
A PRACTICAL MHP INFORMATION COMPUTATION FOR

CONCURRENT JAVA PROGRAMS

by

Lin Li

School of Computer Science

McGill University, Montreal

August 2004

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c© 2004 by Lin Li

Abstract

With the development of multi-processors, multi-threaded programs and program-

ming languages have become more and more popular. This requires extending the

scope of program analysis and compiler optimization from traditional, sequential pro-

grams to concurrent programs.

Naumovich et al. proposed May Happen in Parallel (MHP) analysis that deter-

mines which program statements may be executed concurrently. From this infor-

mation, compiler optimization improvements, as well as analysis data on potential

program problems such as dataraces can be analyzed or discovered.

Unfortunately, MHP analysis has some limitations with respect to practical use.

In this thesis we present an implementation of MHP analysis for Java that attempts

to address some of the practical implementation concerns of the original work. We

describe a design that incorporates techniques for aiding a feasible implementation

and expanding the range of acceptable inputs.

The MHP analysis requires a particular internal representation in order to run.

By using a combination of techniques, we are able to compact that representation,

and thus significantly improve MHP execution time without affecting accuracy. We

also provide experimental results showing the utility and impact of our approach and

optimizations using a variety of concurrent benchmarks. The results show that our

optimizations are effective, and allow more and larger benchmarks to be analyzed.

For some benchmarks, our optimizations have very impressive results, speeding up

MHP analysis by several orders of magnitude.

i

Résumé

Dans la foulée du développement des multiprocesseurs, les programmes en cha-

pelet et les languages de programmation ont acquis une grande popularité. Cette

dynamique exige d’étendre la portée de l’analyse des programmes et de l’optimisa-

tion des compilateurs, pour les faire passer de programmes séquentiels classiques à

des programmes concurrents.

Naumovich et al. ont proposé l’analyse May happen in Parallel (MHP), qui détermine

les instructions pouvant s’exécuter en parallèle ou concurremment. À partir de cette

information, les améliorations á l’optimisation des compilateurs, de même que les

données d’analyse sur les problèmes de programme potentiels comme l’accès concur-

rent d’unités d’exécution, peuvent être analysées ou découvertes.

Malheureusement, l’analyse MHP comporte des limites sur le plan pratique. Dans

cette thèse, nous présentons la mise en œuvre de l’analyse MHP pour Java visant

à aborder certaines préoccupations entourant la mise en œuvre du travail original.

Nous définissons un concept qui incorpore des techniques pour favoriser une mise en

œuvre efficiente et étendre la portée des intrants acceptables.

L’analyse MHP exige une représentation interne afin de fonctionner. En utili-

sant une combinaison de techniques, nous sommes en mesure de synthétiser cette

représentation, et ainsi d’améliorer considérablement le délai d’exécution de l’analyse

MHP sans en compromettre l’exactitude. Nous présentons également des résultats de

recherche expérimentale démontrant l’utilité et l’incidence de notre approche et de nos

optimisations en utilisant un éventail de bancs d’essai. Les résultats démontrent que

nos optimisations sont efficientes et qu’elles permettent d’analyser des bancs d’essai

plus imposants. Pour certains bancs d’essai, nos optimisations ont produit des réultats

ii

impressionnants, accélérant l’analyse MHP selon plusieurs ordres de grandeur.

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my thesis supervisor,

Professor Clark Verbrugge, for his guidance and support throughout the course of

this research work. This work would never have materialized without his insight and

Advice. Professor Verbrugge dedicates a lot to his students and his profession; and he

contributed a great deal of his time, effort and thought to the work presented in this

dissertation. His constant financial support enabled me to concentrate on research

work.

I am very grateful to Professor Laurie Hendren. She gives first rate compiler

courses and many students have learned state-of-art compiler knowledge from her

lectures. Her insight into compiler technology and interesting lectures benefitted me

a lot. I highly respect her. Her cheerful nature and enthusiasm make the Sable

Research Group full of fun.

I also would like to thank other members of Sable Research Group. Special thanks

go to Ondřej Lhoták. His in-depth knowledged of the compiler and points-to analysis,

and his consistent help and advice have been invaluable. Bruno Dufour is always glad

to help, and I thank him for reviewing my abstract in French. The discussions with

Feng Qian, Navindre Umanee, and Chris Pickett have been helpful to my research

work. Thanks go to all the other members of the Sable Research Group, especially,

John Jorgensen, David Bélanger, Marc Lanctot, Jennifer Lhoták, Nomair Naeem,

Ahmer Ahmedani, Lin Wang, and Dayong Gu for their help and creating a pleasant

working environment in the Sable Research Group.

Last, but not the least, I would like to thank my family for their continuous

support and encouragement.

iv

Contents

Abstract i

Résumé ii

Acknowledgements iv

Contents v

List of Figures viii

List of Tables ix

1 Introduction and Contributions 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization . 4

2 Related Work 5

3 Java Thread and Concurrency Model 9

3.1 Java Thread States . 9

3.2 Java Lock Model . 11

3.2.1 High-level Constructs for Synchronization 11

3.2.2 Wait and Notification . 11

3.2.3 Bytecode-level Implementation of Synchronization 12

v

4 May Happen in Parallel (MHP) Analysis 14

4.1 Limitations and Requirements . 14

4.2 Parallel Execution Graph . 15

4.3 A Worklist Flow Analysis Algorithm 18

4.3.1 Overview . 18

4.3.2 Terminology . 19

4.3.3 Worklist Version of MHP Flow Analysis 21

4.4 Discussion . 25

5 MHP computing in the Context of Soot 27

5.1 Soot Framework . 27

5.2 MHP Computing in the Context of Soot 28

5.2.1 Jimple . 28

5.2.2 Intra-procedural Analysis . 32

5.2.3 Inter-procedural Analysis . 33

5.3 MHP Analysis in Soot . 35

6 Design and Implementation of Parallel Execution Graph 37

6.1 PegCallGraph . 40

6.2 Finding Runtime Objects . 42

6.2.1 Finding Out if a Statement Is Executed only Once Inside a

Method . 44

6.2.2 Finding Out If a Method May Be Called More Than Once . . 44

6.2.3 Finding Allocation Sites and If the Allocation Sites May Rep-

resent More Than One Object 48

6.3 Finding Target Methods . 50

6.4 Runtime Objects and Alias Resolution for Threads 51

6.5 Parallel Execution Graph in the Context of Soot 51

6.5.1 Nodes . 53

6.5.2 Edges . 53

6.6 PEG construction . 55

vi

6.6.1 Finding Methods that Need to Be Inlined 55

6.6.2 Safety of Inlining . 57

6.6.3 Discovering Inlining Order . 57

6.6.4 Special Handling for Synchronized Methods 58

7 MHP Implementation and Optimization 59

7.1 Finding Monitor Objects . 59

7.2 Implementation of the Worklist Flow Analysis Algorithm 61

7.3 Optimizations . 61

7.3.1 Merging Strongly Connected Components 62

7.3.2 Merging Sequential Nodes . 63

7.3.3 Updating the PEG . 65

8 Experimental Results 66

8.1 Benchmarks . 66

8.2 Results . 68

9 Conclusions and Future work 73

9.1 Conclusion . 73

9.2 Future work . 74

Appendices

Bibliography 76

vii

List of Figures

3.1 Thread states . 10

3.2 An example of synchronization in bytecode 13

4.1 An example of a PEG, a simplified version of figure 3 in [NSA99]. . . 16

5.1 An example Java code . 29

5.2 Corresponding bytecode of Figure 5.1 30

5.3 Corresponding Jimple code of Figure 5.1 31

5.4 Method relationships in Call Graphs. 33

5.5 Class inheritance hierarchy. 34

5.6 Overview of our MHP analysis. 36

6.1 An example of recursive method invocations 38

6.2 An example of a trimmed PegCallGraph 42

6.3 An example of an allocation site corresponding to multi-objects . . . 43

6.4 A PegCallGraph containing multi-called methods 46

6.5 The algorithm for computing multi-called methods 47

6.6 An example of thread actions needing alias resolution 52

6.7 An example of PegCallGraph . 56

7.1 Three different types of locks in Java 60

7.2 An example of Strongly Connected Component 62

7.3 An example of sequential nodes . 64

viii

List of Tables

6.1 Summary of methods of interface DirectedGraph 41

6.2 JVM Instruction VS. InvokeExpr in Soot 50

8.1 Experimental results without PEG simplification 67

8.2 Experimental results without PEG simplification 69

8.3 Experimental results after optimization 71

8.4 Experimental results after optimization 72

ix

Chapter 1

Introduction and Contributions

1.1 Motivation

Java is a popular, high-level, object-oriented language [GJSB00] designed to support

various architectures. Java provides a rich set of language features, including garbage

collection, runtime safety checks, dynamic loading, etc. One important characteristic

that makes Java unique among most general-purpose programming languages like C

and C++ is that it has explicit, built-in support for concurrent programming. A

programmer can specify an application containing threads of execution, and each

thread designates a part of the program that may execute in parallel with other

threads. This capability, called concurrent or multi-threaded programming, gives Java

developers powerful capabilities not available in C and C++. (Of course, external

multi-threaded libraries for C, C++ are commonly available [NBF96]).

As with most computer languages, Java programs are optimized by various com-

puter transformations during compilation (and in the case of Java, during actual

execution as well). Unfortunately, traditional compiler optimization is developed in

the context of sequential or single-threaded programs, and it is not trivial to extend

a sequential optimization to a concurrent situation.

Attempts have naturally been made in compiler optimization to rise to the chal-

lenge of extending the scope of sequential analysis and optimization to concurrent

1

1.1. Motivation

multi-threaded programs. Specific techniques for handling problems related to com-

piling multi-threaded languages are being actively researched, e.g., synchronization

removal [E.R00], and race detection [CLL+02]. More general techniques, however,

that also allow one to compute the impact of concurrency on other compiler analyses

or optimizations are still desirable. In concurrent programs, information about which

statements could be executed by different threads at the same time can be used for

detecting data races, program optimization, debugging, program understanding, and

improving the accuracy of data flow analysis. Such a more general approach for Java

is provided by Naumovich et al.’s May Happen in Parallel (MHP) analysis [NSA99].

This analysis only determines which statements may be executed concurrently, but

from this information on potential data races and synchronization problems can be

derived.

The original MHP algorithm relies on a simplified program structure. All methods

need to be inlined, and cloning is necessary to eliminate polymorphism and aliasing.

Unfortunately, while these limitations still allow a variety of small applications to be

analyzed, the associated potential exponential growth in code size due to these tech-

niques means they cannot be feasibly applied to more complex programs. Whole

program inlining is not possible for non-trivial programs, and moreover excludes

many recursive programs. Cloning further expands the program size, and even in

the presence of good alias resolution is likely to cause space concerns. Thus although

Naumovich et al.’s results are encouraging, it is important to also know how well the

analysis would work in a more practical compiler setting.

In this thesis, we present our experiences with an implementation of MHP for

Java that attempts to address such practical concerns. Our implementation of MHP

incorporates several simple analyses as well as modifications to MHP structures in

order to reduce many of the practical limitations. We also provide experimental

results and show how simple optimizations on the MHP internal data structures can

make MHP analysis of even moderate size programs quite feasible.

2

1.2. Contributions

1.2 Contributions

This thesis aims at providing a practical MHP information analysis. Computing MHP

information involves two aspects: building the appropriate internal data structures,

and running algorithms based on them. As mentioned earlier, MHP analysis requires

the whole program be inlined producing one large graph representing the complete

program execution. We have developed new analyses and techniques to reduce the

size of the graphs, and identify and handle certain common situations that prevent

inlining, such as recursive method calls. A further difficulty with performance in

MHP analysis is its reliance on knowing exact, runtime object identities. In the

original MHP analysis [NSA99], this is handled using cloning, or code replication, to

eliminated aliases. Finding runtime target objects and methods is very important to

get correct and precise information. In our case, we use SPARK [LH03], a fast and

precise flow analysis to resolve aliases, and then find runtime targets through the aid

of a further custom flow analysis. This is a more feasible technique than cloning,

although it will in general imply a tradeoff between precision and efficiency.

Through these improvements, we have been able to run MHP analysis on a variety

of “moderately-large” programs.

In summary, the main contributions of this thesis are as follows:

• Design and Implementation

We have implemented MHP analysis in the context of the Soot program analysis

framework [VRHS+99]. We have used features and other analyses available in

Soot to assist the computation of MHP information. We further develop several

small, custom analyses to support practical considerations. Our implementation

thus demonstrates that MHP information can be practically computed, and

also what aspects of a compiler optimization and analysis infrastructures are

required and/or useful for such a task.

• Optimization

Even with special techniques for improving inlining, the data structures used

to represent the whole program may be huge. We use two approaches based on

3

1.3. Thesis Organization

knowing how MHP information is computed to simplify graphs, reducing the

size of the internal data structures and improving analysis performance. The

specific techniques we use, merging strongly connected components and merging

sequential nodes, are fairly straightforward graph simplication techniques, but

their application in this context is shown to result in an impressive improvement

in the cost of MHP analysis.

• Experiments

Our final implementation is sufficiently practical to analyze non-trivial bench-

marks. We provide the first MHP information computation on non-trivial pro-

grams. These experiments reveal that benchmarks that are larger in terms of

code size do not always consume more analysis time. Thread communication

and synchronization complexity is a better indication of MHP cost. Finally, the

comparison between the results before and after optimization proves that our

optimization greatly improves the performance.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Related work is described in Chapter 2.

In Chapter 3, we introduce the Java thread states and constructs related to the

synchronization. In Chapter 4, we give a brief description of Gleb Naumovich et al.’s

MHP analysis [NSA99]. In Chapter 5, we describe our MHP computation structures

in the context of Soot. Further details on our implementation and improvement are

then developed in Chapter 6 and 7. In Chapter 8, we introduce our benchmarks and

describe our experimental results and analysis. Finally, we state our conclusions and

future work in Chapter 9.

4

Chapter 2

Related Work

Our work here is based most directly on the MHP analysis originally designed

by Naumovich et al. [NSA99]. There are of course other approaches to analyze and

represent concurrent programs. Some of them are general purpose, while others have

specific purposes. In the latter case, datarace detection is perhaps the most common

intended application. A datarace occurs when two read/write operations access the

same memory location (like a variable) without ordering constraints between the two

operations, and at least one of them is a write. Dataraces result in indeterminacy in

concurrent programs, and are programming errors in most cases. Datarace detection

is very important for multi-threaded programs.

Whatever the goal, an appropriate representation of the concurrent program is

critical. Traditionally, Control Flow Graphs (CFGs) are used for intermediate rep-

resentation of sequential programs in compiler analysis [Muc97]. But CFGs have

many limitations in representing parallel programs; in particular, they are not able

to describe non-sequential control flow.

Program Dependence Graphs (PDGs) [FJW87] only present essential data de-

pendence relationships and control dependence relationships, without unnecessary

sequencing in the control flow graph. Because dependences in PDGs connect rele-

vant parts of a program, some optimizations using PDGs require less time to perform

than with other program representations. PDGs can be used for general program

optimizations where dependency is a concern; for example, detecting medium to

5

fine-grain parallelism for sequential programs. And they also can be used in other

contexts, for example, performing slicing in software development or maintenance.

They are however not designed to represent parallel programs, and cannot represent,

for example, notification, locks, and the parallel execution of multiple threads. Thus

PDGs have limitations in representing real parallel programs and while they are an

improvement over CFGs, they are not suitable for analyzing a language such as Java.

Parallel Program Graphs (PPGs) [Sar97, SS98] allow the representation of both

sequential programs and parallel programs. They can be used for determining the

semantic equivalence of parallel programs, detecting deadlocks, program optimization,

and have applications in automatic code generation. PPGs are generalizations of

PDGs and CFGs. Similar to control dependence and data dependence edges in PDGs,

PPGs contain control edges representing parallel flow of control and synchronization

edges representing ordering constraints of execution instances of PPG nodes. In

addition, PPGs also contain special “MGOTO” nodes. An MGOTO node represents

the construction of parallel threads; i.e., the immediate successors of an MGOTO

node are in different, parallel threads. Compared to PDGs, with MGOTO nodes,

PPGs can be used to fully represent sequential and parallel programs. Unfortunately,

although PPGs are more general than PDGs and CFGs, not all parallel constructs

can be directly mapped to PPGs; e.g., it is not possible to represent a situation where

synchronization conditions depend on runtime data values. In addition, analysis and

optimization [Sar97] can only be applied to deterministic parallel programs, and more

work needs to be done to handle non-deterministic parallel programs.

Ferrante et al. [FGS97] proposed a Parallel Control Flow Graph (PFG) for opti-

mizing explicitly parallel programs. They provided dataflow equations for the reach-

ing definitions analysis and used a copy-in/copy-out semantics for accessing shared

variables in parallel constructs. The copy-in/copy-out semantics allow each created

thread to copy variables at the beginning and modify its own copy at the end of the

thread execution or at a Wait statement (in post/wait schema). Thus PFGs cannot

represent general parallel constructs (like busy-wait synchronization), nor can they

handle programs containing dataraces.

6

A Concurrent Control Flow Graph (CCFG) [Lee99] is an intermediate represen-

tation for explicitly parallel programs with structured concurrency control (“cobe-

gin/coend” parallel constructs) and post/wait synchronization. CCFGs are similar

to PPGs and PFGs, but differ in that CCFGs contain “conflict” edges in addition

to synchronization and control flow edges. A conflict edge is a bidirectional edge

connecting two basic blocks (straight-line sections of code) that may be executed in

parallel and each of these two basic blocks contains at most one shared memory

location access.

Approaches have also been considered that build on other well-known sequential

representations. Static single assignment (SSA) form, for instance, is a more and more

popular intermediate representation for sequential programs. Lee et al. [LPA97a] used

CCFGs as intermediate representations for parallel programs in order to transform

the programs to Concurrent Static Single Assignment (CSSA) form, which provides

advantages of SSA form in a concurrent setting.

Any analysis of Java must consider the fact that Java is an object-oriented lan-

guages. Information about the sharing of objects, especially the sharing of objects

by threads is important for a compiler of an object-oriented programming language.

Escape analysis [Bla99, BU99, WR99,CGS+99, E.R00] can be used to compute this

specific information. Christoph von Praun and Thomas R.Gross [vPR03] used Object

Use Graphs (OURS) in the context of escape analysis. OUGs are an extension of Heap

Shape Graphs (HSGs), in which the nodes represent the runtime objects and edges de-

notes the reference relations between these objects. Computed during compile-time,

HSGs can be used to represent the information of the sharing of runtime objects. But

an HSG may lose some precision; for example, an object is regarded as shared when

accessed by two threads. This is not always true. If the second thread starts after

the first one terminates, then the object is not shared by these two threads. OUGs

can detect these cases. The OUG can find the structural, temporal, and lock-based

protection of accesses in different periods of an object by using control flow analysis in

different threads and information about lock protection, object escape, thread-start

and join. Escape analysis approaches, while useful for the intended goal, are not as

general as MHP analysis.

7

For the purpose of data race detection, Savage et al. developed Eraser, a race

checker in the C, C++ environment. Of course, the C/C++ threading model is not

identical to the one in Java (though there are strong similarities). Jong-Deok Choi

et al. [CLL+02] proposed an approach for datarace detection for object-oriented lan-

guages, and demonstrated their approach in Java. They use a combination of dynamic

checking and static analysis, the latter being itself a combination of interthread control

flow analysis and a flow-insensitive inter-procedural points-to analysis. Interthread

Control Flow Graphs (ICFGs) are used to represent multi-threaded programs and

Interthread Call Graphs (ICGs) are used as abstractions of the ICFGs for scalability.

At each stage of their analysis and implementation they provide optimizations to im-

prove efficiency and precision. The ”weaker-than” relation is used during both static

analysis and dynamic detection. Informally, if event a and any other event c has a

datarace and this implies that events b and c must have a datarace, we say b is weaker-

than a. Thus if we have the information b weaker-than a, during datarace detection,

we only need think about b without thinking about a. This can reduce both time and

space overhead. Another reduction of overhead results from reporting dataraces only

once. A lot of accesses may have a datarace in the same memory location, but they

guarantee reporting at least one access rather than all of the accesses.

Flanagan and Freund analyze large Java programs for race conditions by exam-

ining user-provided type annotations for code [FF00]. Improvements to accuracy

and efficiency of data race detection continue to be addressed; e.g., through dynamic

techniques [vG01], and by combining information from multiple analyses [OC03].

A similar concentration of efforts has looked at other concurrency related program

analysis and optimization problem, such as synchronization removal [E.R00,BU99].

The aim of MHP analysis is to give general information useful to a wide variety of

situations, and not to focus on a specific aspect of concurrency analysis.

Our implementation and optimization techniques largely depend on a combination

of well known approaches. Good points-to analysis is one of the more complex and

expensive compiler problems, and has been addressed in a variety of settings [EGH94,

Ste96,RMR01,BLQ+03]. SPARK [LH03] produces precise points-to information, and

this has been quite crucial to our ability to analyze non-trivial programs.

8

Chapter 3

Java Thread and Concurrency Model

In this chapter, we introduce the Java infrastructure related to concurrency. Java

has built-in support for multi-threaded programming and provides the communica-

tion of threads in its core. We present the states of a thread in Java and how threads

transform between these states. Furthermore, when many threads are started and

interacting with an object, some mechanism is needed to ensure the safety of these

threads, i.e., prevent the threads from adversely affecting one another. This mecha-

nism is also introduced in this chapter.

3.1 Java Thread States

In Java, concurrency is modelled with threads, which are defined using a Thread class.

Threads in Java follow a fairly standard lifecycle [HC02], and the different states of a

thread are shown in Figure 3.1. Creating a Thread object is the only way to create

a thread. When the thread is created, it does not begin to execute until its start()

method is called. The start() method does low level thread initialization, so the

thread can automatically execute its run() method. When the operating system

assigns a processor to it, the code inside the thread begin to execute, i.e., it is in

the running state. A thread becomes dead once the execution of its run method is

done or terminated because of an uncaught exception. Threads can also voluntarily

give up their CPU time. When the sleep method of a running method is called,

9

3.1. Java Thread States

created

running

runnable

waiting dead pausedblockedsleeping

sle
ep

 ti
m

e
ex

p i
re

s I/O com
plete

not ify
/notify

All

wait
sl

ee
p

dead

request I/O

request ente r monitor

lock avai lable

start

Figure 3.1: Thread states

the thread enters the sleeping state, becoming runnable again after the sleeping

time expires. Java provides condition synchronization: a running thread enters the

waiting state when it calls the wait method of an object. A thread in a waiting

state for an object becomes runnable again when the notify/notifyAll method of

the object is called by another thread. If a thread tries to lock an object which is

already locked by another thread, it is temporarily paused. It becomes runnable

when the thread owning the lock of the desired object releases the lock. A running

thread enters a blocked state when the thread issues an input/output request, and

remains there until the input/output operation is completed.

10

3.2. Java Lock Model

3.2 Java Lock Model

3.2.1 High-level Constructs for Synchronization

In Java, each object is associated with a lock. But there are no explicit high-level

lock and unlock actions in Java programs; instead, two high-level constructs, syn-

chronized methods and synchronized statements, are used to perform synchronization.

A synchronized method of an object tries to obtain a lock on the object when it is

invoked. The body of the synchronized method begins to execute after getting the

lock; and it releases the lock upon return. A synchronized statement has the format

shown in Figure 3.1. It evaluates the expression to obtain an object that is locked

for the execution of the block. The curly braces used for scoping in the synchronized

statement thus correspond to object lock/unlock actions.

As a difference from other lock models [NBF96], Java locks can always be “recur-

sively locked”–a thread that has acquired, but not released a lock on an object may

relock the same object, and must then unlock it as many times as it is locked in order

to release it.

3.2.2 Wait and Notification

Although Java does not provide monitors in a true sense [Han99], it does provide a

limited form of condition synchronization. The Java language defines wait, notify,

and notifyAll operations to facilitate communication between threads, and like lock-

ing, these operations are performed relative to an object. A thread must obtain the

lock of an object before executing wait, notify, and notifyAll. Once the lock

is released, other threads can acquire the ownership. Informally, the wait operation

releases the lock, suspends the current thread, and adds the current thread to the

wait set for the object. Every object has an associated wait set, which contains

a set of threads that want to lock the object but do not have the ownership. The

waiting threads becomes eligible to run again when another thread performs a notify

or notifyAll operation on the same object. A notify operation wakes one arbitrary

waiting thread in the wait set of the object. The thread is removed from the wait

11

3.2. Java Lock Model

set and competes for the lock with other threads. The notifyAll operation wakes

all waiting threads inside the wait set and every thread is removed from the wait

set. These threads compete for the lock with each other, as well as the other threads

attempting to execute a synchronized method or statement on the object. Once a

thread re-acquires the lock, the wait operation is completed. Notice that Java does

not in general include fairness guarantees of this.

3.2.3 Bytecode-level Implementation of Synchronization

JVM locks allow the creation of monitors and critical sections. After compilation to

bytecode, these high-level abstractions must still be represented as bytecode. The

monitorenter and monitorexit bytecode are thus used as JVM instructions to im-

plement the lock and unlock actions of objects and the wait/notify is implemented

through method calls. In Figure 3.2, (a) is an example of Java code containing syn-

chronized statements, (b) is part of the corresponding bytecode. Note in (b), 3 is a

monitorenter and both 9 and 15 are monitorexit instructions. The code from 13 to 17

implements an implicitly “finally” block, part of the way Java ensures synchronized

blocks are properly exited even in the presence of exceptions.

While explicit monitorenter/monitorexit instructions are only for synchronized

blocks, synchronized methods acquire and release the object lock implicitly with no

special bytecode instructions. When a synchronized method is called, the JVM ac-

quires the lock first, then executes the body of the method, and finally releases the

lock again. The synchronization is released regardless of exceptional method exit.

12

3.2. Java Lock Model

Method void Foo(Bar)
 0 aload_1
 1 dup
 2 astore_1
 3 monitorenter

10 goto 18
13 astore_3

15 monitorexit
16 aload_3

 14 aload_2

 17 athrow
 18 return

 8 aload_2

 9 monitorexit

(b) Part of bytecode

4 aload_0

void Foo(Bar f) {

 }
}

 synchronized(f){

(a) An example method

wait();

// lock f

 // done
// exception handle

// rethrow exception

// keep a copy of f in a local variable

// make sure we unlock f

5 invokespecial #2 <Method void wait()>

// push f to stack

// unlock f

Figure 3.2: An example of synchronization in bytecode

13

Chapter 4

May Happen in Parallel (MHP) Analysis

In this chapter, we describe the basics of the MHP algorithm proposed by Gleb

Naumovich et al. [NSA99]. We introduce the important assumptions and require-

ments of this algorithm. MHP analysis relies on a particular internal data structure,

the Parallel Execution Graph (PEG). We sketch out the major components of the

PEG and its structure here. The algorithms used to compute MHP information are

also presented in this chapter.

4.1 Limitations and Requirements

MHP analysis is not yet completely general. Input processes and information have

to satisfy a number of limiting requirements as follows.

• Knowing an upper bound of started threads

In general, the number of runtime threads in a program cannot be precisely

determined a priori. However, MHP analysis requires data structures specific

to individual threads, and so an upper bound on the number of thread instances

must be known. This requirement represents reduced generality of input. For

our benchmarks we have manually unrolled all thread creation loops, and oth-

erwise ensured each thread creation site is easily identified.

14

4.2. Parallel Execution Graph

• Alias resolution and cloning

A requirement of the MHP analysis is that alias resolution is done, and code

cloning used to eliminate polymorphism and ensure precise variable and method

targets are known. For example, if a variable in a program may refer to two

different threads, we can create a structure which contains a copy of the body

of the first thread and a copy of the second thread. Alias resolution and cloning

brings space concerns for moderate to large programs.

• Inlining

The MHP analysis uses a simplified program structure. It uses an internal struc-

ture, a Parallel Execution Graph (PEG) to represent the whole program. Every

method must be inlined to build the whole program representation. However,

this whole program inlining is not feasible for non-trivial programs. Further-

more, inlining every method cannot be used in programs containing recursive

method calls.

4.2 Parallel Execution Graph

A Control Flow Graph (CFG) is an abstract data structure used to represent programs

in compiler optimization, program analysis, and so on. CFGs consist of nodes and

directed edges. Each node in a CFG represents a basic block, i.e., a straight-line piece

of code that can only be entered at the beginning and exited at the end. Directed

edges point to the targets of branches or jumps in the control flow from the current

node. CFGs are described in most compiler optimization texts [Muc97].

The Parallel Execution Graph or PEG is a superstructure of a normal control

flow graph. Special edges and nodes are incorporated to explicitly represent potential

thread communication and synchronization. Since thread bounds are known, the

actions of each thread are also uniquely represented in the graph. Figure 4.1 gives

an example of a PEG for a simple program that launches two threads t1 and t2

from a main thread and then attempts to signal them using a global lock and a

15

4.2. Parallel Execution Graph

main

(*, if , t2)

t1

(*,begin, main)

(t1, start, main)

(*, begin, t1) (*, begin, t2)

(lock, entry, t2)(lock, entry, t1)

t2

(t2, start, main)

(lock, entry, main)

(*, end, t1)

(lock, exit, t1)

(lock, waiting, t1)

(lock, wait, t1)

(*, if , t1)

(lock, notifyAll, main)

(lock, exit, main)

(*, end, main)

 (lock, waiting, t2)

(lock, notified−entry, t2)

(lock, exit, t2)

(*, end, t2)

(lock, wait, t2)

(*, if , main)

(lock, notified−entry, t1)

(t1, join, main)

(t2, join, main)

Figure 4.1: An example of a PEG, a simplified version of figure 3 in [NSA99].

wait/notify pattern. In Figure 4.1 nodes in the shaded areas are actually protected

by the monitor.

Nodes in PEG’s are structured as triples; e.g., for communication methods (wait,

notify, etc.) the triple (object, name, caller) is used, where the field object

represents the object controlling the communication, name is the method name, and

caller is the caller thread name. For nodes that do not represent communication

methods, a wildcard symbol (*) is used for the object field.

Certain new nodes are added to aid in later analysis. Most simply, (*, begin,t)

and (*, end,t) nodes are inserted to mark the beginning and end of each thread

t, and (lock, entry,t) and (lock, exit,t) nodes indicate monitorenter and

monitorexit operations by t on object lock. Condition synchronization is only

slightly more complex. A wait() method call is broken down into a chain of wait,

16

4.2. Parallel Execution Graph

waiting and notified-entry nodes, representing the substeps of starting the call to

wait(), actually sleeping after the lock is released, and having been notified and try-

ing to reacquire the lock, respectively. For example, in Figure 4.1, (lock, wait, t1),

(lock, waiting, t1), and (lock, notified-entry, t1) represent thread t1’s call

to lock.wait().

There are four kinds of edges in PEGs: wait edges, local edges, notify edges and

start edges:

• Waiting edge

A waiting edge is an edge between waiting nodes and notified-entry nodes. In

Figure 4.1, the dotted edges with empty arrowheads from (lock, waiting,

t1) to (lock, notified-entry, t1) and from (lock, waiting, t2) to (lock,

notified-entry, t2) are waiting edges. These represent the transition from

waiting to being notified.

• Notify edge

Notify edges are dynamically created during the analysis process. They allow

precedence information to flow from the notifier to the waiting thread, rep-

resenting the inter-thread communications implied by the notify call. Since

they are inserted during analysis, this information flow can be more precise

than a static approach. Notify edges are only inserted from an (object,

notify/notifyAll, t1) node to a (object, notified-entry, t2) node if

the same object is involved, the threads are distinct, and the analysis has

computed that these two events may indeed happen in parallel. For exam-

ple, in Figure 4.1, the dashed edges represent notify edges. There are two

notify edges in this figure, an edge from (lock, notifyAll, main) to (lock,

notified-entry, t1), and another one from (lock, notifyAll, main) to

(lock, notified-entry, t2). This conservatively represents the nondeter-

minism that is inherent in Java’s notify mechanism: one, none, or both of t1

and t2 will be actually waiting when the main thread performs its notify call.

Both of them have chance to be notified and compete for the lock again.

17

4.3. A Worklist Flow Analysis Algorithm

• Start edge

A start edge is created from a call to Thread.start() to the first action of the

initiated thread. Start edges allow information from before a thread has started

to flow to the new thread, and ensures that events prior to a start statement

are never in parallel with events after. These edges are shown in Figure 4.1 as

dotted lines with solid arrowheads, i.e., the dotted edge from (t1, start, *)

to (*, begin, t1) and the one from (t2, start, *) to (*, begin, t2) are

start edges.

• Local edge

A local edge represents normal, intra-thread control flow, not dependent on

thread communication. These edges are inherited from the base CFG, and are

shown as solid edges in Figure 4.1. All the edges that are not waiting edges,

notify edges, or start edges are local edges.

4.3 A Worklist Flow Analysis Algorithm

4.3.1 Overview

MHP analysis is performed using a worklist dataflow algorithm. The goal is to find for

each PEG node the set of other PEG nodes which may execute concurrently. For each

PEG node a set M(n) is initialized to the empty set, and a least fixed-point based

flow algorithm propagates set information around the PEG. M(n) then contains the

set of nodes which may execute in parallel with n. Although this largely follows

the template of a standard dataflow analysis, with special modifications to create

notify edges and flow information across and through the various special edges and

nodes, the algorithm also includes a “symmetry step” to guarantee that if m ∈ M(n)

then n ∈ M(m), i.e., if m may be executed in parallel with n, then certainly n may

happen in parallel with m. This non-standard component of the analysis ensures

information is accurately maintained as the actions of concurrently executing threads

18

4.3. A Worklist Flow Analysis Algorithm

are analyzed. Note that as with most static analyses the computed information is a

conservative approximation.

4.3.2 Terminology

Some functions and terms are used to help illustrate this algorithm.

Functions

• LocalPred(n) and LocalSucc(n)

LocalPred(n) and LocalSucc(n) return the collection containing all immediate

local predecessors and successors of n respectively. Local predecessors/successors

are the predecessors/successors in the same thread.

• NotifyPred(n) and NotifySucc(n)

Notify edges go from notify or notifyAll nodes to the corresponding notified-

entry nodes. NotifyPred(n) computes the set of all the notify predeces-

sors of a notified-entry node n. NotifySucc(n) returns the set of all the

notified-entry successors of a notify node or notifyAll node n.

• StartPred(n) and StartSucc(n)

As introduced in section 4.2, the PEG contains start edges that go from start

nodes to the first node of each started thread. The first node of a thread is

always a begin node. StartPred(n) returns the set of all the start predecessors

of a begin node of a thread. StartSucc(n) returns the collection of begin

successor nodes of a start node n.

• WaitingPred(n) and WaitingSucc(n)

WaitingPred(n) returns a waiting predecessor of a notified-entry node n.

WaitingSucc(n) returns the notified-entry successor of a waiting node n.

• N(t)

All PEG nodes in the thread t.

19

4.3. A Worklist Flow Analysis Algorithm

Collections

Three collections are associated with each lock object in this algorithm:

• notifyNodes(obj)

notifyNodes(obj) contains the collection of all notify and notifyAll nodes for

lock object obj. Such nodes have a format of (obj, notify, caller) or (obj,

notifyAll, caller), where caller can be any thread but every node in the

same collection has the same obj field. In Figure 4.1, the notifiedNodes(lock)

contains one element, i.e., (lock, notifyAll, main).

• waitingNodes(obj)

waitingNodes(obj) contains the collection of all waiting nodes of lock object

obj. For example, in Figure 4.1, waitingNodes(lock) contains two elements, i.e.,

(lock, waiting, t1) and (lock, waiting, t2).

• Monitor(obj)

Monitor(obj) represents the collection of PEG nodes in the monitor of the lock

object obj. For example, in Figure 4.1, the nodes insides the shaded area are

protected by the monitor. Specifically, Monitor(lock) contains the following

nodes:

– (*, if, t1), (lock, wait, t1), and (lock, exit, t1) in thread t1,

– (*, if, t2), (lock, wait, t2), and (lock, exit, t2) in thread t2,

– (*, if, main), (lock, notifyAll, main), and (lock, exit, main)

in thread main.

Computing Notify Edges

There are four type of edges in a PEG. Wait edges, local edges, and start edges

are included as part of building the PEG. But notify edges are built during the

flow analysis—the flow analysis computes notify successors of notify nodes. The

20

4.3. A Worklist Flow Analysis Algorithm

equation for computing notify successors is below. This simply adds a notify edge

if a notify node and a matching waiting node may happen in parallel.

notifySucc(n) =

{m | m ∈ (obj, notified-entry, *) ∧

WaitingPred(m) ∈ M(n)}, if n ∈ notifyNodes(obj)

undefined, otherwise.

(4.1)

4.3.3 Worklist Version of MHP Flow Analysis

Dynamic Computing Equations

This algorithm mostly follows the technology of a standard data flow analysis on

a CFG [Muc97]. Here we introduce and describe the equations verbatim from the

original paper used to compute information during the flow analysis. The following

well-known data flow analysis equation, specialized to each kind of node, is used to

define how information is propagated.

OUT (n) = GEN (n) ∪ M (n) \ KILL(n) (4.2)

M(n) contains the nodes that may be executed in parallel with n, while OUT (n)

contains the nodes that may be executed in parallel with the successor of n. GEN(n)

contains the nodes that may be executed in parallel with the next node but not with

n. Equation 4.2 gives the rule to compute the GEN set of node n. If the current

node is a start node, GEN set only contains the begin node of the target thread. If

the current node is a notify node or notifyAll node for Object obj, GEN consists

of the notify successors, i.e., all the notified-entry nodes of Object obj. In all the

other cases, GEN is empty.

GEN(n) =

(*, begin, t), if n ∈ (t,start,*)

NotifySucc(n), if ∃obj : n ∈ notifyNodes(obj)

∅, otherwise

(4.3)

21

4.3. A Worklist Flow Analysis Algorithm

KILL(n) contains the nodes that will definitely not be executed in parallel with

the next node, although they may be in parallel with n. The below equation gives

the rule for how to compute the KILL(n) set.

KILL(n) =

N(t), if n ∈ (t, join, *)

Monitor(obj), if n ∈ (obj, entry, *) ∪

(obj, notified-entry, *)

waitingNodes(obj), if (n ∈ (obj, notify, *) ∧

|waitingNodes(obj)| = 1)∨

(n ∈ (obj, notifyAll, *))

∅, otherwise

(4.4)

If the current node n is a join node, the successors of n cannot be executed with

any statement of the target thread of n because the finish of the execution of n means

the execution of the target thread terminates. Thus the KILL set is all of thread t. If

the current node is an entry or notified-entry node of object obj, which means it

is outside the monitor of obj and trying to enter the monitor, the KILL set consists

of all the statements inside the monitor of obj. If the current node n is a notify

node of object obj and there is only one waiting node for obj, the waiting node

is ”notified” and cannot be in a waiting state any longer. If the current node n

represents a notifyAll node of object obj, all the waiting nodes are ”notified” and

no thread is waiting for obj. Thus, in these two cases, the KILL set consists of the

waiting nodes of object obj. In the rest of the cases, the KILL set is empty.

M(n) contains the nodes that may be executed in parallel with n. During the

flow analysis, the M set is recomputed and added to the old M set of the current

node. The following equation gives the rule for computing the M set of the current

node n.

22

4.3. A Worklist Flow Analysis Algorithm

Computing M Sets

M (n) = M (n) ∪

⋃

p∈StartPred(n) OUT(p)

\N(thread(n))), if n ∈ (*, begin, *)

((
⋃

p∈NotifyPred(n) OUT(p))

∩OUT(WaitingPred(n)))

∪GENnotifyAll(n), if n ∈ (*, notified-entry, *)
⋃

p∈LocalPred(n) OUT(p), otherwise

(4.5)

If the current node n is a begin node, the nodes that can be executed in parallel

with it are the nodes in the OUT set of the start predecessors of n. If the current

node n is a notified-entry node, the computation of the M set is more complicated

and needs the following equation.

GENnotifyAll(n) =

∅, if n /∈ (obj, notified-entry, *)

{ m|m ∈ (obj, notified-entry, *)∧

WaitingPred(n) ∈ M (WaitingPred(m)) ∧

(∃ r ∈ N : r ∈ (obj, notifyAll, *) ∧

r ∈ (M (WaitingPred(m)) ∩ M (WaitingPred(n)))) }

if n ∈ (obj, notified-entry, *)

(4.6)

If a notifyAll statement wakes all the waiting threads, all the corresponding

notified-entry nodes in these thread may be executed in parallel. In this situation,

the GENnotifyAll(n) set contains all the other notified-entry nodes. Specifically, a

notified-entry node m should in the GENnotifyAll(n) if the waiting predecessor of

n may happen in parallel with the waiting predecessor of m and there is a notifyAll

node which may happen in parallel with both waiting predecessors of m and n.

To compute the M set of a notified-entry node n, we first find the union of

the OUT set of the notify predecessors of n. Then the intersection of that union

with the OUT set of the waiting predecessor of n is computed. Finally, the nodes

in the GENnotifyAll(n) are added to the result. Computing the M set in the rest of

the cases is intuitive: the M set consists of the union of the OUT set of all the local

23

4.3. A Worklist Flow Analysis Algorithm

predecessors of the current node.

Worklist Flow Analysis Algorithm

Algorithm 1 The first stage: Initialization
∀ n ∈ N : KILL(n) = GEN(n) = M(n) = OUT(n) = ø

Initialize the worklist W to include all start nodes in the main thread that are reachable

from the begin node of the main thread

∀ n ∈ N:

case

n ∈ (t, join, *) ⇒ KILL(n) = N (t)

n ∈ (obj, entry, *) ∪ (obj, notified-entry, *) ⇒ KILL(n) = Monitor obj

n ∈ (obj, notifyAll, *)⇒ KILL(n) = waitingNodes(obj)

n ∈ (obj, notify, *) ⇒

if |waitingNodes(obj)| = 1 then

KILL(n) = waitingNodes(obj)

n ∈ (t, start, *) ⇒ GEN (n) = (*, begin, t)

The worklist algorithm is divided into two stages as Algorithm 1 and Algorithm 2

(these algorithms are verbatim from [NSA99]). The first stage as shown in Algorithm

1 is the initialization stage. First of all, the KILL(n), GEN(n), M(n), and OUT(n) set

of each node is initialized to empty; and the worklist W is initialized to only contain

the start nodes of the main thread. Then the KILL sets are computed for all nodes

and the GEN sets for the start nodes.

The second stage shown in Algorithm 2 is the main loop stage of MHP algorithms.

The inputs of this stage are graphs representing all threads and the initialized sets for

each node. In this stage, M(n) and OUT (n) collections for each node are computed,

and this information is propagated to the next nodes. W is the worklist containing

nodes to be processed in the algorithm. The execution of this stage begins with the

first node n of the worklist W, and n is deleted from W as in line 1 and 2. Lines 3

and 4 backup the current value of the M and OUT set of the current node to Mold

24

4.4. Discussion

and OUTold respectively. There are four kind of edges in PEGs and only notify edges

are computed dynamically. Lines 6 to 8 find the NotifySucc() of the current node

if the current node is a notifyNode and also computes notify edges. After building

the notify edges, the graphs representing all the threads are connected to become the

real PEG. Lines 9 to 10 add any new NotifySucc(n) entries to the worklist W to

ensure MHP information is propagated properly. Line 11 computes GEN(n) set for

notifyAll nodes. Line 12 computes M() set for the current node. If the current node

n is a notifyNode, the GEN(n) set is computed as line 13 and 14. Line 15 computes

the OUT(n) set using equation 4.2. As previously mentioned, the difference of this

algorithm from a standard forward flow analysis lies in that it has a special symmetry

step. Lines 16 to 19 detail the symmetry step. The symmetry step is based on the

observation that if a node x is in the M() set of a node y, then y must be in the M()

set of node x. Lines 20 and 21 add the current nodes’ successors to the worklist W

when OUT(n) is different from the backup old value of OUT() of current node. The

output of this stage is M(n) for each node in the PEG, which contains all the PEG

nodes that may be executed in parallel with n.

4.4 Discussion

The limitations discussed in Section 4.1, particularly the inlining and cloning require-

ment mean that this MHP analysis is expensive and not feasible for moderate to large

programs. Thus, a refined and more practical analysis is needed for computing MHP

information. Some approaches to do this are described in the Chapter 6 and 7.

25

4.4. Discussion

Algorithm 2 The second stage: Main loop
We evaluate the following statements repeatedly until W = ø

// n is the current node:
1. n = head(W)

// n is removed from the worklist:
2. W = tail(W)

// Mold, OUTold, and NotifySuccold are th copies of the M, OUT,
// and NotifySuccold sets for this node, computed to determine
// new nodes inserted in these sets on this iteration

3. Mold = M(n)
4. OUTold =OUT(n)
5. NotifySuccold = NotifySucc(n)

//computing the new set of notify successors for notify and notifyAll nodes
6. if ∃o : n ∈ notifyNodes(obj)
7. ∀m ∈ M(n)

⋂

waitingNodes(obj):
//create a new notify edge from node n to the waiting
//successor of node m

8. NotifySucc(n) = NotifySucc(n) ∪ WaitingSucc(m)
//if new notify edges were added from this node

9. if NotifySuccold(n) 6= NotifySucc(n) then
10. W = W

⋃

NotifySucc(n)
11. Compute the set GENnotifyAll(n) as in equation 2.6
12. Compute the set (M(n)) as in equation 2.5

//the only nodes for which the GEN set has to be recomputed are notify
//and notifyAll nodes; their GEN sets are their notify successors:

13. if ∃o : n ∈ notifyNodes(obj) then
14. GEN(n) = NotifySucc(n)
15. Compute the set OUT(n) as in equation 2.2

//do the symmetry step for all new nodes in M(n):
16. if M old 6= M(n) then
17. ∀ m ∈ (M(n) \ Mold(n)):
18. M(m) = M(m) ∪ n

//add m to the worklist because the change in M(m) may lead to a
//change in OUT (m)

19. W = W ∪ m
//if new nodes has been added to the OUT set of n, add all n’s successors
//to the worklist

20. if OUT old 6= OUT(n)
21. W = W ∪ (LocalSucc(n) ∪ StartSucc(n)

26

Chapter 5

MHP computing in the Context of Soot

Our implementation is based on Soot [VRHS+99], a free compiler infrastructure

written in Java. One of the goals of this thesis is to extend Soot to allow multi-

threaded Java program analysis. In this chapter, we introduce the Soot framework

and the main components we used to simplify our effort. At the end of this chapter,

we present how our MHP analysis is integrated into the Soot framework.

5.1 Soot Framework

The Soot framework was originally designed to provide a common infrastructure for

analyzing and transforming Java bytecode. After years of development, it allows users

to analyze, transform, optimize, and annotate Java bytecode. Currently, it has been

extended to include decompilation and visualization.

Soot reads in a Java bytecode class file and converts it to different intermediate

representations, according to a user’s instruction and the needs of any analyses to be

run.

Soot provides five intermediate representations (IR):

• Baf:

A stack-based, streamlined representation of bytecode which is simpler to ma-

nipulate than bytecode itself.

27

5.2. MHP Computing in the Context of Soot

• Jimple:

A stackless, typed, “3-address” intermediate representation suitable for opti-

mization. “3-address” code has been traditionally used in the process of com-

piler analyses and optimizations [VSD86].

• Shimple:

A Static Single Assignment (SSA) [CFR+91] variation of Jimple.

• Grimp:

An aggregated version of Jimple suitable for decompilation and code inspec-

tion. In this model, series of expressions are aggregated into more complicated

expressions. It is closer to Java source code and much easier to read than Baf

and Jimple.

• Dava: A structured representation used for decompiling Java [Mie03].

For each intermediate representation, Soot provides a corresponding processing

phase and associated Application Program Interface (API). Baf, Jimple, and Grimp

are unstructured representations designed to allow analyses and optimizations of Java

bytecode at different levels. Shimple is an variation of Jimple provided for users

needing the Static Single Assignment (SSA) form. Users can use Dava for Java

decompilation. The Grimp IR can be converted into the Dava IR which, when printed

to a text file is recompilable Java source code.

5.2 MHP Computing in the Context of Soot

5.2.1 Jimple

The main internal program representation in Soot is Jimple. Jimple is a typed, “3-

address” code representation of bytecode. There are a number of advantages to use

Jimple for our MHP implementation. Primarily, Jimple provides control flow graph

construction and various control flow analyses that we can use for our MHP analysis.

28

5.2. MHP Computing in the Context of Soot

 public class A{
 private void act(){
1 synchronized(buffer)
2 {
3 a = b + c;
4 buffer.write();
5 buffer.notifyAll();
6 }
7 }
 ...
8 }

Figure 5.1: An example Java code

Jimple is also used by most Soot users, and so this simplifies interaction with other

analyses that may wish to consume MHP information in the Soot framework.

Java source programs are compiled to bytecode (.class files), then transformed to

Jimple IR (.jimple files). Figure 5.1 shows a segment of Java source code of method

act() in class A. Figure 5.2 shows the corresponding bytecode of Figure 5.1. In Fig-

ure 5.2 instruction 0 pushes “this” to the stack while instruction 1 loads parameter

buffer. Instructions 8 to 36 execute the synchronized block while 39 to 43 handle ex-

ceptions. Specifically, instructions 9 to 17 implement line 3, a = b + c, in Figure 5.1

while instruction 35 implements the unlock operation on buffer. Notice instruction

41 makes sure that buffer is unlocked in the case of any exceptional method exits.

In bytecode, full object/method synchronizations are also available, as are other

low-level operations, such as monitorenter/montorexit (to enter/exit a synchronized

block), four kinds of invocations (virtual, static, special, interface). Normally, a

method invocation for an instance method is decided by the runtime type of the

object, and these cases are implemented using the invokevirtual instruction (e.g.,

lines 24 and 31 in Figure 5.2. Most of the method invocations in Java fall in the

category of the “virtual invoke”. The instruction invokestatic is used for invoking

a static method. And the instruction invokespecial must be used when an instance

initialization method is invoked, when a method in the superclass is invoked, or when

a private method is invoked. The instruction invokeinterface is used when a

29

5.2. MHP Computing in the Context of Soot

1 getfield #5<Field Buffer buffer>

7 aload_0
6 monitorenter
5 astore_1
4 dup

9 getfield #3 <Field int b>
8 aload_0

b

// put the result of b to

// get field buffer
20 aload_0

16 iadd

12 aload_0

17 putfield #2 <Field int a>

24 invokevirtual #6 <Method void write()>
27 aload_0
28 getfield #5 <Field Buffer buffer>

39 42 39 any

31 invokevirtual #7 <Method void notifyAll()>
34 aload_1
35 monitorexit
36 goto 44
39 astore_2
40 aload_1
41 monitorexit
42 aload_2
43 athrow
44 return

Exception table:

 7 36 39 any

// get field

// unlock

buffer

buffer

// exception handler

// make sure we unlock buffer

// rethrow exception

Method void act()

0 aload_0 // push
// get parameter

// lock buffer

//get field

// get field c

this on the stack

// save a copy for later unlock

buffer

13 getfield #4 <Field int c>
// b + c

+ c a

21 getfield #5 <Field Buffer buffer>

from to target type

Figure 5.2: Corresponding bytecode of Figure 5.1

30

5.2. MHP Computing in the Context of Soot

private void act()
{

1 A r0;
2 Buffer r1, $r3, $r4, $r5;
 {
3 A r0;
4 Buffer r1, $r3, $r4, $r5;
5 java.lang.Throwable r2, $r6;

 6 int $i0; $i1, $i2;

7 r0 := @this: A;
8 $r3 = r0.<A: Buffer buffer>;
9 r1 = $r3;
10 entermonitor $r3;

 label0:
11 $i0 = r0.<A: int b>;
12 $i1 = r0.<A: int c>;
13 $i2 = $i0 + $i1;
14 r0.<A: int a> = $i2;
15 $r4 = r0.<A: Buffer buffer >;
16 virtualinvoke $r4. <Buffer: void write()>();
17 $r5 = r0.<A: Buffer buffer>;
18 virtualinvoke $r5.<java.lang.Object:void notifyAll()>();

label1:
20 goto label5;

 label:2
21 $r6:= @caughtexception; // exception handler

 label3:

 label4:

22 r2 = $r6;
23 exitmonitor r1; // make sure unlock

24 throw r2; // rethrow exception

 label5:
25 return;

26 catch java.lang.Throwable from label0 to label1 with label2;
27 catch java.lang.Throwable from label3 to label4 with label2;

 // load

// load
// load
//

19 exitmonitor r1; // unlock

buffer

buffer

b

b
c

+ c

buffer

// lock

buffer

}

Figure 5.3: Corresponding Jimple code of Figure 5.1

31

5.2. MHP Computing in the Context of Soot

method which is implemented by an interface is called.

Figure 5.3 shows the corresponding Jimple code of Figure 5.1 and Figure 5.2.

Jimple does not have stack operations; instead, it uses some temporary variables to

store operation results. For example line 11 to 14 in Figure 5.3 implement a = b +

c and some temporary variables $i0, $i1 and $i2 are used in this implementation

instead of stack operations. Notice that in Jimple, as in Java source code, variables

are explicit in operations, whereas in bytecode operands are implicit stack locations.

Jimple also provides different method invocation and monitor enter/exit structures.

5.2.2 Intra-procedural Analysis

Soot provides many useful analyses, both intra- and inter- procedural analyses. In

this section, we introduce the intra-procedural analyses used in MHP computation.

• Control Flow Graphs (CFGs)

Control Flow Graphs can have varied forms in Soot. BlockGraph is a tradi-

tional representation [Muc97] of control flow. To facilitate program analysis

and optimization, the UnitGraph is provided in Soot, in which nodes represent

statements in a program and edges indicate control dependence of the nodes.

We use UnitGraphs for our intra-procedural analysis.

• Flow analysis

For data flow analyses, Soot has two built-in intra-procedural analysis schemata:

ForwardFlowAnalysis and BackwardFlowAnalysis. These provide standard data

flow analysis frameworks suitable for most conventional compiler analyses. MHP

analysis, however, is technically neither a forward flow analysis nor a backward

flow analysis. Mostly it is a forward analysis with a special symmetry step,

which we showed in Section 4.3.3. We implement our MHP analysis based

on the ForwardFlowAnalysis framework, modified to incorporate the symmetry

step.

32

5.2. MHP Computing in the Context of Soot

A B A B

(a) (b)

Figure 5.4: Method relationships in Call Graphs.

5.2.3 Inter-procedural Analysis

Here, we introduce the inter-procedural analyses used in our MHP analysis.

• Call Graphs

Consisting of nodes and directed edges, a call graph contains information about

the possible targets of virtual method calls. For a single-threaded program, the

call graph must include all the methods that can be reached from the main

method. For a multi-threaded program, the call graph must include all the

methods that can be reached from main method and the start or run methods

of all instantiated threads or runnable objects passed to instantiated threads.

Nodes in a call graph denote methods, and edges in a call graph represent

possible calling relationships between the caller method and the callee method.

For example, if we have a statement calling “B()” in method “A”. Figure 5.4

expresses the calling relationship of the statements. Figure 5.4 (a) represents the

case when there is only one call to B in method A while (b) denotes a situation

in which A calls B twice. In Java programs, call graphs are important for whole-

program analyses because method bodies tend to be small, and method calls

very frequently [DDHV03].

• Class hierarchy analysis (CHA)

The Soot framework also provides Class hierarchy analysis. Class hierarchy

analysis [DGC95] conservatively estimates the run-time targets of method calls

by using the class-subclass relationships in the type hierarchy. First, a represen-

tation of the class inheritance hierarchy is built. The nodes in a class inheritance

33

5.2. MHP Computing in the Context of Soot

Object

A

B C

D

Figure 5.5: Class inheritance hierarchy.

hierarchy represent classes while edges denote the immediate superclass-subclass

relationship; there is a directed edge A → B if B inherits from A. Assume we

defined four classes A, B, C, and D, and the class inheritance hierarchy is as

shown in Figure 5.5. Because every class in Java is a child of Object, the root

is necessarily Object. From Figure 5.5, we can see class B and C are subclasses

of A, and D is a subclass of C. The potential runtime types of a class or an

interface are computed over this representation. For a method call on an object

r of declared type t, the runtime type of the receiver r can be t or any subclass

of t. For an interface type t, the runtime types of the receiver r can be any class

c implementing t or a class implementing any subinterface of t, or any subclass

of c.

• Points-to analysis

In a C-like programming languages, many compiler analyses need to make ac-

curate conclusions about the effects of writing to a variable and the possible

read location too. Thus, identifying points-to relations is important to many

compiler analyses. In the case of Java, points-to analysis has been extended

to compute the set of objects a given class reference may assume at runtime.

This identifies variable aliasing, and in an object-oriented language like Java,

method targets too, by identifying potential types of the receiver object of a

34

5.3. MHP Analysis in Soot

method call. This can help significantly in reducing the size of the CHA graph.

Spark [LH03] is a flexible and modular framework providing points-to analysis

for Java programs based on Soot. Spark offers precise points-to information,

a more precise call graph, as well as good time/space performance. For our

analysis we used SPARK rather than CHA to retrieve call graph information,

in order to take advantage of the greater accuracy.

5.3 MHP Analysis in Soot

Figure 5.6 shows how our MHP analysis is integrated with Soot. Java class files are

first input into the Soot framework, producing Jimple files. The Call Graph, as well

as CHA and Spark analysis information are computed based on Jimple. Then the

MHP analysis module computes the may happen in parallel information for each PEG

node based on the Jimple files, Call Graph, CHA, and points-to analysis information

from Spark.

The shaded area represents MHP analysis. Our MHP implementation is composed

of three mainly phases. The first phase is a PEG Builder which uses Jimple and

takes input from CallGraphs, CHA, and SPARK. We get a PEG after the PEG

builder phase. Then a PEG Simplifier works on the PEG to get a smaller PEG

by aggregating some nodes into one node. The PEG Simplifier is an important

component of how we improve the performance of the MHP computation. Note

that many of our simplifications are based on the observation (made in [NSA99])

that code not containing synchronization does not need to be explicitly modelled.

The final phase of our MHP analysis is an MHP analyzer which runs the worklist

algorithm based on the simplified PEG. The details of these processes are discussed

in Chapter 6 and 7 .

MHP information can subsequently be used for further program analyses and

optimization offered by Soot, and/or the analysis results provided by Soot can be

exported through class file attributes for consumption by a virtual machine or another

process.

35

5.3. MHP Analysis in Soot

Jimple

UnitGraph CallGraph CHA SPARK

PEG Builder

PEG Simplifier

PEG

Simplified PEG

MHP Information

MHP Analyzer

Jimple

Data

Process

Figure 5.6: Overview of our MHP analysis.

36

Chapter 6

Design and Implementation of Parallel

Execution Graph

In this chapter, we demonstrate our design and implementation for building Par-

allel Execution Graphs based on Soot. Conceptually, building PEGs from CFGs is

straightforward. In practice, non-obvious information needs to be computed to make

correct decisions and to ensure practicality, and this motivates a series of necessary

optimizations and analyses.

In order to keep the data size manageable, a realistic implementation must also

incorporate techniques to limit the size of the resulting data structures. An obvious

way of restricting data size is to focus attention on application code only. This

restricts the size of the call graphs and thus the PEG. Java includes a very large

standard class library, and so even for a very small program a complete call graph

tends to be quite large. However, in many cases the application itself is of main

interest, and so if external actions are assumed safe enough, greater efficiency can

be derived by excluding library and startup information. To facilitate the MHP

analysis, we therefore define a PegCallGraph to be a call graph restricted to methods

inside application classes, i.e., user defined classes. Like a CallGraph of Soot, a

PegCallGraph is a DirectedGraph, the edges of a PegCallGraph go from nodes to

their successors.

Another difference in our PEG construction from the original MHP analysis is

37

public void A(){
 �
 B();
 ...
}

public void B(){
 �
 C();
 ...
}

public void C(){
 �
 A();
 ...
}

A

B C

(a) (b)

Figure 6.1: An example of recursive method invocations

related to inlining. The MHP analysis presented in Chapter 4 inlines every method,

except communication methods into the control flow graphs for the threads. We do

not use this strategy. First of all, this strategy has a drawback in that it easily fails

when the program contain recursive method calls. In figure 6.1, (a) is a chunk of

program code and (b) is the part of the call graph representing (a). Note in (b)

methods A, B, and C form a cycle. Inlining every method as proposed in Chapter 2

requires inlining B into A, C into B, A into C, B into A, C into B, A into C, ..., . The

inlining process is endless and the program will keep running until the memory run

out. Unfortunately, although recursion is not present in every program, it is used in

many non-trivial programs including, as we discuss in Chapter 8, one of the SPEC

benchmarks.

The second reason that we do not inline every method lies in the lacks of necessity

to always do so for MHP analysis. This requires a definition of what methods are

interesting to MHP analysis. Here, by interesting statements we refer to statements

related to modelling execution of threads and synchronization of Java programs:

Definition 6.0.1 A statement is interesting if it is

38

1) a monitorenter or monitorexit bytecode operations (including entry/exit of syn-

chronized methods)

2) a call to wait, notify, notifyAll of an object, or start() and join() methods of a

thread.

A method is interesting if it either contains an interesting statement, or any callee

is interesting.

Usually, only a small part of a program consists of interesting statements. Whether

we extend and inline those methods that do not contain an interesting statements does

not effect the result of MHP analysis. In addition, the smaller the PEGs, the faster

the MHP computation is expected to be.

Determining whether a method should be inlined thus requires identifying in-

teresting methods. It is easy to identify communication methods and synchronized

methods from the signature of the method, i.e., the name, return type, declaration,

and parameters of the method. The problem is to figure out which methods directly

or indirectly through other method calls contain interesting statements. Our solution

to this is described in Section 6.6.1

MHP analysis requires knowledge of precise runtime object identities. For ex-

ample, we need to know which actual runtime thread is started in call statement

t.start() if t is a (subclass of) Thread. The CFG representing the run() method

for each runtime thread must be built for the MHP analysis. Similarly, if we do not

know which thread corresponds to a method call to join(), we do not know which

nodes should be “killed” in computing the kill set as introduced in Section 4.3.3.

MHP analysis also relies on knowing the value of the Object field in PEG triples for

determining lock ownership and monitor-based information flow. The MHP analysis

introduced in Chapter 4 uses alias sets and cloning techniques to resolve object and

method polymorphism, and to ensure runtime objects are identified. In this thesis,

we try to find the runtime object when building PEG nodes to reduce the size of

PEG. In cases when we cannot find the target statically; we use cloning techniques.

Because of the above differences from the original design of MHP illustrated in

Chapter 4 and the practical usage concerns, we designed a different PEG format and

39

6.1. PegCallGraph

implementation steps for building the PEG. In the rest of this chapter, we present

how we solved the problems for a practical MHP analysis based on Soot, as well as

our PEG design.

6.1 PegCallGraph

A PegCallGraph is a special call graph that only contains methods in application

classes. Java has a large class library. Even for a very small Java program, the

JVM may load and initialize many classes for the running of the program. Thus we

may get a large call graph even for a very tiny program; e.g., consider the following

HelloWorld Java program:

public class HelloWorld{

public static void main{String[] args){

System.out.println("Hello World!");

}

}

The call graph of the “HelloWorld” program built by Soot contains 5075 different

methods and most of them are methods of library classes. Methods inside application

classes only count for a very small part of the call graph.

To build PegCallGraph, firstly, we use the Soot framework to generate a Call-

Graph. Then a filter will work to only keep the methods and associated edges in the

application classes. And the native methods will be excluded from PegCallGraphs.

Thus, in the cases that some library code calls back into the application code, or

where the library code performs synchronization operations on objects created in the

application code, the PegCallGraph should contain the methods in the called back

application code (if Soot handles them).

The PegCallGraph implements the interface DirectedGraph provided by Soot.

The summary of methods of the DirectedGraph is shown in Table 6.1, and rep-

resents basic graph query and traversal functionality. In addition to implementing

all the methods in Table 6.1, the PegCallGraph provides another two public meth-

ods: getTrimSuccsOf(Object o) which returns a list of the unique successors of the

40

6.1. PegCallGraph

Methods Return Type Description

getHeads() java.util.List Returns the collection of the

entry points for this graph.

getTails() java.util.List Returns the collection of the

exit nodes of this graph.

getPredsOf(java.lang.Object o) java.util.List Returns the collection of the

predecessors of the given

node o.

getSuccsOf(java.lang.Object o) java.util.List Returns the collection of the

successors of the given node

o.

iterator() java.util.Iterator Returns an iterator of the

nodes in this graph.

size() int Returns the number of the

nodes in this graph.

Table 6.1: Summary of methods of interface DirectedGraph

given node o and getClinitMethods() which returns a list of clinit methods. When

the initialization method of a class or interface is static and has no arguments, the

Java compiler creates a special method with the name “<clinit>” in bytecode [LY99].

The getClinitMethods() returns the list containing all clinit methods.

A special method to return unique successors is necessary since Soot’s call graph

does not guarantee this property. In Figure 6.2, (a) is an example of a Java pro-

gram in which method foo() contains two method invocations to method bar(),

and (b) is the corresponding call graph. Notice in (b) there are two edges from

method foo to bar. In (c) of Figure 6.2, we only keep one edge from foo to bar.

If there is more than one edge from a method a to method b, the list returned

by method getTrimSuccsOf(Object o) only contains one b. The applications of

method getTrimSuccsOf(Object o) and getClinitMethods() will be introduced

41

6.2. Finding Runtime Objects

public void foo(){

}

bar();

bar();

foo bar

(a) (b) (c)

barfoo

Figure 6.2: An example of a trimmed PegCallGraph

in Section 6.2.

6.2 Finding Runtime Objects

Nodes in PEGs have the format (object, name, caller) where Object is the object

owning the method at runtime. In Soot and by using SPARK, it is possible to find the

potential textual allocation sites corresponding to a given object reference. Allocation

sites are locations in the code, and thus one can easily determine a set of potential

types of an object reference, and this is sufficient for many analyses (including call

graph refinement).

For MHP analysis, however, decisions as to whether synchronization has occurred

requires knowing that an object involved in a monitorexit is the same runtime object

involved in a previously examined monitorenter . In addition, SPARK computes may-

alias information, and so even the same singleton allocation site sets for the respective

objects are not sufficient for this conclusion, since one allocation site in a loop may

spawn more than one runtime object. For example, in the method foo in Figure 6.3,

the allocation site new A() will be executed 10 times, that means it corresponds

to 10 objects with type A. A form of inter-procedural value numbering analysis is

thus required. Again for simplicity of implementation and as well as asymptotic

complexity concerns we have elected for a custom analysis, composed of an intra-

procedural analysis and a flow-insensitive inter-procedural step.

Given a Jimple statement of method invocation, we can find the target allocation

sites by the aid of SPARK. As discussed, even a singular allocation site for an object

42

6.2. Finding Runtime Objects

private void foo(){

int i = 0;

for (i<0; i<10; i++){

}

Object a = new A();

}

Figure 6.3: An example of an allocation site corresponding to multi-objects

reference does not mean that the runtime object has been found. However, an obvious

guarantee that two or more synchronization operations are operating on the same

value can be provided if the computed sets of allocation sites are both the same

singletons, and the allocation site is only ever executed once.

To figure out if an allocation site can be executed at most once, we need intra-

procedural analysis and inter-procedural analysis. By the aid of the control-flow anal-

ysis framework provided by Soot, we can intra-procedurally find out which allocation

sites may be executed more than once. If an allocation site is inside a method which

may be called multiple times, this allocation site may be executed more than once,

too; thus we also need the information of which methods may be executed more than

once. This is more complicated and need both intra-procedural and inter-procedural

analyses.

Inter-procedurally, we can find which methods may be invoked more than once

using the PegCallGraph. If a method is inside an intra-procedural control flow cycle,

it may be called many times. To find out if a particular method call will be executed

more than once. We use the intra-flow analysis provided by Soot. We find which

method calls are inside cycles, and then propagate this information throughout the

PegCallGraph. The results of these two analyses are merged and propagated together

to figure out if only one object is spawned at a specific allocation site. In summary,

finding out all the allocation sites and which of them can be executed more than once

needs the following:

43

6.2. Finding Runtime Objects

• Finding out if a method may be called more than once

• Finding out if an statement is executed only once inside a method

• Finding out which allocation sites correspond to only one object

The implementation details are as follows.

6.2.1 Finding Out if a Statement Is Executed only Once Inside a

Method

Intra-procedurally, a statement is surely executed at most once if it is not included in

any control flow cycles. This information is computed for each allocation site of every

method in the PegCallGraph. This is done by using the intra-procedural flow analysis

framework provided by Soot. With the aid of control flow graph, Soot provides an

intra-procedural flow analysis framework. The users can implement data flow and/or

control flow analyses based on the framework. Usually, a FlowSet is used to store the

variables or other information when the control flow graph is traversed. The users

can have different ways to implement data flow analyses; but usually the users should

define the flow equations, operations at merging points, and the initial value of the

FlowSet. We compute this information for every allocation site of all the methods

in the PegCallGraph to make sure that we compute this information for every user

allocation site.

6.2.2 Finding Out If a Method May Be Called More Than Once

The steps used to find out if a method may be called more than once are as follows.

1. Finding out if a method call may be execute more than once intra-procedurally

If a method invocation statement is inside a loop, this statement may be exe-

cuted more than once, thus the body of the method may be executed more than

once, too. Here we use the intra-procedural flow analysis framework of Soot to

find the methods inside control flow cycles at the same time as we look for the

allocation sites that may be executed once intra-procedurally.

44

6.2. Finding Runtime Objects

2. Propagating the information computed in Step 1 throughout the PegCallGraph

If we find a methods that may be called more than once intra-procedurally,

all the methods that can be reached from this method may be called more

than once. We propagate the information computed in Step 1 throughout the

PegCallGraph using a simple depth-first algorithm.

3. Finding out if a method is called more than once inter-procedurally

To find out which methods are called more than once inter-procedurally, let us

look at some examples first. In Figure 6.4, (a) is a tiny PegCallGraph where

main, A, B, C, D, E, F, G, H, I and J represent methods. The nodes D, E, and

F may be executed more than once because they form a cycle. The nodes G,

H, and I may be executed more than once because any call to F may go to G,

H, and I. There are two edges that go from A to C and one edge that goes from

B to C, thus C may be called multiple times. Thus methods C, D, E, F, G, H,

and I may be executed more than once.

Our approach to figure out which methods are called more than once inter-

procedurally is made up of two stages. The first stage is a breadth-first search

to find out which nodes in the PegCallGraph are visited more than once, and

so the methods represented by these nodes may be called more than once.

In the second stage, we use a modified depth-first search on the PegCallGraph

to detect whether a node is potentially reachable more than once from main.

Before the execution of this stage, the PegCallGraph is trimmed to be like (b)

of Figure 6.4 i.e., if there is more than one edge from a node a to b, we only

keep one of them.

Figure 6.5 shows the algorithm used to find which methods are called more

than once inter-procedurally. In this algorithm, the methods that may be called

more than once are stored in the collection multiCalledMethods. The Search

procedure works as follows. Lines 1-2 paint all vertices white. Lines 3-5 check

each head in PegCallGraph G and, when a white vertex is found, visit it using

Visit. In each call Visit(v), if v is gray, line 7 paints it black, and if collection

45

6.2. Finding Runtime Objects

main

B

C E

F

GJ

A D

I

H

main

B

C E

F

J

A D

I

G

H

(b)

(a)

Figure 6.4: A PegCallGraph containing multi-called methods

46

6.2. Finding Runtime Objects

1 for each vertex u of G
2 mark u WHITE
3 for each head v of G
4 if v is WHITE
5 visit(v)

6 if v is GRAY
7 mark v BLACK
8 if multiCalledMethods does not contains v and v is not a clinit method
9 add v to multiCalledMethods

Visit(v)

Search(G)

11 mark v GRAY
12 for each successor s of v do

10 else

14 visit(s)
13 if s is not BLACK

Figure 6.5: The algorithm for computing multi-called methods

47

6.2. Finding Runtime Objects

multiCalledMethods does not contain it and it is not a clinit method, v may be

a method called more than once and is put into multiCalledMethods. The reason

that we have a special handling for clinit methods here lies in that in Java

bytecode, the clinit method may be called in different statement, however,

the clinit method can be executed only once according to Java semantics.

If v is not gray, it must be white, and is painted gray. Lines 12-14 examine

each successor s of v, if the successor is not black, the traversal continues using

Visit(s).

6.2.3 Finding Allocation Sites and If the Allocation Sites May

Represent More Than One Object

Methods that can be called more than once conservatively imply each statement

in them can be executed more than once, regardless of internal control flow. Our

algorithm actually computes both intra and inter-procedural information together,

performing intra-procedural analysis as the inter-procedural analysis proceeds, and

only if required. This allows the conclusions of each analysis to be merged and

propagated together. Procedure 3 shows the process of finding all the allocation sites

and which allocation sites may correspond to more than one object. The output of

this algorithm is two collections: allocNodeSet containing all the allocation sites and

multiObjAllocNodes containing the allocation sites corresponding to more than one

object.

Before the execution of this algorithm, we compute which methods may be called

more than once and store this information in the collection multiCalledMethods.

This algorithm checks each method in the PegCallGraph to see if the multiCalledMethods

contains it. If the current method may be called more than once, every allocation

site in this method may correspond to more than one object. Line 3 checks each

statement of the current method by scanning each node (represented as a unit of

the UnitGraph). If the current unit is an allocation site it is added to the allocation

site collection and to a collection of call sites that may be called multiple times as in

lines 5 and 6. If the multiCalledMethods does not contain the current method, the

48

6.2. Finding Runtime Objects

Procedure 3
1: for all method m in the PegCallGraph do

2: if multiCalledMethods contains m then

3: for all unit in the UnitGraph do

4: if unit is an allocation site then

5: add this allocation site to allocNodeSet

6: add this allocation site to multiObjAllocNode

7: end if

8: end for

9: else

10: find all the multiAllocSites inside method m

11: for all unit in the UnitGraph do

12: if unit is an allocation site then

13: add this allocation site to allocNodeSet

14: if s contains unit then

15: add this allocation site to multiObjAllocNode

16: end if

17: end if

18: end for

19: end if

20: end for

49

6.3. Finding Target Methods

JVM Instruction InvokeExpr in Soot

invokevirtual VirtualInvokeExpr

invokespecial SpecialInvokeExpr

invokeinterface InterfaceInvokeExpr

invokestatic StaticInvokeExpr

Table 6.2: JVM Instruction VS. InvokeExpr in Soot

procedure of intra-procedurally finding allocation sites corresponding to more than

one object is called and this information is stored in the collection multiAllocSites.

Every allocation site is put into the collection allocNodeSet as in line 13. If the

current unit is an allocation site and found in the collection multiAllocSites, the

corresponding AllocNode is put into multiObjAllocNode as in lines 14 and 15.

6.3 Finding Target Methods

Because inlining is used in computing MHP information, finding target methods is

very important. Finding target methods is not as complicated as finding runtime

objects because we only need to find the runtime type, not the specific object of

references.

Java Virtual Machine provides various instructions for method invocations. As

introduced in Section 5.2, there are four kinds of JVM instructions for method invo-

cations, i.e., invokevirtual, invokestatic, invokespecial, invokeinterface. Soot creates

an expression implementing an interface InvokeExpr for each method invocation. Ta-

ble 6.2 shows the JVM instructions used in invoking a method and their correspond-

ing representations in Soot. In table 6.2 the first column specifies the instructions for

method invocations and the second column shows the interfaces (which are subclass

of InvokeExpr) used to represent the first column.

To find target runtime methods, we need to analyze the various InvokeExpr in

the second column of Table 6.2. If a statement contains a StaticInvokeExpr, it is

50

6.4. Runtime Objects and Alias Resolution for Threads

easy to find the target method because it is in the class defining the called method.

But in the rest of the cases, we need to make some effort to find the target method.

The CallGraph provided by Soot contains conservative information for method

targets. With the aid of SPARK, we can get a refined CallGraph that has more precise

method target information. It is important to note that the CallGraph includes all

kinds of methods, including, for example, native methods. Our analysis does not

handle native methods, and so these are excluded.

6.4 Runtime Objects and Alias Resolution for Threads

We are trying to statically find the runtime objects and target method in our MHP

analysis; unfortunately, sometimes we do not know this information until runtime.

Figure 6.6 is an example of part of a Java program. We do not know which thread

is started in statement thread1.start() in method bar of class Foo until runtime.

Similarly, at the statement thread1.join() we do not know which exact thread

will die until runtime. With the aid of SPARK and CHA, however, we can find the

possible threads that thread1 points to, and use this to form a conservative solution.

In the example program of Figure 6.6, both an instance of Thread1 and an instance

of Thread2 may be started in statement thread1.start(). We create two CFGs

representing the run() method of Thread1 and Thread2. There are two start edges

built for them. For the join statement, it does not kill any statement because we do

not know which thread it should kill.

6.5 Parallel Execution Graph in the Context of Soot

Our PEG implements the interface DirectedGraph provided by Soot. The contents

of the PEG are as follows:

51

6.5. Parallel Execution Graph in the Context of Soot

...

}

public class Thread1 extends Thread{

 public void run(){
...

}
}

public class Thread2 extends Thread{

 public void run(){

}

 int argument = 0;

Thread thread2

}

public int getArgument(){

public void setArgument(int arg){

 argument = arg;

 return argument;

}

if (argument > 0)

thread1 = thread2;

public void bar () {

Thread thread1 = new Thread1();

thread1.start();

= new Thread2();

thread1.join();
}

}

public class Foo{

}

public class Main{

 public static void main(String[] args){
 Foo foo = new foo();

Figure 6.6: An example of thread actions needing alias resolution

52

6.5. Parallel Execution Graph in the Context of Soot

6.5.1 Nodes

Building nodes is essential for generating PEGs. We use a JPegStmt to represent

the nodes in our PEGs. Because the nodes in PEGs are used to represent interesting

statements specifically and other statements more generally in programs, they are

designed to be subclasses of JPegStmt. JPegStmt has the following subclasses with

the obvious functionality corresponding to the node name.

StartStmt NotifyStmt

JoinStmt NotifyAllStmt

WaitStmt WaitingStmt

NotifiedEntryStmt BeginStmt

MonitorEntryStmt MonitorExitStmt

OtherStmt

All the subclasses except OtherStmt are used to denote one kind of interest-

ing statement , and OtherStmts denote all the rest. The format of our PEG nodes

is (Object, Name, Caller, Unit, UnitGraph, SootMethod) where Object, name,

and caller are the same as in Chapter 4, UnitGraph is a reference to the UnitGraph

(CFG) of the current method, Unit is a reference to the original Unit in the Unit-

Graph, and SootMethod is a reference of current method. For those statements that

are not method calls, we label object with “*”.

The process of building PEG nodes begins with calling Soot to build UnitGraphs.

Every node or Unit of the UnitGraph represents a Jimple statement and is then

transformed to a PEG node. To complete PEG node construction, we have specified

how to find the runtime object. Note a statement containing an invocation of the

wait method needs special handling; it is transformed into three PEG nodes, as per

the original PEG definition, WaitStmt, WaitingStmt, and NotifiedEntryStmt.

6.5.2 Edges

There are four kinds of edges in PEGs. Notify edges are built dynamically during

the data flow analysis. Here we introduce how to build the other three kinds of edges.

53

6.5. Parallel Execution Graph in the Context of Soot

UnitGraph does not have an explicit Edge field, instead, it use maps to store the

predecessor lists and successor lists for each node and method getPredsOf() and

getSuccsOf() to locate these lists. Following the same design, we use various maps

to store nodes and their predecessor and successor lists.

There are in fact several kinds of UnitGraphs, including BriefUnitGraphs, Com-

pleteUnitGraphs. The CompleteUnitGraph contains all the statement and edges

accounting for control flow between them while the BriefUnitGraph does not include

the control flow edges associated with exceptions. Here we use the CompleteUnitGraph

because we need to consider all the control flow edges.

• Local edges

Local edges are the same edges as the edges in the CFG for each thread, and

thus we can take advantage of the edges in UnitGraph. If there is an edge from

node a to b in a UnitGraph and the PEG nodes m, n are generated from a, b

respectively, there must be a local edge from m to n.

• Start edges

If a Jimple statement contains a method call to start(), the target method is

checked to see if the object containing it is a thread. If so, a start edge is built

from the PEG node corresponding to this Jimple statement to the first node,

i.e., the begin node of the thread.

• Waiting edges

A Jimple statement containing a method invocation to wait is transformed into

three PEG nodes, WaitStmt, WaitingStmt, and NotifiedEntryStmt. To build

the waiting edge, we put the NotifiedEntryStmt to the successor list of the

WaitingStmt and the WaitingStmt to the predecessor list of the NotifiedEntry-

Stmt.

54

6.6. PEG construction

6.6 PEG construction

Constructing the PEG can involve a lot of duplicated effort, as the same method is

inlined in various places. Our strategy is to build small PEGs, one for each method

a thread may invoke, and then combine these small PEGs into a PEG for the whole

program. This of course doesn’t change the final PEG size, and other techniques

are necessary for that. Methods without interesting statements are good candidates

for pruning, and so our PEG construction first proceeds with a simple, fast inter-

procedural analysis to identify and compact such methods, followed by a standard

inlining operation.

Roughly, building PEGs involves the following implementation.

• Finding Methods that Need To Be Inlined

• Safety of Inlining

• Discovering Inlining Order

• Implementing Inlining

6.6.1 Finding Methods that Need to Be Inlined

Clearly methods that will never execute any interesting statements are of little interest

to the MHP analysis: any MHP information true on entry to such a method is true

at exit, and at all points in between. Since thread communication code is typically

a small part of any significant program, restricting the PEG to useful parts of the

program is very effective.

Unfortunately, knowing whether a method is interesting is recursively dependent

on the status of all callee methods. A precise, flow-sensitive inter-procedural analysis

would be most effective, but is of course both complex and expensive. We have elected

for a more pragmatic flow-insensitive approach, implemented in two stages.

The body of each method in the PegCallGraph is first scanned to see if contains

an interesting statement. If so the method node in the PegCallGraph is marked

55

6.6. PEG construction

D E

B CAmain

Figure 6.7: An example of PegCallGraph

interesting. Once all methods are examined, marks are propagated in the reverse

direction of call graph edges, and logically OR’d at each merge point using a depth

first search of the PegCallGraph. The result is a conservative overapproximation

of interesting methods. During actual PEG construction uninteresting methods are

represented by single node placeholders, greatly reducing PEG size.

Scan each method in the PegCallGraph to find out if it needs to be inlined

The body of each method in the PegCallGraph is examined to see if contains inter-

esting statements. If so, it needs to be inlined. But, this is not enough to identify all

methods that need inlining. In Figure 6.7, main, A, B, C, D, and E are methods in a

PegCallGraph and main is the main entry point of a program. Assume A, C, and E

are found to need inlining at this step. Because C is called by B and E is called by D,

B and D need to be inlined, too. Thus, a second propagation step is also necessary.

Propagation inside Call Graph

At this stage, the information found in the last step is propagated inside the PegCall-

Graph. We use a depth-first search to scan the PegCallGraph: if any successor of a

method needs to be inlined, this method must be inlined too. So after this step, we

can determine that methods B and D in Figure 6.7 also need to be inlined.

56

6.6. PEG construction

6.6.2 Safety of Inlining

As mentioned, recursive method calls will result in the failure of inlining. Thus

we should identify such methods. Here, we use the PegCallGraph to find recursive

method calls. Recursive method calls form loops in a call graph, and so we simply

need to find cycles inside the PegCallGraph.

One step to find all cycles in a graph is to find strongly connected components

[CLR90]. Informally, a strongly connected component (SCC) of a graph is a maximal

subgraph in which there is a path from one vertex to every other vertex along the

edges of the graph. Since the PegCallGraph is a directed graph, we use the well-

known depth-first search based algorithm in [CLR90] to find SCCs.

Our MHP analysis does not quit immediately after finding SCCs in the PegCall-

Graph. Recursive calls may be irrelevant to MHP analysis if they do not contain

interesting statements. Thus, if a SCC does not contain communication methods or

synchronized methods, it is ignored because it will not effect the inlining.

6.6.3 Discovering Inlining Order

The order in which methods are inlined is also important. We describe inlining order

in terms of priorities; a method with a higher priority should be inlined earlier than a

method with a lower priority. In a PegCallGraph, along a directed edge, the method

at the head has higher priority than the method at the tail. For example, assume all

the methods except main should be inlined in Figure 6.7. The leaves, methods C, and

E have highest priorities and should be inlined first. B and D have higher priorities

than A. A has the lowest priority for inlining in this PegCallGraph.

We use a list, specifically, with the format {inlinee, place, inliner} where inlinee

is the reference to the PEG will be inlined, place is the method invocation statement,

and inliner is the container PEG to store the inlining information. This information

is then sorted and processed according to the inlining order.

57

6.6. PEG construction

6.6.4 Special Handling for Synchronized Methods

Java provides two high-level constructs for locking: synchronized methods and syn-

chronized blocks. In the low-level implementation, monitorenter and monitorexit

bytecodes are used by the Java Virtual Machine for entering and exiting a synchro-

nized block. However, the JVM does not explicitly add monitorenter and monitorexit

instructions for synchronized methods; instead, the synchronization of synchronized

methods is executed during runtime by checking a special flag ACC SYNCHRONIZED as-

sociated with the method definition. If it is set, the current thread will request a lock

on the invoking object before executing the method, and then release the lock after

the method execution is done. Here, we use a simplification for handling for this by

manually adding explicit monitorenter and monitorexit instructions at the beginning

and end of each synchronized method.

58

Chapter 7

MHP Implementation and Optimization

The basic MHP algorithm is described in Chapter 4. In this chapter we describe

various implementation and optimization issues that must be addressed in a practical

setting.

7.1 Finding Monitor Objects

If a Java program uses locks, we need the information of which PEG nodes are

protected in monitors to implement the MHP algorithm. In Java, there is a lock

associated with every object. Usually, Java programs have three different type of

locks, single entrant locks, reentrant locks, and enclosed locks. The single entrant

locks are the simplest among these three; in this situation a thread tries to acquire a

lock which is not owned by any thread. The Java runtime system also allows a thread

to try to acquire multiple locks. If a thread tries to acquire a lock held by itself, it is

called a reentrant lock. If a thread tries to acquire another lock l while it has held a

lock m, lock l is called enclosed lock [ACSE99].

To model these three types of locks, we design a class MonitorDepth. The class

MonitorDepth has two member variables, String objName and int depth. Lock

actions are always based on a specific object. Member variable objName represents

the object which is being locked. The depth field represents the level of the recursive

locking and can be 1, 2, or more. For each lock object, an instance of MonitorDepth

59

7.1. Finding Monitor Objects

No lock owner

Object A

acquire
Thread 1 Lock Owner: Thread 1

Object A

(a) Single Entrant Lock

(b) Re−entrant Lock

(c) Enclosed Lock

acquire
Thread 1

Object A

Thread 1

acquire

No lock owner

Object B

Lock owner: Thread 1

Figure 7.1: Three different types of locks in Java

60

7.2. Implementation of the Worklist Flow Analysis Algorithm

is created and a standard flow-sensitive analysis is used to propagate this information

through the PEG, incrementing the count for the object specified at each monitorenter

operation and decrementing counts at monitorexit ’s. Unbounded recursive locking,

as well as general merge points with unmatched locking depths for corresponding

objects (not possible with Java programs) and are not handled, so this is guaranteed

to reach a fixed point.

With lock depth information the MHP analysis can make sound judgements as to

whether a PEG node is truly in a monitor or not.

7.2 Implementation of the Worklist Flow Analysis Al-

gorithm

The main difference of our implementation from the main loop of the algorithm pre-

sented in Section 4.3.3 is that we need to handle a simplified PEG, where a single

PEG node may correspond to more than one CFG node. Thus when mapping infor-

mation back to the CFG we must consider the possibility that a PEG node represents

a list of CFG nodes.

A further difference is due to our conservative treatment of object identity. When

we compute KILL sets for JoinStmts, if the number of target threads is more than

one, the KILL set of the node is empty.

7.3 Optimizations

We can proceed to use the MHP algorithms to compute MHP information once the

PEG is built. However, even with the inlining strategy introduced in Chapter 6, we

may still have a large PEG. Further optimization techniques can still be useful to

simplify the PEG before running the MHP algorithms. Since the MHP analysis is a

fixed-point flow analysis manipulating sets of PEG nodes, the size of the PEG may

effect the execution time and space consumption. We hope that reducing the size of

the PEG could make the MHP analysis cost less time and save some space.

61

7.3. Optimizations

(a) (b)

A

N

E

C D

A

B

E

Figure 7.2: An example of Strongly Connected Component

Our approach of inlining was based on the observation that the worklist algorithm

is affected only by interesting statements, and usually most statements of a Java pro-

gram are not related to interesting statements. This gives us another opportunity for

simplifying PEGs to get smaller graphs. We applied two straightforward graph reduc-

tions as optimizations: merging lists, and collapsing strongly connected components.

Data on the effects of these optimization are given in Chapter 8.

7.3.1 Merging Strongly Connected Components

A strongly connected component (SCC) of a graph g is a subgraph sg of g in which each

node is reachable from any other node of sg along edges in sg. Compacting a strongly

connected component into one node is based on an observation: suppose a strongly

connected component S inside a PEG does not contain interesting statements. If a

statement A can be concurrently executed with a statement B inside S, it should

also be possible for A to be concurrently executed with all the other nodes inside

S. For example, in (a) of Figure 7.2, suppose A, B, C, D, and E are statements not

62

7.3. Optimizations

containing interesting statements in a program. Notice the nodes in shaded area, i.e.,

B, C, and D form an SCC, thus the MHP information of node B, C, and D may be

propagated to any other node of the SCC. The MHP information of node B, C, and

D are the same because they do not containing interesting statements and nothing

will be added or deleted from their M() set after the propagation inside the SCC is

done. Since the M() sets of every node of an SCC are necessarily the same, we can

merge the nodes inside this SCC and create a single, new node to represent the entire

SCC.

We use the well-known, depth-first-search based algorithm specified in [CLRS01]

to find SCCs. After finding the SCCs, we check if they contains interesting statements.

If not, we create a List which contains all the nodes in the SCC, then create a new

node in the position of the SCC. This new node is a reference to the list containing

the nodes of the SCC. For example, in (a) of Figure 7.2, the SCC containing nodes

B, C, and D is transformed to a new node N.

7.3.2 Merging Sequential Nodes

A sequence of nodes with no interesting statements, and no branching in or out except

at the beginning and end respectively necessarily has the same MHP information at

each node in the sequence; whatever is true upon entry is true at exit and at all points

between.

Tarjan proposed an efficient FIND-UNION algorithm [Tar75] to collapse nodes.

This algorithm merges two successive nodes and uses one of them to represent the

pair. Whenever a set of nodes are combined, one of the combined nodes is used as

the unique representative of the whole set.

Here we use a different approach to collapse nodes. First we locate all maximal

chains of sequential nodes. Then the maximal chains are merged and replaced by a

new node.

63

7.3. Optimizations

(b)

B

C

D

A

E

F

G

A

H

H

M N

(a)

Figure 7.3: An example of sequential nodes

Locate the maximal number of sequential nodes that can be merged

Using an arbitrary order to visit nodes will not work well here because we need

to find all the sequential nodes. A linear order according to a depth-first search

based topological sort [CLRS01] is built for accessing nodes. In a directed graph,

an edge from a descendant to an ancestor in a depth-first tree is call a back edge

[CLRS01]. Back edges form cycles in a directed graph. Note that if a PEG is cyclic,

no linear order is possible, and in such cases we ignore the back edge when building

the topological order.

As we visit each node according to the topological order, each node is examined

to check if it has only one predecessor, only one successor, and does not contain

interesting statements. If so, it is added to a list and we proceed to visit the next

node. If not, we terminate the current list as a maximal chain of sequential nodes,

create a new list, and proceed to visit the next node. This process continues until all

the nodes have been visited.

As an example, consider the graph in Figure 7.3. On the left, suppose B, C, D,

64

7.3. Optimizations

E, F, G do not contain interesting statements. Our topological sort will produce an

ordering ABCDEFGH (or AEFGBCDH), and so we will find a maximal chains of

sequential nodes, 〈B, C, D〉 and 〈E, F, G〉.

Merging the sequential nodes

After locating maximal chains, each is collapsed and replaced by a new node that

represents the entire sequence. In (a) of Figure 7.3, chain B, C, and D is replaced by

the newly created node M while chain E, F, and G is replaced by N as shown in (b).

7.3.3 Updating the PEG

Whenever nodes are merged, the PEG should be updated. The nodes that are merged

are removed from the PEG, and the new nodes representing merged nodes are added

to the PEG. Of course it is also necessary to preserve control flow in this process,

and so all the edges to and from the merged SCCs or sequential nodes are replaced

with the edges to and from the new nodes representing the merged nodes. In (b)

of Figure 7.2, for instance, the nodes and edges inside the SCC are gone, and the

newly created node N, is added to the PEG and it has the original predecessors and

successors of the SCC (B, C, and D). In (b) of Figure 7.3, the nodes B, C, D, E,

F, G and the edges connecting them are removed while the new nodes M and N are

inserted and have the original predecessors and successors of the chain B, C, and D,

and the chain E, F, and G respectively.

65

Chapter 8

Experimental Results

Here we describe experimental results for our implementation, comparing perfor-

mance with and without our various optimizations and improvements.

8.1 Benchmarks

We collected our benchmarks from several sources. Most of the benchmarks are

multi-threaded benchmarks from the Java Grande Benchmark Suite [Sui]: ForkJoin,

Sync and Barrier represent low level benchmarks that test synchronization, Se-

ries, LuFact, Sor, Crypt and SparseMat test specific “kernel” operations, and

MonteCarlo, RayTracer and MolDyn are larger, more complete applications.

From the SPECJvm98 suite we included mtrt, the only multi-threaded benchmark

in that benchmark set. In order to fit our input requirements, we modified most

of these benchmarks by manually unrolling all the loops containing method calls to

communication methods. All tests were run on a Pentium 4 1.8GHz, with the Sun

HotSpot VM (Linux, version 1.4.1) using a 1500M heap.

For comparative purposes we have also attempted to collect some of the same

benchmarks used in Naumovich et al.’s paper. However, most of the code we have been

able to acquire is in the form of incomplete program fragments that require a driving

main program to analyze in our system. Fine-grained comparisons are thus not likely

to be meaningful. We therefore include AuBanking and PeBanking, programs

66

8.2. Results

|M()|
Programs Threads Nodes Edges

Ave Min Max
Pairs LOC

ForkJoin 4 308 331 64 15 173 6105 544

Sync 5 656 712 118 28 459 28944 642

Barrier 5 561 716 175 53 339 34651 754

Crypt 5 1025 1061 672 193 772 297220 1107

MonteCarlo 3 405 433 104 35 182 11340 3569

RayTracer 3 660 724 125 43 318 25188 2252

Series 3 315 342 109 46 130 9660 826

LuFact 3 465 510 202 112 224 32032 1480

Sor 3 622 673 289 182 363 66430 730

SparseMat 3 305 329 81 30 120 6180 726

MolDyn 3 2173 2295 1093 917 1866 1088392 1346

Cyclic 5 162 201 69 30 124 4580 81

mtrt 4 188 211 43 14 108 2819 3812

AuBanking 3 170 203 31 18 92 4114 301

PeBanking 3 154 270 63 47 137 4414 442

Table 8.1: Experimental results without PEG simplification

based on the examples AutomatedBanking and PessimBankAccount from Doug Lea’s

book [Lea97]. We have focussed on these two examples since in [NSA99] Naumovich et

al.’s version of these benchmarks had the largest PEG sizes and also had the largest

MHP analysis times (by an order of magnitude) of all their benchmarks. We also

include Cyclic, a benchmark from the CyclicBarrier example in the second edition

of Lea’s book [Lea99] which was also analyzed by Naumovich et al.. In each case we

added an appropriate main method, modifying them to be complete applications.

67

8.2. Results

8.2 Results

Tables 8.1 and 8.2 presents the experimental results for the benchmarks without most

of our optimizations in effect. In Table 8.1 the first column gives the names of the

benchmarks, the second column gives the number of threads (including the main

thread), and the next two columns give the number of nodes and edges in the PEGs

representing each program respectively.

In the fifth, sixth, and seventh columns, we specify the average, minimal, and

maximal number of nodes in the computed M() set for each node, i.e., how many

nodes were determined may be executed in parallel with each node. This gives some

notion of analysis accuracy, at least in the absence of measuring a consuming analysis.

The eighth column gives the total number of node pairs found in the entire PEG—as

well as the PEG itself, this represents the total space requirements of the analysis.

The last column gives the size of the benchmarks using the number of lines of code.

Tables 8.1 shows that larger programs does not always have bigger PEG. For

instance, MolDyn (1346 lines of code) is smaller than mtrt (3812 lines of code),

but has a bigger PEG; specifically, MolDyn 2173 nodes and 2295 edges while mtrt

has 188 nodes and 211 edges. The reason lies in that we only consider the interesting

statements and interesting methods. Graph size for smaller programs look reasonable,

though the larger MolDyn benchmark suggests we may encounter scaling issues.

Table 8.2 measures time for the various stages of the analysis. PEG time is the

time to build the PEG, MHP is the subsequent analysis time, and SPARK time is

the total cost of points-to analysis. Total time is greater than the sum of the these

stages; the remainder represents time required to load and initialize and shutdown

the Soot environment.

The data and timing in Tables 8.1 and 8.2 already represent application of many

of the previously discussed simplification and implementation techniques (excessive

data sizes prevented computation of totally unoptimized data), we only exclude the

PEG node merging techniques of Chapter 7. Note that mtrt contains recursive

method calls and method inlining for it would normally fail; however, using the tech-

niques of Section 6.6 we determined that the recursive calls do not involve interesting

68

8.2. Results

Programs PEG(s) MHP(s) SPARK(s) Total(s)

ForkJoin 0.18 4.46 67.2 88.5

Sync 0.40 51.51 68.2 136.8

Barrier 0.34 72.72 68.7 160.4

Crypt 0.52 6812.68 67.2 6917.74

MonteCarlo 0.28 14.15 68.0 102.3

RayTracer 0.37 57.58 67.5 143.42

Series 0.24 8.84 67.8 93.3

LuFact 0.23 87.86 68.8 163.08

Sor 0.29 259.26 68.0 347.9

SparseMat 0.21 3.98 67.2 88.1

MolDyn 1.86 44313.44 69.2 44553.9

Cyclic 0.14 1.13 67.8 86.2

mtrt 0.33 1.53 139.7 232.8

AuBanking 0.17 1.14 66.5 86.4

PeBanking 0.14 1.17 66.4 85.3

Table 8.2: Experimental results without PEG simplification

69

8.2. Results

statements, and so we are still able to get results.

For most benchmarks the time to build the PEG is small, and in all but one

case well under a second. MHP analysis time clearly dominates PEG construction

time. This is unsurprising given the O(n3) time complexity of MHP analysis, but

was considerably less evident in the data presented in [NSA99], where the majority of

benchmarks were very small (mostly < 100 PEG nodes) and so PEG time generally

appeared to dominate. For larger programs the cubic behavior of MHP becomes more

evident: MolDyn, the largest benchmark in terms of PEG nodes we examined takes

less than 2 seconds to build the PEG, but over 12 hours to analyze. MolDyn is

not an especially large program (1346 lines of code) and so these running times are

clearly still excessive for even moderate programs, and further steps are necessary to

reduce PEG size, and thus MHP analysis time.

Table 8.3 shows similar experimental results when the PEG is optimized using

the techniques of Chapter 7. The second and third columns give the PEG size reduc-

tions supplied by the two techniques of merging SCCs and merging sequential nodes

respectively; the resulting graph size is given in the fourth and fifth columns. The

remaining columns present the relative size of the PEGs; specifically, the sixth column

shows the percent of (the number of nodes in optimized PEG)/(the number of nodes

in original PEG), and the last column shows the percent of (the number of edges

in optimized PEG)/(the number of edges in original PEG). In every case our PEG

optimizations were able to reduce the graph, and in some cases quite dramatically:

MolDyn is reduced from 2173 nodes to 144. In smaller programs sequential node

contractions are most effective, but in the bigger programs the volume of modular,

synchronization independent sections of code sometimes made SCC merging quite

valuable.

Table 8.4 gives the timing data when the optimization techniques presented in

Chapter 7 are used. The second and third columns give the time in seconds taken

to perform the PEG simplifications and run MHP analysis on the smaller PEG. The

fourth and fifth columns show the total running time including SPARK and Soot

overhead. The remaining columns give the relative speedup (old-time/new-time)

ratio achieved by the optimized version versus the base approach, for both total

70

8.2. Results

Relative size Relative size
Programs Sim.Scc Sim.Seq. Nodes Edges

of Nodes(%) of Edges(%)

ForkJoin 0 199 109 132 35.4 39.9

Sync 2 389 255 307 38.9 43.1

Barrier 12 287 262 411 46.7 57.4

Crypt 662 240 121 149 11.8 14.1

MonteCarlo 26 247 132 158 32.6 36.5

RayTracer 18 431 211 267 32.0 36.9

Series 26 180 109 134 34.6 39.2

LuFact 166 194 105 130 22.6 25.5

Sor 298 223 101 124 16.2 18.4

SparseMat 55 165 85 104 27.9 31.6

MolDyn 1482 547 144 174 6.6 7.6

Cyclic 0 51 111 150 68.6 74.6

mtrt 3 107 78 95 41.5 45.0

AuBanking 2 71 97 126 57.1 62.1

PeBanking 0 66 88 204 57.1 75.6

Table 8.3: Experimental results after optimization

running time, and the time just to construct and simplify the PEG and run the MHP

analysis. Speedups in MHP+PEG construction range from 40% to over 13,000%.

Again, MolDyn speedups were most significant, as running time drops from half a

day to just over 1 second. As a general rule, larger benchmarks have more nodes,

and hence more opportunities for PEG compaction, which is quite encouraging for

analysis of reasonable size programs. The benchmarks with minimal or no total

speedup, Cyclic, mtrt, AuBanking, and PeBanking all spend minimal time in

MHP analysis—even our base MHP and PEG times account for less than 2 seconds,

no more than 5% of total time.

71

8.2. Results

Programs Sim.(s) MHP(s) Total time(s) Total Speedup PEG+MHP

ForkJoin 0.02 0.41 84.4 1.05 4.76

Sync 0.07 8.81 94.1 1.45 5.95

Barrier 0.06 21.21 108.8 1.47 3.71

Crypt 0.10 0.93 105.1 65.82 4395.80

MonteCarlo 0.03 0.53 88.7 1.15 17.13

RayTracer 0.07 6.66 92.5 1.55 8.48

Series 0.03 0.64 85.0 1.09 9.98

LuFact 0.04 0.53 87.9 1.91 110.06

Sor 0.04 0.39 89.0 3.91 360.37

SparseMat 0.02 0.09 84.5 1.04 12.65

MolDyn 0.18 1.18 90.0 495.04 13763.80

Cyclic 0.02 0.74 85.8 1.00 1.40

mtrt 0.02 0.10 231.8 1.00 3.73

AuBanking 0.02 0.53 85.8 1.01 1.75

PeBanking 0.02 0.62 84.7 1.01 1.68

Table 8.4: Experimental results after optimization

SCC and sequential merging have clear benefits, with a fairly minimal cost—

even for MolDyn simplification takes less than 1/5s. Merging in combination with

an already efficient initial PEG construction allows reasonable size programs to be

analyzed. Interestingly, after optimization efforts, the Barrier benchmark is the

most expensive to analyze. With optimization overall analysis cost is related more

closely to number and density of communication operations than input program size.

72

Chapter 9

Conclusions and Future work

In this thesis, we presented a practical MHP analysis for concurrent Java pro-

grams. There are of course a number of extensions and improvements still required

to achieve an industrial strength solution.

9.1 Conclusion

We have presented a more realistic implementation of MHP analysis for Java. Fo-

cusing on the practical concerns, we designed and implemented a refined approach

to build PEG for MHP analysis; our design makes use of a variety of existing and

small custom analyses in order to build a feasible implementation that can analyze

programs of a reasonable size, bypassing many of the previous input restrictions.

Moreover, we provided both design and implementation data for optimizations

intended to improve the performance of our MHP analysis. Our base PEG construc-

tion already excludes large amounts of code by considering only code that may be

relevant to MHP data, the interesting statements. We further compact PEGs by

collapsing subsequences of uninteresting code forming strongly connected components

or sequential chains obtaining smaller PEGs. Because the MHP data-flow algorithms

run faster on the simplified PEGs than the original PEGs, the performance of our

MHP computation is greatly improved.

73

9.2. Future work

We have presented experimental results from such an implementation, and have

thus shown how excessive MHP analysis time can be efficiently handled through

simple input compaction techniques. Our optimizations work for all the benchmarks,

in some cases achieving speedups in MHP analysis time of several orders of magnitude.

We also include techniques that allow us to handle benchmarks excluded from the

original MHP presentation, e.g., benchmarks that contain (uninteresting) recursive

method calls.

9.2 Future work

Our work has clear extensions in a number of ways, including analysis and poten-

tial implementation improvements. Certainly accuracy of the resulting information

deserves examination. Naumovich et al. compare MHP information to precise reach-

ability analyses in order to verify the resulting analysis data, but the complexity

of reachability analysis means such a technique is not feasible for larger programs.

We have exhaustively examined (small) test cases, and spot-checked larger results

to ensure we have a correct implementation, but a more thorough and deterministic

approach is desirable.

Given the success of our simple techniques, further PEG compaction or reduction

approaches seem worth exploring. For example, by considering the flow of MHP

information through other identifiable PEG substructures, such as “hyperblocks” of

nodes—collections of connected nodes with only one entry point, though possibly

more than one exit. Movement to a PEG design that does not require inlining at all

is of course most desirable.

We also aim to expand the range of acceptable input programs. Programs with

an unbounded number of threads, use of timed synchronization constructs, and so

on could be handled, and this would allow more programs to be analyzed with less

manual intervention.

Some client analyses for the MHP computation would be interesting, and could

also serve as indicates of the quality of MHP information. Because the MHP analysis

74

9.2. Future work

provides information of which statements may be executed in parallel with a given

statement, by checking the MHP information for a statement involving a variable

access, we can find information on which variable accesses may happen in parallel.

Thus static datarace detection becomes straightforward and would also serve as an

indicator of the quality or accuracy of MHP information. Of course, our effort in this

thesis is directed at achieving a reasonably efficient MHP implementation. Client

analyses, however useful are left as future work.

75

Bibliography

[ACSE99] Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eggers.

Static analyses for eliminating unnecessasry synchronization from Java

programs. In Proceedings of the Sixth International Static Analyses Sym-

posium, pages 19–38. Springer-Verlag, September 1999.

[Ben] SPEC JVM98 Benchmarks. http://wwww.spec.org/jvm98.

[Bla99] B. Blanchet. Escape analysis for object-oriented languages: applica-

tion to Java. In Proceedings of the ACM SIGPLAN 1999 Conference

on Object-Oriented Programming, Systems, Languages, and Application,

pages 20–34, November 1999.

[BLQ+03] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and Navindra

Umanee. Points-to analysis using BDDs. In Proceedings of the ACM

SIGPLAN 2003 conference on Programming language design and imple-

mentation, pages 103–114. ACM Press, 2003.

[BS96] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual

function calls. In OOPSLA ’96 Conference Proceedings: Object-Oriented

Programming Systems, Languages, and Applications, pages 324–341,

1996.

76

Bibliography

[BU99] J. Bogda and U.Hölzle. Removing unnecessary synchronization in Java.

In Proceedings of the ACM SIGPLAN 1999 Conference on Object-

Oriented Programming, Systems, Languages, and Application, pages 35–

46, November 1999.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. Efficiently computing static single assignment form

and the control dependence graph. In ACM Transactions on Program-

ming Language and Systems (TOPLAS), volume 13, pages 451–490.

ACM Press, October 1991.

[CGS+99] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape

analysis for Java. In Proceedings of the ACM SIGPLAN 1999 Conference

on Object-Oriented Programming, Systems, Languages, and Application,

pages 1–19, November 1999.

[Che00] Zhiqun Chen. Technology for Smart Cards: Architecture and Program-

mer’s Guide. Addison-Wesley, 2000.

[CLL+02] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,

Vivek Sarkar, and Manu Sirdharan. Efficient and precise datarace detec-

tion for multithreaded object-oriented programs. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming language design and

implementation, pages 258–269, Berlin, Germany, June 2002.

[CLR90] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms, chapter 23.5. MIT Press, Cambridge, Mas-

sachusetts, 1990.

[CLRS01] Thoman H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. MIT Press, second edition, 2001.

[DDHV03] Bruno Dufour, Karel Driesen, Laurie Hendren, and Clark Verbrugge.

Dynamic metrics for Java. In Proceedings of the ACM SIGPLAN 2003

77

Bibliography

Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA ’03), pages 149–168. ACM Press, 2003.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-

oriented programs using static class hierarchy analysis. In Walter G.

Olthoff, editor, ECOOP’95—Object-Oriented Programming, 9th Euro-

pean Conference, volume 952 of Lecure Notes in Computer Science, pages

77–101, Åarhus, Denmark, 7-11 August 1995. Springer.

[DJ88] D.Callahan and J.Subhlok. Static analysis of low-level synchronization.

In Proceedings of the SIGPLAN/SIGOPS workshop on Parallel and Dis-

tributed debugging, pages 100–111, 1988.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-

sensitive interprocedural points-to analysis in the presence of function

pointers. In Proceedings of the ACM SIGPLAN’94 Conference on Pro-

gramming Language Design and Implementation, pages 242–256, 1994.

[EM98] E.Duesterwald and M.L.Soffa. Fast interprocedural class analysis. In Pro-

ceedings of the ACM SIGSOFT Fourth Workshop on Software Testing,

Analysis, and Verification, pages 36–48, Victoria, B.C., October 1998.

[E.R00] E.Ruf. Effective synchronization removal for Java. In Proceedings of the

ACM SIGPLAN 2000 Conference on Programming language design and

implementation, pages 208–218, June 2000.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for

Java. In Proceedings of the ACM SIGPLAN 2000 conference on Program-

ming language design and implementation, pages 219–232. ACM Press,

2000.

[FF01] Cormac Flanagan and Stephen N. Freund. Detecting race conditions in

large programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools and engineering, pages

90–96. ACM Press, 2001.

78

Bibliography

[FGS97] Jeanne Ferrante, Dirk Grunwald, and Harini Srinivasan. Compile-time

analysis and optimization of explicitly parallel programs. In Journal of

Parallel algorithms and applications, volume 12, pages 21–56, 1997.

[FJW87] Jeanne Ferrante, Karl J.Ottenstein, and Joe D. Warren. The program

dependence graph and its uses in optimization. In ACM Transactions on

Programming Languages and Systems, pages 319–349, July 1987.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-

guage Specification. Addison-Wesley, second edition, 2000.

[Han99] Per Brinch Hansen. Java’s insecure parallelism. In ACM SIGPLAN

Notices, volume 34, pages 38–45. ACM Press, April 1999.

[HC02] Cay S. Horstmann and Gary Cornell. Core Java 2, volume 2. Sun

Microsystems Press, 2002.

[Lea] Doug Lea. Concurrent Programming in Java. Design principles and pat-

terns, online supplement. http://gee.cs.oswego.edu/dl/cpj/index.html.

[Lea97] Doug Lea. Concurrent Programming in Java Design Principles and Pat-

terns. Addison-Wesley, Reading, Massachusetts, 1997.

[Lea99] Doug Lea. Concurrent Programming in Java Design Principles and Pat-

terns. Addison-Wesley, Reading, Massachusetts, second edition, 1999.

[Lee99] Jaejin Lee. Compilation techniques for explicitly parallel programs. PhD

thesis, University of Illinois at Unbana-Champaign, 1999.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International

Conference, volume 2622 of LNCS, pages 153–169, Warsaw, Poland,

April 2003. Springer.

[LPA97a] Jaejin Lee, Samuel P.Midkiff, and David A.Padua. Concurrent static

single assignment form and constant propagation for explicitly parallel

79

Bibliography

program. In Proceedings of The 10th International Workshop on Lan-

guages and Compilers for Parallel Computing, number 1366 in Lecture

Notes in Computer Science, pages 114–130, Springer, August, 1997.

[LPA97b] Jaejin Lee, Samuel P.Midkiff, and David A.Padua. How to make a correct

multiprocess program execute correctly on a multiprocessor. In IEEE

Trans. on Computers, pages 46(7):779–782, July 1997.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, second edition, 1999.

[Mie03] Jerome Miecznikowski. New algorithms for a Java decompiler and their

implementation in Soot. Master’s thesis, McGill University, Montreal,

Canada, 2003.

[MLP01] S. Midkiff, J. Lee, and D. Padua. A compiler for multiple memory mod-

els. In 9th Workshop Compilers for Parallel Computers (CPC’01), Ed-

inburgh, Scotland, UK, June 2001.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.

Morgan Kaufmann, San Francisco, CA, USA, 1997.

[NBF96] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads

Programming. O’Reilly, 1996.

[NSA99] Gleb Naumovich, George S.Avrumin, and Lori A.Clarke. An efficient al-

gorithm for computing MHP information for concurrent Java program. In

Proceedings of the 7th European engineering conference held jointly with

the 7th ACM SIGSOFT international symposium on Foundations of soft-

ware engineering, volume 24, pages 338–354, Toulous, France, November

1999.

[OC03] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race

detection. In Proceedings of the ninth ACM SIGPLAN symposium on

80

Bibliography

Principles and practice of parallel programming, pages 167–178. ACM

Press, 2003.

[RMR01] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to anal-

ysis for Java using annotated constraints. In Proceedings of the 16th

ACM SIGPLAN conference on Object oriented programming, systems,

languages, and applications, pages 43–55. ACM Press, 2001.

[Sar97] Vivek Sarkar. Analysis and optimization of explicitly parallel programs

using the parallel program graph representation. In Proceedings of the

10th International Workshop on Languages and Compilers for Parallel

Computing, LNCS Springer-Verlag, pages 94–113, Minneapolis, MN, Au-

gust 1997.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. Eraser: a dynamic data race detector for multi-

threaded programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[SHR+00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallee-

Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Practical vir-

tual method call resolution for Java. In Proceedings of the conference

on Object-Oriented Programming, System, Languages, and Applications,

pages 264–280, 2000.

[SS98] Vivek Sarkar and Barbara Simons. Parallel program graphs and their

classification. In Proceedings of ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering, Montreal, Quebec,

Canada, 1998.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 32–41. ACM Press, 1996.

[Sui] Java Grande Benchmark Suite. http://www.epcc.ed.ac.uk/javagrande/javag.html.

81

Bibliography

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union

algorithm. Journal of the ACM (JACM), 22(2):215–225, 1975.

[vG01] Christoph von Praun and Thomas R. Gross. Object race detection. In

Proceedings of the 16th ACM SIGPLAN conference on Object oriented

programming, systems, languages, and applications, pages 70–82. ACM

Press, 2001.

[vPR03] Christoph von Praun and Thomas R.Gross. Static conflict analysis for

multi-threaded object-oriented programs. In Proceedings of the ACM

SIGPLAN 2003 Conference on Programming language design and imple-

mentation, pages 115–128, San Diego, California, USA, June 2003.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Eti-

enne Gagnon, and Phong Co. Soot - a Java optimization framework. In

Proceedings of CASCON 1999, pages 125–135, 1999.

[VSD86] Alfred V.aho, Ravi Sethi, and Jeffrey D.Ullman. Compilers Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[WR99] J. Whaley and M. Rinard. Compositional pointer and escape analysis for

Java programs. In Proceedings of the ACM SIGPLAN 1999 Conference

on Object-Oriented Programming, Systems, Languages, and Application,

pages 187–206, November 1999.

82

