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Abstract

Programs written for machine execution will always be susceptible to information theft.

This information can include trademarked algorithms, data embedded in the program, or

even data the program accesses. As technology advances computer scientists are building

more and more powerful tools for reverse-engineering such as decompilers.

The Java programming language is particularly open to reverse-engineering attacks

because of its well-defined, open, and portable binary format. We examine one area of

better-securing the intellectual property of a Java program; obfuscation. Obfuscation of a

program involves transforming the code of the program into a more complex, but semanti-

cally equivalent representation. This can include the addition of confusing control flow, the

removal of certain information embedded in the program which is not explicitly required

for execution, or the cloaking of data.

Obfuscation is one of the only techniques available other than cryptological options.

While many approaches to obfuscation are ultimately reversible, it nevertheless seriously

hinders those attempting to steal information by increasing the computing time and power

required by software to reverse-engineer the program and also severely increases the com-

plexity of any source code that is recovered by the reverse-engineering.

In this thesis we present a number of obfuscating transformations implemented within a

new automatic tool we name the Java Bytecode Obfuscator (JBCO). We present empirical

measures of the performance costs of these transformations in terms of execution speed and

program size. Complexity measurements that gauge the effectiveness of the obfuscations

are also given. Finally, we review the feasibility of each transformation by looking at source

code generated from obfuscated bytecode by various decompilers.

i



ii



Résumé

Les programmes écrits pour l’exécution dordinateur seront toujours susceptibles au vol

d’information. Cette information peut inclure des algorithmes de marque de commerce,

des données incluses dans le programme, ou même des données concernant les accès de

programme. Suivant les avancées technologiques, les informaticiens construisent des outils

de plus en plus puissants pour lingénierie inverse telle que le décompilateur.

Le langage de programmation de Java est particulièrement ouvert aux attaques de lingénierie

inverse en raison de son format binaire bien défini, ouvert, et portatif. Nous recherches

portent sur un domaine permettant de mieux sécuriser fixer la propriété intellectuelle des

programmes en Java ; obscurcissement. L’obscurcissement d’un programme implique de

transformer le code du programme en une représentation plus complexe mais sémantiquement

équivalente. Ceci peut inclure l’addition de l’écoulement embrouillant de commande, de la

supression de certaines informations incluses dans les programmes dont l’exécution n’est

pas spécifiquement exigée, ou de la dissimulation des données.

Excepté les techniques cryptologiques, l’obscurcissement est l’une des seules tech-

niques disponibles. Même si beaucoup de stratégies de lobscurissment sont finalement

réversibles, il gêne sérieusement ceux qui essayent de voler l’information en augmentant

la durée de calcul et la puissance exigées par les logicels dingénierie inverse et augmente

considérablement la complexité de n’importe quel code source récupere par cette tech-

nique.

Dans cette thèse nous présentons un certain nombre de transformations dobscurcisse-

ment mises en application dans un outil automatique que nous appelons le Java Bytecode

Obfuscator (JBCO). Nous présentons des mesures empiriques des cots d’exécution de ces

transformations en termes de vitesse d’exécution et taille de programme. Des mesures de
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complexité qui mesurent l’efficacité des obscurcissements sont également indiquées. En

conclusion, nous passons en revue la praticabilité de chaque transformation en regardant le

code source généré par lobscurcissement de bytecodes par divers décompilateurs.

iv



Acknowledgements

I would like to thank my supervisor Dr. Laurie Hendren for her discussion, ideas, and

support throughout the research and writing of this thesis. I would also like to thank fellow

graduate student Nomair Naeem as well as the rest of the Sable Research Group.

Finally, I would like to thank my parents for the opportunities they have given me that,

had they been unavailable to me, would have prevented this thesis from ever happening.

v



vi



Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xv

Table of Contents xvii

1 Introduction and Motivation 1

1.1 The Vulnerability of Java . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions and Organization . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9

2.1 Viability of Obfuscation as a Protection Tool . . . . . . . . . . . . . . . . 9

2.2 Low-Level Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 High-Level Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vii



3 The Java Language 15

3.1 The Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 The Bytecode Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Obfuscation Approach and Experimental Framework 23

4.1 Soot: a Java Optimization Framework . . . . . . . . . . . . . . . . . . . . 23

4.2 JBCO: The Java ByteCode Obfuscator . . . . . . . . . . . . . . . . . . . 26

4.3 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 The Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Operator Level Obfuscations 37

5.1 Renaming Identifiers: Classes, Methods, and Fields (RI{C,M,F}) . . . . . . 37

5.2 Embedding Constant Values as Fields (ECVF) . . . . . . . . . . . . . . . . 40

5.3 Packing Local Variables into Bitfields (PLVB) . . . . . . . . . . . . . . . . 43

5.4 Converting Arithmetic Expressions to Bit-Shifting Operations (CAE2BO) . 45

6 Obfuscating Program Structure 49

6.1 Adding Dead-Code Switch Statements (ADSS) . . . . . . . . . . . . . . . 49

6.2 Finding and Reusing Duplicate Sequences (RDS) . . . . . . . . . . . . . . 52

6.3 Replacing if Instructions with Try-Catch Blocks (RIITCB) . . . . . . . . . 58

6.4 Building API Buffer Methods (BAPIBM) . . . . . . . . . . . . . . . . . . 61

6.5 Building Library Buffer Classes (BLBC) . . . . . . . . . . . . . . . . . . . 64

7 Exploiting The Design Gap 67

7.1 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Converting Branches to jsr Instructions (CB2JI) . . . . . . . . . . . . . . 68

7.3 Reordering loads Above if Instructions (RLAII) . . . . . . . . . . . . . 73

7.4 Disobeying Constructor Conventions (DCC) . . . . . . . . . . . . . . . . . 76

7.5 Partially Trapping Switch Statements (PTSS) . . . . . . . . . . . . . . . . 80

7.6 Combining Try Blocks with their Catch Blocks (CTBCB) . . . . . . . . . . 86

7.7 Indirecting if Instructions (III) . . . . . . . . . . . . . . . . . . . . . . . 88

viii



7.8 Goto Instruction Augmentation (GIA) . . . . . . . . . . . . . . . . . . . . 92

8 Introducing a Solid, Stable, and Effective Third-Generation Obfuscator 97

8.1 JBCO User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Combining Useful Transformations for a Practical Obfuscator . . . . . . . 101

9 Conclusions 115

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121

ix



x



List of Figures

4.1 Performance of “Sootified” versus original javac Benchmarks. . . . . . . 34

5.1 Effects of renaming class, field, and method identifiers. . . . . . . . . . . . 41

5.2 Effects of embedding constant program data into static fields. . . . . . . . . 43

5.3 Effects of packing local data into bitfields. . . . . . . . . . . . . . . . . . . 46

5.4 Effects of transforming arithmetic expressions into bit-shifting operations. . 48

6.1 Effects of adding dead-code switch instructions. . . . . . . . . . . . . . . . 53

6.2 Effects of duplicate sequence reuse. . . . . . . . . . . . . . . . . . . . . . 56

6.3 Effects of replacing if(non)null instructions with Try-Catch constructs. 62

6.4 Effects of “class-coagulation” on program structure. Solid lines represent

parent-child class links, dotted lines represent other class dependencies. . . 63

6.5 Effects of adding library API buffer methods. . . . . . . . . . . . . . . . . 64

6.6 Effects of adding intermediate buffer classes. . . . . . . . . . . . . . . . . 66

7.1 Effects of replacing goto instructions with jsr instructions. . . . . . . . . 73

7.2 Effects of moving load instruction above if branch instructions. . . . . . 77

7.3 Effects of confusing constructor method code. . . . . . . . . . . . . . . . . 81

7.4 Control-flow graph of the calc method before partially trapping its switch

statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5 Control-flow graph of the calc method after partially trapping its switch

statement. Exceptional edges are shown in red. . . . . . . . . . . . . . . . 85

7.6 Effects of partially wrapping switch statements in try blocks. . . . . . . . . 86

7.7 Effects of combining try blocks with their catch blocks. . . . . . . . . . . . 90

7.8 Effects of indirecting if instructions through trapped goto instructions. . 92

xi



7.9 Effects of augmenting methods with explicit goto instructions. . . . . . . 95

8.1 The JBCO graphical user interface — JVM Options. . . . . . . . . . . . . 100

8.2 The JBCO graphical user interface — transformation options. . . . . . . . 101

8.3 Average complexity increase (control-flow graph edges + nodes) with high-

low range. Values are aggregated over all benchmarks tested. . . . . . . . . 103

8.4 Average class file size increase with high-low range. Values are aggregated

over all benchmarks tested. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 Average performance degradation with high-low range (Server Mode). Val-

ues are aggregated over all benchmarks tested. . . . . . . . . . . . . . . . . 104

8.6 Effects of applying the performance-minded obfuscation settings shown in

Table 8.2 column 1. Default server-mode and full -Xcomp compilation are

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.7 Performance-minded complexity ratio (total nodes + edges of performance-

obfuscated program divided by total nodes + edges of original program

and highest graph degree of obfuscated program divided by highest graph

degree of original program). . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.8 Effects on class file size after applying the performance-minded obfusca-

tion settings shown in Table 8.2 column 1. . . . . . . . . . . . . . . . . . . 107

8.9 Effects of applying the size-minded obfuscation settings shown in Table 8.2

column 2. Default server-mode and full -Xcomp compilation are shown. . 108

8.10 Size-minded complexity ratio (total nodes + edges of size-obfuscated pro-

gram divided by total nodes + edges of original program and highest graph

degree of obfuscated program divided by highest graph degree of original

program). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.11 Effects on class file size after applying the size-minded obfuscation settings

shown in Table 8.2 column 2. . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.12 Effects of applying the protection-minded obfuscation settings shown in

Table 8.2 column 3. Default server-mode and full -Xcomp compilation

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xii



8.13 Protection-minded complexity ratio (total nodes + edges of size-obfuscated

program divided by total nodes + edges of original program and highest

graph degree of obfuscated program divided by highest graph degree of

original program). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.14 Effects on class file size after applying the protection-minded obfuscation

settings shown in Table 8.2 column 3. . . . . . . . . . . . . . . . . . . . . 113

xiii



xiv



List of Tables

8.1 Order of obfuscations for three combinations . . . . . . . . . . . . . . . . 102

8.2 Weights used for obfuscations for three combinations . . . . . . . . . . . . 104

xv



xvi



List of Listings

3.1 Example method sum in Java source code. . . . . . . . . . . . . . . . . . . 18

3.2 Example method sum in Bytecode (as output from the javap disassem-

bler utility). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Example method sum in its original Java source code form as written by a

software programmer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Example method sum in Jimple form. Dollar signs indicate local variables

which are stack positions only. . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Example method sum in Baf form. The single character following a dot

on the end of an instruction indicates the type of the instruction (e.g., i for

integer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 “Dummy” values being assigned to local variables at the beginning of a

method to assure the bytecode verifier that they are initialized. . . . . . . . 29

5.1 Example method after renaming of classes and fields and methods. De-

compiled by Dava. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 A Java source code snipper clearly showing embedded constant data. . . . . 42

5.3 Example FillPowerMatrix method before local variables are packed

into bitfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Example FillPowerMatrix method after local variables are packed

into bitfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 A Java source code snippet before obfuscation with a dead-code switch. . . 50

6.2 A Java source code snippet after obfuscation with a dead-code switch. De-

compiled by SourceAgain — it is not correct source code. . . . . . . . . 51

xvii



6.3 Example method bitreverse before duplicate sequences have been re-

solved into one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Example method bitreverse after duplicate sequences have been re-

solved into one. Decompiled by Dava. The code is semantically equiv-

alent but much more difficult to read. Local variable declarations were

removed for space considerations. . . . . . . . . . . . . . . . . . . . . . . 57

6.5 Example Java source method main before ifnull instructions are trans-

formed into a try-catch blocks. . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Example Java source method main after ifnull instructions are trans-

formed into a trapped toString/equals calls. Decompiled by SourceAgain

— it is missing the code following the second if and is therefore incorrect

code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.7 Example Java source method main after ifnull instructions are trans-

formed into a trapped toString/equals calls. Decompiled by Dava

— it is correct code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 A Java source code snippet displaying use of a labelled break construct. . . 67

7.2 Example method sum in bytecode form before obfuscation with jsr in-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Example method sum in bytecode form after obfuscation with jsr in-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 Example method main before obfuscation with jsr instructions. . . . . . 71

7.5 Example method main after obfuscation with jsr instructions. Decom-

piled by SourceAgain — trailing statements after return make this

illegal code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6 Example bytecode snippet before reordering load instructions above if

instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.7 Example bytecode snippet after reordering load instructions above if

instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.8 Example method sum before reordering load instructions above if in-

structions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xviii



7.9 Example method sum after reordering load instructions above if in-

structions. Decompiled by SourceAgain — it is not semantically equiv-

alent to the original. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.10 Example method sum after reordering load instructions above if in-

structions. Decompiled by Dava — it is correct and almost identical to

the original code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.11 Example object constructor method in Java source code form. . . . . . . . 78

7.12 Example object constructor after wrap in try transformation. Decompiled

by Dava — it is not legal source code. . . . . . . . . . . . . . . . . . . . . 78

7.13 Example object constructor after throwing itself as a throwable approach.

ObjectA extends the java.lang.Throwable object. Decompiled by

Dava — it is not legal source code. . . . . . . . . . . . . . . . . . . . . . 79

7.14 Example object constructor after adding trapped ifnull indirection. De-

compiled by SourceAgain — it is not legal source code. . . . . . . . . . 80

7.15 Example method calc before its switch is partially trapped in a try-catch

block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.16 Example method calc after its switch is partially trapped in a try-catch

block. Decompiled by Dava — it is semantically equivalent to the original

but much more difficult to decipher. . . . . . . . . . . . . . . . . . . . . . 83

7.17 Example try block which has been combined with its catch block. Register

1 contains the control flag. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.18 Example method main before try blocks are combined with their catch

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.19 Example method main after try blocks are combined with their catch

blocks. Decompiled by Dava. The code is not correct. . . . . . . . . . . . 89

7.20 Example method sum after its if instructions have been indirected through

trapped goto instructions. Decompiled by SourceAgain — this is im-

proper code and will not recompile. . . . . . . . . . . . . . . . . . . . . . 91

7.21 Example method RandomMatrix before augmentation with new trapped

goto instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xix



7.22 Example method RandomMatrix after augmentation with new trapped

goto instructions. Decompiled by Dava. . . . . . . . . . . . . . . . . . . 94

8.1 JBCO help listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xx



Chapter 1

Introduction and Motivation

Reverse engineering is the act of uncovering the underlying design of a product through

analysis of its structure, features, functions and operation. Analysis is often performed by

taking apart the said product to discover the various pieces or modules that make up its

design.

Historically, well known reverse-engineering cases have centered around military ap-

plications. As a specific example, consider the Tupolev Tu-4 Soviet bomber. In 1945, near

the end of World War II, the Soviet Union was lacking in strategic bombing capabilities.

To remedy this, they captured three United States B-29 Superfortresses flying through their

airspace and dismantled them for reverse-engineering purposes. The Tupolev Tu-4 was the

result of this effort, as reported by CNN [swr01].

More recently, reverse-engineering has become much more widespread and viable - no

doubt through the proliferation of information available on the Internet. Even consumers

are using the technique to expand the features and functions of popular electronic devices

such as the Apple iPodTMmedia player (to circumvent digital rights management (DRM)

as well as to expand the functionality to include new games and even a book reader) and

the Microsoft XBoxTMgaming console (DRM circumvention, as well).

It could be argued that software has proven to be among the most susceptible forms

to reverse-engineering. With the advancements of computer systems in our everyday lives

the examples of the iPod and the Xbox are becoming the norm, not the extreme cases.

Because software is an easily and cheaply reproduced product (unlike a military bomber,
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Introduction and Motivation

for example) it must rely on either passive protection such as a patent-law or some form of

active protection such as encryption where reverse-engineering is explicitly thwarted.

Nevertheless, software reverse-engineering is a broad field. Within the realm of soft-

ware there exists both legitimate and illegitimate reasons for reverse-engineering.

A legitimate and legal example of software reverse-engineering would be a situation

where the copyright owner of a system has lost documentation or other important infor-

mation and would like to reproduce it. Since they own the rights to the software (not to

be confused with the right to use the software) they can do as they will. An illegal ex-

ample would be a situation where a competitor steals the underlying implementation - the

algorithms themselves - and incorporates them in some form in their own product.

There is, of course, a grey area. United States law, for example, stipulates that reverse

engineering anything that is patented can be considered breaking the law, as one would

expect; however, if the item or software is protected by trade secrets instead of by a patent,

then reverse-engineering is lawful given the item itself was obtained through legal means,

according to Title 17 of the United States Code [Uni]. A common catalyst for an entity to

do this is, ironically enough, to ensure that a competitor’s offering does not infringe on any

of the entity’s own patents.

1.1 The Vulnerability of Java

The Java language was designed with modern computing problems in mind. Specifically,

it is compiled into a format called bytecode, organized in class files, which is platform

independent. This means that the code can easily be executed on any of a number of

hardware architectures without the need to re-write or convert the class files. However,

it also means that bytecode is an intermediate representation of the program which is not

encoded for any specific machine. The downfall of this design is three-fold. Firstly, the

compiler cannot optimize the output for any particular hardware. Secondly, the bytecode

must be interpreted. Finally, much of the higher-level information contained in source code

which is stripped out during the compilation process of a normal language is not stripped

out of bytecode.

Optimizing compilers that are aware of the architecture for which they are generating

2



1.2. Protection Schemes

code will produce instruction sequences designed to execute quickly on that machine. For

example, some instructions may be re-ordered to take advantage of the particular CPU’s

instruction caching feature.

Interpreted code is executed by an interpreter. In Java’s case, this interpreter is part

of a Virtual Machine. It is virtual in the sense that it simulates an abstract machine that

understands and executes bytecode within a real machine. Because this virtual machine

must be implemented on any platform where someone wants to run Java programs, its

specification must be fairly simple and open.

Because Java bytecode is encoded in a fairly simple way, is not optimized, and contains

much of the higher-level information that its source code did, Java is particularly suscep-

tible to reverse-engineering attacks. Information is power; by retaining information other

than that needed by the machine to execute the code, the class file format is less of a black

box than other platform-dependant language binaries. Optimized code, while semantically

equivalent to its original, can be quite confusing and appear even more complex especially

when special architecture instructions are employed. Since bytecode is not optimized, it

appears simpler and clearer.

1.2 Protection Schemes

There is more than one way to skin a cat and the same can be said for protecting the

intellectual property and secrecy of algorithms contained within software. While some

approaches have grown out of ulterior motives, with software protection being a side-effect,

others are more intentional and direct.

1.2.1 Server-Side Execution

With the birth of the computer network, a new age was born. Programs and data are no

longer tied to a single computer. This situation was furthered by the expansion and world-

wide acceptance of the Internet. Software is no longer chained to a specific machine and,

in fact, the user may not even be aware of this.

In order to attack or decompile a piece of software, access to the code itself must be ob-

3



Introduction and Motivation

tained. If the code cannot be analyzed then it cannot be reverse-engineered except through

blind attacks, a fairly inefficient approach. This fact is the basis for protection through

server-side execution.

The server-side execution model (also known as the client-server model) is one in which

the application is placed on a server machine. The actions of the software can be controlled

remotely by a client machine and services, such as displaying data, can be delivered to the

client machine, yet the software is physically stored and executed on the server. In this

model, the client software - while itself a program - is never given access to the important

server program code.

The major disadvantage of the server-side model is the very nature of its separation

between interface and functionality. By creating a divide between the client and the server

an inherent weak point is created at the divide as well. Low bandwidth between the client

and server could hinder performance and, in the worst case, disconnection altogether would

result in an inability to use the software. Even an inconsistent connection could result in

the inability to use the software or in the corruption of data being passed over the network.

1.2.2 Encryption

Encryption is another possible form of program protection. In this model the software code

is accessible to the attacker, but it is encrypted in some way. In order for the software to

run successfully, it must be decrypted at runtime.

Decryption could be performed at the machine level but would require specialized hard-

ware, which is impractical. Even Trusted Computing, backed by such large technology

companies as Hewlett-Packard, IBM, Intel, and Sun Microsystems, Inc. has had its fair

share of proponents based on practicality issues. Trusted Computing is a technology initia-

tive to ensure that computer hardware can be trusted by its designers to not run unauthorized

programs (see the Trusted Computing Group FAQ [Gro]).

Software-level decryption, while also possible, is inherently weak security because the

decryption system itself can be reverse-engineered.

4



1.2. Protection Schemes

1.2.3 Obfuscation

Obfuscation is the obscuring of intent in design. With software this means transform-

ing code such that it remains semantically equivalent to the original but is more eso-

teric and confusing. A primary example is the renaming of variable and method identi-

fiers. By changing a method from “getName” to a random sequence of characters such as

“sdfhjioew” information about the method is hidden that a reverse-engineer could other-

wise have found useful. Another example of obfuscation is the use of opaque predicates

and introduction of unnecessary control flow. An opaque predicate is an expression that

will always evaluate to the same answer (true or false) but whose value at runtime,

upon static investigation of the code, is not obvious. Such opaque predicates can be used

to introduce new if statements or other control flow constructs within a method (essentially

adding sections of dead code — instructions which will never be executed because they are

along the false branch of an opaque if instruction).

Obfuscation is one of the more promising forms of code protection because it is translu-

cent. It may be obvious to a malicious attacker that a program has been obfuscated but this

fact will not necessarily improve their chances at reverse-engineering. Also, obfuscation

can severely complicate a program such that even if it is decompilable it is very difficult to

understand, making extraction of tangible intellectual property close to impossible without

serious time investment.

While almost all obfuscations are technically reversible the technique as a whole is

nevertheless an attractive protection approach for a number of reasons. It can be applied

during the software release phase, as part of the packaging process; it need not be tied to the

design or development phase whatsoever. Additionally, it does not rely on extra hardware

or software to run in the way that other schemes do. Server-side execution obviously re-

quires a network and at least two machines, one server and one client. Encryption requires

either hardware or software decryption that is itself susceptible to attack and can slow the

program down. Finally, obfuscation is cheap. Once implemented within an automatic tool,

obfuscations can be applied to many programs and, indeed, commercial obfuscators exist

for reasonable prices.

5



Introduction and Motivation

1.3 Thesis Contributions and Organization

The threat of reverse-engineering and the particular security concerns for Java have been

outlined in this first chapter. Potential protection schemes have also been discussed, includ-

ing code obfuscation which is the topic of this thesis. It is clear that obfuscation, while not

fool-proof, is worth further exploration and could provide a potential cover of protection

against the thievery of intellectual property or the side-stepping of copyright law.

In this thesis we discuss and develop a number of obfuscating code transformations

which we break into three categories.

• Obscuring intent at the operational level. Prime examples are converting multiplica-

tions into less obvious bit-shifting operations and identifier renaming.

• Confusing or complicating program structure. This includes using opaque predicates

to introduce extra control flow branches in a method as well as higher-level obfusca-

tions which affect the object-oriented design of a program.

• Exploiting the gap between the Java source language and its binary bytecode form.

The classic example of this type of obfuscation is the insertion of explicit goto

instructions at the bytecode level, a construct that is not present in Java source lan-

guage.

We implement these obfuscations as a module within Soot [VRHS+99] — a Java op-

timization framework — and develop a user interface for applying them to Java programs.

Additionally, each transformation is tested separately to ascertain the runtime performance

effect that can be expected from them. Given the empirical results and the observed effec-

tiveness of obscuring intent of each transformation, we derive a combination of obfusca-

tions and how often to apply them as a default to our obfuscator.

The remaining chapters are arranged as follows. Chapter 2 outlines the research that

has already been done in the area of obfuscation. Particular care is taken in comparing

recent Java bytecode obfuscation techniques.

6



1.3. Thesis Contributions and Organization

Chapter 3 describes, in detail, the various features of the Java language and its runtime

environment. This includes the bytecode instruction set, the Java Virtual Machine, and the

bytecode verifier.

Chapter 4 introduces our approach to obfuscation including the framework that is used.

Flow analysis and bytecode instrumentation are addressed. Our experimental framework is

then outlined and a number of benchmark programs - our testing suite - are described.

The meat of this work is given in chapters five through seven. Chapter 5 describes the

class of obfuscating transformations that we have developed which affect a program at the

operational level. The implementation is outlined in detail and examples are given which

display each transformation’s effect on code by showing before and after (decompiled)

source code. Where appropriate, bytecode is given to describe the exact technical changes

that are happening “under the hood”. At the end of each section experimental results are

given which measure the performance degradations one can expect when fully applying

each of the transformations.

Chapters 6 and 7 follow the outline of Chapter 5 in detailing the other two classes of ob-

fuscations, confusing program structure and exploiting the gap between the Java language

and bytecode, respectively.

In Chapter 8 we discuss the interface of our obfuscator and develop a comprehensive

combination of transformations for “the masses” — a default setup — to ensure the obfus-

cator we develop is easy to use even for those not familiar with the low-level under-pinnings

of the Java language. We present experimental results for this default setup that shows the

performance effect on each benchmark. Next, we show example decompiled code that

expresses the effectiveness of our obfuscations.

Finally, in Chapter 9, we suggest further areas of research on this topic for future work

and we summarize our conclusions.
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Chapter 2

Related Work

There has been a lot of research into code obfuscation in recent decades. Originally,

concerns about code theft drove the majority of advancement but more recently issues of

security have been in the limelight. Computing has become increasingly more pervasive in

our everyday lives. More and more personal, financial, and social information is stored and

processed by computers everyday.

2.1 Viability of Obfuscation as a Protection Tool

Obfuscation is a form of security through obscurity. While Eric Raymond is quoted as say-

ing “Any security software design that doesn’t assume the enemy possesses the source code

is already untrustworthy; therefore, never trust closed source,” [Ray04] obfuscation does

not explicitly break this axiom. When securing code through obfuscation the assumption

is that the enemy can produce the source code (though not the original) through auto-

matic means such as decompiler, but that the obfuscations performed will render that code

unreadable. While there are seemingly few truly irreversible obfuscations, according to

Barak, et al. [BGI+01] and, in theory, “deobfuscation” under certain general assumptions

has been shown to be NP-Easy through the work of Appel [App02], obfuscation is neverthe-

less a valid and viable solution for general programs. Philosophizing aside, deobfuscation

is still not a simple task. Just as optimizing compilers make conservative approximations
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to avoid undecidable problems, so must decompilers. The result is sub-optimal decompiled

code.

Indeed, by releasing our obfuscator as open source we are explicitly assuming that the

enemy possesses not only the software code they are attacking but to the source code of

the security system that protects it, as well (a tenant of security engineering in general

derived from Kerckhoffs’ 1883 principle [Ker83a, Ker83b]). Despite this openness, with

over fifteen different transformations that can be applied on top of each other and in various

orderings, reverse-engineering through automatic means still remains very difficult.

2.2 Low-Level Obfuscation

Early attempts at obfuscation invariably involved machine-level instruction rewriting. Many

of these different techniques for obfuscation are considered within the low-level realm by

Cohen [Coh93]. They dubbed their techniques “program evolution”. This included the

replacement of instructions, or small sequences of instructions, with ones that perform se-

mantically equal functions, instruction reordering, adding or removing arbitrary jumps, and

even de-inlining methods. Many of these ideas later became standard and we explore some

of them in this thesis.

Much later, a more theoretical approach to obfuscations was presented by Collberg, et

al. [CTL98]. They outline obfuscations as program transformations and develop a notation

for them (P→ P′ where P is the program and P′ is the transformed output). They develop

terminology to describe an obfuscation in terms of affect and quality:

Potency : the level of obscurity a particular transformation gives.

Resilience : a measure of how well an obfuscation holds up against reverse-engineering

attack.

Stealth : how difficult it is to detect whether the transformation has been applied to a

program.

Cost : the performance and space (size) penalties incurred by the obfuscation.
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They rely on a number of well-known software metrics developed by Chidamber and

Kemerer [CK94], Henry and Kafura [HK81], and Munson and Khoshgoftaar [MK93] to

measure the potency and they suggest many obfuscations. Some are design-level tech-

niques such as false refactoring (creating dummy parent classes with possible shared vari-

ables and dummy methods) and method cloning. Others are data-obfuscations such as array

restructuring through splitting or merging.

Later, Collberg and Thomborson [CT02] reconsider the concepts of lexical obfuscations

(name changing) and data transformations (e.g., splitting boolean values into two discrete

numerics that are combined only at evaluation time). However, their chief contribution is

in control-flow obfuscations. They make use of opaque predicates (discussed by 1.2.3) to

introduce dead code, specifically engineering the dead branches to have buggy versions of

the live branches.

A technique for combining the data of a program with its control-flow was developed

by Wang, et al. [WHKD00], whereby control and data flow analysis would become co-

dependent. This resulted in much higher complexities and lower precision from static

analysis tools. On a low-level, this involved using data values within switch statements

with potential branching to every basic block of a method. Without any knowledge of

which branch targets would be selected in which order, every basic code block of a method

could potentially be a predecessor of every other block. While very potent, this approach

can have a noticeable negative performance effect and bloat class file sizes as well. We

considering a scaled-down version of this type of obfuscation in Section 6.1.

While not Java-specific, a very interesting two-process obfuscation approach which

uses inter-process communication (IPC) to communicate between a “control-flow” process

and a “computation” process was developed by Ge, et al. [GCT05]. Unfortunately, this

kind of low-level jury-rigging is not possible in Java. A different multi-process technique

for maintaining opaque predicates was presented by Majumdar and Thomborson [MT06]

that could certainly be implemented in Java.

Taking a page out of the biologist’s book, the idea of diversity as a means towards

software protection was introduced by Forrest, et al. [FSA97]. They showed that, for ex-

ample, the randomization of the size of a stack frame could deter a simple buffer overflow

attack. Again, this was non-Java specific but interesting. They consider optimizations for
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parallel processing whereby blocks of instructions that can be run simultaneously are pro-

duced from sequential code, confusing the intention of the program. This could potentially

be combined with the technique of speculative multi-threading (discussed by Pickett and

Verbrugge [PV05]) in an ahead-of-time manner to produce useful Java obfuscation.

2.3 High-Level Obfuscation

The approach by Sakabe, et al. [SSM03] was more concentrated towards obfuscating the

object-oriented nature of Java — the high-level information in a program. Using polymor-

phism, they invent a unique return type class which encapsulates all return types and then

modify every method to return an object of this type. Method parameters are encapsulated

in a similar way and method names are cloned across different classes. In this way the

true return types of methods and the number and types of a methods parameters are hid-

den. They further obfuscate typing by introducing opaque predicate if branching around

new object instantiation which confuses the true type of the object and they use exceptions

as explicit control flow. Sadly, their empirical results show significantly slower execution

speeds — an average slowdown of 30% — and a 300% blowup in class file size.

More high-level obfuscations are presented by Sosonkin, et al. [SNM03] which attempt

to confuse program structure. They suggest the coalescing of multiple class files into one —

combining the functionality of two or more functionally-separate sections of the program

— and its reverse of splitting a single class file into multiple unique units. By creating new

Java interfaces that define the various original classes they are able to achieve type hiding

and they claim their approach makes reverse-engineering very uneconomical.

2.4 Summary

At this point a lot of thought has been put into the general area of obfuscation. Some of the

obfuscations we detail in the following chapters come from this rich history of research.

In most cases very little empirical testing of these ideas seems to have been published,

calling into question their usefulness in real world applications, and we wish to show that

they have merit. Nevertheless, we have also detailed new and exciting approaches which
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we were unable to find within the literature, such as those obfuscations which seek to

exploit the differences between the Java source language and its compiled bytecode format.

These include inserting explicit goto instructions, disobeying source code constructor

conventions, and taking advantage of the flexible nature of Java exception handling.
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Chapter 3

The Java Language

Java is a high-level programming language that falls into the family of third-generation

languages that includes C++ [Str97], Smalltalk [GR83], and many others. It has been de-

signed to be easier for a human to understand, including such amenities as named variables

within binaries (which aid in debugging), an object-oriented framework with inheritance,

and exception handling functionality. While it is fairly similar to C++ and shares much

syntax it is nevertheless very different in certain aspects.

Historically, industrial languages such as C were designed to be processed by an auto-

matic tool called a compiler which would then generate machine code - also known as an

“executable”. In the last two decades, however, interpreted languages – especially Java –

have had a major renaissance. Interpreted languages are those which postpone some or all

of the “compiling” phase to the time of execution.

Java is not compiled fully and is instead converted into the class file format. This format

maintains much of the context and high-level information contained in the source code and

is not directly related in any way to a specific hardware architecture or software operating

system. Java source that has been compiled into class files can be thought of as being

“half-way compiled”.

The second half of the compilation process is abstracted into a runtime feature; that

is, Java class files are executed by being fed to a virtual machine, which is itself a piece of

software. This virtual machine software interprets each bytecode instruction in the class file

into a proper sequence of machine instructions. While this sounds like simple translation,
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it is not exactly that. The virtual machine also runs optimization routines on bytecode frag-

ments that execute frequently (i.e., hot methods) and it verifies the security of the bytecode

when it is first loaded.

In addition to the “second-half compilation” part of the virtual machine, it also main-

tains virtual registers, a program counter, and all of the trappings of a normal hardware

machine but emulated in software. The negatives of this approach should be obvious: Java

programs have historically been slower in execution speed and larger in memory footprint

than their compiled cousins such as programs written in C. Yet the performance gap has

been consistently narrowed year after year and the positives to the Java approach are many.

By creating a single trusted and fully tested virtual machine for each possible platform,

any Java bytecode can be run on any of these platforms. This is the fundamental concept

behind Sun Microsystem’s slogan for Java: “write once, run anywhere”. This means that a

developer can write Java code on a personal computer (PC) and reasonably expect it to run

properly on any device with a Java virtual machine including cellphones or other embedded

devices.

What’s most special about Java in relation to other programming languages, however,

is that it was designed in the early days of the World Wide Web and, because of this,

has some very forward-thinking design approaches unique to the Internet medium. Java

lets you write programs called “applets” (a diminutive reference to the word “application”

which is often used to describe a program). These applets can be easily transferred over the

Internet and executed within a web browser. Technically speaking, the program is run by

the virtual machine and the output is embedded in the window of a web browser. However,

what is unique to the applet is its limited access to the computer system on which it is being

executed. A traditional fully-compiled program, such as those discussed above written in

C, has almost limitless access to the computer system it is running on — only recently, in

this decade, with the rise of both Internet users and computer viruses have operating system

designers begun to truly consider these security implications. It is no longer viable to trust

software posted on the Internet and, indeed, virus-detecting software is installed by default

on most new consumer machines.

Java solves these security problems by severely limiting what an applet can do. It

cannot write data to one’s hard disk without permission, it cannot connect to an arbitrary
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machine on the Internet, and it should not crash your system. Without these assurances, a

Java applet could delete important data, maliciously send sensitive data over the Internet,

or worse. Additionally, even normal Java applications have limited access through the very

design of the virtual machine. They cannot write to arbitrary addresses in memory, for

example, and all variables must be defined before they are used. This scheme is sometimes

referred to as the “sandbox model” where programs are run within an insulation layer (the

virtual machine) and not allowed direct access to hardware. This scheme is built on three

main points:

• Java programs are compiled to bytecode, not machine code. Code produced by the

Java compiler works on high-level abstractions of data such as object references in-

stead of memory addresses.

• Access is controlled and limited. A program must use APIs (Application Program

Interface) known to be safe and trusted to interact with hardware resources.

• Bytecode is run through a “bytecode verifier” (sometimes referred to simply as the

verifier) which statically analyses the program to ensure type correctness, and that

the first two items in this list are adhered to.

The last item in this list is particularly crucial to the secure design of Java and will be

thoroughly discussed later in Section 3.3.

3.1 The Instruction Set

Bytecode is intermediate code. It is more abstract than machine code but less abstract than

the source code which humans read and write. Its name is derived from the fact that each

opcode can usually be represented by a single byte in length. Each instruction, therefore,

has a byte representing the opcode possibly followed by parameters such as a register index,

or a value.

When a Java method is executed, a new “frame” in memory is created with space for

abstract memory registers and a stack. The maximum space requirements of each method is
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public static int sum(int iarry[]) {
int result = 0;

for (int i = 0; i < iarry.length; i++) {
result += iarry[i];

}

return result;
}

Listing 3.1: Example method sum in Java source code.

known, through static analysis at compile time, and encoded in the bytecode. How the stack

and registers are physically allocated and accessed is not important - the virtual machine

takes care of these details.

To get a flavor of the bytecode instruction set, we will describe the three common

instructions load, store, and add. The load instruction takes a single integer argument

specifying a register index. The instruction obtains the value in the register at that index and

places the value on top of the stack. The store operation performs the opposite function;

it pops a value off the top of the stack and stores it in the register at the index specified by

the parameter. Finally, add is an example of an instruction with no parameters. It pops the

top two values on the stack and adds them together, pushing the result on top of the stack.

In total there are 256 opcodes, although some are reserved. This may seem like a large

number but in fact there are specific opcodes for the various forms of each instruction. The

add instruction, for example, is split into different versions, one each for values that are

integers, floats, and doubles. The load instruction is likewise split, with the addition of

an object version for loading object references. A traditional way for marking the various

forms of instructions in code printouts is by adding a single-character prefix — i for in-

teger, f for float, a for object, etc.— so the instruction which loads an object reference

from the register at index 2 would be printed as “aload 2”. A brief fragment of Java

source code is shown in Listing 3.1 and its equivalent bytecode (formatted by the javap

disassembler utility) is shown in Listing 3.2. We will follow this form of representation

throughout this thesis.
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public static int sum(int[]);
0: iconst 0
1: istore 1
2: iconst 0
3: istore 2
4: iload 2
5: aload 0
6: arraylength
7: if icmpge 22
10: iload 1
11: aload 0
12: iload 2
13: iaload
14: iadd
15: istore 1
16: iinc 2, 1
19: goto 4
22: iload 1
23: ireturn

Listing 3.2: Example method sum in Bytecode (as output from the javap disassembler utility).

3.2 The Virtual Machine

The Java Virtual Machine (JVM or VM for short) by Gosling, et al. [GJSB00] is a software

emulator of an abstract stack-based machine. Instructions supported by this machine oper-

ate on the stack by popping, pushing, or altering the value of the item(s) on the top of the

stack. Registers are also available for variables and these are populated by using one of the

various “store” instructions to pop a value off the top of the stack and place it in a given

register. The “load” instructions retrieve a value from a register and places it on top of the

stack. These registers are encapsulated in a frame and are only accessible by the specific

method which created them so they are most often referred to as “local” variables (local to

the given method only). These registers and the stack are maintained across method calls

so that if execution control is passed from one method into another, the original method

maintains its variables and can access them when control is returned to it from the second

method.
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3.2.1 Compilation

The compilation system in the Java world is different from that of statically compiled lan-

guages like C. Since the Java compiler produces machine-independent bytecode, there is

very little optimization that takes place at compile time. The optimizations that would be

done by the compiler in a statically compiled language are instead performed at or during

runtime by the VM.

The simplest implementation of a JVM is just a bytecode interpreter. This is because,

before any native compilation happens, the JVM simply interprets the bytecode instructions

one by one, in sequence.

3.2.2 Just-In-Time compilation

Interpretation is particularly slow, since each and every bytecode instruction must be trans-

lated into native code by the JVM each time it is executed. Just-In-Time compiling (JIT)

speeds up execution by converting all bytecodes into machine code before that method is

first executed. The caveat: it does so lazily. This means that it only compiles a method

when the method is actually called to run. The benefit of this design is that it spreads

the compilation performance-cost over the life of the running program (or at least until all

methods are run once) instead of resolving everything at the beginning, therefore improv-

ing start up times. Nevertheless, JIT compilation time can still be significant and aggressive

optimization of every part of the code is not possible.

3.2.3 Dynamic compilation

In newer JVMs, such as Sun Microsystem’s HotSpotTM [Mic01] virtual machine, the inter-

preter, a profiling mechanism, and a dynamic compiler are combined together to make up

the execution framework. As the name suggests, the HotSpot first runs as an interpreter and

only compiles methods which are being frequently executed (as reported by the profiler).

The benefit is that time is only expended optimizing and compiling code that is run often

— in most cases 90% or more of a program’s dynamic execution time is spent on less than

10% of its static code, as shown by Merten, et al. [MTG+99].
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The HotSpot optimizations are many, and are probably recognizable to anyone who is

familiar with optimizing compilers. It performs common subexpression elimination, loop

unrolling, data-flow analysis, and more. Perhaps most impressive is its optimization of its

optimizations. After interpreting a method a few times, it is then compiled into native code

but the JVM still collects profiling for this method. It may then go back and recompile

the method later with higher optimizations if the profiling data shows that it is a very hot

method.

The newest JVMs use a feature known as on-stack replacement (OSR), sometimes re-

ferred to as an “adaptive compilation” technique. This allows newly-compiled code to be

activated even when the method is currently being executed.

3.3 The Bytecode Verifier

The Java verifier is a subsystem of the VM which statically evaluates class files when they

are loaded, but before they are executed. It is part of what entails the “sandbox” model of

Java.

The verifier performs static analysis in order to ensure that the code is well typed and

does not contain illegal code. It is able to detect ill-typed operations such as casts from

primitives to object references or vice-versa as well is illegal casts from one object type

to another. It also ensures proper object-orientedness by checking that private methods are

not called outside of a class, that interfaces are correctly implemented, and that code does

not attempt to illegally jump outside of a method or otherwise.

The impetus behind the verifier is two-fold. While its chief intent is to act as a security

module for the VM, limiting the potential for malicious attacks, it also protects against un-

intended problems such as encoding errors due to transmission issues or improper method

calling that was not malicious in nature. It accomplishes this through program analysis.

There has been research in the past into dynamic checking of code but Cohen [Coh97]

has shown this to be expensive and slow. The bytecode verifier instead applies static

checks only once, at runtime. It attempts to ensure that these conditions, as outlined by

Leroy [Ler01], are met:
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Type correctness : arguments of an instruction, whether on the stack or in registers,

should always be of the type expected by the instruction.

No stack overflow or underflow : instructions which remove items from the stack should

never do so when the stack is empty (or does not contain at least the number of

arguments that the instruction will pop off the stack). Likewise, instructions should

not attempt to put items on top of the stack when the stack is full (as calculated and

declared for each method by the compiler).

Code containment : execution flow of a program should never jump from the inside of

one method to the inside of another method. Likewise, code should only jump to an

offset which is the beginning of a valid instruction and never into the middle of one.

Register initialization : Within a single method any use of a register must come after the

initialization of that register (within the method). That is, there should be at least one

store operation to that register before a load operation on that register.

Object initialization : Creation of object instances must always be followed by a call to

one of the possible initialization methods for that object (these are the constructors)

before it can be used.

Access control : Method calls, field accesses, and class references must always adhere to

the Java visibility policies for that method, field, or reference. These policies are

encoded in the modifiers (private, protected, public, etc.).

Within this thesis each and every obfuscating transformation must follow these guide-

lines to ensure that code output by the obfuscator does not fail the bytecode verification.

Otherwise, transformed code would be useless.
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Chapter 4

Obfuscation Approach and Experimental

Framework

We developed an automatic tool called JBCO - the Java ByteCode Obfuscator - that

is built on top of Soot [VRHS+99] in order to implement the obfuscations outlined in this

thesis. Soot is a Java bytecode transformation and annotation framework providing multiple

internal representations. It is a framework that has been designed to simplify research and

analysis of Java and its class file format to aid in new compiler optimizations and program

testing. It includes the ability to instrument code - that is, to modify through adding or

removing information, control flow, or program logic.

4.1 Soot: a Java Optimization Framework

During normal execution of Soot, it first transforms Java source code or bytecode into

Jimple, a 3-address intermediate form. Jimple is not stack-based, like bytecode, but main-

tains some low-level constructs such as the explicit goto, unlike Java source code. It also

has a static inference engine which can identify variable types in bytecode, explained by

Gagnon, et al. [GHM00]. Listing 4.1 shows a simple method, sum, in Java source code

and Listing 4.2 shows the same method in Jimple.

Once in Jimple, each method is run through transformations and analyses which are

written for Jimple, possibly modifying or annotating the code. Translation to Baf, a stack-
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public static int sum(int iarry[]) {
int result = 0;

for (int i = 0; i < iarry.length; i++) {
result += iarry[i];

}

return result;
}

Listing 4.1: Example method sum in its original Java source code form as written by a software
programmer.

public static int sum(int[]) {
int[] r0;
int i0, i1, $i2, $i3;

r0 := @parameter0: int[];
i0 = 0;
i1 = 0;

label0:
$i2 = lengthof r0;
if i1 >= $i2 goto label1;

$i3 = r0[i1];
i0 = i0 + $i3;
i1 = i1 + 1;
goto label0;

label1:
return i0;

}

Listing 4.2: Example method sum in Jimple form. Dollar signs indicate local variables which are
stack positions only.
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public static int sum(int[]) {
word r0, i0, i1;

r0 := @parameter0: int[];
push 0;
store.i i0;
push 0;
store.i i1;

label0:
load.i i1;
load.r r0;
arraylength;
ifcmpge.i label1;

load.i i0;
load.r r0;
load.i i1;
arrayread.i;
add.i;
store.i i0;
inc.i i1 1;
goto label0;

label1:
load.i i0;
return.i;

}

Listing 4.3: Example method sum in Baf form. The single character following a dot on the end of
an instruction indicates the type of the instruction (e.g., i for integer).

based intermediate representation follows. Transformations and analyses written specifi-

cally for Baf are then processed. Instructions in Baf, while similar to bytecode instructions,

are statically typed. Making this information available to JBCO allows for more flexibility

and simpler implementations (Listing 4.3 shows sum in Baf). Finally, Baf is translated into

bytecode and written to class files.
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4.2 JBCO: The Java ByteCode Obfuscator

JBCO is itself just a number of Jimple and Baf transformations and analyses. There are

three categories that each module falls under:

Information Aggregators: collect data about the program for other transformations such

as identifier names, constant usage, or local variable to type pairings.

Code Analyses: build new forms of information about the code such as control-flow graphs,

stack height and type data, or use-def chains. These are used to identify where in the

program transformations can be applied. Often, they are recalculated each time the

code is modified, allowing a transformation to perform multiple modifications to the

same piece of code. Without this dynamically-updated information each transforma-

tion would have to be run over and over, adding overhead to the obfuscator.

Instrumenters: actually modify the code, adding obfuscations or shuffling the code to

obscure meaning.

4.2.1 Information Aggregators

The simplest of the JBCO tools are those which iterate through the Jimple or Baf code in

order to collect information. One such example is the Constant Collector which collects

references to all constant data embedded in the program, including integers, floats, dou-

bles, and even Strings. Later, a Baf instrumenting transformation will use the information

generated by the Constant Collector to obfuscate the program by replacing the constants

with static field references.

Other information aggregators found in JBCO are concerned with the details of local

variables in the program. Jimple maintains high-level typing information and is able to dis-

tinguish between an integer and a boolean (both stored as a 32-bit integer in Java bytecode)

but Baf does not; it only stores the size needed for the local (in this case, one 32-bit integer

for each boolean). Because of this limitation in Baf, and the transformations we wished to

apply at that level, we were required to implement aggregators which would properly map

Baf local variables to their Jimple types.
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4.2.2 Code Analyses

JBCO code analyzers are mostly implemented as dataflow analyses. Dataflow analysis per-

forms a flow function on each node of a control flow graph, augmenting it with information

based on its predecessor and successors, as well as its own code instruction and variable

use. The algorithm proceeds to iterate over all nodes until a fixed-point is reached. Two

examples follow.

Calculating Stack Height and Types

Many of the obfuscating techniques in the following chapters can only be applied in certain

situations. Often, new opaque predicate if blocks are added, or random locations within

the bytecode are singled out as possible targets for obfuscated control-flow. The obfuscator

must know what arguments are on the stack before and after each instruction, including the

types, in order to produce verifiable code.

The StackHeightTypeCalculator was implemented to derive this information.

At any time during the obfuscating process, the number of arguments on the stack (the stack

height) and their types can be derived through this analysis. It is a forward flow analysis

(i.e., it propagates information in the same direction as execution flows). The information it

propagates is, obviously, what is on the stack. As each instruction is processed, depending

on its type, arguments are added and/or removed from the stack. When a fixed point is

reached, the state of the stack before and after each instruction is known1

Object Instantiation to Object Initialization Analysis

In bytecode new objects must first be “allocated” by the new instruction and then instanti-

ated by a method call to one of its constructors. The VM’s bytecode verifier is particularly

picky about this and requires that, at all call sites to an object constructor, it must be stati-

cally verifiable that a newly-allocated object reference (of the proper type) is on the stack.

In order to properly implement the obfuscation outlined in Section 6.1, a special analy-

sis needed to be performed during the obfuscation phase in order to ensure that the transfor-

1The exact Object types of references on the stack can not always be deduced but a greatest-common-
object type can be.
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mation does not separate new instructions from their matching constructor calls, creating

unverifiable code. The Java Virtual Machine Specification by Gosling, et al. [GJSB00]

states that an uninitialized object must not be on the stack or in a local variable when a

backwards branch is executed, nor should there be an uninitialized object in a local vari-

able within a trapped sequence of bytecode2. This limitation assures that no object can ac-

cidentally or maliciously be initialized more than once within a loop or otherwise, though

Coglio [Cog01] argues that the requirements are not necessary to ensure type safety.

This special requirement resulted in the creation of the New-to-Constructor Analysis.

It is a backwards flow analysis (i.e., it propagates information in the opposite direction

of execution flow) and the information it specifies at each node is whether the node may

potentially fall between a new instruction and its corresponding constructor call. This

information is used to ensure that the obfuscation does not add unverifiable control flow

branches into these New-to-Constructor ranges.

4.2.3 Instrumenters

Instrumenters are the algorithms within JBCO that actually modify the program code. Also

known as transformers, they augment or otherwise convert the code from its simpler origins

to a more complex and obfuscated form.

Within the Soot framework there are two different types of transformations: those that

operate on the program as a whole and those that operate on one method at a time. High-

level program obfuscations - those which change the overall design or object-oriented na-

ture, for example - are whole-program transformations. They require access to and the

ability to modify all classes of a program; they are referred to as Scene Transformers.

Method-level obfuscations are known as Body Transformers since they operate on the code

bodies of each method.

While each obfuscating transformation implemented for this thesis is discussed in detail

in the following three chapters, there is one “helper” instrumenting transformation that

ensures that all local variables are defined.
2Uninitialized objects on the stack are allowed within exceptional bytecode ranges because if an exception

occurs they will be removed from the stack completely
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double d0, d1, d2, d3, d4, d5, d6, d7;
d0 = 0.7908512635043922;
d1 = 0.8632577915463435;
f0 = 0.27129328F;
d2 = 0.37580820874305876;
f1 = 0.64183664F;
d3 = 0.5397618625049699;
d4 = 0.8257518968619348;
d5 = 0.018002925462166197;
d6 = 0.24160555440326648;
d7 = 0.5634773313795401;

Listing 4.4: “Dummy” values being assigned to local variables at the beginning of a method to
assure the bytecode verifier that they are initialized.

Fixing Undefined Local Variables

Some changes that are made to bytecode by our obfuscations can cause code-motion (move-

ment of a block of code from one spot in a method to a completely different spot). Other

transformations, which add opaque branching that never actually occurs, can make it ap-

pear as though certain orders of code could be executed in sequence when in fact they never

will. This can result in situations where the bytecode verifier computes that a certain local

variable might be used before it is initialized or it might seem like a different object type

than it really is.

Since the bytecode verifier will not allow this kind of code to execute, it must be elim-

inated. A special transformation, the Undefined Local Fixer, was written to handle these

cases. It finds all local variables which might appear undefined at some point in the code.

For each one “dummy” initializations are inserted at the beginning of the method. While it

only seems like the local might be used before it is assigned, in truth it will always contain a

value. Therefore, the “dummy” value inserted to convince the bytecode verifier will always

be overwritten before an actual, valid use. Listing 4.4 shows the first few lines of a decom-

piled method after some obfuscations. As can be seen, there are seemingly nonsensical

values being assigned to local variables. These values will never actually be used.
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4.3 Experimental Framework

Each transformation described in this thesis (detailed in Chapters 5, 6, 7) was thoroughly

tested in multiple time trials in order to ascertain any effect on runtime performance.

All experiments were run on an AMD AthlonTM64 X2 Dual Core Processor 3800+

machine with 4 gigabytes of RAM running Ubuntu 6.06 Dapper Drake Linux. The ma-

chine was unloaded and running no extraneous processes at the time each experiment was

performed.

Sun Microsystem’s Java HotSpotTM64-Bit Server VM (build 1.5.0 06 b05) was used

in all experiments with the initial and maximum Java heap sizes set to 128 and 1024

megabytes, respectively. Measurements were taken in both server mode (i.e., with full

dynamic JIT compilation) and interpreter mode. Client mode was not included as it is

not available in this version of the VM. The graphs display a ratio of obfuscated program

runtime over original program runtime. Therefore, a value of 1.0 implies no change in

performance.

The Time::HiRes Perl module was used to record the running times of the experiments.

Each benchmark was run ten times for each experiment and the highest and lowest time

measurements were thrown out. The remaining eight were averaged and this is the number

(in seconds) used to calculate percentage speedups/slowdowns shown in the graphs in this

thesis.

However, as discussed by Kalibera, et al. [KBT05], there is an unavoidable amount

of non-determinism in computer systems. The inability to start benchmark runs with the

hardware and operating system in the exact same initial state every time leads directly to

varying time measurements. Indeed, it was shown that initial state had a large effect on

a fast-fourier benchmark despite running on an idle machine with disabled virtual mem-

ory allocation with the same files and settings. Furthermore, it has been shown by Gu,

et al. [GVG06] that side-effects of lower level execution can account for almost 10% of

measured performance and that instruction and data caching can be particularly sensitive.

In some cases an obfuscation may result in programs showing significantly different ex-

ecution speeds due to these types of issues which may be completely separate from the

particular details of the transformation itself. Earlier work, by Gu, et al. [GVG04], shows
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that even code layout changes as trivial as identifier renaming can result in up to 2.7%

of measured machine cycle cost and percentages well into the double-digits for data and

instruction cache misses. These numbers will be directly affected by obfuscations.

Additionally, languages dynamically compiled during runtime such as Java are, in par-

ticular, finicky beasts. The HotSpotTMdynamic compilation functionality is constantly re-

compiling bytecode into machine code as the benchmarks run. This recompilation can be

triggered by the loading of new classes, the exploration of previously unused control flow

paths, or for other reasons. This can cause fluctuations in timing and can lead to noisy

results.

Precision, however, has been carefully examined. Standard error (�) was calculated

for all experimental runs. In order to make this meaningful, they were combined in the

following manner: where T is the set of eight timings after a given transformation has

been applied to a benchmark and O is the set of timings from the benchmark in its original

state, and given standard errors �T and �O3 the standard error for percentage differences

presented in our graphs P (the ratio of transformed benchmark average time to original

benchmark average time, or TavgOavg ) is�P = P
√

(�TTavg )
2 +( �OOavg )

2.

The largest standard error we saw in our server-mode testing was 2.6% and the majority

was well below that. There were 7 degrees of freedom and therefore we used a t-value of

2.37, calculating a 95% confidence interval of ±6.7%. Not surprisingly, the interpreter-

mode standard error was much lower, at 0.46%, resulting in a 95% confidence interval of

±1.2%. Keep this in mind when reviewing the graph data.

Experiments were run separately for every transformation. In each instance the obfus-

cations were applied in every possible spot. For the if-indirection detailed in Section 7.7,

for example, each and every if instruction in the benchmarks was instrumented with a

newly-created trapped goto instruction. In this way, these experiments are measuring

the true “worst-case” slowdown. After all transformations are detailed and the results are

discussed, a combined application of all our obfuscations is derived with respect to perfor-

mance concerns in Section 8.2.
3Standard error for a given set T of eight timings was calculated in the normal way: �T = σT√

8
where

standard deviation for T is σT =
√

1
8 ∑

8
i=1(Ti−Tavg)2.
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4.4 The Benchmarks

The benchmarks have been culled from a graduate-level compiler optimizations course

where students were required to develop interesting and computation-intensive programs

for comparing the performance of various Java Virtual Machines. Each one was written in

the Java source language and compiled with javac. The benchmarks represent a wide array

of programs each with their own unique coding style, resource usage, and ultimate task.

However, none perform heavy input/output - this was required to limit the amount that disk

speed issues clouded the results. Below is a list of each benchmark with a brief description

of its key features.

Asac: is a multi-threaded sorter which compares the performance of the Bubble Sort, Se-

lection Sort, and Quick Sort algorithms. It uses reflection to access each sorting

algorithm class by name and creates a new thread for each one. In the experiments,

the benchmark sorts a randomly generated array of 30,000 integers.

Chromo: implements a genetic algorithm, an optimization technique that uses random-

ization instead of a deterministic search strategy. It generates a random population

of chromosomes. With mutations and crossovers it tries to achieve the best chromo-

some over successive generations. It instantiates many chromosome objects and, for

each generation, evaluates over 5,000 of these 64-bit array chromosomes.

Decode: implements an algorithm for decoding encrypted messages using Shamir’s Secret

Sharing scheme.

FFT: performs fast fourier transformations on complex double precision data.

Fractal: generates a tree-like (as in leaves) fractal image. It calls java.lang.Math

trigonometric methods heavily and is deeply recursive in nature.

LU: implements Lower/Upper Triangular Decomposition for matrix factorization.

Matrix: performs the inversion function on matrices.
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Probe: uses the Poisson distribution to compute a theoretical approximation to pi for a

given alpha.

Triphase: performs three separate numerically-intensive programs. The first is linpack

linear system solver that performs heavy double precision floating-point arithmetic.

The second is a heavily multi-threaded matrix multiplication algorithm. The third

is a multi-threaded variant of the Sieve prime-finder algorithm. In total, 1,730 Java

threads are created during the execution of this program with as a many as 130 of

them alive at once.

4.4.1 Soot vs. Javac

In order to evaluate the performance effects of each transformation as closely as possi-

ble the baseline time measurements were taken from “sootified” benchmark classes. This

means their original class files, as produced by javac, were run through Soot with the

default options enabled. This is necessary because JBCO, regardless of the obfuscating

transformations that may be enabled, also runs Soot’s default features on the input. Fig-

ure 4.1 shows the difference between the original javac class files and the “sootified”

baseline class files. It’s clear that Soot can have an effect on the runtime performance and,

in some rare cases, it can be quite glaring (e.g.,Triphase in interpreted mode shows a∼20%

slow down due to a single method but it is unclear what the cause is).

4.4.2 Decompilers

A decompiler is an automatic tool that performs the opposite of a compiler. In this thesis we

mean that reverse functionality do be the translation of executable code back into source

code.

There exists a number of Java decompilers which perform well on bytecode which is

specifically produced by Suns Java compiler (javac). One of the most popular of these,

because of its long history, is Jad [Jad]. When given bytecode produced by some version

of the javac compiler, Jad produces excellent output because it is designed to recognize

code patterns known to be created by the compiler and it simply recreates the equivalent,
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Figure 4.1: Performance of “Sootified” versus original javac Benchmarks.

well-known, source code. If unknown patterns appear in a program, however, Jad is almost

always unable to fully decompile the method bytecodes in the program. On rare occasions

it will crash all together. Because of this it is particularly horrible at decompiling even

the most lightly obfuscated software. It is also not able to handle bytecode produced from

other sources such as optimizing tools, instrumenters, and third-party compilers generating

bytecode from non-Java source languages.

SourceAgain [Sou], a more advanced decompiler, also has some tenancies towards

code pattern recognition but its website claims it has “insensitivity to the original compiler”.

It seems to perform some dataflow analysis and definitely performs better than Jad in non-

Java specific compiler situations.

In contrast to javac-specific decompilers, the Soot-based Dava [NH06] decompiler

was created for the very task of handling arbitrary bytecode. Dava does not specifically

look for patterns exhibited in javac output; it operates on the idea that any valid bytecode

should be decompilable. While this requires much more complicated decompilation tech-

niques, it is a more robust approach. The output of Dava may not always look as natural
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but it is more likely to be directly re-compilable and therefore, in some ways, superior.

While older decompilers for Java exist as well, such as Mocha [Moc], we will use

only the three that we have outlined here in future chapters in order to give examples of

decompiled obfuscations. It will always be noted in the code listings which decompiler

was used. Additionally, we will summarize how well each decompiler is able to handle

each obfuscation.
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Chapter 5

Operator Level Obfuscations

The simplest kind of transformation is one that attempts to conceal information in the

same way a magician performs his tricks: by slight of hand. This chapter details transfor-

mations which hide information not necessarily by removing it altogether but by putting it

in places a reverse-engineer might not think to look.

We call these operator-level obfuscations because they do not change the design struc-

ture of the program or the control flow of method execution. They simply rework the

low-level program logic. These techniques are not built to confuse a decompiler but rather

to confuse a human — that is, a reverse-engineer — trying to read the decompiled source.

This is the case for the obfuscations in this chapter.

5.1 Renaming Identifiers: Classes, Methods, and Fields

(RI{C,M,F})
The existence of discrete names for program constructs such as classes and methods carries

with it a certain vulnerability. Languages compiled to machine code have these identifiers

stripped out since they are not essential or even required for the execution of the program.

Java maintains the naming scheme even in bytecode in order to be able to report meaningful

exceptions for debugging purposes, such as where the exception occurred.

Replacing class, field, and method names in bytecode has the potential to remove a great
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deal of information. In fact, it is probably one of the most effective obfuscations. Method

names, for example, very often carry clear and concise explanations of their function (e.g.,

getName, getSocketConnection, etc.).

Our renaming transformation changes all class, field, and method names where possi-

ble. In order to not disrupt any outside mechanisms such as script files that are used to start

the program, the identifier of the Main class (defined as the class with the entry method

named main) is not changed. Any instances of the run() method implemented by a class

which extends java.lang.Thread likewise are not renamed. Additionally, the pro-

gram is presumed to not use any reflection — a Java framework which allows for loading

of classes and calling of method names in a dynamic way.

For those situations where certain constructs cannot or should not be renamed (e.g.,

in the face of reflection) they can be specified as command line options either explicitly

or with regular expressions and those matching constructs will not be renamed (see Sec-

tion 8.1).

Those identifiers that are renamed are done so with randomly generated sequences or

by “stealing” names from other methods or fields within the program.

JBCO uses three sets of “ugly characters” as dictionaries from which to form the ran-

domly generated new names — sets chosen specifically for their hard to read nature, where

each character is similar to the others and therefore hard to distinguish among the code.

These three sets include:

S, 5, $ — the uppercase letter S, the digit five, and the dollar sign; three characters that are

similar in visual appearance.

l, 1, I — the lowercase letter L, the digit one, and the uppercase letter i. These three

characters can be very hard to tell apart, depending on the choice of font.

— the underscore. This is a useful single-character set because it is particularly hard to

distinguish between a variable named with five underscores versus a variable named

with six underscores, especially when the font used to display the code renders con-

secutive underscores as a single line, as is often the case.
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The algorithm creates new names randomly. If, after ten attempts, it does not find a

name which is unique of the given length it increase the length by one and resets, attempting

another ten tries. This repeats until the algorithm is successful.

Stolen names are sometimes used instead in order to confuse the reverse-engineer. Us-

ing a method name of “createFile” for a method that deletes files, for example, could be

very confusing.

Listing 5.1 shows a method in one of the benchmarks after renaming has been per-

formed. While the actual operations may be obvious and library method names and fields

could not be renamed, it is much harder to follow the semantics due to the difficulty in

clearly identifying the different objects, variables, and methods from one another. Note

that Dava has chosen names for local variables, in the absence of a local variable table in

the class file, that help clarify their type.

5.1.1 Performance Results (RI{C,M,F})
The renaming of identifiers in Java will, in most cases, result in shorter average identifier

lengths. Human programmers tend to give meaningful names to methods and fields. These

human-created names will, on average, be longer than the short names generated by this

transformation. Because of this, we should not expect to see any slowdown whatsoever

due to this obfuscation. In fact, if a lower average is obtained, there could be room for

an improvement in runtime performance. Indeed, this is what we observe in the server

mode for almost all benchmarks, as seen in Figure 5.1. Note that not all benchmarks

are represented in this graph because not all of them had a significant number of classes,

methods, and fields to rename.

The reason for the observed slowdowns in interpreted mode for all benchmarks is un-

clear but well within the range of standard error. A possible explanation could be slow

method name resolution due to key collisions in a hashtable — the renaming transforma-

tion does use names which are often similar and have a high likelihood of sharing a prefix.

Nevertheless, without a detailed study of the VM implementation this is pure conjecture.
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void (Graphics r1, float f0, float f1, float f2, float f3, float f4, int i0) {
lII = f0;
lll = f1;
lIl = f3;
lIII();
float f6 = lII;
float f5 = lll;
int i3 = i0 + −1;

if (i3 >= 3) {
r1.setColor(Color.white);

(r1, f2, (int)f0, ll1 − (int)f1, (int)f6, ll1 − (int)f5);
} else {

r1.setColor(Color.green);
(r1, f2, (int)f0, ll1 − (int)f1, (int)f6, ll1 − (int)f5);

}

if (i3 > 0) {
$5$ = this. (f0, f1, f6, f5);
l11I(Ill1);

(r1, lII, lll, $5S ∗ f2, Il1 ∗ f3, Ill1, i3);
$5$ = (f0, f1, f6, f5);
l11I((− (SSS)));

(r1, f6, f5, $5S ∗ f2, Il1 ∗ f3, SSS, i3);
}

}

Listing 5.1: Example method after renaming of classes and fields and methods. Decompiled by
Dava.

5.2 Embedding Constant Values as Fields (ECVF)

Within the Java source language constant pieces of data — that is, values that are hard

coded into the program — are sometimes “in place”. They appear directly within the code

where they are used. Because of this it is quite clear when and where this data is being used.

Consider Listing 5.2 where the use of the constant error string “Illegal Depth Number! . . . ”

is embedded directly in the code, and therefore its use is clear.

While the values appear directly within the source code, they are actually stored sep-

arately in bytecode. Each class file in a program has constant data used by that class file
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Figure 5.1: Effects of renaming class, field, and method identifiers.

stored in a constant pool, separate from the method codes. These constants are accessed by

their index within the pool through the ldc instruction. These values are the truly embed-

ded constants. Other values, such as class fields which are not final but might nevertheless

maintain a constant value throughout the life of a program (which are assigned a value in

the class initializer) are not considered embedded because they are accessed through the

field and not directly by index. While these field uses may also increase the readability of

code due to their meaningful names, such as INTEGERMIN or MAXBUFSIZE, they can

not be obfuscated with this approach. See Section 5.1 for a possible technique in clouding

the meaning of these fields.

The approach of our obfuscation of constant data is to conceal these values in some

way so that the actual data does not appear directly where it is used in the program source

if it is decompiled. A very simple and cheap way to do this is store the constants in static

class fields. In this case, all instances of the constants within the code can be replaced by

references to the static fields by a quick sweep through all method code.

In its basic form this technique is not very resilient. Inter-procedural copy propagation
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try {
level = Integer.parseInt(arg);

} catch (NumberFormatException exc) {
System.out.println("Illegal Depth Number! (try -help)\n" +
"could not parse: " + arg);

System.exit(1);
}

Listing 5.2: A Java source code snipper clearly showing embedded constant data.

could quickly reverse the obfuscation. Nevertheless, an opaque predicate and dead re-

assignment code for each constant could easily subjugate this shortcoming.

5.2.1 Performance Results (ECVF)

The benefit of constant data appearing within source code is obvious. The programmer

is not required to look up the value of a constant field or otherwise know anything about

the design of a program. An integer variable within the program, for example, which

is multiplied by the constant integer two is simply that (x * 2). Certainly, some data

should and will be assigned to static final constant fields by the programmer but many

simple uses of primitive values in the program do not warrant creating an entire new field.

This transformation removes a level of accessibility for those pieces of data left in code of

the program and makes it more difficult to understand the intent of the source code when

decompiled.

Not surprisingly, negative effects caused by this transformation are limited to those

programs which rely heavily on constant data (see Figure 5.2). Both asac and decode

see significant slowdowns in server mode, whereas all other benchmarks do not show much

change. This makes sense; decode performs the highest number of field accesses per

second of running time — an order of magnitude greater than asac, which is itself an

order of magnitude greater than the next highest triphase. It is likely that interpreted

mode is so slow in general that the added costs of the field accesses are not noticeable.
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Figure 5.2: Effects of embedding constant program data into static fields.

5.3 Packing Local Variables into Bitfields (PLVB)

The idea of data obfuscation is not a new one. Collberg and Thomborson [CT02] suggested

that a boolean variable could be split into two integers i1 and i2. The boolean value could

then be resolved by performing an exclusive or on the integers. Through this logic, the

boolean value itself is hidden.

Arrays, Strings, and other data structures are also available for data obfuscation. How-

ever, there will always be a penalty incurred by such transformations when the data is

reconstituted. Additionally, since it is fully-formed at some point in the execution of the

program it is therefore vulnerable to reverse-engineering attacks through the use of de-

buggers. The overall usefulness of these approaches as a general obfuscation scheme is

therefore minimal.

Nevertheless, we have attempted to reach a compromise. This transformation coalesces

local primitive variables into a fewer number of bit fields. In reality, these bit fields are

Java primitive long types — 64-bit data blocks — which are used to represent multiple
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booleans, integers, characters, or bytes.

The simplest approach would be to collect all the primitive locals of a method and

calculate the number of bits required to represent them all. However, to further obfuscate

things, we choose random bit ranges within the long primitives for packing. For example,

an integer primitive normally represented by 32 bits might get packed into a long between

its 9th and 43rd bits, exclusively.

Every load and store instruction of the packed locals in the original method are

replaced with loads and stores of the long primitive they are packed into, accompanied by

the proper bit-shifting and bit-masking operations in order to isolate and restore the value

of the local. Listings 5.3 and 5.4 present a method before and after local packing.

static void FillPowerMatrix(Digit matrix[][], Digit x[]) {
int n = matrix[0].length;

for (int i = 0; i < n; i++) {
matrix[i][0] = new Digit(1);

for (int j = 1; j < n; j++) {
matrix[i][j] = matrix[i][j−1].mult(x[i]);

}
}

}

Listing 5.3: Example FillPowerMatrixmethod before local variables are packed into bitfields.

Because this transformation will affect performance due to increased value manipula-

tion and because the placement of locals within the long primitives is random, not all locals

will be packed.

5.3.1 Performance Results (PLVB)

Any encapsulation of data should be expected to slow performance since any access to

the data must entail some unpacking and storing must entail some packing. In the case of

locals packing as we have described, this is mostly true (see Figure 5.3). In some bench-

marks the effect can be quite crippling, as in asac and triphase. Strangely, a third
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static void FillPowerMatrix(Digit[][] r0, Digit[] r1) {
long l0;
int i2, i3;

for (i2 = r0[0].length, i3 = 0; i3 < i2; i3++) {
r0[i3][0] = new Digit(1);

for (l0 = (long) 1 & 4294967295L ˆ l0 & −4294967296L;
(int) (l0 & 4294967295L) < i2;

l0 = (long) (1 + (int) (l0 & 4294967295L)) ˆ l0 & −4294967296L) {
r0[i3][(int) (l0 & 4294967295L)] =

r0[i3][(int) (l0 & 4294967295L) − 1].mult(r1[i3]);
}

}
}

Listing 5.4: Example FillPowerMatrix method after local variables are packed into bitfields.

of the benchmarks actually show improvements in server mode. This is possibly due to a

reduction of register usage in certain methods, limiting the amount of memory swapping

that is required. One method with 20 local booleans, for example, could have all of those

variables packed into one long by this transformation. This would result in the use of two

32-bit registers instead of 20.

5.4 Converting Arithmetic Expressions to Bit-Shifting

Operations (CAE2BO)

There are often more ways than one to express a calculation and to the human eye, some

are more complex than others. In fact, optimizing compilers sometimes convert a complex

operation such as multiplication or division, which may be more readable, into a sequence

of cheaper operations, which are more confusing. With this arithmetic transformation, the

goal is to use the same trick as the optimization mentioned above by obscuring multiplica-

tions and divisions into less obvious bit-shifting instructions.

In particular, we look for instances of expressions in the form of v ∗C (a similar tech-
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Figure 5.3: Effects of packing local data into bitfields.

nique is used for v/C), where v is a variable and C is a constant. We then extract from

C the largest integer value i which is less than C and is also a power of 2, i = 2s, where

s = f loor(log2(v)). We then compute the remainder, r = v− i. If s is in the range of

−128 . . .127, then we can convert the original computation as (v << s)+ (v ∗ r) and the

expression v∗ r can be further decomposed.

In order to further obfuscate the computation we don’t use the shift value s directly, but

rather find an equivalent value s′. To do this we take advantage of the fact that shifting

a 32-bit word by 32 (or a multiple of 32) always returns it to its original state. Thus we

choose a random multiple m, and compute a new shift value, s′ = (byte)(s+ (m ∗ 32)),

which computes an equivalent shift value in the correct range (−128 . . .127).

As an example, an expression of the form v ∗ 195 in the original program would be

converted first to (v<< 7)+(v<< 6)+(v<< 1)+v and then the three shift values would

be further obfuscated to something like (v<< 39)+(v<< 38)+(v<<−95)+ v.

A decompiler that is aware of this calculation could potentially reverse it, but hiding

the constants with opaque predicates could hamper decompilation.
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5.4.1 Performance Results (CAE2BO)

This transformation is increasing the overall amount of calculations a program must per-

form. Nevertheless, it does not seem to make a performance footprint at all. The largest

variations from the original program, shown in Figure 5.4, were the FFT and Matrix

benchmarks but they were faster, not slower. It would appear that the VM, or modern hard-

ware in general, is particularly good at bit-shifting operations compared to multiplication,

which explains why this approach is also used by optimizing compilers. The rest of the

numbers are well within the standard error range.
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Figure 5.4: Effects of transforming arithmetic expressions into bit-shifting operations.
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Chapter 6

Obfuscating Program Structure

Program structure can be thought of as the framework. In a building this would be the

supporting beams, the floors, and the ceiling. It would not be the walls or the carpeting. We

define structure in this chapter to include two facets: the high-level object-oriented design

and the low-level control flow.

Each transformation presented in this chapter operates on either the high-level design

(moving methods, creating new classes) or on the low-level design (confusing the control

flow of a method). A round house built to appear square can be very confusing indeed.

6.1 Adding Dead-Code Switch Statements (ADSS)

The switch construct in Java bytecode offers a compelling and useful control flow ob-

fuscating tool. A switch with a few targets is the only organic way, other than traps, to

manufacture a control flow graph which has a node whose successor count is greater than

two.

The goal of this transformation is to add additional edges to the control flow graph in

order to severely complicate flow analysis. To do this, a stack height calculator determines

those units in the graph which have a stack height of zero. All of these points are now

viable destinations for a tableswitch. Using opaque predicates to jump around the

tableswitch, the switch is instrumented with as many as ten possible cases. Each case

is randomly chosen out of the list of zero-height units.
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The end result is an additional incoming edge for every unit chosen as a switch desti-

nation and an additional outgoing edge from the tableswitch for each case. The only

additional nodes are the tableswitch itself and the opaque predicate if statement.

This, effectively, increases connectedness of the graph and increases overall complexity.

The result of this transformation is usually quite messy as can be seen when compar-

ing original code (Listing 6.1) against decompiler output from obfuscated code (see List-

ing 6.2). There is no easy way to properly handle the control flow other than to heavily nest

the switch statement within labelled blocks, allowing the different cases to jump outward

to their proper destinations. While it is commendable that SourceAgain manages to

re-create a close approximation of what the bytecode is doing, it is still not recompilable

and fairly unreadable. Dava is also unable to reproduce proper source code and in some

cases crashes while trying to resolve cycles in the control flow graph.

if (writeImage != null) {
try {

File file = new File("out");
ImageIO.write(writeImage, "png", file);

} catch (Exception e) {
System.exit(1);

}
}
System.exit(0);

Listing 6.1: A Java source code snippet before obfuscation with a dead-code switch.

6.1.1 Performance Results (ADSS)

The idea of adding switch statements into a method is quite useful. Even relying on ran-

domness to choose the branch targets is usually enough to increase the complexity of the

control glow graph. This results in very unnatural looking decompiled code or, often times,

completely un-decompilable code. This, in theory, is a fairly cheap obfuscation as well

since the switch itself is never executed — it is essentially dead code. However, there is the

cost of the opaque predicate. This extra branching logic needs to be inserted to skip over
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if(obj != null) {
try {

ImageIO.write((RenderedImage) obj, "png", new File("out"));
} catch(Exception exception2) {

++i;
obj = exception2;
i += 2;
System.exit(1);

}
}

label 167: {
while(lI1.booleanValue() == ) {
switch (i) {
default:
break;
case 3:
break label 167;
case 1:

++i;
obj = exception2;
i += 2;
System.exit(1);
continue;
case 2:

i += 2;
System.exit(1);
continue;

}
}
System.exit(0);

}

Listing 6.2: A Java source code snippet after obfuscation with a dead-code switch. Decompiled by
SourceAgain— it is not correct source code.
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the switch.

In general, the obfuscation does not hinder performance. In fact, a number of the bench-

marks show improvements in server mode, as can be seen in Figure 6.1. asac is partic-

ularly worse off in both modes but this is due to the fact that one particular method in the

program, a method called to swap two numbers in the sorting algorithm, is called over 225

million times in a single five-second run of the program. This method was instrumented

with a switch by the transformation and the opaque predicate installed results in the ad-

dition of one method call (booleenValue()), one field access, and one if instruction. A

profile of the running program shows a sharp increase in the amount of time spent in swap

versus any other method. This illustrates the usefulness of selective obfuscation, which

will be discussed later in a later chapter.

A similar situation occurred in Matrix, only worse. An even smaller method (used

to set elements in a matrix) was augmented with a switch statement that had six branch

targets; highly unusual for a method of such a small size. Normally the transformation

would not find so many target candidates in bytecode that small. In this situation, the

method jumped from 14 bytes to 97 bytes long and a number of “junk” additions were

made to the ultimately unread switch control local. These random increments are intended

to make it look as though the switch is actually used in a normal way. Luckily, the VM JIT

compiler is able to mostly optimize away this performance issue although the interpreter is

not nearly as lucky — the method in question accounted for 33% of the program runtime

in interpreted versus 3% in server mode.

6.2 Finding and Reusing Duplicate Sequences (RDS)

Because of the nature of bytecode, there is often a fair amount of duplication. Even within

one method, a sequence of instructions might appear a number of times. By finding these

duplicates and replacing them with a single switched instance we can potentially reduce

the size of the method and can definitely confuse the control flow.

A complex analysis could be written to handle many duplicates of a sequence, includ-

ing those that straddle try block boundaries. However, this would require much more com-

plicated analysis as well as the addition of more control flow logic. We chose a simple
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Figure 6.1: Effects of adding dead-code switch instructions.

conservative approach instead. Every sequence of 20 instructions or less within a method

is collected and then the method is checked for duplicates of these sequences. There are a

number of rules which define whether a sequence is a proper duplicate or not.

• The sequence must be of the same length as the original and any bytecode instruction

in the duplicate sequence bd at index i must equal the original bytecode bo at index i.

• The duplicate instructions and their parameters must match the original sequence -

that is to say an istore is only a proper duplicate instruction if it shares the same reg-

ister parameter with the original istore and an if instruction is only a proper duplicate

if it shares the same jump destination as the original.

• The duplicate instruction bd at index i must be protected by exactly the same try

blocks as the original instruction bo at index i. If the original is not protected at all,

neither can the duplicate be protected. This simplifies the analysis a great deal.

• Every instruction in a sequence other than the first must have no predecessor in-

structions that fall outside the sequence. This prevents the analysis from having to
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verify that the original and duplicate sequences share the same predecessors, further

simplifying the problem.

• Each instruction in the duplicate sequence bd at index i must share the same stack as

its counterpart in the original sequence bo at index i. This ensures that the verifier

will not complain and that each instruction in the method will always have the same

initial stack height with the same initial stack type ordering.

• No instruction within the duplicate sequence can overlap with the instructions in the

original sequence as per their layout within the method.

The algorithm performs rounds, starting with the longest sequences first. Thus, in the

first round the algorithm collects candidate sequences of length 20 and then attempts to find

duplicates of those candidate sequences. If any are found, the algorithm then creates a new

method local of integer type which will act as a control flow flag. The duplicate sequences

are removed and replaced with an initialization of the control flow flag to a unique number

(usually 1, 2, 3, and so on, as the duplicate sequences are removed) followed by a goto

instruction directed at the first instruction in the original sequence. When all duplicates

have been removed, the original sequence is prepended with two instructions which store

0 to the control flow flag and appended with a load of the control flow flag followed by a

tableswitch instruction. The default action is to fall through to the next instruction (the

original successor of the original sequence). A case for each duplicate sequence is added

to the table which results in a jump to the original successor instruction for that sequence.

After the first round, the sequence length is decremented and the second round is run.

This round of candidate selection and duplicate detection is performed on the new version

of the method which might have been changed by the previous round. This is repeated until

the sequence length is less than 3. No doubt, sequences of length two are heavily repeated

throughout Java bytecode and replacing these would only increase the overall method size

and decrease the overall performance. For each duplicate sequence there are three instruc-

tions added: the unique integer constant push onto the stack, the store of that constant to

the control flow flag, and the goto instruction which jumps to the top of the original se-

quence. For each original sequence, a push/store instruction pair is prepended to it
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and a tableswitch is added to the end of it. The tableswitch size, in the class

file, is dependant on the number of cases in the instruction. The more duplicate sequences,

the larger the space required to store it. Overall, this is three extra instructions for each

duplicate, plus one extra case in the tableswitch and two extra instructions for each origi-

nal sequence plus one tableswitch instruction: 3 + 4*duplicates. Clearly, in order for

this transformation to reduce the class size, the sequence length has to be at least seven if

there is a single duplicate, at least 6 if there are two duplicates, at least 5 for three, etc. An

example can be seen in listings 6.3 and 6.4, which show a method’s code before and after

obfuscation, respectively.

protected static void bitreverse(double data[]) {
int n=data.length/2;
int nm1 = n−1;
int i=0;
int j=0;

for (; i < nm1; i++) {
int ii = i << 1;
int jj = j << 1;
int k = n >> 1;

if (i < j) {
double tmp real = data[ii];
double tmp imag = data[ii+1];
data[ii] = data[jj];
data[ii+1] = data[jj+1];
data[jj] = tmp real;
data[jj+1] = tmp imag;

}
while (k <= j) {

j −= k;
k >>= 1;

}

j += k;
}

}

Listing 6.3: Example method bitreverse before duplicate sequences have been resolved into
one.
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Empirical testing has found that it is possible to occasionally find duplicate sequences

of high magnitude. Lengths of 17 and 19 have been seen and almost all benchmarks tested

had some duplicates of length 8 or more. Nevertheless, the majority of duplicates found are

in the 3 to 5 length range. While these are not productive in reducing the class file sizes they

are very useful in confusing control flow. Additionally, performance testing finds that in

many cases this transformation can decrease the running times, suggesting this is a possible

area of study for compiler optimization.

6.2.1 Performance Results (RDS)

The effects of duplicate sequence reuse can be fairly significant as seen in Figure 6.2. In

some cases performance times are improved in server mode, yet a number of benchmarks

show slowdowns in interpreted mode. This is likely due to positive JIT optimizations or

improved instruction caching. The transformation is usually enlarging methods and effect-

ing the amount of control flow overhead so it is unsurprising to see measurable slowdowns

in interpreted mode.

Figure 6.2: Effects of duplicate sequence reuse.
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protected static void bitreverse(double[] r0) {
// variable declarations and initializers removed.
label 2: while (i2 < i1) {

i4 = i2 << 1;
i5 = i3 << 1;
$i9 = i0;
i6 = 0;
while (true) {

i7 = $i9 >> 1;
label 1: switch (i6) {

case 1: break label 1;
default: if (i2 >= i3) break label 1;

$d1 = r0[i4];
i11 = 0;
label 0: while (true) {

$i12 = i4 + 1;
switch (i11) {
case 1:

r0[$i12] = r0[i5 + 1];
r0[i5] = $d1;
r0[i5 + 1] = d0;
break label 1;
default:

d0 = r0[$i12];
r0[i4] = r0[i5];
i11 = 1;
continue label 0;

} // end switch (i11)
} // end label 0 block and while loop

} // end label 1 block and switch (i6)
if (i7 > i3) {

i3 = i3 + i7;
i2++;
continue label 2;

}
i3 = i3 − i7;
$i9 = i7;
i6 = 1;

}
} // end label 2 block and while loop

}

Listing 6.4: Example method bitreverse after duplicate sequences have been resolved into one.
Decompiled by Dava. The code is semantically equivalent but much more difficult to read. Local
variable declarations were removed for space considerations.
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The LU benchmark is the only one to show a marked slowdown in server mode —

almost 30%. The slowdown is almost entirely encapsulated in a single method, factor,

which is the same method that is isolated in Section 7.2.1 as the cause of a JIT slowdown

(which is likely due to its complex nested structure). In this situation, the JIT is simply

unable to significantly optimize the method.

Indeed, individual profiling of the factor method shows a ∼26% slowdown after

transformation. Since this method accounts for well over 90% of the programs normal

runtime, it explains the performance degradation.1

6.3 Replacing if Instructions with Try-Catch Blocks (RI-

ITCB)

The try-catch construct in the Java language can be considered implicit potential control

flow. In almost all normal uses of a try block, there is a possibility of an exception occurring

but it is both not intended and hopefully does not happen. Proper programming style would

decree that code should do its best to prevent exceptions even if it does handle them.

Nevertheless exception throwing can be explicit. The throw instruction allows this or,

alternately, one can write code that is guaranteed to cause an exception. By catching these

exceptions one can create a new (though unintended by the language designers) use of the

try-catch — normal program control branching.

This transformation exploits two well known facts of Java. First, invoking an instance

method on a null object will always result in a NullPointerException being thrown. Sec-

ond, two null objects will always be considered equal by the ifacmpeq instruction and

a non-null object will always be considered not equal to a null object.

Each ifnull and ifnonnull instruction in a method is considered for this transfor-

mation. One of two different scenarios are applied in order to convert this single instruction

into a more obfuscated try-catch block such that the original if-branching is performed in-

stead by the exception catching mechanism. This is very similar to the approach by Sakabe,

et al. [SSM03], although they relied on creating special exception objects which added un-

1This is an example where profiling can help to fine tune obfuscation settings described in 8.1.
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necessary overhead. This transformation, in throwing exceptions, takes advantage of Java’s

ability to throw null exceptions. Normally, when an exception is thrown an instance of an

Exception object must be created and its reference must be pushed onto the stack, causing

some performance overhead. Throwing a null exception side-steps this object instantia-

tion but still allows for the exceptional control flow associated with the try-catch.

Every object in Java is a child of, or is itself, a java.lang.Object. This ensures

that certain methods defined in that class will always be invokable, no matter the actual

class of an object. Whether those methods will virtually resolve to java.lang.Object

or some other overloaded version is not important.

The ifnull instruction being transformed is removed and replaced with a call to

toString or a ifacmpeq instruction comparing the original object to a null reference.

Listings 6.6 and 6.7 show decompiled examples for SourceAgain and Dava, respec-

tively. The original source code is shown in Listing 6.5.

public static void main(String argv[]) {
if (argv == null) {

System.out.println("Something is really wrong");
return;

}

for (int i = 0; i < argv.length; i++) {
if (argv[i] != null)

System.out.println(argv[i]);
}

}

Listing 6.5: Example Java source method main before ifnull instructions are transformed into
a try-catch blocks.

In the case of the toString replacement, the method call is wrapped in a Try block

which handles NullPointerExceptions and if thrown, redirects control flow to the original

if instructions target. If the object is indeed null it will be unable to resolve the method

call and, of course, a NullPointerException will be raised. The original target is prepended

with a pop in order to discard the exception that is pushed on the stack by the exception

handling mechanism.
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public static void main(String as[]) {
int i;

try {
as.equals(null);

} catch(NullPointerException unused2) {
System.out.println("Something is really wrong");
return;

}

for(i = 0; i < as.length; ++i) {
try {

as[i].toString();
} catch(NullPointerException unused3) { }
// location of ”not null” branch of the code

}
}

Listing 6.6: Example Java source method main after ifnull instructions are transformed into
a trapped toString/equals calls. Decompiled by SourceAgain — it is missing the code
following the second if and is therefore incorrect code.

If the ifcmpeq option is chosen, a null object is pushed onto the stack in order to

compare it with the original object on the stack. If they are equal, control flow jumps to

an explicit throw null instruction, which is trapped by a try block. This exceptional

control flow behaves as the previous example does, popping the null exception off the stack

and proceeding to the original target.

6.3.1 Performance Results (RIITCB)

Unfortunately, the benchmark suite selected for use in this thesis had very few instances

of ifnull and ifnonnull instructions. Only two benchmarks were modified by this

transformation and the effect was very minimal. In both cases the specific code that was

changed was not “hot” - that is, it was not a heavily executed area within the program.

Therefore the true performance penalties incurred by this transformation are not known.

However, it is likely that there would be a significant slowdown if “hot” code was af-

fected due to the addition of an exception table lookup. Indeed, the research by Sakabe, et
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public static void main(String $no[]) {
Object $n0 = null;
int i0;
String $r4;

try {
r0.equals($n0);

} catch (NullPointerException $r2) {
System.out.println("Something is really wrong");
return;

}

for (i0 = 0; i0 < r0.length; i0++) {
$r4 = r0[i0];
label 0: {
try {

$r4.toString();
} catch (NullPointerException $r8) {
break label 0;

}

System.out.println(r0[i0]);
} //end label 0:

}
}

Listing 6.7: Example Java source method main after ifnull instructions are transformed into a
trapped toString/equals calls. Decompiled by Dava— it is correct code.

al. [SSM03] suggests this to be true.

6.4 Building API Buffer Methods (BAPIBM)

A lot of information is inherent in Java programs because of the widespread use of the

Java libraries. These libraries, while not exposed themselves, have clear and well-defined

documentation. The very existence of library objects and method calls can give shape and

meaning to a method based entirely on how they are being used.

The method calls that direct execution into the standard Java libraries — the design

of which is known as an Application Programming Interface (API) — cannot be renamed
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Figure 6.3: Effects of replacing if(non)null instructions with Try-Catch constructs.

because the obfuscator should not change library code2. Therefore, the next best option

is to hide the names of the library methods. The approach we take in this transformation

is by indirecting all library method calls through intermediate methods with nonsensical

identifiers.

The code for each method of each class is checked for library calls. A new methodM is

then created for every library method, L, referenced in the program. The methodM is then

instrumented to invoke the library method L. The new method M is placed in a randomly

chosen class in order to cause “class-coagulation”, an increase in class interdependence. If

two program classes, A and B do not reference each other or the fields of the other then

they are independent. If A invokes a library call somewhere within its method code and

that call is obfuscated by this transformation through the addition of a new method M in

class B, then A and B become interdependent, or “coagulated” (see Figure 6.4). Therefore,

this obfuscation is two-fold. It confuses the overall design of the program and also hides

2While it is not completely impossible, it is not reasonable. Firstly, obfuscating library code is sometimes
illegal. Second, it would mean that those libraries would have to be distributed with the program, as well,
causing an astronomical blowup in the program’s distribution size
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the library method calls by moving them to a completely different “physical” part of the

program.

Main Entry Point

A

B C

B1 B2 B3

Ba

Main Entry Point

A

B C

B1 B2 B3

Ba

Figure 6.4: Effects of “class-coagulation” on program structure. Solid lines represent parent-child
class links, dotted lines represent other class dependencies.

6.4.1 Performance Results (BAPIBM)

While this transformation has a potential to increase the overall size of a program it should

not affect performance very much. Certainly, a level of indirection is being added, incurring

an extra method invocation for every library method call. However, in most cases the

JIT will inline these methods since they are very short. If any noticeable performance

slowdowns occur they should be expected to manifest themselves much more sharply in

interpreted mode.

In Figure 6.5, Fractal shows this interpreted slowdown, but it is also the heaviest bench-

mark in terms of dynamic library API usage. In total it makes over 82 million of these (now

indirected) calls, or roughly 5.8 million per second. LU is a distant second at 2.8 million

calls per second and probe is third at 1.3 million.

As to the slowdown of LU in server mode, it appears to be due to the fact that the

benchmark has an extremely short running time - roughly 1 second - and there the JIT does
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Figure 6.5: Effects of adding library API buffer methods.

not have time to fully inline the indirected library calls. Using the “-Xcomp” flag with

the VM to force full compilation of all methods results in almost identical running times

between the original and obfuscated versions.

Many of the obfuscated benchmarks were faster in server mode. This is possibly due to

the heuristics used for inlining in the JIT. The small single-statement buffer methods might

be flagged by the JIT for more aggressive inlining.

6.5 Building Library Buffer Classes (BLBC)

In addition to library method calls, having a class that extends a library class (as opposed

to another application class) can lend a certain amount of clarity to a program. Parent class

methods that are overridden in the child are more obvious as well. Take, for example,

a class called IDObject which extends java.lang.Object and adds an integer in-

stance field called ID. Let’s say the toString method is overridden and made to prepend

the ID to the object’s string representation. Any normal Java programmer will understand
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very quickly the overall purpose of the class: to have an Object which is marked with an

ID that is always included in print outs.

In order to cloud this particular design structure of Java we have implemented a trans-

formation that creates buffer classes between any application classes that extend a library

class and its parent library class. The purpose should be clear. In the above example, after

obfuscation, the IDObject class would extend a newly created buffer class which we will

call IDBuffer. This parent class would implement its own nonsense toStringmethod.

Coupled with the obfuscation from the previous section that buffers library method calls,

this serves as a way to complicate and confuse the design of the program by adding extra

layers and, ultimately, it spreads the single-intent class structure over multiple files that a

reverse-engineer must look at.

6.5.1 Performance Results (BLBC)

The object-oriented nature of Java allows for some higher-level abstraction and this can be

used to further obfuscate code. Because the framework of a program is human-designed, it

will most likely hold a certain amount of information about the software’s general purpose,

yet it is rare that this framework is necessary to derive a solid and effective compiled pro-

gram. This transformation is intended to fleece a certain amount of object-oriented design

by moving overridden methods into an intermediate class which acts as a buffer between

the library and application levels. Large applications could see a significant number of

classes created by this transformation but, in general, it is an order of magnitude smaller

than the number of classes in the application as a whole.

There will be some performance overhead incurred by this transformation since there

will be more classes and more method calls which will result in multiple virtual lookups

but overall, little slowdown should be expected.

The only notable performance slowdown in the benchmarks is with the decode bench-

mark. This slowdown can be attributed to the extra work necessary to call the intermediate

S$5$5’s constructor - the added level of object abstraction created by the transform be-

tween the Digit class and the java.lang.Object class. decode is a decryption

program and creates many of these objects - over 30 million in total in its short-run of∼1.8
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seconds. In interpreted mode where object creation is especially noticeable as a bottleneck

in the JVM, the slowdown is as much as ∼10%. All other benchmarks are the same, or

faster, than their originals3, as shown in Figure 6.6.

Figure 6.6: Effects of adding intermediate buffer classes.

3Only benchmarks which were affected by this transformation are shown in Figure 6.6
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Chapter 7

Exploiting The Design Gap

Inherent in the design of the Java language are certain gaps between what is repre-

sentable in Java source code and what is representable in bytecode. The classic example

is the goto. Java source code does not have a goto statement. Abrupt jumps must be

performed through the break or continue statements which force a certain level of

structure on the programmer. The rawest form of abrupt statement possible in source code

(shown in Listing 7.1) is a labelled break out of a block of code. The very existence of

the code block — a limitation of the language — incites structure.

label0: {

while (true) {
String line = readLine();

if (line == null)
break label0; // breaks to end of label0
else if (isEOF(line))
break; // breaks out of while loop

} // end of while loop

System.out.println("End of file reached");
} // end of label0

Listing 7.1: A Java source code snippet displaying use of a labelled break construct.
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The obfuscations detailed in this chapter attempt to exploit these gaps between the two

representations of source and bytecode. Often, this can result in a situation where decom-

pilers either produce incorrect code or do not produce any code whatsoever. Occasionally,

the decompiler crashes.

7.1 Exception Handling

The Java language has a special exception handling framework that makes for easy and

robust application development. However, due to the way this framework is defined it is

possible to take advantage of its structure for obfuscating purposes.

Specifically, traps are used to specify sections of bytecode that may throw an exception.

In the event this section of code produces an exception, execution control is passed to a

specified handler instruction within the same method. Because of this layout, it is implicitly

assumed that any instruction within the trap may throw an exception and therefore a proper

control flow graph must take these extra branching possibilities into account. This heavily

increases complexity with potentially little performance loss.

Normal Java source code, when compiled with javac, will produce very predictable

bytecode. Catch blocks will always follow their corresponding try blocks within the byte-

code and try blocks will not overlap each other. However, it is possible to construct artificial

traps within the bytecode such that it is very difficult to properly represent the meaning in

source by breaking away from these predictable patterns.

The last four obfuscations detailed in this chapter take advantage of the architecture of

Java traps.

7.2 Converting Branches to jsr Instructions (CB2JI)

The Java bytecode jsr instruction is a historical anomaly. It was originally introduced to

handle finally blocks. Finally blocks are sections of code that are guaranteed to run after a

try block, whether an exception is thrown within the try block or not.

Nevertheless, the jsr is analogous to the goto instruction other than the fact that it

pushes a return address on the stack. Normally, a jsr is used to jump to a subroutine.
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Part of the jump process is to place a return address on the stack which is the location that

execution should “return” to after the subroutine is run. The return address is normally

stored to a register after the jump and when the subroutine is complete the ret instruction

is used to jump back to the return address.

In this transformation we take advantage of the jsr’s ability to jump to different lo-

cations by replacing many if targets and goto instructions within the code with jsr

instructions. The old jump targets have pop instructions inserted before them in order to

discard the return address which is pushed onto the stack. If the jump target’s predecessor

in the instruction sequence falls through, then a goto is inserted after it which jumps di-

rectly to the original target (side-stepping the pop) or an additional jsr is inserted after

it which jumps to the pop (the very next instruction). The transformation changes almost

all control flow to be jsr based. Listings 7.2 and 7.3 show a before and after example in

bytecode for clarification.

public static int sum(int[]);
0: iconst 0
1: istore 1
2: iconst 0
3: istore 2
4: iload 2
5: aload 0
6: arraylength
7: if icmpge 22
10: iload 1
11: aload 0
12: iload 2
13: iaload
14: iadd
15: istore 1
16: iinc 2, 1
19: goto 4
22: iload 1
23: ireturn

Listing 7.2: Example method sum in bytecode form before obfuscation with jsr instructions.
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public static int sum(int[]);
0: iconst 0
1: istore 1
2: iconst 0
3: istore 2
4: goto 8 // side−step return address pop when falling−through
7: pop // if coming from jsr at #23, pop return address
8: iload 2
9: aload 0
10: arraylength
11: if icmpge 26 // jump to jsr at #26
14: iload 1
15: aload 0
16: iload 2
17: iaload
18: iadd
19: istore 1
20: iinc 2, 1
23: jsr 7
26: jsr 29
29: pop // pop return address off from jsr at #26
30: iload 1
31: ireturn

Listing 7.3: Example method sum in bytecode form after obfuscation with jsr instructions.

The jsr-ret construct is particularly difficult to handle when dealing with verifica-

tion issues (as well as flow analysis) and, in fact, decompilers will usually expect to find

a specific ret for every jsr. If no ret instructions are found, it can seriously confuse

decompilers. Listing 7.4 presents a method before obfuscation. Listing 7.5 shows the same

method after obfuscation and decompilation by SourceAgain. While SourceAgain

is fairly adept at handling these jsr-ret issues it still produces heavily nested code with

many repeated sequences. This repeating of code is due to the “inlining” of what it per-

ceives to be subroutines but is really normal control flow.
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public static void main(String args[]) {
int level = 23;

if (args.length > 1 && args[1] != null && args[1].equalsIgnoreCase("-i"))
drawToImage = true;

if (args.length > 0) {
String arg = args[0];

if (arg == null || arg.toLowerCase().indexOf("help") >= 0) {
printHelp();
System.exit(1);

} else {
try {

level = Integer.parseInt(arg);
} catch (NumberFormatException exc) {

System.out.println("Illegal Depth Number!");
System.exit(1);

}
}

} else {
drawToImage = true;

}
setLevel(level);
new Fractal();

}

Listing 7.4: Example method main before obfuscation with jsr instructions.

7.2.1 Performance Results (CB2JI)

The transformation should be expected to slow performance down to some degree. As

stated in Chapter 3 subroutines are complex and, when used in an irregular way, will likely

cause slow downs in the verifier and in JIT compilation. Certainly, this is apparent in

Figure 7.1 where Decode, LU, and Matrix are particularly slow in server mode. This

makes sense. The entire reasoning behind this obfuscation is that the jsr-ret subroutine

framework is inherently difficult for flow analysis and most decompilers will except to

instances of jsr instructions with no matching ret. Proper typing and call graph cycle-

finding under this kind of environment is hard.
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public static void main(String[] as) {
int i = 23;

if(as.length > 1 && as[1] != null && as[1].equalsIgnoreCase("-i"))
drawToImage = true;

if(as.length > 0) {
String s = as[0];

if(s == null || s.toLowerCase().indexOf("help") >= 0) {
printHelp();
System.exit(1);
setLevel(i);
new Fractal();

} else {
try {

i = Integer.parseInt(s);
} catch( NumberFormatException numberformatexception1 ) {

System.out.println("Illegal Depth Number!");
System.exit(1);

}
setLevel(i);
new Fractal();

}
} else {

drawToImage = true;
setLevel(i);
new Fractal();

}
return;
setLevel(i);
new Fractal();

}

Listing 7.5: Example method main after obfuscation with jsr instructions. Decompiled by
SourceAgain— trailing statements after return make this illegal code.
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Figure 7.1: Effects of replacing goto instructions with jsr instructions.

Using the HotSpot -XX:+CITime option shows that LU is performing JIT compilation

at approximately 10∼20% of the speed seen when running other benchmarks. Some brief

exploration into the code yields a particularly dense method, factor, which has heavily

nested for loops. Excluding this single method from compilation yields a server-mode

runtime almost exactly that of the interpreted mode speed and also returns the JIT compi-

lation speed in bytes per second to normal. This one method is responsible for slowing the

entire performance down with complex control flow.1

7.3 Reordering loads Above if Instructions (RLAII)

This simple transformation looks for situations where a local variable is used directly fol-

lowing both paths of an if branch. This is a somewhat common occurrence — consider

code that follows the pattern if x then i++ else i--. Along both branches the

1This exploration serves as a good way to track down these types of methods in order to limit the obfus-
cation performed on them through the weighting mechanism described in Section 8.1.
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first course of action will be for the local variable i to be loaded onto the stack (as shown

in bytecode form in Listing 7.6 where i is in register 1 and x is in register 2). This ob-

fuscation moves the load of i above the if, removing the two copies of load, one each

along the true and false branches. This is shown in bytecode form in Listing 7.7.

4: iload 2
5: ifeq 16
8: iload 1
9: iconst 1
11: iadd
12: istore 1
13: goto 21
16: iload 1
17: iconst 1
19: isub
20: istore 1

Listing 7.6: Example bytecode snippet before reordering load instructions above if instructions.

0: iload 2
1: iload 1
2: swap
3: ifeq 13
6: iconst 1
8: iadd
9: istore 0
10: goto 17
13: iconst 1
15: isub
16: istore 0

Listing 7.7: Example bytecode snippet after reordering load instructions above if instructions.

While a modern decompiler based on control-flow graph analysis should be able to

overcome this obfuscation with little problem, any decompiler relying on pattern matching

(such as the venerable Jad) has the potential to become very confused. Consider the small

function sum presented in its original source code form in Listing 7.8. The main branch
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in the method is the head of the for loop. During normal execution of the loop, the

branch instruction follows on to the aggregated addition statement. In the case where i

> iarry.length, that is the loop condition fails, the branch instruction will jump to

the return statement. In both statements, the local variable result is used immediately.

Listing 7.9 shows the decompiled SourceAgain code for the same method after it has

been obfuscated by this transformation. Notice that the method is both very garbled and

not at all semantically equivalent to the original. This is surprising given the graph-based

techniques SourceAgain claims to employ. Dava produces correct output, shown in

Listing 7.10.

public static int sum(int iarry[]) {
int result = 0;

for (int i = 0; i < iarry.length; i++) {
result += iarry[i];

}

return result;
}

Listing 7.8: Example method sum before reordering load instructions above if instructions.

7.3.1 Performance Results (RLAII)

This transformation, which moves load instructions above if branches, does not cause very

drastic changes to the code. Very little performance effect should be expected from this

modification. It is possible that specific instruction caching optimizations in the VM im-

plementation take advantage of this code pattern to improve data lookup. It is not surprising

to see speedups in some cases.

Indeed, the tests show (see Figure 7.2) very little change in running speed at all. Small

speedups were seen in four of the benchmarks in server mode and it is quite possible that the

effect of this transformation is similar to the effect of an early load optimization suggested

in the previous paragraph.
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public static int sum(int ai[]) {
int i = 0;
int j = 0;
do {
if(ai.length >= i)
break;

i = j + ai[j];
j++;

} while(true);
return;

}

Listing 7.9: Example method sum after reordering load instructions above if instructions. De-
compiled by SourceAgain— it is not semantically equivalent to the original.

public static int sum(int[] r0) {
int i0, i1;
i0 = 0;

for (i1 = 0; i1 < r0.length; i1++) {
i0 = i0 + r0[i1];

}

return i0;
}

Listing 7.10: Example method sum after reordering load instructions above if instructions.
Decompiled by Dava— it is correct and almost identical to the original code.

7.4 Disobeying Constructor Conventions (DCC)

The Java language specification by Gosling, et al. stipulates that class constructors — those

methods used to instantiate a new object of that class type — must always call either an al-

ternate constructor of the same class or their parent class’ constructor as the first statement.

“If a constructor body does not begin with an explicit constructor invocation

and the constructor being declared is not part of the primordial class Object,
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Figure 7.2: Effects of moving load instruction above if branch instructions.

then the constructor body is implicitly assumed by the compiler to begin with

a superclass constructor invocation “super();”, an invocation of the constructor

of its direct superclass that takes no arguments.” Section 2.12 [GJSB00]

In the event that no super constructor is called the Java compiler explicitly adds the call

at the top of the method in the compiled output.

While this super call, as a rule, must be the first statement in the Java source it is, in

fact, not required to be the first within the bytecode. By exploiting this fact, it is possible to

create constructor methods whose bytecode representation cannot be converted into legal

source.

This transformation does exactly this.2 It randomly chooses among four different ap-

proaches to transforming constructors in order to confuse decompilers. Of the four tech-

niques described below, all of them consider only simple super constructors with zero pa-

2Notice in Listings 7.12 and 7.13 that because the “super” call is not where the decompiler expects it to
be, it is unable to label it as such and instead the actual underlying method name, <init>, appears. This is
true for all four approaches. Listing 7.14 attempts to call a constructor based on the local name for the object
reference — this is slightly different because it is SourceAgain output; Dava was unable to decompile it.
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rameters. They could easily be extended to include all super constructors.

Wrap in Try: The first approach simply wraps the super constructor method call within a

try block. This ensures that any decompiled source will be required to wrap the super

constructor call in a try block to conform to the exception handling rules of Java. To

properly allow the exception to propagate, the handler unit — a throw instruction

— is appended to the end of the method. However, this conversion immediately

renders the source uncompilable. Listing 7.11 shows the original source of a simple

object constructor. Listing 7.12 presents the same constructor after transformation

(note that this is illegal source code and will not compile).

ObjectA() {
super();

}

Listing 7.11: Example object constructor method in Java source code form.

ObjectA() {
try {
this.<init>();

} catch (IndexOutOfBoundsException $r2) {
throw $r2;

}
}

Listing 7.12: Example object constructor after wrap in try transformation. Decompiled by Dava
— it is not legal source code.

Throw Throwable: The second approach takes advantage of classes which are children

of java.lang.Throwable. These are classes which can be thrown by the ex-

ception handling mechanism of Java. It inserts a throw instruction before the super

constructor call and creates a new try block in the method that traps just the new

throw instruction. The handler unit is designated to be the super constructor. This
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takes advantage of the fact that the class itself is throwable and can be pushed onto

the stack through the throw mechanism instead of the standard push mechanism. The

new try block can trap exceptions of the parent type, since the super constructor is a

method from the parent type. This will further confuse the decompilers, as seen in

Listing 7.13.

ObjectA() {
try {
throw this;

} catch (Throwable $r2) {
$r2.<init>();
return;

}
}

Listing 7.13: Example object constructor after throwing itself as a throwable approach. ObjectA
extends the java.lang.Throwable object. Decompiled by Dava— it is not legal source code.

Indirect through jsr: The third approach simply inserts a jsr jump instruction and a

pop instruction directly before the super constructor call. The jsr’s target is the

pop instruction, which removes the subsequent return address that is pushed on the

stack as a result of the jsr instruction. This confuses the majority of decompilers

which have problems dealing with jsr instructions.

Trap Ifnull Indirection: The final approach is the most complicated. Directly before the

super constructor call new instructions are added: a dup followed by an ifnull.

The ifnull target is the super constructor call itself. This if branch instruction

will clearly always be false since the object it is comparing is the object being

instantiated in the current constructor. Two new instructions are inserted directly

after the if (the false branch): a push null followed by a throw. A new

trap is created spanning from the ifnull instruction up to the super constructor

call. The catch block is appended to the end of the method as a sequence of pop,

load o, goto sc, where o is the object being instantiated and sc is the super

constructor call.
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ObjectA() {
ObjectA tz1 = this;

try {
if(tz1 != null)
throw tz1;

} catch(IndexOutOfBoundsException unused2) {
tz1 = this;

}
tz1();

}

Listing 7.14: Example object constructor after adding trapped ifnull indirection. Decompiled
by SourceAgain— it is not legal source code.

This final approach confuses decompilers because it is more difficult to deduce which

local will be on the stack when the super constructor call site is reached. While Dava

crashes trying to decompile this approach, SourceAgain produces the improper

output in Listing 7.14.

7.4.1 Performance Results (DCC)

Having discovered the cost of object creation and the significant performance penalties that

can be incurred when tampering with that process (see Section 6.5.1) it is not surprising to

see a similar, albeit more universal, slowdown due to this constructor transformation.

In fact, the performance penalties seen here in Figure 7.3 are fairly large and it is clear

that this transformation should be used sparingly, if at all. One should be especially careful

in transforming programs tasked with large amounts of object creation.

7.5 Partially Trapping Switch Statements (PTSS)

Another way to exploit the obfuscating potential of the try-catch block is to trap sequential

sections of bytecode that are not necessarily sequential in Java source code. The perfect

example of this is the switch construct. In source code, the switch statement encapsulates
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Figure 7.3: Effects of confusing constructor method code.

different blocks of code. Which block gets executed is controlled by an integer value. How-

ever, in bytecode there is nothing explicitly tying the switch instruction to the different

code blocks — that is, there is no explicit encapsulation.

If the switch instruction is placed within a trap along with only part of the code

blocks which are associated with the switch then there will be no way for an automatic

decompiler to output semantically equivalent code that looks anything like the original

code. It simply must reproduce the trap in the source code in some form.

This transformation is conservatively limited to those switch constructs which are

not already trapped, which alleviates some analysis work. This implies that the switch

instruction itself and any additional instructions that are selected for trapping were not

previously trapped in any way.

The exception which is trapped by the new try-catch block is randomly choosen from

the set of RuntimeExceptions.

Listing 7.15 gives a brief method containing a switch statement. Figures 7.4 and 7.5

show the control flow graph for the method before and after this transformation has been
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applied, respectively. Finally, Listing 7.16 displays the source code produced by Dava after

the transformation; it is clearly much more difficult to ascertain the general purpose of the

method given the extra nesting levels and additional abrupt breaks.

public static int calc(int oper, int val, int total) {
switch (oper) {
case 0:

total += val;
break;
case 1:

total −= val;
break;
case 2:

total ∗= val;
break;
default: System.out.println("Invalid Oper!");

}
return total;

}

Listing 7.15: Example method calc before its switch is partially trapped in a try-catch block.

7.5.1 Performance Results (PTSS)

This transformation was run after applying the transformation from Section 6.1 which adds

dead-code switch statements. This was to ensure that every benchmark had switch state-

ments available and that this transformation would actually have an effect. This is not the

most thorough test since most of the switches being agumented are never actually exe-

cuted as branching statements; they are wrapped in opaque predicates. Nevertheless, the

try blocks which are added by this transformation are only added with the intent to con-

fuse decompilers and should not effect execution speed significantly unless exceptions are

actually thrown and exception table lookups occur.

In general, there is no change in the speed of execution, however there are exceptions.

chromo is slower in interpreted mode while LU and Matrix are slower in server mode.

triphase is the worst with over 30% slowdown in both modes. Running the Java pro-
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public static int calc(int i0, int i1, int i2) {
label 4: {

label 3: {
label 2: {

label 1: {
label 0: {
try {
switch (i0) {
case 0:

i2 = i2 + i1;
break label 0;
case 1:
break label 1;
case 2:
break label 2;
default:
break label 3;

}
} catch (NullPointerException $r5) {
throw $r5;

}
break label 4;

} // end of label 0

} // end of label 1

i2 = i2 − i1;
break label 4;

} // end of label 2

i2 = i2 ∗ i1;
break label 4;

} // end of label 3

System.out.println("Invalid Oper!");

} // end of label 4
return i2;

}

Listing 7.16: Example method calc after its switch is partially trapped in a try-catch block. De-
compiled by Dava— it is semantically equivalent to the original but much more difficult to decipher.
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load.i i0

tableswitch {
            case 0:

case 1:
case 2:
default:

}

case 0:
load.i i2

case 1:
load.i i2

case 2:
load.i i2

default:
staticget System.out

load.i i1

load.i i1 load.i i1

new StringBuffer

add.i

store.i i2

load.i i2

return.i

sub.i

store.i i2

mul.i

store.i i2

dup1.r

specialinvoke <init>

push "Invalid Oper!"

append

toString

println

Figure 7.4: Control-flow graph of the calc method before partially trapping its switch statement.
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load.i i0

label7: athrow

tableswitch {
case 0:
case 1:
case 2:
default:

}

case 0:
load.i i2

case 1:
load.i i2

case 2:
load.i i2

default:
staticget System.out

load.i i1

load.i i1 load.i i1

new StringBuffer

add.i

store.i i2

load.i i2

return.i

sub.i

store.i i2

mul.i

store.i i2

dup1.r

specialinvoke <init>

push "Invalid Oper!"

append

toString

println

Figure 7.5: Control-flow graph of the calc method after partially trapping its switch statement.
Exceptional edges are shown in red.
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Figure 7.6: Effects of partially wrapping switch statements in try blocks.

filer on the obfuscated versions of triphase shows that roughly 60% of the running time

is spent in a single method, daxpy. The original version does not register this method

in the profiler at all. Using the weighting mechanism in JBCO to exclude daxpy from

this obfuscation we find that only 35 switch instructions are obfuscated instead of the ini-

tial 38. Furthermore, the ∼30% slowdowns in server and interpreted mode disappeared

completely.

7.6 Combining Try Blocks with their Catch Blocks (CT-

BCB)

Java source code can only represent try-catch blocks in one way: with a try block directly

followed by one or more catch blocks associated with it. In bytecode, however, this struc-

ture is absent; try blocks can protect the same code that is used to handle the exceptions it

throws or one of its catch blocks can appear “above” it in the instruction sequence. This is

because try blocks only list an offset in the code to jump to in the case of an exception.
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This obfuscation combines a try-catch block such that both the beginning of the try

block and the beginning of the catch block are the same instruction. This is accomplished

by prepending the first unit of the try block with an if which branches to either the try

code or the catch code based on an integer control flow flag. Once the try section has been

officially entered, the flag is set to indicate that any execution of the if in the future should

direct control to the catch section. The integer flag is set back to its original value when the

try section is completed. A small bytecode example is shown in Listing 7.17

Exception trapped from 2 through 16

1: goto 70 // goto the control flag initializer.
2: iload 1 // load control flag
3: ifne 39 // if control flag is not zero, jump to the catch block
4: pop // if control flag is zero, pop null and continue with try block
5: iinc 1, 1 // once in try block, mark control flag
13: new #36; //class x
14: dup
15: invokespecial #18; //Method ”<init>”:()V
16: return

Listing 7.17: Example try block which has been combined with its catch block. Register 1 contains
the control flag.

Listing 7.18 shows a method before applying this transformation. Listing 7.19 shows

the same method after obfuscation. The code is clearly more obscure.

7.6.1 Performance Results (CTBCB)

A certain amount of overhead is incurred by this transformation in the form of a control

local lookup and branch instruction. Because this is performed everytime a try block or its

equivalent catch block is entered, this could lead to significant performance degradation if

the code is in a nested loop. Luckily, it is generally known to be bad coding style to nest

try-catch blocks in loops and so this should rarely be an issue.

The numbers in Figure 7.7 certainly suggest that there should be very little concern for

performance changes due to this transformation. Among the significant obfuscations, this
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public static void main (String args[]) {
x i;

try {
try {

i = new x();
i.foo();

} catch (x exc) {
System.out.println("inner exc");
if (exc.eventime == 0)
throw exc;

}
} catch (x exc1) {

System.out.println("outer exc");
}

}

Listing 7.18: Example method main before try blocks are combined with their catch blocks.

one seems to have almost no effect whatsoever on the timings of the benchmarks.

7.7 Indirecting if Instructions (III)

One very basic example of bytecode that is not directly translatable to source code is the

goto instruction. Explicit gotos (i.e., those which are not part of loop directives) are

not allowed in Java source. Studies show that the goto is largely misused and removing it

altogether simplifies the language — specifically the research by Benander, et al. [BGB90].

Nevertheless, Java maintains the ability to break out of nested loops through the use of the

continue and break statements.

Despite the lack of a goto directive in the Java source language, Java bytecode does

maintain a goto instruction. This is necessary since higher-level source code constructs

such as while loops are implemented within bytecode with if and goto instructions.

Therefore it is possible to insert explicit goto instructions within the bytecode.

This if-indirection transformation attempts to take advantage of the trap mechanism

while also exploiting the bytecode goto. It identifies a number of if instructions within
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public static void main(String[] r0) {
boolean z0 = false;
int i0 = 0;

label 5:
while (true) {

label 4: {
label 3: {

label 0: {
if (i0 != 0)
break label 0;

i0++;
z0 = false;
break label 3;

} //end label 0:
try {

System.out.println("inner exc");
if ($r1.eventime != 0)
break label 4;
throw $r1;

} catch (x $r2) { }
} //end label 3:
label 1:
while (true) {

label 2: {
try {
if ( ! (z0)) {

z0 = true;
(new x()).foo();
break label 2;

}
} catch (x $r2) {
continue label 1;

} catch (x $r1) {
continue label 5;

}
System.out.println("outer exc");
break label 4;

} //end label 2:
break label 4;

}
} //end label 4:
return;

}
}

Listing 7.19: Example method main after try blocks are combined with their catch blocks. Decom-
piled by Dava. The code is not correct.
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Figure 7.7: Effects of combining try blocks with their catch blocks.

each method in order to indirect their branching. The word indirect is used here to describe

a situation where an if instruction jumps to a goto instruction, which then jumps to the

final target. The goto could, of course, be removed and the if instruction could be mod-

ified to jump to the final target. However, this transformation wraps all these indirections

— a block of goto instructions — within a trap. It is not valid to remove traps in bytecode

unless it can be statically shown that an exception will never be raised while executing code

within the trap. Since there is no explicit goto allowed in Java source, it becomes very

difficult for a decompiler to synthesize equivalent source code. An example of decompiled

code generated by SourceAgain is shown in Listing 7.20. It is the same sum method origi-

nally shown in Listing 4.1, where only one if is available for obfuscation. Dava crashes

when trying to handle bytecode that throws an explicitly null exception.

The transformation is implemented as follows. First, each if instruction is identified

and its target is recorded. A new goto pointing to the target is then appended to the

bytecode and the if instruction is reassigned to branch to the new goto. This added level

of indirection is wrapped in a try block. In the case where the original if instruction was
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public static int sum(int[] ai) {
int i = 0;
int j = 0;

while(j < ai.length) {
Object tobj;
i += ai[j];
++j;
if( (byte) 654154038 % 9 == 0 )
continue;

tobj = null;
return texception1;

}
try {
} catch(Exception texception1) {
throw texception1;

}
return i;

}

Listing 7.20: Example method sum after its if instructions have been indirected through trapped
goto instructions. Decompiled by SourceAgain— this is improper code and will not recompile.

trapped, the same exception is trapped in the new goto and the same handler instruction

is used. Otherwise, a random exception is assigned to be caught at the new goto and the

handler instruction just re-throws the exception upward.

Furthermore, if a handler instruction is generated by this transformation — that is,

at least one indirected if is not trapped — then it is used for every untrapped if that

is indirected. In order to confuse the reasoning behind the existence of the handler, it

is inserted at a randomly chosen spot within the method (although the spot must have a

stack height of zero, as calculated by the StackHeightTypeCalculator described

in Section 4.2.2) and an opaque predicate is inserted before the handler which will always

branch over it.
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7.7.1 Performance Results (III)

This control flow indirection transformation is powerful in that it generally does not have

a negative effect on performance. As in earlier transformations, there are a few key excep-

tions as can be seen in Figure 7.8. As usual, the slowdowns almost always occur due to a

single method that is particularly complicated. In these situations the JIT is just not able to

optimize the modified method as much as its original version.

Figure 7.8: Effects of indirecting if instructions through trapped goto instructions.

In the case of asac a single sorting method accounts for the entire slowdown in both

the server and interpreter modes. In other cases, such as chromo, decode, Matrix,

and triphase, the JIT is able to successfully optimize away any complicated structure

introduced by the transformation.

7.8 Goto Instruction Augmentation (GIA)

The approach of this transformation uses the same goto-exploit from the previous section

to create a very simple yet useful obfuscation. It randomly splits a method into two sequen-
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tial parts: The first, containing the start of the method, P1 and a second, containing the end

of the method, P2. It then reorders these two parts and inserts two goto instructions. The

first goto is inserted as the first instruction in the method and points to the start of P1. The

second is inserted at the end of P1 and targets P2. The final method sequence now looks

like:

{ goto P1, P2, P1, goto P2}

As an added step, a try block is manufactured to span from the end of P2 to the beginning

of P1, thereby “gluing” the two sections together. This makes it difficult for a decompiler

to shuffle the instructions back to their original order.

While this transformation is very easily reversed when used without the try block, it

nevertheless stops many simple decompilers from properly decompiling the entire method.

Jad, for example, outputs bytecode level instructions in those places where it cannot prop-

erly deduce a source code equivalent. With the try block things become much more difficult

and even SourceAgain fails to properly decompile this obfuscation. See Listing 7.21

and 7.22 for a before and after example using Dava.

private static double[][] RandomMatrix(intM, int N, Random R) {
double A[][] = new double[M][N];

for (int i=0; i<N; i++) {
for (int j=0; j<N; j++)

A[i][j] = R.nextDouble();
}

return A;
}

Listing 7.21: Example method RandomMatrix before augmentation with new trapped goto
instructions.
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private static double[][] RandomMatrix(int i0, int i1, Random r0) {
double[] r1;
int i2, i3;
double d0;
double[][] r2;

try {
r2 = new double[i0][i1];
i3 = 0;

} catch (Throwable $r3) {
throw $r3;

}

while (i3 < i1) {
for (i2 = 0; i2 < i1; i2++) {

r1 = r2[i3];
d0 = r0.nextDouble();
r1[i2] = d0;

}

i3++;
}

try {
return r2;

} catch (Throwable $r3) {
throw $r3;

}
}

Listing 7.22: Example method RandomMatrix after augmentation with new trapped goto in-
structions. Decompiled by Dava.

7.8.1 Performance Results (GIA)

The explicit goto instrumentation is a direct attack on a known weakness of Java decom-

pilers. Because of its simple nature it effects runtime performance very little. Only in

particularly small transformed methods do we sometimes see a measurable slowdown in

interpreted mode (see Figure 7.9). As the method is called many times over, which is often

the case with small methods, the interpreter must continue to follow the exact instructions

step by step. In server mode the JIT is able to optimize out the unnecessary and pointless
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goto jump as do some graph-based decompiler analyses (such as in Dava).

Figure 7.9: Effects of augmenting methods with explicit goto instructions.

In the case of LU, where we see a speedup in server mode, we found just such a case.

Two small methods used to set and get matrix elements were affected by the transformation.

In the original benchmark the code did not take up enough execution time to get inlined

by the JIT. However, in the transformed code, these methods are given two optimization

passes by the JIT and are inlined, resulting in improved running time. Turning off all

inlining results in almost identical speed between the two benchmark versions.
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Chapter 8

Introducing a Solid, Stable, and Effective

Third-Generation Obfuscator

In chapters five through seven we have developed a number of obfuscations, many of

which are unique and exploit the gap between Java source code and its binary bytecode

representation. To make these transformations useful they need to be combined within

an automatic tool that has an intuitive and simple interface. This is JBCO. We call it a

third-generation obfuscator because it builds upon a lot of the early work in obfuscation

(renaming identifiers, confusing control flow), but also incorporates later object-oriented

obfuscations as well as new and original ideas which have been specifically designed to

cause existing decompilers to produce illegal output or make them crash altogether.

In the following sections we will introduce the interface, derive three default combina-

tions (one each tuned for speed, size, and protection) and present experimental performance

graphs for those combinations.

8.1 JBCO User Interface

JBCO was designed as a command-line tool and therefore it is very versatile and can easily

be incorporated into a build process. Each transformation available in JBCO can be acti-

vated independently and, depending on the severity of obfuscation desired, can be weighted

independently within a range of 0–9. If set to 0, the transformation will not be applied any-
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where and if set to 9 it will be applied everywhere possible. The argument format for

specifying a transformation is:

-t:W:SP.jbco PN

WhereW is the weight, SP is the Soot phase the transformation belongs to (wjtp for

whole program Jimple transformation pack, jtp for normal Jimple transformation pack,

and bb for Baf body pack), and PN is the phase name, such as ADSS for the obfuscation

described in Section 6.1 that adds dead-code switch statements to method bodies. All

available transformations and extra options can be listed using the command-line option

-jbco:help (see Listing 8.1).

Special weighting can be given to a certain method or a group of methods whose names

match a regular expression. The argument format for specifying a special case such as this

is:

-it:W:SP.jbco PN:E

Where E is the name of the method to assign the special weightW to or, alternately, a

regular expression to match method names to. E should be prepended with an asterix (*) to

signify that it is a regular expression. The following, for example, would match all methods

starting with the term “get” and give them a weight of 5 when adding dead-code switches:

-it:5:jtp.jbco adss:*get*

When giving specific arguments for obfuscations which operate on the class or field

level (such as the class renamer or field renamer, respectively) then the argument E will, of

course, match on class names or field names instead of method names.

A graphical user interface (GUI) has also been developed for JBCO. It is a simple front

end that allows a user to specify the same options discussed above but in a graphical format.

The first panel of the GUI, seen in Figure 8.1, allows the user to specify the class-

path JBCO will use, along with memory requirements, the output directory, and any other

arguments for the JVM and not JBCO itself.

The second panel of the GUI, shown in Figure 8.2, lists all the possible obfuscations in

a list. Each one is fully enabled with a weight of 9 by default. However, the Filemenu has
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General Options:
−jbco:help − print this help message.
−jbco:verbose − print extra information during obfuscation.
−jbco:silent − turn off all output, including summary information.
−jbco:metrics − calculate total vertices and edges;

calculate avg. and highest graph degrees.
−jbco:debug − turn on extra debugging like

stack height and type verifier.

Transformations ( −t:[W:]<name>[:pattern] )
W − specify obfuscation weight (0−9)
<name> − name of obfuscation (from list below)
pattern − limit to method names matched by pattern

prepend ∗ to pattern if a regex

wjtp.jbco cr − Rename Classes
wjtp.jbco mr − Rename Methods
wjtp.jbco fr − Rename Fields
wjtp.jbco blbc − Build API Buffer Methods
wjtp.jbco bapibm − Build Library Buffer Classes
jtp.jbco gia − Goto Instruction Augmentation
jtp.jbco adss − Add Dead Switch Statements
jtp.jbco cae2bo − Convert Arith. Expr. To Bitshifting Ops
bb.jbco cb2ji − Convert Branches to JSR Instructions
bb.jbco dcc − Disobey Constructor Conventions
bb.jbco rds − Reuse Duplicate Sequences
bb.jbco riitcb − Replace If(Non)Nulls with Try−Catch
bb.jbco iii − Indirect If Instructions
bb.jbco plvb − Pack Locals into Bitfields
bb.jbco rlaii − Reorder Loads Above Ifs
bb.jbco ctbcb − Combine Try and Catch Blocks
bb.jbco ecvf − Embed Constants in Fields
bb.jbco ptss − Partially Trap Switches

Listing 8.1: JBCO help listing.
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Figure 8.1: The JBCO graphical user interface — JVM Options.

three items which allow the user to select a default set of obfuscations and weightings based

on the desired outcome: high program performance, low program size, or high protection.

These three combinations are detailed in Section 8.2.

The user can also change the weights individually for each obfuscation, which are in-

dicated by the number following the transformation name. The weight can be changed

by clicking on the name of the desired transformation and adjusting its “default weight”.

Specific weights can be assigned to methods by entering the method name or regular ex-

pression in the text box, selecting the appropriate weight to the right of the text box, and

then clicking the “Add Item” button.

To execute the options specified, the user must select File - Execute from the

menu. At this point an output panel will raise to the top and all console messages generated

by JBCO will appear in this window. An option to save the output to a file is given at the

bottom of the pane.
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Figure 8.2: The JBCO graphical user interface — transformation options.

8.2 Combining Useful Transformations for a Practical

Obfuscator

The true power of our obfuscator comes from its combinatory nature. The many trans-

formations that we have developed can all be applied to the same program in a sequen-

tial manner. By mixing multiple obfuscations together it becomes that much harder for

a decompiler to perform any sort of analysis based on pattern matching and also makes

control-flow based approaches a lot more costly due to a sharp rise in method complexity.

It must be noted, however, that the order in which the obfuscations are performed has

a significant impact on performance. For example, if obfuscations which create try blocks

are run before the try-catch block combiner (CTBCB) detailed in Section 7.6 then more

“obfuscation sites” will be available to that obfuscation, causing more performance degra-

dation. This is a topic for future research. In the combinations presented in this section

the order of obfuscations was not chosen in any meaningful way and, indeed, better per-

formance could have been achieved by carefully considering the effects each obfuscation
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would have on obfuscations later in the order. The orders that were used are shown in

Table 8.1.

Table 8.1: Order of obfuscations for three combinations
Performance Size Protection
RI(C,M,F) BLBC RI(C,M,F)
BAPIBM GIA BLBC

BLBC CAE2BO BAPIBM
CAE2BO CB2JI GIA

ADSS DCC ADSS
GIA RIITCB CAE2BO

PLVB RLAII CB2JI
RDS CTBCB DCC

RIITCB PTSS RDS
RLAII RIITCB

CTBCB III
III PLVB

RLAII
CTBCB
PTSS

Excessive obfuscation can lead to very poor performance or severe program size bloat.

The sequence of obfuscations chosen for a program should match an overall goal: if perfor-

mance is not important but extreme protection is then all obfuscations should be applied, if

it is important to minimize the program size then program-bloating obfuscations should be

minimized or avoided altogether.

In order to best make these decisions we have included figures 8.3, 8.4, and 8.5 which

graph each individual obfuscation’s effect on benchmark complexity, size, and perfor-

mance, respectively. In order to summarize the data and make it less visually dense an

average, along with a low-high range, is given to represent all benchmarks instead of indi-

vidual benchmark measurements.

From these figures we can derive default settings for the three most likely desired out-

comes — high performance, small class file size, and full protection. We outline these

settings in Table 8.2.
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Figure 8.3: Average complexity increase (control-flow graph edges + nodes) with high-low range.
Values are aggregated over all benchmarks tested.

Figure 8.4: Average class file size increase with high-low range. Values are aggregated over all
benchmarks tested.
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Figure 8.5: Average performance degradation with high-low range (Server Mode). Values are
aggregated over all benchmarks tested.

Table 8.2: Weights used for obfuscations for three combinations
Combination Performance Size Protection
Renaming Identifiers: classes, fields and methods 9 0 5
Embedding Constant Values as Fields 0 0 0
Packing Local Variables into Bitfields 3 0 2
Converting Arithmetic Expressions to Bit-Shifting Ops 9 9 9
Adding Dead-Code Switch Statements 6 0 5
Finding and Reusing Duplicate Sequences 3 0 7
Replacing if Instructions with Try-Catch Blocks 9 9 9
Building API Buffer Methods 9 0 6
Building Library Buffer Classes 9 9 9
Converting Branches to jsr Instructions 0 9 9
Reordering loads Above if Instructions 9 9 9
Disobeying Constructor Conventions 0 9 5
Partially Trapping Switch Statements 0 9 9
Combining Try Blocks with their Catch Blocks 9 9 9
Indirecting if Instructions 6 0 9
Goto Instruction Augmentation 9 6 9
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8.2.1 Performance

Speed of execution is the important factor for this combination and is most likely the best

default. The user desires some obfuscation but requires that the program’s performance

is not significantly degraded. In this case we identified all transformations whose average

performance loss was less than 5%. For those obfuscations which had a high range above

10% we applied them with a weight of 6 and for those over 20% we applied them with a

weight of 3. These settings are presented in column 1 of Table 8.2.

The performance degradation due to this combination, shown in Figure 8.6, is below 1.5

for most of the benchmarks but astronomically degrading for asac and Matrix. Brief

investigation into the programs will quickly show that most often a single method is re-

sponsible for almost all of the performance slowdown. Some quick program profiling and

a little tweaking of the JBCO settings (such as limiting the obfuscation performed on that

one method) can easily reduce these performance issues to almost nothing while still main-

taining a suitable level of obfuscation.

Figure 8.6: Effects of applying the performance-minded obfuscation settings shown in Table 8.2
column 1. Default server-mode and full -Xcomp compilation are shown.
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Approaching the problem from a different angle, the user could apply the -Xcomp

JVM flag when running the program. This flag, which enforces full JIT compilation of all

methods, may slow the initial program startup time but in almost all of the cases during

our research where obfuscations had serious performance penalties this setting was able to

improve performance significantly, as the second data series in Figure 8.6 shows for asac

and Matrix. This indicates that the obfuscator is doing its job! The methods are complex

enough (see Figure 8.7) that the JIT’s early optimization phases (which are most likely

optimistic and simplistic compared to later phases) are unable to improve performance

significantly.

Figure 8.7: Performance-minded complexity ratio (total nodes + edges of performance-obfuscated
program divided by total nodes + edges of original program and highest graph degree of obfuscated
program divided by highest graph degree of original program).

However, the full strength optimizations can have a negative effect. For short-running

benchmarks such as FFT, decode, and probe the -Xcomp flag actually slows the exe-

cution down since the added time of optimization is more than the time required to execute

the program normally with dynamic compilation. FFT is the worst hit as it has a normal

running time of about 0.17 seconds. Full compilation, even for small programs, can add a
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few seconds or more to the VM startup time. This results in a very large slowdown for FFT

because a few seconds is much longer than the original running time of the entire program.

Figure 8.8 shows the class file size increases significantly due to this combination of

obfuscations. Much of the bloat can be attributed specifically to building API buffer meth-

ods (BAPIBM), since every library call will cause the creation of a new method. While

the numbers are quite large, program size was the least important factor in defining this

performance-minded combination. With the prevalence of high-speed Internet access, lim-

iting program size is not as much of an issue as it once was.

Figure 8.8: Effects on class file size after applying the performance-minded obfuscation settings
shown in Table 8.2 column 1.

8.2.2 Size

This combination is most concerned with limiting the class file size blowup due to any

obfuscations performed. This might be used for programs which are distributed over the

Internet at every execution. For this combination we followed the formula in the perfor-

mance description above except for size blowup per obfuscation. Obfuscations with aver-
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ages below 5% were included. Obfuscations with a high range above 10% were assigned

a weight of 6, for those over 20% we assigned a weight of 3. The settings are outlined in

column 2 of Table 8.2.

Not surprisingly, the limited number of obfuscations performed by this combination

results in very little execution slowdown in most cases (see Figure 8.9). However, using

the -Xcomp flag worsens the speed in all cases. This is most likely due to the fact that

there isn’t nearly as much complexity (as shown in Figure 8.10) and therefore there is little

to be gained by using an aggressive compilation approach on such short running programs.

Figure 8.9: Effects of applying the size-minded obfuscation settings shown in Table 8.2 column 2.
Default server-mode and full -Xcomp compilation are shown.

It is interesting to note that the highest degree of complexity actually drops for four

of the benchmarks in Figure 8.10. While it is unclear why this is happening one must

remember that some obfuscation actually move control flow branches to new units. The

obfuscation (CB2JI) from Section 7.2, for example, can sometimes cause a single unit

with two incoming branches to split into two units, each with one incoming branch. This

can happen when a unit u is targeted by two different goto instructions. If one goto is

replaced by a jsr a new pop is placed before u and a new goto u is placed before the
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Figure 8.10: Size-minded complexity ratio (total nodes + edges of size-obfuscated program divided
by total nodes + edges of original program and highest graph degree of obfuscated program divided
by highest graph degree of original program).

pop. Now, u is not targeted by any unit except the newly created goto. One old goto

instructions was replaced by a jsr pointing to the pop and the other goto now points to

the new goto u above the pop. The new goto u is targeted by one branch, the pop

is targeted by one branch, and the original unit u is targeted by one branch. There are

no units targeted by more than one branch now, thereby potentially reducing the highest

degree complexity of that control graph.

Comparing the class file size blowup of the previous combination in Figure 8.8 to that

of the blowup from this combination in Figure 8.11 we can see that this combination is

fairly successful at limiting the amount of program bloat. However, the average blowup is

still in the range of 250%. This might not be acceptable for very large programs expected

to be distributed over a network.
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Figure 8.11: Effects on class file size after applying the size-minded obfuscation settings shown in
Table 8.2 column 2.

8.2.3 Protection

This combination is meant to provide the most possible protection through obfuscation.

Performance and size are the much lesser concerns compared to protecting the intellectual

property contained within the code base. For each obfuscation we averaged the weights

used in the performance and size combinations above and added the percentage complex-

ity the obfuscation was able to add, on average. The settings are shown in column 3 of

Table 8.2.

Surprisingly, the execution speeds of the benchmarks after this combination is applied,

shown in Figure 8.12, is overall not as bad as the performance-minded combination. This

clearly shows that the combination and order of obfuscations can have a very large impact

on performance. Specifically, asac does not perform that badly whereas it showed a

staggering 5500% slowdown after the performance-minded combination of obfuscations.

Figure 8.13 shows that this combination is able to significantly increase complexity,

but the numbers are somewhat similar to those of the performance-minded obfuscation

110



8.2. Combining Useful Transformations for a Practical Obfuscator

Figure 8.12: Effects of applying the protection-minded obfuscation settings shown in Table 8.2
column 3. Default server-mode and full -Xcomp compilation are shown.

complexity (see Figure 8.7). This means the combination is working as it should by pro-

viding a large jump in method complexity, but it is unclear if the performance-minded and

protection-minded combinations provide two unique sets of options to the user. Even the

class file size increases due to this combination, as seen in Figure 8.14 are very similar to

those increases due to the performance-minded combination, shown in Figure 8.8.

These are very surprising results because, overall, the protection-minded combination

is applying more obfuscations and with heavier weights. More clear differences between

the performance-minded combination results would normally be expected. However, the

flaw of JBCO is that its weighting mechanism is not deterministic. It uses a random number

generator to decide when to apply an obfuscation based on its weight. It is entirely possible,

within the probabilities of a random number generator, that an obfuscation with a weight

of 6 would, in fact, never be applied. A more stable approach would require an extra pass

through the code for each obfuscation, at which point statistics could be collected to report

the number of obfuscation sites available. JBCO could then randomly select from these

sites to ensure that, if the weight for an obfuscation was 6 then 60% to 70% of the sites
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Figure 8.13: Protection-minded complexity ratio (total nodes + edges of size-obfuscated program
divided by total nodes + edges of original program and highest graph degree of obfuscated program
divided by highest graph degree of original program).

would get obfuscated.
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Figure 8.14: Effects on class file size after applying the protection-minded obfuscation settings
shown in Table 8.2 column 3.
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Chapter 9

Conclusions

We have presented a number of obfuscating transformations with an automatic tool

called JBCO. While we have shown it to be effective at protecting compiled Java bytecode

against modern decompilers, there are nevertheless opportunities for improvement.

9.1 Future Work

While we have implemented sixteen different obfuscation in JBCO there will always be

room for more. There are still areas of interest within bytecode and the JVM which we did

not have time to explore, such as the thread locking mechanisms of Java.

There are problems with JBCO, as well. The current limitations of JBCO are discussed

in Section 8.2 and graphs are given which explain these problems. The most important

issues are the excessive performance degradation and class file size bloat often seen after a

combination of obfuscations has been applied.

9.1.1 New Obfuscations

While JBCO is adept at breaking decompilers and is very effective at transforming code

into difficult to read gibberish, it still has room for improvement.

Many simple obfuscations such as embedding constant values in fields (ECVF), pack-

ing local variables into bitfields (PLVB) and converting arithmetic expressions to bit-shifting
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operations (CAE2BO) could be further obscured with the addition of opaque predicates.

Furthermore, these same obfuscation sites could be used to insert dead code (false-branch)

opaque predicate value changes.

JBCO has been designed with a very modular approach. Each obfuscation exists as its

own phase within Soot. While this is useful in some ways and allows for selective obfus-

cation, often times combining multiple obfuscation techniques at the same time can yield

better results. By making JBCO open source we are publishing the exact details of each ob-

fuscation. Someone wishing to improve upon existing decompilers could inspect our code

to develop more powerful reverse-engineering techniques. Because of this, combining mul-

tiple obfuscation techniques at the same time has the potential to provide more protection

than our current approach since any given obfuscation site will have multiple transforma-

tions applied to it. Within the modular framework, it is possible that some areas of code

could be obfuscated by one transformation and another distinct section of code be obfus-

cated by a different transformation. Without the combinatory power of these obfuscations,

they are much easier to recognize and therefore easier to reverse.

Above and beyond the existing techniques in JBCO, there will always be room for

more. Java’s built-in thread locking mechanism is one area with untapped obfuscation

potential. Java uses monitors to provide object locking and these are controlled through the

monitorenter and monitorexit instructions. While some bytecode verification is

performed with respect to these monitor ranges, not all locking situations can be statically

ensured for safety. Therefore, the JVM will throw a special IllegalMonitorState-

Exception dynamically during runtime if and when an illegal situation arises. Because

of this duality that exists between the static and dynamic safety mechanisms, there is prime

opportunity for obfuscation.

Additionally, while the library buffer classes and methods provide some object-oriented

design obfuscation, there is still much potential. The Java interface, which provides a

framework for object polymorphism, has not been exploited by any obfuscations in JBCO.

This has been explored in the literature with some success by Sakabe, et al. [SSM03] and

Sosonkin, et al. [SNM03] and is a possible avenue for future research.
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9.1.2 Improvements to Performance

It has been noted in Section 4.3 that as much as 90% or more of the execution time of a

program can usually be attributed to 10% or less of the actual static code. This is because

the real work of a program is often contained within one method which is called over and

over again. This method, which we call a “hot” method, will be particularly susceptible to

slowdowns caused by obfuscation.

One possible approach to avoiding these slowdowns could be to develop various intra-

procedural analyses within JBCO itself that detect loops, recursive calls, and object cre-

ation. JBCO could limit the obfuscations applied to these parts of the code which could po-

tentially improve performance. However, many of the obfuscations in JBCO rely on these

very constructs as obfuscations sites. It is questionable how much improvement could be

obtained through this technique.

Another possible approach to avoiding this problem is to develop static techniques for

identifying these hot sections of code. If JBCO was able to make some conservative esti-

mate of how often a piece of code is likely to be executed then it could limit the number of

obfuscations performed on that section.

This static identification could be accomplished by performing statistics analysis of pro-

filing data and CPU sampling provided by the user. JBCO could then avoid those methods

which take up most of the running time of the program. This technique can only ever have

limited success on programs which are not deterministic. While one profiling run might

cause the execution of one method over and over again, another profiling run might result

in not a single call to that method, depending on input and other factors.

Hot methods in the code might also be identified by performing inter-procedural anal-

ysis within JBCO. Soot is already outfitted with inter-procedural analysis frameworks and

can build call graphs. Unfortunately, this kind of analysis is on the forefront of compiler

technology and might have a long way to go before it becomes truly useful. This ap-

proach would likely suffer as much, if not more, than the profiling approach due to the

non-deterministic nature of most programs.

One final approach to limiting execution slowdown due to obfuscation could be to im-

plement an internal JIT within the program itself which performs profiling. Two or more
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copies of each method could be maintained with various levels of obfuscation and, depend-

ing on how often the method is called, the JIT could choose to use a faster (less obfuscated)

version or a more protected version. This would cause severe increases in the class file

sizes but could potentially add even more obfuscation through the use of multiple versions

of the same logic. However, the weakest link would always be the least obfuscated version

of the logic.

9.2 Conclusions

Decompiler technology is powerful and avenues of protection for intellectual property must

be developed. Obfuscation is one such avenue. This thesis introduced a number of obfusca-

tions that can be applied to Java bytecode in order to hinder reverse-engineering and protect

against automatic decompilers such as Dava and SourceAgain.

The obfuscations we detailed in chapters five through seven were implemented in an

automatic tool called JBCO. We evaluated each technique individually in order to test the

effect it had on program execution time, program size, and program complexity. The ob-

fuscated code for each transformation was also decompiled in order to see how well it was

able to garble code and confuse decompilers.

Many of these techniques are unique and do not exist in the literature. By concentrating

our efforts on obfuscations which exploit the gap between the Java source language and its

compiled bytecode representation, we were able to cause well known modern decompilers

to produce incorrect and incomplete source code. Often times we were even able to cause

these decompilers to crash or report errors.

Finally, we used our experimental results to develop three different combinations of

obfuscations for three different scenarios. In the first, program performance is the most im-

portant concern and the obfuscations chosen to be included in the combination had limited

performance impact. In the second, program size is the greatest concern. Only obfusca-

tions with limited effect on size were selected. Finally, the third scenario concerned itself

with maximum protection. In this scenario all but one obfuscation was included in the

combination. These three different combinations were implemented as default options in

the JBCO graphical user interface.
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9.2. Conclusions

JBCO is a robust and stable obfuscator with unique obfuscation approaches that can not

be found elsewhere. It is very flexible, allowing the user full control over which obfusca-

tions are performed and on which methods, fields, and classes. While there is still much

work that can be done, as outlined in Section 9.1, we feel that this initial version of JBCO

is already quite useful and compares positively against existing obfuscators.
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