

Therefore, after type inference and transformation phase, we designed the aggrega-

tion transformation to merge most of those sub-expressions back into the place where

they came from.

Because of the way those temporary variables been created, they are usually used

in only one place, the original long expression. Except those temporary variables

that have been transformed into subroutine calls with their assignments, the rest of

temporary variables can be integrated back into their original expressions.

The compiler first scans the symbol tables, find out all temporary variables created

by the simplification and their assignment statements. The compiler then replaces the

use of those variables by the expressions they represent, and deletes those variables

and their assignments. The merging process does not need extra flow analysis because

it will not change the flow and data dependence of the program.

Listing 5.5 (a) shows an example. Statement at line 2 is the original MATLAB

statement. Statements in line 5-8 are the result after simplification phase where

68

5.5. Aggregation Transformation

1 % Original MATLAB Statement

2 tempr=wr*data(j-1) - wi*data(j);

3

4 % After simplicatoin transformation

5 tmp_1 = (j - 1);

6 tmp_2 = data(1, tmp_1);

7 tmp_3 = data(1, j);

8 tempr = ((wr*tmp_2)-(wi*tmp_3));

9

10 % After aggregation transformation

11 tempr=(wr*data(1,(j-1)))-(wi*data(1,j));

Listing 5.5 Example of the Aggregation transformation

three temporary variables have been created. Statement at line 11 is the result after

aggregation, where the long expression has been recovered.

69

Transformations

70

Chapter 6

Performance Evaluation

In this chapter we present the experimental results of our McFor compiler. We

translate a set of benchmarks to measure the effectiveness of the type inference and

transformation techniques described in this thesis. The performance of compiled

codes are compared with the execution times of their corresponding MATLAB codes

in MATLAB, Octave, and McVM1 [CBHV10].

6.1 Description of the Benchmarks

This set of benchmarks is acquired from a variety of sources, some of them are used

by other MATLAB compiler projects, including FALCON [RP99, RP96], OTTER

[QMSZ98], and MAT2C [Joi03a]. We have adjusted the problem size of each bench-

mark, (including the size of array and the number of iterations), in order to get a

measurable execution time. A brief description of the benchmarks is presented below.

adpt is an implementation of finding the adaptive quadrature using Simpson’s rule.

The benchmark integrates the function
∫

−1

6
f(x) = 13(x − x2)e−1.5x to a tol-

erance of 4 × 10−13. This benchmark features an array whose size cannot be

predicted by the compiler and expands dynamically during the computation. It

is a benchmark from the FALCON project.

1http://www.sable.mcgill.ca/mclab/mcvm mcjit.html

71

Performance Evaluation

capr is an implementation of computing the capacitance of a transmission line using

finite difference and Gauss-Seidel method. It is a loop-based program that

involves two small matrices and performs elementary scalar operations on them.

It is from Chalmers University of Technology2.

clos calculates the transitive closure of a directed graph. Its execution time is dom-

inated by a matrix multiplication between two 450 x 450 matrices. It is a

benchmark from the OTTER [QMSZ98] project.

crni is an implementation of the Crank-Nicholson solution to the heat equation.

It is a loop-based program that performs elementary scalar operations on a

two-dimensional matrix (2300 x 2300). It is a benchmark from the FALCON

project.

dich is an implementation of the Dirichlet solution to Laplace’s equation. It is a loop-

based program that performs elementary scalar operations on a two-dimensional

matrix (134 x 134). It is a benchmark from the FALCON project.

diff calculates the diffraction pattern of monochromatic light through a transmission

grating for two slits. It is a loop-based program that performs calculations

on scalar variables and saves the results into an array whose size is increased

dynamically. It is from “The MathWorks’ Central File Exchange”. 3

edit calculates the edit distance between two strings. Its major computation is a

character comparison, which compares every character of one string with all

the characters of another string, and saves the result into a two-dimensional

array. It is from “The MathWorks’ Central File Exchange”.

fdtd is an implementation of applying the Finite Difference Time Domain (FDTD)

technique on a hexahedral cavity with conducting walls. It is a loop-based

program that performs computations on multiple elements between six three-

dimensional arrays. It is from Chalmers University of Technology.

2http://www.elmagn.chalmers.se/courses/CEM/
3http://www.mathworks.com/matlabcentral/fileexchange

72

6.2. Performance Results

fft computes the discrete Fourier transform for complex data. It is a loop-based

program that performs elementary scalar operations on a one dimension array.

This is our implementation of the algorithm from book “Numerical Recipes”

[WPF07].

fiff is an implementation of finite-difference solution to the wave equation. It is

a loop-based program, and performs elementary scalar operations on a two-

dimensional array. It is a benchmark from the FALCON project.

mbrt computes mandelbrot set with specified number elements and number of iter-

ations. It is a loop-based program that performs elementary scalar operations

on complex type data. It is written by Anton Dubrau of McLab team.

nb1d is an implementation of N-body simulation using one-dimensional arrays. It is

a loop-based program that involves various vector-vector computations. It is a

benchmark of OTTER project.

nb3d is an implementation of N-body simulation using three-dimension arrays. It

involves various matrix-matrix element-wise computations and several special

cases of indexing by an array. It is a benchmark of OTTER project.

These benchmarks only use the features supported by McFor. Thus, although

these benchmarks exercise many features of MATLAB, not all MATLAB programs

can be compiled by McFor. A detailed list of McFor supported features is provided

in Appendix A.

6.2 Performance Results

All experiments were performed on a Linux machine with 2.0GHz AMD Athlon(tm)

64 X 2 Dual Core Processor and 4GB RAM. It runs Ubuntu GNU/Linux 2.6.24-24

(x86 64). The software packages we used are MATLAB version 7.6.0.324 (R2008a),

Octave version 3.0, McVM version 0.5, and GCC [Inc09] version 4.2.4.

73

Performance Evaluation

Table 6.1 represents the average execution time of ten runs for all benchmarks

using the four environments: MATLAB execution, Octave interpretation, McVM

JIT, and compilation using McFor. The Fortran programs are compiled by using

gfortran compiler of GCC version 4.2.4 with the optimization flag “O3”.

Table 6.2 presents the speedups of Octave, McVM and McFor over the MATLAB.

Figure 6.1 represents the speedup of McFor over the MATLAB.

The last row of those test results, named as “adpt-4k”, is the execution time of

the “adpt” benchmark with the result array being preallocated to size 4000-by-6, in

which case no reallocation occurs during the execution.

6.3 Comparison of Compiled Fortran Code to MATLAB

Our experimental results show that for all benchmarks, the compiled Fortran codes

have better performance than MATLAB, but the speedups are heavily dependent on

the characteristics of each program.

The “edit” benchmark is the one that benefits the most from compilation. It has

the largest speedup, over 102 time faster. The benchmark uses two one-dimensional

arrays to store two strings, and compares them character by character. This result

shows that Fortran is much more efficient for handling string and character operations

than MATLAB.

The “nb1d” benchmark has the second largest speedup, over 22, which is more

than twice the best speedup of remaining benchmarks. Most computations of this

benchmark are element-wise vector-vector operations on vectors whose sizes are smaller

than 100. Because Fortran has operators that internally support those vector oper-

ations, the generated Fortran code has almost identical computations as MATLAB

code. The result shows that the Fortran’s implementations of those vector operations

are more efficient than MATLAB’s.

Programs whose computations involve complex type data and access large two-

dimension matrix or three-dimensional arrays, have a medium speedup (8 to 11).

Those benchmarks includes: “capr”, “diff”, “fdtd”, “fiff”, “mbrt”. These results

show that Fortran has more efficient memory management for accessing larger size of

74

6.3. Comparison of Compiled Fortran Code to MATLAB

benchmark MATLAB Octave McVM McFor

adpt 4.947 45.597 15.410 2.803

capr 14.902 5432.700 2.756 1.800

clos 3.513 15.782 5.061 3.034

crni 12.977 5692.400 1580.500 3.182

dich 8.023 4084.200 1.821 2.469

diff 7.005 113.070 49.390 0.657

edit 19.482 377.210 80.344 0.189

fdtd 6.060 168.680 33.171 0.687

fft 27.596 8720.700 14.548 14.229

fiff 12.283 4847.800 5.691 1.418

mbrt 10.310 278.220 48.099 1.208

nb1d 11.436 40.240 6.003 0.509

nb3d 2.717 40.673 4.123 1.217

adpt-4k 3.282 25.404 15.145 1.043

Table 6.1 Benchmarks’ execution times (in seconds).

benchmark Octave McVM McFor

adpt 0.109 0.32 1.76

capr 0.003 5.41 8.28

clos 0.223 0.69 1.16

crni 0.002 0.01 4.08

dich 0.002 4.40 3.25

diff 0.062 0.14 10.66

edit 0.052 0.24 102.89

fdtd 0.036 0.18 8.82

fft 0.003 1.90 1.94

fiff 0.003 2.16 8.66

mbrt 0.037 0.21 8.53

nb1d 0.284 1.91 22.47

nb3d 0.067 0.66 2.23

adpt-4k 0.129 0.22 3.15

Table 6.2 Speedup over MATLAB execution

75

Performance Evaluation

Figure 6.1 Speedup of McFor over MATLAB

76

6.3. Comparison of Compiled Fortran Code to MATLAB

data structures than MATLAB.

Programs that have relatively simple data structures, e.g., one dimensional arrays

or small two-dimensional arrays, and perform mostly double type scalar computations

have a smaller, although still impressive, speedup (1.9 to 4.1). The “fft” benchmark

has a very big one-dimensional array containing 8-million double values, but the

benchmark uses those values sequentially and only performs scalar computations.

Therefore, despite the fact that those computations run about 108 times, the Fortran

code has a limited speedup of 1.94. The benchmark “nb3d” uses six small matrices,

about 75-by-75 each, and it performs simple scalar computations and elementary-wise

matrix-matrix computations on those arrays. Because those small arrays can be easily

cached, the interpretive overheads on accessing them are limited. Thus, the Fortran

code of benchmark “nb3d” has a small speedup of 2.23. The “dich” and “adpt-4k”

benchmarks have similar computations and size of data: “dich” uses a 134-by-134

array and “adpt-4k” uses a 4000-by-6 array. The speedup of compiled Fortran code

on both benchmarks are also similar, 3.25 and 3.15. The “crni” benchmark uses

a larger two-dimensional array (2300-by-2300), and it has computations on partial

arrays, which is more costly in term of accessing data. Therefore, the Fortran code

has a better speedup of 4.08.

For programs performing matrix computations between large matrices, the com-

plied Fortran program has limited speedup over its interpretive execution. This is

because Fortran program uses routines from BLAS and LAPACK libraries to perform

matrix computations, and MATLAB matrix computations are also built on the top

of BLAS and LAPACK and those libraries has been well integrated into MATLAB

runtime environment.

The major computation of the “clos” benchmark is a matrix multiplication, which

consumes over 97% of total execution time. In the generated Fortran code, we use the

dgemm() routine of BLAS library to perform matrix computation. Because in this

benchmark, the multiplication only executes sixty times, the interpretive overhead

for function dispatching is relative small. Therefore, the compiled program has very

limited speedup, 1.16.

We also test the performance of Fortran intrinsic function MATMUL(), which

77

Performance Evaluation

is designed for matrix multiplication. The result shows that for benchmark “clos”,

Fortran code that uses MATMUL() is seven times slower than MATLAB interpretive

execution. We tested MATMUL() on different sizes of arrays, the preliminary results

indicate that MATMUL() performs better than MATLAB only when the sizes of

matrices are smaller than 200-by-200.

The “adpt” benchmark is the program whose performance heavily relies on the

dynamic memory allocations and data copying operations. This benchmark integrates

the function
∫
−1

6
f(x) = 13(x − x2)e−1.5x to a tolerance of 4 × 10−13. It generates a

result array of size 3270-by-6. This program preallocates the array to the size of

1-by-6 at the beginning, then expands it when the computation requires more space

to store new results.

The inference mechanism cannot predict the final size of the array because it

depends on the tolerance. During the value propagation analysis on array size (as

described in 4.6), the compiler has discovered that several statements whose array

indices are not comparable to the current size of array, and added array bounds

checking code and array expanding code (as described in Section 4.7.2) in front of

those statements to handle the potential array expanding.

The test of the “adpt” benchmark is conducted on total 10 iterations on the func-

tion where the result array is initialized as 1-by-6 then expanded to 3270-by-6. The

execution results show that the Fortran code has about 1.76 speedup, which indicates

that compiled Fortran code performs dynamic reallocations faster than MATLAB in

this case.

The “adpt-4k” is the static version of “adpt”. The “adpt-4k” is tested on the

same code with different conditions, where the array is initialized to the size of 4000-

by-6, thus there is no reallocation occurring in the execution. Comparing to same

interpretive execution in MATLAB, the speedup of “adpt-4k” is 3.1 which is much

higher that “adpt”. The results also show that it has the speedup of 2.6 over Fortran

version of “adpt”. These results show that Fortran has notable overhead when per-

forming dynamic reallocations, and comparing to MATLAB, Fortran is more efficient

for handling large amounts of statically-allocated data.

78

6.4. Comparison of Dynamic Reallocation in Fortran and MATLAB

6.4 Comparison of Dynamic Reallocation in Fortran and

MATLAB

By applying type inference and transformation techniques, McFor is able to infer

array variables’ shapes and declare them statically in most benchmarks. Only one

benchmark “adpt” requires dynamic reallocation code. In order to measure the cost

of reallocations and the potential array expanding strategies, we conducted a set of

experiments on the “adpt” benchmark .

6.4.1 Dynamic Reallocation Tests

In order to get the execution time for different numbers of allocations, we ran the pro-

gram with different preallocation sizes, which are used for initializing the array before

the reallocations. We conducted three sets of tests using three different tolerances.

In the first set of tests, we used a tolerance of 4× 10−13 and the size of the result

array is 3270-by-6. In the second set of tests, tolerance is 4 × 10−14 and the size of

the result array is 5640-by-6. In the third set of tests, tolerance is 6× 10−15 and the

size of result array is 9490-by-6. During each test, we use different preallocation sizes

until it is over the size of the result array. Figure 6.2, 6.3, and 6.4 shows the speedup

of compiled Fortran code over MATLAB on those three sets of tests respectively.

From the Figure 6.2, 6.3, and 6.4, we observe that the speedup increases as the

number of reallocations decreases, and the increase is greater when the number of

reallocations is smaller than 1500. We also observe that the cost of reallocation also

relates to the size of the array. As the arrays size increases, the speedup decreases. In

the third set of tests (Figure 6.4), where the size of result array is 9490-by-6, compiled

Fortran code even runs slower than MATLAB when number of reallocations is greater

than 3300.

This result shows that Fortran has higher overhead than MATLAB when perform-

ing a large number of reallocations on large arrays.

But when the number of reallocations is small, the compiled Fortran code runs

faster than MATLAB. The “diff” benchmark is another example. The “diff” bench-

79

Performance Evaluation

Figure 6.2 Speedup of McFor over MATLAB on different reallocation sizes (1)

Figure 6.3 Speedup of McFor over MATLAB on different reallocation sizes (2)

80

6.4. Comparison of Dynamic Reallocation in Fortran and MATLAB

Figure 6.4 Speedup of McFor over MATLAB on different reallocation sizes (3)

mark contains an array concatenation operation, which expands an array one row at

a time. By using transformation and inference technique described in Section 5.1, we

can infer the final size of the array. We also generate another version of the program

with reallocation code, where the total number of reallocations is 610. Its execution

results show that the overhead of reallocations is about only 2.8%.

6.4.2 Different Reallocation Strategies Tests

Because the number of reallocations can be reduced by using different reallocation

strategies, we conducted another set of tests to measure the effectiveness of different

strategies.

The original reallocation code expands the array based on the required size, so

when the program expands the array one row at a time, as the benchmark “adpt”

does, this way of expanding is inefficient. Hence, we created a new strategy: the

program expands the array by a factor every time. We conducted a set of tests on

the “adpt” benchmark with tolerance of 6× 10−15 using different expanding factors.

Figure 6.5 shows the number of reallocations of different expanding factors, where

the number of reallocations drops rapidly because of the new strategy. Figure 6.6

shows the speedups over MATLAB on different expanding factors.

The speedup curve shows that the compiled Fortran code runs as fast as MATLAB

81

Performance Evaluation

Figure 6.5 Number of reallocations of different expanding factor

Figure 6.6 Speedup over MATLAB on different expanding factor

82

6.4. Comparison of Dynamic Reallocation in Fortran and MATLAB

when the factor is about 1.0003 (with 8100 reallocations); and the speedup increases

rapidly until the factor reaches 1.004, where corresponding number of reallocations

is about 1000. Then zigzags appear in the speedup curve. There are two reasons for

that. First, as the factor increases, the number of reallocations that is reduced by the

factor becomes relatively small; therefore, there is only a small gain in performance.

Second, some larger factors may compute sizes that are larger than what the result

arrays should be, thus extra overheads are caused by allocating unnecessary spaces.

The speedup curve approaches the line 2.94, which is the maximum speedup when

there is no reallocation during the execution.

In conclusion, using expanding factor can effectively reduce the number of reallo-

cations, but a larger factor may cause extra overhead for allocating extra array space.

Also, using expanding factor could result the final array has larger size than it should

be, so it should only be used on the program that is not sensitive about the final size

of the array.

6.4.3 Overhead of Passing Dynamically Allocatable Arrays

In Fortran, there are two ways of passing an array to a function/subroutine, either

specify the size of array by other arguments or just pass the array. When an array

is passed into a function/subroutine alone, it needs to be declared as an allocatable

array in the both caller and callee.

Fortran 95 has very good support for passing allocatable arrays. An allocatable

array can be defined in a function/subroutine without mentioning its size, and be

passed to other functions/subroutines, where the array can be allocated, updated, or

de-allocated.

However, this convenient feature comes with overhead. According to our experi-

ments on the “crni” benchmark, passing four arrays to function tridiagonal() without

their size (line 1 of Listing 6.1) will have up to 5% overhead comparing to passing it

with an extra argument, their size n (line 3 of Listing 6.1). During the execution of

the benchmark, this function is called about 23000 times.

83

Performance Evaluation

1 SUBROUTINE tridiagonal(A, D, C, B, X)

2

3 SUBROUTINE tridiagonal(A, D, C, B, n, X)

Listing 6.1 Passing array with or without its size.

6.5 Summary of Fortran 95 vs. MATLAB

Fortran 95 has less overhead on accessing large amount of data and complex data

structures (e.g., three-dimensional arrays). Fortran 95 has large advantage on smaller

size element-wise vector-vector computations and complex type data computations.

Most basic built-in functions, e.g., sin(), cos(), abs(), exp(), run faster in compiled

Fortran codes than in MATLAB.

Compiled Fortran code is very efficient when performing a small number of reallo-

cations on small arrays. For programs with a large number of reallocations, using an

expanding factor can effectively reduce the reallocation overhead. Therefore, MAT-

LAB programs with dynamic allocations can obtain performance improvement by

translating into Fortran code.

MATLAB performs matrix-matrix computations very efficiently. MATLAB has

efficient loop control structures. In all benchmarks, there are no notable overhead ac-

cumulated by a large number of iterations. MATLAB has improved its performance

on double type scalar computations and accessing one-dimensional array and small

two-dimensional matrices. However, due to its interpretive overheads on type infer-

ence, array bounds checking, and memory accessing, MATLAB programs are still

significantly slower than compiled Fortran codes.

6.6 Comparison of Compiled Fortran Code to Octave

Octave [Eat02] is a MATLAB compatible interpreter, which like McFor, is an open

source project. The experimental results show that for all benchmarks, the com-

piled Fortran codes have better performance than interpretive execution in Octave.

Speedups of some benchmarks are over 1000. Those benchmarks include “capr”,

84

6.7. Comparison of Compiled Fortran Code to McVM

“crni”, “dich”, “edit”, and “fiff”. The major computations of those benchmarks are

scalar computations but run in a loop with a large number of iterations. The results

show that in Octave, the interpretive overhead accumulates heavily over the large

number of iterations.

Comparing to other benchmarks, Octave runs the “clos” benchmark relatively

efficiently. The speedup of compiled Fortran code over Octave is 5.2, the lowest of

all benchmarks. Octave’s numerical libraries also use BLAS to perform the matrix

computation, but the BLAS routines are wrapped into C++ classes. Because the

matrix computation in “clos” consumes over 97% of total execution time, this result

shows that Octave’s numerical libraries have very high overhead for performing the

basic matrix computation.

6.7 Comparison of Compiled Fortran Code to McVM

The McVM virtual machine is a MATLAB just-in-time compiler developed by Maxime

Chevalier-Boisvert of the McLab team [CB09]. It is also a component of the McLab

project, and uses the same MATLAB-to-Natlab translator, Lexer and Parser as Mc-

For does. McVM uses LLVM [LA04] as JIT engine to emit assembly code. We were

able to use an alpha version (0.5) of McVM to get some initial results.

The experimental results shows that except one benchmark, “dich”, compiled

Fortran codes have better performance than McVM.

The speedup of McVM over compiled Fortran code on the “dich” benchmark is

about 1.4. The explanation for this result is that, the benchmark program has been

fully compiled by the McVM JIT compiler and the assembly code generated by LLVM

JIT engine is more efficient than the executable code created by gfortran compiler.

The “dich” benchmark is a loop-based program that mostly performs scalar oper-

ations. The type and shape of two array variables can all be inferred by the compiler.

Its major computations happen inside two nested for-loops, the numbers of iterations

of both loops can be predicted at compile time. Because those scalar computations,

for-loops, and array accesses are fully supported by the LLVM assembly instruction

set, the LLVM JIT engine can generate efficient assembly code for that code segment.

85

Performance Evaluation

Benchmarks that have similar computations also perform well in McVM. Those

benchmarks include “capr”, “fft”, “fiff”, and “nb1d”. McVM out performs MATLAB

on those benchmarks.

Because the LLVM assembly instruction set cannot directly represent complex

data structures (such as three-dimensional arrays and the complex data type) and

matrix computations, McVM performs less efficiently on other benchmarks.

86

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this thesis is to apply type inference techniques that have been

developed for array program languages and build an open source MATLAB-to-Fortran

95 compiler to generate efficient Fortran code. Our inference process aims to infer

variables’ type and shape information as much as possible at compile time, so that the

generated code can avoid runtime overhead on type checking and array reallocations.

We developed a type hierarchy and analysis to infer the intrinsic type of all vari-

ables. In order to maximally predict the shape of array variables at compile time, we

developed special transformations to handle array concatenation operations, and a

value propagation analysis to estimate the maximum size of arrays. For the remain-

ing cases, where the size of array cannot be predicted at compile time, we generated

code to dynamically check the size of array and reallocate the array when it is nec-

essary. By using those techniques, only one of twelve benchmarks requires dynamic

reallocation code.

Another goal of our work is to generate programmer-friendly code that is easy to

understand, debug, and reuse. Fortran 95 is the best target language because Fortran

95 has the closest syntax and semantics, which makes translated code closer to the

87

Conclusions and Future Work

original MATLAB program. To keep the program structure, we compiled every user-

defined function independently, and preserved their function declarations in the target

Fortran code. To avoid unnecessary renaming, we did not choose SSA form as our

intermediate representation, but used an extended AST with type conflict functions

that are used to explicitly capture potential type changes in the program.

The performance evaluation results show that the compiled programs perform

better than their MATLAB executions, but the speedups varies, ranging from 1.16

to 102, depending on the characteristics of the program. We also observe that char-

acter operations are executed very slowly in MATLAB, Fortran code handles large

multi-dimensional arrays very efficiently, MATLAB’s built-in function for matrix mul-

tiplication on large arrays is faster than Fortran’s intrinsic function, and a different

reallocation strategy can improve the performance for programs with a larger number

of reallocations.

7.2 Future Work

There are several possible further projects for McFor that can further improve the

performance of generated Fortran code.

1. It would be useful to gather the structural information of matrices and use them

for selecting appropriate Fortran implementations for matrix computations.

The structure of a matrix decides whether the matrix is a square, sparse,

triangular, symmetric, Hermitian, or another type of matrix. It is another im-

portant property the affects the matrix computations. For example, the appro-

priate algorithm for solving a matrix left division operation A\B is dependent on

the structures of matrices A and B. Moreover, some MATLAB built-in functions

are specifically designed for diagonal matrices and sparse matrices. Therefore,

by using the structural information of matrices with their type and shape infor-

mation, the code generator could select more appropriate library routines that

can efficiently perform the computation.

88

7.2. Future Work

2. With many new features introduced by the recent Fortran standards, we believe

that most MATLAB features can be translated into efficient Fortran implemen-

tations.

Fortran has developed from a simple procedural programming language to

a modern programming language. Fortran 2003, the most recent standard, has

extended Fortran to object-oriented and generic programming. Fortran 2003

introduces new features that can be used to implement many MATLAB special

features. For example, Fortran 2003 supports Cray pointers, C-like pointers that

can point to a function or subroutine, which can be used to simulate the function

handles of MATLAB. Fortran 2003 supports “submodules”, which are similar to

the MATLAB’s embedded functions. Fortran 2003 also supports parameterized

derived type and allows allocatable arrays and pointes as components, which

can be used for implementing MATLAB’s cell array and structure.

3. Parallelization

Exploiting parallelism can further improve the performance of the generated

code. After inferring shapes of array variables, many data-dependent analysis

and parallelization optimizations can be added to the compiler. Another pos-

sible approach is to integrate McFor with other Fortran parallel compilers to

generate parallel programs. One way of the integration is to generate the par-

allelization directives, such as OpenMP Fortran API directives, for a target

parallel compiler by utilizing the information gathered by the inference process.

Another way is to provide direct information using internal data to parallel

compilers to facilitate the work of their parallel optimizers.

4. Improving Readability

There are several improvements can be done to elevate the readability of

the target code.

(a) Remove temporary variables.

There are some temporary variables generated by the simplification

transformation and type inference process that could not be removed by

89

Conclusions and Future Work

the current aggregation transformation. The aggregation transformation

is designed to reverse the simplification transformation based on the flow

analysis. However, some temporary variables cannot be merged back to

their original places because of restrictions of Fortran language. For ex-

ample, the array construction expression (e.g. data=[a,b]), requires all

elements (a,b) to have the same type. The following is a Fortran code seg-

ment with temporary variables. If merging two temporary variables to the

third statement, the result statement, output=[2.2, 1], becomes illegal in

Fortran.

DOUBLE PRECISION:: tmpvar3, tmpvar4;

tmpvar3=2.2; tmpvar4=1; output=[tmpvar3, tmpvar4];

It is possible to enhance the aggregation transformation to solve those

special cases.

(b) Restore the original names of renamed variables

Some variables were renamed for special purposes during the process of

building the symbol table, and their original names could be restored back

afterwards. For instance, for simplifying the value-propagation process,

some loop variables are renamed in order to keep a unique definition. Those

renamings could be reversed after type inference and transformation phase.

(c) Restore and add comments

Comments in the MATLAB programs are reserved during the lexing

and parsing. However, there are a number of cases where a comment

cannot be restored to the exactly location as in the original code.

Some Fortran code segments that are generated by some transforma-

tions become very different from the original MATLAB statements. List-

ing the original MATLAB statements as comments beside the transformed

code would be helpful for programmers to understand the new code.

90

Appendix A

Supported MATLAB Features

The McFor compiler supports a subset of MATLAB features that are commonly

used for scientific computation. The following is a list of all MATLAB features the

supported by McFor compiler.

Program control statements :

• Conditional control statements: if-elseif-else-end, switch-case-otherwise-

end.

• Loop control statements: for, while, continue, break.

• Program Termination: return.

Operators :

• Arithmetic Operators: “+”, “-”, “*”, “/”, “\”, “^”, “.*”, “./”, “.\”, “.^”,

“.’”, “’”, “:”,

• Relational Operators: “<”, “<=”, “>”, “>=”, “==”, “ =”,

• Logical Operators: “&”, “|”, “ ”, “xor”, “&&”, “||”,

Data Type: logical, integer, single, double, complex, character, string.

Matrix Construction: e.g., row=[E1 E2 ...Em]; A=[row1; row2; ...; rown]. (dis-

cussed in Section 5.1)

91

Supported MATLAB Features

Matrix Concatenation: e.g., C=[A,B]; C=[A;B]. (discussed in Section 5.1)

Matrix Indexing :

• Linear Indexing: discussed in Section 5.2

• Using an Array as an Index: including using logical array as index: dis-

cussed in Section 5.3

• Accessing Multiple Elements

– Consecutive Elements: A(1:6, 2); A(1:6, 2:3).

– Nonconsecutive Elements: B(1:3:16)=-10

– Specifying All Elements of a Row or Column: A(:), A(:,2), A(2,:)

Empty Matrices : e.g., A(:,3)=[]; A(3:4,:)=[];

Resizing Matrices :

Three situations that a variable’s shape can dynamically change : when a new

value with different shape is assigned to it, when new elements are added to

a location outside the bounds of the variable, or when rows and columns are

deleted from the variable. They are discussed in Section 4.4.2 and Section 4.1.3

92

Bibliography

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J.

Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and

D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1999.

[AK87] Randy Allen and Ken Kennedy. Automatic translation of Fortran pro-

grams to vector form. ACM Trans. Program. Lang. Syst., 9(4):491–542,

1987.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Ar-

chitectures: A Dependence-Based Approach. Morgan Kaufmann, 2002.

[AP02] George Almási and David Padua. MaJIC: compiling MATLAB for speed

and responsiveness. In PLDI ’02: Proceedings of the ACM SIGPLAN

2002 Conference on Programming language design and implementation,

Berlin, Germany, 2002, pages 294–303. ACM, New York, NY, USA.

[BLA07] Neil Birkbeck, Jonathan Levesque, and Jose Nelson Amaral. A Dimension

Abstraction Approach to Vectorization in Matlab. In CGO ’07: Proceed-

ings of the International Symposium on Code Generation and Optimiza-

tion, 2007, pages 115–130. IEEE Computer Society, Washington, DC,

USA.

93

Bibliography

[Bud83] Timothy A. Budd. An APL compiler for the UNIX timesharing system.

In APL ’83: Proceedings of the international conference on APL, Wash-

ington, D.C., United States, 1983, pages 205–209. ACM, New York, NY,

USA.

[Cas09] Andrew Casey. The Metalexer Lexer Specification Language. Master’s

thesis, School of Computer Science, McGill University, Montréal, Canada,

2009.

[CB09] Maxime Chevalier-Boisvert. McVM: An Optimizing Virtual Machine For

The MATLAB Programming Language. Master’s thesis, School of Com-

puter Science, McGill University, Montréal, Canada, 2009.

[CBHV10] Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. Op-

timizing MATLAB through Just-In-Time Specialization. In CC 2010:

International Conference on Compiler Construction, 2010.

[CDD+95] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Staney, D. Walker, and R. C. Whaley. LAPACK Working Note 95:

ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory

Computers – Design Issues and Performance. Technical report, Knoxville,

TN, USA, 1995.

[Chi86] W-M Ching. Program analysis and code generation in an APL/370 com-

piler. IBM J. Res. Dev., 30(6):594–602, 1986.

[Eat02] John W. Eaton. GNU Octave Manual. Network Theory Limited, 2002.

[EH07] Torbjörn Ekman and Görel Hedin. The JastAdd system — modular

extensible compiler construction. Sci. Comput. Program., 69(1-3):14–26,

2007.

[Eng96] Dawson R. Engler. VCODE: a retargetable, extensible, very fast dynamic

code generation system. SIGPLAN Not., 31(5):160–170, 1996.

94

Bibliography

[HNK+00] Malay Haldar, Anshuman Nayak, Abhay Kanhere, Pramod Joisha, Na-

garaj Shenoy, Alok Choudhary, and Prithviraj Banerjee. Match Virtual

Machine: An Adaptive Runtime System to Execute MATLAB in Paral-

lel. In ICPP ’00: Proceedings of the Proceedings of the 2000 International

Conference on Parallel Processing, 2000, page 145. IEEE Computer Soci-

ety, Washington, DC, USA.

[Inc08] MathWorks Inc. MATLAB Documentation, 2008.

<http://www.mathworks.com/> .

[Inc09] Free Software Foundation Inc. GCC, the GNU Compiler Collection, 2009.

<http://gcc.gnu.org/> .

[INR09] INRIA. Scilab, 2009.

<http://www.scilab.org/platform/> .

[JB01] Pramod G. Joisha and Prithviraj Banerjee. Correctly detecting intrinsic

type errors in typeless languages such as MATLAB. In APL ’01: Pro-

ceedings of the 2001 conference on APL, New Haven, Connecticut, 2001,

pages 7–21. ACM, New York, NY, USA.

[JB02] Pramod G. Joisha and Prithviraj Banerjee. MAGICA: A Software Tool

for Inferring Types in MATLAB. 2002.

[JB03] Pramod G. Joisha and Prithviraj Banerjee. Static array storage opti-

mization in MATLAB. In PLDI ’03: Proceedings of the ACM SIGPLAN

2003 conference on Programming language design and implementation,

San Diego, California, USA, 2003, pages 258–268. ACM, New York, NY,

USA.

[Joi03a] Pramod G. Joisha. a MATLAB-to-C translator, 2003.

<http://www.ece.northwestern.edu/cpdc/pjoisha/mat2c/> .

95

http://www.mathworks.com/
http://gcc.gnu.org/
http://www.scilab.org/platform/
http://www.ece.northwestern.edu/cpdc/pjoisha/mat2c/

Bibliography

[Joi03b] Pramod G. Joisha. A type inference system for MATLAB with applica-

tions to code optimization. PhD thesis, Evanston, IL, USA, 2003. Adviser-

Banerjee, Prithviraj.

[KU80] Marc A. Kaplan and Jeffrey D. Ullman. A Scheme for the Automatic

Inference of Variable Types. J. ACM, 27(1):128–145, 1980.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In CGO ’04: Proceedings of

the international symposium on Code generation and optimization, Palo

Alto, California, 2004, page 75. IEEE Computer Society, Washington,

DC, USA.

[Ltd99] MathTools Ltd. MATCOM compiler, 1999.

<http://www.mathtools.com/> .

[MC07] D. Mcfarlin and A. Chauhan. Library Function Selection in Compiling

Octave. In Parallel and Distributed Processing Symposium, 2007. IPDPS

2007. IEEE International, 2007, pages 1–8.

[MHK+00] Anshuman Nayak Malay, Malay Haldar, Abhay Kanhere, Pramod Joisha,

Nagaraj Shenoy, Alok Choudhary, and Prithviraj Banerjee. A Library

based compiler to execute MATLAB Programs on a Heterogeneous Plat-

form, 2000.

[MP99] Vijay Menon and Keshav Pingali. High-level semantic optimization of

numerical codes. In ICS ’99: Proceedings of the 13th international con-

ference on Supercomputing, Rhodes, Greece, 1999, pages 434–443. ACM,

New York, NY, USA.

[MT97] Vijay Menon and Anne E. Trefethen. MultiMATLAB: Integrating MAT-

LAB with High-Performance Parallel Computing. In In Proceedings of

Supercomputing ’97, 1997, pages 1–18.

96

http://www.mathtools.com/

Bibliography

[QMSZ98] Michael J. Quinn, Alexey Malishevsky, Nagajagadeswar Seelam, and Yan

Zhao. Preliminary Results from a Parallel MATLAB Compiler. In Proc.

Int. Parallel Processing Symp. (IPPS, 1998, pages 81–87. IEEE CS Press.

[RHB96] Shankar Ramaswamy, Eugene W. Hodges, IV, and Prithviraj Banerjee.

Compiling MATLAB Programs to ScaLAPACK: Exploiting Task and

Data Parallelism. In IPPS ’96: Proceedings of the 10th International

Parallel Processing Symposium, 1996, pages 613–619. IEEE Computer

Society, Washington, DC, USA.

[RP96] Luiz De Rose and David Padua. A MATLAB to Fortran 90 translator and

its effectiveness. In ICS ’96: Proceedings of the 10th international con-

ference on Supercomputing, Philadelphia, Pennsylvania, United States,

1996, pages 309–316. ACM, New York, NY, USA.

[RP99] Luiz De Rose and David Padua. Techniques for the translation of MAT-

LAB programs into Fortran 90. ACM Trans. Program. Lang. Syst.,

21(2):286–323, 1999.

[Sch75] J. T. Schwartz. Automatic data structure choice in a language of very

high level. Commun. ACM, 18(12):722–728, 1975.

[TP95] Peng Tu and David Padua. Gated SSA-based demand-driven symbolic

analysis for parallelizing compilers. In ICS ’95: Proceedings of the 9th in-

ternational conference on Supercomputing, Barcelona, Spain, 1995, pages

414–423. ACM, New York, NY, USA.

[vB05] Remko van Beusekom. A Vectorizer for Octave. Master’s thesis, Utrecht

University, Utrecht, The Netherlands, February 2005. INF/SRC-04-53.

[WPF07] William Vetterling William Press, Saul Teukolsky and Brian Flannery.

Numerical Recipes: the art of scientific computing. Cambridge University

Press, 2007.

97

Bibliography

[WS81] Zvi Weiss and Harry J. Saal. Compile time syntax analysis of APL pro-

grams. In APL ’81: Proceedings of the international conference on APL,

San Francisco, California, United States, 1981, pages 313–320. ACM, New

York, NY, USA.

98

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Listings
	Introduction
	Introduction
	Thesis Contributions
	Shape Inference
	Generate Readable and Reusable Code
	Design and Implementation of the McFor Compiler

	Organization of Thesis

	Related Work
	The MATLAB Language
	Language Syntax and Data Structure
	MATLAB's Type System
	The Structure of MATLAB programs

	FALCON Project
	MATLAB Compilers
	Parallel MATLAB Compilers
	Vectorization of MATLAB
	Other MATLAB Projects
	Summary of McFor's Approach

	Overview of the McFor Compiler
	Structure of the Compiler
	MATLAB-to-Natlab Translator
	Lexer and Parser
	Analyses and Transformations
	Code Generator

	Preparation Phase
	Inlining Script M-files
	Distinguishing Function Calls from Variables
	Simplification Transformation
	Renaming Loop-Variables
	Building the Symbol Table

	Type Inference Mechanism
	Type Inference Principles
	Intrinsic Type Inference
	Sources of Type Inference
	Shape Inference

	Type Inference Process
	Function Type Signature
	Whole-Program Type Inference
	The Type Inference Algorithm

	Intermediate Representation and Type Conflict Functions
	Disadvantages of SSA Form in Type Inference
	Type Conflict Functions

	Solving Type Differences
	Merging Intrinsic Types
	Solving Differences Between Shapes

	Type Inference on Type Conflict Functions
	Type Inference on Apha-functions
	Type Inference on Beta-functions
	Type Inference on Lambda-functions

	Value Propagation Analysis
	Calculate a Variable's Value
	Compare Values
	Additional Rule for Array Bounds Checking

	Determine the Shape at Runtime
	Determine the Shape at Runtime
	Checking Array Bounds and Resizing Array at Runtime

	Other Analyses in the Type Inference Process
	Discover Identifiers That are not Variables
	Discover the Basic Imaginary Unit of Complex Numbers

	Transformations
	Transformations for Array Constructions
	Transformations for Linear Indexing
	Transformations for Using Arrays as Indices
	Transformations for Type Conversions
	Logical and Character Type in Computations
	Fortran's Limited Type Conversions

	Aggregation Transformation

	Performance Evaluation
	Description of the Benchmarks
	Performance Results
	Comparison of Compiled Fortran Code to MATLAB
	Comparison of Dynamic Reallocation in Fortran and MATLAB
	Dynamic Reallocation Tests
	Different Reallocation Strategies Tests
	Overhead of Passing Dynamically Allocatable Arrays

	Summary of Fortran 95 vs. MATLAB
	Comparison of Compiled Fortran Code to Octave
	Comparison of Compiled Fortran Code to McVM

	Conclusions and Future Work
	Conclusions
	Future Work

	Supported MATLAB Features
	Bibliography

