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Abstract

In recent years, there has been an increase in the popularityof dynamic languages such

as Python, Ruby, PHP, JavaScript and MATLAB. Programmers appreciate the productivity

gains and ease of use associated with such languages. However, most of them still run in

virtual machines which provide no Just-In-Time (JIT) compilation support, and thus per-

form relatively poorly when compared to their statically compiled counterparts. While the

reference MATLAB implementation does include a built-in compiler, this implementation

is not open sourced and little is known abouts its internal workings. The McVM project has

focused on the design and implementation of an optimizing virtual machine for a subset of

the MATLAB programming language.

Virtual machines and JIT compilers can benefit from advantages that static compilers do

not have. It is possible for virtual machines to make use of more dynamic information

than static compilers have access to, and thus, to implementoptimization strategies that are

more adapted to dynamic languages. Through the McVM project, some possible avenues to

significantly improve the performance of dynamic languageshave been explored. Namely,

a just-in-time type-based program specialization scheme has been implemented in order to

take advantage of dynamically available type information.

One of the main contributions of this project is to provide analternative implementation

of the MATLAB programming language. There is already an opensource MATLAB in-

terpreter (GNU Octave), but our implementation also includes an optimizing JIT compiler

and will be open sourced under the BSD license. McVM aims to become a viable imple-

mentation for end-users, but could also see use in the compiler research community as a

testbed for dynamic language optimizations. In addition tothe contribution of the McVM
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framework itself, we also contribute the design and implementation of a novel just-in-time

type-based program specialization system aimed at dynamiclanguages.

The novel specialization system implemented in McVM shows much promise in terms of

potential speed improvements, yielding performance gainsup to 3 orders of magnitude

faster than competing implementations such as GNU Octave. It is also easily adaptable to

other dynamic programming languages such as Python, Ruby andJavaScript. The investi-

gation of performance issues we make in this thesis also suggests future research directions

for the design of dynamic language compilers of the future.
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Résum é

Ces dernìeres anńees, il y a eu une augmentation de la popularité des langages dynamiques

tels que Python, Ruby, PHP, JavaScript et MATLAB. Les programmeurs appŕecient les

gains de productivit́e et la facilit́e d’utilisation associéeà ces langues. Cependant, la plu-

part de ces langages s’exécutent encore dans des machines virtuelles qui ne fournissent

aucun support pour la compilatioǹa la voĺee, et ont donc une performance inférieure si

on les comparèa leurs homologues compilés statiquement. Bien que l’implémentation de

référence de MATLAB comprenne un compilateur intégŕe, cette application n’est pas open

source et son fonctionnement interne demeure un secret industriel. Le projet McVM a mis

l’accent sur la conception et l’implémentation d’une machine virtuelle optimisée pour un

sous-ensemble du langage de programmation MATLAB.

Les machines virtuelles et les compilateursà la voĺee peuvent b́eńeficier d’avantages que

les compilateurs statiques n’ont pas. Il est possible pour les machines virtuelles de faire

usage d’informations dynamiquèa laquelle les compilateurs statiques n’ont pas accès, et

donc, de mettre en oeuvre des stratégies d’optimisation qui sont plus adaptées aux lan-

gages dynamiques.̀A travers le projet McVM, plusieurs avenues possibles pour améliorer

consid́erablement la performance des langages dynamiques ontét́e exploŕees. Entre autre,

un syst̀eme de sṕecialisation de programmesà la voĺee permettant de profiter d’informa-

tions sur les types disponible dynamiquement aét́e impĺement́e.

L’une des principales contributions de ce projet est de fournir une impĺementation alter-

native du langage de programmation MATLAB. Il existe déjà un interpŕeteur MATLAB

open source (GNU Octave), mais notre application comprendégalement un compilateurà

la volée optimiśe et sera distribúee sous la licence open source BSD. McVM viseà devenir
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une impĺementation viable pour les utilisateurs finaux, mais pourrait aussiêtre utiliśee dans

le milieu de la recherche sur les compilateurs comme outil d’exṕerimentation. En plus de

la contribution du logiciel int́egŕe McVM lui-même, nous avonśegalement contribúe à la

conception et la ŕealisation d’un système de sṕecialisation de programmèa la voĺee visant

à l’optimisation des langages dynamiques.

Le syst̀eme de sṕecialisation mis en oeuvre dans McVM se montre très prometteur en

termes de potentiel d’aḿeliorations de la vitesse d’exécution, permettant des gains de per-

formance allant jusqu’à trois ordres de grandeur comparés aux impĺementations concur-

rentes telles que GNU Octave. Il estégalement facilement adaptableà d’autres langages de

programmation dynamique tels que Python, Ruby et JavaScript. L’examen des problèmes

de performance que nous faisons dans cette thèse sugg̀ere aussi des pistes de recherche pour

la conception des compilateurs de langages de programmation dynamiques de l’avenir.
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Chapter 1

Introduction

MATLAB is a well-known, widely-adopted and easy-to-use programming language aimed

at the scientific and engineering communities. Unfortunately, the Mathworks reference

implementation of MATLAB is neither free nor open sourced, and little about its internal

workings is published. There is already an open source MATLAB interpreter (GNU Oc-

tave) which offers a fairly complete implementation of the MATLAB language, but this

implementation performs poorly, making it unsuitable for many computationally intensive

applications.

Dynamic languages such as Python, Ruby, PHP, JavaScript and MATLAB are gaining pop-

ularity at an impressive rate1. However, most of them perform poorly when compared to

their statically compiled counterparts (e.g.: C, C++, Java, etc.). This is largely because

most of these languages are purely interpreted. Dynamic languages are built with pro-

grammer convenience in mind, but because of their highly dynamic nature, it is difficult to

predict their behavior ahead of time.

The McVM virtual machine is a component of a larger effort known as the McLab project2,

which was initiated by Professor Laurie Hendren of McGill university. The overall goal

1TIOBE Programming Community Index:
http://www.tiobe.com/index.php/content/paperinfo/tpci/

2The McLab Homepage:
http://www.sable.mcgill.ca/mclab
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Introduction

of the project is to find ways to improve the performance, usefulness and accessibility of

current scientific programming languages. Several graduate students, members of the Sable

Research Group (McGill’s compiler research laboratory), participate in this project. The

McLab team currently focuses its efforts on the MATLAB programming language.

McVM is McLab’s virtual machine, which currently implements a significant subset of

the MATLAB language. It is a testing ground for new compiler optimizations aimed at

scientific and dynamic languages. It is also an opportunity to test new ideas or language

features that could be integrated in scientific programminglanguages of the future. In

the following sections we will explain what makes McVM an interesting and challenging

research project, and why we believe it is an important contribution to the compiler research

community.

Much of this thesis focuses not specifically on the performance issues faced by scientific

programming languages, but rather on the specific problems related to optimizing dynamic

languages such as MATLAB. We believe that virtual machines and JIT compilers can ben-

efit from advantages that static compilers do not have. It is possible for virtual machines to

make use of more dynamic information than static compilers have access to, and thus, to

implement optimization strategies that are more adapted todynamic languages.

Through the McVM project, we explore some possible avenues to significantly improve

the performance of dynamic languages. We have designed and implemented an interpreter

and Just-In-Time (JIT) compiler for a non-trivial subset ofthe MATLAB language. Our

JIT compiler integrates analyses and optimizations mechanisms designed specifically to

improve the performance of dynamic languages such as MATLAB.

1.1 Contributions

The McVM project makes the following contributions:

• Design and implementation of an extensible interpreter andvirtual machine for a

non-trivial subset of the MATLAB programming language.
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1.1. Contributions

• Design and implementation of an extensible JIT compiler forthe McVM virtual ma-

chine. This JIT compiler yields performance numbers up to three orders of magnitude

faster than GNU Octave and in some cases it is faster than the reference MATLAB

implementation.

• A novel just-in-time type-based program specialization system aimed at dynamic

languages. This system, which shows much promise in terms ofpotential speed

improvements, is also easily adaptable to other dynamic programming languages

such as Python, Ruby and JavaScript.

• A type inference analysis based on abstract interpretation, designed specifically for

dynamic programming languages such as MATLAB.

• Additional type-based optimizations for our JIT compiler.These optimizations make

use of information provided by our type inference analysis.

• A detailed analysis of the performance of our JIT compiler, the efficiency of our type

inference analysis and gains associated with our JIT compiler optimizations.

• Contribution of the entire McVM source code under the BSD open source license.

We aim to make McVM a viable MATLAB implementation which should become increas-

ingly usable by end-users for real-world scientific applications. However, another potential

use for our implementation is as a research framework. This framework will make it possi-

ble for other researchers to easily try experimental optimization techniques and test novel

language features. It will be possible for developers to addcustomized features to McVM

that are specific to their area of study, something that is hardly possible with the reference

MATLAB implementation.

There is already an open source MATLAB interpreter (GNU Octave), but our implementa-

tion also includes an optimizing JIT compiler, something that was not previously available.

Furthermore, our implementation will be open sourced underthe BSD license, which is

more liberal than the GNU GPL license, and more likely to encourage reuse of our imple-

mentation by both academic and commercial entities.
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Introduction

Finally, based on our experience with McVM, we propose promising future directions for

those researching and implementing JIT compilers and virtual machines for dynamic lan-

guages. We identify key factors crucial to the implementation of efficient virtual machines

for dynamic languages and propose ways to improve upon the performance results we have

obtained with the McVM virtual machine.

1.2 Thesis Outline

Our thesis is divided into 8 chapters (including this introduction chapter). Chapter2 in-

troduces background knowledge and related work helpful in understanding our research,

including a brief description of the MATLAB language. Chapter 3 discusses which fea-

tures of the MATLAB programming language are currently supported in McVM. Chapter

4 examines the McVM virtual machine architecture in detail, including our JIT compilation

and just-in-time type-based specialization strategy.

Chapter5 explains the type inference strategy required by our type-based specialization

mechanism. Chapter6 discusses the performance of our JIT compiler in comparisonto

MATLAB and GNU Octave, as well as the usefulness of our various optimization strategies

and the effectiveness of our type inference system. Chapter7 discusses issues associated

with the MATLAB programming language design that make optimization difficult. Finally,

chapter8 presents our conclusions and outlines some possible futureresearch avenues for

optimizing scientific and dynamic languages beyond what we have achieved.
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Chapter 2

Background and Related Work

In this chapter, we present background information helpfulto the understanding of this

thesis as well as research work related to our own. We begin with a brief overview of

the MATLAB language. This includes supported features, itstype system, the execution

model used, programming code examples, typical features ofMATLAB programs as well

as a discussion of the similarities between MATLAB and FORTRAN.

This is followed by a discussion of virtual machines, dynamic languages and the associ-

ated optimization challenges. We then present related workin the areas of compilers for

dynamic languages, program specialization, type inference and adaptive optimization. This

research work is in direct relation to our own or explores similar areas of compiler research.

2.1 The MATLAB Language

The MATLAB language was originally invented in the late 1970s by Cleve Moler, then a

professor of computer science at the University of New Mexico. He designed the language

to give his students access to some of the power of FORTRAN, without having to learn the

FORTRAN language itself1. Aimed towards students, MATLAB was to be easier to learn

1The Origins of MATLAB:
http://www.mathworks.com/company/newsletters/newsnotes/clevescorner/dec04.html
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than other languages commonly used at the time. Since then, MATLAB has gained wide

acceptance in both academic, scientific and engineering circles.

The MATLAB language has evolved significantly throughout the years. The language is

a procedural dynamic programming language geared towards scientific computation. It is

dynamically-typed, weakly-typed, and incorporates many features found in other dynamic

languages, such as the run-time creation of closures. It also integrates native support for

n-dimensional matrix data types and provides a large library of common matrix operations

(e.g.: addition, inversion, multiplication) and algorithms (e.g.: SVD, QR-Factorization).

2.1.1 Supported Features

The Mathworks MATLAB implementation is very feature rich. The short list below enu-

merates some of its most prevalent features [SD04]:

• Interactive mode with read-eval-print loop

• Code editor and debugging environment

• Effective documentation search system

• Built-in support for complex-numbers

• Uniform treatment of all basic types as matrices

• Range expressions and array slicing/reshaping

• Powerful built-in matrix operations

• Nested function definitions

• Creation of closures from nested functions

• Creation of closures from lambda expressions

• Function handles

6



2.1. The MATLAB Language

• Object-oriented programming support

• Extensive library of numerical algorithms

• Graphical 2D and 3D plotting tools

• C and FORTRAN function wrapping

• Java code integration

The reference MATLAB implementation from Mathworks offersmore than a simple MAT-

LAB interpreter. Rather, it offers a fully featured development environment for MATLAB,

complete with a code editor, a debugger, a search system to find documentation about li-

brary function, and a way to save your “workspace” so you can return to your work at a

later time.

2.1.2 MATLAB’s Type System

MATLAB is a dynamically-typed and weakly-typed language. It has many basic types, in-

cluding several integer types of different precision,single anddouble real-valued types,

implicit support for complex values,logical boolean-valued types, andcharacter

types [SD04]. All of these types are implicitly treated as if they were always matrices.

To the programmer, scalar values appear as if they were matrices of size 1x1. Charac-

ter types are MATLAB’s primitive for creating strings, that is, in MATLAB, strings are

matrices of characters.

MATLAB also sports a matrix type known as the cell array. Thisis conceptually a matrix

of references to other MATLAB objects. Function calls have call-by-value semantics and

symbols refer to objects directly rather than acting as references to them. MATLAB has

no pointer type, making it impossible to create truly cyclicdata structures without using

MATLAB’s object-oriented facilities. MATLAB allows the creation of function handles to

existing functions as well as the creation of closures on thefly.

In MATLAB, there are no obvious type promotion rules as in C. Indeed, it seems that the

language has largely grown organically, and thus, has its own complex typing rules. For
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Background and Related Work

example, operations between unmatched types largely produce erroneous behavior (excep-

tions being thrown). Operations between integers are only allowed if the integers have the

same type. However, MATLAB supports operations betweendouble and some of its in-

teger types (but not all), in which case the result is of the integer type. On the other hand,

operations betweensingle values and integer types are always erroneous.

There is also a basicstruct aggregate type which allows the creation of objects with

named fields. An interesting fact is that the field names are passed as strings when creat-

ing a struct object (these objects are created by calling astruct function rather than by

instantiating them from a previously defined type), and thuscan be dynamically generated.

Later versions of MATLAB have introduced classes and more advanced object-oriented

programming features.

2.1.3 MATLAB’s Execution Model

In MATLAB, variables exist within a “workspace” object, which maps variable names to

their values. There is a global workspace (the global scope)into which global variables

are defined. When performing an assignment in interactive mode (e.g.: by writingA = 1;

at the prompt), the user creates bindings in the global workspace. MATLAB distinguishes

between two types of reusable units of code: functions and scripts. Functions can have

multiple input and output parameters. These parameters arebound in the function’s own

workspace. When a symbol that is unbound in a function is evaluated, however, its value

is evaluated in the global workspace. Scripts, on the other hand, take no parameters, and

operate directly on the caller’s workspace. The caller can be a function, or the global

workspace if the script is called at the prompt in interactive mode.

Nested functions are allowed in MATLAB. These functions can only be called from their

parent function, or call themselves. When they are called, they get their own workspace

where their parameters are bound and which extends the parent function’s current workspace.

Hence, nested functions can have access (and modify) variables in the parent workspace.

Closures can be made from nested functions using the closure operator (i.e.: using the

A = @function_name; syntax). This will create a function handle to a closure in which

8



2.1. The MATLAB Language

all unbound variables of the nested functions are assigned their current value in the parent

workspace. This handle can then be passed to outside functions if desired.

As stated before in section2.1.2, all function calls have call-by-value semantics, and as-

signments create copies rather than references. This is also true of assignments to cells

of cell arrays or to fields of structs. Hence, MATLAB makes it impossible to have cyclic

data structures without using classes and object handles. MATLAB allows functions to

return multiple values at once. However, it also allows functions returning multiple values

to return only some of these values if the caller does not assign all of the return values to

variables.

MATLAB does not have a module system in the traditional sense. Rather, it uses a system

based on storing units of code (scripts and functions) into M-files, and separating these into

directories. MATLAB allows changing the currently accessible functions and scripts when

changing the current directory, by issuing acd command. This command takes a string

representing the target directory path as input. Note that this string does not need to be a

constant value, and could be read from the console, for example. When thecd command is

issued, symbol lookups in all currently executing functions will be affected.

2.1.4 MATLAB Code Examples

1 function d = editdist(s1, s2)

2 %-------------------------------------------------- ---------------------

3 % This function M-file finds the edit distance between the

4 % source string s1 and the target string s2.

5 %

6 % Source:

7 % MATLAB 5 user contributed M-Files at

8 % http://www.mathworks.com/support/ftp/.

9 % ("Anything Not Otherwise Categorized" category).

10 %

11 % Author:

12 % Miguel A. Castro (talk2miguel@yahoo.com).

13 %-------------------------------------------------- ---------------------

9
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14

15 DelCost = 1; % Cost of a deletion.

16 InsCost = 1; % Cost of an insertion.

17 ReplCost = 1; % Cost of a replacement.

18

19 n1 = size(s1, 2);

20 n2 = size(s2, 2);

21

22 % Set up and initialize the dynamic programming table.

23 D = zeros(n1+1, n2+1);

24

25 for i1 = 1:n1,

26 D(i1+1, 1) = D(i1, 1)+DelCost;

27 end;

28

29 for j1 = 1:n2,

30 D(1, j1+1) = D(1, j1)+InsCost;

31 end;

32

33 for i1 = 1:n1,

34 for j1 = 1:n2,

35 if s1(i1) == s2(j1)

36 Repl = 0;

37 else

38 Repl = ReplCost;

39 end;

40

41 D(i1+1, j1+1) = min([D(i1, j1)+Repl D(i1+1, j1)+ ...

42 DelCost D(i1, j1+1)+InsCost]);

43 end;

44 end;

45

46 d = D(n1+1, n2+1);

Listing 2.1 A MATLAB program example

The example shown in listing2.1 shows a simple MATLAB function for computing the

10
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edit distance between two strings. This function could be invoked by inputting thed =

editdist( ’cow’ , ’meow’ ); command at the prompt, or it could be called from another

function. This example demonstrates array indexing and iterating over ranges of values.

Note that MATLAB arrays have indices starting at 1 instead of0. The ... operator de-

notes continuation of a statement to the next line. Also notethat then1 = size(s1, 2);

statement gets the size of the arrays1 along the second dimension, that is, the length of the

string s1 . The statementD = zeros(n1+1, n2+1); creates a 2D matrix initialized with

zero values of size (n1+1)x(n2+1).

1 >> % Here a matrix is being assigned to variable "A"

2 >> A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

3

4 A =

5

6 1 2 3 4

7 5 6 7 8

8 9 10 11 12

9 13 14 15 16

10

11 >> % A is accessed using scalar indexing, the last element of the first

row is read

12 >> A(1,4)

13

14 ans =

15

16 4

17

18 >> % An entire row or column of A can be read by specifying a range o f

indices with the colon operator

19 >> A(:,1)

20

21 ans =

22

23 1

24 5

25 9
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26 13

27

28 % One can also write to a sub-array (or slice) of A using ranges of

indices

29 >> A(1, 2:3) = [7 7]

30

31 A =

32

33 1 7 7 4

34 5 6 7 8

35 9 10 11 12

36 13 14 15 16

Listing 2.2 Sub-arrays indexing (or slicing) in MATLAB

Listing 2.2 shows sample output of MATLAB being run in interactive mode,where com-

mands can be typed at the prompt, and the resulting output is immediately displayed. In

this example, we show that the matrix variableA can be indexed using scalar values, similar

to the way 2D arrays are indexed in languages like Java (except that MATLAB matrices are

row-major). However, MATLAB matrices can also be read or written to multiple elements

at a time using ranges of indices specified with the colon operator. That is, one can create

sub-matrices from existing matrices, or assign to sub-portions of an existing matrix. We

refer to this capability as slicing.

2.1.5 Typical Program Features

MATLAB being aimed at scientific computing, the features of the typical MATLAB pro-

gram are different from those of the typical C, C++ or Java program. In the case of C++

and Java, for example, it is assumed that these programs willcontain many short methods

that do very little work (e.g.: accessor methods), and that the call graph complexity may be

very complex. C, C++ and Java programmers usually aim to dividework into the smallest

units possible, so that code will be neatly organized, even if the program grows to very high

levels of complexity.
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This is usually not the case in MATLAB. Those who use the language seem usually focused

on getting work done quickly and on making computations as efficient as possible. Typi-

cal MATLAB programs will often have very few functions and a fairly simple call graph.

These functions can sometimes grow in length to levels that would be considered undesir-

able by C, C++ or Java programmers. Use of built-in operators and of matrix operations

is strongly encouraged over the use of nested loops wheneverpossible, sometimes making

the code appear rather cryptic.

2.1.6 Similarities to FORTRAN

As previously stated, MATLAB was inspired from FORTRAN, but intended to be easier to

learn. As such, it shares several similarities with FORTRAN.Both are procedural and im-

perative programming languages. Both languages are aimed atscientific computing. Both

share powerful matrix manipulation primitives. Both allow slicing of multidimensional

arrays at run-time. MATLAB provides a rich array of built-inoperators and functions to

manipulate matrices, as well common matrix algorithms. Much of these built-in functions

are actually interfaces to functions found in the BLAS and LAPACK libraries, typically

used with FORTRAN programs. As a result, a technical similarity between FORTRAN

and MATLAB is that they both store arrays and matrices in column-major order.

Both languages also share some common types, such asINTEGER, REAL, COMPLEX, LOGICAL

andCHARACTER. FORTRAN allows specifying multiple degrees of precision for integers,

similarly to MATLAB, which has multiple integer types. FORTRAN also has two kinds

of REAL variables, similar to MATLAB’ssingle and double . One difference is that

whereas FORTRAN distinguishes between scalar and array variables, MATLAB implicitly

treats all scalar variables as matrices of size 1x1, which can be dynamically extended in

size.

We could also say that there are similarities in programmingstyles used by MATLAB and

FORTRAN programmers (possibly because the two crowds intersect to a large extent).

It is very common for FORTRAN programs to be written in one or few files containing

few procedures, with procedures being potentially quite long. As stated in section2.1.5,
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the same is often true of MATLAB programs. On the stylistic side, it could also be said

that both FORTRAN and MATLAB programs use rather nondescriptive variable names,

probably because much of the code implemented in MATLAB and FORTRAN is based on

widely known algorithms which programmers assume require not much documentation.

In terms of important differences, FORTRAN uses static typing. It has variable declara-

tions with explicit type declarations, whereas MATLAB is dynamically typed and has no

explicit variable declarations. FORTRAN programs are also typically statically compiled,

whereas MATLAB code typically runs in an interactive environment where users can enter

commands into a console, and there is no explicit compilation process. FORTRAN also

has a traditional module system, whereas MATLAB uses a system based on file names and

directory trees to organize code. Whereas FORTRAN has pointers, MATLAB does not,

but has function handles. Finally, FORTRAN programs are expected to make parallelism

explicit, but MATLAB programs do not, and instead rely on optimized parallel libraries.

2.2 Virtual Machines and Dynamic Languages

Dynamic languages are high-level programming languages that execute, at run-time, be-

haviors that would otherwise be statically compiled in other languages. Common dy-

namic languages include Python, Perl, PHP, Ruby, Scheme, Smalltalk and of course, the

MATLAB language. These languages are often garbage-collected, dynamically-typed and

weakly-typed (variable types are determined at run-time).They also tend to have superior

reflective capabilities compared to static languages.

Because of their dynamic components, such languages typically run in execution environ-

ments called Virtual Machines (VMs). A VM is essentially a program (written in any

language) that executes programs written in the dynamic language [AAF+05]. This exe-

cution can be achieved through the use of an interpreter (as with Python), or by compiling

programs at run-time using a Just-In-Time (JIT) compiler (as with Java). Virtual machines

have the fundamental role of implementing the dynamic components of dynamic languages.

In addition to providing an execution environment for a dynamic language, virtual ma-
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chines can also incorporate analyses and transformations to optimize programs at run-time.

This can be advantageous, because more information about the programs to be optimized is

available at run-time than would be available statically. Aprogram can also be dynamically

optimized in various stages, such that the VM will adjust itsoptimization strategy based on

profiling data gathered while program is running.

Dynamic languages were once somewhat marginal, but they have recently started becoming

more widely used. Programmers tend to like languages like Python, for example, because

they claim that those languages put less constraints on the programmer. It is often said

that dynamic languages achieve more “work” per line of code than static languages, and

thus, allow programmers to be more productive. This makes some sense from a technical

standpoint, because virtual machines perform much background work at run-time when

executing dynamic languages, in a manner that is transparent to the programmer.

2.2.1 Optimization Challenges

Dynamic languages present some optimization challenges oftheir own. They are typically

harder to optimize than statically compiled languages because they are, so to speak, more

dynamic. That is, the semantics of dynamic languages make itless obvious what the exact

behavior of the program will be at run-time. A static compiler has less information to

work with when compiling a language that is dynamically typed, versus a statically typed

language, for example.

When a language is dynamically typed, the type of a given variable can change at different

program points, and in some cases, be impossible to determine statically, because it could

depend on the program’s input. This is problematic for an optimizing compiler, because if

the type of a variable cannot be determined, the variable cannot always be efficiently stored,

and operations performed on that variable may need to check what type the operation will

be performed on.

However, dynamic typing is not the only challenge dynamic languages present. These

languages often offer many other dynamic features, such as the ability to add code to a

program, or even to modify existing code (e.g.: adding fieldsto a class, as in python)
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at run-time. One notable feature found in many dynamic languages is theeval construct.

This construct allows new code to be entered as input to the program, often directly through

a command-line interface.

As recognized by the designer of thephc PHP compiler [BdVG09], the eval construct

presents a major barrier to any optimization attempt, as it breaks almost all assumptions

one typically makes in static intraprocedural analyses. Once once encounters a program

statement containing theeval construct, it is essentially encountering a statement that

could do almost anything to the current state of the program.Potentially, this statement

could change the type of variables in the current scope, callan undetermined function in

the program, or even load a new module, but none of these actions can be predicted ahead

of time.

The MATLAB programming language has its share of dynamic features that pose opti-

mization problems. For one, it does not use a classical module system, but rather one that

is based on the directory tree. At any program point, acd command can be issued. When

this happens, all function lookups may change in every function of the program. However,

this construct can take its target directory string from anysource, and thus, the target direc-

tory (and hence, which bindings will be changed) cannot always be statically determined.

The MATLAB language also has a rather unusual type system which allows on-the-fly type

conversions. For example, if one has a matrix containing only double values, but sets one

element of this matrix to a complex value, then the whole matrix must now be able to store

complex values. MATLAB makes this appear seamless to the programmer (all double

matrices can store complex values), but for performance reasons, it is best to make the

distinction between matrices that can and cannot contain complex values when compiling

or interpreting the language.

To efficiently execute dynamic languages, virtual machinesmust find ways to deal with

all the dynamic features these languages allow. This often entails performing dynamic

analyses on programs to attempt to determine what actually happens at run- time, often

through profiling. It also often means that these virtual machines must be able to adapt to

situations in which certain assumptions made about the running program are found to be
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invalid.

2.3 Dynamic Language Compilers

The McVM virtual machine makes an attempt at optimizing a subset of the MATLAB

programming language through the use of a Just-In-Time (JIT) compiler. The idea that

dynamic languages could be compiled instead of simply interpreted, either ahead of time

or just-in-time is not new, as many of the older dynamic languages such as LISP have now

had static compilers for years. However, much of the modern popular dynamic languages,

such as PHP, Python and Ruby, have reference implementationsthat are still interpreted.

This is probably due to many of the optimization challenges outlined in section2.2.1. These

languages are often designed to make the programmer’s task easier, making the language

as dynamic as possible, with little regard to which languagefeatures are easy to optimize.

Designing a compiler for such languages is difficult. If the programmer can add fields to

classes, change the type of any variable, and even insert newcode at any point in time, it

becomes very challenging to map the programs to machine codein any kind of efficient

manner. This is very different from languages like C, which make it almost trivial to map

every construct to machine code. With dynamic languages, much fewer assumptions can

safely be made about the semantics of the program.

Despite these challenges, in recent years, there have been many independent efforts to im-

plement ahead of time and just-in-time compilers for languages such as PHP, Python and

Ruby. Thephc compiler [BdVG09] is a static compiler being designed for PHP. It has

shown mean performance gains of 53% as compared to the reference php implementation.

The PyPy project [RP06] aims to create a virtual machine for Python written in Python

itself which can generate optimized code for arbitrary target languages. Psyco [Rig04] is a

virtual machine which makes use of Just-In-Time compilation and Just-In-Time specializa-

tion to improve over the performance of the reference Pythonimplementation. They show

impressive speedups of up to 109 times in very specific scenarios.

There have also been successful efforts to compile MATLAB programs, both statically and
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Just-In-Time. The FALCON system [DRG+95, RP96] uses type, shape and rank analysis

to efficiently translate MATLAB programs into FORTRAN 90 withparallel directives. The

resulting code obtained was shown to be often as fast as hand-written FORTRAN programs.

The MaJIC system [AP02] combines JIT-compilation with an offline code cache main-

tained through speculative compilation of MATLAB code intoC/FORTRAN. The Match

VM project [HNK+00], which largely focuses on adaptively parallelizing MATLAB pro-

grams, also integrates a compiler which translates MATLAB source code to a lower-level

intermediate form.

MaJIC is similar to our own system: a part of their approach isto generate code on-the-fly

as late as possible, in order to specialize the code generation for performance. An important

difference with our system is that we use a single unified JIT-compiler back-end and do not

rely on intermediate languages like C or FORTRAN. We believe this allows our approach

to be faster and more flexible, as there is only one execution context. In MaJIC, the JIT

compiler is presented as a fallback mechanism, whereas our system is designed with the

goal of utilizing the optimization opportunities made available by a JIT compiler whenever

possible.

The Match VM project is similar to our own in that it is a virtual machine which includes

a MATLAB compiler and performs type and shape analysis. However, the main focus of

their project is not so much the optimization of dynamic codeat run-time (as with ours),

but the execution of MATLAB code on multiprocessor architectures using automated par-

allelization. The focus of their work is on developing adequate data dependency detection,

resource allocation as well as job scheduling techniques.

2.4 Program Specialization

Procedure cloning is a technique by which a compiler can create specialized copies of func-

tion bodies, dividing incoming calls between the original and cloned procedures [CHK92].

This cloning technique is motivated by the fact that different call sites will make use of

the same procedure to operate on different input data. Hence, it can be advantageous to
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produce specialized versions of a procedure which are optimized to deal with input data

possessing different characteristics. The technique essentially allows an optimizing com-

piler to make more assumptions about the specialized procedure bodies than it could make

about the original procedure.

Such specialization techniques have been applied to languages such as SELF [CU89], Java

[SC03] and C++ [PC95], most notably to reduce the overhead of virtual method calls by

statically establishing which derived method will be called in a given context. In practice,

this can yield very significant performance gains. Schultz and Consel report speedups of

up to 300% for their specializing Java compiler [SC03]. However, it is trivial to see that

program specialization does not always come for free. Just as with method inlining, it

comes at the cost of code size expansion.

Specialization of cloned procedures is typically achievedthrough a technique known as par-

tial evaluation. Partial evaluation is a form of program transformation in which a program

or procedure is partially evaluated at compilation-time based on statically-known facts. As

a part of this process, optimizations such as constant folding can be used to optimize the

program. Partial evaluation can be thought of as statically“fixing” some of the inputs

of a program or procedure and optimizing code by eliminatingunnecessary computations

which could then be performed at compile-time [JGS93]. This technique has been used by

Elphick et al. [ELC03] in MPE, an online system to partially evaluate MATLAB source

functions into more efficient MATLAB code.

Program specialization, as relevant as it may be to static object-oriented language, offers

even more of an optimization potential for dynamic languages. This is because in dynamic

languages, the source code of the original program specifieseven less information about

the precise semantics of the program. Furthermore, dynamiclanguages tend to encourage

the reuse of procedures to deal with wide arrays of differenttypes (i.e.: in MATLAB, it

is conceivable that the same method could operate both on strings as well as on numeric

matrices). In dynamic languages, there is more room for information about the program to

be inferred, and more interpretive overhead to be potentially eliminated.
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2.5 Type Inference

Type inference is the process of reconstructing type information that is missing from the

lexical definition of a program based the usage of variables in the said program as well

as on semantic rules inherent to the language this program was written in [DB96]. It can

be thought of as a way of recapturing type information that ismissing from a program’s

lexical specification through inference based on the type information that is provided, both

implicitly through the semantics of the language, and explicitly when variables are assigned

values.

Statically typed languages such as C and C++ make the types of variables almost entirely

explicit, since each declaration specifies a variable type,but even in those languages, poly-

morphism and pointers can make the concrete type of a variable uncertain. In these lan-

guages, simple type inference schemes can help to resolve virtual function calls [BS96],

thereby greatly reducing overhead. Other languages like MLand Haskell make variable

types implicit, while still being statically typed. In suchlanguages, type inference is con-

sidered essential in order to statically compile programs,and to warn programmers about

potential errors ahead of time.

In dynamically typed languages, such as Python, Ruby and MATLAB, it is common for

variables to have no explicit declaration point. Types are associated with values rather

than variables, and thus, the type of a given variables is notfixed. In such languages, type

inference can help to drastically reduce interpretive overhead. Without it, the types of all

variables must be assumed to be unknown, in which case any operation performed on a

variable must first check what type the variable’s value currently has, and dispatch code to

perform the operation as appropriate. Furthermore, if the type of a variable is unknown, it

is sometimes difficult to efficiently store this variable in memory, as we do not know how

much space its value will occupy.

Generally speaking, the result of a type inference analysisis a mapping of variables to the

set of possible types these variables can occupy at each program point. Type inference

analysis can be achieved through many different techniques. One classical way to view the
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problem is as a bidirectional dataflow analysis [Sin04]. Such a dataflow analysis propagates

information through the control flow graph of functions bothalong and against the direction

of the control flow. Each program expression defines associated type propagation rules,

and a fixed point computation is performed to determine the final type mapping. In such

analyses, types are usually considered static. Dynamic types are typically reduced to static

types through the use of a Static Single Assignment (SSA) form.

1 function c = foo(a, b)

2 % Perform horizontal concatenation of two matrices

3 c = [a b];

4 end

5

6 function bar(x, y)

7 % Call foo with arguments x,y

8 d = foo(x, y);

9

10 % Call foo with x,y and assert that the output is a string

11 e = foo(x, y);

12 assert(ischar(e));

13 end

Listing 2.3 Types and matrix concatenation in MATLAB

Listing 2.3 shows an example of a program where type inference using bidirectional flow

as well as the MATLAB language rules can help us determine thetypes of variables. In this

example, we see that the functionbar callsfoo twice with argumentsx, y. The functionfoo

simply performs horizontal matrix concatenation on its arguments and returns the result. If

we look at line 12, we can see that an assertion is in place to ensure thate is always a string

variable. Following the control flow backwards from this point, we can conclude that,

provided the program is correct,e must be a string. Thus, from line 11, we can conclude

thatx, y are strings, because otherwise, the concatenation operation would not work. If we

then follow the flow of the functionfoo forwards, we can conclude thatd is also a string,

since the result of the concatenation of two strings is also astring.

There are additional difficulties when performing type inference on dynamic languages. An
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important problem is that due to constructs likeeval , MATLAB’s cd , as well as dynamic

loading and reflection features, it may be impossible to knowthe entire call graph of a

program ahead of time. Despite this, there have been effortsto statically perform type

inference on dynamic languages such as MATLAB [JB01] and Ruby [FAFH09]. Although

both of these approaches seem to ignore the aforementioned problem, they have shown

potential in detecting type errors ahead of time.

An approach which relates more closely to the McVM project isthe use of abstract interpre-

tation in the context of type inference. Abstract interpretation is a static analysis technique

which simulates the execution of a program on abstract objects rather than on real values in

order to gain additional knowledge about the said program [CC77]. In the context of type

inference, this means simulating the computations the program performs using abstract ob-

jects representing possible types the program values can take. Such an approach to type

inference has been successfully applied to the ML programming language [GL02].

2.6 Run-time and Adaptive Optimizations

For a long time, statically compiled languages have been widely perceived as better per-

forming than languages executing under virtual machines. However, this perception is

changing. Programming languages like Sun Microsystem’s Java have shown that they can

in some cases perform better than statically compiled languages2. The reason for this is that

conceptually, VMs and JIT compilers have a big advantage over static compilers: whereas

static compilers can make educated guesses about a program’s future state, virtual machines

can actually observe this state as the program executes.

This advantage of VMs over static compilers can be technically difficult to materialize.

The more dynamic the implemented language is, the less information is known statically

about the semantics of programs, the more work the virtual machine needs to do in order

to efficiently execute program code. This translates into increased complexity of the VM’s

implementation. Despite this, virtual machines are increasingly seen as a way to make

2Performance of Java versus C++:
http://www.idiom.com/ zilla/Computer/javaCbenchmark.html
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software more portable, and to overcome the limits of staticcompilers.

The main limitation that static compilers have to face is that no matter how many analyses

they can perform on a program, these analyses must be conservative in order to maintain

correctness. Static compilers cannot know what they cannotconservatively infer, which,

in practice, can be very limiting, especially where dynamiclanguages are concerned. Vir-

tual machines, on the other hand, can actively gather information about a program’s state

through instrumentation and profiling.

Several virtual machines, such as Jikes RVM, have implemented systems where methods

of a program can be compiled at several different optimization levels, and the virtual ma-

chine will choose which level to compile a given method at based on profiling information

[AAF+05, SYK+05, GV08]. Jikes RVM uses call-stack sampling and a cost-benefit pre-

diction model, and can recompile methods if its estimates change. The general idea is that

compiling (or recompiling) methods at higher optimizationlevels is costly, and that the

speedup obtained by compiling a method at a higher optimization level should justify this

cost.

Recompiling methods at run-time as is done in some Java virtual machines may seem trivial

to perform, but it is sometimes challenging, because a method that we wish to recompile

may be currently executing. This has been made feasible through On-Stack Replacement

(OSR), a technique that allows the call frame of an executing function to be replaced so that

the new state is as expected by the recompiled method [FQ03]. This technique has been

implemented into Jikes RVM and is necessary to make run-timerecompilation possible.

Going beyond the idea of multiple optimization levels, Lee &Leone [LL96] have devised

an ML compiler that defers compilation of certain portions of code. That is, most of the

program is natively compiled, but some portions of it will becompiled at run-time. They

have shown that despite the cost of run-time code generation, this can yield significant per-

formance benefits, because the generated code can benefit from the knowledge of invariants

that were not statically known. This work has later been extended by others to specialize

Java bytecode at run-time, inside of a virtual machine [MY99].

A more recent effort applies run-time code generation to a dynamic language. The Psyco
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python virtual machine implements specialization by need.This new specialization tech-

nique involves interleaving program specialization and execution [Rig04]. Their special-

izer can inquire about facts such as the type of variables while a procedure is executing,

and depending on the result, potentially modify the compiled code of the said procedure

to be more efficient. One of their main goals was to eliminate much interpretive overhead

through the use of JIT compilation without sacrificing dynamic features of the language.

Similarly to the Psyco effort, those behind the TraceMonkeyVM for the JavaScript lan-

guage have focused their efforts on just-in-time specialization based on type information

in order to increase performance. Their system is based on a bytecode interpreter that can

identify frequently executed bytecode sequences (traces)going through loops and compile

them to efficient native code based on collected type information [GES+09]. A crucial

assumption of their system is that programs will spend most of their time in loops, and that

the types of variables will remain mostly stable through theexecution of loops. They have

achieved speedups of up to 25 times on some benchmarks. However, their current VM does

poorly on benchmarks making extensive use of recursion.

It is technically possible to go very far with the use of adaptive optimizations. One possi-

ble approach to optimization, as opposed to the use of fixed heuristics, is to dynamically

explore the space of all optimizations that can be applied toa given program or method.

Such techniques, often classified as forms of iterative optimization, can iteratively generate

multiple versions of a given code segment and evaluate the performance of each in order

to find the best performing one [VE01]. More recently, it has been shown that using ma-

chine learning techniques to focus iterative optimizationcan drastically reduce the number

of versions needing to be evaluated [ABC+06].
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Chapter 3

Supported Language Features

The MATLAB programming language is highly elaborate. It integrates specialized matrix

computation functionality, multiple ways to achieve object oriented programming, but also

many more features, such as function handles, closures, as well as 2D and 3D visualization.

Beyond this, it also provides hundreds of library functions as well as a way to incorporate

Java code into MATLAB programs.

Due to the highly complex nature of this language, and the limitations in the time frame

allotted to the completion of a Master’s thesis, the scope ofthe language McVM supports

has been restricted to a subset of the actual MATLAB language. Nevertheless, this subset

is significant enough to be useful for real scientific computations, as demonstrated by the

fairly extensive set of benchmarks we support.

This chapter outlines the main differences between our implementation and that of Math-

works. It provides important details about the features of MATLAB we support and those

we do not. We discuss supported data types, provided libraryfunctions as well as un-

supported language features. We also outlines the differences in semantics between our

implementation and the original MATLAB language. We explain how and why our exe-

cution model and our implementation of specific MATLAB constructs differs from that of

Mathworks.
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3.1 Supported Types

MATLAB uses double precision matrices by default; if the programmer wants any other

kind of numerical matrix (excluding complex matrices), he has to explicitly request it.

Implementing new matrix types means writing programming code to handle each type of

matrix appropriately for each kind of matrix operation the language offers. Hence, we have

chosen to support only the core matrix types in order to reduce the required programming

effort and simplify our implementation.

Support is not provided for integer matrices, or floating-point matrices with single preci-

sion. There are also no object-oriented features at this point, and thus no structs or classes.

The matrix types that are supported are logical arrays, character arrays, double precision

floating-point matrices (64-bit per element) and double precision complex number matrices

(128-bit per element). McVM also integrates cell array (matrices of pointers) and function

handle types.

3.2 Supported Features

Our implementation supports most of the non object-oriented features of the MATLAB

language. The traditionalif, for, while andswitch control statements are all supported.

The use of range expressions in array indexing to create sub-arrays is supported. Extensive

support is provided for cell arrays as well as for matrix concatenation operations. Basic

support for string handling and file I/O is also provided.

We also provide support for calling functions with a variable number of arguments and re-

turning a variable number of arguments from functions. We allow the use nested function

as well as the use of multiple functions per source M-file. It is possible to create func-

tion handles to any function, including library functions.Closures can also be created by

creating a handle to a nested function or by using lambda expressions.
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3.3 McVM’s Execution Model

In MATLAB, scripts operate on the caller’s environment and nested functions can modify

variables in the calling function (see section2.1.3). Some library functions such aseval

can also modify the caller’s environment. For simplicity, and for philosophical reasons,

we have decided to go with a slightly different execution model. We find that allowing

callees to modify a caller function’s environment violatesthe encapsulation principle. It

allows unintuitive behaviors where callees can have unforeseen side effects, and is also

very unfriendly to optimizing compilers.

In McVM, no callee may modify variables in the caller’s scopeor environment. Scripts

operate in the global environment, and can only touch globalvariables. The same goes for

library functions. As for nested functions, they are able toread variables from the caller’s

environment, but assigning them a value will create a binding in the local environment

instead of modifying the value of the caller’s variables. This preserves a sense of separation

between caller and callee.

We have found that these changes are not an issue in practice.None of our benchmark

programs make use of these kinds of side effects. Programmers rarely seem to intend for

a callee to modify variables in the caller. In fact, in MATLAB,it is an issue they have to

be careful about (to avoid unpredictable errors). The limitations we have placed on library

functions also make them more compatible with our optimization scheme: they cannot

unpredictably assign any value to any local variable.

3.4 Library Functions Provided

MATLAB provides a wide library of basic functions for I/O andcommon operations. Ta-

ble 3.1 shows a list of the MATLAB library functions we support in McVM. These are

re-implementations of the same functions provided as part of the Mathworks MATLAB

environment. At this point, not all of these functions provide all the functionality of their

Mathworks equivalent, but they support the most common use cases. Fairly extensive doc-
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Table 3.1 List of supported library functions

abs eval fprintf min sin
any eps i mod size

bitwsand exist iscell not sort
blkdiag exp isempty num2str sprintf

cd eye isequal numel squeeze
ceil false isnumeric ones sqrt
cell fclose length pi strcat

clock feval load pwd strcmp
cos find log2 rand sum
diag fix ls reshape system
disp floor max round tic
dot fopen mean sign toc

umentation about the behavior of these library functions isprovided on the Mathworks

website, as part of the online MATLAB documentation.

3.5 Unsupported Features

Although McVM is capable of running non-trivial benchmarks, from a language standpoint

we have only implemented a small fraction of the hundreds of MATLAB library functions.

McVM does not yet support object oriented programming and does not handle integration

with languages other than C and C++. Those are some of the most obvious limitations of

our implementation. Our system also does not provide a development environment as rich

as that of MATLAB: we do not supply a code editor, a debugger or 2D/3D plotting features.

Some of these limitations will likely be overcome in the nearfuture. Implementing new

library functions in C++ is currently very simple. It would berelatively easy to add ob-

ject oriented support to McVM. Basic support for MATLAB structs (without JIT compiler

optimizations) could likely be implemented in less than 1000 lines of code. Supports for

classes could be added relatively easily as well; it could likely be be implemented in less

than 2500 lines of code. Other features, such as 2D plotting,are being implemented by

other members of the McLab team as this thesis is being written.
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3.6 Dynamic Features

MATLAB contains a number of dynamic features we have limitedin order to ensure good

performance. We have briefly mentioned in section3.3 that we have chosen to restrict the

eval language construct so that it can only affect global variables. From an implementation

perspective, this was done because it fits better with our optimization model. Theeval

construct, in its unrestricted form, can read or write to anylocal variable based on input, in

ways that often cannot be predicted when a function is compiled. This destroys much of the

information an optimizing compiler could rely on (type information, reaching definitions,

live variables, etc.). Thus, we have chosen a compromise which makes optimization easier

and still allowseval to be useful.

Another such dynamic feature found in the MATLAB language isthe cd function. This

function changes the current directory based on input, and thus, changes the currently visi-

ble functions. This function is also unfriendly for an optimizer, because it means that unless

we can be certaincd will never be called while a function runs, we cannot know at compile

time that a given symbol will always refer to the same function. This is particularly prob-

lematic because we may want to know ahead of time what types a given callee function

takes as input and returns as output, for example.

At this time, we have chosen to circumvent this issue by making it so that symbols are

looked up and bound to specific callee functions at compilation time. Thus, if thecd

command is issued, it cannot undo function call bindings that have already been made. It

can, however, allow access to functions that were not definedat compilation time. This

behavior may seem restrictive, but we have found that it works well in practice, and is

perhaps more intuitive than MATLAB’s default behavior.

The compromises we have made correspond to real issues when it comes to compiling

dynamic languages. It may be possible to avoid making them inthe future by resorting

to schemes where the JIT compiler will “fall back” to interpretation when commands like

cd andeval are issued. Alternatively, techniques like on-stack replacement may provide a

way to circumvent the limitations of our compilation model (see section8.2.5). However,
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at this time, we consider them reasonable as most of the limitations they impose can be

easily circumvented and rarely create compatibility issues in practice.
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Chapter 4

Virtual Machine Architecture

This chapter examines the design of our virtual machine and JIT compiler in detail. We

begin with a discussion of the design goals on which our design decisions were based. This

is followed by an overview of the overall architecture of ourvirtual machine and its division

into sub-components. We then explain the interface betweenour VM and the front-end of

our compiler, the intermediate representation used by our system and the design of our

interpreter and run-time environment, as well as our interpretation strategy. Finally, we

conclude with a detailed discussion of the design of our JIT compiler and its compilation

strategy.

4.1 Design Goals

One of the most important goals behind our virtual machine design was to aim for a simple

and easily extensible design. Our architecture reflects this goal: the JIT compiler was built

as an extension of the interpreter, somewhat similar to the way thephc compiler was built

[BdVG09]. This makes it possible to add new data types or statements to the supported

language by modifying only the interpreter, and not the JIT compiler. The JIT compiler can

later be modified, if necessary, to gain performance benefitsfrom additional optimization

opportunities.
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Language design largely focuses on performance. We have taken inspiration from the C++

programming language, which was designed with the clearly stated objective that the pro-

grammer should not pay a performance cost for features he or she does not use. In McVM,

we have striven to minimize performance costs incurred by MATLAB’s more complex and

dynamic language features. This is achieved partly throughthe use of our type-driven just-

in-time specialization scheme (see section4.7.3), and partly through our interpreter fallback

mechanism (see section4.7.1). Some costly dynamic features are still interpreted, but the

JIT compiler has been designed to optimize the clearest and most common performance

bottlenecks as well as possible.

We have also striven to keep our system interactive. Our virtual machine provides an

interactive environment where commands can be typed at the prompt, and new code can

be introduced on the fly, similarly to Mathworks MATLAB implementation. This is unlike

some previous attempts at compiling MATLAB into a target language like FORTRAN

[DRG+95, RP96], for example. These approaches can yield great performance benefits,

but they require whole-program static analyses which are incompatible with an interactive

environment.

Some technical choices were made to balance compatibility with the MATLAB language

with design simplicity and “cleanliness”. As such, we do notimplement a “pure” subset of

MATLAB (see chapter3). Rather, we implement a close variant which we consider to be

more intuitive for programmers, less error-prone and more practical from an implementa-

tion perspective. Our language variant matches the MATLAB semantics in all MATLAB

benchmarks programs with which we have had to deal, and most likely, in the vast majority

of real-world programs.

We note that reducing compilation times was not a high priority when designing our VM.

MATLAB being a language aimed at the scientific community, wehave judged objective

performance in terms of total running time to be more important than real-time interactivity.

Scientific programs can potentially run over very large datasets, sometimes for hours.

Thus, we have deemed it acceptable to use up to several seconds of compilation time for a

given program, since it could, in the end, save up to several hours of total execution time.
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4.2 Architecture Overview

Figure 4.1 Structure of the McVM Virtual Machine

The illustration in figure4.1 shows the overall structure of the McVM virtual machine

implementation. At the core, McVM’s implementation of matrix types relies directly on

a set of mathematical libraries (ATLAS, BLAS and LAPACK) to implement fast matrix
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and vector operations (matrix multiplication, scalar multiplication, etc.). All language data

types and Internal Intermediate Representation (IIR) types use the Boehm garbage col-

lector library for garbage collection [BS07]. Our JIT compiler also relies on the LLVM

framework to implement low-level JIT compilation (emission of machine-specific code)

[Lat02]. McVM also depends on the McLab front-end, because the interpreter uses it to

parse interactive-mode commands as well as source code in the form of M-files.

Internally, both the interpreter and the JIT compiler rely on the language core to define the

basic primitives on which they operate. This is the InternalIntermediate Representation

(IIR) tree, which defines the forms valid programs can take, and the primitive data types

the language supports. The JIT compiler itself depends on the interpreter because it does

not emit compiled code for all operations, it sometimes usesinterpreter fallback to evaluate

code for which there is not yet compiler support.

The functionality of the interpreter is divided into interpretation logic and state manage-

ment (house keeping). The JIT compiler manages the functionversioning system, emits

LLVM code for the statements it can compile, and performs interpreter fallback for those

it cannot. The JIT compiler also largely relies on a set of analyses to gain additional in-

formation about source programs being compiled. These analyses (live variables, reach-

ing definitions, bounds check alimination and type inference) are crucial to generate high-

performance code.

We have chosen to implement McVM entirely in C++. This choice was made in part be-

cause C++ allows low-level access to the way its data types arestored in memory and offers

a relatively high level of performance, both very useful characteristics for the implementa-

tion of a virtual machine. However, another important motivating factor was the availability

of the LLVM framework itself. This powerful compiler building framework was crucial to

the timely implementation of our JIT compiler.
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4.3 Front-End Interface

The McVM virtual machine only implements the back-end part of our MATLAB compiler.

The actual lexing and parsing into an Abstract Syntax Tree (AST) is done in a front-end

program, implemented in the Java programming language. This front-end program also in-

corporates several analyses meant to perform high-level transformations and optimizations

on MATLAB source code.

When the virtual machine is started, it launches a front-end program instance and connects

to it through a TCP socket. This interface was made socket-based for portability. When

source files or commands need to be parsed, a request is sent tothe front-end, which then

returns the source code in a pre-parsed AST high-level Intermediate Representation (IR)

encoded in XML format.

4.4 Intermediate Representation

The internal intermediate representation (IIR) used by McVM(by the interpreter, the JIT

compiler and the analyses), is a simplified and transformed version of the original source

code’s Abstract Syntax Tree (AST). Due to its close resemblance to the original source, it

is machine-agnostic in nature and can easily be printed in human-readable form.

In terms of implementation, all IIR nodes inherit from a common superclass IIRNode. The

IIR is defined by the IIRNode class and all its subclasses. These are organized in a hierar-

chical order to define functions, statement sequences, statements (including control state-

ments) and expressions. The IIRNode class and all its subclasses are garbage-collected,

making it easier to write IIR transformation passes, as it eliminates the need to keep track

of which nodes should be deleted upon replacement.

In order to keep the virtual machine design simple, the inputAST (produced by parsing

the source), is simplified in a few ways. Among these transformations,if- elseif- else

chains are transformed into multiple nestedif- else statements with only two possible

branches each,switch statements are transformed into equivalent language constructs and
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bothfor andwhile loops are transformed into a single loop form that is structurally closer

to thewhile construct.

Some parts of the IIR tree are also annotated to make subsequent execution or compilation

easier. For example, all instances of theend keyword, used to mark the end of a numeric

range (effectively an expression), are annotated such thatall the possible symbols it can

refer to are all known at execution time. This is useful because the possible bindings of

the keyword changes based on its position in the source code.These bindings would be

difficult to keep track of in our interpreter, because the interpreter only looks at small IIR

subtrees during execution, but is fairly easy to pre-compute ahead of time.

The interpreter component of McVM uses the IIR tree as-is, after the previously described

simplification and annotation passes have been performed. However, the JIT compiler re-

quires further transformations. Namely, prior to JIT-compilation, the IIR tree is transformed

so that all expressions are in 3-address form. This is a simplified form where expres-

sions cannot contain sub-expressions other than symbols, numerical ranges and constants

[ASU86]. Note that while 3-address form expressions are usually limited to a maximum of

3 operands, some expressions, such as function calls, are allowed an potentially unlimited

number of operands.

4.5 Interpreter Design

The interpreter component of McVM is implemented in a very simple and straightforward

way. It performs naive interpretation directly on the IIR tree. This interpretation is per-

formed in a recursive manner, that is, evaluating a statement results in a pre-order traversal

of the corresponding IIR subtree of expressions. When a function is executed, all of its

statements are recursively interpreted in sequence.

Trees of expressions are used to represent compound expressions. Leaf nodes in such a

tree can represent constant values or variables. Variablesare bound to data objects which

store their type and value, and any leaf node operating on oneor more variables generates a

new such object to store the result of the operation. Intermediate nodes represent function
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calls or arithmetic and logical operators that operate on the results of the evaluation of their

subtrees, again producing data objects to store the result of the operation. All data objects

are garbage-collected.

The interpreter manages program variables, both local and global, through “environment”

objects. These objects are essentially hash-maps that map symbol identifiers to pointers to

objects. They are a straightforward way of binding and looking up symbols at run-time.

They offer the advantage of a fairly quick O(1) lookup time, and can be grown at run-time

without a need to pre-allocate or pre-calculate where bindings are to be stored.

Environments are also extensible, meaning an environment object can have a parent envi-

ronment. That is, environments are a simple mechanism to implement recursive scoping:

when looking up a symbol in a given environment object, if it is not found, the symbol

will then be recursively looked up in its parent. Thus, in theinterpreter, stack frames for

functions are typically implemented by creating an environment object that extends another

global environment object (containing global variable bindings) when a function is called.

This mechanism has the advantage that it is highly flexible. For example, it makes it trivial

to implement an “eval” command that can create unanticipated bindings in a function’s call

environment at run-time. It also serves as a useful “black-box” implementation of symbol

bindings: functions with unbound symbols can be executed without regard for where and

when those symbols will be bound.

In addition to its role as a basis or reference implementation for the implementation of

our JIT compiler, the interpreter also serves housekeepingroles. It takes care of loading

MATLAB files on-demand, executing interactive-mode commands, hosting library func-

tion bindings, maintaining bindings to global variables, etc. It also has the role of filling in

and interpreting parts of the language that the JIT compilercannot fully compile.

Library functions in McVM are currently all implemented as native C++ functions, so as

to maximize performance. These functions do not operate on environment objects like

program functions, but rather take in a dynamically allocated array of object pointers as

input, and also return such an array as output. As such, they have support for multiple

input and output values, as well as variable arity.
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4.6 Program Analysis Framework

The JIT compiler component of McVM requires multiple analyses to be run on the IIR tree.

These analyses, which include live variable analysis, reaching definitions analysis, type

inference and bounds check elimination serve to gather additional information about the

input source which can then be used to allow specific optimizations. All of these analyses

were designed as forward or backward flow analyses, which aretypically performed over a

transformed Intermediate Representation (IR) format calleda Control Flow Graph (CFG).

Instead of transforming our IIR tree into a CFG, we have chosento perform structured flow

analyses directly on the IIR. This turns out to be surprisingly easy in practice. The only

constructs requiring a fixed point computation are loops. The information flow is otherwise

linear from one statement to the next. Special care must be taken to gather data flow sets

at return, break and continue points, because these statements disrupt the normal control

flow.

While analyzing one specific function, some analyses (such astype inference) may require

callees to be analyzed. This has the potential of creating infinite loops, or to waste com-

putational time analyzing specific functions over and over (if a function is called by many

others). To get around this issue, we have implemented a singleton class (the analysis man-

ager) to cache analysis results. Whenever a function is analyzed, the analysis results are

cached. Different results may be cached for each function version (see section4.7.3).

The analysis manager also keeps track of which functions arecurrently being analyzed.

This way, if analysis information is requested about a function which is already being

analyzed by the same analysis, the analysis manager will return a “bottom” value to avoid

infinite loop scenarios. The “bottom” value is defined on a per-analysis basis. It can either

mean no information, or whatever the analysis can assert about a function without requiring

recursive calls.
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4.7 JIT Compiler Design

This section discusses the design and internal workings of our JIT compiler. We discuss

the incremental strategy used to build our compiler. This isfollowed by discussions of

its code generation strategy, our just-in-time code versioning system, and the additional

optimizations our JIT compiler benefits from. The workings of the type inference system

used by our JIT compiler are discussed in chapter5.

4.7.1 Incremental Construction

We have chosen to build our JIT compiler on top of the interpreter, as an incremental

process. This essentially means that our interpreter was designed, at the core, to be able

to always fall back to interpreting sections of code it cannot compile, mixing sections of

both compiled and interpreted code as part of the compilation of a given function. This

is an incredibly convenient design, because it has allowed us to build the JIT compiler in

multiple steps, while still being able to test its proper functioning at each point, and able to

compile all programs the interpreter can run.

The starting point for our JIT was a compiler that interpretsevery single statement. For

each statement it needs to compile, the JIT inserts a call to the proper interpreter function

to interpret this statement. From this point, it is easy to add compilation support for any

kind of statement, without ever needing to be able to compileall existing statement kinds,

or even all possible forms of a given statement. For example,a early version of our JIT

supported compilation of assignment statements assigningto one variable only; assignment

statements assigning to multiple variables were interpreted.

The only drawback of this interpreter fallback system is that special care had to be taken

to interface with the interpreter. Interpreter functions often take as input a statement or

expression to evaluate along with an environment object containing the current variable

bindings (see section4.5). The JIT compiler is designed so as to store variables values in

registers, with the appropriate type (i.e.: values known tobe scalar integer are stored as

integers, not as pointers to matrix objects). Thus, before an interpreter function is called
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to evaluate a statement or expression, all the variables thestatement or expression uses

must be stored into value objects and bound into an environment object. In the case of

assignment statements, the JIT must also keep track of whichvariables will then be written

in that environment object. All of this is managed through a data structure we call the

variable table.

4.7.2 Code Generation Strategy

Our JIT compiler is built on top of the LLVM compiler-building framework [Lat02]. This

framework handles the low-level parts of the code generation. As input, it requires pro-

gram code specified in a RISC-like Static Single Assignment (SSA) form, and translates

it, at run-time, into machine-specific code. It also performs optimization passes on the

code, both at the machine code level, and higher levels. It can, for example, perform con-

stant propagation, dead code elimination and eliminate some redundant operations. As

such, it greatly simplifies the construction of a JIT compiler by completely hiding much

of the platform-specific details and providing low-level optimizations. Broadly speaking,

our work in terms of code generation consists of translatingour IIR tree into efficient input

code for LLVM.

The JIT compiler generates code for a function in a recursivemanner, by traversing its IIR

tree. Specialized methods generate code for each kind of statement and expression as the

tree is traversed. Whenever the JIT compiler does not know howto compile efficient code

for a statement or expression, fallback code is generated which will invoke the interpreter

to execute that specific statement or expression. At each step of the compilation process,

the JIT needs to take special care to know how each live variable is stored. This is achieved

through the variable table, which maps symbols (the variable names) to pairs of LLVM

value objects and McVM type identifiers.

The variable table is needed because variables can be storedin different ways. They could

be stored in an environment object (see section4.5), or they could be stored in an LLVM

virtual register (on the stack, essentially). If they are stored on the stack, they could either

be stored as pointers to objects stored on the heap (necessary for matrix objects), or as
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scalar integer or floating-point values, if we know enough about their type. The LLVM

value object tells us how a variable is stored, but the McVM type identifier is needed to

distinguish what actual language type the variable has. Note that the specific type may be

unknown in some cases, if the available type information is insufficient to determine it (see

chapter5).

When interpreter fallback code is generated for an expression or a statement, the variables

this expression or statement may use are written in an environment object, and the variable

table is updated to reflect this. If these variables are needed at a later point, they will

be read from the environment object and converted to the mostefficient storage mode, at

which point the variable table will be again updated to reflect this change. Note that if a

function never needs to perform any interpreter fallback operations no environment object

will be created for this function. Thus, the interpreter fallback mechanism does not incur

any penalty for functions which do not need to use it.

Special care needs to be taken when compilingif- else and loop statements, because

these produce multiple possible control-flow paths. The JITcompiler actually generates a

variable table for each possible path. Thus, anif- else statement produces two variable

tables which need to be merged into one. This is done such thatif a variable is locally

stored (not in an environment object) in any of the variable maps needing to be merged, it

will be locally stored in the final variable map. The merging process also ensures that the

optimal storage mode is selected for all variables. Note that in practice, the way variables

are stored most often does not change at merge points.

In the case of loops, the process is similar, except that there may be many more loop exits

due to the existence of abreak statement in MATLAB. Control-flow paths also need to be

merged at the loop entry. In this case, this is done so that thevariable map states of all

control-flow paths match that of the original control-flow path that entered the loop. This

is because the loop code is generated first according to the entry control-flow path leading

to the loop. Thus, for this code to remain valid, any other control-flow paths leading to the

loop entry need to match the variable map state of the entry path. Our approach permits the

compilation of loops in a single code generation pass.
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One important optimization in our compiler is the use of typeinformation to generate

optimized code for binary expressions. MATLAB makes the distinction between scalar

values and larger matrices invisible to the programmer, butwe attempt to store scalar vari-

ables on the stack whenever possible, for performance reasons. Whenever the JIT compiler

knows that a binary expression occurs between two scalar variables, it will attempt to gen-

erate specific machine instructions to perform this operation. This allows scalar additions,

subtractions, multiplications and divisions to be compiled efficiently, without generating

intermediate matrix objects to store the result.

4.7.3 Function Versioning

The researchers behind the Psyco [Rig04] and TraceMonkey [GES+09] virtual machines

have realized that in order to efficiently compile programs written in a dynamic language, it

is essential to expose information about concrete types used in the said programs. We have

independently come to the same conclusion regarding the compilation of MATLAB pro-

grams and devised a just-in-time specialization scheme forour JIT compiler which makes

use of both run-time and inferred information about programtypes. Our specialization

scheme bears some similarity to the one used by the Psyco VM.

Our specialization strategy begins by “trapping” functioncalls made through the inter-

preter. Any command made in interactive mode runs through the interpreter. If the com-

mand is a call to a function (and not a script), the interpreter will (if JIT compilation is

enabled) try to let the JIT compiler handle the call. When thishappens, the JIT compiler

will build an argument type string from the input arguments to the function. It will then at-

tempt to locate a previously compiled version of the function matching this argument type

string. If none is found, a new version will be compiled, specialized for the given argument

types. Once compiled, the function will be called with the specified arguments.

When compiling a specialized version of a function for a specific input argument type

string, the JIT compiler makes use of a type inference analysis pass (see chapter5) to infer

information about the possible types of variables at every point in the function body. The

JIT compiler will then make use of this type information to generate more efficient code
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than would be possible without it. Dispatching overhead canbe eliminated, and some scalar

variables can be stored directly on the stack, instead of being stored as objects (of unknown

type) on the heap.

While compiling specialized function versions, the JIT compiler will also be able to deter-

mine information about the input parameters of functions called from the function being

compiled. It can then compile specialized versions of the callees of the current function as

well. Thus, our scheme specializes functions based on inputargument types when they are

called, or when the JIT compiler knows they could be called from the function currently

being compiled. The vast majority of callees can be resolvedat compilation time, and so

most of the compilation and specialization happens when theroot function of the call graph

is called. If a new call to a function is made through the interpreter with input arguments

for which no specialized version exists, a new one will be compiled. If the function has

any callees, new versions may or may not be recompiled for those as well, depending on

whether the input arguments to those would change or not.

1 function s = sumvals(start, step, stop)

2

3 i = start;

4 s = i;

5

6 while i < stop

7 i = i + step;

8 s = s + i;

9 end

10

11 end

Listing 4.1 The sumvals function

1 function s <scalar int> = sumvals(start <scalar int>, step <scalar

int>, stop <scalar int>)

2

3 i <scalar int> = start;

4 s <scalar int> = i;

5
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6 while i < stop

7 i <scalar int> = i + step;

8 s <scalar int> = s + i;

9 end

10

11 end

Listing 4.2 The type-annotated sumvals function

As an example of how our function versioning works, take a look at thesumvals function

in listing 4.1. This function is meant to sum numerical values in the range going from

start to stop , inclusively. Since MATLAB does not make variable types explicit, we

do not know what types any of the variables (including the input parameters) have. The

function could, in theory, sum over integers, floating-point values, matrices of integers or

floating-point values, or even complex numbers. Thus, it cannot be efficiently compiled

as-is. The JIT compiler would have to assume the worst-case,where we are summing over

matrices, which clearly cannot fit on the stack and must be stored on the heap. It would

also need to make calls to expensive dispatching code for every operation performed on

any variable.

Now, imagine that this function is called from interactive mode as follows:s = sumvals(1,

1, 6); . From this point, we know that each argument to the call is a scalar integer. The JIT

compiler can then use type inference to logically conclude that all variables in the function

are in fact scalar integers. From this point, we can imagine atype-annotated version of the

sumvals function (see listing4.2). This function can be efficiently compiled. All variables

are easily stored on the stack, and there is no need to make expensive dispatching calls,

because there are efficient machine instructions to add and compare scalar integer values.

Thus, a specialized version can be compiled based on the input argument types, which will

likely be hundreds of times faster than its non-specializedcounterpart would have been.

The obvious downside is that this scheme has the potential togenerate many specialized

versions of a function, with each requiring additional compilation time, and potentially

impacting the performance of the instruction cache. We willsee that this is not the case

in practice (see chapter6). From our observations, MATLAB programs tend to have few
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long functions and fewer call sites than code written in other programming languages (see

section2.1.5). It also seems that MATLAB programmers tend to use functions for very

specific purpose (e.g.: integrating a specific kind of function), and thus rarely call functions

with very different input argument types. The main strengthof our specialization scheme

is that most function get specialized only once, and that thevast majority of the symbols in

these functions can be typed if the input argument types are known.

4.7.4 Additional Optimizations

We have already mentioned in section4.7.2that our JIT compiler can sometimes make use

of type information to map scalar arithmetic operations to efficient machine instructions.

This is not the only optimization that makes use of this information, however. We have also

implemented optimized array access operations and optimized mapping of library function

calls. These optimizations also rely on information provided by the type inference sys-

tem and function versioning framework and try to generate optimized code when enough

information is available to guarantee their soundness.

MATLAB possesses a sophisticated array indexing scheme that allows programmers to

read or write to n-dimensional slices (sub-arrays) based onranges of indices specified in-

dependently for each dimension. This system makes the life of MATLAB programmers

easier, but requires fairly complex logic to work properly.In many cases, our JIT compiler

uses the interpreter to evaluate complex array reads and writes, which comes with some

overhead. However, when the JIT compiler can determine thata matrix is being written to

or read from using scalar indices (e.g.:x = a(i); wherei is a scalar), it knows that the

value being read or written must also be a scalar. In this case, if the type of the matrix is

known, it can generate optimized code to read or write the said value directly. It can also

use the bounds check elimination analysis to eliminate unnecessary checks.

Library functions are implemented in our virtual machine asnative C++ functions which

take as input (and return as output) dynamically allocated arrays of pointers to data objects.

This is sometimes largely inefficient because each call to these functions requires the arrays

to be allocated. Also, in the case of scalar values stored on the stack, it means they must
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be wrapped into objects before being passed along, and that return values may need to be

unwrapped in the reverse fashion. Furthermore, the libraryfunctions we provide are also

expected to be able to operate on both matrices and scalar values, and thus incur some

overhead, because they must be able to loop over all the values present in a matrix.

To address these issues, we have devised a scheme where optimized versions of some

library functions can be registered with the JIT compiler based on the types of input argu-

ments they take as input, and the types of their return values. When a library function call

is encountered, the JIT compiler will attempt to locate an optimized version of this function

with input types and return value types matching those required in the current calling con-

text. If one is found, it will be called instead of the general-purpose version of the library

function. An obvious example where this is beneficial is in the case of functions likeabs

or sin . If these functions are called on scalar values, we can directly insert a call to the

native C++ version of these library functions.
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Chapter 5

Type Inference System

In this chapter, we explain in detail the type inference analysis used by the just-in-time

type-based specialization mechanism built into our JIT compiler. We begin with a sim-

ple description of the analysis, what it infers, how it is different from other type inference

schemes and how it is used by the JIT compiler. This is followed by a more formal ex-

planation of the actual analysis process and its roots in abstract interpretation. We supply

a detailed example of our type inference analysis being applied to a simple MATLAB

program. Finally, we conclude with an explanation of the validation strategy used to em-

pirically validate the correctness of the analysis.

5.1 Analysis Design

The type inference analysis our JIT compiler employs was designed to rapidly infer types

as precisely as possible, without making too many assumptions about the programs being

analyzed. It works on a per-function basis, with the assumption that the whole program

is not necessarily known at run-time, and new functions could be loaded at any time. The

analysis assumes that the set of possible types for each input argument of a given function

are known, and infers the set of possible types for every variable at every point (before and

after every statement) in the function, given those possible input argument types.

47



Type Inference System

The type analysis can be run multiple times for the same function, given different possible

input types each time, thus inferring the types for multipleversions of the same function.

It can also be provided with different levels of informationabout the input types. It is

possible, for example, to specify that we know nothing of thepossible types of a given

input argument. It is a conservative analysis, and thus its results are provably true in every

case, for any input values, provided that the input type restrictions are met.

The analysis is based on abstract interpretation. That is, it is a forward flow analysis which

propagates sets of possible types for variables through every possible branch of a given

function, through every statement of that function. While doing this, it is simulating the

effect that these statements would have on the possible types of the variables present in the

function. The result of every operator is accounted for, andthus, the analysis is, in a way,

“simulating” what would be happening at run-time. It performs this simulation in a such

a way that the results are always valid, accounting for everybranch that could possibly be

taken at any point.

This is different from most other type inference analyses, which often rely on whole-

program analysis, assuming the entire program is known at run-time, and use a constraint-

solving mechanism to narrow down the possible types of variables. It is also different

because it takes into account that the type of a given variable can be different at multiple

points of a function. Finally, unlike some type analyses, itdoes not assume that the program

is correct. Should there be a programming error (resulting in an exception being thrown at

run-time) in a program’s code, the analysis results are guaranteed to be correct up to that

point.

Our JIT compiler uses data provided by this type inference analysis to implement a just-in-

time function specialization scheme (see section4.7.3). The more information the analysis

provides about the concrete types of program variables, themore interpretive dispatching

and storage overhead can be eliminated, and the faster the resulting compiled code will be.

In practice, it can make an enormous difference in terms of real-world performance results

(see chapter6).
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5.2 Flow Analysis Specifics

5.2.1 Abstract Domain

Abstract interpretation is a way to simulate the execution of programs over an abstract

domain. In the real domain of MATLAB programs, variables at different program points

are bound to actual values (data objects). In our abstract domain, variables instead map to

sets of possible types that they could hold at different program points. These sets contain

zero or more type object storing information about a potential type the specific variable can

have.

Figure 5.1 Hierarchical lattice of McVM types

Each type object in a set represents a specific MATLAB language type, such as character

array, floating-point matrix, complex number matrix, etc. Figure5.1 represents the hierar-

chical type lattice of McVM types these objects could have. If a type set contains multiple

type objects, it means that the variable whose potential types are represented by the set at

that program point could be one of the several types represented by each object in the set.

The empty set is the⊥ element of the type lattice, representing situations whereno infor-
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mation has been computed yet. The set of all type objects is the⊤ element of the lattice,

representing the situation where the type of a variable cannot be determined.

Table 5.1 Description of type object fields

Field Meaning/Description Default

type An element of the set of possible McVM data
types.

Undefined

2D Flag whose value applies to matrix types only.
A True value indicates that the matrix has at
most two dimensions. False means it is not
known how many dimensions the matrix has.

False
(unknown)

scalar Flag whose value applies to matrix types only.
A True value indicates that the matrix is a scalar.
False means the matrix may not be scalar.

False
(unknown)

integer Flag whose value applies to matrix types only.
A True value indicates that the matrix contains
only integer values. False means the matrix may
contain non-integer values.

False
(unknown)

sizeKnown Flag whose value applies to matrix types only.
A True value indicates the size of the matrix is
known. False means the size is not known.

False
(unknown)

size Applies to matrix types only. A vector of inte-
gers storing the dimensions of the matrix. This
is only defined if the sizeKnown flag is set to
True.

Undefined

handle Applies to function handles types only. Stores a
pointer to the function object the handle points
to. This value can be null if the specific function
is not known at inference time.

null (un-
known)

cellTypes Applies to cell array types only. Set of type ob-
jects representing the possible types the cell ar-
ray stores.

Empty set
(unknown)

The type objects are more than mere identifiers for language types; they also store various

flags and attributes giving additional information about the possible values a variable may

hold. Table5.1describes the fields stored in type objects. These fields cannot hold arbitrary
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values. For example, if thescalar flag is set to True, then thesizeKnown flag must also

be True. However, the2D flag does not necessarily indicate that the matrix size is known.

For each statement in a program, our analysis will produce a mapping of symbols to sets

of type objects representing the type that each variable in the current function may hold

before the statement is executed. Formally, ifO is the set of all possible type objects andS

is the set of all symbols, then our analysis operates in the domain of subsets ofM, where

M is the set of all pairs of symbols and subsets ofO (mappings of symbols to type sets):

M = {(s, t)|s∈ S, t ∈ P(O)} (5.1)

5.2.2 Merge Operator

A merge operator is required to implement inference rules for control flow statements. This

is because when multiple control paths join at a given point in a program, our analysis needs

to merge the mappings of symbols to type sets for each of thesecontrol flow paths into one

single mapping. In our analysis, the merging of two type mappings is accomplished by

performing, for each symbol, the joining of the type sets foreach type mapping:

merge(M1 ⊆ M,M2 ⊆ M) = {(s, t)|(s, t1) ∈ M1,(s, t2) ∈ M2, t = join(t1, t2)} (5.2)

The joining of type sets is accomplished by using set union asa merge operator and then

applying a filter operator to the result. If one of the input values to the merge operator for

type sets is⊤, then the result will be⊤ as well, because this value signifies that a variable’s

type cannot be determined. However, if one of the merge values is⊥, then the result will

be the other value, because⊥ signifies that type information has not yet been determined.

In the case where neither values are⊤ or⊥, then the result is simply the union of both type
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sets:

join(t1 ⊆ P(O) , t2 ⊆ P(O)) = f ilter (t1∪ t2) (5.3)

The filter operator can be defined in terms of pseudocode (see listing5.1). Its purpose is to

merge all type objects in a type set having the same McVM type into one. It does so in a

pessimistic way, that is, if any of the type objects to be merged has an unknown value for

one of its flags, the merged type object will have the unknown value. Properties are only

kept if all objects hold them as known. For example, if we are filtering a type set containing

multiple double matrix type objects, the resulting type object will have theinteger flag

set to true only if all of the original matrix type objects did.

1 function TypeSet filter(TypeSet S)

2 repeat until S is unchanged

3 for each pair (s1, s2) in S

4 if s1.type equals s2.type

5

6 # Create a new type object with the same type

7 s = new TypeObject();

8 s.type = s1.type;

9

10 # Merge the type object flags pessimistically

11 # Using the boolean AND operator

12 s.2D = s1.2D AND s2.2D;

13 s.scalar = s1.scalar AND s2.scalar;

14 s.integer = s1.integer AND s2.integer;

15 s.sizeKnown = s1.sizeKnown AND s2.sizeKnown;

16

17 # Set the function handle only if both handles match

18 if s1.handle equals s2.handle

19 s.handle = s1.handle

20 else

21 s.handle = null;

22 end

23

24 # Merge the cell array type sets
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25 s.cellTypes = merge(s1.cellTypes, s2.cellTypes);

26

27 # Update the type set S

28 remove s1 from S;

29 remove s2 from S;

30 add s to S;

31

32 end

33 end

34

35 # Return the filtered type set

36 return S;

37 end

Listing 5.1 Pseudocode for the type set filter operator

5.2.3 Inference Rules

Our type inference analysis follows inference rules to determine the mapping of possible

variable types after a given statement based on the possibletypes before that same state-

ment. Each kind of statement has an associated type inference rule that takes the mapping

of possible input types as input and returns the mapping of possible output types as output.

Expression statements, such asdisp(3); use the identity type mapping, that is, the output

types they produce are the same as the input types.

The statements that are at the core of our type inference analysis are assignment statements.

They are the only kind of statement that can define a variable,and thus, change its type. In

the case of an assignment statement of the formv = op(a, b); , whereop is an element

of the setR of all possible binary operators, we have that the type ofv is redefined as the

set of possible output types of the operator being applied tothe possible types ofa andb,

according to its own type rule:

typeRulev=op(a,b) (Min ⊆ M) = {(s, t) ∈ Min|s 6= v}∪ typeRuleop(v,a,b) (Min) (5.4)
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typeRuleop(v,a,b) (Min ⊆ M) =
{

(v, t)| t = outtypeop({(a, t) ∈ Min} ,{(b, t) ∈ Min})
}

(5.5)

1 if cond

2 trueStmt;

3 else

4 falseStmt;

5 end

Listing 5.2 Type inference and branching

In the case ofif statements, the type inference process is handled differently. The “true”

and “false” branches of the statement are both treated as compound statements, as if all

statements on either branch were one statement (see listing5.2). The output type mappings

are determined separately for both branches and then mergedtogether into one mapping of

the possible types at the output of theif statement itself:

typeRulei f (Min ⊆ M) = merge
(

typeRuletrueStmt(Min) , typeRulef alseStmt(Min)
)

(5.6)

1 while cond

2 loopStmt;

3 end

Listing 5.3 Type inference and loops

Handling of loop statements is slightly more complex. Because types at the input of the

loop depend on types at the output, a fixed point must be iteratively computed. For the

purpose of our type inference analysis, all loop statementsare treated aswhile loops. As is

the case forif statements, statements in the loop body are treated as one single compound

statement (see listing5.3). The type inference rule forwhile loops can be expressed in the

form of pseucode, as in listing5.4.
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1 function TypeMapping typeRuleWhile(Statement loopStmt, TypeMapp ing

inTypes)

2

3 # Create a type mapping for the types at the continue points of

4 # the loop. We initialize this mapping so all variable types a re

5 # initially bottom (uninferred)

6 TypeMapping contTypes = {(s,t) | s in S, t = bottom};

7

8 # Create a type mapping for the types at the "break" or exit

9 # points of the loop

10 TypeMapping exitTypes;

11

12 # Repeat until a fixed point is reached for the output types

13 repeat until (contTypes is unchanged) AND (exitTypes is unchanged )

14

15 # Compute the types at the input of the loop statement

16 loopInTypes = merge(inTypes, contTypes);

17

18 # Add new lists to the top of the break and continue list stacks .

19 # These are global variables which will be filled in as the

20 # type inference analyzes the loop body statement.

21 breakStack.push( new List());

22 continueStack.push( new List());

23

24 # Compute the types after the loop body by

25 # applying the type rule for the statement

26 bodyOutTypes = typeRule(loopStmt, loopInTypes);

27

28 # Pop the break and continue lists from their stacks

29 breakList = breakStack.pop();

30 continueList = continueStack.pop();

31

32 # Compute the type mapping for all continue points.

33 # The types at the exit of the loop body are included

34 contTypes = bodyOutTypes;

35 for mapping in continueList

36 contTypes = merge(contTypes, mapping);
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37 end

38

39 # Compute the type mapping for all break points.

40 # The input types are included in case the loop

41 # executes zero times

42 exitTypes = inTypes;

43 for mapping in breakList

44 exitTypes = merge(exitTypes, mapping);

45 end

46

47 end

48

49 # Return the type mapping at the exit of the loop

50 return exitTypes;

51 end

Listing 5.4 Type inference rule for while loop statements

The type inference process for loops is complicated by the fact that there could bebreak

or continue statements in the loop. We handle this by maintaining globallists of the type

mappings associated with these statements for each iteration. These are then be included

into the type mapping merging process of the fixed point computation. Thecontinue

type mappings correspond to the back-edge (control flow edge) going from the point after

the loop body to the loop entry. Thebreak type mappings must be taken into account to

properly compute the possible types at the loop exit.

5.2.4 Handling Recursion

Our current type inference analysis allows type information to flow across call sites, but

does not currently analyze recursive call chains. Its current behavior is to terminate the

analysis when a call to a function which is currently being analyzed is encountered, at

which point it returns no type information about the recursive call. This termination crite-

rion ensures that there will be no infinite recursion in the type analysis itself.

We have found this solution to be acceptable for most of our benchmark programs, as most
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of the heavy computations are done inside of loops, and not through recursion. For other

dynamic languages, it may be desirable to propagate type information across recursive

call sites. This will, however, introduce additional complications [FH88] as it becomes

necessary to extract the non-recursive execution paths andprovide type information about

those. This is because the type analysis of a recursive function depends on the results of

that same analysis. Thus, the analysis must be able to generate output for a non-recursive

base case.

5.2.5 Inference Process

In terms of abstract interpretation, we wish to compute, fora given function, the least fixed

point of the mapping of program statements and variables to sets of possible types before

that given program point. The type inference process for a function begins with the type sets

for the input parameters of the function being given. Becauseof the MATLAB semantics,

the possible types of all other variables are initialized to⊤. This is because undeclared

variables could be globals, and thus, could potentially hold any type.

The body of the function is then analyzed. The function body itself is a compound state-

ment. When inferring the types in a compound statements, the statements it contains are

traversed in order, and the output type of each statement is stored in a global variable we

will call stmtTypeMapping . This is a map (e.g.: hash map) of the type mapping at the

output of each statement. Pseudocode is given for this in listing 5.5. When inferring types

for compound statements, we are careful to store the type mappings associated withbreak

andcontinue statements. These will be used when performing type inference on loops.

1 function TypeMapping typeRuleCompound(Statement list L, TypeMapp ing

inTypes)

2

3 # For each statement in the list, in sequence

4 for each statement stmt in L

5

6 # Store an association of the statement

7 # with the type mapping that holds true before

8 # it into a global hash map. This is what our
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9 # analysis produces as output.

10 add pair(stmt, inTypes) to global stmtTypeMapping;

11

12 # Compute the types after the statement

13 # these will be the input to the next statement

14 inTypes = typeRule(stmt, inTypes);

15

16 # If the statement is a break statement, we

17 # store the type mapping after the statement

18 # into the current global break list

19 if stmt is of type breakStmt

20 add inTypes to breakStack.top()

21 end

22

23 # If the statement is a continue statement, we

24 # store the type mapping after the statement

25 # into the current global continue list

26 if stmt is of type continueStmt

27 add inTypes to continueStack.top()

28 end

29

30 end

31

32 # Return the mapping at the output of the compound

33 return inTypes;

34 end

Listing 5.5 Type inference and compound statements

5.3 An Example

This section contains a step-by-step example to illustratethe workings of our type inference

analysis. Our example begins with the program shown in listing 5.6, which comprises two

functions:caller andcallee . Thecaller function branches on its input argument, and

calls thecallee function with two different arguments. Thecallee function iteratively
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computes a sum based on a counter variable which is divided bytwo at each iteration.

1 function r = caller(val)

2 if val > 5

3 r = callee(val);

4 else

5 val2 = 2 * val;

6 r = callee(val2);

7 end

8 end

9

10 function v = callee(start)

11 v = 0;

12 c = start;

13 while c > 0.25

14 v = v + c;

15 c = c / 2;

16 end

17 end

Listing 5.6 Type inference analysis example: step 0

For the sake of the example, imagine that a user invokes thecaller function with a 1x2

matrix of integers as its input argument (i.e.:caller([5 6]); is typed at the interactive

prompt). Our type inference analysis is then invoked on the caller function for this specific

argument type. It will then begin with the assumption thatval has the 1x2 integer matrix

type, as illustrated in listing5.7. The analysis will then traverse statements on both the

“true” and “false” branches of theif statement.

1 function r = caller(val <1x2 int>)

2 if val > 5

3 r = callee(val);

4 else

5 val2 = 2 * val;

6 r = callee(val2);

7 end

8 end
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Listing 5.7 Type inference analysis example: step 1

On the “true” branch of theif statement, our analysis will conclude that thecallee func-

tion is called with a 1x2 integer matrix argument. Thus, the analysis will recursively an-

alyze thecallee function for this argument type. The variablev will typed as a scalar

integer value directly, since it is assigned constant, and the variablec will be assigned the

same type as thestart variable (see listing5.8).

1 function r = caller(val <1x2 int>)

2 if (val <1x2 int>) > 5

3 r = callee(val <1x2 int>);

4 else

5 val2 = 2 * val;

6 r = callee(val2);

7 end

8 end

9

10 function v = callee(start <1x2 int>)

11 v <scalar int> = 0;

12 c <1x2 int> = (start <1x2 int>);

13 while c > 0.25

14 v = v + c;

15 c = c / 2;

16 end

17 end

Listing 5.8 Type inference analysis example: step 2

Analyzing the body of thewhile loop a first time, our analysis will conclude that inside

the loop,v becomes a 1x2 integer matrix, since that is the resulting type of the addition of

a scalar integer with a 1x2 integer matrix. However, it will conclude thatc becomes a 1x2

matrix of real values, because dividing integer values by integers is not guaranteed to result

in integer values (see listing5.9).

1 function v = callee(start <1x2 int>)

2 v <scalar int> = 0;
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3 c <1x2 int> = (start <1x2 int>);

4 while (c <1x2 int>) > 0.25

5 v <1x2 int> = (v <scalar int) + (c <1x2 int>);

6 c <1x2 real> = (c <1x2 int>) / 2;

7 end

8 end

Listing 5.9 Type inference analysis example: step 3

The new types ofc andv at the end of the loop body will be merged with the types at the

loop entry. The analysis will conclude thatc is of type 1x2 real at the loop entry, while v

is of type integer with unknown size, because it was scalar integer in the first iteration, and

will be 1x2 integer in the second, and thus its size cannot be guaranteed across all iterations.

However, inside the loop body, because adding an integer matrix of unknown size to a real

matrix of size 1x2 results in a matrix of real numbers with size, the type ofv will become

a real number matrix of unknown size. A third iteration will show that the types inside the

loop do not change at this point, and thus that a fixed point hasbeen reached (see listing

5.10).

1 function v = callee(start <1x2 int>)

2 v <scalar int> = 0;

3 c <1x2 int> = (start <1x2 int>);

4 while (c <1x2 real>) > 0.25

5 v <real> = (v <real>) + (c <1x2 real>);

6 c <1x2 real> = (c <1x2 real>) / 2;

7 end

8 end

Listing 5.10 Type inference analysis example: step 4

At this point, the analysis of thecallee function is completed. The analysis will conclude

that for the 1x2 integer argument type, the return type of thefunction is real. This will be

reflected in thecaller function, in which the valuer on the “true” branch will take the

real type (see listing5.11).

1 function r = caller(val <1x2 int>)

2 if (val <1x2 int>) > 5
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3 r <real> = callee(val <1x2 int>);

4 else

5 val2 = 2 * val;

6 r = callee(val2);

7 end

8 end

9

10 function v <real> = callee(start <1x2 int>)

11 v <scalar int> = 0;

12 c <1x2 int> = (start <1x2 int>);

13 while (c <1x2 real>) > 0.25

14 v <real> = (v <real>) + (c <1x2 real>);

15 c <1x2 real> = (c <1x2 real>) / 2;

16 end

17 end

Listing 5.11 Type inference analysis example: step 5

Since the analysis of the “true” branch is completed, the analysis of the “false” branch will

proceed. Trivially,val2 will be assigned the 1x2 integer type, since multiplying a 1x2

integer matrix by a scalar integer preserves its type. Sincethe callee function is again

being called with the 1x2 integer type, the results of the type analysis on this function for

that type (which have been cached) will be reused. Thus, our analysis will conclude thatr

also has the real type along the “false” branch (see listing5.12).

1 function r = caller(val <1x2 int>)

2 if (val <1x2 int>) > 5

3 r <real> = callee(val <1x2 int>);

4 else

5 val2 <1x2 int> = 2 * (val <1x2 int>);

6 r <real> = callee(val2 <1x2 int>);

7 end

8 end

Listing 5.12 Type inference analysis example: step 6
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Since ther variable has the same real type along both branches of theif statement, our

analysis will conclude that its type at the output of thecaller function is also real (see

listing 5.13). At this point, the type inference analysis is completed for thecaller function

with a 1x2 integer argument. The results of the analysis of both thecaller andcallee

function for their specific argument types will be cached forlater use.

1 function r <real> = caller(val <1x2 int>)

2 if (val <1x2 int>) > 5

3 r <real> = callee(val <1x2 int>);

4 else

5 val2 <1x2 int> = 2 * (val <1x2 int>);

6 r <real> = callee(val2 <1x2 int>);

7 end

8 end

9

10 function v <real> = callee(start <1x2 int>)

11 v <scalar int> = 0;

12 c <1x2 int> = (start <1x2 int>);

13 while (c <1x2 real>) > 0.25

14 v <real> = (v <real>) + (c <1x2 real>);

15 c <1x2 real> = (c <1x2 real>) / 2;

16 end

17 end

Listing 5.13 Type inference analysis example: step 7

5.4 Validation Strategy

Our JIT compiler relies on the type inference analysis to make optimization decisions.

This often means eliminating run-time checks because type information has been statically

inferred. For example, if we know that a variable will alwaysbe a floating-point matrix

at a certain point in the program, we no longer need to check what type it actually is

before operating on this variable at run-time. This poses one important design problem,

however. Should the type analysis produce incorrect result, the JIT compiler could produce
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erroneous code based on incorrect assumptions. This could in turn result in bugs that are

rather difficult to track.

To avoid such situations, we have devised a validation strategy which essentially entails

running a series of benchmarks (see section6.1 for a list) through the interpreter while

checking that the predicted types match the actual types at every point (before and after

every 3-address form statement) in the execution of the saidbenchmarks. Should an error

occur, the program point where this happens is reported, along with the erroneous type

information, and the actual types that occur at run-time. Toreduce the overhead of this

validation process, the number of times a given statement will be validated during the

execution of a function is limited to 128.

This validation strategy is by no means perfect, because ourbenchmarks do not expose

all the possible programs that could arise. Thus, it is possible that some errors could slip

through. In practice, however, we have found this strategy to be quite effective at catching

bugs in our type analysis. We also believe that our benchmarks are fairly extensive as

they make use of every language feature our VM supports and exhibit a fair level of code

complexity.

An alternative (or complementary) validation strategy would have been to use unit testing to

test our system. The difficulty with this, however, is that due to the complexity of our type

inference system, there would be hundreds of cases to test inorder to properly validate our

type analysis. These unit tests would also need to generate code segments and validate the

results of the analysis over these. Our empirical approach is simply using actual program

code to validate the analysis instead of code generated by synthetic tests.
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Chapter 6

Performance Study

In this chapter, we evaluate the performance of our JIT compiler as well as that of the

various optimization strategies it employs. We begin with adescription of our benchmark-

ing strategy, including the benchmark programs, the platform on which benchmarking was

performed, the versions of software used in performance measurements and the timing

strategy used. This is followed by a comparison of objectiveperformance numbers for

our JIT compiler as well as competing implementations such as Mathworks MATLAB and

GNU Octave.

The performance impact of our JIT compiler with various optimizations disabled is also

examined so as to assess their respective impact. We then examine the factors that can

explain performance differences between the various configurations of our JIT as well as

competing implementations. We finally conclude with an examination of the performance

of our type inference system and its impact on the global performance of our JIT compiler.

6.1 Benchmarking Strategy

In order to assess the performance of our virtual machine, wehave chosen to compare the

actual performance of McVM (in terms of running-time of benchmark programs) to that

obtained by competing solutions such as Mathworks MATLAB, GNU Octave (the GNU
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MATLAB environment) and McFor (a MATLAB to Fortran translator built by Jun Li, a

member of the McLab team). The Octave and MATLAB performancenumbers (shown in

section6.2 are intended to give us some idea of how well our current solution performs

against competing implementations. The McFor (FORTRAN code) numbers are provided

as a kind of “lower bound”. FORTRAN compilers are known to perform very well for

numerical computations, and thus, these numbers tell us howwhat kind of performance

levels we could potentially hope to reach with future VM implementations.

We have also measured our JIT compilation times in order to establish whether they fall

within reasonable norms. In order to establish how successful our attempts at code opti-

mization have been, we have compared the performance of McVMwhile running in in-

terpreted mode, as well as with the JIT compiler enabled, andwith specific JIT compiler

optimizations disabled. Furthermore, we show some profiling numbers intended to explain

where specific performance bottlenecks occur, as well as type inference profiling data to

help explain in which cases our type inference analysis doesbest and worse (see section

6.3).

We have performed our tests on a total of 20 benchmark programs, which are briefly de-

scribed in table6.1. Several of these are currently unsupported by the McFor FORTRAN

translator as it lacks support for cell arrays, closures andfunction handles at this time. Ta-

ble6.2provides some characteristic numbers for the 20 benchmarkssupported by McVM,

namely, the number of functions in each program, the total number of statements (in 3-

address form), the maximum loop nesting depth in the entire program, and the total number

of call sites found.

All of our benchmarking metrics were gathered on a system equipped with an Intel Core

2 Quad Q6600 processor (quad core, 2.4GHz) and 4GB of dual channel DDR2 RAM,

running Ubuntu 9.04 (linux kernel 2.6.28). We have gatheredour MATLAB performance

numbers using MATLAB R2009a, and our GNU Octave numbers on Octave version 3.0.1.

The FORTRAN code produced by McFor was compiled using the GNU FORTRAN com-

piler version 4.3.3. Because there is some variance when timing benchmarks (on the order

of 10 to 20%), all benchmark timing measurements were made byrunning the benchmark

programs a total of 30 times and averaging over all the values.
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Table 6.1 Description and origin of our benchmark programs

Benchmark Description Origin

adpt Adaptive quadrature by Simpson’s Rule FALCON Project
beul Solves the heat equation using the back-

ward Euler method
Anton Dubrau (McLab
team)

capr Computes the transmission line capaci-
tance of a coaxial pair

Chalmers University of
Technology

clos Computes the transitive closure of a di-
rected graph

OTTER Project

crni Crank-Nicholson heat equation solver FALCON Project
dich Dirichlet solution to Laplace’s equation FALCON Project
diff Young’s two-slit diffraction experiment MathWorks’ Central

File Exchange
edit Computes the edit distance of two strings MathWorks’ Central

File Exchange
fdtd Finite Difference Time Domain (FDTD)

technique
Chalmers University of
Technology

fft Computes the discrete fourier transform
for complex data

Jun Li (McLab team)

fiff Finite difference solution to the Wave
equation

FALCON Project

mbrt Generates the mandelbrot set Anton Dubrau (McLab
team)

nb1d One-dimensional n-body simulation OTTER Project
nb3d Three-dimensional n-body simulation Modified nb1d
nfrc Generates a newton fractal Anton Dubrau (McLab

team)
nnet Neural network learning AND, OR, XOR

functions
Anton Dubrau (McLab
team)

play Recursive minimax search Anton Dubrau (McLab
team)

schr Solves 2-D Schroedinger equation Anton Dubrau (McLab
team)

sdku Sudoku solver Andrew Casey (McLab
team)

svd Computes the singular value decomposi-
tion of a large matrix

Anton Dubrau (McLab
team)
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Table 6.2 Characteristics of our benchmark programs

Benchmark Num. functions Num. statements Max. loop depth Num. call sites

adpt 2 196 2 6
beul 10 511 1 38
capr 5 214 2 10
clos 2 58 2 3
crni 3 142 2 7
dich 2 144 3 7
diff 2 253 3 6
edit 2 130 2 6
fdtd 2 157 1 3
fft 2 159 3 8
fiff 2 120 2 4

mbrt 3 78 2 11
nb1d 3 194 2 11
nb3d 3 164 2 12
nfrc 5 151 2 11
nnet 4 186 3 16
play 6 364 2 29
schr 8 203 1 32
sdku 9 363 2 49
svd 11 308 3 42

6.2 Objective Performance

Table6.3shows a comparison of benchmark running times when running through McVM

with the JIT compiler enabled, Mathworks MATLAB, McVM with the JIT compiler dis-

abled, GNU Octave, and McFor (compiled FORTRAN code), while table6.4 shows the

same running times normalized relative to that of the McVM JIT (values greater than one

representing running times slower than the McVM JIT). As we can see, McVM with JIT

performs better than MATLAB in 6 out of 20 benchmarks, sometimes by a fair margin. In

the cases where it does worse than MATLAB, the running times are still relatively close in

most cases, except for thecrni benchmark which performs rather poorly (we will examine

why in section6.3).
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Table 6.3 Comparison of benchmark running times across multiple environments

Benchmark McVM JIT
(s)

MATLAB
(s)

McVM no
JIT (s)

Octave
(s)

McFor
(s)

adpt 1.26 0.29 1.30 4.57 0.19
beul 0.35 0.31 0.18 0.78 N/A
capr 0.37 0.81 181.30 544.97 0.12
clos 0.70 0.08 1.43 1.71 0.72
crni 137.06 0.71 190.24 577.45 0.33
dich 0.30 0.47 122.15 411.43 0.17
diff 3.23 0.53 4.43 11.29 0.06
edit 8.26 1.62 11.62 52.21 0.02
fdtd 2.45 0.34 0.96 16.17 0.03
fft 1.36 1.65 287.00 958.79 0.67
fiff 0.73 0.72 163.75 485.58 0.13

mbrt 3.95 0.47 10.47 28.84 0.09
nb1d 0.35 1.14 0.40 5.20 0.04
nb3d 0.32 0.11 0.17 2.23 0.05
nfrc 1.88 0.48 2.74 7.73 N/A
nnet 0.79 0.65 0.79 2.79 N/A
play 0.53 1.16 0.60 3.97 N/A
schr 1.24 0.87 0.89 0.97 N/A
sdku 0.63 1.87 3.17 21.01 N/A
svd 2.03 0.64 1.37 2.95 N/A

GNU Octave, possessing no JIT compiler, does rather poorly in general. It trails far behind

MATLAB and outperforms McVM with JIT on a single benchmark. Interestingly, McVM

in interpreted mode, although it performs much worse than the JIT on several benchmarks,

actually performs better on some (this will also be discussed further). The McFor running

times are generally far ahead of MATLAB and McVM, except for the clos benchmark,

suggesting that MATLAB and McVM are still far from the “optimal” performance level.

In table 6.5, we show profiling numbers gathered using the McVM interpreter. These

numbers are counts of how many matrices were created, how many matrix read operations

were performed, the number of matrix multiplication operations executed, the total count

of environment lookups, and the total number of function calls executed. These give us

some idea about the behavior of our benchmark programs. Interestingly, we can clearly
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Table 6.4 Benchmark running times relative to the McVM JIT performance

Benchmark MATLAB McVM no JIT Octave McFor

adpt 0.23 1.04 3.64 0.15
beul 0.90 0.53 2.24 N/A
capr 2.19 487.55 1465.51 0.32
clos 0.12 2.04 2.45 1.03
crni 0.01 1.39 4.21 0.00
dich 1.59 413.73 1393.52 0.57
diff 0.16 1.37 3.49 0.02
edit 0.20 1.41 6.32 0.00
fdtd 0.14 0.39 6.60 0.01
fft 1.22 211.25 705.73 0.49
fiff 0.99 225.24 667.92 0.17

mbrt 0.12 2.65 7.30 0.02
nb1d 3.30 1.17 15.06 0.10
nb3d 0.35 0.54 7.01 0.14
nfrc 0.26 1.45 4.11 N/A
nnet 0.83 1.00 3.53 N/A
play 2.18 1.13 7.44 N/A
schr 0.70 0.72 0.78 N/A
sdku 2.97 5.03 33.39 N/A
svd 0.32 0.68 1.45 N/A

see that the benchmarks with the highest number of matrices created are the slowest to run

through the McVM and Octave interpreters. This is because allocating new matrices very

often is both expensive and cache unfriendly.

Table6.6 shows relative profiling counts of the number of matrices created, the number

of slice reads, and the number of environment lookups when the JIT is enabled. These are

actually ratios (percentages) of the values obtained in interpreted mode. This table is meant

to show that the JIT compiler is able to reduce the occurrenceof all these expensive opera-

tions in almost all cases, and never increases their occurrence. In particular, we see that the

fft benchmark has its number of matrix slice reads reduced to 0.00%. This benchmark

also happens to run over 200 times faster with the JIT compiler enabled.

We examine the relative performance of McVM with specific JIToptimizations disabled
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Table 6.5 Interpreter profiling counts for our benchmark programs

Benchmark Matrices
created

Matrix
slice reads

Matrix
mult ops

Env.
lookups

Function
calls

adpt 103 K 9 K 1 72 K 5 K
beul 8 K 23 2801 8 K 9995
capr 26 M 7 M 1 31 M 3 K
clos 143 K 1 9 225 K 13
crni 29 M 7 M 1 31 M 1 K
dich 20 M 4 M 1 22 M 697 K
diff 791 K 1 1 791 K 154 K
edit 2 M 375 K 1 2 M 75 K
fdtd 4 K 6007 1 2 K 25
fft 43 M 9 M 1 48 M 56
fiff 29 M 5 M 1 28 M 6 K

mbrt 2 M 1 1 2 M 225 K
nb1d 42 K 4 K 1 68 K 4 K
nb3d 3 K 5248 367 3 K 1117
nfrc 434 K 1 K 1 219 K 46 K
nnet 119 K 18 K 4 K 79 K 1 K
play 91 K 6 K 6767 65 K 10 K
schr 1133 96 41 732 129
sdku 335 K 110 K 1 454 K 27 K
svd 74 K 9 K 4 K 62 K 5 K

in table 6.7. Columns show the relative performance (running time) of benchmarks as

compared with the JIT compiler with all optimizations enabled. A number greater than

one signifies a slowdown. Clearly, binary operation and arrayaccess optimizations have

a tremendous optimization potential as they speed up several benchmarks by two orders

of magnitude. Optimized library functions is able to speed up one benchmark by an order

of magnitude, and shows promise. We note, however, that while these three optimizations

do cause slowdowns in some cases, those are minor, and likelyartifacts (generating code

differently sometimes yields poorer cache performance, etc.).

The direct call mechanism involves directly compiling calls to program functions rather

than performing them through the JIT. This is beneficial to benchmarks that perform many

function calls (e.g.:dich ), however, it can yield lower performance in cases where the
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Table 6.6 Relative JIT profiling counts for our benchmark programs

Benchmark Matrices created (%) Matrix slice reads (%) Env. lookups (%)

adpt 24.84 16.79 39.21
beul 85.47 47.83 114.19
capr 0.00 0.00 0.00
clos 0.00 100.00 0.00
crni 66.65 69.23 55.16
dich 0.00 0.00 0.00
diff 68.28 100.00 2.45
edit 64.99 39.98 81.56
fdtd 88.07 90.01 90.46
fft 0.00 0.00 0.00
fiff 0.01 0.00 0.00

mbrt 33.20 100.00 0.00
nb1d 75.47 0.01 14.66
nb3d 93.06 97.71 74.43
nfrc 42.53 100.00 19.80
nnet 85.82 100.00 81.94
play 72.24 99.83 45.84
schr 65.14 54.17 83.61
sdku 18.21 13.96 11.32
svd 84.79 100.00 60.00

types of input parameters to a function are unknown. A version of the function then gets

compiled with insufficient type information, whereas the interpreter can extract exact type

information on the fly when a call is performed.

The last column of table6.7 shows the relative performance of interpreted mode as com-

pared to the JIT compiler with all optimizations enabled. Aswe can see, the JIT speeds

up most benchmarks, sometimes by very large factors. However, it also causes some slow-

downs in some cases. These cases often correspond to benchmarks where the JIT was not

able to efficiently optimize the code. In the case ofnb3d , for example, we can see in ta-

ble 6.6 that the number of matrix slice reads was reduced by less than3%. In such cases,

the JIT can actually add additional type conversion overhead by constantly requiring local

variables to be wrapped into objects for interpreter fallback.
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Table 6.7 Relative JIT performance with specific optimizations disabled

Benchmark No binary
opts

No array
opts

No direct
calls

No library
opts

No JIT

adpt 1.47 1.17 1.00 1.07 1.04
beul 1.01 0.99 0.99 0.98 0.53
capr 572.70 416.09 1.74 1.04 487.55
clos 3.42 1.00 1.00 1.01 2.04
crni 1.69 1.31 0.78 1.00 1.39
dich 448.91 285.35 1.00 30.06 413.73
diff 2.14 1.02 1.02 1.01 1.37
edit 1.87 1.45 0.61 1.00 1.41
fdtd 0.95 1.06 0.99 1.01 0.39
fft 194.80 171.26 1.00 1.02 211.25
fiff 233.63 165.63 1.02 1.05 225.24

mbrt 3.51 0.98 1.01 1.00 2.65
nb1d 1.06 1.28 1.02 1.01 1.17
nb3d 0.73 0.98 1.06 1.02 0.54
nfrc 1.24 0.98 1.68 1.00 1.45
nnet 1.17 0.99 1.03 1.00 1.00
play 1.15 0.99 1.07 1.00 1.13
schr 0.84 0.97 1.26 0.96 0.72
sdku 1.10 1.64 1.16 0.98 5.03
svd 0.79 0.92 1.06 0.95 0.68

We examine the total JIT compilation times for our benchmarks in table6.8. This table

also shows the number of functions present in each benchmark, how many specialized

function versions were compiled in total for these benchmarks and how much time was

spent by the compiler performing analyses (e.g.: type inference). As we would expect, in

most cases, there are no more specialized versions than the number of functions, because

the functions are always called with the same argument types, and thus no more than one

version is compiled for each function. In cases where there are more, there are never more

than twice as many versions as functions. This gives some credibility to our approach, at

least when applied to environments such as MATLAB: there is noexplosion of the number

of specialized function versions in practice.

As we can see, most of the compilation time is spent performing analyses on the functions
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Table 6.8 Compilation times of our benchmark programs

Benchmark Num.
functions

Num.
versions

Compilation
time (s)

Analysis
time (s)

adpt 2 2 0.89 0.82
beul 9 16 1.21 0.91
capr 5 5 0.50 0.43
clos 2 2 0.18 0.15
crni 3 3 0.33 0.27
dich 2 2 0.33 0.28
diff 2 2 1.26 1.18
edit 2 2 0.26 0.21
fdtd 2 2 0.47 0.36
fft 2 2 0.59 0.55
fiff 2 2 0.23 0.19

mbrt 3 3 0.16 0.12
nb1d 3 3 0.47 0.38
nb3d 3 3 0.51 0.40
nfrc 5 5 0.24 0.16
nnet 4 4 0.36 0.29
play 6 10 0.58 0.42
schr 8 9 0.53 0.42
sdku 9 11 1.07 0.84
svd 11 15 0.78 0.59

to be compiled, as opposed to code generation. This suggeststhat this is an area where the

performance of our compiler could be improved. The compilation times we have obtained

are in some cases relatively long. Longer than the running times of benchmarks themselves

in several instances. However, real scientific programs canrun for hours. Seeing how

our JIT compiler has yielded speedups of three orders of magnitude over GNU Octave

and our interpreter in some cases, we believe that this compilation overhead will be easily

amortized, as the JIT compiler could be saving hours of CPU time in the end.

We also note that little is known about the compilation strategy used by Mathworks MAT-

LAB, since the implementation is not open source. We do not know what compilation strat-

egy is used or when MATLAB parses and compiles benchmarks, and thus, cannot measure

the MATLAB compilation times. For all we know, they may actually be comparable to
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those of McVM. Note that the compilation times obtained wereincluded in the timing of

our benchmarks as the benchmarks were compiled during the first timing iteration. Thus,

assuming MATLAB compiles functions as they are called during the first timing iteration

(or found to be callees of functions being compiled), as withMcVM, we are comparing the

McVM and MATLAB running times on fair grounds.

6.3 Type Inference Efficiency

Table 6.9 Performance of the type inference system

Benchmark Top sets
(%)

Unary sets
(%)

Scalars known
(%)

Size known
(%)

JIT speedup
(%)

adpt 4.2 95.8 100.0 90.0 3.6
beul 55.2 44.8 71.3 29.6 -89.4
capr 0.0 100.0 100.0 82.8 99.8
clos 0.0 100.0 100.0 99.9 51.0
crni 19.1 71.4 68.7 54.8 28.0
dich 2.1 97.9 100.0 85.1 99.8
diff 14.3 82.1 66.7 66.7 27.0
edit 5.1 94.9 96.8 81.5 29.0
fdtd 0.1 99.9 100.0 49.8 -154.1
fft 0.0 100.0 100.0 80.5 99.5
fiff 0.0 100.0 100.0 86.1 99.6

mbrt 9.1 90.9 100.0 100.0 62.2
nb1d 5.8 94.2 88.4 34.7 14.7
nb3d 3.4 96.6 100.0 18.1 -86.7
nfrc 16.4 82.7 100.0 98.9 31.2
nnet 52.2 47.8 98.7 55.5 0.3
play 23.3 66.4 77.4 52.0 11.5
schr 31.8 54.9 99.5 41.5 -39.2
sdku 14.8 85.2 83.8 49.4 80.1
svd 16.5 73.7 94.0 59.7 -47.7

In this section we examine the efficiency of our type inference strategy and its impact on the

performance of our JIT compiler. Table6.9shows profiling information relating to our type

75



Performance Study

inference system. The first four columns are percentages values measured by sampling the

type sets of variables used by each statement at each execution of every program statement.

That is, the profiling was done so as to take the number of timesa statement is executed into

consideration. The last column is a measurement of the percentage of speed improvement

the JIT compiler achieves over interpreted code (negative values represent slowdowns).

The first column of the table tells us the percentage of type sets that are⊤ (top, unknown

types). The second column is the percentage of type sets containing only one type (the

specific type of the variable is known). The third column shows the percentage of times

where variables holding scalar values were known ahead of time to be scalar by the type

inference system. The fourth column is the percentage of times where the size of matrix

variables was known by the type inference system.

The higher the proportion of⊤ type sets, the less type information our system knows. This

means less information on which to base optimizations, and generally poorer performance.

However, the knowledge of which variables are scalars is even more critical, as it lets the

JIT compiler know which variables can be stored on the stack.As we can see, this matches

our results: benchmarks with speedups of over 99% all have 100.0% of scalar variables

known.

As discussed in section6.2, thecrni benchmark, while faster in the JIT compiler than in

our interpreter, performs much worse in McVM than MATLAB (using our JIT, it has the

highest running time of all our benchmarks). The reason for this is that it has relatively

poor type information. As can be seen in table6.9, scalars are known in only 68.7% of

cases. This is because this benchmark uses matrix “creationon assignment” to initialize

its input data (see section7.2). This results in several unknown types being propagated

through the entire program. We examine ways to fix this weakness of our type inference

system in section8.2.3.

While our JIT compiler is able to speed up most benchmarks, sometimes by very significant

margins, some still show slowdowns over interpreted performance. These do not necessar-

ily have poor type information. Thenb3d benchmark, for example, has 100.0% scalar

variables known and 96.6% unary type sets. Most of these poorly optimized benchmarks
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make heavy use of matrix slice read operations (operating onentire columns or rows of a

matrix at a time) which we currently have no optimization support for. Hence, the JIT gen-

erates expensive interpreter fallback code requiring manytype conversions, and performs

poorer than the interpreter itself. We discuss potential ways to eliminate this performance

issue in section8.2.1.
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Chapter 7

Language Design Issues

There are a number of factors that make the implementation ofan optimizing virtual ma-

chine for the MATLAB programming language a challenging task. Some of these issues

stem purely from the design of the language. These are examined in this chapter, which is

largely a discussion of the “flaws” or oversights of the language, as well as an argument as

to why dynamic language ought to be designed with more regardfor performance.

We first discuss the difficulties associated with the lack of an official language specification

for MATLAB. We then proceed to describe some of the MATLAB language features which

make optimization more challenging as well as those which unnecessarily complicate the

understanding of the language and make the design of a compliant implementation more

difficult.

7.1 Defining the MATLAB Language

As noted by the authors of thephc PHP compiler [BdVG09], is it difficult to implement

a virtual machine or static compiler for a language when there is no official specification

for the said language. As is the case with PHP, Mathworks provides no such specification

for the MATLAB language. The language behavior is purely defined by the behavior of

the Mathworks MATLAB implementation (which can change witheach release), and the
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limited amount of documentation they provide for this product.

Unfortunately, this documentation does not go into the fulldetails of the language seman-

tics. Some key points are left out. Thus, in the implementation of McVM, much of our

work consisted of trying different program variants in MATLAB, and comparing the be-

havior of the reference MATLAB implementation to that of McVM. This was necessary

since the reference MATLAB implementation really is the only complete, publically avail-

able specification of the language. Still, to this point, we cannot guarantee that the subset

of the MATLAB language McVM supports is fully compliant withthe reference MATLAB

implementation.

7.2 Optimization Barriers

Some language features make optimization of the MATLAB programming language more

challenging. Most of these challenges are perhaps unavoidable. It will probably always be

more difficult to optimize dynamically typed languages thantheir statically typed counter-

parts, for example. However, some of these challenges stem from design choices that seem

arbitrary, and perhaps unnecessary or easily avoidable. Sometimes, the way the language

is designed makes optimization particularly difficult without really giving the programmer

any additional flexibility.

An instance of this which we have explained in some detail in section3.6 is theeval con-

struct, which can read or write any variable in a function’s scope, potentially destroying

almost all useful optimization information. McVM solved this by restrictingeval to oper-

ate only on global variables. A better solution, however, may be to have aneval construct

which can only operate on variables passed as input and returns an output directly instead

of being allowed to assign values to outside variables. It isdefinitely possible to design

a very flexible and usefuleval construct without placing impractical constraints on the

programmer or an optimizing compiler.

Another problematic construct also discussed in section3.6 is the cd command, which

can change the current global bindings in unpredictable ways. This problem truly stems
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from language design more than anything else. We believe it would probably be more

practical for MATLAB to have a “proper” module system as in Java or Python instead of

basing lookups on the file system and relative paths. Thecd command does not really

grant programmers more flexibility, and is rather unintuitive (one may not expect all global

bindings to change).

The eval construct is not the only case where a function can access theenvironment of

a caller. Some MATLAB library functions, such asfeval need to look into the caller’s

scope to work as they do in MATLAB. In the case offeval , it can be used to call a

function based on its name. This is less problematic than thecase ofeval , but complicates

the virtual machine design, and can also cause lost optimization opportunities. We also

find that by allowing library functions to access variables without them being passed as

arguments, MATLAB violates the idea that functions should act as well encapsulated units

of functionality (the “black box” principle).

Another issue stems from the syntax of function calls and matrix indexing. In MATLAB,

the expressionfoo(a) could either be a call to the functionfoo with argumenta, or an

indexing expression over the matrixfoo with indexa. Furthermore, function calls can be

made without parentheses. The statementa = b; could be an assignment ofb to a, or an

assignment of the result of the function call tob with no arguments toa.

This makes it difficult to determine what variables are functions and what expressions are

function calls, particularly when the variables are globally defined. This can, in some cases,

result in lost optimization opportunities by making the types of variables more difficult to

determine ahead of time. It also complicates the semantics of the language and makes

them less obvious to the programmer. A simple fix would be to require parentheses for

all function calls, and use different tokens for array indexing, such as square brackets (i.e.:

foo[a] ).

A last issue concerns the creation of matrices. As mentionedin section6.3, in MATLAB,

one can create a matrix by assigning at an index into a previously undeclared matrix. For

example, if the variablea is currently not bound to anything,a(5)= 1 will create a matrix

with the value 1 at position 5. This is problematic for an optimizing compiler becausea
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may actually be a global variable bound to an existing matrix, in which case we do not know

its type. We also find this to be problematic, because it couldactually result in unexpected

behaviors if one uses this method to attempt to declare a matrix when a global binding

already exists.

7.3 Behavioral Inconsistencies

As previously stated, the MATLAB programming language has evolved “organically” over

a number of years and does not have an official specification. The result of this unplanned

expansion process is that in some areas, the language has unclear, unintuitive, imprecise

or contradictory semantics. This generally complicates the implementation, because many

“special cases” have to be taken care of to ensure MATLAB compatibility, but can also

makes things more difficult for programmers by going againsttheir expectations.

A simple example of behavior inconsistency is the way MATLABhandles comparisons

between complex numbers. In MATLAB, the<, <=, > and>= operators only operate on the

real part of a number, while the== and˜= (inequality) comparison operators operate on the

whole number. The result is that, in MATLAB, the complex numbers 1 + 2i and1 + 3i

are not equal, yet neither one is less than or larger than the other. This is unintuitive and

can easily violate the expectations of programmers.

More significant is the issue of implicit type conversions, as there is no true type hierarchy

in MATLAB. Programmers familiar with C++ or Java may expect that adding an 8-bit inte-

ger matrix and a double precision floating-point matrix would yield a floating-point matrix

(the higher precision type), but instead, the MATLAB resultis an 8-bit integer matrix (the

lower precision type). Hence, numerical precision is lost by default. Furthermore, one can-

not apply arithmetic operators between integer matrices and single precision floating-point

matrices. This behavior contradicts that of most common programming languages and is

rather impractical.

MATLAB also contradicts itself in some ways. For example, inMATLAB, when one

assigns outside of the bounds of a matrix, it will be automatically expanded to make the
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assignment possible. However, if a scalar matrix A is expanded by executingA(5)= 1; ,

for example, the result will be a row vector of length 5. This is somewhat contradictory

because in MATLAB, the first index is the row index, and matrices are stored in column

major order. Thus, one would naturally expect the resultingvector to be a column vector.

A strange feature of MATLAB is the presence of theend expression. This expression is

meant to represent the end of an array’s bounds in an expression. What is rather strange,

however, is that this expression is not only usable as an index, it can be used in sub-

expressions, and its value changes depending on its position in the syntax tree. For example,

if A is a matrix of size 4x7, thenA(1, floor(end/2)) gets us the element at position (1,

3), while A(end, 1) gets us the element at position (4, 1). This feature is often used to

specify ranges going from a fixed value to the end of the array (e.g.:A(2:end, 1) extracts

a portion of the first column ofA).

To add to the confusion, the expressionA(end, end) is valid in MATLAB R2009a, but

A(end, round(end/2)) is not, for reasons that are not explained in the MATLAB docu-

mentation (we suspect it may be the result of a parser bug, possibly because theend key-

word also indicates the termination of code blocks). The Python programming language

deals with this issue in part by allowing ranges with unspecified start or end indices, which

automatically assume the value of the first or last array index (e.g.: A(5:end) is A(5:) in

Python).

A more philosophical issue we have with the MATLAB semanticsis that the behavior of

functions can change in function of the number of output arguments assigned by the caller.

Functions get the number of required output arguments as a hidden parameter when called

and can alter their behavior based on it. This is again inconsistent with the behavior of most

programming languages and requires special handling in a virtual machine’s implementa-

tion. However, we also question the value of this feature. Clearly, in many cases, it will not

help programmers write less code.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

These has been relatively little work done in the compiler research community as to the

optimization of scientific and dynamic programming languages. To this day, most dynamic

languages are interpreted because of the inherent difficulty in generating efficient compiled

code for them. Mathworks has succeeded at creating a powerful, fast and flexible dynamic

programming language for the scientific and engineering communities. However, their

implementation of MATLAB is closed source and its internal workings remain a trade

secret.

Through the McVM project, we have designed and implemented an optimizing virtual

machine comprising a JIT compiler for a non-trivial subset of the MATLAB language.

This virtual machine incorporates a powerful just-in-timetype-based program specializa-

tion mechanism and additional optimizations which allow itto reach performance up to

three orders of magnitude faster than competing MATLAB implementations such as GNU

Octave.

One of our goals for the McVM virtual machine is to make it a viable product for end-users

who seek a free and fast environment to develop software withthe MATLAB language.
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However, it is already of interest to the research community. McVM will soon be released

under the liberal BSD open source license, and made availableto other researchers. This

will make it possible for others to use it as a testbed for novel compiler optimizations and

language ideas.

We also hope that the success of our just-in-time program specialization scheme will in-

spire other researchers and implementers to investigate the use of such techniques in other

dynamic languages. Much of the ideas used to improve the performance of our virtual ma-

chine, as well as the future research directions we suggest in section8.2 would be easily

applied to languages such as Python, Ruby or JavaScript, and some of these may well be

key to the implementation of dynamic languages whose performance can compete with that

of statically compiled languages.

8.2 Future Work

In this section we look into possible improvements to McVM which would address some

of the more important performance issues with our current implementation. This includes

matrix computation optimizations as well as improvements to our JIT such as the develop-

ment of a lower level intermediate representation and a smarter type inference system to

avoid performance degradation when sufficient type information cannot be inferred through

traditional means.

We also examine longer term performance improvement strategies which could be applied

to McVM as well as virtual machines and JIT compilers for other dynamic languages.

These strategies include the use of adaptive optimizationsas well as the implementation

of a dynamic recompilation system. Finally, we discuss the idea of designing an improved

dynamic language for scientific computation based on our experience with MATLAB.
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8.2.1 Matrix Computation Optimizations

Our virtual machine currently treats matrix operations in avery generic way. When two

matrices are added or multiplied, for example, a new matrix object is allocated to store the

result. When a compound expression involving multiple matrices is evaluated, it is split

into 3-address form, and each intermediate result is storedin a separated matrix that is

allocated on the fly. This approach works reasonably well forstrings, but it is obviously

not the most effective way to handle matrix operations.

In programs that make extensive use of matrix computations,it is often the case that ma-

trices are iteratively updated inside of loops. In this kindof scenario, our current approach

allocates new matrices for every loop iteration. In such cases, it would likely be benefi-

cial to reuse the same memory space for a given matrix variable, as well as for temporary

results. This could be achieved through an analysis that maps matrix variables to pre-

allocated “matrix registers”, thereby reducing allocation overhead and improving memory

locality.

Another possibility for optimization would be to map some matrix operations directly to

BLAS/LAPACK library calls. We currently do not use the full potential of these libraries.

They expose some of the more common compound matrix operations which we currently

implement using one or more intermediate steps. They also make it possible to operate

directly on a single row or column of a matrix without first extracting the values from the

said matrix. This could provide significant speed gains in some situations.

8.2.2 Secondary Intermediate Representation

At this point, the JIT compiler generates LLVM code based directly on our IIR tree form

and the results of data flow analyses. It then relies on LLVM toperform the last opti-

mization steps. However, LLVM lacks high-level information necessary to perform some

optimizations. For example, it cannot know that some environment writes and reads (asso-

ciated with interpreter fallback) are redundant or unnecessary. It is also unaware that some

type conversions required by the JIT compiler could be eliminated.
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It is likely that the code we generate could be optimized further if instead of generating

LLVM code directly, we instead generated code in another intermediate form that exposes

more higher-level information. This intermediate form could then be optimized to elimi-

nate some redundant operations, possibly using very simple“peephole” pattern matching

techniques. Dataflow analyses would also be more effective at a higher level. The opti-

mized intermediate form would then be translated to LLVM code in a separate pass.

8.2.3 Smarter Type Inference

Knowledge of specific data types is important to optimization. Unfortunately, the need

to be conservative in our type inference analysis means thatunknown types dominate in

merges. The result is that once “unknown” types are introduced, they often propagate and

undermine the type inference efforts. Our code generation strategy is then left with very

little information to operate on. In many cases, however, even if the type of a variable

cannot be determined with 100% certainty, it may be possibleto mitigate the impact of

unknown types by predicting the most likely outcome.

A speculative design enables heuristic judgements. It is likely, for example, that if a vari-

able is constantly added with integer matrices, it is also aninteger matrix. Our code gen-

eration system could use these “best guesses” to generate anoptimized code path. The

types of variables can then be tested during execution and the optimized path chosen if

appropriate. If the predicted type turns out to be wrong whenthe code executes, a default

unoptimized path can be executed instead. We believe that such an approach would be

likely to yield important speed gains, because the added overhead can be very small and

the potential gains very significant.

8.2.4 Adaptive Optimizations

In our JIT compiler, optimizations are currently always applied in every case where they

are applicable. This, however, is not always optimal, because some optimizations can,

in some cases, reduce actual performance. Thus, it is perhaps desirable to implement a
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system to try and predict which optimizations will yield performance gains. This could

potentially be done by building a predictive model based on profiling information or code

features. At run-time, we could let functions run for some time in interpreted mode before

JIT compiling them, so as to gather profiling information, which would then be used to

query the predictive model in order to make optimization decisions.

This idea is not novel. Most commercial optimizing JIT compilers analyze code and per-

formance to make optimization decisions [AAF+05]. Our approach is essentially a com-

bination of two existing ideas. Cavazos and O’Boyle have devised a system where code

features are used to predict which optimizations will benefit a given method [CO06]. The

features they use, such as counts of specific type of Java bytecode instructions, are meant to

give the predictive model a “portrait” of what kind of operations a given method performs.

Their approach uses a predictive model based on logistic regression (trained offline), and

they have shown speedups of up to 33% on some Java benchmarks.

A similar approach proposed by Cavazos et. al uses hardware performance counters (e.g.:

number of cache misses, floating-point operation statistics, etc.) to build a model of what

optimizations are warranted by specific behaviors of a running program [CFA+07]. Their

approach showed up to a 17% gain over the highest optimization setting of a commercial

optimizing compiler. We believe that by combining this approach with profiling based

on method features, it may be possible to achieve greater performance gains than can be

achieved with either technique separately. Profiling data reveals important information

about a program’s actual behavior, while code features can be used to fine tune optimiza-

tions for each method of a program.

8.2.5 Dynamic Recompilation

We have mentioned in section3.6 that we had placed restrictions on the power of some

dynamic MATLAB features, notably theeval andcd constructs. These restrictions are due

to the fact that our system only compiles functions once and makes optimization decisions

at compilation time. Thus, our system must ensure that optimization decisions cannot be

invalidated by dynamic features of the language.
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One way to get around this limitation would be to make use of onstack replacement (see

section2.6) to dynamically recompile and replace functions once some of the assumptions

made at compilation time become invalidated. This way, dynamic language constructs such

aseval andcd can be left unrestricted and aggressive optimizations are still be performed.

The obvious tradeoff, however, is that dynamic recompilation will incur some overhead.

8.2.6 Language Design

As examined in chapter7, there are a number of issues that make it difficult to optimize the

MATLAB language, and make it sometimes unintuitive for programmers. The MATLAB

programming language also has no publically available specification document, making it

difficult to write compatible implementations. These problems could potentially be fixed

by Mathworks, but changing the syntax and semantics of an existing language with such a

large following is impractical and unlikely to happen.

It would perhaps be desirable to implement a new dynamic language that shares the ad-

vantages of MATLAB in terms of productivity gains and convenience, but is designed with

performance, consistency and intuitiveness in mind. New features such as improved reflec-

tivity and metaprogramming capabilities could also be introduced. It may be advantageous

if such a project came from the academic world, as it would make it more likely for the ref-

erence language implementation to be open source, and for there to be a publically available

specification.

Designing a new programming language is obviously challenging. It is easy to design a

language to be easy to optimize by introducing additional constraints, but there is a certain

balance to be achieved between ease of optimization and convenience for the programmer.

Dynamic languages are usually designed with programmer productivity as their primary

goal and very little regard for performance. As discussed inchapter7, some language

design features of MATLAB complicate optimization while being rather arbitrary choices.

We believe it should be possible to design a programming language that is easier to optimize

without compromising its flexibility.
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