PROGRAMMER-FRIENDLY DECOMPILED JAVA

by
Nomair A. Naeem

School of Computer Science
McGill University, Montréal

August 2006

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright(©) 2006 by Nomair A. Naeem

Abstract

Java decompilers convert Java class files to Java source. Common Java decompilers are
javac-specifiadecompilers since they target bytecode produced from a partigariaic
compiler. We present work carried out on Davapal-independentlecompiler that de-
compiles bytecode produced from any compiler. A known deficiency of tool-independent
decompilers is the generation of complicated decompiled Java source which does not re-
semble the original source as closely as output produced by javac-specific decompilers.
This thesis tackles this short-coming, for Dava, by introducing a new back-end consisting
of simplifying transformations.

The work presented can be broken into three major categories: transformations using
tree traversals and pattern matching to simplify the control flow, the creation of a flow
analysis framework for an Abstract Syntax Tree (AST) representation of Java source code
and the implementation of flow analyses with their use in complicated transformations.

The pattern matching transformations rewrite the ASTs to semantically-equivalent ASTs
that correspond to code that is easier for programmers to understand. The targeted Java con-
structs includelf andIf-Else aggregation, for-loop creation and the removal of abrupt
control flow. Pattern matching using tree traversals has its limitations. Thus, we introduce
a new structure-based data flow analysis framework that can be used to gather informa-
tion required by more complex transformations. Popular compiler anadygeseaching
definitions, constant propagatietc.were implemented using the framework. Information
from these analyses is then leveraged to perform more advanced AST transformations.

We performed experiments comparing different decompiler outputs for different sources
of bytecode. The results from these experiments indicate that the new Dava back-end con-
siderably improves code comprehensibility and readability.

Résum é

Les dcompilateurs Java convertissent le code binaire compil Java en code source Java.
Les dcompilateurs Java les plus communs spuifiquesau compilateur javac parce qu’ils
ciblent le code binaire produit par un compilatgarac particulier. Nous prsentons notre
travail sur Dava, un dcompilateundpendantqui dcompile du code binaire Java compil
partir de n'importe quelle source. Une faille connue des dcompilateurs indpendants est la
gnration de code source Java complexe qui ne ressemble pas autant au code source original
gue celui produit par les dcompilateurs spcifiques javac. Cette thse s’attaque cette faille,
pour Dava, en introduisant un nouveau systme de transformations de simplification.

Le travail prsent peut tre divis en trois catgories majeures : les transformations utili-
sant la traverse d’arbres et la reconnaissance de squences pour la simplification du flot de
contrle, la cration d’'un systme d’analyse du flot de contrle pour une reprsentation en tant
gu’Arbre de Syntaxe Abstrait (AST) du code source Java et 'implmentation d’analyses du
flot pour usage dans les transformations complexes.

Les transformations utilisant la reconnaissance de squences rcrivent les AST pour pro-
duire de nouveaux AST smantique quivalente, correspondant du code qui sera plus facile
comprendre pour les programmeurs. Les constructions Java cibles incluent les aggrgations
If etIf-Else, lacrations de boucles for et I'limination de flot de contrle abrupte. La recon-
naissance de squences utilisant la traverse d’arbres a ses limitations. Nous avons donc dcid
d’introduire un nouveau systme d’analyse du flot de donnes bas sur la structure qui peut
tre utilis pour obtenir de I'information requise par des transformations plus complexes. Des
analyses de compilateurs communes (par example : I'obtention de dfinitions, la propaga-
tion des constantes, etc.) ont timplmentes en utilisant notre systme. L'information produite
par ses analyses est utilise pour produire des transformations plus avances.

Des expriences qui comparent la sortie produite par diffrents compilateurs reprsentant
plusieurs sources de code binaire ont ts ralises, dmontrant que le nouveau systme d’analyse
et de transformations de Dava amliore considrablement la clart et la lisibilit du code source
produit.

Acknowledgements

First and foremost | would like to thank my supervisor Professor Laurie Hendren for
introducing me to the wonderfully exciting field of programming languages and compilers,
for her guidance in my research work and for her high expectations from her students.
Her cheerful nature and her humor always kept me going in those dark hours and her
quick insight and knowledge made my stay at the Sable Research Group a true learning
experience.

A special thanks to Professor Clark Verbrugge for taking the time out to teach me
"faux-621", for spending countless hours discussing potential research topics and for being
a mentor in Laurie’s absence. | would also like to thank the Professors from the School
of Computer Science for the wonderful courses taught by them that kept me here for six
years. Thanks also to the admin and system staff for their help on countless occasions.

Additional thanks to my friends and members of the Sable Group — in no particular or-
der — Grzegorz Prokopski, Dayong Gu, Chris Goard, Chris Pickett, Sokham Pherigj Ond
and Jennifer Lha@k, Jerome Miecznikowski and Navindra Umanee. A special thanks to
Maxime Chevalier-Boisvert for helping me translate my abstract into French. Mike Batch-
helder's work on Java obfuscation and his repeated “successful” attempts to crash Dava
were a true inspiration for numerous transformations and bug fixes which became part of
this thesis.

Thank you to Ahmer Ahmedani for being my buddy at McGill, for our discussions on
religion and world affairs and our coffee breaks. Also my pool partners Waqggas, Farhan,
Moiz and Moeed for the much needed time-outs. Last, but not least, | thank my parents,
sisters and my wife for their love, devotion and support.

Vi

Dedicated to

My Parents,
Dr. Pervaiz Naeem Tariqg and Dr. Shahida Naeem

and

My Wife,
Mariam Rasool

viii

Table of Contents

Abstract i
Résune i
Acknowledgements v
Table of Contents iX
List of Figures XV
List of Tables XiX
List of Algorithms XXI
1 Introduction and Motivation 1
1.1 Javac-specific Decompilers. o oL 3
1.2 Tool-independent Decompilers. 5
1.3 JavaObfuscators e 5
1.4 Thesis Contributions and Organization 7
2 Background: Dava Architecture 9
2.1 ExistingFront-End. 12
2.2 NewBack-End. 14
3 A Tree Traversal Algorithm 17
3.1 Finding AST ParentNodes 19

3.2 Findingthe Closest AbruptTarget 19
3.3 FindingallvariableUses 20
3.4 Finding all Definitions 21
3.5 Constant Primitive Field Value Finder 21
Basic AST Transformations 25
4.1 Condition Simplification., 25
4.2 Shortcutincrementsanddecrements 26
4.3 De-Inlining Static Final Fields. 26
4.4 Variable Declarations and Initialization 27
4.5 Stringconcatenation. e e 28
4.6 Shortcut Array Declarations. 0o 29
4.7 Removing default constructors. L. 30
4.8 Thesuperinvocation. e 33
4.8.1 Invalid code using complicated expressians 33
4.8.2 Invalid code usingreinitializationin Aspectd 35
4.8.3 Transforming invalid code using indirection 37
Simple Pattern Based Structuring 43
5.1 Conditional Aggregation. 43
5.1.1 Grammar for aggregated boolean expressions 45
5.1.2 And Aggregation 46
5.1.3 Or Aggregation. e 48
5.2 Loopstrengthening e 56
5.2.1 Using a nestelff-Else Statement to Strengthen Loop Nodes. . 56
5.2.2 Using a nested If Statement to Strengthen loop Nodes. 57
5.3 Handling AbruptControl Flow. 62
5.3.1 If-ElseSplitting 62
5.3.2 Uselesbreak statementRemover. 63
5.3.3 UselessLabelRemover 65
5.3.4 Reducing the scope of labeled blocks. 67

6 A Structure-Based Flow Analysis Framework 69

6.1 MergeOperations e 71
6.2 Dealing with Abrupt-Control Flow Constructs. 71
6.3 Construct specificprocessing. 0. 72

7 AST rewriting using Structure-based Flow Analyses 87
7.1 Reaching Definitions. e 88
7.1.1 ForLoop Construction 93

7.2 ReachingCopies. e 97
7.2.1 CopyElimination 98

7.3 ConstantPropagation. e 99
7.3.1 Theanalysis. 101

7.3.2 EXtensions. e 103

7.3.3 Constant Substitution. 0. 106

7.3.4 Expression Simplification. 0L, 107

7.3.5 Removing Redundant Conditional Statements. 109

7.3.6 Unreachable code Elimination. 112

7.3.7 Program Deobfuscation 113

7.4 MustandMay Assign e 117
7.4.1 Final Field Initialization. 118

8 Naming Mechanism 127
8.1 Heuristic-basednaming.0 127
8.2 Displaying qualifledtypes. 130

9 Testing and Empirical Results 135
9.1 UnitTesting. o o i i e e 135
9.2 Complexity Metrics. 136
9.2.1 ProgramsSize e 136

9.2.2 NumberofJavaConstructs 137

9.2.3 Conditional Complexity., 138

9.2.4 Identifier Complexity 0. 138

Xi

9.3 Benchmarks 139

9.4 Evaluation of DecompiledCode 141
9.4.1 ProgramsSize 141
9.4.2 Conditional Statements., 142
9.4.3 Condition Complexity. 143
9.4.4 AbruptControlFlow. 145
9.45 LabeledBlocks, 148
9.4.6 LocalVariables 0. 148
9.4.7 LoopCount e e 150
9.4.8 OverallComplexity, 152

9.5 Evaluation of ObfuscatedCode. 153
9.5.1 BenchmarkSize. 154
9.5.2 Conditional Statements. 156
9.5.3 Conditional Complexity. 156
9.5.4 AbruptControlFlow. 157
955 LabeledBlocks o 159
9.5.6 Identifier Complexity 159
9.5.7 OverallComplexity 160

10 Related Work 163

10.1 Decompilers e 163

10.2 Obfuscators. o 164

10.3 Visitor Design Pattern. 165

10.4 Structure-Based Flow Analysis. 165

10.5 Complexity Metrics. o . 166

11 Future Work and Conclusions 169

11.1 FutureWork 169
11.1.1 Abstract Syntax Tree Expansion 169
11.1.2 Transformations. 170
11.1.3 Adding comments to decompileroutput 171

xii

11.1.4 Stronger refactoringanalyses.

11.1.5 IdentifierRenaming.

11.2 Conclusions

Bibliography

Xiii

Xiv

List of Figures

1.1 SourcesofJavabytecode., 2
1.2 Comparing decompileroutputs. 4
1.3 Decompiling ObfuscatedCode. 6
2.1 BafandJimplerepresentations. 10
2.2 Grimprepresentation 11
2.3 DavaArchitecture 12
24 TheDavaFront-End., 14
2.5 Abstract Syntax Tree Class Hierarchy. 15
26 TheDavaBack-End. 16
3.1 Pseudo-code for sample tree-traversal 18
4.1 Converting Binary Conditions to Unary Conditions. 26
4.2 Delnlining Static Final Variables 27
4.3 Variable Declarations and Initialization 28
4.4 String Concatenation 29
4.5 \Verbose declaration of theimesarray 30
4.6 ComplexExpressions. e 34
4.7 Uncompilable code due to incorrect placementugfer 35
4.8 Effect of a preinitialization pointcut targeting a constructor with before adg8ige
4.9 Avoiding compilation errors due tuper invocation 38
4.10 Introducing the private static PrelnitMethod 39
4.11 Storingand Retrievingargs2. o e 41

XV

5.1 Simple Pattern Based Structuring 44

5.2 Dava’s AST ConditionGrammar. 46
5.3 Reducingusing the && operator.. 47
5.4 Application ofAnd Aggregation0 a7
5.5 Reducingusing thigoperator o oo 49
5.6 Application ofor Aggregation. oo 50
5.7 Removing Nestetif statements using theoperator 53
5.8 Removing similaLf statements using theoperator.. 54
5.9 StrengtheningLoops. L e 57
5.10 Strengthening UnconditionalLoops. 58
5.11 Application of While Strengthening 58
5.12 Strengthening a While Loop Using afistatement. 59
5.13 Strengthening an Unconditional Loop Usingldrstatement. 61
5.14 Strengthening an Unconditional Loop Usingldrstatement. 62
515 If-Else Splitting 63
5.16 If-Else Splitting 64
5.17 Removing useleggeak statements. 65
5.18 Comparing Davaoutput. 66
5.19 Reducing the scope of LabeledBlocks 67
5.20 Wrong Reductionof Scope. 68
6.1 Structural Flow-Analysis Algorithm for Simple Java Constructs. 73
6.2 The Structural Flow-Analysis Algorithm of If Construct. 75
6.3 The Structural Flow-Analysis Algorithm of IfElse Construct. 76
6.4 The Structural Flow-Analysis Algorithm of While Construct. 77
6.5 The Structural Flow-Analysis Algorithm of DoWhile Construct.. 79
6.6 The Structural Flow-Analysis Algorithm of Unconditional-While Constru&0
6.7 The Structural Flow-Analysis Algorithm of For Construct.. 81
6.8 The Structural Flow-Analysis Algorithm of Switch Construct.. 83
6.9 The Structural Flow-Analysis Algorithm of Try-Catch Construct.. . . . 85
7.1 AST rewriting using Structure-Based Flow Analyses. 88

XVi

7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
9.4
9.5
9.6

Implemented Flow Analyses and transformations 89
Initializing the Reaching Definitions Flow Analysis. 90
Generating new Reaching Definitions and killing previousones 91
Input to catch Bodies for Reaching Definitions Flow Analysis. 92
Conservative reaching definitions assumption for input to catch bodies 93
TheWhile tOFor CONVErSION. v v vt e e e 94
Copy Elimination. 99
Advantages of constant propagation. 100
Using constant field information during Constant Propagation 102
Preference to existing constantvalues 105
Advantages of constant propagation. 108
Simplifying conditions using DeMorgansLaw. 110
Removing always truef statement 111
Reachability analysis for tH&€-El1se statement 114
Advantages of constant propagation. 115
Dead code Elimination and AST Transformations 116
Example of final field not initialized on all paths. 119
Delaying assignmentof afinalfield 122
For loopdrivingvariables 128
Conditional Flags. 128
Heuristics for size/length arfdnal variables. 129
Usingget andset methods to get variablenames 129
Qualified Variabletypes.o o 131
Importing classes with the samename 131
Program size for decompiledcode. 141
Conditional statements for decompiledcade 142
Detecting simple non-aggregated conditional statements in original Soisde
Average Condition Complexity for decompiledcode. 145
Abrupt statements for decompiledcode. 146
Unnecessaryontinue statements producedbyJad 147

XVii

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18

Labeled Blocks for decompiledcode. 148

Number of Locals for decompiledcode 149
Reason for an increase in local variable countinDava 150
Converting &hilelooptoaForloop. 152
Overall complexity for decompiledcode. 153
Program size for obfuscatedcade 155
Simple conditional statement count for obfuscated code 156
Average conditional complexity for obfuscated code. 157
Abrupt control flow count for obfuscatedcode 158
Labeled block count for obfuscatedcade 159
Identifier complexity for obfuscatedcode 160
Overall complexity for obfuscatedcode. 161

Xvili

7.1

7.2

7.3
7.4

9.1

List of Tables

Intersection for Constant Propagation. ifidicates unknown value and
represents a non-constantvalue). 101
Strengthening Constant Propagation using Conditional comparison opera-
IONS e 105
Simplifying the && condition 109
Simplifying the|| condition. 110
Breakdown of Loops for decompiledcode. 151

XiX

XX

O© 0 N o 0o b W N P

e =
N B O

List of Algorithms

Finding constant valuedfields 23
Shortcut Array declaration and initialization 31
Removing the Default Class Constructar. 32
And Aggregation. e 48
Or Aggregation. i e 51
Or Aggregation for similarbodies 55
Strengthening While Loops Using If statements. 60
Removing Spurious Labeled Blocks. 66
TheWhile tOFor CONVEISION v v v v i e e e e e 95
processField. 120
handleAssignOnSomePaths. 121
createlndirection. 125

XXi

Chapter 1
Introduction and Motivation

Since its creation, the Jav&JS9T programming language has become increasingly
popular. The highly object-oriented design, exception handling, runtime checking and
garbage collection are some of the features making Java an attractive language for devel-
opers. The biggest reason for Java’s popularity, however, is the portability of the binaries
for Java. Java compilers, such as the standawdc compiler created by Sun Microsys-
tems [Sun Jay, produce Java class files and these are the binary form of the program which
can be distributed or made available via the Internet for execution by Java Virtual Machines
(JVMs) [LY99]. Although thejavac compiler is the most usual way of producing class
files, there are an increasing number of other tools that also produce Java class files. Fig-
ure 1.1 shows some other sources of bytecode. There exist compilers for other languages
including AspectJ}{HH 01, asp03 ACH' 05, abd, SML and C]AMP] that can produce
class files. Also, bytecode produced by compilers can be processed by bytecode optimizers
which produce faster and/or smaller class files, instrumentors and obfuscators which seek
to produce class files that are hard to decompile and understand.

Since Java class files contain Java bytecode, which is a fairly high-level intermediate
representation, there has been considerable interest and success in developing decompilers
which convert class files back to Java source. Such decompilers are useful in software en-
gineering, for programmers to understand code for which they don’t have Java source code,
and in the research community to help understand the effect of tools such as optimizers,
aspect weavers and obfuscators.

Introduction and Motivation

[Java Source] [AspectJ/ SML / C]
Y Y

[[JavaCompiIer]] [{ Compiler]]
Y Y

| bytecode |

Y Y

Y Y Y

B] e

\J

Yy

()

r Decompiled |
Java Source

Figure 1.1: Sources of Java bytecode

1.1. Javac-specific Decompilers

1.1 Javac-specific Decompilers

The original decompilers, such as Mock&|c], JadPad, Jasminlag, Wingdis|Win] and
SourceAgainfol, arejavac-specific decompilera that they work by reversing the spe-

cific compilation patterns used by the standassrac compiler. When given class files
produced by gavac compiler, they can produce very readable source files that correspond
closely to the original program. For example, consider the original Java program in Figure
1.2(a). When this program is compiled usifpgvac from jdk1.4 to produce a class file and

then decompiled with SourceAgain and Jad, one gets the very respectable results in Figure
1.2(b) and (c).

By assuming that the bytecode to be decompiled was produced with a specific Java
compiler, javac-specific decompilers are able to simplify the decompilation task by revers-
ing the code generation strategy employed by the targeted compiler. By applying pattern
matching, inferred from the known code generation patterns of the compiler, the task of
creating a javac-specific decompiler becomes relatively easy and fast. Sometimes the pat-
terns applied to get the decompiler output are very specific. For example, compare the
results for Jad between the case when the original program was compiled with jdk1.4 (Fig-
ure 1.2(c)) and with jdk1.3 (Figurd..2(d)). Clearly the Jad decompiler was implemented
to understand the code generation patterns fyama.c from jdk1.3 and it does not produce
as nice an output when used on class files produced yawwr from jdk1.4. Hence as
the code generation strategy of the targeted compiler changes there is a need to update the
decompilation patterns in javac-specific decompilers to maintain their performance.

Although javac-specific decompilers perform well for specific compiler-generated code,
they are not able to decompile any arbitrary bytecode. This stems from the fact that often
the bytecode does not follow the same patterns implemented in the decompiler. This is
even more true for bytecode passed through optimizers and obfuscators. In this situation
javac-specific decompilers are often not able to produce valid Java code.

Introduction and Motivation

(a) Original Code (d) Jad (jdk1.3)
1 while(done && alsoDone){ 1 while(flag && flagl){
2 if((a<3 && b==1) || b+a<l) 2 1if(1 <3 && j==11] j+1i<1)
3 System.out.println(b-a); 3 System.out.println(j - i);
4} 4}
(b) SourceAgain (jdk1.4) (e) Dava (jdk1.4)
1 while(bool && booll){ 1 label_2:9
2 if((i>=3 || j!=1) && j+i>=1) 2 label_1:
3 continue; 3 while(z0 !'= false){
4 System.out.println(j-i); 4 if (z1 == false){
5 } 5 break label_2;
6 }
7 elseq{
(c) Jad (jdk1.4) : label_0:{
9 if (10 < 3){
10 if(il == 1){
1 dof 1 break label_0;
> if(!flag || !flagl) » }
3 break; S }
4 1if(1 <3 && j==11] 3 +1i<1) w if (i1 + i0 >= 1){
5 System.out.println(j-i); . continue label_1;
6 } while(true); . }
17 } /lend labelO:
18 System.out.println(rl);
19 }
20 }

21 } /lend label2:

Figure 1.2: Comparing decompiler outputs

1.2. Tool-independent Decompilers

1.2 Tool-independent Decompilers

Dava [MHO01, MHOZ2] is atool-independent decompilbuilt using the Soot$og VRGH'00]

Java optimizing framework. Dava makes no assumptions regarding the source of the Java
bytecode and is therefore able to decompile arbitrary verifiable bytecode. However, this
generality comes with a price. Since the Dava decompiler relies on complex analyses to find
control-flow structure in arbitrary bytecode, the decompiled code is often not programmer-
friendly. For example, in Figuré.2(e), the output from Dava is correct, but not very
intuitive for a programmer. The goal of this research has been to provide tools that can
convert the correct, but unintuitive, output of Dava to a more programmer-friendly output.

1.3 Java Obfuscators

Java obfuscators aim to prevent code comprehension by mostly changing the names of iden-
tifiers in the Java bytecode. The first-generation obfuscators replace class, field, method and
local variable names with confusing and often misleading names. This kind of obfuscation
does not restrict reverse engineering attempts through decompilers.

A new class of Java obfuscators has also emerged that perform control flow obfusca-
tions. These second-generation obfuscators introduce complex, yet verifiable, bytecode
which causes most decompilers to fail. Since Davatsokindependentiecompiler and
since obfuscated bytecode is verifiable bytecode, Dava is usually able to produce valid Java
source for obfuscated code.

The challenge of providing programmer-friendly output for obfuscated bytecode is
complex. For example, consider the example in FiguB In this example we compiled
the Java program given in Figute3(a) with javac and then applied the Zelix KlassMas-
ter obfuscatotflaa) to the generated class file. Figure§(b) and (c) show the results of
decompiling the obfuscated class file with Jad and SourceAgain (only key snippets of the
code are shown). In both cases the decompilers failed to produce valid Java code. How-
ever, as shown in Figure 3(d), Dava does create a valid Java program, which exposes the
extra code introduced by the obfuscator. Even though correct, clearly this code is not very
programmer-friendly. This thesis lays down the foundations to address the big challenge of

5

Introduction and Motivation

1

2

3

4

10

11

(a) Original Code

class test {
Vector buffer = new Vector();
int getStringPos(String string) {
for(int i=0;i<buffer.size();i++){
String curString =
(String)buffer.elementAt(i);
if (curString.equals(string)) {
buffer.remove(i);
return i;
13

return -1; } }

(b) Jad

if (flag)/+ Loop isn't completed/
continue;

sl.equals(s);

if(flag) goto _L4; else goto _L3
_L3: JVM INSTR ifeq 59;

goto _L5 _L6
_L5: break MISSING_BLOCK_LABEL_48;
_L6: break MISSING_BLOCK_LABEL_59;

(c) SourceAgain

do{ String str = null;
if(i >= a.size())A{
/[goto couldn’t be resolved
goto 81 }
}while(!bool);

6

(d) Dava

1 class a{

2

8

4

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

private java.util.Vector a;
public static boolean b;
public static boolean c;
int a(java.lang.String ri1){
boolean z0, $z2, z3;
int 10, $i2, i3;

java.lang.String r2;

z0 = c; 10 = 0;
label_1:{
label_O:

while (i0 < a.size()){
r2 = (String) a.elementAt(iO);

if (! (z00){
z3 = r2.equals(rl);
i3 = (int) z3;
$i2 = i3;

if (z0) break label_1;
if (i3 == 0) i0++;
else{

a.remove(i0) ;

return iO;

}

if (z0){
if (' (b)) $z2 = true;

else $z2 = false;

b = $z2;

break label_0;

}
$i2 = -1;
} /lend labell:

return $i2; } }

Figure 1.3: Decompiling Obfuscated Code

1.4. Thesis Contributions and Organization

how we can convert the obfuscated code into something that is more readable.

1.4 Thesis Contributions and Organization

Dava’s initial implementation focused on correct detection of Java constructs and did not
address the complexity of the output. To be useful as a program understanding tool it is
important that Dava competes with other decompilers not only in the range of applicability,
but also the quality of output. By relying solely on the structure of the flow of control Dava

is able to produce Java source code which is semantically equivalent to the original source
code for most verifiable bytecode. However, as mentioned earlier (Figuizesd 1.3),

the output does not resemble the original source as closely as one would like.

The purpose of this research was to use the existing Dava decompiler as a front-end
which delivers correct, but overly complex abstract syntax trees (ASTs), and to develop
a completely new back-end which converts those ASTs into semantically equivalent, but
more programmer-friendly ASTs. The new ASTs are then used to generate readable Java
source code. In order to build this new back-end we have developed several new compo-
nents:

e Since the new back-end for Dava works by rewriting the AST we developed a visitor-
based AST traversal framework, as outlined in Chapter

e The visitor-based framework can be employed to do simple transformations to con-
form the output to generally accepted programming idioms as demonstrated in Chap-
ter4.

e Using the traversal mechanism we developed a large number of simple structural
patterns that could be used to perform structural rewrites of the AST. These trans-
formations mainly target the control flow of the decompiled output. Details of these
transformations can be found in Chapter

e Simple structural patterns can be used for many basic tasks, but in order to do many
more complicated rewrites we needed to have data flow information. Thus, we have
developed a structural data flow analysis framework, as outlined in Chapter

7

Introduction and Motivation

e Given the flow analysis information computed using the framework we have devel-
oped several more advanced patterns. In Chapaer discuss our advanced patterns
for improving the code quality including the use of reaching definitions, reaching
copies, constant propagatiett.information in transformations.

Chapter8 discusses new heuristic-based identifier renaming algorithms introduced in
Dava to help program comprehension. In Chaptere discuss some metrics to measure
the effect of the transformations on the complexity of decompiled output. Empirical results,
using the metrics established, are also discussed. CHaptiescusses some related work.

In Chapterl1 we mention some future work planned for Dava and our conclusions.

Chapter 2
Background: Dava Architecture

Dava is built using the Soot Java bytecode transformation and annotation framework.
Soot provides three internal representatidssf (jimple andgrimp) to develop and test
new compiler optimizations. Java bytecode is first convertégfowvhich is a stack-based
representation of disassembled Java class files. FRjlfa) shows a small Java method.

In Figure 2.1(b) we show thebaf representation of this method. As can be seen from
the figure thevaf representation resembles closely to the Java bytecode produced by the
compiler. Control flows through the code using labels gotb statements and a stack is
used to perform operations on data.

Baf is then converted tgimple which is a 3-address representation of Java bytecode.
The most important difference betweesnf andjimple is the absence of the Java stack in
jimple. Jimple also uses a static type inference engine to infer primitive and reference
types from the Java bytecode@iMO0]. Figure 2.1(c) shows thejimple representation
of the code in Figur@.1(a). This representation is the most powerful intermediate repre-
sentation for performing compiler optimizations like copy propagation and array bounds
checks.

The third intermediate representation in soogisimp which stands for aggregated
jimple. This is the highest level intermediate representation in Soot and is therefore used
as input to Dava. Figurg.2 shows thezrimp representation of the code in Figutel(a).
Control flow ingrimp is still implemented using explicit labels and gotos. Java’s try-catch
blocks are represented as areas of protection in the form of exception handlers within the

9

Background: Dava Architecture

(a) Original Code

1 public int foo(int a,int b){
2 try{ a= ax4+b; }

3 catch(RuntimeException re){}

4 return a;

(b) Baf

1 public int foo(int, int) {
2 word rO, i0, iil;

3 r0 := @this: ir;

4 10 := @parameterO: int;
5 il := @parameterl: int;
6 labelO:

7 load.i i0;

8 push 4;

9 mul.i;

10 load.i il;

11 add.i;

12 store.i i0;

13 labell:

14 goto label3;

15 label2:

16 store.r il;
17 label3:

18 load.i i0;
19 return.i;

20 catch java.lang.RuntimeException

21 from label0 to labell with label?2;

2 }

(c) Jimple

1 public int foo(int, int){
2 ir r0;
3 int 10, i1, $i2;

4 java.lang.RuntimeException rl, $r2;

6 10 := Q@this: ir;

7 10 := Qparameter(O: int;
8 11 := Q@parameterl: int;
9

10 labelO:

11 $i2 = i0 * 4;

12 i0 = $i2 + il;

13

14 labell:

15 goto label3;

16

17 label2:

18 $r2 := Qcaughtexception;

19 rl = $r2;

20

21 label3:

22 return iO;

23

24 catch java.lang.RuntimeException
25 from labelQ to labell with label2;
2 }

Figure 2.1: Baf and Jimple representations

10

code. The code itself is represented using a reduced set of statements, as compared to Java,
which contains aggregated expressions. The reasongwimp is chosen as the starting

point of the decompilation process is that certain decompilation issues have been already
dealt with in the creation of this intermediate representation. As already mentgrieg,

is stack-less so the Java expression stack has been eliminated. Also from the type inference
engine appropriate types have been applied to all variable declarations.

1 public int foo(int, int){
2 ir rO0;
3 int i0, i1;

4 java.lang.RuntimeException rl, $r2;

6 10 := Qthis;

7 10 := QparameterO;
g8 1l := Qparameteri;
9

10 labelO:

11 i0 = i0 * 4 + il;
12 labell:

13 goto label3;

14 label2:

15 $r2 := Qcaughtexception;
16 rl = $r2;

17 label3:

18 return i0;

19

20 catch java.lang.RuntimeException from labelO to labell with label2;

Figure 2.2: Grimp representation

In Section2.1 we discuss the old Dava decompiler to which we have added a new
back-end. The front-end takes theimp representation of the Java bytecode as input and

11

Background: Dava Architecture

grimp | jJava Construct Detection usingAST AST Rewriting AST Simplified
—

Pretty

Control Flow Graph Transformations Printer Java Sour¢

Existing Dava Front—End New Dava Back—End

Figure 2.3: Dava Architecture

produces an Abstract Syntax Tree representation of the decompiled Java source. Previously
this AST used to be pretty printed as the decompiler output. However, this thesis introduces
a new back-end to Dava which takes the complicated, through semantically correct AST,
and transforms it via AST rewriting to a simplified AST. This modified AST is then pretty
printed to produce more programmer-friendly Java source.

2.1 Existing Front-End

The internal workings of the Dava front-end are shown in Figute The grimp repre-
sentation of the bytecode is used to create a control flow graph (CFG). Each control flow
graph node containsgrimp statement with predecessor, successor, dominator and reach-
ability information. The control flow graph is also augmented with exception handling
information retrieved from th&apsinformation in the Java bytecode.

The next step is the detection of different Java constructs using the CFG as input. It
is not feasible to use a reduction-based approach to construct detection because of the
large set of isomorphic transformations possible for different Java constructs. Instead Dava
employs a unique approach, called staged encapsulation, to retrieve the Java constructs out
of the CFG. The strategy involves a series of complicated structuring algorithms which find
Java control flow statements based on their semantics rather than their locations relative to
other control flow statements. Since these analyses are general and do not resort to pattern
matching and/or simulating control flow using state machines, Dava is able to handle highly
unstructuredgrimp. This property proves to be crucial during decompiling convoluted
codee.g, obfuscated bytecode (Secti@rB.7).

As shown in Figure.4, the Structure Encapsulation Tree creation phase can be broken

12

2.1. Existing Front-End

into three categories:

e Regular Control flow. This include analyses for the detectidihafle andDo-While
loops andif andIf-Else conditional statements. This is followed by analyses to
determineSwitch constructs antlabeled-Block accompanied by the identification
of break andcontinue Statements.

e Exceptional Control Flow. This involves the detection of the/-Catch blocks.
As mentioned earlier the CFG has already been augmented with exception handling
information available througtrapsin the Java bytecode. Since Java bytecode does
not restrict overlapping exception handlers, ensuring thafikheCatch blocks nest
properly within each other is a non-trivial task and requires several analyses.

¢ Idiomatic Control Flow.Synchronized blocks are detected in this stage. Although
Java bytecode is a high level representation yet there is still a large gap between
the bytecode and the Java source that it represents.Syithronized detection
attests to this fact. In Java, synchronized blocks are an easy way of providing mutual
exclusion. Because of the syntax of the synchronized construct, proper nesting of
synchronized blocks is always guaranteed. No such guarantees exist at the bytecode
level. Also, since the bytecode represents synchronization usingntieemonitor
andexitmonitorbytecodes it has to go through great lengths to ensure that a monitor
lock acquired is always releasedy, when an exception is thrown while holding
a monitor lock. In short, the bytecode representation of the Sguahronized
construct is complicated and a sophisticated graph analysis is required to be able to
retrieved theSynchronized blocks from the CFG.

As each construct is detected a data structure called the Structured Encapsulation Tree
(SET) is constructed. The last stage of the front-end is the creation of the Abstract Syn-
tax Tree. Previously it was this AST which used to be emitted to a file to produce the
decompiled Java source. Now the AST is fed into the newly created Dava back-end.

The AST exposes a different form of the constructed Java and allows for further anal-
yses. Since most of the analyses presented in this thesis work on this AST it is useful to
familiarize oneself with the constructs making up this tree. The type hierarchy of nodes

13

Background: Dava Architecture

l grimp

Control Flow

Graph Creation
l T AST
Augmented Control Abstract Syntax
Flow Graph Creation Tree Creation
Regular Control Exceptional Control Idiomatic Control
Flow Detection Flow Detection Flow Detection

Figure 2.4: The Dava Front-End

which can occur inside a AST is shown in Fig@é. There is a node for each Java con-
struct. There is also one special node calledsthetementSequence node which contains

the statements present in a particular Java construct. These statemegtsmpratate-

ments which are printed out as Java statements. These include statements like assignment,
breaks Or continues etc. The reason for keeping such a structure for the AST nodes is
that the nodes are more for the convenience of manipulating different Java constructs and
less for carrying actual code.

2.2 New Back-End

As mentioned before, the purpose of this research was to simplify the output produced by
Dava. We found that the AST representation of the Java bytecode is the ideal data structure
to perform these transformations. Figur® shows the architecture of the back-end cre-
ated. The first step is to perform basic transformations on the AST to make it conform more
closely to programming idioms. Then simple pattern-based structuring transformations are

14

2.2. New Back-End

AbstractUnit
A

ASTNode

AST Statement SequenceNode M1 [ASTMethodNode |

ASTLabeledNode
A

ASTL abeledBlockNode ——

| ASTUnconditionalLoopNode —— ————ASTSynchronizedBlockNode |

ASTSwitchNode ' ASTForLoopNode |

ASTControlFlowNode

ASTIfElseNode

ASTWhileNode | ASTDOWhiTeNode

Figure 2.5: Abstract Syntax Tree Class Hierarchy

applied. The transformations detect the occurrence of certain sequences of AST nodes and
replace them with modified nodes representing simplified Java constructs and/or control
flow. However, it was noted that simple pattern-based transformations are not powerful
enough in many instances. The third stage in the back-end employs a series of transforma-
tions enabled using flow-analysis information.

The application of patterns in the second or third stage of the restructuring can enable
new transformations. The simple pattern-based structuring along with the flow-analyses-
based transformations are therefore applied iteratively until no pattern matches. By care-
fully ordering the transformations and ensuring that transformations always move towards a
fixed point we are guaranteed that the iterative application of transformation will terminate.

15

Background: Dava Architecture

AST

l Simplified
Java Source

Figure 2.6: The Dava Back-End

16

Chapter 3
A Tree Traversal Algorithm

A first step to implementing analyses/transformations on a tree structure is to have a
good traversal mechanism. Analyses to be performed on Dava’s AST require a traversal
routine that provides hooks into the traversal allowing modification to the AST structure or
the traversal routine.

Inspired by the traversal mechanism provided by Sabl&ZC[d, tree walker classes
were created using an extended version of the Visitor design pattern. The Visitor-based
traversal allows for the implementation of actions at any node of the AST, separately from
AST creation. This allows for modular implementation of distinct concerns and a mecha-
nism which is easily adaptable to the needs of different analyses.

The traversal mechanism also providéisand0UT methods which are invoked by the
Visitor design pattern when entering and exiting each subtree node, respectively. Using
these methods makes the task of subtree rewriting, needed all the time for transformations, a
simple matter of overriding the appropriate method. Usually the transformations use the
methods to gather information regarding the node being traversed. Future transformation
decisions might use the information stored at this point. If a decision to modify the AST is
made then often theUT method is used to perform the transformation.

An example of the usefulness of the extended Visitor design pattern is the detection,
and subsequent removal, of spuridu®eled-BlocksS. A Labeled-Block iS spurious
if it encapsulates code that never targetsitheeled-Block. The Visitor design pattern
provides an elegant way of implementing this transformation. Very briefly, such a transfor-

17

A Tree Traversal Algorithm

mation can be implemented as follows.

The IN method for entering Aabeled-Block is overridden and the label is stored in a
data structure used to store all “active” labels. The traversal then continues with visiting the
children of theLabeled-Block. The IN method oforeak statements is overridden (Note:
only break statements can targetlabeled-Block). If the break statement explicitly
targets a label then that label, from the list of active labels, is markadeid. TheQUT
method of aLabeled-Block block is also overridden. This method checks whether it's
label has been marked aseded. If unmarked, this indicates that there wasmeak
statement targeting thHeabeled-Block and hence the block is spurious and can be re-
moved.

List activelabels = new ArrayList();

List neededlLabels

new ArrayList();

public void inASTLabeledBlockNode (ASTLabeledBlockNode node){
activeLabels.add(node.getLabel());

public void inBreakStatement(BreakStatement stmt){
NodeLabel label = stmt.getLabel();
if (activeLabels.contains(label){

neededLabels.add(label) ;

public void outASTLabeledBlockNode (ASTLabeledBlockNode node){
if (neededLabels.contains (node.getLabel)== false)q{
/Ispurious labeled block detected
/luse AST rewriting to remove the labeled block

Figure 3.1: Pseudo-code for sample tree-traversal

18

3.1. Finding AST Parent Nodes

Apart from allowing transformations on the AST, the Visitor mechanism can also be
used to gather information for other transformations/analyses to use. In the remaining
sections of this chapter we discuss some of the tree traversals that have been implemented
which play a supporting role for other transformations.

3.1 Finding AST Parent Nodes

The Parent-Node Finder traversal is responsible for gathering information regarding the
different constructs in the AST. The class produces a HashMap, keyed by a node in the
AST and the parent of this construct as the value. In terms of this traversal a construct is
either a Java construetg, If, Do-While etc.or anygrimp Statement present within the
Statement-Sequence node of the AST.

This analysis is required since transformations often traverse the AST and, at some
stage during the traversal, decide that a particular node has to be moved/replaced. Since
such a modification requires ancestor information it might have been a good idea to store
a parent pointer within each of the AST constructs. As the original implementors of Dava
had not intended to perform AST analyses this information is currently not present in the
AST class definitions. One option would have been to go through the code that creates and
manipulates AST nodes and add parent information. Instead we chose to write this helper
analysis which can be used to get appropriate parent information whenever needed.

The traversal algorithm works as a wrapper around the AST. It can be queried at any
time during a transformation to provide ancestor information. An example of the use of
this helper traversal is in the case of copy elimination (Secfi@nl) where to remove a
particular copy statement ti$e atement-Sequence node containing this statement has to
be found.

3.2 Finding the Closest Abrupt Target

Java programs contain two types of abrupt control flow statemeois:inue andbreak.
The continue Statement is used to terminate the current iteration of the closest loop. On
encountering aontinue statement the program execution continues with the re-evaluation

19

A Tree Traversal Algorithm

of the condition of the loop. For the casemfr loop the update statements are executed
before the evaluation of the condition.

Thebreak statement can be used to terminate the execution of not only the closest loop
but also the execution of the clos€stitch statement. In each case the program execution
continues from just after the end of the statement broken.

The semantics discussed above ardiigplicit break andcontinue Statements. Java
also ha€explicitbreak andcontinue statements. These are statements of the forrmak
labellN; and explicitly target a labeled construct within the code. With expicéaks the
program execution breaks the labeled construct explicitly stated in the statement. Explicit
breaks are more powerful in the sense that they can be used to break from any Java con-
struct which has a label. In our implementation this would mean all ASTNodes inheriting
from the ASTLabeledNode (Figur2.5). Explicit continues on the other hand do not
introduce new statements that can be targeteddatinues. The advantage of explicit
continues is that these can be used to break out of an outer loop from within an inner
nested loop.

Finding the targets oéxplicit abrupt statements is easy since the label targeted is
explicitly mentioned in the abrupt statement. However, in the case tihahcit break
or continue statement the construct targeted has to be tracked by moving up the AST. A
traversal was implemented which keeps track of the current construct that might be targeted
by anlmplicit abrupt statement (a stack where targetable nodes are pushed when entering
the node and popped when exiting them). A mapping is created where the key is the abrupt
statement and the value the current targetable construct (top of the stack). This information
can be used by other analyses and is also used internally within the structure based flow
analysis framework (Chapté).

3.3 Finding all variable Uses

A depth first traversal of the tree is utilized to find all the uses of a local variable within

a method. Similarly, all the uses of a field within a particular method can also be found.
The results of the traversal can then be queried. Given a local or field as the key, the results
provide a list of all places where this variable might be used. A number of transformations

20

3.4. Finding all Definitions

e.g, ensuring that final fields get defined on all paths and only once (Set#of), use
these results.

3.4 Finding all Definitions

Another trivial analysis, this gathers a list of all definitions (assignments to locals or fields)
within a method. This information is used by a number of analyses including the
newInitialFlow implementation of the reaching defs flow analysis (Seclid). The
following tree traversal analysis is another analysis which uses the definitions found by this
analysis to gather further information.

3.5 Constant Primitive Field Value Finder

This analysis finds all primitive fields that have a constant value throughout the execution of
a program. This information helps to give the extra information needed for more accurate
constant propagation as discussed in SectiGr2

The algorithm is a two-step process. In the first step all definitions for all fields with
primitive type in the application are collected. The all definitions finder analysis, discussed
in the previous subsection, is used to return a list of all definitions in each method. Defini-
tions to non-primitive fields are removed. At the end of this stage a list is created containing
all places in the code where the field might be assigned.

The second step processes each field one at a time. Algofitehows this stage.
As mentioned eatrlier, the analysis only tracks values of fields with primitive types. Java
compilers store constant values for static final fields inside the constant pool. ddme S
framework converts these constant values to tags to which Dava has access. Hence the
first step for a primitive type field (as shown in Algorithi is to look up whether there
is a constant value tag for this field. If one is found, the constant value tag provides the
value for this field. If not, then the list of definitions found in stage one of the analysis is
checked. If there is no definition for this field that means the field is never assigned a value.
We can therefore assume that the field gets the default value for this primitive typesfield

21

A Tree Traversal Algorithm

booleans getalse and others get zero. We can hence return the default constant value for
this field.

If there were some assignments to this field then the algorithm checks that all the as-
signments are default value assignments. This check must be made because a context-
insensitive inter-procedural analysis does not keep track of the order of execution of state-
ments. Hence a claim for the value of a field, after the execution of an unordered set of
assignments to the field, can only be made if all assignments assign the same value to the
field. Further, since a field might not be initialized, at declaration time, in which case it
is assigned the default value, a claim can in fact only be made if all the assignments to a
particular field are default values.

The end result of this analysis is a list of fields which always have the constant values.
This can include fields which are final and hence are by definition constant or fields which
are either never assigned or are always assigned the default value.

22

3.5. Constant Primitive Field Value Finder

Algorithm 1: Finding constant valued fields

Input: SootFieldfield, List defList
Output: Constant value if found else null

//Only deal with primitive fields

if I(field.getType () instanceof PrimTypethen
return null

/Istatic final fields have constant value tags

if hasConstantValueTag(field) then
returngetConstantValueTag (field)

/lif field is never assigned

if deflistsize () ==0 then
| returncreateDefaultValue((fieldgetType());

else
/field is assigned some value within the code

forall definitions d, indefListdo
//Assignment should only be default assignment

if !d.isDefaultAssignment() then
return null;

end
/[All assignments were default

returncreateDefaultValue (fieldgetType O));

23

A Tree Traversal Algorithm

24

Chapter 4
Basic AST Transformations

The ability to traverse the AST, using a Visitor-based design pattern, allows for mod-
ular implementation of transformations. New traversals of the AST checking for simple
patterns can be implemented and plugged into the Dava back-end by inserting a call to the
new transformation in the already executing list of transformations. Given the traversal
mechanism, at a bare minimum, the mechanism can be used to transform Dava’s output to
produce code conforming more closely to programming idioms.

Programming idioms are common programming practices among the programmer com-
munity. These are highly subjective since they deal with a programmer’s personal prefer-
ence and style of coding. Nevertheless, in this section, we discuss some programming
idioms which, in our view, make program comprehension easier.

4.1 Condition Simplification

Expressions evaluating to boolean types are often used as unary conditions. An artifact of
the restrictive condition grammar in Dava (Figuse) resulted in representation of such
boolean expressions as binary operations, comparing the expressions to the boolean con-
stantsfalse Or true.

Figure4.1shows the different conversions that can be carried out. Since most program-
mers are used to reading boolean expressions in the form of unary conditions the effect of
these transformation is that code becomes less verbose and easier to read.

25

Basic AST Transformations

A !'= false ———> A
A !'= true -—-> !'A
A == false ———> !A

A == true --—> A

Figure 4.1: Converting Binary Conditions to Unary Conditions

Applying this pattern on our working example of Figure(e) results in the simplifi-
cation of the two boolean conditions in Statement 3 and 4.

4.2 Shortcut increments and decrements

Another simple transformation for ease of reading code is the use of shortcut increment
and decrement statements. It is common practice to represent the increment statement

i =1+ 1 using the increment operator ++ and using a similar decrement operator for the

i =i- 1 statement. This transformation replaces occurrences of i =i + 1 with i++ and i=i-1
with i- -. A more general case for this is when a variable is updated using the previous value
of the variable along with a constant. For example, the expression x = x + 2 is converted to
X +=2.

4.3 De-Inlining Static Final Fields

Standard Java compilers inline the use of static final fields. The reasoning is that since the
field is final the value is not going to change and hence the constant value can be used in
the bytecode instead of having to look up the value from a class attribute. The decompiled
output therefore contains the constant values wherever there was a static final field in the
original code. We think it is a good idea to recover the use of the field that was used
in the original code since the name of the field might be able to deliver some contextual
information to the programmer. A transformation was written which keeps a pool of all

26

4.4. Variable Declarations and Initialization

static final fields and their corresponding values found in a particular class. A depth first
traversal is then carried out that checks for the occurrence of constant values in the code.
When a constant value is encountered it is checked with the list of known values for the
different static final fields. If there is a match then the use of the constant value is replaced
by the use of the static final field. For example in Figdir&a) the createMinArray method
returns a new array with size 5. However, a static final MINSIZE is also declared with the
value 5. The De-Inlining transformation will detect this occurrence and generate code as
shown in Figure4.2(b). This kind of transformation allows for more use of identifiers in

the code and the contextual information provides the programmer insight into the code.

(a) Inlined field (b) De-Inlining
1 static final int MINSIZE = 5; 1 static final int MINSIZE = 5;
2 2
3 public int[] createMinArray(){ 3 public int[] createMinArray(){
4 return new int[5]; 4 return new int[MINSIZE];
5 } 5 }

Figure 4.2: Delnlining Static Final Variables

4.4 Variable Declarations and Initialization

Dava was previously unable to convert multiple variable declarations into a single dec-
laration. Also, previously a declaration and the subsequent initialization of the variable
was always broken into two consecutive statements (Figtxa)). A transformation now
aggregates variables with the same type into one declaration. Also a variable which is
initialized as soon as it is declared can now be initialized as part of the declaration (Fig-
ure4.3(b)). This is a common programming idiom and makes the code more natural.

27

Basic AST Transformations

(a) Unreduced (b) Reduced
1 int a; 1 int a, b=3,c;
2 int b;
3 b=3;
4 int c;

Figure 4.3: Variable Declarations and Initialization

4.5 String concatenation

String concatenation in Java can be carried out using the overloaded + operator. The se-
mantics of the operation allows for the addition of a String to a primitive type or any object
(whosetoString method is automatically invoked to get its String representation). For
instance the argument “hello” + 5 represents the concatenation sttfiag “hello” with

the String representation of the integer 5. In bytecode this conversion is achieved by us-
ing theStringBuffer class. A newStringBuffer is created whenevétring coercion

is required and the operands to #dditionoperator ar@appended to theStringBuffer.

The final output is theoString of theStringBuffer. For instance the argument “hello”

+ 5 would be represented as

((new StringBuffer()).append(‘‘Hello’’) .append(5).toString()).

We have implemented a transformation that looks for this pattern and retrieves the argu-
ments to the chainegbpend methods. From there the argument is reconstructed using the
+ operator.

A common occurrence of this is ti$§stem. out . print1n method invocation, used to
output information. Programmers normally pass, as argument to this method, the expres-
sion which might contain implicit String coercion using the overloaded + operator. With
this transformation we are able to retrieve the original expression written by the program-
mer. Figure4.4 shows such an example where the verbose code previously generated by
the decompiler has now been simplified using the + operator. In our view this makes the

28

4.6. Shortcut Array Declarations

code much easier to read and adhere more closely to general programming practices.

(a) Unreduced

1 System.out.println(
2 (new StringBuffer()).append(‘‘Hello’’) .append(5).toString())

(b) Reduced

1 System.out.println(‘‘hello’’+5)

Figure 4.4: String Concatenation

4.6 Shortcut Array Declarations

Arrays can be initialized using the shortcut declaration and initialization statement. For
example an array of the first five primes can be declared using: int[] prirjés2:3,5,%;
When compiled the Java bytecode represents this as the initialization of an array of size
5 followed by the assignment of each of the five elements of the array. The decompiled
output for theprimes array, as represented in the bytecode, is shown in Figji(a).

A pattern has been devised which converts the verbose array initialization code of Fig-
ure 4.5@) to the shortcut array declaration shown in Figdrgb). Algorithm 2 shows
the transformation which looks for this pattern. The algorithm is self-explanatory. Briefly,
we start by looking for a statement which creates a new array. If one is found then we find
whether the length of the array is a known constant. This is important since we can only use
the shortcut array initialization statement if all elements of the array are being initialized.

If the size of the array is known then we check the subsequent statements. If all of them
initialize the appropriate element locatiori.e., the elements are initialized in order, the

29

Basic AST Transformations

(a) Unreduced (b) Reduced
int[] primes = new int[5]; int[] primes = {1,2,3,5,7};
primes[0] = 1;
primes[1] = 2;
primes[2] = 3;
primes[3] = 5;
primes[4] = 7;

Figure 4.5: Verbose declaration of therimes array

pattern is matched. The verbose array creation and initialization statements are removed
and replaced with the shortcut declaration and initialization statement.

4.7 Removing default constructors

A Java class does not need to have a declared constructor if certain conditions exist. These
are: the presence of only one constructor and the constructor being the default constructor
i.e,, the constructor takes no arguments and executes no code except for the invocation of
the defaultsuper constructor. When a class containing no constructor is compiled, Java
compilers produce the default constructor asthiait> method which is then invoked in

the bytecode whenever an object of this class is created.

When decompiling a class with a default constructor the reverse approach can be taken.
If the bytecode contains only the default constructor then this constructor can be removed.
Algorithm 3 shows in pseudo-code the process of checking whether a constructor can be
removed from the class definition.

The algorithm starts off by finding all constructors defined by the class. If there is more
than one constructor the algorithm quits since in the presence of an overloaded constructor
along with the default constructor we cannot predict that all objects will invoke the over-
loaded constructor. If there is only one constructor then it is checked whether this is the

30

4.7. Removing default constructors

Algorithm 2 : Shortcut Array declaration and initialization

Input: ASTStatementSequenceNaodede
List stmts = nodgetStatements ()
Iterator it = stmtsiterator ()

while it.hasNext () do
Stmt s = itNext ()

if !(s.containsNewArrayExpr())then
/IFirst stmt of pattern should contain a new array creation

continue
if !(s.getArrayExpr().getSize() instanceof IntConstantthen
/[Can only apply pattern for arrays declared with known size

. continue
int length = s.getArrayExpr (). getSize()

for int i=0;i <length;i++ do

if ! (it.hasNext())then
/INot all array elements initialized

transform = false

break)
Stmt temp = stmtget (Stmtsindex0f (S) +1i)

if stmt¢emp does not initialize index i of arrathen
/[Can’t continue since we require inorder initialization of elements

transform=false

break
end

if transformthen
/I[Remove statement s and the following length number of stmts

/[Create the new shortcut declaration and initialization stmt
/[Add statement to position currentindex in the statements list

end

31

Basic AST Transformations

Algorithm 3 : Removing the Default Class Constructor

Input: SootClassootClass

constructorList— sootClas®etrieveConstructors ()

if constructorListsize () =1 then
/Iclass contains more than one constructor

return;
end

SootMethod constructor = constructorList.getO

if constructogetParameterCount () != 0 then
/lconstructor not the default constructor

return;
end

Body methodBody = constructgetActiveBody ()

if I methodBodyL.sEmpty () then
/[constructor doesnt have an empty body

return;
end

InvokeExpr superinvocation = methodBoghtConstructorExpr ()

if superlnvocatiorgetArgsCount () !=0 then
/[super invocation not the default invocation

return;
end

//all conditions fullfilled. Remove the constructor
sootClass.emoveMethod (constructo)

default constructor.e., it has no arguments in its method signature. If we do find that
the only constructor has no arguments in its signature then the method body’s contents are
checked. If there is no code, except for the defaujter invocation, we can continue with
the removal algorithm.

A related improvement in the output produced is the removal of defaghir invoca-
tions from a constructor’'s body. Whenever a Java constructor is invokedsuifear call
is not explicitly present as the first statement in the method body, the detault con-

32

4.8. The super invocation

structor is automatically invoked. Hence, if a constructor has an exglipgr call to the

default parent constructor then this statement is redundant. Such an invocation is therefore
removed from the constructor body. Obviously this only works when the explipiér
invocation is the default invocatidre., a super invocation without any arguments.

4.8 The super invocation

The Java specification requires any call to a construsigre(r () orthis ()) to be the first
statement in a constructor’s body. Since such a restriction does not exist at the bytecode
level, the bytecode representation of a constructor can have code preceding the invocation
of the<init> method.

Even though one cannot write statements before the invocatiohiaf() or super ()
in Java, the compilation of a method might result in bytecode being placed before the
invocation of another constructor from within the constructor’'s body. For instance if the
code in Figuret.6(a) is compiled, the produced bytecode (Figdi&b)) has the invocation
of the iterator method before the call toinit> (Statements 5 to 10 in Figureg(b)).
Sections4.8.1discusses this in more detail and Sectib8.2discusses similar issues for
bytecode produced by an AspectJ compiler.

Naively decompiling such code would result in uncompilable code unless the state-
ments added before the invocation of the parent constructor are handled appropriately.
Section4.8.3discusses the solution implemented in Dava.

4.8.1 Invalid code using complicated expressions

Figure4.6(a) shows two classes A and B where B extends A. The constructor of B invokes
the parent constructor using the Jauger statement. However, within the arguments
of the super call the Iterator “it” is being assigned the same value as the argument
being sent to the parent constructor. This is valid Java code since the supdr expests

an Iterator as the argument to its constructor. Also since the cathiper is the first
statement in the constructor Bf the code will compile since all Java requirements are
satisfied.

33

Basic AST Transformations

(a) Original Code (b) Jasmin Code
1 class A{ 1 .method public <init>
2 public A(Iterator it){ 2 (Ljava/util/List;Ljava/util/Iterator;)V
3 } 3 .limit stack 3
4} 4 .limit locals 3
5 class B extends A{ 5 aload_0
6 public B(List list, 6 aload_1
7 Iterator it){ 7 invokeinterface java/util/List/iterator()
8 super (it=1list.iterator()); s Ljava/util/Iterator; 1
s } 9 dup
10 } 10 astore_2

11 invokespecial
12 A/<init> (Ljava/util/Iterator;)V
13 return

14 .end method

Figure 4.6: Complex Expressions

At the bytecode level, the call touper is converted to a series of bytecodes which
first evaluate the argument of the call¢aper and then invoke theuper method. The
evaluation of the argument results in the invocation ofiberator method of theList
class and the assignment of the result to the constructor parameter “it". This evaluation
is shown in Figuret.6(b) by statements 5 to 10. Statement 11 is the invocation of the
constructor of the parent class.

As expected given the bytecode in Figuré(b) Dava produces the output shown in
Figure4.7. Statements 2 and 3 are the evaluation of the argument and statement 4 is the
invocation of the parent constructor using the evaluated argument. The decompiled output
is correct decompilation of the bytecode but is incorrect Java code since the call to the
parent constructor (Statement 3) is not the first statement of the method. The decompiled
code obviously does not recompile.

It can be argued that since the original code was able to represent the evaluation of the

34

4.8. The super invocation

1 public B(List rl, Iterator r2){
2 Iterator r3;

3 r3 = ril.iterator();

4 super(r3);

5 }

Figure 4.7: Uncompilable code due to incorrect placemensoper

argument within the invocation of the parent constructor, the decompiler should be able to
reconstruct the expression as an argument to the parent constructor. This is indeed correct.
However, there can be other occurrences where code might get added before the invocation
of the parent constructor which we discuss in the next section.

4.8.2 Invalid code using Preinitialization in AspectJ

AspectJKHH 01, asp03 ACH' 05, abd is an aspect-oriented extension to Java. It en-
ables clean, modular implementation of cross-cutting concerns such as logging and error
handling. The AspectJ language introduces a set of constructs, called pointcuts, which can
be used to pinpoint locations in the execution of code where the behavior of the program
can be altered if the need be. One such construct ipthénitialization construct.

Using this construct the programmer is able to target the point just before the execution of
the super() call within the execution of a constructor. The programmer can weavee

at this point which is executed whenever this execution point is reached. One possible
kind of advice isbefore advice which lets the programmer add code to run before the
matched point in the program. The result of weaviiegore advice on a pointcut using
thepreinitialization construct maps to adding code at the start of the constructor. If
however, in the original constructor the first statement was an invocation of another con-
structor (parent or own class) the advice is added before this invocation. This is exactly
what Java disallows. An example is shown in Figdi&a). There are two classes A and B
where B extends A. B’s constructor invokesgper and then executes a print statement. An

35

Basic AST Transformations

aspect is then introduced which prints out the string “before preinit” before the invocation
of the parent constructor. Using an AspectJ compiler suelbagabd the two classes and
the aspect are compiled.

(a) Original Code (b) Runtime Behaviour
1 class A { 1 before preinit
2 public AOQ{ 2 hello
3}
a}
5 class B extends A { (c) Dava’s Output
6 public BO{
7 super () ;
. S.0.println("hello"); 1 public class B extends A{
o 1} 2 public BO{
10 public static void main (2 Aspect.aspect0f();
” String[]l args){ 4 S.0.println("before preinit");
12 B b = new B(); 5 super () ;
T 6 S.0.println("hello");
14 } 7}
15 aspect Aspect { g8 public static void main
16 before() : g (Stringl] r0){
17 preinitialization(B.new()) { Lo B ri;
18 S.0.println("before preinit"); rl = new BO);
. } 12}
5 I 13 }

Figure 4.8: Effect of a preinitialization pointcut targeting a constructor with before advice

The execution of class B’s main method results in the creation of an object of type
B. The output from this is shown in Figure8(b). Notice the string “before preinit” gets
printed before the string “hello”. The reason being that the advice is executed before the call
to the parent constructor. The decompiler output produced for the constructor of class B is
shown in Figuret.8(c). Statements 1 and 2 are thefore advice, followed by invocation

36

4.8. The super invocation

of the parent constructor in statement 3 and then statement 4 is B’s constructor’s remaining
body. Clearly this decompiled code produces the same output as in Biglsg however,

it is not compilable code. The reason being that the invocation of the parent constructor is
not the first statement in B’s constructor.

Before talking about correcting Dava’s output it is worth mentioning that both Jad and
SourceAgain also fail to produce correct code. Although Jad fails to decompile AspectJ
produced Java bytecode most of the time, it is able to decompile the bytecode produced
by the simple example in Figure8a). The output in this case is exactly that of Dava’s
(Figure4.8(c)). SourceAgain does produce compilable Java code but with one major flaw.
Its output contains only Statements 1, 2 and 4 of FiguB¢c). So in this case although
the output produced by SourceAgain is compilable it is semantically not equivalent to the
bytecode being decompiled. In our view this output is even more incorrect than the uncom-
pilable code produced by Dava and Jad.

4.8.3 Transforming invalid code using indirection

To avoid compilation errors produced by Java compilerstiper () orthis () invocation
needs to always be the first statement in a constructor’'s body The most elegant solution for
this is to execute the extra code as an argument to the constructor invocation. This is
illustrated in Figuret.9 which shows a class A and its constructor. The code in (a) shows
invalid pseudo-code because of the presence of the offending statement chunk marked X
before the invocation ofuper. This error has been fixed in (b) by moving the offending
code, X, as an argument tmper. In the remaining section we deal with the algorithm
implemented in Dava dealing with moving the chunk X as an argumeniger.

Code X in Figure4.9a), which we want to execute as an argumenduper, can be
any arbitrary code. It could be the complex evaluation of an argument (as discussed in
Section4.8.]) or it could be some code added by the application of some advice (Sec-
tion 4.8.2. Hence, it is not possible to handle all cases as an evaluation of an expression in
an argument teuper. Instead a method invocation, executing X as an argumeniger,
is required. Let’s name this meth@deInit. Also, if we want this method to be part of the
same class which contains the constructor with the compiler error (class A in Bi§(a®

37

Basic AST Transformations

(a) Invalid pseudo code (b) Valid pseudo code
1 class A{ 1 public A(<argsi>){
2 public A(<argsi>){ 2 super (<args2>, X)
3 Tmmmmm== 3 Tmm ===
5 & oom===== /lcode causing 4 W ooo===mos
5 00 m———————- /lcompilation error 5 ————————
6 super (<args2>) 6

Figure 4.9: Avoiding compilation errors due teuper invocation

this method needs to be static. This is so because a non-static method of a class cannot be
invoked until the constructor of the class has finished executing. Figufga) shows the
creation and invocation of tiiereInit method. Code X is executed as the body of method
Prelnit.

However, it might not be possible to introduce a new constructor in the parent class. An
example of this is when the parent class is a library class which one does not have access to
or one does not want to change. This issue is handled by introducing a new constructor in A
which takes one extra argument (marl@dETYPE in Figure4.1(b)). The old constructor
invokes this new constructor with tiPeeInit method as the last argument. TheeInit
method executes code X and retuse®ETYPE. The remaining codesiper and code Y)
from the old constructor is moved into the newly created constructor.

Another issue is that copying code X into the newly created method may result in
undefined variables. The code in X could be using any of the arguments of the constructor
(argsl in Figuret.1(a)). This is handled by passing argsd., all arguments to the old
constructor as arguments to the newly cre@ssiinit method.

38

4.8. The super invocation

(a) Using a static method to execute code X (b) Creating a new constructor
1 class A { 1 public A(<argsi>){

2 public A(<argsi>){ 2 this(<argsi>,A.prelnit(<argsl>));
3 super (<args2>,A.PreInit()) 3}

a o==——so=s 4 public A(<args1l>,<SOMETYPE>){

5 W s=—om=aes 5 super (<args2>) ;

3 oo—————= 3 ————e———o

7} 7 W o—o=——=o=

8 private static void PreInit(){ S

9 mmm—————- 9 }
10 X ————————- 10 private static SOMETYPE
i 11 PreInit(<argsi>){
12} g omeeeeeee
13 } I

AN S
15 return SOMETYPE;
16 }

Figure 4.10: Introducing the private static Prelnit Method

Now let us discuss what the return ty@®¥ETYPE in Figure4.1Qb)) should be. One
thing to note is that it is quite possible that code X, which is executed before the invocation
of super, could define some variables that are part of the argumenitsptex i.e., part of
args2. Hence0OMETYPE needs to be a data structure which can be used to return all possible
arguments in args2.

Also since args2 can be zero or more arguments we B@METYPE to be a data struc-
ture which can return a list of arguments. Different arguments of args2 could then be re-
trieved from within this data structure usingsat method. However, there is also another
consideration: the newly constructed constructor, the one which has parameters argsl and
SOMETYPE needs to be unique. It is therefore not possible to use any existing Java library
collection class aSO0METYPE since then we stand a chance of creating a constructor with

39

Basic AST Transformations

a signature which might already exist. For example, if the original argsl had an integer
type as the only argument and we chose an ArrayLiSbBBTYPE then the new constructor
would have two arguments, an integer followed by an ArrayList. There is a possibility,
however remote, that such a constructor already exists in the class.

In order to avoid such an occurrence we decided to create a new data structure with a
unique type for the application. The data structure is a wrapper class for the Java Vector
class. This new class, nameglvaSuperHandler, allows the metho®reInit to store all
the args2 and return them as an argument to the new constructor. We are also guaranteed
that the signature of the new constructor will not match any existing constructor as we just
createdavaSuperHandler Which is the last argument of the constructor.

Figure 4.11 shows thePreInit method withDavaSuperHandler as its return type.

Also the new constructor hamvaSuperHandler as its last argument. |RreInit the
method stores args2 intaandler before returning this object. This is possible since all

of these arguments are either any of argsl or any variable declared or defined in the code
X. The new constructor retrieves these arguments usingdhemethod defined in the
DavaSuperHandler class.

With these changes to the code the old constructor now executes X followed by a call to
super and then body Y. To see this lets follow the chain of events. When the old constructor
is invoked this results in the invocation of the new constructor. However before the new
constructor is executed all arguments to the constructor have to be evaluated. We have
added to the arguments our owneInit method which causes code X to get executed.
Once this code is executed all values of args2 are packagemhira8uperHandler object
and made available to the new constructor. The new constructor then invakes In
its arguments it retrieves the args2 stored withindteaSuperHandler object returned by
PreInit. Oncesuper has executed, then code Y is executed. This chain of execution
satisfies the language rules since the first statement in the old and the new constructor are
always either an invocation of another constructor of the same class or an invocation of the
parent constructor. We also make sure that the new constructor’s signature does not conflict
with any existing constructor and also that theInit method is uniquely defined in the
class.

40

4.8. The super invocation

1 public A(<argsi>){

2 this(<argsi>,A.prelnit(<argsi>));

3}

4 public A(<argsl>,DavaSuperHandler handler){

5 super (handler.get(0), handler.get(n));

6 [%

7 x where n are the number of arguments in

8 x the super invocation

9 */

10 ==

I

12 —mm—m———=

13 }

14 private static DavaSuperHandler PreInit(<argsi1>){
15 ————————=

16 X ———————--

A

18 DavaSuperHandler handler = new DavaSuperHandler ();

19 /[code to store args2 into handler comes here

20 return handler;

Figure 4.11: Storing and Retrieving args2

41

Basic AST Transformations

42

Chapter 5
Simple Pattern Based Structuring

Most of the transformations implemented to simplify the output are targeted towards
control flow simplifications. These are handled as the second stage of Dava’s back-end after
the application of basic programming idioms to the AST. Figaueshows the sequence
of application of the transformations in this stage. As seen from the figure, control flow
simplifications can be broadly divided into three main categories: conditional aggregation,
loop strengthening and handling abrupt control flow. The order of application of these
transformations has been carefully chosen in order to maximize the number of patterns
matched using the minimum number of traversals through the tree. However, even with
this ordering, traversals sometimes have to be reapplied since the matching of a later pattern
might enable a preceding transformation. In the next three sections we discuss, in detalil,
the patterns and related transformations.

5.1 Conditional Aggregation

The cryptic control flow in the decompiled output is complex largely due to the fact that
Java bytecode only allows binary comparison operations for deciding control flow. How-
ever, this restriction does not exist in Java where boolean expressions can be aggregated
using the && and|| operators. Previously, Dava did not make use of this ability and hence
converted each comparison operation into a separate conditional construct. This results in
the creation of unnecessary Java constructs and their complicated nesting further increases

43

Simple Pattern Based Structuring

AST

Conditional Loop Abrupt Flow
Aggregation Strengthening Handling

Figure 5.1: Simple Pattern Based Structuring

code complexity. For instance, dfi statement evaluating two conditions using the &&
operator in the source code gets decompiled intofvstatements, one completely nested
within the other. Similarly, if a loop checks for multiple conditions in the source this gets
transformed into a loop with one condition. The remaining conditions are checked within
the loop body. By statically checking for such patterns, and merging the different condi-
tions, the number of Java constructs can be reduced, thereby reducing the complexity of
the output.

The reason that Dava, until now, did not use the ability to represent aggregated condi-
tions in Java is that therimp intermediate representation, which is the input to the decom-
piler, only contains binary comparison operators. The remaining parts of this section are
divided as follows: we first enrich therimp grammar by giving it the ability to represent
both unary conditions and aggregated conditions along with the existing binary conditions
(Section5.1.1). Then in Sectiorb.1.2we discuss the pattern which is used to aggregate
two If statements by combining their conditions using &&. In Secioh3we discuss a
number of patterns which combiné andIf-Else statements using theoperator.

44

5.1. Conditional Aggregation

5.1.1 Grammar for aggregated boolean expressions

All types of AST nodes extendingSTControlFlowNode in Figurg.5 contain a condition
which decides the flow of control through the program. The old gramgramg) and the

new enriched grammar, used by Dava, for the condition that can occur in the control flow
nodes are presented in Figus&2 The old grammar is very restrictive in the sense that

it only allows binary comparison operations. Unary conditions, that evaluateui® or

false in Java, are not allowed by the grammar. To be able to represent such conditions
using the old grammar a unary expression has to be compared wiodleanConstants

true or false (Sectiord.1). This results in decompiled code that looks machine generated
and is generally less readable.

Another issue with the old grammar was that expressions could not be aggregated with
logical symbols && and||. In the old grammar, an arbitrary boolean expression can be
represented only by breaking the expression into multiple binary comparison control flow
checks. This results in complicated control flow and causes the output of the decompiler
to have many levels of nestings because of the use of many simple checks. To reduce the
complexity of the control flow and at the same time improve the readability of the code, itis
preferable to have relatively complicated checks, as is possible with the new grammar, but
use only a few of them. Chapterdefines Conditional Complexity based on this enriched
grammar. It is expected that as the conditional complexity increases, due to increased
aggregation, the number of conditional constructs will decrease.

The important additions made to the grammar, as can be seen in the right side of Fig-
ure5.2, are the addition of unary expressions (e.g. a boolean variable, a method returning
a boolean etc), the introduction of && arjdsymbols and the composition of unary and
binary conditions using these symbols. Note that the grammar presented in Figise
an ambiguous grammar. The purpose of the grammar is to illustrate the different types of
conditions that can occur, within the Dava AST. BewetExpr in the grammar is treated as
a token in the grammar. Additionally, for the case of Bee1SimpleExpr all alternatives
for this production are restricted to have boolean types.

The addition of the new grammar has been carried out in such a way that the previous
analyses built in Dava still function as intended although without using the expressiveness

45

Simple Pattern Based Structuring

Condition :: = Simple Condition |
Condition && Condition |
Condition || Condition
SimpleCondition ::= ConditionExpr |
UnaryExpr
UnaryExpr ::= ! UnaryExpr | Bool SimpleExpr
Bool SimpleExpr ::= id | true | false | SootExpr
ConditionExpr ::= SootExpr condop SootExpr
Condop:=>|<|==|!=|<=|>=

ConditionExpr ::= SootExpr condop SootExpr
Condop:=>|<|==|!=]|<=|>=

Figure 5.2: Dava’s AST Condition Grammar

of the added grammar. New analyses introduced into Dava are implemented using the new
grammar.

5.1.2 And Aggregation

And aggregation is used to aggregate tiostatements into one using the && symbol.
Figure5.3(a) shows the control flow of twaf conditions, one fully nested in the other.
From the control flow graph it can be seen that A is executed only if bati1 andcond2
evaluate to true. B is executed no matter what. In Figugé) we see the reduced form
of this graph where the twof statements have been merged into one by coalescing the
conditions using the && operator. Statements 9 to 13 in FiduBée) match this pattern.
The matched pattern and the transformed code are shown in Figure

The pattern not only decreases the nesting level of constructs, by removing the inner
nestedif statement, but also shrinks the overall size of the code. By shrinking the size
of the code using such an aggregation strategy the code becomes more readable and the
control flow is easier to follow.

In order to apply this transformation it is important to ensure that the naststhte-
ment should be the only construct within the parehstatement. More specifically, during
a depth first traversal of the AST this pattern is matched if:

46

5.1. Conditional Aggregation

[if cond1) [if cond] && condZ)

T
T F
F
if (condl) { if (cond] && cond2) {
if (cond2) { A
A }
} B
}
B \
OO
(a) Unreduced (b) Reduced

Figure 5.3: Reducing using th&& operator.

(a) Original Code (b) Transformed Code
1 if (40 < 3){ 1 if(i0 <3 && i1l == 1){
2 if(i1l == 1){ 2 break label_0;
3 break label_0; 3}
4 }
5 }

Figure 5.4: Application ofAnd Aggregation

47

Simple Pattern Based Structuring

e An If statemens; has a childs,
e S is anlIf statement
e S is the only child ofs;

Algorithm 4 shows the algorithm used to detect the And Pattern and to transform the AST
accordingly.
Algorithm 4 : And Aggregation

Input: ASTNodenode

if node is anIf Constructthen

B < GetBody (node

if B has one ASTNodéen

V < GetNode (B)

if vis anIf Constructthen

condl< GetCondition(node

cond2«— GetCondition (V)

newConditiork— ASTAndCondition(condl,cond?
newBody— GetBody (V)

newNode— newASTIfNode (newCondition,newBody

replace (node,newNode
end

end

end

5.1.3 Or Aggregation

Figure5.5shows the control flow of ther Operator. The unreduced version of the control
flow shows that A is executed dond1 evaluates to true. If, however, the false branch is
taken therncond?2 is evaluated and A is executed if this condition is false. B is executed
no matter what. In short, A is executed if the first condition is true or the negated second
condition is true, followed by the execution of B in all cases. This graph can therefore be

48

5.1. Conditional Aggregation

reduced to that in Figurg.5(b) where the f statement aggregates the two conditions using
the || operator.

One of the patterns to which the control flow graph in Figbiga) can map is shown
in Figure5.5. The pattern looks for a sequence dffnstatements (n is 2 in Figueb) with
the first n-1 statements breaking to a particular labeb¢1_0 in Figure5.5) and the nth
statement targeting an outer labghkel_1 in Figure5.5). During execution this results
in the evaluation of a sequence If conditions and as soon as any of the n-1 conditions
evaluates to true or the nth condition evaluates to false a certain chunk of code (A in the
figure) is targeted. If the program gets to the nth condition and this evaluates to true then
in this case A is not executed. This code therefore correspondsitd statement with A
as its body and the condition the n-1 conditions and the negated nth condition combined
using the|| operator.

(if condl) (if condl || ! cond2)

label_1: {
label_0: {
if (condl)
break label_0
if (cond2)
break label_1
} /1 end label_0

1/ \F

A |label_1:{
@ if(condl1 ||

A A lcond2)
} I/ end label_1
B

—

(a) Unreduced (b) Reduced

Figure 5.5: Reducing using thg operator

The decompiled code in Figufie2(e) (reproduced here in Figute6(a) with theAnd
aggregation applied) has one occurrence of this pattern. Statement 2 in %igajas the

49

Simple Pattern Based Structuring

outer label and Statement 8 the inner one. There arelfinstatements in the sequence:
statement 10 breaking the inner label and statement 13 targeting the outer one. The trans-
formation removes the second statement by moving its negated condition into the first
statement. The new body of this statement consists of statement 16. The result of this
transformation is shown in Figuieg(b).

(a) Original Code (b) Transformed Code

1 label_2:{ 1 label_2:{

2 label_1: 2 label_1:

3 while(z0){ 3 while(z0){

4 if ('z1){ 4 if (1z1)A{

5 break label_2; 5 break label_2;

6 } 6 }

7 else{ 7 else{

8 label _0:9{ 8 if((40 < 3 && il == 1)

9 if(i0 < 3 && i1 == 1){ 9 [l i1 + i0 < 1){
10 break label_0; 10 System.out.println(rl);
11 } 1 }

12 if(il + i0 >= 1){ 12 }

13 continue label_1; 13}

14 } 14 } /lend label2:

15 } /lend labelO:

16 System.out.println(ril);

17 }

18}

19 } /lend label2:

Figure 5.6: Application of0r Aggregation

This transformation can greatly reduce the size of the code and improve the readability
as well. An interesting side-effect of the transformation is the removalabaled-Block
andbreak statements. The first n-1 statements all bresde1 0 whereas the nth statement
targetslabel 1. After the transformation all n-break statements have been removed

50

5.1. Conditional Aggregation

Algorithm 5: Or Aggregation

Input: ASTNodenode
if node is a Labeled Blodken
foreach child nodeChildin nodeGetBody () do

if nodeChild is a Labeled Blodken
outerLabelk— GetLabel (node

innerLabel< GetLabel (nodeChild
innerBody+«— GetBody (nodeChild

if FindIfSequence (innerBody,outerLabel,innerLabethen
//Pattern Matched

CreatenewConditiorby aggregating the sequence of conditions
using OR (last condition of the sequence is negated)
foreach successor childChildof nodeGetBody () after nodeChild

do
noderemove (SChild)

newBodyadd (sChild)
end

newlfNode— newASTIfNode (newCondition,newBody
nodereplace (nodeChild,newlfNode

break
end

end

end
end

which also allows the removal afabel 0. Also, although we cannot directly remove
label_1, without checking that thef body does not target it, we have reduced the number
of abrupt edges targeting it by one. In Sectmf.3we discuss an algorithm that checks
for spurious labels and subsequently removes them.

The algorithm for the transformation is shown in Algorittim If at any stage of the
traversal of the tree we find a labeled bloakde in Algorithm 5) then the body of this

51

Simple Pattern Based Structuring

block is searched for an inner labeled block. If one is found therFilh@IfSequence
function is invoked which checks that there is a sequende statements adhering to the
pattern we are looking for. If the pattern is matched then firshthe€ondition is created.

The body of the nevif statementrewBody in Algorithm 5) is the sequence of all nodes
within the outer labeled block which follow after the inner labeled block. Hence these
nodes are removed from the outer block’s body and used to create the body of thé new
statement. Once done the newstatement replaces the inner labeled block.

Function: FindIfSequence

Input: List body, StringouterLabe] StringinnerLabel
Output: booleanFoundOrNot
foreach ASTNode node in bodio
if node is not an if construdhen
return false
ifBody < GetBody (node

if ifBody is not an abrupt statemetiiten
return false;

abruptStmk— GetStmt (ifBody)

if node is the last nod&& abruptStmt targets outerLabtten
return true;

else if node is not the last nod&& abruptStmt targets innerLab#ien
continue

else
return false

end

end

Other Or Aggregation Patterns

We discuss some other patterns in this section which can map to an aggregation of condi-
tions using thér operator. In Figuré.7, code A is executed fond1 evaluates tarue.

52

5.1. Conditional Aggregation

if (condL){ if (condl || cond2){ if (condl || cond2){
A A A

} J }
else{ else{ B

if (cond2){ /lempty else body

A }

} B
}
B
(a) Unreduced (b) Intermediate Reduction (c) Reduced

Figure 5.7: Removing Nestedf statements using theoperator

If cond1 is false then the second conditionpnd? is evaluated with therue branch re-
sulting in the execution of A. B is executed no matter what. The code therefore executes A
if either cond1 OR cond2 evaluates to true. We can hence reduce the pattern by creating
a newIf statement which has the condition the result of aggregaitmg1 and cond2
using||. The transformation is implemented in two stages. The first stage involves remov-
ing the If statement in thelse body of theIf-Else construct and addingond2 into

the condition of thef-Else statement. The removal of tli¢ statement leaves thd se

body empty. The second stage of this transformation then takés ti@se statement and
converts it into arif statement.

Figure 5.8 shows anothebr aggregation pattern. Figufe8da) shows twolf state-
ments with the same body (in the general case the pattern works for a sequénctadé-
ments with the same body). The pattern can be reduced to the one shown inF-&jo)ye
where the two conditions of thef statements have been merged usingiowever, this
transformation is only possible if the body common to 1liestatements (A in Figurb.8)
ends with an abrupt statement. The reason for this can be seen by inspecting the execution
sequence of the code in Figused(a) in both cases, when the common body has an abrupt
edge and when it does not.

53

Simple Pattern Based Structuring

e BodyA has an abrupt edge
Abrupt edges include breaks, continues and return statements. The code starts exe-
cuting by checkingond1. If cond1 evaluates to true then BodyA is executed. Since
BodyA contains an abrupt edge the execution moves to another place in the code and
the second f statement is not executed. If, howevesnd1 evaluates to false the
secondIf statement is checked and BodyA is executed if cond2 evaluates to true.
The important thing to note is that BodyA gets executewifd1 evaluates to true or
if that doesn’t thertond2 does. Also because of the abrupt edges in BodyA, BodyA
only gets executed once. In this case we can combinedtiiél andcond2 using the
Or operator into oné@f statement with the body as BodyA.

e BodyA has no abrupt edge
In this case the code starts out by checking the condition of theIfirstatement.
If this evaluates to true then Body A is executed. Since BodyA doeshave an
abrupt edge then the seconfi statement is executed. If this conditiarond2 also
evaluates to true BodyA is executegain. So in the case where BodyA does not
have an abrupt edge, BodyA has a chance of running twice (in our example) and
multiple times in the case of the more general pattern. Looking at this sequence
of execution it should be clear that in this case one cannot aggregate thef two
statements since that would change the semantics of the program.

if (cond1){
A if(cond1 Il cond2){
) A
if (cond2){ }
A
}
(a) Unreduced (b) Reduced

The pattern is only applicable if Body Ais an abrupt edge (return/break/continue).

Figure 5.8: Removing similaZ f statements using theoperator.

Another very important thing to keep in mind is that the order of the conditions in

54

5.1. Conditional Aggregation

the aggregated Or Condition is important. The reason being that the evaluation of these
conditions can have side effects. In the unreduced pattecnnidl evaluates to true then
the program will never evaluat®nd2. Hence we need the same semantics for our reduced
pattern. This is achieved by haviagnd2 to the right ofcond1 in the aggregated condition.
This ensusures thatdfond1 evaluates to trueond2 will not be evaluated and we adhere to
the semantics of the original program. The pattern 3 transformation is implemented using
algorithm®.
Algorithm 6 : Or Aggregation for similar bodies
Input: ASTNodenode
body+ GetBody (node
Iterator it < bodyiterator ()

while it.hasNext () do
nodel« it.Next ()

if I'it.hasNext () then
| return;

node2« it.Next ()

if nodel and node2 are textttlf statemethiesn
bodyl« GetBody(nodel

body2«— GetBody (node2
if body1 and body?2 are the sartieen

if bodyl has an abrupt Edgben
leftCond«— GetCondition (nodel)

rightCond<« GetCondition (node2)
newConditiork— ASTOrCondition (leftCond,rightCond)
newlfNode— ASTIfNode (bodyl,newCondition

bodyremove (nodel
bodyreplace (node2,newlfNode
end
end
end

end

55

Simple Pattern Based Structuring

5.2 Loop strengthening

Previously, in the case where loops have multiple conditions, Dava used one of these condi-
tions as the loop condition and the remaining ones were addetlas f-Else statements

inside the loop body. Hence, similar 1@ andIf-Else statements, loops can now hold
aggregated conditions to be evaluated before execution of the loop body. Therefore pattern
matching can be used to strengthen the conditions within a loop. In the next two sections
we discuss hovif andIf-Else statements nested within loops can be used to strengthen
the conditions of loops and at the same time remove abrupt statements and shrink the code
base.

5.2.1 Usinganested If-Else Statementto Strengthen Loop Nodes

The decompiler usekf-Else statements if the loop body is non-empty. Thebody is
the non empty body of the original loop and teese body contains abrupt control flow
out of the loop. Two different types of patterns can arise as discussed below.

Figure5.9a) shows a while loop with anf-Else statement as its only child. Reason-
ing about the control flow shows that Body A is executed if bathd1 andcond2 evaluate
to true. If either of the conditions amalse, the loop exits. This fits in with the notion
of a conditional loop with two conditions as seen in the reduced form of the code in Fig-
ure5.9(b). Notice that the label on théhile loop is still present in the reduced code. This
is because there can be an abrupt edge in Body A targeting this label. After the reduction
the algorithm in Sectiob.3.3is invoked to remove the label from the loop, if possible.
Notice that if the bodies in theéf-Else statement are reversed: tlhée branch contains
thebreak out of the loop and thelse branch contains a body similar to the BodyA men-
tioned above. In this case by adding the negated condition afthElse statement the
same transformation can be applied.

Figure5.10shows a similar strengthening pattern for unconditional loops. The only
difference is that in this case th€-Else statement is free to have any construct in both
branches as long as one of the branches has an abrupt edge targeting the labeled loop. The
reduction works by converting tiinconditional-While loop to a conditional loop with

56

5.2. Loop strengthening

(a) Unreduced conditional loops (b) Reduced conditional loops

1 label_0O:
2 while(condl){
3 if(cond2){

1 label_O:
4 Body A 2 while(condl && cond2){
5 1} 3 Body A
6 else{
4}
7 break label_0
s }

9 }/end while

Figure 5.9: Strengthening Loops

Body A as the body of the loop. Body B is then moved outside the loop. The specialized
pattern where Body B is empty makes this pattern the same as the pattéhn Terloops.
Looking at our working example (Figufe§(b)) whereAnd andO0r aggregation have
already been applied, reproduced as FidurEl(a), we can see that statements 3 to 13
make avhile loop which has on&f-Else statement. Notice that in this case fife Else
statement is reversed: thé branch contains the break out of the loop andeth& branch
contains Body A (statements 8-10). In this case we can applytihee strengthening
pattern by adding the negated condition of ItfieE1se statement into thehile condition.
The transformed code is shown in Figiré 1(b).

5.2.2 Using a nested If Statement to Strengthen loop Nodes

Pattern matching on loops containinfystatements results in loops with empty bodies with
the work being done from within the conditions of the loop. Such kind of loops are often
encountered in concurrent programs e.g. busy waiting.

The pattern shown in Figufe 12shows the transformation of a conditional while loop
to a loop in which the strength of the loop condition has been increased by the addition of

57

Simple Pattern Based Structuring

(a) Unreduced unconditional loops

1 label_O:
2 while(true){
3 if(condl){

4 Body A

5}

6 else{

7 Body B

8 break label_0
s }

10 }/end while

1

(b) Reduced unconditional loops

label_O:

while(cond1){
Body A

}

Body B

Figure 5.10: Strengthening Unconditional Loops

(a) Original Code

1 label_2:{

2 label_1:

3 while(z0){

4 if ('z1){

5 break label_2;

6 }

7 else{

8 if((i0 < 3 && il == 1)

9 [l i1 + i0 < 1){
10 System.out.println(ril);
11 }

12 }

13}

14 } /lend label2:

(b) Transformed Code

1 label_2:{

2 label_1:

3 while(z0 && z1){

4 if((i0 < 3 && il == 1)

5 [l i1 + i0 < 1){
6 System.out.println(rl);

7 }

s}

o } /lend label2:

Figure 5.11: Application of While Strengthening

58

5.2. Loop strengthening

cond2. The reasoning for this is that the execution of the code stays within the while loop
as long azond1 evaluates to true ancbnd?2 evaluates to false. If eithefond1 evaluates

to false orcond2 evaluates to true the while loop is broken and Body B is executed. There-
fore the pattern in Figur®.1a) can be reduced to that in FiguselAb). Note that the
transformation is possible only if the while loop contains a siriglstatement in its body.
Specifically the point marked with an arrow in Figird 2should not have any AST Node.
Algorithm 7 shows how the reduction can be implemented.

label 1
while (condl) {
if (cond2) { while cond1 (while condl && !condé
break label 1 T while (cond1 && 'cond2)
X }
) B
B F F
(&) ®
(a) Unreduced (b) Reduced

Figure 5.12: Strengthening a While Loop Using dif statement

59

Simple Pattern Based Structuring

Algorithm 7 : Strengthening While Loops Using If statements

Input: ASTWhileNodenode
label + GetLabel (node)
body<« GetBody (node)

if the only child,onlyChildin body is anI f statementhen
B «+ GetBody (onlyChild)

if B has one statement ontlgen
stmt<— GetStatement (B)

if stmtis a break stnthen

if labelis the same aSetLabel (stmf then
condl« GetCondition(node

cond2< GetCondition (onlyChild)
cond2« FlipCondition(cond?
newConditiork— ASTAndCondition(condl,cond?

newBody— EmptyBody ()
newNode— newASTWhileNode (newCondition,newBody

replace (node,newNode
end

end

end
end

Figure5.13shows the counterpart of the previous pattern for unconditional loops. From
Figure5.13a) it can be seen that the only way the loop terminates dsiifi1 evaluates
to true. This can therefore be represented as a conditional loop with the negated
as the condition. Again it is important to notice that the transformation is possible only
if the unconditional loop has thef statement as the only child. After the transformation
the loop, which is now a conditional loop, will terminate only if the condition evaluates to
false. Since the condition is the negatedid1 the semantics of the code are maintained.
The algorithm for this transformation is similar to AlgorithinThe only differences being
that the new while node contains the statement’s condition and that the new while node

60

5.2. Loop strengthening

replaces the old unconditional loop node.

label_1
while (true) { _ _
if (condl) { (while true) while !cond1
break label_1 . while (Icond1) {
__>} }
; if condl F B
(a) Unreduced (b) Reduced

Figure 5.13: Strengthening an Unconditional Loop Using &p statement

The pattern above can be generalized to include the case wheaifi #tatement does
not only contain the abrupt statement. The reason this restriction was imposed for condi-
tional loops can be seen from Figusel4a). Thelf statement contains a body (BodyA)
followed by thebreak statement. If we were to apply the reduction we would get code
shown on the right side of Figuie14a). However, this code has different semantics from
the original code. This can be seen by checking when BodyA gets executed. In the un-
dreduced version BodyA gets executed onlydfid1 andcond2 are both true. However in
the reduced version BodyA can get executecbifd1 is false.

In the case of unconditional loops it is noted that such a restriction is not needed. This
can be seen in Figug14(b). The reason for this being that no condition is checked in the
unconditional loop and hence the control flow decision is made solely from within the loop
body. As can be seen from the unreduced and reduced versions of this pattern BodyA gets
executed only ikond1 evaluates to true and at the same time results in the control exiting
the loop.

61

Simple Pattern Based Structuring

label_1 label_1
while (cond1) { while (true) { .
if (cond2) { while (condl && !cond?) { if (cond1) { while (tcond1) {
Body A Body A }
break label_1 } break |abel_1 Body A
} BodyA B
y B }
) B
Unreduced Reduced Unreduced Reduced

(& An Incorrect Transformation (b) A Correct Transformation

Figure 5.14: Strengthening an Unconditional Loop Using & statement

5.3 Handling Abrupt Control Flow

Abrupt control flow in the form of labeled blocks abfleak/continue statements, created

by Dava to handle angoto statements not converted to Java constructs, also complicate
the output. Programmers rarely use such constructs, since it makes understanding code
harder, and it is therefore desirable to minimize their use.

5.3.1 If-Else Splitting

The restructuring of the bytecode often results in the creatiad€€£1se statements where

If statements would have sufficed, because ofgihie statements linking the different
chunks of bytecode together. An example of this is shown in Figur&a). The proposed
transformation is shown in Figute15b). Notice that BodyB which was in tredsebranch

of theIf-Else statement has been removed out of the conditional statement. This is possi-
ble because of the abrupt edge at the end ofttee branch of thelf-Else statement. The
abrupt statement indicates that control is going to flow to some other location of code. If
we can confirm that the abrupt statement does not target a label dif tisse statement

62

5.3. Handling Abrupt Control Flow

then we know that BodyB will not be executed even if it is outsideTthstatement. One
additional requirement is that if tHef-E1se statement has a label on it then BodyB should
never target this label since once removed fromdlsebranch it is no longer under the
scope of the label (which will now be on thé statement).

(a) Unreduced (b) Reduced
if (cond1){ if (cond1){
BodyA; BodyA
<abrupt edge> <abrupt edge>
X 3
else{ BodyB

BodyB;

Figure 5.15: If-Else Splitting

If this pattern does not get matched we also try the reverse of the pattewhere the
elsebranch has a body followed by an abrupt statement antht#rebranch is some body
which does not target any label on the-Else statement. In this case, the néf state-
ment contains thelsebranch as its body and the condition of the statement is the negated
condition of the original f-Else statement. Figur.16shows code from a real decompi-
lation scenario where the reversefl-Else pattern gets matched. Thé-Else statement
in Figure5.16a) contains aeturn statement in thelsebranch. In Figuré.1§b), the
transformation is able to createl & statement with the abrupt edge as part of the body, by
negating the originalf-Else condition.

5.3.2 Useless break statement Remover

Another artifact of Java bytecode is the occurrence of unneedegk statements. Java
constructs have predefined fall through semanicsafter execution of a certain construct
control moves to the next statement in the code. Using this knowledge it is sometimes

63

Simple Pattern Based Structuring

(a) Unreduced (b) Reduced

if (i3 == 0) if (i3 1= 0){
{ a.remove(i0) ;

10++; return;
} }
else i0++;
{

a.remove(i0);

return;
}

Figure 5.16: If-Else Splitting

possible to removereak statements which target the same code location that is the natural
fall through of the labeled construct. Two examples of this are shown in Figlire

The algorithm works by looking fosreak statements in the code. Whenevéairaak
statement is found, the transformation finds the target node afriéwek statement. Then
each of the ancestors of theeak statement up to the target node are analyzed.bthek
statement is unneeded if it is the last statement in its parent node, the parent node is the
last node of its parent and so on until we reach the target node. For instance, in the left
side of Figure5.17 the break statement is unneeded since it is the last statement in the
If statement which is itself the last node within tiven branch of thelf-Else branch.
Hence the natural fall through, BodyD, is the same as that targeted bydh®e statement.
Thebreak statement can be safely removed. On the right side of Figuréagain we see
an unneeded break. Theeak label8 statement targets BodyC which is the natural flow
through after execution of BodyB. Hence thiseak statement can also be removed.

One important thing to remember is thatak statements are also used to break out of
a loop. Hence the transformation can only be applied if none of the ancestorsbaktile
statement up to the targeted node is a loop construct.

If a break statement is found to be unneeded then an added advantage of this can be

64

5.3. Handling Abrupt Control Flow

labell: label8:
if (cond1){ try {
BodyA BodyA
if (cond2){ }
BodyB catch (Exception e){
break labell BodyB
} break labelS8;
} }
else{ BodyC
BodyC
}
BodyD

Figure 5.17: Removing useledgreak statements

that the label might also become removable, as discussed in the next section.

5.3.3 Useless Label Remover

The Or and And aggregation patterns provide new avenues for the reduction of labeled
blocks and abrupt edges. With the help of pattern detection, the number of abrupt edges
and labels can be reduced considerably.

Labels can occur in Java code in two forms: as labels on Java construcithelg.
loop or as labeled blocks. If a label is shown to be spurious, by showing that there is no
abrupt edge targeting it, then in the case of a labeled construct the label is simply omitted.
However, in the case of a labeled block, a transformation is required which removes the
labeled block from the AST. Algorithr shows how a spurious labeled block is removed
by replacing it with its body in the parent node.

When applied to the code in Figusell(b) 1abel 2 andlabel 1 which were at state-
ments 1 and 2 are both removed. Looking back at the original source code from which
this decompiled output was generated (reproduced as Figli&a)) we see that, after

65

Simple Pattern Based Structuring

Algorithm 8 : Removing Spurious Labeled Blocks

Input: ASTNodenode

body+ GetBody (node
Iteratorit «+— bodyiterator ()

while it.hasNext () do
nodel« it.Next ()

if nodel is a Labeled Block Nodeen

if IsUselessLabelBlock (nodel)then
bodyl+ GetBody (nodel

Replacenodelin bodyby bodyl
end

end

end

applying the AST rewriting, Dava’s output, FiguEel8b), matches the original source

code.

(a) Original Code (b) Final Dava Output

while(done && alsoDone)q{ while(z0 && z1){
if((a<3 && b==1) || b+a<l) if((10<3 && il1==1) || i1+io0<1){

System.out.println(b-a);
} }
}

System.out.println(il-i0);

Figure 5.18: Comparing Dava output

66

5.3. Handling Abrupt Control Flow

5.3.4 Reducing the scope of labeled blocks

While pattern matching labeled blocks to rewrite the AST, some pattern might not get
matched because the labeled block contains too many children in its body. It is sometimes
possible to reduce the scope of the labeled block. One such possibility can be seen in
Figure5.19a). The unreduced code shows thabel 1, which is a labeled block, consists

of some code that does not use the label followed by code which targets this label (the
While loop in Figure5.19@)). Since the initial code does not involve the usa@aifel 1

there is no reason why this code cannot occur outside the scope of the labeled block. As
seen in the reduced form of the code (Figbrgéqb)) the labeled block has been removed

by placing the label directly on th#éile loop construct. Such a transformation is possible

label_1{ label 1{
1o break label_1 1 1 no breck label_1! | label_2: ' abdl 2 :
e i 1 while(cond){ 1 | while_((.zon o) |
'while(cond){ | |label_L: ! ! Juseof label_1, !
L Jluseof labdl 11 Iwhlle(congg){ I | Lo /Ireplace use of I
! = Nluseoflabel 1 . .| INabel_1with label_2 '
1 | | Nothinghere | !} |
1 Nothing here | . . !
— } /lend label_1

} /lend label _1

(a) Unreduced (b) Reduced (c) Unreduced (d) Reduced

Figure 5.19: Reducing the scope of Labeled Blocks

if the following conditions hold:

e The construct that holds the abrupt statement targeting the labeled block should itself
be able to hold a label. These include all the AST nodes derived from the AST
Labeled Node from the type hierarchy in Fig@&.

e The construct that targets the label should be the last child of the labeled block node.
The reason for this restriction is illustrated in Figr€Q In Figure5.2(0a) body
A is a child of the labeled block occurring after tWeile loop which targets the
labeled block. If, according to the transformation, we were to remove the labeled

67

Simple Pattern Based Structuring

block by placing the label onto théile loop (as shown in Figuré.2Qb)) then
BodyA is no longer under the scope of the label. Hence the execution btta&
statement breaks out of the loop but ends up executing BodyA which should not have
been executed.

label_1 {
T 1 —
| no break label_1 | | no break label_1
| while (cond){ " label_1: |
I [luseof label_1 , while(cond){
: ! | } Iluse of label_1!
| BOVA : BowA
} /lend label_1 -
(8) Unreduced (b) Reduced

Figure 5.20: Wrong Reduction of Scope

e The construct that targets the labeled block should not already have a label on it.
If such a situation arises, as shown in Figéré9qc), then the transformation can
still be successful. However, in this case the construct’s label is kept and any abrupt
edge targeting the labeled block is made to target the label on the construct. In Fig-
ure 5.19d) this means keeping the lakeibel2 on theWhile loop and removing
the labeled block. Any abrupt statement targetiagel 1 is transformed to target
label2. Obviously this is only possible if the labeled block had only one child other-
wise the transformation changes the semantics for reasons similar to those discussed
above.

The reasoning behind trying to reduce the scopes of labels is that if there are fewer
children in a labeled block, then there are better chances that some other pattern will match.
If no pattern matches, reducing the labeled block size still has the advantage of improving
code complexity since the programmer now has to concentrate on a smaller chunk of code
to understand the abrupt control flow targeting the labeled block.

68

Chapter 6
A Structure-Based Flow Analysis Framework

Although AST rewriting based on pattern matching greatly reduces the complexity of
the decompiled output, this alone allows only for a limited scope of transformations. So-
phisticated transformations need additional information which is available only through the
use of static data flow analyses.

An example of this can be seen in Dava’s output, Figug&), for the obfuscated byte-
code produced for the original Java source shown in Figui@). Although semantically
equivalent to the original code the output is hard to understand. However, since obfuscators
have to ensure that their modifications do not change program semantics, a transformation
of the output, making it similar to the original code, may be possible. This requires an an-
swer to the questions: “What is the value of a particular variable at a program point?”, "Is
a particular piece of code ever executed?” and so on. To answer such questions one needs
added information about the data and control flow which cannot be obtained from pattern
matching and requires data flow analysis. We discuss more about decompiling obfuscated
code in Section’.3.7.

Although SoT provides a flow analysis framework for each of the intermediate rep-
resentations.e., baf, jimple andgrimp, this support did not extend to the higher level
intermediate representation of the decompiled code. Previously it was not possible to ap-
ply any flow analyses on Dava’s AST. To perform more sophisticated transformations we
implemented an analysis framework that can be used to implement static data flow analyses
on Dava’s AST. The analyses’ results can then be leveraged to perform further transforma-

69

A Structure-Based Flow Analysis Framework

tion on the AST. The framework removes the burden of correctly traversing the AST from
the analysis writer and allows him/her to concentrate on the analysis. With a framework in
hand, the process of writing analyses for Dava has been streamlined making it easier for
new developers to extend the system.

As the analyses for the decompiler are performed on the AST it is best to use a syntax-
directed method of data flow analysis such as structural analyf3is[93, Shag(. The
advantage of using this technique is that it gives, for each type of high-level control-flow
construct in the language, a set of formulas that perform data flow analysis. For instance
it allows the analysis of @hile loop by analyzing only its components: the conditional
expression and the body. For this reason we find that structural flow analysis provides
a more efficient and intuitive implementation of analysis on the tree representation than
graph-based approaches. Apart from supporting ordinary compositional constructs such
as conditionals and loops, the structural flow analysis also supmosi&k andcontinue
statements (Sectioh 2).

The Structural Flow analysis framework for Dava’s AST has been written by provid-
ing an abstracstructuredAnalysis Java class. Programmers wanting to implement an
analysis need only implement the abstract methods in this class which deal with the ini-
tialization of the analysis and then subsequently dealing with the type of information to be
stored by different constructs.

The analysis begins by traversing the AST. As each Java construct is encountered a
specialized method responsible for processing this construct is invokedinput set
containing information gathered so far is sent as an argument. Each construct is handled
differently depending on the components it contains and its semantics. The processing of
the construct might add, remove or modify elements ofifyait set. The resultis returned
in the form of anoutput set which then becomes theput set for the next construct.

This kind of structure-based flow analysis is not new. Similar work has been done by
Emami et. al. HDE" 93, Ema93 for gathering alias and points-to-analysis information for
the McCAT C compiler. Dava’s flow analysis framework is an implementation of the same
approach utilized in McCAT, but implemented for Java.

70

6.1. Merge Operations

6.1 Merge Operations

An important construct in flow analyses is the merge operation. Merge defines the seman-
tics of combining the information present in tWadow-sets. Such a situation arises for
instance when dealing with tif@ ow-sets obtained by processing th& andelse branch

of anIf-Else construct. Since the framework gathers sets of information the program-
mer has the choice of choosing between union and intersection as the merge operation.
Customized merge operations might sometimes be needed for analyses. The framework
allows the extension of the already implemented merge operations or the implementation
of new merge operations. Secti@r8.1shows such an extension of the intersection merge
operation for the constant propagation analysis.

6.2 Dealing with Abrupt-Control Flow Constructs

In grimp, control flow is represented using explicit goto statements. The Structured En-
capsulation Algorithms implemented in Dava are able to transform most of these goto
statements, along with appropriate code bodies, into Java constructs Jikkile etc.
However, after all construct detection algorithms have been applied gotnestatements
might still be present in the AST. These remainggtos are converted intbreak and
continue statements and embedded into the AST.

We handle these statements as follows: whenever an abrupt control flow statement is
encountered, the flow set containing information gathered by the analysis is stored. Pro-
cessing then continues with a spediabw-set named0TTOM sent onwards indicating that
this path is never realized (as the abrupt statement leads execution to some other area of the
code). We use a hash table, keyed by labels, to storelihe-sets for unrealized paths.
When a labeled construct is being processethsdbk-sets, or continue-sets, stored
when encounteringsreak, or continue, targeting this label are retrieved. These are then
merged with each other to get one out-set which is the conservative approximation sum-
marizing the data flow sets from all abrupt statements targeting this particular construct.
This flow-set is then merged with thélow-set obtained through analysis of the con-
struct if no abrupt statement was encountered. The merging of the abrupt flow-sets is done

71

A Structure-Based Flow Analysis Framework

by the methodaandleBreak andhandleContinue for break andcontinue Statements
respectively.

In order to be complete in handling all abrupt statements one also needs to handle
return andthrow statements. The framework, on encountering one of these statements,
outputsBOTTOM. Any other analysis-specific information to be gathered from the encoun-
tered abrupt statement can be obtained by over-riding appropriate methods provided by the
framework.

6.3 Construct specific processing

Structure-based flow analysis derives its power from the fact that each high-level control-
flow construct can be processed separately according to the semantics defined by the lan-
guage. In this section, we discuss the handling of Java constructs present in the AST.
Processing of each construct is presented with a control flow diagram showing the required
semantics of the construct along with pseudo-code illustrating hofilisve-sets are car-

ried through the construct. Handling bfeak andcontinue Statements is carried out as

part of the processing and considerably complicates matters. The key to all these algo-
rithms is the right order of merging the sets flowing through the constructs.

JavaMethod Node

A method construct is the simplest construct to deal with. The in-set is passed to the algo-
rithm processing the body of the method. The output of processing this body becomes the
out-set of the method construct (Figusel(a)). This corresponds to the use of the flow-
analysis framework for intra-procedural analyses. In the future if inter-procedural analyses
are to be accommodated then the output set of processing the body would contain the out-
put of regular execution of the method code merged with all possible exits of the method:

return Statements within the method’s body and ahyow statements that might escape
the method.

JavaLabeled-Block Nodes
Labeled blocks are often used in Java to separate different parts of an algorithm. Normal

72

6.3. Construct specific processing

1 process_Method(

2 ASTMethodNode node,

3 Object input){

4 outl = processBody(node,input)

5 return out

(a) Java Methods

1 process_StatementsNode (

2 ASTStatementSequenceNode node,
3 Object input){

4 List stmts = node.getStatements()
5 out = clone(input)

6 for each stmt, s in stmts

7 out = process(s,out)

8 return out

(c) Java Statement Blocks

1 process_LabeledBlock(

2 ASTLabeledBlockNode node,
3 Object input){

4 outl = processBody(node,input)

5 result = handleBreaks(outl,node)

6 return result

7}

(b) Java Labeled Blocks

1 process_SynchBlock(

2 ASTSynchronizedNode node,

3 Object input){

4 outl = processSynchedLocal(

5 local,input)

6 out2 = processBody(node,outl)

7 result = handleBreaks(out2,node)

8 return result

(d) Java Synchronized Block

Figure 6.1: Structural Flow-Analysis Algorithm for Simple Java Constructs

code execution flows by entering the start of a labeled block and exiting at the end. How-

ever,break Statements can be used to target the end of the labeled block from anywhere

within the body of the block code. Taking that into account the processing of the labeled

block is shown in Figur&.1(b). If no break statement targets this block then the out-set

of the block is the output of the processing the body of the block. However, to handle any

break statements the output of normal execution of the block’s code needs to be merged

with all possibleflow-sets stored when encounteringtaeak statement targeting this

A Structure-Based Flow Analysis Framework

labeled block. This is done by statement 5 in Figbu&b).

Statement-Sequence Construct

Figure6.1(c) shows how the framework handles a sequence of statements. The processing
method iterates through the statements in the sequence withtpet set of one statement
becoming theinput of the next statement. Theutput set of the last statement is the
output set of the sequence of statements.

One interesting thing to note is that it is while processiisg @ ement-Sequence that
one may encounter abrupt statements. As mentioned in Sexfamhen such an abrupt
statement is encountered then the current flow-set is stored in the approprakt.ist
or continuelList. The out-set sent forward BOTTOM indicating that this path is never
taken. Hence the output set oBaatement-Sequence containing an abrupt statement is
alwaysBOTTOM.

Synchronized Construct

A synchronized block contains two components to be analyzed. Firstis the object on which
the synchronization is carried out. The output of processing the synchronized object be-
comes the input of processing the synchronized body. Since synchronized blocks can have
labels on them the final output is the result of merging the output of the synchronized body
with any flow-sets stored in tHereakList.

If Construct

Figure 6.2 shows the processing aff statements. Figuré.2(b) shows possible control
flow through anif statement. When ahf statement is encountered the condition is eval-
uated. If the condition evaluatestoue the If body is executed, otherwise control moves
forward, skipping thelf body. Keeping these semantics in mind the flow analysis pro-
cesses aff statement (Figuré.2(a)) by first processing the condition. This output (outl
in Figure6.2(a)) becomes the input to process fifebody. Since thaf body might or
might not be executed the output of the statement is the merge of the out-set of just
evaluating the condition (outl) with the out-set of processingIthbody (out2). Once
this merge is available ayreak sets that might have been targeting thisstatement are

74

6.3. Construct specific processing

handled. That produces the final result of processing fh&tatement.

\L input
1 process_1if (ASTIfNode node,Object input){ cond
2 outl = processCondition(condition,input)
3 out2 = processBody(node,outl) outl
4
s //Imerge cond evaluating to false
6 out = merge(outl,out2) body
u ,---7 break;
s result = handleBreaks(out,node) !
9 return result '
. out2 outl

10 } AN

y \;

result

(a) Pseudo-code (b) Graphical Representation

Figure 6.2: The Structural Flow-Analysis Algorithm of If Construct.

If-Else Construct

The semantics of abf-Else statement are almost the same as that of fastatement.
Execution begins with the evaluation of the condition. If the condition evaluatesu®
then theIf branch (also called thehen branch) is taken. In case the condition evaluated

to false then theelse branch is taken. The processing of this construct begins with the
processing of the condition. The out-set from the processed condition is cloned because
depending on the evaluation of the condition the same flow-set will be carried into the
then or else branch. The outputs of processing the two branch bodies (out2 and out3 in
Figure 6.3(b) are then merged since statically we can not predict which branch is being
taken. The only remaining thing to do is to handle any breaks that might have targeted
the If-Else construct if it has a label on it. This is done by tiwndlebreaks method

in Statement 11. The output of this becomes the result of processifigthese construct.

75

A Structure-Based Flow Analysis Framework

input
1 process_ifElse(ASTIfElseNode node,
Object i t
2 ject input){ outl outl
3 outl = processCondition(condition,input)
4 clonedInput = clone(outl)
break;

5 out2 = processBody(thenBody,clonedInput)
6 Then Body Else Body

7 clonedInput = clone(outl)

8 out3 = processBody(elseBody,clonedInput) -7 break;
9)
10 out4 = merge(out2,out3d) M%
11 result = handleBreaks(out4,node) \“‘-»—-_\\ out4/_,,_«—~'—”/
12 return result ,’/
13 } Vv
result
(a) Pseudo-code (b) Graphical Representation

Figure 6.3: The Structural Flow-Analysis Algorithm of IfElse Construct.

While Construct

Processing loops complicates matters because of a fixed point iteration required to compute
the out-set. Also with loops not only do we have to deal witlkak statements but also
continue statements that could be targeting the loop. The semantics @hthie loop
dictate that processing starts with the evaluation of the condition. If the conditiamués
the body executes and then the condition is re-evaluated. Hence regularicutpuitput
without anybreak statements, from thighile loop always ends with the evaluation of the
condition. Thecontinue statements stop the execution of the body at whatever place the
continue statement is encountered and control goes back to the evaluationigfithe
condition.

Figure6.4shows the control flow and pseudo-code for handliig# e loop. The solid
back-edge indicates loop iteration and dotted lines indicate abrupt control flow. Firstly the

76

6.3. Construct specific processing

1 process_While(ASTWhileNode node,
2 Object input){

3 initialInput = clone(input) |nn|aH|1pui
4 input = processCondition(condition,
5 initialInput)
6 dof
7 lastin = clone(input) .
_ . Input
8 out = processBody(node, input)
9 out = handleContinue(out,node)
10
. break
1 /Imerge cond evaluating to false
12 input = merge(initialInput,out) /' continue -~
13 input = processCondition(
14 condition,input) f- = break /
15} while(lastin != input) / . !
! continue
16 result = handleBreaks(input,node)

17 return result

(a) Pseudo-code (b) Graphical Representation

Figure 6.4: The Structural Flow-Analysis Algorithm of While Construct.

analysis processes the condition of e le construct. Theutput set of this becomes
theinput set for the fixed point computation. Within the fixed point computation the body
of thewWhile loop is processed followed by the generation of thgut set for the next
iteration.

The input set for the next iteration is generated by merging édheput set of the
current iteration with the&low-sets stored in thecontinue hash table, sinceontinue
statements could be targeting the loop.

Taking care of all possible entry points is essential for the correct working of the flow
analysis. Since it is quite possible that the condition ofhele loop evaluates téalse

77

A Structure-Based Flow Analysis Framework

without any iteration of the loop it is important that the initiallnput to We 1e loop be

part of the input set to any re-evaluation of the condition. Hence the result of merging the
output of any possible iterations (solid back edge labeled out in Figu4(b)) with any
flow-sets from thecontinueList (dotted back edges in Figuée4(b)) has to be further
merged with the initiallnput to théhile loop. The result of this is the correct input to any
further evaluations of the condition. Once the fixed point is achieved thefilanmysets
stored in thebreak hash table are also merged usinglihedleBreaks method. The out-

put of this method is the final output of processingith&le construct.

Do-While Construct
The only difference betweenwile loop and eo-While loop is that in @o-While loop
the loop body has to be executed at least once. The analysis starts off with first processing

the body of theDo-While loop. Then anyflow-sets stored in thecontinueList are
merged to produce the in-set for the condition. Once the condition is processed the input
set for further iterations is generated by merging the output of processing the condition with
the initiallnput to theDo-While loop. This takes care of whether this is the first execution

of the body or an iteration. Once the fixed point has been achievebraak sets for this

loop are handled.

One important thing to note is that the handling of breaks takes as input the output set
of processing the condition and not the newly generated input for the fixed point iteration.
This is so because the loop has to execute at least once and hence the initialinput can never
be part of the final result. Hence at Statement 13 in the pseudo-code shown inG=ifaye
the input tohandleBreak is the result of Statement 9 which contains the out-set of pro-
cessing th@®o-While condition. Once any break sets have been merged the result is the
output of processing tho-While loop.

Unconditional-While Construct

In anUnconditional-While loop the body of the loop keeps executing until there is a
break out of the loop. Hence the only way out of the loop is through one or rosek
statements in thBnconditional-While body as shown in Figuré.6(b). The processing
of the loop is shown in Figuré.6(a). The fixed point iteration starts off by processing

78

6.3. Construct specific processing

1 process_DoWhile (ASTDoWhileNode node, Initiallnput

2 Object input){

3 initialInput = clone(input)

4 dof [RERh break

5 lastin = clone(input) I/ continue I -.

6 out = processBody(node, input) ! N
g o] break "
8 out = handleContinue(out,node) I/I/ continue

9 out = processCondition(condition,out)

10

11 input = merge(initialInput,out)
12} while(lastin != input)

13 result = handleBreaks(out,node)

14 return result

15 }

result

(a) Pseudo-code (b) Graphical Representation

Figure 6.5: The Structural Flow-Analysis Algorithm of DoWhile Construct.

the body of the loop. Then ampntinue flow-sets are handled. Then the initial input is
merged to create the input set for the next iteration of the loop. Once the fixed point has
been achieved thereak flow-sets are merged together to create the result of processing
theUnconditional-While loop.

Notice that the result of processing tbeconditional-While body is sent as input
to the MergeBreaks method. This is only used to retrieve the list mfeak flow-sets
stored in the in-set and does not get included in the result since the only way out of the
Unconditional-While is through ereak statement.

79

A Structure-Based Flow Analysis Framework

1 process_UnconditionalLoop (

2 ASTUnconditionalWhileNode node,
3 Object input){

4 initialInput = clone(input)

5 dod{

initiallnput|
6 lastin = clone(input)
7 out = processBody(node, input)
8 out = handleContinue(out,node) R break
2 ,I .
10 /Imerge cond evaluating to false continue
1 input = merge(initialInput,out) /
12} while(lastin != input) /'/I _____ break
13 result = MergeBreaks(out,node) / / continue
14 return result V V
15 } result
out
(a) Pseudo-code (b) Graphical Representation

Figure 6.6: The Structural Flow-Analysis Algorithm of Unconditional-While Construct.

For Loops

The semantics of thBor loop are discussed in Sectignl.1 Briefly, when aFor loop is
encountered first the initializations are carried out followed by the evaluation of the con-
dition. If the condition evaluates torue the body of the loop is executed followed by
any updates to be performedreak statements result in the termination of the loop and
Continue Statements target the update component of the loop (Figufe)). The pro-
cessing of th&or loop is shown in Figur®.7(a). First theinit component is processed.
Since this contains a sequence of statements it should be processed in the same way as any
otherStatement-Sequence block would be. Hence th&tatement-Sequence flow anal-

ysis algorithm is invoked from within the algorithm of tlier loop. Once this has been
completed the condition of the loop is processed. The output of processing the condition
becomes the input to the algorithm which computes the fixed point for the body of the loop.

80

6.3. Construct specific processing

input
1 process_for (ASTForNode node, init
2 Object input){
3 input = processInit(node,input) initia“nput out?
4 initialInput = clone(input)
5 input = processCondition(condition,input) cond

6 dof{

7 lastin = clone(input) .

8 outl = processBody(node,input) Input

9 outl = handleContinue(outl,node)

o continue |- _

11 out2 = clone(outl) break \\
12 out2 = processUpdate(node,out2) \
13 //merge cond evaluating to false continue - |
14 input = merge(initiallnput,out?2) break :
15 input = processCondition(condition,input)

16} while(lastin != out2)

17 result = handleBreaks(input,node)

18 return result

(a) Pseudo-code (b) Graphical Representation

Figure 6.7: The Structural Flow-Analysis Algorithm of For Construct.

This is done by first processing the body. This is then followed by handling @m/inue
statements that might be targeting the update component of the loop. Oneathiaue
flow-sets have been handled it is time to handle any update statements. The update part of
theFor loop can be empty hence the output produced by handlingdineinue statements

is first copied into a new flow-set which is then used to process the update statements. The
update statements are a sequence of statements and are processed by internally invoking
the Statement-Sequence flow analysis algorithm. Once done, the input set for the next
iteration is created by merging the initial input set to the output of processing the update

81

A Structure-Based Flow Analysis Framework

statements (Statement 14 in Figé&(a)). As the regular executiare., when nobreak is
encountered always terminates at the evaluation of the condition the condition is processed
again. Once the fixed point is reached amgak statements targeting this loop are handled

by merging theibreak sets together. The output from this becomes the output of handling
theFor loop.

Switch Construct

The processing of thewitch statement is shown in Figu&8. The algorithm starts off

by processing the switch key. Since this component is always executed, the output from
the processing of the key becomes the initial input to all the possible casesSfitten
statement.

The algorithm continues forward by first retrieving the different cases ofthech
statement. Then for each case the case Body is processed. The input set for these bodies
is the merge of the initial input, if the case is the first case to be executed, and the previous
case’s output, since Java cases can have fall throughs (as shown ing-&fb)e

After the processing of a case the output set of each set is storeddadbRreakSet
list. This information is needed since it is the out-set of each case that storestalktiie
andcontinue sets which will be handled later in the algorithm.

While processing th€witch statement cases, another possibility that is checked is
whether theswitch statement has a default case. If one is found the out-set of the default
case is also stored (Statements 12 and 13 in Figi&e)).

A number of different execution paths can be taken few 8t ch statement. Firstly it is
possible that &witch statement has no cases. Then the initial iffww-set should be
the out-set of processing tis@itch statement (Statements 16 and 17 in Figu&€a)). If
theSwitch statement does contain one or more cases then there are two possibilities. First,
a default case is present meaning that if no case matches the default case will be executed.
Hence in this case the output becomes the merge of the default case with the conservative
out-set of having processed all the cases of the statement. The latter out-set is available as
the output of the processing of the last case ofSiiiet ch statement.

The second possibility is that if there is no default case present then it is possible that
none of the cases in theitch statement match the key. In this case the output is the

82

6.3. Construct specific processing

1 process_switch(ASTSwitchNode node,
2 Object input){
3 input = processSwitchKey(key,input)

4 initialInput = clone(input)

6 0Object default = null
7 List caseBreakSet
8 List cases = node.getSwitchCases()

9 for each case, c in cases{

10 out = processBody(c, input)
11 caseBreakSet.add(clone(out))
12 if(case is default case)
13 default = out inpm
14 input = merge(out,initiallnput)
5} switchK ey
16 if (cases.size()==0) initialInput
17 output = initialInput
18 elseq Input //\V imﬂd”mm//\w N Vmﬂd”mm
19 if (default != null) / ,/ [
20 output = merge(default,out) h h ,
21 else (| |
1 1 I
22 output = merge(initialInput,out) : L |
23} 1 bresk | | |
\ ! ! ! break F~
24 [! ! ! \
) I] I
25 Object finalOut = output | !

26 for each break set s in caseBreakSet{ \

27 set = handleBreaks(s,node) N ,
28 finalOut = merge(output,set) \‘\\ /,/
29 } i
30 return finalOut
31 }

(a) Pseudo-code (b) Graphical Representation

Figure 6.8: The Structural Flow-Analysis Algorithm of Switch Construct.

83

A Structure-Based Flow Analysis Framework

initial Input (since no additional code is executed). To handle the instance when a case
does match, the output is the merge of the initial Input with the last out-set of the different
cases.

Once we have theutput from normal processing of th&witch statement the last
thing to do is handle angreak statements. This is done in Figuse3(a) Statements 25
to 29. Thebreak sets stored for each case of theitch statement (Statement 11) are
retrieved. ThehandleBreak method is invoked on each individuateak set to handle
all possiblebreak statements that might be present in that particular case. After merging
the possibly different sets the resude¢ in Figure6.8(a) Statement 27) is merged with the
output of the regular processing. This is repeated for all the cases $wilenh statement
(Statements 26 to 29). The output of this merging becomes the final output of processing
aSwitch statement.

Try-Catch Construct

In the case of @ry-Catch block the algorithm needs to conservatively assume that either
the try body will run to completion or one of the caught exceptions and the corresponding
code will be executed. Also, since the code enscapsulated in the try component of the
Try-Catch block (from here on called the try body) or any of the exception handlers (from
here on called the catch bodies) can containak statements these need to be handled
correctly.

The algorithm starts out with processing the try body of Thg-Catch block. Then
it processes each of the catch bodies. Notice that the input to each catch body is taken
by invoking thenewCatchBodyInitialFlow method (Statement 6 in Figufe9(a)). This
method is one of the abstract methods declared by the flow-analysis framework and the
analysis writer is required to provide an implementation for it. The purpose of the method
is to take as input a conservative approximation for the input set of the catch bodies. Since
it is not possible to predict which statement in the try block might cause an exception, it is
prohibitively expensive to store each possible flow-set which could be the input to a catch
body. Hence a conservative approximation is the best that can be handled in any reasonable
amount of time and memory. Implemented analyses in Ch@pdescuss possible conser-
vative sets for some analyses. (NotmwCatchBodyInitialFlow is different from the

84

6.3. Construct specific processing

initial flow-set used to initialize an analysis. The initial flow-set, used as input to process a

method, is a safe set for the analysis of a method whereastitatchBodyInitialFlow

iS a conservative approximation to the input of catchBodies occurring withity&Catch

construct).

10

11

12

13

14

15

16

17

18

20

21

22

process_Try(ASTTryNode node,Object input){
tryBody = node.getTryBody() ;
tryBodyOutput = processBody(tryBody,input)

List catchBodyOutput

inputCatch = newCatchBodyInitialFlow()

for each catchBody , c¢ in node{
in = clone(inputCatch)
out = processBody(c,in)
catchBodyOutput.add (out)

}

mergedOut = tryBodyOutput

for each out-set, catchOut in catchBodyOutput
mergedOut = merge(catchOut,mergedOut)

mergedOut = handleBreaks (tryBodyOutput,node)

for each catchQutput in catchBodyOutput{
breakout = handleBreaks(catchOutput,node)
mergedOut = merge(mergedOut,breaklut)

}

return mergedQOut

3

(a) Pseudo-code

l input
TryBody
initiaIFIolN inltialFIow
CatchBody.|.......|....... CatchBody
1 N
outl
catchOuput 1¢ i catchOuput N

out

(b) Graphical Representation

Figure 6.9: The Structural Flow-Analysis Algorithm of Try-Catch Construct.

Also note that the sameatchBodyInitialFlow Set is cloned and passed as input to

each of the catch bodies processed (Statements 8 and 9 in Bi§(al. The reason being

85

A Structure-Based Flow Analysis Framework

that only one of these catch bodies will ever be matched and hence the input should always
be the same flow-set for all catch bodies. The result of processing the catch bodies are
stored within the catchBodyOutput list (Statement 10 in Figuga)). Once all the catch
bodies have been processed the out-sets of these and the out-set if no exception is thrown
(tryBodyOutput from Statement 3 in Figuéed(a)) are merged in Statements 12 to 14.

The last step then is the merge of all the possihleak statements. Again it is im-
portant to remember that if tHry-Catch node has a label on it then either the try body
or any of the catch bodies can target this label. Hence statements 16 to 20 ensure that all
stored breaksets for the tryBodyOutput as well as the catchOutput’s are correctly handled
for break-sets. The result of merging the break-sets with the execution of the tryBody
and/or one catch bodies becomes the final output of processingfhéatch block.

86

Chapter 7
AST rewriting using Structure-based Flow
Analyses

In this section we discuss some structural analyses, and transformations that use infor-
mation from structure-based analyses, to further improve code readability and comprehen-
sion. With the structure-based flow analysis framework, as described in the previous chap-
ter, we now have the resources to gather any additional information required for more com-
plex transformations. More precisely, we are now able to follow the flow of data through
the AST and make conservative assumptions regarding the reachability, exestatioin
certain areas of the code. Figufel shows the internals of the back-end stage where flow
analyses are performed, the results of which are then used to enable further transformations
on Dava’'s AST. This stage is an iterative process since the application of a transformation
may enable further transformations.

Figure7.2 shows the implemented analyses (rectangles) and the transformations (dia-
monds) using information gathered by these analyses.

The analyses implemented (reaching definitions, reaching copies, must/may assign and
constant propagation) are all well-known compiler flow analyses. An interesting obser-
vation is that usually these analyses are used by optimizing compilers for performance
improvements. However, in the context of Dava we have used these analyses for code
simplification.

In the remaining sections of this chapter we discuss the different analyses implemented

87

AST rewriting using Structure-based Flow Analyses

AST

Flow

Transformations Using
Analyses FlowAnalysis Information

Java Source

Figure 7.1: AST rewriting using Structure-Based Flow Analyses

along with transformations enabled because of these analyses.

7.1 Reaching Definitions

The reaching definition analysis is the basis of other structure-based flow analyses and is
also used in transformationa.definition d: x =<expr> reaches a point p in the program
if there exists a path from p such that there is no other definition of x between d dine p
analysis is a forward flow analysis and gathers sets of definitions that reach each program
point.

The analysis is started by invoking theocess method of theStructuredAnalysis
class. Therocess method takes as input the body to be processed, in this case the method
being analyzed, followed by the initial input set. The initial input set for reaching defini-
tions is the empty set since no definitions reach the start of a method. The invocation of the
process method is shown in Figuré.3.

As seen from Figur&.3the merge operation is set union since the definitions reaching
a particular point p is the combination of definitions reaching from all paths leading to p.

88

7.1. Reaching Definitions

For-Loop
Construction

Final Field
Initializatio

Useless Local
Removal

Must /May
Assign

Reaching Uses And Copy
Definitions ’ Definitions Elimination
Reaching
Copies

Constant

Constant Expression

Simplificatio

Substitution

Propagation

Figure 7.2: Implemented Flow Analyses and transformations

89

AST rewriting using Structure-based Flow Analyses

public class ReachingDefs extends StructuredAnalysis{

ASTMethodNode toAnalyze;

[*
x Invoke the main process method to start processing the “toAnalyze” method node.
x Notice the process method is sent an emptyFlowSet as initial input since the safe assumption
x for reaching definitions is that no definition reaches the start of a method body.
x/
public ReachingDefs(0Object toAnalyze){
super () ;
this.toAnalyze = (ASTMethodNode)toAnalyze;
DavaFlowSet temp = (DavaFlowSet)process(toAnalyze, emptyFlowSet());

}

/limplementation of inherited abstract method
public DavaFlowSet emptyFlowSet(){

return new DavaFlowSet();

/I Implementation of inherited abstract method. Setting merge operator to UNION
public void setMergeType (){
MERGETYPE=UNION;

Figure 7.3: Initializing the Reaching Definitions Flow Analysis

New reaching definitions are generated whenever a local variable is assigned a value.
Hence, whenever such an assignment statement is encountered the current flow-set’s in-
formation needs to be augmented with this new reaching definition. However, before this
addition, any previous definitions of the same variable that are currently present in the
flow-set need to be removed. Figured shows how this is carried out by over-ridding
the processStatement method of theStructuredAnalysis class. Briefly, the current
reaching definitions in the flow-set are searched to find any that match the local variable be-

90

7.1. Reaching Definitions

ing redefined. Any such definitions are removed from the flow-set. Then the new definition
statement is added to the flow-set.

public Object processStatement(Stmt s, DavaFlowSet inSet){
if (! (s instanceof DefinitionStmt))

return inSet;

DavaFlowSet toReturn = (DavaFlowSet)cloneFlowSet(inSet);
Value definedVar = ((DefinitionStmt)s).getLeftOp();
if (definedVar instanceof Local){
/I KILL any previous reaching defs of definedVar
List currentReachingDefs = toReturn.tolist();
Iterator listIt = currentReachingDefs.iterator();
while(listIt.hasNext()){
/leach entry is a reaching definition
DefinitionStmt reachingDef = (DefinitionStmt)listIt.next();
/lwe know this is a definition of a local
if (definedVar.getName () . compareTo(
reachingDef .getLeft0p() .getName ())==0){
/Ineed to kill this from the list

toReturn.remove (reachingDef) ;

}
/IGEN: add stmt s to the toReturn flow set
toReturn.add((DefinitionStmt)s) ;

return toReturn;

Figure 7.4: Generating new Reaching Definitions and killing previous ones

The extension of thBtructuredAnalysis class also requires the programmer to pro-
vide an implementation of thebstract newCatchBodyInitialFlow method. As dis-
cussed in the previous chapter, this is the conservative assumption used in processing the

91

AST rewriting using Structure-based Flow Analyses

catch Bodies of anyry-Catch block found in the code. TheewCatchBodyInitialFlow

for the reaching definitions analysis is the universal set of all definitions in the method body.

This is obtained using the11DefinitionsFinder traversal discussed in Secti@m as

shown in Figure7.5. Once all the definitions are obtained, the initial input flow-set is

populated with these definitions and becomes the input to the catch Bodies.

%

* Implementation of inherited abstract method. The Initial flow into catch bodies is
x the universal set of all definitions in the method being analyzed.

*/

public Object newCatchBodyInitialFlow(){

DavaFlowSet initial = emptyFlowSet() ;

/I Use an already implemented traversal routine to find all definitions in the method
AllDefinitionsFinder defFinder = new AllDefinitionsFinder();
toAnalyze.apply(defFinder);

List allDefs = defFinder.getAllDefs();

/lallDefs is the list of all definition statements in the method
Iterator defIt = allDefs.iterator();
while(defIt.hasNext())

initial.add(defIt.next());

/finitial is now the universal set of all definitions

return initial;

Figure 7.5: Input to catch Bodies for Reaching Definitions Flow Analysis

The universal set of all definitions is used as input for catch bodies since during analysis

we are not sure which statement of the try body will result in the exception being thrown.

Figure 7.6 shows pseudo-code explaining this. Any statement in the try body can poten-

tially throw an exception which can result in the execution of the catch body. Hence at the

start of the catch body we don’t know the exact flow set. One way of creating the correct

92

7.1. Reaching Definitions

flow-set would be to merge data sets for all the statements of the try body and use that
conservative assumption as the input set for the catch body. However, this requires a lot of
memory. Therefore, it is better to be even more conservative and assume that all definitions
reach the catch body.

1 d: x =

2 try{

3 ocooooooao the definition d reaches this area

4 e

5 }

6 catch(....){

7 the definition d might not reach this area
8 }

Figure 7.6: Conservative reaching definitions assumption for input to catch bodies

The results of the reaching definition analysis are used to compute uD-dU chains. The
uD chain is a mapping of all definitions for a use of a variable. The dU chain gives all
uses of a variable where a particular definition might reach. The uD-dU chains are useful
while looking for complicated patterns. For example, modifications to the code that moves
variable uses around needs this information since we need to make sure that the correct
definitions of variables reach each use at all times.

A direct advantage of having this information is that looking at the dU chain we can
find definitions which will never get used. These definitions can simply be removed as
long as the definition does not have any other side efiegtsinvocation of a method to
assign to a field. In the next section we discuss the creatidomofoops which wouldn't
be possible without uD-dU information.

7.1.1 For Loop Construction

Certain conditionalhile loops can be represented more compactly@asloops. Pro-
grammers generally prefer to uBer loops instead oWhile loops particularly when the

93

AST rewriting using Structure-based Flow Analyses

loop has a consistent increment on a particular variabl&oAloop has four important
components:

e Init: This is the part of th&@or loop where variables to be used in the loop body can
be declared and initialized. The init is invoked once before the first iteration of the
loop.

e Condition: The loop continues to execute as long as the condition of the loop eval-
uates to true. The condition is evaluated each time before the iteration of the loop.

e Update: This part of theFor loop is executed at the end of each iteration. It is here
than any updates of the variables can be done.

¢ Body: The body of the&or loop consists of the code which is to be executed as long
as the condition evaluates to true.

We define naturafor loops as those loops where all four components ofteloop
contain at least one expression/statement. WHié e to For transformation looks for pat-
terns which can be converted into naturat loops. The pattern is shown in Figurer(a).

(a) Unreduced (b) Reduced
Body A; Body A
Init Stmts for (Init Stmts;cond;Update C){
while (cond) { Body B
Body B } // end for
Update C
} /lend while

Figure 7.7: TheWhile to For conversion

94

7.1. Reaching Definitions

The general form of the reduction is shown in Figur&). However, there are a
number of restrictions on the different components and the transformation succeeds only
if all restrictions are fulfilled. The procedure and the restrictions can be best explained
by going through the algorithm for the transformation. AlgoritBnoutlines the steps
taken to transform &hile loop into aFor loop. The body of an ASTNode is searched
for a sequence of statements followed byta 1le loop. The statement sequence is the
combination of Body A and Init Stmts in Figuie7(a). These statements are then analyzed
to retrieve the init using theetInit function.

Algorithm 9: TheWhile to For conversion

Input: ASTNodenode

body+ GetBody (node

Iterator it < bodyiterator ()

while it.hasNext () do

nodel« it.Next ()

node2:«— GetNextNode (nodeld

if nodel is a series of statements and node2 is a conditional whiletaop
init < GetInit (nodel

update<— GetUpdate (init,node?

newStmts-removeInitStmts (nodel,ini)

stmtsNode— ASTStatementSequenceNode (NnewStmts

condition« GetCondition(node2
whileBody<— GetBody (node2
forNode<«— ASTForLoop (init,condition,update,whileBody

Replacenodelandnode2by stmtsNodendforNodein body
end

end

The GetInit function goes through the sequence of statements and gathers all state-
ments that are initializing any variables. Once all such statements have been gathered they
are analyzed to check whether the initialized variables are only used withiih the loop

95

AST rewriting using Structure-based Flow Analyses

body. This information is readily available through the uD-dU chains created using the
reaching defs flow analysis discussed in the previous section. If all uses of variables initial-
ized in theinit are present only in thghile body then we know that the variable is live
only within this body and hence the initialization is converted into a loop-local declaration
and initialization statement.

The next step in the algorithm is to retrieve the update statements fBstHeop to be
created. This is achieved using thetUpdate function. We know that the last statements
to be executed before starting a new iteration are the update statements. Hence we look for
these statements in the last node of the body ofitfid e loop. TheGetUpdate function
retrieves the last node and checks that it is a sequence of statements. If so, the sequence
of statements is checked to see if they update a variable which is either initialized in the
init or is part of the condition of thghile loop. If we can not find such a statement the
transformation fails since we only want to creagural For loops. However, if we are
able to identify update statements, these are stripped away from the sequence of statements.
This again requires the use of the uD-dU chains to check that any update being made is
not utilized in the statements following the update statement. If there is a use of the update
statement before the loop body ends, then this statement cannot be removed from its current
location in the sequence.

If an init andupdate list are successfully retrieved then we can creatertireloop.
The first step is to create the sequence of statements that will replace the existing sequence
(the combined Body A and Init stmts node of Figute(a)). This is achieved by the
RemoveInitStmts function which goes through the statements and keeps only those which
do not belong to thenit. Basically we are left with Body A which is then used to create
a new statement sequence node.

TheFor loop is then created with the condition of thirile loop as its condition and
the body of theWhile loop as its body minus the update statements which becomes the
update part of th&or loop. The new statement sequence node and ttreloop then

96

7.2. Reaching Copies

replace the old statement sequence nodevane loop in the AST.
Function: GetUpdate

Input: List init, ASTWhileNodenode
Output: List update

body< GetBody (node
lastNode«— GetLastNode (body)

if lastNode is a statement sequeticen
stmt«— GetLastStmt (lastNode

if stmt is a definitionStnthen
definedLocal— GetDefinedLocal (stm?

if definedLocal occurs in inthen
| updateadd (stm?

else
condition+ GetCondition(node

if definedLocal occurs in conditichen
| updateadd (stm?

end

end

end
end
return update

7.2 Reaching Copies

Copy statements are defined as statements of the form a = b where both a and b are vari-
ables. The reaching copies analysis, as implemented in Dava, tracks copy statements where
both a and b are local variables. Fields were excluded from this analysis since tracking field
values requires an inter-procedural context-sensitive analysis to be able to gather informa-
tion useful enough to justify the cost of the analysis.

The analysis gathers sets of reaching copies where a copy statement reaches a program

97

AST rewriting using Structure-based Flow Analyses

point p if all paths leading to p pass through the copy statement a = b and the values of
a and b are not changed between the copy statement and the statement p. For each copy
statement, a = b, the analysis stores a local variable pair (a,b). Itis a forward analysis which
uses intersection as the merge operation since we are only interested in copy statements
which definitely reach the program point p. When some local variable is assigned a value
then any previous entries in the flow set are removed since the value of the variable is
now changed. If the assignment to the local variable is from antherilecal is a copy
statement then a new entry of the form (a,b), is added to the flow set.

The initial input to the method body is the empty set since no copies reach the start
of the method. The input to the catch bodies is also the empty set since we cannot safely
assume that a certain copy statement reaches a program point p within the catch body.

7.2.1 Copy Elimination

The copy elimination algorithm aims to remove useless copy statements from the code. In
doing so it also minimizes the number of variables used in the program. A copy statement
a = b is useless if at all places where variable a is used we could have used the variable b
instead. We can use variable b instead of variable a if the value of a and b has not changed
between the copy statement and its use. This information is available from the reaching
copies analysis discussed in the previous section.

The transformation starts by looking for copy statements. When a copy statement is
found it uses the dU chain, created using the reaching definitions analysis in Sédfion
to find all the potential places that this definition might get used. Then the reaching copies
analysis is used to find out whether at each potential use of this definition the flow set
contains this definition as a reaching copy. If it does that means that the values of a and b
have not been changed between the copy statement and its use. We can therefore remove
the copy statement and use the variable b wherever there is a use of variable a.

Two real-world examples of copy elimination, from our benchmark suite, are shown
in Figure7.8. The unreduced form of the code in Figufe3(a) shows a copy statement
x=a; Which gets eliminated in the reduced version due to copy elimination. The use of
variable x (line 3 in Figure&’.8@)) has been replaced by the use of variable a in line 2 of

98

7.3. Constant Propagation

Figure7.8(c). Similarly the copy statement of line 5 in Figure3(b) is useless since the
next line is the only use of this copied variable and there is no reason why we can’t use the
original variable in this use. Hence the use of rl in line 6 of FiguBgb) can be replaced
by the use of variable e. The copy statement (line 5) is then useless and is removed from

the code.

(a) Unreduced (c) Reduced
1 x = aj; /lcopy stmt 1 if (b == 3)
2 if(b == 3) 2 foo(a);
3 foo(x);

(d) Reduced
(b) Unreduced
1 try{

1 try{ 2 BodyA
2 BodyA 3}
3 4 catch(Exception e){
4 catch(Exception e){ 5 e.printStackTrace();
5 rl = e; 6 }
6 rl.printStackTrace();
7}

Figure 7.8: Copy Elimination

7.3 Constant Propagation

A constant propagation analysis aims to remove unnecessary use of variables in expres-
sions. If the value of a field or local can be statically determined there is no reason why

the code should not use that value instead of the variable. A more important advantage
of constant propagation is that sometimes valuable information can be obtained regard-

99

AST rewriting using Structure-based Flow Analyses

ing conditional expressions in the code. For instance, in figuethe condition checks
whether a variable x is less than the constant 5. The constant propagation data flow anal-
ysis can determine that at statement 2, before evaluating the condition, the value of x is 3.
Hence statically it can be confirmed that the condition will evaluate to true. Therefore the
condition need not be evaluated and code can flow straight to the target of the condition,
side stepping the actual evaluation of the condition (in Figuéehis means removing the

If statement 2) and immediately executing code A after statement 1). Similarly, if code
A does not change the value of x, then condition at statement 5 evaluates to false since
constant propagation will know that x is still 5. Therefore, statements 5 to 7 can also be
removed from the code.

(a) Original Code (b) Transformed Code
1 x = 3;
2 if(x<5){
3 <code A> 1 x =3
4} 2 <code A>

5 if(x ==1){
6 <code B>

7}

Figure 7.9: Advantages of constant propagation

Second-generation obfuscators, those which go further than just renaming class mem-
bers and local variables, rely heavily on confusing decompilers by producing complicated
code guarded by opaque predicates. One form of opaque predicates is the use of conditions
which never evaluate to true. Constant propagation can sometimes help the decompiler
confirm that the condition is always false and the conditional statement along with its body
can be discarded as dead code. Secti@rbdiscusses this in more detail.

100

7.3. Constant Propagation

7.3.1 The analysis

Constant propagation is a forward data flow analysis. The analysis collects sets of local
value pairs A local has a constant value at a program point p if on all program paths from
the start of the method to point p the local has been assigned this constant value and this
definition has not been modified from its definition point to the use at program point p.

The merge operation is defined as the pair wise intersection using the following rules:

Value 1| Value 2 Result

1 1 -

C i C

C1 C2 ClifCl==C2
elseT

T L/ICIT| T

Table 7.1: Intersection for Constant PropagationL (indicates unknown value and represents a
non-constant value)

The flow equations for the flow analysis deal with assignment statements of the form
x = exprwhere x is a local. The statement kills any known belief about the values of x in
the current flow-set. The information obtained from the statement (hereafter called the gen
set) contains an entry if one of two conditions is satisfied:

e expris a constant value, C. In this case the gen set is the pair (x,C).

e expris alocal variable which has a constant value pair present in the current flow set.
Supposing =y is the statement and (y,C) belongs to the current flow set. Then the
gen set contains the pair (x,C).

These flow equations, however, are not general enough and miss many opportunities to
gather useful information. An example of this can be seen in Figur@ In the figure the
merge of the out-sets of B2 and B3 (the in-set of B4) will require the intersection of the
pairs (j,2) from B2 and (jT') from B3. This means that the in-set for B4 will containr(j,

101

AST rewriting using Structure-based Flow Analyses

according to our merge rules (Tabiel). This is because the analysis does not interpret the
relatively simple aggregated expressiarl and gives the value of to jin B3.

Entry

l

int x = fieldl;
B1 |fied2=1;
inti=1;

&

T F

B2 i=2 j=i+1;, | B3

B4| k=array[j];

Figure 7.10: Using constant field information during Constant Propagation

The flow equations are strengthened by adding equations for assignment statements
with expressions of the formxprl op expran the RHS. Briefly: the new equations check
whether exprl and expr2 are constant values or have constant entries in the current flow set.
If yes and if the operation is one of addition, subtraction or multiplication the operation is
performed and this value is used to generate a pair for the local being assigned. Hence in
Figure7.10the assignment statemgnt i+1 will result in the pair (j,2) since exprlis i
which has an entry, (i,1), in the in-set and expr2 is the constant value 1. Now the merge
of (j,2) from B2 and (j,2) from B3 results in (j,2) to be present in the in-set of B4 which
comes useful during the array access in B4.

A special case of this are the increment and decrement statements (i++ and i- -). In this
case if the in-set before processing the statement contains a constant value for i the out-set
contains the incremented/decremented value.

The initial flow set, when entering the method body, is the set of local value pairs
with values for all locals set td_ since locals have no initial value and must be defined
before use. However, values for formals of the method, which are also local variables, are

102

7.3. Constant Propagation

assigned the valué since they receive their values from calling sites for which we have

no information. The input to the catch bodies is the set where formals and locals are all set
to T. This is so since we need to be conservative in our analysis and assume that none of
the variables are assigned constant values.

7.3.2 Extensions

Using only local variables and only checking for simple expressions on the RHS of the
assignment statement, as opposed to also looking for simple aggregated expressions, does
not fully utilize the potential of constant propagation and gives weak results. Extensions

to the analysis were implemented trying to gather a larger data set with information about
more local variables.

Using constant value fields

The constant values field finder analysis of Sec8dican be used to increase the amount
of information available to the analysis. To recap, this analysis gathers a list of all fields
in the application which are either final fields, hence their value is constant throughout
the program, or are fields which always get the default value. It is therefore logical to
add this set of, known, constant fields to the initial in-set. Notice that this does not mean
that the analysis is now an analysis on both fields and locals. All this extension allows
is the presence of some additional information when deciding to create the gen set for an
assignment statement. FigufelOshows an example of this. Suppdssdlis part of the
constant value list provided by the constant primitive value finder analysis in S&cfion
If we were not to use this information in our analysis then the gen set for the assignment
statementnt x =field1; in B1 would contain the pair (X;) sincefield1is a field and we
do not track field values. However, if the in-set contained information about the constant
value fields then the gen set would for this statement would be (x,0) since (field1,0) will be
present in the in-set.

One thing to remember is that the only time a pair (x,const) where x is a field is added to
the in-set is the entry to a method. All such pairs are created from the list of constant value
fields provided by the constant primitive value finder analysis. In particular the statement

103

AST rewriting using Structure-based Flow Analyses

field2 = 1; contains an assignment to a field and is NOT added to the in-set. Although field
information can help, in the same way as local information can, in the general case it is
harder to track values of fields.

Conditional Expression results

Vital information about variables can be obtained from the conditional expressions in con-
ditional statementsIf and If-Else and theSwitch construct. For instance, in Fig-

ure 7.1Q the true branch of th&f statement is taken only if the local b has the value

2. Hence while entering the basic block B2 we know that (b,2) is valid. Although this in-
formation is short lived.e., valid only within the basic block it can help gather information
regarding other locals which might be valid even after the basic block ends. Depending on
the type of conditional expression different beliefs can be generated. These are as follows:

e InanIf statementif the conditional expression is a boolean variable then the variable
holds the value true within the body of thé statement.

¢ If the conditional expression of alf-Else statement contains a boolean variable
then one of two things can occur:

1. If the variable is not negated, using the ! symbol, then the boolean variable is
true in thethen branch and false in thelsebranch.

2. If the variable is negated then the boolean variable is false ithiebranch
and true in thelsebranch.

e If an If-Else statement contains a binary comparison operation using the == or !=
comparison operators some information can be inferred about the operands. Assum-
ing the conditional expressionéxprl op expr2zhen the types of inferences possible
are shown in Tabl&.2

Similar inferences can be made for thestatement for the == operator. One impor-
tant point to be careful of is that if there is a previous constant belief about a local
used in a conditional expr then that belief should get preference over any belief that
might get added due to the conditional expression. The reason being that a belief

104

7.3. Constant Propagation

exprl op expr2 Result

constant| ==/!= | constant| no information

constant| == local add (local,constant) tthen branch

constant| != local add (local,constant) telsebranch

local == constant| add (local,constant) tthen branch

local I= constant| add (local,constant) telsebranch

locall | == local2 if (locall,const)c in-set add (local2,const) then branch
else if (local2,const¥ in-set add (locall,const) then branch

locall I= local2 if (locall,const)e in-set add (local2,const) ®lsebranch
else if (local2,const¥ in-set add (locall,const) &lsebranch

Table 7.2: Strengthening Constant Propagation using Conditional comparison operations

which is not generated within a condition has the chance to hold true after the con-
dition whereas a belief generated by a condition only holds true within one of the
branches of the condition. Figurellshows a code snippet which illustrates this.

1 a=2;

2 if (a==3){
3 <code A>
4}

5 <code B>

Figure 7.11: Preference to existing constant values

In Figure 7.11 using constant propagation we know that the out-set of statement 1
will contain (a,2). The conditional expression in statement 2 will generate (a,3) for
code A. However, if we were to add this pair to the in-set then the merge at the
end of theIf statement will try intersecting (a,2) with (a,3). This will generate the
pair (a,T) in the out-set which causes loss of information. In fact the condition in
statement 2 will always evaluate to false and is dead code. SetBdhdiscusses

105

AST rewriting using Structure-based Flow Analyses

more on this. In short, a belief is only generated from a conditional expression if
there is no existing belief regarding the variables involved prior to the evaluation of
the expression.

TheSwitch statement can also give some information for the value of a local. Suppose
the key for aSwitch statement is a local variable. Then within a particular case of the
Switch statement the value of the local is the same as the value checked in the case state-
ment. Again if any previous constant entry exists then the previous entry gets preference
since we know for sure that the particular case with a different constant value than the entry
in the in-set will never get matched and is essentially dead code (S&cBdh

7.3.3 Constant Substitution

The information gathered by the extended constant propagation analysis are used by a
transformation routine which searches for uses of locals in the code. At each such use
the constant propagation analysis results are queried to check whether we can statically
determine the value of this local at this point. If such an entry is found the use of the local
is replaced by the constant value. Some key things to keep in mind are:

e For querying the results of constant propagation on loops one needs to retrieve and
guery the out-set of the loop. This is because only the entries in the out-set hold true
at all stages of the loop (first iteration, any middle iteration or when the exit condition
holds).

e In aFor loop any locals used in thiit must be queried in the in-set of tifer
loop whereas the condition and thpdateshould be checked using the out-set. The
reasoning is the same as the case above.

e Conditional statementg{ andIf-Else) and all other statements in the code use the
in-set for the statement to query for constant values for locals.

Immediately after applying constant substitution new uD-dU chains are created, using the
reaching definitions analysis introduced in Secfioh This allows the application of use-
less local variable removal. Since local uses might have been substituted for constant val-

106

7.3. Constant Propagation

ues there is a good chance that some variable is declared and initialized but never used. All
these are removed from the code.

7.3.4 Expression Simplification

A direct effect of applying constant propagation is that expressions can be simplified. Fig-
ure 7.12illustrates this. The code in Figurél2a) shows original code which is com-

piled and then decompiled with constant propagation enabled. The output is shown in Fig-
ure7.12b). Itis clear that the local variable cleaner is not doing its job. The reason being
that the implementation of the local variable cleaner only looks for definitions with locals

or constants on the RHS. In Figurel2b) we see that the RHS of statements 2 to 5 contain
aggregated expressions. However, it is obvious that these statements can be simplified. An
expression simplification pass of the AST is made after applying constant substitution. This
results in code shown in Figuit12c). Here the expressions were simplified by applying

the operations being performed between different constants. The resulting statements were
all of the formlocal = constant The local variable cleaner then removes all of these state-
ments. The expression simplification checks for binary operations of the form constantl
op constant2 where the operation can be addition, subtraction or division. The conversion
is then made by evaluating the result of the operation and the binary operation is replaced
by the constant value result. This is applied moving upwards from the lowest subtree of an
expression tree all the way to the root resulting in the ability to simplify an expression with
multiple operations.

A specialized form of expression simplification is conditional expression simplification.
The aggregation patterns of Chaparan create complex aggregated conditions. Constant
propagation on these aggregated conditions can help replace some of the locals with con-
stants. Itis important to simplify conditions as much as possible since they play a vital role
in program understanding. A number of simplification strategies are applied. These are
briefly discussed below:

Simplifying unary boolean constants This converts conditions of the form !true to
false and !false to true.

Simplifying binary conditional expressions These involve expressions of the form

107

AST rewriting using Structure-based Flow Analyses

(a) Original Code (b) After Constant Propagation
1 int a = 2; 1 int i1, i2, i3, ib;
2 int b = ax*3; 2 il = 2 * 3;
3 int ¢ = a-b; 3 12 = 2 - 6;
4 int d = ¢c + a; 4 i3 = -4 + 2;
5 int e = b; 5 ib =2+ 6 + -4 + -2 + b5;
6 int x = a +b +c +d +e; 6 System.out.println(2 + 6 + -4 +
7 System.out.println(a+b+c+d+e+x); 7 -2 + 5+ 7);

(c) After Expression Simplification

1 System.out.println(14);

Figure 7.12: Advantages of constant propagation

exprl op expr@vhere the operation can be any of the relational operations==; ,<=,<,!=).

If exprl and expr2 are constants then the comparison is carried out and the binary expres-
sions is replaced by its truth value obtained on evaluation. For instance 2==3 is replaced
by false.

Simplifying complex aggregated conditions These involve conditions aggregated
together using && otf| symbols. Aggregated conditions using the && aggregation symbol
are first matched against Table8. The first four rows are the truth table for boolean truth
values for the && operator. The remaining for rows deal with && aggregation when one
of the two conditions is a constant and the other an expression to be evaluated.

If Expr 1 is a constant boolean but Expr 2 is an expression to be evaluated then the result
of the simplification is Expr 2 if the boolean constant is true (since now the RHS has to be
evaluated) or is false if the boolean constant is false (since RHS will never be evaluated).
In the case Expr 2 is a boolean constant Expr 1 is always evaluated. The condition can be
simplified by removing the LHS constant if it is true but in the case the constant is false

108

7.3. Constant Propagation

Expr 1| Expr 2 || Result

true true true

true false false

false | true false

false | false false

true Expr 2 || Expr 2

false | Expr 2 || false

Expr 1| true Expr 1

Expr 1| false Exprl && false

Table 7.3: Simplifying the && condition

we cannot remove the constant as the condition itself is always false. The reason is that
even though we know that the condition is false we cannot simplify the condition to just
the boolean constant false is because of any potential side-effects that might be caused by
the evaluation of Expr 1. If basic tests can show that Expr 1 does not have any side-effects
then this can also be removed to further simplify the condition.

Table7.4 gives a similar simplification for thg operator. Reasoning about the simpli-
fication when dealing with one boolean constant and one expression is the same as that for
the && operator. Using tables.3and7.4the complex aggregated conditions are simplified
as much as possible. As a last effort, if the condition still contains aggregation, we apply
DeMorgans law. The law states that:

IA&& B =!(A || B)
IA || 1B = (A && B)

An example of this is shown in Figuig13

7.3.5 Removing Redundant Conditional Statements

Once the conditional expressions have been simplified, after the application of constant
propagation, it is sometimes possible to remove redun@iirand If-Else Statements

109

AST rewriting using Structure-based Flow Analyses

Expr 1| Expr 2| Result

true true true

true false true

false true true

false false false

true Expr 2 || true

false | Expr2| Expr2

Expr 1| true Expr 1|| true

Expr 1 | false Exprl

Table 7.4: Simplifying the| condition

(a) Original Code (b) Decompiled Code

1 if ((20 && z1) ||
2 QC 1 (z2) 11 1(z3))))

3 return true;

1 if (a && b || c && d)

2 return true;

(c) After DeMorgans simplification

1if ((z0 && z1) || (22 && z3))

2 return true;

Figure 7.13: Simplifying conditions using DeMorgans Law

110

7.3. Constant Propagation

from the code. If the conditional expression is Bhstatement, and if we know that the

condition has been simplified to a boolean constant, one of two things can occur:

1

2

3

4

5

6

7

1. The condition is the constantrue. In this case we know that the body of the

statement will always be executed. However, removind th&tatement and copying

its body into the parent node can produce incorrect Java code. In Fidie) one

would assume that since the code insidelthatatement is always executed there is

no need to check the condition and the code inside can simply be moved out 6f the

statement. However, as seen in Figarg4(b) this can result in potentially uncompi-

lable code since the code labelastie A is dead code because of the return statement

copied out of the f statement. Hence removal of such conditional statements is al-

ways followed by the analysis discussed next (Seciti@. This analysis looks for

unreachable pieces of code and removes it from the AST.

(a) Original Code

(b) Incorrect Transformation

public void foo(){ 1 public void foo(){
<snip> 2 <snip>
if (true){ 3
return; 4 return;
} s lljavac compiler will give an error at this
<codeA> 6 //point due to unreachable code
} 7 <codeA>
8 }

Figure 7.14: Removing always trugf statement

2. The constant condition is false. In this case Iliestatement along with its body is

dead code and is removed from the code.

Similar to theIf statement, if on simplification anhf-Else statement contains a boolean

constant one of two things are possible:

111

AST rewriting using Structure-based Flow Analyses

1. The constant condition is true. This implies that then branch always executes.
Hence thelf-Else statement is removed and is replaced by the code irihie
branch of the statement. Again simply moving then body out of theIf-Else
statement can cause potential compilation errors due to reasons similar to those of
removing the code out of & statement with a&rue condition. The unreachable
code analysis discussed in SectibB.6is applied right after this transformation to
remove any dead code produced.

2. The constant condition is false. This means thatdlsebranch will be executed.
The same pattern as the above is applied the If-Else statement is removed
and replaced by thelsebranch of the statement. The unreachable code elimination
transformation discussed is applied immediately afterwords to remove dead code.

7.3.6 Unreachable code Elimination

The unreachable code detection is carried out using a structure-based flow analysis. A
program point p is considered unreachable if there is no path from the start of the method
which can lead to program point p.08T already includes a dead code eliminator which
eliminates any dead code present in the bytecode read from the class file. However, certain
analyses like the redundant condition elimination discussed in the previous section can
produce unreachable code. The analysis traverses the AST floatiRgach information
as it processes different Java constructs. The flow set of the analysis always contains one
entry which istrue if this path is reachable anthlse otherwise. Abrupt statemenits.,
break, continue andreturn, change theanReach information tofalse. The merge
operation is th@Rr operationi.e,, if both flow sets contaifialse then the output i$alse.
In all other cases the flow set containsie.

One interesting thing about the analysis is that the processing of the loops does not need
a fixed point computation. The processing rules for some of the interesting constructs are
listed below:

e If aloop is reachable then the construct following the loop is always reachable. This
is in accordance with the Java language specifications. In the case of conditional

112

7.3. Constant Propagation

loops since the loop condition might not evaluatectme hence the construct fol-
lowing the loop is always reachable if the loop itself is reachable. For unconditional
loops either the loop is intended to be an infinite loop or the next construct is reach-
able from abreak from within the loop.

e If an If statement is reachable then the construct following this statement is also
reachable. Again since the condition within the statement might not evaluate to
true the next construct is reachable.

e For anIf-Else statement the construct following th€-Else statement is reach-
able as long as one of the branches ofheElse statement targets the natural fall
through of thelf-Else construct. In Figur&.15a) CodeC is reachable as long as
codeB does not end with an abrupt statement. Figutgb) shows how codeC can
be unreachable since both branches offtheE1se statement sidestep the execution
of codeC.

e Any labeled construct if targeted by a reachaiteak statement is itself reachable.

7.3.7 Program Deobfuscation

A practical use of constant propagation along with the expression simplification and dead
code elimination is seen in the case of decompiling obfuscated code. As mentioned in Sec-
tion 7.3second-generation obfuscators introduce complicated code into the program being
obfuscated. This code is never executed since it does not actually do anything meaningful.
One way of preventing the code from executing is to place the code withifi atatement
whose condition never evaluates to true. An example of this is shown in FigLéa).

The code is the Dava output without constant propagation for a program obfuscated using
the Zelix KlassMaster{laa] obfuscator. Statements 23-28 is code guarded by the boolean
flag z0. An inspection of the program shows that the only place z0 is assigned a value is
statement 8. Tracking the value of ¢ which is being assigned to z0 shows that this is in fact
a boolean field which is never assigned a value. Since a field which is never assigned a
value receives the default value this implies that ¢ and hence z0 after statement 8 have the

113

AST rewriting using Structure-based Flow Analyses

(a) CodeC is Reachable (b) CodeC is Unreachable

1 if (cond){ 1 labell:{

2 CodeA 2 if (cond){

3 return; 3 CodeA

4 } 4 return;

5 else{ 5 }

6 codeB 6 elseq

7 } 7 codeB

8 CodeC 8 break labell;
°
10 CodeC
1}

Figure 7.15: Reachability analysis for th&f-E1se statement

default value false. Hence the condition in statement 23 always evaluates to false and the
code 24-27 is never executed and is dead code.

Figure 7.16b) shows the effects of applying constant propagation followed by local
variable cleaning. The boolean variable z0 is detected to hold a constant value, false, after
Statement 8 in Figuré.16a). Hence all uses of z0 in the code (Statements 14, 18 and 23)
are replaced by the constant false. Statement 8 of Figur&a) becomes useless and is
removed from the program.

Looking at Figure7.16b) we see that condition simplification will simplify the con-
dition in Statement 13 to true. This means that IieStatement 13 is un-needed and in
Figure7.17a) has been removed from the code by replacing it with its body. Similarly
Statement 17 of Figuré.16b) contains the condition false. The code is dead code and is
removed from the program. Looking at the condition in Statement 22 again we see that the
If Statement 22-27 will never be executed as the condition is false. Hence this code is also
removed from the output. Once dead code elimination has been applied to the program
there is a strong chance that the AST transformations (Ch&pteight be able to simplify

114

7.3. Constant Propagation

(a) Decompiled obfuscated Code

1 class a{

2

3

4

15

16

17

18

19

20

21

22

23

24

25

26

27

private Vector a;
public static boolean b, c;
int a(String ri1){
boolean z0, $z2, z3;
int i0, $i2, i3;
String r2;
z0 = c;
i0 = 0;
label_1:{
label_O:
while (i0 < a.size()){
r2 = (String) a.elementAt(i0);

if (' (z00)4
z3 = r2.equals(rl);
i3 =2z371:0;
$i2 = 1i3;

if (z0) break label_1;
if (i3 == 0) i0++;
else{
a.remove(i0) ;
return i0; } %}
if (z0){
if (' (b)) $z2 =
else $z2 = false;
b = $z2;
break label_0;

true;

} 3
$i2 = -1;
} /lend labell:
return $i2; } }

(b) Code After constant propagation

1 class a{

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

private Vector a;
public static boolean b,c;
int a(String ri1){
boolean $z2, z3;
int 10, $i2, i3;
String r2;
i0 = 0;
label_1:{
label_O:
while (i0 < a.size()){
r2 = (String) a.elementAt(iO);

if (! (false)){
z3 = r2.equals(rl);
i3 =23 71 : 0;
$i2 = i3;

if (false) break label_1;
if (i3 == 0)i0++;
else{
a.remove(i0) ;
return i0; } }
if (false){
if (' (D)) $22 = true;
else $z2 = false;
b = $z2;
break label_O0;

}
$i2 = -1;
} /lend labell:

return $i2; }

Figure 7.16: Advantages of constant propagation

115

AST rewriting using Structure-based Flow Analyses

(a) Dead Code Elimination

1 class a{

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

private Vector a;
public static boolean b,c;
int a(String ri1){

boolean $z2, z3;

int i0, $i2, i3;

String r2;

i0 = 0;
label_1:{
label_O:
while (i0 < a.size()){

(b) Reapplying AST Transformations

1 class a{

2

3

4

10

11

r2 = (String) a.elementAt(iO);

z3 = r2.equals(rl);
i3 =z3 71 : 0
$i2 = i3;
if (i3 == 0) i0++;
else{

a.remove (i0) ;

return i0;

}
$i2 = -1;
} /lend label1:

return $i2; }

12

13

14

15

16

17

18

19

private Vector a;
public static boolean b,c;
int a(String ri1){
boolean z3;
int $i2, i3;
String r2;
for (int i0=0; iO<a.size();i0++){
r2 = (String) a.elementAt(iO);
z3 = r2.equals(rl);
i3 =2z371:0;
if (i3 !'= 0){
a.remove(i0);

return iO;

}
}
$i2 = -1;
return $i2;
}

Figure 7.17: Dead code Elimination and AST Transformations

116

7.4. Must and May Assign

the resulting AST. Hence the set of transformations are reapplied to the AST. The resulting
output is shown in Figuré.17b). Notice that the labeled blocks have been removed since
dead code elimination removed the abrupt edges targeting these labels. Also notice that
theIf-Else statement (Statements 17 to 21 in Figdréqa)) has been converted to &h
statement using the abrupt-Else splitter analysis in Sectiof.3.1

Also theWhile loop (Statements 12 to 22 in Figurel7a)) has been converted to a
For loop since the transformation discussed in Secfidnlwas matched.

One other interesting thing to note is that Statements 17 and 18 of Fidui®) sug-
gest that reapplying constant propagation after AST transformations will simplify the code
further. However, in our opinion the costs of constant propagation are high enough that this
should not be included within a fixed point computation of the AST. We therefore leave
these statements unchanged.

7.4 Must and May Assign

Must Assign:A local or field ismust initialized at a program point p if on all paths
from the start to p the local or field occurs on the left side of an assignment statement.

The analysis is a forward analysis with intersection as the merge operation (there needs
to be an assignment on both paths foridfiec condition to be satisfied). Information stored
by the analysis at different points of the program are the set of locals or fields thatare
initialized so far. A variable is added to this set if there is an assignment to the variable.
There are no specific constructs which kill a particular variable. Variables are therefore re-
moved only by the intersection operation applied at merge points. The out(start) gahd in(
are empty sets indicating no variable has heest initialized so far.

May Assign:Themay assign analysis works similarly to thest analysis and differs only

in the use of union as the merge operation. Hence this analysis gathers the local or fields that
have at least one assignment on at least one path in the code. The analysis adds variables to
flow sets similar to theust analysis. However, once a variable is added it is never removed
from the set indicating the fact that a variahkg; be assigned on at least some path of the
program. An example of the usemist andmay analyses is discussed in the next section.

117

AST rewriting using Structure-based Flow Analyses

7.4.1 Final Field Initialization

The Java Language specifies that all instance variables of a class that are delafed
should be initialized at the time of construction of the object. Static final fields have to
be initialized as part of the declaration or in the static initializer block. Non-static final
fields need to be initialized as part of the declaration or within all constructors of the class
defining this instance variable. If the initialization of a final field takes place within a code
bodyi.e., not as part of the declaration statement then the field needs to be declared on ALL
paths within the code body.

When decompiling code produced by a Java compiler all field initializations are handled
correctly as the bytecode necessarily contains initializations of the fields either as part of
the constructors or as class attributes that can be retrieved.

Things start to get tricky when the bytecode being decompiled originates from a dif-
ferent source than a standard Java compiler. At the bytecode level there is no restriction
for final fields to be necessarily initialized. Hence decompiling bytecode produced from
a bytecode optimizer like Soot or code generated by other compilers, such as AspectJ,
can easily lead to decompiled output which violates the Java specifications. Java obfusca-
tors in fact exploit this by introducing uninitialized fields in the bytecode since they will
lead to uncompilable code once decompiled. Figure 7.18(a) shows such an example. The
field myField is declared final, but is never initialized. A Java compiler will not compile
this code since it violates the language specifications. Figure 7.18(b) shows decompiled
pseudo-code which can be produced when decompiling bytecode produced using an As-
pectd compiler. In this case the Java language specifications are violated since the field
myField is not initialized on all paths in the methddo.

In order to generate recompilable code for bytecode produced by compilers other than
the standardavac compiler and to thwart obfuscators we have written a transformation
which relies heavily omustInitialize andmayInitialize analyses, discussed in the
previous section. The aim of this transformation is to ensure that if a field is declared
as final then it is alwayaust initialized in the constructors of the class. We discuss this
transformation in the following sections.

118

7.4. Must and May Assign

(a) No assignment to final field (b) Final field not initialized on all paths
1 class FinalField{ 1 final int myField;
2 public final int myField; 2 public void foo(){
3 3 BodyA
4 public FinalField(){ 4 if (cond) {
5 } 5 BodyB
6 } 6 myField = <assignment>;
7 BodyC
s}
9 BodyD
10 }

Figure 7.18: Example of final field not initialized on all paths

The Indirect Assignment Algorithm

To ensure that all final fields are always initialized e cessField algorithm is
invoked for each field. The static modifier of the field is checked. If the field is static
then the algorithm only proceeds forward if the current method is the static initializer.
Similarly if the field is non-static then the algorithm proceeds only if the current method is
a constructor of the class.

A check is then made to see whether the field has a tag associated with it. These tags are
created by 80T from class attributes and contain information about the constant values
in the application. If the field has a tag associated with it then the value for the field is
retrieved from the tag. If no tag is found then this indicates that the assignment to the field
is being carried out either in the static-initializer or the constructors of the class. In this
case there is a need to confirm that the field is initialized on all paths.

TheisMustInitialized method of AlgorithmlOchecks to see whether the final field
is initialized on all paths of the method being processed. The method uses information from
the structure-baseshst assign flow analysis, discussed in the previous section. Using the

119

AST rewriting using Structure-based Flow Analyses

must assign analysis the method returns true if the final field is in fact assigned on all paths
in the method being analyzed. This guarantees that at compile time the code will not result
in a “final field not initialized error”. IfisMustInitialized returns false then we know

that compilation of this method would result in a compilation error as the field has not
being initialized on all possible paths.

Algorithm 10: processField
Input: SootFieldfield, ASTMethodNodanethod

if lisFinal (field) then
return;

if !isStaticInitializer(method ||!isStatic(field) then
return;

else iflisConstructor (method || isStatic (field) then
return;

if hasTag(field) then
return;

if isMustInitialized (field) then
return;

if lisMayInitialized(field) then
addDefaultAssignmentStatement (method, field);

else
defs« getDefs (field);

handleAssignOnSomePaths (method, field, defs);

In the case that a field is nafust assigned anay assign analysis is applied (Sec-
tion 7.4) using theisMayInitialized method. Let us first consider the case where the
isMayInitialized method returns false. This indicates that there is no assignment of a
field on any path through the method. In this situation the decompiler adds a statement
assigning a default value to the field. This is achieved using the
addDefaultAssignmentStatement function. The function checks the type of the field
and accordingly adds to the AST a default assignment statement of that type: object fields
are assignedull, integers the value 0, booleans are seftdbse etc.

Now considering the case whegMayInitialized returns true: this indicates that
there is an assignment to the field on at least one path through the program. Given that the

120

7.4. Must and May Assign

field is notmust initialized (isMustInitialized returned false), we need to transform the
AST such that thewst initialize condition is fulfilled. This is handled by
handleAssignOnSomePaths which we now discuss.

Algorithm 11: handleAssignOnSomePaths

if defssize() ! =1then
cancelFinalModifier (field);

return;
end

alluses < getUses (field);
if allUses! = null && allUses.size () ! = 0then
cancelFinalModifier (field);

return;
end

clonedMethod« clone (method;
newMethod— createIndirection(cloneMethod,fiely;

if isMethodCallSafe (newMethod then
replaceMethodBodies (method,newMethod

return;

The aim of thehandleAssignOnSomePaths function is to rewrite the AST such that the
field under observation, currently satisfying t initialize property, benust initialized.

The only reason why a variablessy initialized is that all assignments to the variable are
nested within some control flow path which might or might-not be taken. This is shown
in Figure 7.19a) where the field isay assigned since its assignment is within tfe
statement. The approach followed by the algorithm is to delay the assignment within the
nested control flow as much as needed such that it lies amuthenitialize path. In the case

of Figure7.19a) this means delaying the assignment to “field” until afterthetatement.

A few things have to be kept in mind while doing such a delayed assignment. One of
them being the value of the field if the path that did assign to the field is not taken. In
our example what should be the value to fielddéhd evaluates to false? The suggested
transformation to delay the assignment of the field is to use a dummy variable of the same

121

AST rewriting using Structure-based Flow Analyses

(a) May assigned field (b) Delayed Assignment makes field Must assigned
1 public void foo(){ 1 public void foo(){
2 BodyA 2 <Field Type> tempField;
3 if (cond)A{ 3 tempField = <default>
4 BodyB 4 BodyA
5 field = <assignment>; 5 if (cond){
6 BodyC 6 BodyB
7 } 7 tempField = <assignment>
8 BodyD 8 BodyC
9 } 9 }
10 field = tempField;
11 BodyD
12 }

Figure 7.19: Delaying assignment of a final field

type as the field being assigned (variable tempField in Figur&b)). This variable is then
assigned a default value depending on the type of the field (object types get null, booleans
getfalse etc). Then the assignment to the actual field is substituted by an assignment to
the just created dummy field. A position in the code is then found where the original field

is assigned the value from the dummy field (in Figur&9b) this position is right after

the end of thef statement). By doing this we have moved the assignment of the field to
amust assign path. In the case that they assign path is taken, the field is assigned the
intended value. On the other hand if that path is not taken (cond evaluates to false) then
because of the default assignment to the temporary variable the field is also assigned the
default variable.

Delaying such initialization is tricky and we only deal with the cases where there is
only one assignment of the field that has to be delayed. Also, if in the original code the
field is used after it has been defined we are unable to delay the assignment since then it is
essential that the delayed statement be above all uses of the field. In our transformation we

122

7.4. Must and May Assign

delay the assignment to JUST as much as is needed to put the field assignmentgn the
initialize path.

TheMay Assign structure-based analysis not only tells us whether a particular variable
may have been assigned on some path in the program but also stores the different definition
(assignment) statements that might be executed hdhéleAssignOnSomePaths checks
whether there are more than one definition statements of the field within the code. If there
are more than one definitions, then the analysis gives up and invokes the
cancelFinalModifier method which will remove the final keyword from the field’s dec-
laration (Remember that only final fieldast be assigned values). If there is only one
definition then the algorithm checks whether there is any use of this field within the body
of the method. If there are any uses then the algorithm gives up trying to delay the assign-
ment to the field. In this case also the final keyword is removed from the field.

However, if there is only one definition of the field and the field is not used after its
definition then the algorithm continues with its “delaying of assignment” approach. This
is achieved by invoking thereateIndirection method. Once the delayed method body
has been created one last thing that needs to be checked is that there is no method call
between the original assignment of the field and the new position of assignment. This is
necessary since we are delaying the assignment of a field which might be accessed by other
methods. Conservatively we restrict the transformation to only those instances in which
there is no method invoked between the old and new position of assignment.

Let us look in more detail the workings of algorithm to create the indirection. Algo-
rithm 12 shows the pseudo-code for the creation of delayed assignment. Briefly explained
the algorithm works like this:

e Create a new local variable with the same type as the final field

Add this variable to the list of locals in the method under process (Statementt 1 in
Figure7.19b))

Create a default assignment statement for this new local variable

Add default assignment statement to method body (Statement 2 in FidL&b))

Modify the current assignment statement of the field by assigning the value to the

123

AST rewriting using Structure-based Flow Analyses

new local (Statement 3 in Figuie19b))
e Create new indirect assignment statement of field using new variable

e Find the correct position in the method body to place this statement (Statement 4 in
Figure7.19b))

The last part of this algorithm deserves further discussion. Our aim is to delay the
assignment to the field till as late as it is necessameateIndirection does this by
trying to place the new assignment statement in the parent of the node in which it orig-
inally existed. If this does not result iust initialization the algorithm tries the grand-
parent and rechecksist initialize. If that does not work then the great-grandparent is
checked and so on. Using this algorithm we are guaranteed that the first ancestor at which
isMustInitialized returns true will be used to place the new assignment to the field.

With the help of this transformation Dava is able to ensure that there are no compilation
errors resulting from final fields not being initialized. If a final field is not assigned on all
paths then either the final keyword is removed or in some cases the assignment is delayed
to the point that the field is in fact assigned on all paths.

124

7.4. Must and May Assign

Algorithm 12: createlndirection

Input: SootFieldfield, ASTMethodNodelonedMethod

// Create and add local for indirect assignment
localType« getType (field);

newLocak— newJimpleLocal (uniqueName,localType
addNewLocal (clonedMethod,newLocal);

// Initialize newly created local to default value
initStmt«— createDefaultStmt (newlLoca);

index<«+ 0

addStatement (clonedMethod,initStmt,index);

// Assign required value for field to new local

defStmt«— getDef (field) ; defStmt . setLeftOp (newLoca);

// create indirect field assignment statement

assignStmt— newAssignStmt (field, newLocal;

// Add indirect assignment at the first possible place
parent«— getParent0f (defStm}; grandParent— getParent0f (parend;
while ! isMustInitialized (field) do

if isMethodNode (grandPareni then
throw new DavaError("Unable to must-initialize”);

ancestork— getParent0f (grandParen};

ancestorSubBody ancestor . getSubBodyContaining(grandPareny;
index<+— ancestorSubBody . index0f(grandParen};

addStatement (ancestorSubBody,assignStmt,index

if ! isMustInitialized(field) then

// problem not solved remove the stmt just added
ancestorSubBody .removeStatement(assignStn)t

// we should put assign in one level above than current

grandParent— getParent0f (grandParenj;
end

end
return clonedMethod;

125

AST rewriting using Structure-based Flow Analyses

126

Chapter 8
Naming Mechanism

Local variable names present in Java source code may be lost at compile time. At
the same time the most common obfuscation technique is to rename all identifiers in an
application to meaningless and often confusing names. Until recently Dava had a very
naive naming strategy for allocating names for local variables in the decompiled code, the
result being source code with hard to follow variable names.

The new Dava back-end now contains a naming stage where all identifiers in an ap-
plication (class names, methods, fields and local variables) can be renamed. The reason
for including non-local variables as part of the namer stems from the fact that obfuscators
most often use name obfuscation to confuse the code. With a naming mechanism for all
identifiers in the application we hope to be able to build some contextual information of the
program and convey that to the programmer via identifier names.

8.1 Heuristic-based naming

There are many attributes that contribute to how a programmer names a variable. Some
basic ones that are easily identifiable are used to provide rudimentary renaming to variables
in Dava. The future work (Sectiohl.1) discusses ideas on further improving the naming
mechanism.

e Variables used inFor loops: It is common practice to use variables named i, j or k
for driving variables irFor loops.

127

Naming Mechanism

1 for(int i=0;i<var;i++){
2 [lfor loop code
3}

Figure 8.1: For loop driving variables

e Variables used as flagsVariables that haveoolean types are usually used as flags.
They can be used to terminaikile loops or used inf/If-Else statements. When
used in aWhile loop they represent code as shown in Fig8r&a). The variable
notDone is used as a flag to terminate thirile loop when a certain condition is
satisfied. Such variables can be calfadgs.

1 while(notDone){ 1 if (isFinished){
2 Illwhile loop code 2 /lthen code
3 } 3}

Figure 8.2: Conditional Flags

e Variables used to hold size or length of a data structure:In Java many classes,
implementing data structures, contain the methoge or a fieldlength. Hence a
variable with the same name can give good contextual information regarding the data
it is holding.

e Variables declared final: It is common programming practice to naménal
fields with names with capital letters (FiguBe3(b)).

¢ Variables whose exact names can be obtained’he use ofget andset methods
in Java gives additional hints regarding the use of a variable. Since method names
are conserved during compilation, an assignment frggatamethod can be used to

128

8.1. Heuristic-based naming

1 int length = classObject.length; 1 final int DIRECTION=1;

2 int size = classObject.size(); 2 final int SIZE = 10;

Figure 8.3: Heuristics for size/length an¢linal variables

name a variable. Similarly an argument teet method can be given the name of
theset method.

1 id = classObject.getId();
2 name = class0Object.getName();

3 index = classObject.getIndex();

classObject.setSize(size);

(4]

o

classObject.setX(x);

Figure 8.4: Using get and set methods to get variable names

e Exception Names:It is common practice to name exception variables with the first
letters of each identifier making up the exception converted to lower case. For exam-
ple a variable of type FileNotFoundException can be named fnfe and an IOException
variable can be named ioe.

e Main method argument: A rather trivial heuristic, only applicable to thiin
method of an application, this heuristic looks for the main method and names the
argument of the method txrgs.

e Arrays: If a better name for an array variable is not available then one can append
the type of the variable to the string “array” to convey to the programmer that this is
an array. Hence we can have variables with names intArray or nodegicay

129

Naming Mechanism

e Local assignment using fields:Since compiled code contains field names, a local
variable assigned a field value can be given a name similar to the field.

e Object type: If a local is assigned the result of creating a new object or if an object
is cast to a particular type then the type of the variable can be used to decide on the
name of the variable.

e Remove confusing charactersConfusing symbols should in all cases be removed
from variable names. These include the use of $ symbols, generateddoyf&r
internal (stack) variables. At the same time obfuscators tend to add other confusing
characters such as a sequence of underscores or combinations of the letter S and the
digit 5. The renamer looks for such sequences and removes them.

8.2 Displaying qualified types

Java bytecode represents objects with their fully qualified types. For instance, if a class ex-
tends th&hread class the class definition would contasxtends java.lang.Thread”.
Similarly, a field or local of typeString would have the definitiorjava.lang.String.
This ensures that all types are explicit and no confusion occurs when executing code for
objects of the same class names, but belonging to different packages. An example of this
can be the use dfimer objects in Java. Thgava.util package and th¢avax.swing
package both contain Bimer class. Hence in this case, or in any application that uses
different classes with the same name, it is critical that there be no type ambiguities.

Type ambiguities are handled by restricting the Java compiler to only allow unambigu-
ous types at compilation. Hence in the presence of only one impdtted class it is legal
to use Timer t”to define aTimer object with name t which belongs to whichever type is
imported in the class definition (In Figugex(a) the timer objectt has typeva.util.Timer
since that is the imported class). However, if multiple Timer classes have been imported
then the user has to explicitly refer to each type. The code in Figui®) shows a
Java program which will produce compile time errors since the packgges util and
javax.swing both have Timer classes. Statements 4 and 5 define ambiguous Timer objects
and need to be fully qualified in order for the program to compile.

130

8.2. Displaying qualified types

(a) Legal variable declarations (b) lllegal variable declarations

1 import java.util.x*;
. . . . 2 import javax.swing.*;
1 import java.util.Timer; P J &%

bli 1 Ti Test
2 public class TimerTest{ 3 public class TimerTest{

. 4 Timer swingTimer;
3 Timer t;

4}

5 Timer utilTimer;
6 <code>

7}

Figure 8.5: Qualified Variable types

Another related, and important, restriction is that in the case of importing two classes
with the same name it is illegal to import the fully qualified class names. Figuia)
shows two illegal import statements (Statements 1 and 2). If classes from different packages
but with the same name have to be imported then instead of importing the classes the
packages need to be imported. Fig8r&b) shows the correct version of the code. Notice
that the Timer objects (Statements 4 and 5) are created using the fully qualified type name.

(a) lllegal Class Imports (b) Legal Imports
1 import java.util.Timer; 1 import java.util.x*;
2 import javax.swing.Timer; 2 import javax.swing.*;
3 public class TimerTest{ 3 public class TimerTest{
4 <code> 4 javax.swing.Timer swingTimer;
5 } 5 java.util.Timer utilTimer;

6 <code>

7}

Figure 8.6: Importing classes with the same name

131

Naming Mechanism

When decompiling bytecode, the original Dava front-end always produced code with
fully qualified type names even though most of the time the types are unambiguous. This
resulted in verbose code. A back-end transformation has now been implemented which
converts unambiguous types to their truncated form. An important requirement for deciding
when atype is ambiguous is knowing exactly which classes have been imported. Hence, the
first step for this transformation is to detect all Java classes that need to be imported. This
is done by processing the entire Java class being decompiled and storing all references to
library and application classes. Note that we do not store the list of packages to be imported
but the individual classes that are needed by the Java class. This is necessary since we
intend to look for cases when two classes with the same Java class name but belonging to
different Java packages are imported.

The removal of fully qualified class names occurs at the time the decompiled code is be-
ing output. The transformation implemented checks whether a class type is being printed.
At this time the truncated name of the type being printed is checked with the list of imported
classes. If the import list contains multiple classes matching the truncated name then the re-
moval of the fully qualified name for this type will result in an ambiguity. If only one match
is found then the qualified name can be truncated. Hence, looking back at Bi§(ak
when the decompiler is printing statement 3, the declaration ofdhe.util.Timer ob-
ject, the type name can be truncated since the import list only contairkiane class.

If an ambiguity existd.e., the import list contains two classes belonging to different
packages with the same name, then not only can we not truncate the fully qualified name
of the class but we also need to import the entire package instead of explicitly importing
the class. This is shown in Figuée6(b). Statement 4 and 5 are two declarationSofer
objects belonging to different packages. When the decompiler creates the import list both
java.util.Timer andjavax.swing.Timer will be present in this list. When the types
of the declaration statements are being printed the list will be searched for the truncated
name,Timer. Since multiple occurrences of this name will be found the type names in
statements 4 and 5 will be left un-truncated. At the same time the import statements for the
two Timer classes are marked such that instead of printing the explicit imports to the two

132

8.2. Displaying qualified types

Timer classes their respective packages are imported, as seen from statements 1 and 2 in
Figure8.6(b). Using this transformation most of the types (fields, formals, locals etc) get
truncated names since ambiguities rarely exist.

133

Naming Mechanism

134

Chapter 9
Testing and Empirical Results

The key requirement in our implementation has always been the correctness of the
transformations. Previously, Dava produced semantically correct but complicated output.
The newly introduced back-end aims to improve the code quality but should not do so
at the expense of producing incorrect code. Great care has been taken to ensure that the
semantics of the program don’t change because of the transformations performed. This
requires not only confidence in the correctness of the transformation but also testing the
semantic equivalence of the AST before and after transformations and the interaction of
transformations when applied iteratively to a program.

We performed two types of experiments. The first kind performs unit testing for each
implemented transformation and analysis (discussed in the next section). Since the goal of
the back-end is to simplify the code we needed to evaluate the effects of the transformations.
We designed a set of metrics that give insight to the complexity and comprehensibility of
the code. The second set of experiments computes these metrics for a set of benchmarks.
In Section9.2 we discuss the metrics and benchmarks used in our experiments. Empirical
data and its discussion can be found in Sectidsnd 9.5.

9.1 Unit Testing

As each transformation was implemented, we created test cases that checked that the trans-
formation was sound. These stress cases check for bugs in the implementation and ensure

135

Testing and Empirical Results

that the transformations result in the desired control flow. Since the transformations ap-
ply pattern matching techniques another very important set of tests were the cases where
a pattern does not get matched. Hence by checking both cases: when the pattern should
get matched and when it shouldn’t we are sure that the transformations will not change
the program behavior. Another advantage of using test cases is they can be used to reason
about the control flow.

9.2 Complexity Metrics

We experimented with a wide variety of metrics and in this section we present those metrics
that we found to be most useful for the purposes of evaluating the quality of code produced
by decompilers. We first present the simplest metrics for size and counting relevant con-
structs. One of the key differences among decompilers is their treatment of conditional
expressions and hence we definsoaditional complexitynetric designed to expose those
differences. Finally, a special problem introduced in decompilation and obfuscation is the
naming of identifiers. Hence, we introduce identifier complexitynetric to measure the
complexity of identifier names.

All of the metrics were computed using specialized traversals over the abstract syntax
tree (AST) representation of Java source as produced by the polyglot-basadr8nt-
end.

9.2.1 Program Size

A simple program size metric is useless in comparing diff@rentprograms other than to
say one is larger than the other. However, this metric can be very useful in comparing two
representations of threameprogram. Arguably, more verbose code is more complex and
this metric is a good high-level measurement to see if decompilers produce unnecessarily
verbose code and if obfuscators inserted useless code.

For our purposes, we defipgogram sizeo be the number of nodes in program’s AST

1The design and implementation of these metrics has been done jointly with Micheal Batchelder from the
School of Computer Science, McGill University, who is currently working on the JBCO obfuscator

136

9.2. Complexity Metrics

representation. Measuring size in this way discounts comments, spurious parentheses and
any program formatting issues.

9.2.2 Number of Java Constructs

Another simple metric for the comprehensibility of a Java program is the frequency of
different Java constructs in the code. Of course it is necessary to identify which constructs
are strong indicators of complexity. After considering empirical results, we narrowed our
attention to four categories:

e If andIf-Else statements (Simple Conditionals)
e Abrupt control flow preak andcontinue)

e Labeled blocks

e Local variables

Simple conditionals help to indicate the amount of decision-making in a program. A
more complex program will have more branching and therefore mérand If-Else
statements.

Abrupt control flow directives are even more indicative of complex programming. It
is argued that the use of these statements decreases the tractability of control flow and
therefore increases code complexity.

Labeled blocks are compound statements which are explicitly labeled. While program-
mers will often section their code using blocks, the existence of a label suggests the block
is used for controlling execution flow (through the use of a explicitly lab&leshk or
continue). Other than exception handling, this is one of the most complex control flow
mechanisms in Java.

Local variable counts can also indicate complexity. The more information one must
consider when reading code the harder it is to understand. Programmers don’t usually
create unnecessary identifiers, but tools like decompilers and obfuscators often do.

137

Testing and Empirical Results

9.2.3 Conditional Complexity

Boolean expressions which decide control flow in a progrieen those deciding £, For,

and While branching) play a particularly crucial role in analyzing code. Aside from
boolean constantsfue or false), the simplest conditional expressions consist of a unary
boolean literal - a boolean variable. This is assigned a complexity weight of 1. However,
conditional expressions can be aggregations or nestings of simpler expressions. A boolean
literal can be reversed with the negation operator, ! or relational operators, <=, >=,

==) can be used to compare expressions. We argue that these operators, while more com-
plex than a single boolean, are still fairly easy to understand and therefore we give them a
weight of 0.5. Expression aggregation using the &&|ooperators requires the reader of
code to evaluate the meaning of two subexpressions and then to combine the two - arguably
a more complex task - so we define the weight for these operators to be 1.

The complexity for each boolean expression in a program is simply the sum of all the
weights described above. Taking the subtree that represents the expression, the leaves of
the tree are boolean literals (increasing the complexity by 1 each) and every internal node
is either an unary, relational, or binary operation (increasing the complexity by 0.5, 0.5, or
1, respectively).

Given this description, the expressiafib && !done would be assigned a complexity
of 5. a<b refers to two variables (weight of 1 each) and the relational operator giving it
a complexity of 2.5.!done is a boolean with a negation operator and is given 1.5. The
aggregation¥&) adds another 1 to the overall complexity for a total of 5.

Average conditional complexifgr a program is simply the average of the conditional
complexities over all boolean expressions in the program.

9.2.4 Identifier Complexity

The name used for an identifier can provide valuable insight into the context in which the
variable is used. This in turn can ease a programmer’s task of understanding the code.
Indeed, most obfuscators garble identifiers in a program. We compute the complexity of
identifiers by calculating a sum of complexities for all identifiers where each is weighted
by a relative importance. An identifigrhas it's importance factdix) defined as follows:

138

9.3. Benchmarks

I(x) is 4 if x is a method name, 3 if itis a class identifier, 2 if itis a field, 1.5 if it is a formal
and locals have 1 as the importance factor.

We argue that method names are particularly important for program understanding so
we give them the highest importance value. Each identifier's complexity is computed as the
sum of token and character complexities (described below) multiplied by their importance
factor. Total identifier complexity is then calculated as a sum over all individual identifier
complexities.

Token complexity is a measure of recognizable language. Alpha tokens are parsed and
delimited by non-alphas and uppercase alphas. For exaggul#sTNode is split intoget,

AST andNode. Notice ASTNode is split into two tokens, the second one starting with a
capital alpha). Similarly, __Junk$$name is broken intoJunk andname. Tokens are then
counted and théoken complexitys defined as the ratio of total tokens to those found in
a dictionary? If the dictionary contains the tokeggt andNode but notAST then token
complexity forgetASTNode will be 1.5.

Character complexity is a ratio of total characters to those classified as non-complex.
Non-complex characters are those whichraogpart of a sequence of non-alphas of length
greater than 1. The character complexity for the identifierJunk$$name, for example,
is 1.625 as there are five complex to 8 non-complex characters,(, $,$and J, u, n, k,

n, a, m, e, respectively). Note that a sequence of non-alphas of length one is not considered
as complex since it very likely exists as a word separator, gstinSocket.

9.3 Benchmarks

The benchmarks have been culled from a graduate-level compiler optimizations course
where students were required to develop interesting and computation-intensive programs
for comparing the performance of various Java Virtual Machines. Each one was written in
the Java source language and compiled yithac. The following is a brief description of

each.

2The dictionary used in our experiments was a standard English language dictionary. However, one could
use a special-purpose dictionary that also contained domain-specific identifiers.

139

Testing and Empirical Results

Asac: is a multi-threaded sorter which compares the performance of the Bubble Sort, Se-
lection Sort, and Quick Sort algorithms.

Chromo: implements a genetic algorithm, an optimization technique that uses randomiza-
tion instead of a deterministic search strategy. It generates a random population of
chromosomes. With mutations and crossovers it tries to achieve the best chromosome
over successive generations.

Decode: implements an algorithm for decoding encrypted messages using Shamir's Secret
Sharing scheme.

FFT: performs fast fourier transformations on complex double precision data.
Fractal: generates a tree-like (as in leaves) fractal image.

LU: implements Lower/Upper Triangular Decomposition for matrix factorization.
Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoretical approximation to pi for a
given alpha.

Sliding: solves the well-known Sliding Block Puzzle Problem.

Traffic: is an animation of a road intersection controlled by a traffic signal. It uses multi-
threading to simulate cars moving through the intersection.

Triphase: performs three separate numerically-intensive programs. The first is linpack
linear system solver that performs heavy double precision floating-point arithmetic.
The second is a heavily multithreaded matrix multiplication algorithm. The third is
a multithreaded variant of the Sieve prime-finder algorithm.

The benchmarks we selected are not large (our size metric is shown in Bidyreut
are quite varied and exhibit many different properties and coding styles.

3We would have liked to experiment with some larger benchmarks as well, but in order to do so in a
rigorous manner all of the decompilers and obfuscators would have to work correctly on those benchmarks.
This appears not to be the case. As the other tools mature and become more robust on larger applications, it
will be possible to experiment with larger programs.

140

9.4. Evaluation of Decompiled Code

9.4 Evaluation of Decompiled Code

We discuss the results obtained from measuring the decompiled output of different decom-
pilers. Each benchmark was decompiled using four different decompilers: the original

Dava decompiler (henceforth referred to as Dava(Original)), the improved version of Dava
(referred to as Dava(Improved)), Jadf] and SourceAgairiol.

9.4.1 Program Size

Since each decompiler has its own source code formatting style, we normalized all output
with a style formatter (JRefactory’s JavaStylé&r) in order to remove these differences.
The formatter ensures that the AST contains the same number of AST nodes for the same
constructs (arif block with one statement in its body is calculated the same whether
brackets exist, distinguishing the block as a compound statement, or not). gigjah®ws
the number of nodes in the AST for all benchmarks. Traffic is largest with triphase, sliding,
and chromo following it.

It is interesting to note that the output produced by different decompilers does change

8000 O Original
7000 W Jad i
6000 E SourceAgain
ODava(lmproved)
5000
B Dava(Original)
4000

3000

ol lllll

Fractal asac triphase LU decode probe dliding traffic Matrix FFT chromo
Figure 9.1: Program size for decompiled code
the size of the code. Dava(Originalg¢., Dava without its back-end enabled produces the

141

Testing and Empirical Results

largest size AST. However, once the back-end is enabled this AST decreases in size (mostly
because of the removal of abrupt statements and labeled blocks and the aggregation of
conditional statements using the boolean && draperators). Usually the output produced

by Jad and SourceAgain matches very closely to the original source code. This being an
expected result since the decompilers use pattern matching to reverse the code generated
by the compiler used.

9.4.2 Conditional Statements

Since Dava(Original) did not deal with short-circuit control flow created by && gragp-
erators, it produces moief andIf-Else statements. Dava(Improved) implements numer-
ous aggregation transformations, greatly reducing the number of conditionals, as supported
by the metrics in Figuré.2 attests to this fact.

160 O Original
140 OJad
120 B SourceAgain
100 O Dava(Improved) B
B Dava(Original)
80
60
40
" | oo (T

Fractal asac triphase probe diding traffic Matrix chromo

Figure 9.2: Conditional statements for decompiled code

The largest peaks for the number of conditionals are from Dava(Original). With
Dava(Improved), however, there is a drastic drop in these constructs which, in most cases,
matches that of the other decompilers. Interestingly, all decompiler output (except
Dava(Original)) for the sliding benchmark contain fewer conditionals than the original

4Note that in this and subsequent graphs we do not show results for benchmarks for which the metrics are
the same, or nearly the same, for all versions of the benchmark.

142

9.4. Evaluation of Decompiled Code

source. This would indicate that the benchmark’s original code used very simple non-
aggregated conditional statements and was perhaps written by a novice programmer. An
examination of this benchmark proved this. FigQr&a) shows a code snippet from the
original source code of the sliding benchmark. Statement 3 in the code is an
Unconditional-While loop and statement 4 and 5 are the exit condition for the loop.
In the decompiled code produced by Dava we see thatikenditional-While loop

has been replaced by a conditional loop by pulling in the condition from statement 4 into
the loop body (use of aggregation pattern discussed in Sestibg. Another bad pro-
gramming instance is detected at statements 9 and 10 of Figk{eg where thelf-Else
statement contains an emptybody. This has been converted by Dava talérstatement

with the condition negated (Statements 8 and 9 in Fi§usg)).

An interesting observation is that the general strategies in Dava(lImproved) sometimes
find more aggregation opportunities than Jad and SourceAgain (asac and chromo), and
sometimes find fewer (triphase). This demonstrates that different decompilation strategies
can impact the quality of the output.

9.4.3 Condition Complexity

Conditional complexity is a measure of the complexity of the boolean expressions within
conditional constructsIif, If-Else, and loop constructs). Conditional complexity in-
creases as boolean subexpressions are aggregated using the |&8&perators. At the
same time the use of negations (!) also increases conditional complexity. Bigustgows
conditional complexity for the benchmarks.

For most benchmarks Jad and SourceAgain produce code with almost the same measure
as the original. Small variations occur when a boolean flag is represented using the negated
flag and vice versa.

An exception to this is the sliding benchmark. Here we see that all the decompilers
increase the complexity by almost the same amount. This again strengthens our belief
that the benchmark was written by a novice programmer who used simple non-aggregated
boolean expressions. The decompilers merely detect the chance to aggregate the different
conditions and in doing so increase the conditional complexity and reduce the number of

143

Testing and Empirical Results

(a) Original Source code

1 public static int search(Problem p) throws Exception {
2 nodes.add(new Node(p.getStartState()));
3 while (true) {

4 if (nodes.size() == 0)

5 throw new Exception("No solution found!");
6 <snip>

7 for (i = 0; i < succ.size(); i++) {

8 Node toInsert = (Node) succ.elementAt(i);
9 if (FindCycle(toInsert, x, y)) ;

10 else nodes.add(toInsert);

11 }

12 }

13 }

(b) Dava(lmproved) output

1 public static int search(Problem p) throws Exception{
2 nodes.add(new Node(p.getStartState()));

3 while (nodes.size() '= 0){

4 n = Astar.removeBest();

5 <snip>

6 for (i = 0; i < succ.size(); i++){

7 toInsert = (Node) succ.elementAt(i);

8 if (! (Astar.FindCycle(toInsert, x, y)))
9 nodes.add(toInsert) ;

10 }

11 }

12 throw new Exception("No solution found!");

13 }

Figure 9.3: Detecting simple non-aggregated conditional statements in original Source

144

9.4. Evaluation of Decompiled Code

4 O Original
OJad
3.5 E SourceAgain —
O Dava(iImproved) i
3 B Dava(Original) _
2.5 - — M l
2 = il _
1.5 -
1 1
0.5
0 I I I I I I

Fractal asac triphase probe diding LU traffic Matrix chromo

Figure 9.4: Average Condition Complexity for decompiled code

If andIf-Else statements.

Comparing Dava(Improved) and Dava(Original) we see that apart from the probe bench-
mark there is a definite increase in conditional complexity implying the aggregation of con-
ditions. When we investigated the probe code, we noticed that whereas Dava(Original) was
creating conditions of the form “!flag” Dava(lImproved) was able to switch the bodies to
have conditions of the form “flag”. Further, there was no chance of aggregation in the code.
Thus, the removal of negation decreases the complexity and we see this in the complexity
values for probe.

By examining the values for the original metrics, we see that a conditional complexity
between 2 and 3 is normal. In the future, a metric-aware Dava could use its aggregation
transformation sparingly in an attempt to maintain this level.

9.4.4 Abrupt Control Flow

Eliminating Break and Continue Statements is one of the key transformations imple-
mented in Dava(lImproved). We argue that these abrupt control flow devices, of all Java

145

Testing and Empirical Results

constructs, add the most complexity to source code because they represent disjoint exe-
cution flow. The more abrupt edges there are in a program, the less the code reads se-
guentially. This makes it difficult for a programmer because it increases the the number of
scoping levels that must be kept track of, as well as the cohesion of disparate code chunks.
Out of all the benchmarks, sliding and traffic were the only ones which had a sizable

number obreak statements. All decompilers end up introducing some abrupt flow but this
number is usually very low for javac-specific decompilers, Jad and SourceAgain, as seen
in Figure9.5. Again, this is due to the matching of code patterns to obtain concise output.

100 OOriginal
OJad
E SourceAgain
80 O Dava(lmproved)
B Dava(Original)
60
40 1 |
20
olecedl A Thrm - i B

asac triphase probe dliding LU traffic chromo

Figure 9.5: Abrupt statements for decompiled code

Dava(Original), on the other hand, suffers greatly by producing code with many com-
plicatedbreak statements nested withirabeled-Block constructs. This is because the
low-level bytecode represents all of its control flow through onhfyand goto instruc-
tions; a naive decompiler will take the simplest route and transform these into abrupt
breaks. The impact of more complex abrupt flow transformations, as implemented in
Dava(lImproved), can be seen in the reduction of abrupt statements for Dava(Improved)
as compared to Dava(Original). In many cases Dava is able to produce fewer, if not the
same, number of abrupt statements as Jad and SourceAgain. However, sliding and traffic

146

9.4. Evaluation of Decompiled Code

are two benchmarks which still show there is room for improvement. On inspection of the
code it becomes obvious that thasessak statements can be removed by applying more
generalized patterns on the AST. A few of these are discussed as future work.

An interesting anomaly is noticed in the metric values for the chromo and probe bench-
marks. The abrupt statement counts for the output produced by Jad is higher than that
produced by SourceAgain or Dava(Improved). On inspection it was noticed that Jad some-
times produces unnecessamntinue statements. Figur@.6(a) shows code produced by
Jad. Thecontinue statement can be avoided by negating the condition of thetatement
(Statement 2 in Figur@.6(a)) and adding Statement 4 as the new body of thetatement.

This is exactly what SourceAgain and Dava(lmproved) do, as shown in Fga(is.

(a) Jad output

1 for(int j1 = 0; j1 < i; ji++){

2 if(d < a1[j1]l.cfitnessGet() || d >= all[jl + 1].cfitnessGet())
3 continue;

4 al[j1 + 1].copyChromosome(a2[il]);

5 }

(b) Dava(lmproved) output

1 for (i2 = 0; i2 < i0; i2++){
2 if (d1 - ri1[i2].cfitnessGet() >= 0 && dl1 - ri1[i2 + 1].cfitnessGet() < 0){
3 r1[i2 + 1].copyChromosome(r2[i7]);

Figure 9.6: Unnecessaryontinue Statements produced by Jad

147

Testing and Empirical Results

9.4.5 Labeled Blocks

Directly related to abrupt statements are the number of labeled blocks present in decom-
piled code. Labeled blocks are especially bad programming practice and, in fact, they
exacerbate the previous problems with abrupt control flow by allowing more disjoint exe-
cution jumps than available with unlabeledeak statements. Unsurprisingly, no labeled
blocks appear in the original source of any of the benchmarks. Jad and SourceAgain are
able to maintain this minimum. The general restructuring algorithm in Dava(Original), on
the other hand, produces a high number (Figui®. Figure9.7 also shows that 75% of
these labeled blocks, introduced by Dava(Original), are removed by the pattern-matching
based transformations implemented in Dava(Improved).

25

20 O Dava(iImproved)

15 W Dava(Original)

10

A

A B = 0 m = B

asac triphase decode probe diding traffic ~ chromo

Figure 9.7: Labeled Blocks for decompiled code

9.4.6 Local Variables

Dava(Original) produces many local variables in its output. This is because Dava takes its
input fromgrimp which has been computed from the low-level Soot IR which uses many
local variables in order to get simple and precise compiler analyses.

148

9.4. Evaluation of Decompiled Code

Although local variable webs are collapsed while creagingmp the reduction in the
number of locals is not as much as one would like. With Dava(lImproved), copy elimina-
tion (Section7.2.1) and constant substitution (Secti@rB) considerably reduce the use of
intermediate local variables. Figuge8 shows the number of local variables for some of
the benchmarks. Jad and SourceAgain output is, again, very close to the original for this
metric.

140 OOriginal
OJad
120 B SourceAgain
ODava(lmproved)
100] B Dava(Original)
80 - |
60 [
40 -
20 A
0 T T T T T 1

asac triphase decode probe diding traffic Matrix chromo FFT

Figure 9.8: Number of Locals for decompiled code

An exception to this is triphase where we see an abnormally high number of local vari-
ables for Jad and Dava. Inspection of the decompiled code produced by Jad for triphase
shows that it is unable to handle aggregated floating point and double precious calculations.
These are broken down into 3-address statements where each statement introduces a new
local variable. On inspection of code produced by Dava(Improved) we noticed that the
increase in number of locals was mainly due to the presence of shoftatiatements in
the original code. An example of this is shown in Fig%&(a). Whereas SourceAgain
and Jad are both able to produce this shortcut construct Dava fails to detect the pattern and
produces output shown in Figuged(b). In the triphase benchmark the shorttfitstate-
ment occurs numerous times and this explains the higher number of local variables in Dava.

149

Testing and Empirical Results

(a) Original source code (b) Dava(lImproved) output

1 final double abs(double d0){
2 double $di;

1 final double abs(double d) { 3 if (d0 - 0.0 < 0)
2 return (d >= 0) 7 d : -d; 4 $d1 = (- (d0));
3} 5 else

6 $d1 = do;

7 return $d1;

8 }

Figure 9.9: Reason for an increase in local variable count in Dava

Dava(Improved) shows decent amount of improvement over Dava(Original) (particularly
for traffic). The difference of local variables for Dava(Improved) with Original source code
is now with an acceptable range in most case.

9.4.7 Loop Count

Table 9.1 shows the breakdown of different loops within the decompiled outputs of the
different decompilers as compared to the original source code. Both Jad and SourceAgain
aggressively createor loops which we think is a good feature to have siRee loops are
inherently easier to understand than thiii 1e counterparts. Previously, Dava was unable
to generate&For loops and represented all loops using one of the three flavoraidfe
loops (thile, Do-While Or Unconditional-While). With the implementation of thEor
loop construction transformation (Secti@ri.l) Dava is now able to generafer loops.
However, in Dava we restrict the conversion aftale loop to aFor loop to cases where
all the four components of ther loop can be determined (Secti@ri.J).

The sliding benchmark shows some interesting results. The original source code con-
tained arinconditional-While loop which has been converted t@&ile loop in
Dava(Improved). This was previously illustrated in Figar8 where we see that the con-

150

9.4. Evaluation of Decompiled Code

Do | For | While | UnConditional
triphase(Original) 0 |43 |3 0
triphase(Jad) 1 (45 |0 0
triphase(SourceAgain) | 0 |44 | 2 0
triphase(Dava-Original)| 0 | O 46 0
triphase(Dava-Improved)0 | 45 0
decode(Original) 0 |29 |1 0
decode(Jad) 0O |30 |0 0
decode(SourceAgain) [0 |29 |1 0
decode(Dava-Original) | 0 | O 30 0
decode(Dava-Improved) 0 |29 |1 0
sliding(Original) 0 |21 |2 1
sliding(Jad) 1 122 |1 0
sliding(SourceAgain) 0 |21 |3 0
sliding(Dava-Original) |0 | O 24 0
sliding(Dava-Improved) | 0 | 22 | 2 0
Matrix(Original) 0O |21 |0 0
Matrix(Jad) 0O |21 |0 0
Matrix(SourceAgain) 0 |20 |1 0
Matrix(Dava-Original) |0 |0 21 0
Matrix(Dava-Improved) | 0 | 20 | 1 0

Table 9.1: Breakdown of Loops for decompiled code

dition of a nested f statement is pulled into théile loop as it's condition.

Another interesting thing to note in the results for sliding are that even after the con-
version of theUnconditional-While loop to awhile loop both the original code and
Dava(Improved) have the same numbeivbile loops. The reason being that one of the
While loops in the original code can be better representedas bbop. This conversion is
illustrated in Figure.10. Figure9.1(@) shows the original code snippet. Since thisle
loop contains a condition which checks on a pointardg1 value, which is consistently

151

Testing and Empirical Results

updated within the loop body, Dava converts e le loop into aFor as illustrated in
Figure9.1Q(b).

(a) Original source code

1 ptr = n;

2 while ((ptr.getParent()) != null) {

3 store.addElement (ptr.getblockType()) ;
4 store.addElement (ptr.getopcode());

5 ptr = ptr.getParent();

6 }

(b) Dava(lmproved) output

1 for (r4 = r0; r4.getParent() != null; r4 = r4.getParent()){
2 r3.addElement (r4.getblockType());

3 r3.addElement (r4.getopcode());

4}

Figure 9.10: Converting aWh4 le loop to aFor loop

9.4.8 Overall Complexity

In order to provide one summary metric, we experimented with a variety of composite
metrics. We found a good overall complexity metric that is defined by first expressing
each component metric as a normalized value with respect to the value for the original Java
benchmark, and then combining the normalized values, each component multiplied by a
constant representing that metric’s importance. The sum of the constants is 1, so that when
comparing the original javac source to itself will always result in an overall metric of 1.

For example, for the size component we compute the normalized value by (size of de-
compiled benchmark)/(size of original benchmark) and we multiply this normalized value

152

9.5. Evaluation of Obfuscated Code

by 0.2. Figured.11gives the result using 0.2 * size + 0.2 *¢ount + 0.2 * condcomplexity
+ 0.1 * numabrupt + 0.1 * numabeled + 0.2 * numocals, where each component of this
metric corresponds to normalized values of the metrics as presented in Se2tion

OOriginal
25 dJad
B SourceAgain
2 ODava(lImproved)
B Dava(Original)
1.5
l _
0.5 -
O n I T T T T

Fractal asac triphasedecode probe diding LU traffic Matrix chromo FFT

Figure 9.11: Overall complexity for decompiled code

Using this overall metric we can see that Jad and SourceAgain produce decompiled
code that is close to the original code (remember that these benchmarks have not been
obfuscated and thus javac-specific decompilers work well for them). We can also observe
that Dava(Original) does in fact produce (ugly) code that is not as similar to the original
code, but that the additional transformations implemented in Dava(lImproved) do improve
upon this substantially.

9.5 Evaluation of Obfuscated Code

The experiments in this section were performed as follows. We created our baseline by
first compiling the application using an ordinajyvac compiler to produce the class files

and then decompiled those class files with our Dava decompiler, with all of the advanced
transformations turned on. This option is labeled Dava(Improved) in subsequent figures.
Notice that in decompiling obfuscated code we only use Dava and not Jad or SourceAgain.

153

Testing and Empirical Results

Both Jad and SourceAgain are not able to decompile much of the obfuscated code. Dava
on the other hand is robust enough to be able to decompile code after first- and second-
generation obfuscations. In order to be able to obtain metrics we need compilable Java
source and hence our choice of decompiler.

To create the obfuscated versions of the source code we first applied the obfuscators
(Klassmaster and JBCO) to the class files to produce obfuscated class files. We then de-
compiled the obfuscated class files using Dava. We used Dava in two configurations, the
Original one, and thémprovedone where all simplifications are applied. In the subsequent
figures JBCO(Improved) refers to the case where we obfuscated with JBCO and then de-
compiled with Dava(Improved) and JBCO(Original) refers to the case where we obfuscated
with JBCO and then decompiled with Dava(Original). Similarly, we created two versions
for the Klassmaster obfuscator.

By comparing the Dava(lImproved) versions with I BCO(Improved) and
Klassmaster(Improved) one can observe the impact that the two obfuscators had on the
metrics. By comparing the Klassmaster(Improved) to Klassmaster(Original), and simi-
larly comparing JBCO(Improved) to JBCO(Original), we can observe the impact of the
advanced Dava simplifications in undoing some of the obfuscations introduced by the ob-
fuscators. These include some identifier renaming optimizations, control-flow simplifica-
tions, copy elimination and advanced dead-code elimination.

Although we computed all the metrics for both obfuscators, we only show results for
Klassmaster in many of the figures. This is because JBCO has no effect on some of the
metrics since we enable only two obfuscations: renaming identifiers and moving library
calls into new methods with obfuscated names.

9.5.1 Benchmark Size

Figure9.12 shows the program size metric. It is clear that both JBCO and Klassmaster
increase the size in all cases. Comparing the two obfuscators we see that the size increase
is greater for Klassmaster. This is expected because Klassmaster adds dead code guarded
by opaque predicates which can therefore not be removed by the static analyses performed
by Dava. JBCO size increases are due to the addition of methods which are used to in-

154

9.5. Evaluation of Obfuscated Code

voke library calls through an extra level of indirection. Therefore, the difference between

the unobfuscated Dava(Improved) case with the JBCO(Improved) case is directly propor-
tional to the number of unique library methods called in the program. A smart decompiler

could apply a refactoring algorithm to overcome this obfuscation through re-inlining these

unneeded indirections.

O Dava(lmproved)

7000
OJBCO(Improved)
6000 | EJBCO(Original)
Oklassmaster(Improved)
5000 - mklassmaster(Original) —
4000 - | I
3000 —
2000 -
0 T ’_ T

Fractal asac triphase decode probe chromo FFT

Figure 9.12: Program size for obfuscated code

Also interesting is the difference between Klassmaster with and without Dava’s ad-
vanced simplification analyses, Klassmaster(Original) versus Klassmaster(Improved). This
difference is most obvious for the decode and chromo benchmarks. In these cases the Dava
dead code elimination removes a large amount of code introduced by Klassmaster. Never-
theless, not all dead code is removed because much of it is guarded by opaque predicates.
Dava is unable to statically detect the values of these predicates and hence the code remains.
A much more powerful context-sensitive flow analysis would be required to remove the re-
maining dead code.

155

Testing and Empirical Results

9.5.2 Conditional Statements

Figure 9.13 demonstrates a large increase in the number of conditional statements after
obfuscation by Klassmaster. This is consistent with Klassmaster’s technique of introducing
redundant or dead code enclosed by siniflestatements. Dava attempts to aggregate
many of the conditionals and can sometimes remove some redundancies, as illustrated
by the difference between Klassmaster(Original) and Klassmaster(Improved). However, a
large number of these conditions still remain.

200

180 O Dava(lmproved)

160 OKlassmaster(Improved)

140 B Klassmaster(Original)

120 -

100 |

80

60

40 A

R Eu M

o [1HC ﬂ iE Naf

Fractal asac triphase probe diding traffic Matrix chromo

Figure 9.13: Simple conditional statement count for obfuscated code

9.5.3 Conditional Complexity

Conditional complexity is shown in FiguBe14 Here, the decrease in complexity is mainly

due to the fact that Klassmaster introduces its own conditional constructs which are simple
un-aggregated boolean expressions. Hence, although the number of conditional constructs
increases, the average conditional complexity decreases. An additional possible reason for
the drop in complexity is that the original bytecode is intermixed with obfuscation code.

156

9.5. Evaluation of Obfuscated Code

This inhibits the pattern-based simplifications and therefore results in fewer conditional
aggregations. The increase seen in Klassmaster(Improved) versus Klassmaster(Original) is
due to the aggregation of conditions. Some benchmarks show a decrease which most likely
occurs due to removal of dead code which included complex conditionals.

4

O Dava(lmproved)
3.5

OKlassmaster(Improved) m

3 1 B Klassmaster(Original)

2.5 1 [[] —|

2,7

1.5

1,

0.5 A

O I T T T T T T
Fractal asac triphase decode probe diding LU traffic Matrix chromo

Figure 9.14: Average conditional complexity for obfuscated code

9.5.4 Abrupt Control Flow

The count of abrupt statements-éak andcontinue) for the obfuscated code as compared
to the un-obfuscated code is shown in Fig@rés We can see a marked increase in abrupt
statements (particularly in triphase, decode and chromo).

The abrupt metric is particularly useful in identifying obfuscated code. Abrupt edges
in the flow graph of a program are a direct result of control-flow obfuscation techniques
and it clearly worsens the readability. As stated earlier, a programmer has a lot to keep
track of when trying to follow abrupt control, especially when execution jumps directly out
of multiple nesting levels. Thus, programmers tend to make sparse use of complex abrupt
control-flow, whereas obfuscators intentionally add them in to complicate the control flow.

157

Testing and Empirical Results

140
C O Dava (Improved)
120 ¢ OKlassmaster(Improved)
- B Klassmaster(Original)
100 +
80 N
60 + —
40
20 + I
0 : T — T T T T T i

asac triphase probe diding traffic Matrix chromo FFT

Figure 9.15: Abrupt control flow count for obfuscated code

It is interesting to note that javac-specific decompilers such as Jad and SourceAgain
often fail to decompile such code because the control-flow in the class files does not cor-
respond to any known structured Java control flow pattern. Dava succeeds in decompiling
and reducing the number of abrupt control flow statements due to its use use of graph-based
restructurings.

As demonstrated by comparing Klassmaster(Original) to Klassmaster(Improved), the
Dava simplifications are able to restructure some of the code to reduce abrupt control flow
in many of the benchmarks, but not all cases of abrupt control-flow can be removed. We
suggest some more transformations in our future work to further decrease the number of
abrupt statements, but it seems unlikely that all abrupt flow introduced by obfuscation could
be eliminated.

158

9.5. Evaluation of Obfuscated Code

9.5.5 Labeled Blocks

Labeled blocks are shown in Figugelg correlating closely with the number of abrupt
statements. The Klassmaster(Original) case has a large number of labels but Klassmas-
ter(Improved) shows that Dava’s simplifications can reduce these to a more acceptable
level. For some benchmarks (FFT and probe) all labeled blocks can be removed. Over
the whole benchmark suite 65% of the labeled blocks are removed. With the addition of
further transformations discussed in the future work section it seems likely that even more
labeled blocks can be removed from the code.

40
O Dava(lmproved)
35 OKlassmaster(Improved)
30 B Klassmaster(Original)
25
20 -
15
10 -
5 | I l
0 I I I

asac trlphase decode probe sliding traffic Matrix chromo FFT

Figure 9.16: Labeled block count for obfuscated code

9.5.6 Identifier Complexity

Identifier obfuscation is a very important metric for evaluating obfuscators. Nearly all ob-
fuscators perform identifier obfuscation and it is perhaps the only technique that is truly
irreversible BGIT01]. Figure9.17 shows that JBCO performs good identifier obfusca-
tion based on our metric. Klassmaster also does well, though a difference between the
Klassmaster(Original) and Klassmaster(Improved) values can be seen due to a basic local

159

Testing and Empirical Results

variable renaming algorithm implemented in Dava. Also, removal of dead code reduces
local variables, some of which have complex names, hence decreasing the complexity.

O Dava(lmproved)
400 - OJBCO(Improved)
B EJBCO(Original)
350 | OKlassmaster(Improved) —
B Klassmaster(Original)]
300 - —
250 - [l
200
150 ||
100
LT | Kl
: 1 [

triphase decode probe sliding LU Matrix traffic chromo FFT

Figure 9.17: Identifier complexity for obfuscated code

9.5.7 Overall Complexity

Figure9.18reports the overall complexity metric. Note that this metric does not include
identifier complexity, so one should really consider both the identifier complexity presented
in figure 9.17 and the overall metric in figur8.18 which summarizes control-flow like
obfuscations, when considering the effect of obfuscators.

Considering these two figures we can see that, as expected, the effect of HCO
mostly on identifier obfuscation, whereas Klassmaster shows significant impacts on the
structure of the code. It is also interesting to note that the Klassmaster(Improved) is closer

5In these experiments we used a preliminary version of JBCO, the final version of JBCO will support
many more control flow obfuscations

160

9.5. Evaluation of Obfuscated Code

75 O Dava(lmproved)
7 EJBCO(Improved)
6.5 @ JBCO(Original)
5 g Oklassmaster(Improved)
5 B klassmaster(Original)
4.5 -
4 -
3.5 1 _
3
2.5 -
2 .
15 - a
1 a
0.5 - | |
0 ‘
> SO N NS N O & o <
e S S & v R & & <
<<J\rzy 'b@ \(\Q‘(\ 6& QJ\ é\b \\'Zr @fb‘ é\\o %

Figure 9.18: Overall complexity for obfuscated code

to the unobfuscated code than Klassmaster(Original), indicating that the advanced trans-
formations in Dava do help to clean up the code.

161

Testing and Empirical Results

162

Chapter 10
Related Work

To the best of our knowledge Dava is the only available tool-independent decompiler for
Java. It is therefore difficult to compare methodologies used in Dava to other decompilers
since the issues encountered for Dava are more complex than the simple reversing of code
generation carried out by other decompilers.

10.1 Decompilers

There are numerous decompilers available for Java bytecode. Two notable ones are Jad
[Jad and SourceAgaingoy. Jad is a javac-specific decompiler which is free for non-
commercial use. Its decompilation module has been integrated into several graphical user
interfaces including FrontEnd Plus{o], Decafe PraDed, DJ Java Decompiler}J] and
Cavaj[Ca\]. It is relatively easy to break the decompiler by introducing non-standard,
though verifiable, bytecode.

SourceAgain is a commercial decompiler with an online version available to test its
capabilities. The decompiler creates a flow graph representation from which it detects Java
constructs. Due to the use of a flow graph representation it does a better job at decom-
pilation than Jad. Although SourceAgain claims to be able to decompile obfuscated code
our tests have shown that it is only able to handle name obfuscation(by converting these to
indexed names) and fails when control flow obfuscation has been carried out.

163

Related Work

10.2 Obfuscators

To test Dava’s capabilities in decompiling and simplifying obfuscated code we used the
Zelix KlassmasterHlaa] obfuscator. Although Java obfuscation has become popular in
recent years, both in academic and commercial communities, there aren’t many obfusca-
tors which do more than name obfuscation. Zelix Klassmaster stands out since it applies
complicated control flow obfuscations by adding predicates guarding “presumably” unde-
compilable code. The Klassmaster documentation states:

“The obfuscator makes slight changes to the bytecode that obscures the control
flow without changing what the code does at runtime. Typically, selection (e.g.
if...else...) and looping constructs (e.g. while and for loops) are changed so
that they no longer have a direct Java source code equivalgfitib].

Our tests with the obfuscator indicate that the changes made are not “slight”. Large chunks
of code, which includes loops, are added to confuse the decompilers (Se&jiom his
creates convoluted code but at the expense of a slow down in the application runtime. Since
one key selling point of Dava has always been its general applicability to verifiable byte-
code, in most of our test cases, and all the benchmarks selected, Dava was able to correctly
decompile the obfuscated code. KlassMaster claims to be the only “Second generation”
Java obfuscator, a term coined for obfuscators performing strong control flow obfuscation.
Our experiments with obfuscated code using different obfuscators attest to this claim. Zelix
Klassmaster does reflect the latest technology, available for non-academic use, in the field
of Java bytecode obfuscation.

The second obfuscator used was JBCO (Java Bytecode Obfuscator) which is still under
development at the Sable Research Group at McGill University. Using the SogtJava
bytecode analysis framework, the same framework used by Dava, this obfuscator promises
to be a top-notch Java bytecode obfuscator. JBCQO'’s philosophy is to introduce the least,
if any, amount of dead code and to incur minimum runtime slowdowns. JBCQO’s proposed
transformations take into account the minute details of the Java language specification in
order to exploit little-known options in bytecode representation. Although bytecode is rel-
atively high level there is still a large gap between Java bytecode and Java source. Utilizing

164

10.3. Visitor Design Pattern

the additional expressiveness of the bytecode, transformations are proposed which will
have no, or very complicated, Java source code equivalent.

10.3 Visitor Design Pattern

The inspiration for the extended version of the visitor design pattern, now implemented for
Dava’s AST, was taken from SablecGi9d. SableCC generates compilers (and inter-
preters) in the Java programming language from a given specifications grammar. The key
features of SableCC include the use of object-oriented techniques to automatically build a
strictly-typed abstract syntax tree and the generation of tree-walker classes for the gener-
ated AST. It is this implementation of the traversal routines, enabling the implementation
of actions on the nodes of the AST using inheritance, that we have borrowed for use within
Dava.

10.4 Structure-Based Flow Analysis

As the analyses for the decompiler are performed on the AST it is best to use a syntax-
directed method of data flow analysis such as structural analysis. Structural Flow analysis
initially presented by Sharigha8() is ideal for data-flow analysis using a structured rep-
resentation of the program. The advantage of using this technique is that it gives, for each
type of high level control-flow construct in the language, a set of formulas that perform data
flow analysis. This technique has been successfully used in creating an optimizing com-
piler which uses a hierarchy of structured intermediate representatidis T93]. Work

done by Emami et. alma93 for gathering alias and points-to-analysis information for
the McCAT C compiler matches very closely to what was required for Dava. Dava’s flow
analysis framework is an implementation of the same approach utilized in McCAT along
with handling of complexities introduced by Java.

165

Related Work

10.5 Complexity Metrics

There has been much research into software complexity and many metrics have been pro-
posed and embraced by the software engineering community throughout the years. Classic
examples are McCabe’s cyclomatic numbéic[C76, and Halstead’s programming effort
measurestal77]. More recent efforts have been geared towards quality analysis for large-
scale software projects and process&sq05 Con04.

These complexity measures are interested in measuring effectiveness, code reliability,
programming effort, and clarity (or cognitive expressibility / representabilitynid4].

What we are interested in within this research is this specific idea of cognitive expressibility.
When a decompiler sets out to recover the higher-level source code of a binary programiitis
effectively attempting to recover a cognitive representation - a human-readable (or at least
programmer-readable) version of the program that is semantically equivalent to the binary.
Likewise, when an obfuscator sets out to garble a program it is attempting to decrease the
cognitive representability of the program by adding complexity of some kind.

Because the quality of the cognitive representation is our key interest, some well-
developed metrics in the literature are somewhat useless here. McCabe’s Cyclomatic num-
ber, for example, shows the complexity of the control flow through a piece of code. Itis the
number of linearly independent paths through a program. However, if a program segment
S is compiled into a binary B and then decompiled into a source code segment S’ then S
and S’ will have the same cyclomatic number regardless of how the decompiler chooses to
represent the loops and other branching instructions in the program. Therefore the metric
shows us nothing of the differences between the cognitive representation of S and S’.

Similarly, Halstead’s metrics are not all suitable for our case. They are often used
during code development in large projects in order to track complexity trends. A spike in
Halstead metrics can signify a highly error-prone module, for example. However, this is
not our concern. We wish to use metrics to compare two high-level representations of a
program, both with the same semantics. Halstead’s metrics do not lend themselves well to
this problem.

Program volume, for example, is a measure of the minimum number of bits required for
coding a program. In the case of Java, non-local variables (either class fields or statics) and

166

10.5. Complexity Metrics

method names are preserved in the compiled bytecode. A common Java obfuscation tech-
nigue is to rename these identifiers, often with shorter and more incomprehensible names.
This effectively reduces the program volume but also reduces the ability of a decompiler to
recover the full cognitive representation of the original program.

Indeed, many metrics are designed to compare large software projects in a very abstract
way in order to predict maintainability, reliability and/or programming effort. Most of these
are not useful to the particular problem at hand.

However, some of the criticism that Halstead’s measures have seen over the years -
specifically the argument that they are a bad measure because they consider lexical and
textual complexity rather than the structural complexity of a programg]] - is a key
ingredient to our own proposed metrics. The high-level measures of lexical and textual
structure, and complexity are in fact exactly what we wish to measure, along with control
flow complexity.

We are much more interested in the high-level human-readable source code represen-
tation of the program’s methods. This makes the approacR@C[9] a good starting
point as they measure such intricacies as identifier length, nesting depth, and decision node
complexity.

167

Related Work

168

Chapter 11
Future Work and Conclusions

11.1 Future Work

Although we have improved the output produced by Dava there are clear indications of
areas where work should be carried out.

11.1.1 Abstract Syntax Tree Expansion

Currently Dava works on a per-method basis. Each method is separately decompiled and
an AST, with amaASTMethodeNode as the root of the tree, is created. Although per-method
decompilation works well for general decompilation, a class-based decompilation can pro-
vide additional avenues for analyses. It would be useful to modify the abstract syntax tree
representation within Dava to handle per-class, instead of per-method decompilation. This
can be achieved by the creation of an ASTClassNode data structure which could then hold
all methods and fields of the class. This would help streamline and modularize some of
the interprocedural analyses implemented as part of this thesis. The biggest advantage,
however, would be the ability to retrieve and produce inner classes within the decompiler
output. Also handling of field-aware analyses would become much easier if the fields were
represented as elements of the abstract syntax tree.

169

Future Work and Conclusions

11.1.2 Transformations

More aggressivéabeled-Block removal transformations are also needed. Currently the
transformations apply to small patterns. Larger, more general patterns can and should be
implemented to remove the complexity introduced.bppeled-Block constructs. As seen

in the results section, although the output has been greatly simplified, the numbers for
abrupt control flow constructs show room for further improvement.

We have not fully explored all possible analyses and transformations that could help
remove local variables. The increase in the number of local variables seen in Dava is due
largely because of the effect of removing local variable webs from the bytecode. Also
stack locations are allocated intermediate local variables which result in an increase in the
number of locals at thgimple level. grimp does a decent job of aggregating expressions
and in doing so removes a large number of stack variables. However, there is still a large
gap between the actual number of variables used in the original source and that produced
by Dava. Although it would be an interesting experiment to see by how much the num-
ber of locals can be reduced, the effect of having fewer locals in a program on program
comprehensibility is a grey area. Where too many locals (indirections) might be confusing
to the programmer too few locals might also be a complicating factor since then the pro-
grammer has to track the current value stored in a local. We think there is a need to find
the right balance in dealing with the number of locals such that they don’t cause any added
complications.

The aggregations carried out in Chagigthe for-loop detection patterns (Sectioi.])
and the breaking of thef -E1se statement discussed in Sect®B.1are some of the design
decisions which are related to a certain style of programming. By allowing a customizable
Dava back-end, where the user gets to decide which transformations to apply, the output
could be transformed to best suit the individual rather than the general programming com-
munity. Work on this was already started by setting flags for advanced transformations
constant substitution and aggressively producing potentially more complicated but compil-
able code (Sectiong.3and4.8). Making Dava’s back-end more adaptable would generate
code which is customized to a programmer’s personal likes and dislikes. A related idea
is to have a formating tool (JalopyJdl, JRefactory JRd) which could take the output

170

11.1. Future Work

produced by Dava and pretty print it using customized formatting rules.

11.1.3 Adding comments to decompiler output

Since the goal of decompilation is program comprehension we think that being able to
convey any additional information to the user helps in program understanding. A feature
to add comments within the decompiler output would be really useful. The best way of
achieving this would be to haveG@MMENT tag associated with each AST node. This tag
could be given a value if there is a need to insert some comment into the decompiled output.
Tags could be specialized to hold single line comments using the // symbol or the long C
style comments if there is a large comment to be added.

A lot of times the application bytecode comes along with the API, in the form of
javadocs. Another proposed idea is to parse the javadocs information available and place
them in the decompiled output as javadocs style comments.

11.1.4 Stronger refactoring analyses

Now that we have an efficient traversal mechanism and a flow analysis framework the
decompiler can use these to implement refactoring. One possible refactoring is method
inlining. Using whatever heuristics that seem fit (number of lines of code to be inlined,
number of method call sites etc) it might be useful to inline methods. A known obfuscation
technique used in JBCO is that library calls are moved to methods with confusing names.
This is done since renaming library methods/fields is not possible. By putting a level of
indirection the obfuscator is able to confuse the programmer since the new method invoca-
tion does not give any clues that this is in fact a library call. In such situations by selectively
inlining methods the understandability of the code can be increased.

Another related refactoring is to move methods from one class to another. This again
counters an obfuscation technique in which a method is moved to an unrelated class. This
creates difficulties for the programmer to reason about the component structure of the ap-
plication. By using heuristics (method only invoked from methods of a particular class,
method performs operations on data of a certain @&skit might be reasonable to move
a method to a different class.

171

Future Work and Conclusions

Method de-inlining, moving similar code to a separate method and replacing it with
invocations to the newly created method, can also help in simplifying program output.
Although this type of obfuscation has not been seen in the obfuscators tested so far, the
implementation of this refactoring transformation might simplify un-obfuscated code also.

11.1.5 Identifier Renaming

A naming stage has been included in Dava’s back-end. However, so far the naming strategy
uses very simple heuristics to name local variables. Firstly, the naming mechanism needs to
be modified to include naming classes and methods for obfuscated bytecode. Since current
obfuscators mostly concentrate on name obfuscation, having even a basic naming strategy
for identifiers in the program will help a programmer understand code.

The Java class libraries provide the best starting point to naming identifiers. Variables
assigned from library invocations can be allotted names created using the name of the
method invoked. Similarly classes extending or encapsulating library data types can have
names which include the library type that they utilize.

Another interesting idea, worth exploring, is doing a “flow-analysis” looking for vari-
able names. The analysis would gather potential names for each identifier, as data flows
through a program. Once the sets of potential names is obtained the best possible name is
alloted to the identifier. Obviously the “best” name is very subjective but a heuristic-based
decision can be made to pick a name from a set of possible names.

Currently we perform naming intra-procedurally. Including interprocedural heuristics,
results of a method performing some computation, retrieval of a field from an @iect
can add to the set of potential names.

11.2 Conclusions

In dealing with arbitrary bytecode, Dava uses a control flow graph representation of the
bytecode to generate valid Java programs. Previously the output of the decompiler was
verbose and difficult to understand because of the use of complicated control flow using
break statements and labeled blocks. Also the absence of boolean expression aggregation

172

11.2. Conclusions

resulted in a large number of conditional constructs making the code output harder to track.

This thesis introduces a new back-end to Dava based on matching patterns to simplify
the control flow of the decompiled output. Our philosophy for writing transformations has
been that a smaller number of conditional statements and less verbose code are easier to
understand. Transformations, implemented using the Visitor design pattern implementation
for the AST, perform semantically-equivalent rewrites of the AST.

More complicated transformations have been enabled using a newly implemented structure-
based flow analysis framework. The implementation of the framework was a non-trivial
task resulting from the complexities introduced by complex Java cons&uggBry-Catch,
Switch and dealing wittbreak andcontinue Sstatements. The framework is extensible,
hence making it possible for researchers to test new simplification and refactoring tech-
niques for the decompiler.

Currently Dava uses the flow analysis framework to implement flow analyses often used
for compiler optimizations. This is a novel application of compiler analyses that have been
traditionally used for execution performance improvements. Certain more complicated
transformations were implemented using these flow-analyses to help Dava simplify code
generated for obfuscated bytecode.

We have developed metrics that identify code complexity in terms of code layout and
number of constructs. We chose several benchmarks and performed compile-decompile ex-
periments on them. We observed the change in values of complexity metrics with the code
simplification transformations enabled or disabled. It was quite obvious that Dava’s new
back-end reduces the complexity of the output making it more comprehensible. Another
set of experiments following the compile-obfuscate-decompile pattern was also carried out.
The results of these experiments showed that along with being able to correctly decompile
obfuscated code, the complexity of the decompiled code can be greatly reduced with the
new back-end transformations enabled.

Dava, with its general applicability for Java bytecode along with its AST rewriting
transformations, is a robust decompiler compared to its peers. We feel that with more
work on programming idioms support, and the suggestions mentioned as future work, Dava
will stand out as the decompiler of choice for reverse-engineering applications from Java
bytecode.

173

Future Work and Conclusions

174

Bibliography

[abc]

[ACHT05]

[AMP]

[asp03]

[BGIT01]

[Cav]

[Con04]

abc. The AspectBench CompileHome page with downloads, FAQ, docu-
mentation, support mailing lists, and bug databasep://aspectbench.

org.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,
Jennifer Lhodk, Ondej Lhotak, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. abc: An extensible AspectJ compiler. Alspect-Oriented
Software Develipment Conferen@905, pages 87-98.

Axiomatic Multi-Platform C compiler suite
<http://www.axiomsol.cons .

The AspectJ home pag2003.
<http://eclipse.org/aspectj/.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil Vadhan, and Ke YangOn the (im)possibility of obfuscating pro-
grams Lecture Notes in Computer Scien@439, 2001.

Cavaj Java Decompiler
<http://www.bysoft.se/sureshot/cavaj/

Richard Conn. A reusable, academic-strength, metrics-based software en-
gineering process for capstone courses and projéntProceedings of the

175

http://aspectbench.org
http://aspectbench.org
http://aspectbench.org
http://www.axiomsol.com
http://www.axiomsol.com
http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
file:citeseer.ist.psu.edu/article/barak01impossibility.html
file:citeseer.ist.psu.edu/article/barak01impossibility.html
http://www.bysoft.se/sureshot/cavaj/
http://www.bysoft.se/sureshot/cavaj/
http://doi.acm.org/10.1145/971300.971465
http://doi.acm.org/10.1145/971300.971465

Bibliography

[Dec]

[DJJ]

[Emag3]

[Fro]

[GHO8]

[GHMOO]

[GJS97]

[Hal77]

[HDE+93]

35th SIGCSE Technical Symposium on Computer Science Edyddton
folk, Virginia, USA, 2004, pages 492-496.

Decafe Pro
<http://decafe.hypermart.net/.

Dj Java Decompiler
<http://members.fortunecity.com/neshkov/dj.hitml

Maryam Emami. A practical interprocedural alias analysis for an optimiz-
ing/parallelizing C compiler. Master’s thesis, School of Computer Science,
McGill University, August 1993.

Frontend Plus
<http://www.softpile.com/development/java/revié817 Lindex.htmp> .

Etienne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented
compiler framework. INTOOLS '98: Proceedings of the Technology of
Object-Oriented Languages and Systed398, page 140. IEEE Computer
Society, Washington, DC, USA.

Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient
inference of static types for Java bytecode. Stiatic Analysis Symposium
200Q June 2000, Lecture Notes in Computer Science, pages 199-219.

J. Gosling, B. Joy, and G. Steelehe Java Language Specificatigkddison-
Wesley, 1997.

Maurice H. HalsteadElements of Software Science (Operating and program-
ming systems seriedtlsevier Science Inc., New York, NY, USA, 1977.

Laurie J. Hendren, Chris Donawa, Maryam Emami, Guang R. Gao, Justiani,
and Bhama Sridharan. Designing the McCAT Compiler Based on a Family
of Structured Intermediate Representations.Ptaceedings of the 5th In-
ternational Workshop on Languages and Compilers for Parallel Computing
1993, pages 406—420. Springer-Verlag.

176

http://decafe.hypermart.net/
http://decafe.hypermart.net/
http://members.fortunecity.com/neshkov/dj.html
http://members.fortunecity.com/neshkov/dj.html
http://www.softpile.com/development/java/review_03171_index.html
http://www.softpile.com/development/java/review_03171_index.html

Bibliography

[HF82]

[Jad]

[Jal]

[Jas]

[Jav]

[JRe]

[KHH*01]

[Klaa]

[Klab]

[LSPO5]

Peter G. Hamer and Gillian D. Frewin. M.H. halstead’s software science -
a critical examination. INMCSE '82: Proceedings of the 6th international
conference on Software engineeringkyo, Japan, 1982, pages 197-206.
IEEE Computer Society Press, Los Alamitos, CA, USA.

Jad - the fast JAva Decompiletittp: //wuw.geocities.com/SiliconValley/-

Bridge/8617/jad.html.

Jalopy: the source code formatting tool
<hhttp://jalopy.sourceforge.net/.

SourceTec Java Decompile@ftp: //wuw.srctec. com/decompiler/.

Java Programming Language
<http://java.sun.com .

A Java Refactoring Tool
<http://jrefactory.sourceforge.ngt.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, ed-
itor, European Conference on Object-oriented Programm@p1, volume
2072 ofLecture Notes in Computer Scienpages 327-353. Springer.

Zelix KlassMaster - The second generation Java Obfuscat@g: //www. -

zelix.com/klassmaster.

Zelix KlassMaster - The second generation Java Obfuscat@g: //www. -

zelix.com/klassmasterfeaturesFlowObfuscation.html.

Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization-
based analysis of quality for large-scale software systemd$2rdoneedings

of the 20th IEEE/ACM international Conference on Automated software en-
gineering 2005, pages 214-223.

177

hhttp://jalopy.sourceforge.net/
hhttp://jalopy.sourceforge.net/
http://java.sun.com
http://java.sun.com
http://jrefactory.sourceforge.net/
http://jrefactory.sourceforge.net/

Bibliography

[LY99]

[McC76]

[MHO1]

[MHO2]

[Moc]

[RCCO1]

[Sha80]

[So0]
[Sou]

[Sun]

[Tai84]

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification
Addison-Wesley, Reading, MA, USA, second edition, 1999.

Thomas J. McCabe. A complexity metritEEE Transactions on Software
Engineering 2(4):308-320, December 1976.

Jerome Miecznikowski and Laurie Hendren. Decompiling Java using staged
encapsulation. Iroceedings of the Working Conference on Reverse Engi-
neering October 2001, pages 368-374.

J. Miecnikowski and L. J. Hendren. Decompiling Java bytecode: prob-
lems, traps and pitfalls. In R. N. Horspool, edit@ompiler Construction
2002, volume 2304 ofecture Notes in Computer Sciengages 111-127.
Springer Verlag.

Mocha, the Java Decompilehttp: //www.brouhaha.com/~eric/computers/-

mocha.html.

Pierre N. Robillard, Daniel Coupal, and Francois Coallier. Profiling software
through the use of metric&oftw. Pract. Exper21(5):507-518, 1991.

Micha Sharir. Structural analysis: A new approch to flow analysis in opti-
mizing compilers.Computer Language$:141-153, 1980.

Soot - a Java Optimization Framewom¢tp: //www.sable.mcgill.ca/soot/.
Source Again - A Java Decompiletttp: //www.ahpah. com/.

Sun Microsystems
<http://lwww.sun.con» .

Kuo-Chung Tai. A program complexity metric based on data flow informa-
tion in control graphs. INCSE '84: Proceedings of the 7th international
conference on Software engineerji@ylando, Florida, United States, 1984,
pages 239-248. IEEE Press, Piscataway, NJ, USA.

178

http://www.sun.com
http://www.sun.com

Bibliography

[VRGH*00]

[Win]

Raja Valke-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice
Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot
framework: Is it feasible? In David A. Watt, edita€ompiler Construction,

9th International Conferengélarch 2000, volume 1781 dfecture Notes in
Computer Scieng@ages 18-34. Springer, Berlin, Germany.

WingDis - A Java Decompilemttp: //www.wingsoft.com/wingdis.html.

179

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction and Motivation
	Javac-specific Decompilers
	Tool-independent Decompilers
	Java Obfuscators
	Thesis Contributions and Organization

	Background: Dava Architecture
	Existing Front-End
	New Back-End

	A Tree Traversal Algorithm
	Finding AST Parent Nodes
	Finding the Closest Abrupt Target
	Finding all variable Uses
	Finding all Definitions
	Constant Primitive Field Value Finder

	Basic AST Transformations
	Condition Simplification
	Shortcut increments and decrements
	De-Inlining Static Final Fields
	Variable Declarations and Initialization
	String concatenation
	Shortcut Array Declarations
	Removing default constructors
	The super invocation
	Invalid code using complicated expressions
	Invalid code using Preinitialization in AspectJ
	Transforming invalid code using indirection

	Simple Pattern Based Structuring
	Conditional Aggregation
	Grammar for aggregated boolean expressions
	And Aggregation
	Or Aggregation

	Loop strengthening
	Using a nested If-Else Statement to Strengthen Loop Nodes
	Using a nested If Statement to Strengthen loop Nodes

	Handling Abrupt Control Flow
	If-Else Splitting
	Useless break statement Remover
	Useless Label Remover
	Reducing the scope of labeled blocks

	A Structure-Based Flow Analysis Framework
	Merge Operations
	Dealing with Abrupt-Control Flow Constructs
	Construct specific processing

	AST rewriting using Structure-based Flow Analyses
	Reaching Definitions
	For Loop Construction

	Reaching Copies
	Copy Elimination

	Constant Propagation
	The analysis
	Extensions
	Constant Substitution
	Expression Simplification
	Removing Redundant Conditional Statements
	Unreachable code Elimination
	Program Deobfuscation

	Must and May Assign
	Final Field Initialization

	Naming Mechanism
	Heuristic-based naming
	Displaying qualified types

	Testing and Empirical Results
	Unit Testing
	Complexity Metrics
	Program Size
	Number of Java Constructs
	Conditional Complexity
	Identifier Complexity

	Benchmarks
	Evaluation of Decompiled Code
	Program Size
	Conditional Statements
	Condition Complexity
	Abrupt Control Flow
	Labeled Blocks
	Local Variables
	Loop Count
	Overall Complexity

	Evaluation of Obfuscated Code
	Benchmark Size
	Conditional Statements
	Conditional Complexity
	Abrupt Control Flow
	Labeled Blocks
	Identifier Complexity
	Overall Complexity

	Related Work
	Decompilers
	Obfuscators
	Visitor Design Pattern
	Structure-Based Flow Analysis
	Complexity Metrics

	Future Work and Conclusions
	Future Work
	Abstract Syntax Tree Expansion
	Transformations
	Adding comments to decompiler output
	Stronger refactoring analyses
	Identifier Renaming

	Conclusions

	Bibliography

