
PROGRAMMER-FRIENDLY DECOMPILED JAVA

by

Nomair A. Naeem

School of Computer Science

McGill University, Montŕeal

August 2006

A THESIS SUBMITTED TO THEFACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OFSCIENCE

Copyright c
 2006 by Nomair A. Naeem





Abstract

Java decompilers convert Java class files to Java source. Common Java decompilers are

javac-specificdecompilers since they target bytecode produced from a particularjavac

compiler. We present work carried out on Dava, atool-independentdecompiler that de-

compiles bytecode produced from any compiler. A known deficiency of tool-independent

decompilers is the generation of complicated decompiled Java source which does not re-

semble the original source as closely as output produced by javac-specific decompilers.

This thesis tackles this short-coming, for Dava, by introducing a new back-end consisting

of simplifying transformations.

The work presented can be broken into three major categories: transformations using

tree traversals and pattern matching to simplify the control flow, the creation of a flow

analysis framework for an Abstract Syntax Tree (AST) representation of Java source code

and the implementation of flow analyses with their use in complicated transformations.

The pattern matching transformations rewrite the ASTs to semantically-equivalent ASTs

that correspond to code that is easier for programmers to understand. The targeted Java con-

structs includeIf andIf-Else aggregation, for-loop creation and the removal of abrupt

control flow. Pattern matching using tree traversals has its limitations. Thus, we introduce

a new structure-based data flow analysis framework that can be used to gather informa-

tion required by more complex transformations. Popular compiler analysese.g., reaching

definitions, constant propagationetc.were implemented using the framework. Information

from these analyses is then leveraged to perform more advanced AST transformations.

We performed experiments comparing different decompiler outputs for different sources

of bytecode. The results from these experiments indicate that the new Dava back-end con-

siderably improves code comprehensibility and readability.

i



ii



Résum é

Les dcompilateurs Java convertissent le code binaire compil Java en code source Java.

Les dcompilateurs Java les plus communs sontspcifiquesau compilateur javac parce qu’ils

ciblent le code binaire produit par un compilateurjavac particulier. Nous prsentons notre

travail sur Dava, un dcompilateurindpendantqui dcompile du code binaire Java compil

partir de n’importe quelle source. Une faille connue des dcompilateurs indpendants est la

gnration de code source Java complexe qui ne ressemble pas autant au code source original

que celui produit par les dcompilateurs spcifiques javac. Cette thse s’attaque cette faille,

pour Dava, en introduisant un nouveau systme de transformations de simplification.

Le travail prsent peut tre divis en trois catgories majeures : les transformations utili-

sant la traverse d’arbres et la reconnaissance de squences pour la simplification du flot de

contrle, la cration d’un systme d’analyse du flot de contrle pour une reprsentation en tant

qu’Arbre de Syntaxe Abstrait (AST) du code source Java et l’implmentation d’analyses du

flot pour usage dans les transformations complexes.

Les transformations utilisant la reconnaissance de squences rcrivent les AST pour pro-

duire de nouveaux AST smantique quivalente, correspondant du code qui sera plus facile

comprendre pour les programmeurs. Les constructions Java cibles incluent les aggrgations

If etIf-Else, la crations de boucles for et l’limination de flot de contrle abrupte. La recon-

naissance de squences utilisant la traverse d’arbres a ses limitations. Nous avons donc dcid

d’introduire un nouveau systme d’analyse du flot de donnes bas sur la structure qui peut

tre utilis pour obtenir de l’information requise par des transformations plus complexes. Des

analyses de compilateurs communes (par example : l’obtention de dfinitions, la propaga-

tion des constantes, etc.) ont t implmentes en utilisant notre systme. L’information produite

par ses analyses est utilise pour produire des transformations plus avances.

iii



Des expriences qui comparent la sortie produite par diffrents compilateurs reprsentant

plusieurs sources de code binaire ont ts ralises, dmontrant que le nouveau systme d’analyse

et de transformations de Dava amliore considrablement la clart et la lisibilit du code source

produit.

iv



Acknowledgements

First and foremost I would like to thank my supervisor Professor Laurie Hendren for

introducing me to the wonderfully exciting field of programming languages and compilers,

for her guidance in my research work and for her high expectations from her students.

Her cheerful nature and her humor always kept me going in those dark hours and her

quick insight and knowledge made my stay at the Sable Research Group a true learning

experience.

A special thanks to Professor Clark Verbrugge for taking the time out to teach me

”faux-621”, for spending countless hours discussing potential research topics and for being

a mentor in Laurie’s absence. I would also like to thank the Professors from the School

of Computer Science for the wonderful courses taught by them that kept me here for six

years. Thanks also to the admin and system staff for their help on countless occasions.

Additional thanks to my friends and members of the Sable Group – in no particular or-

der – Grzegorz Prokopski, Dayong Gu, Chris Goard, Chris Pickett, Sokham Pheng, Ondřej

and Jennifer Lhot́ak, Jerome Miecznikowski and Navindra Umanee. A special thanks to

Maxime Chevalier-Boisvert for helping me translate my abstract into French. Mike Batch-

helder’s work on Java obfuscation and his repeated “successful” attempts to crash Dava

were a true inspiration for numerous transformations and bug fixes which became part of

this thesis.

Thank you to Ahmer Ahmedani for being my buddy at McGill, for our discussions on

religion and world affairs and our coffee breaks. Also my pool partners Waqqas, Farhan,

Moiz and Moeed for the much needed time-outs. Last, but not least, I thank my parents,

sisters and my wife for their love, devotion and support.

v



vi



Dedicated to

My Parents,

Dr. Pervaiz Naeem Tariq and Dr. Shahida Naeem

and

My Wife,

Mariam Rasool



viii



Table of Contents

Abstract i

Résuḿe iii

Acknowledgements v

Table of Contents ix

List of Figures xv

List of Tables xix

List of Algorithms xxi

1 Introduction and Motivation 1

1.1 Javac-specific Decompilers. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Tool-independent Decompilers. . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Java Obfuscators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Contributions and Organization. . . . . . . . . . . . . . . . . . . . 7

2 Background: Dava Architecture 9

2.1 Existing Front-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.2 New Back-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3 A Tree Traversal Algorithm 17

3.1 Finding AST Parent Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



3.2 Finding the Closest Abrupt Target. . . . . . . . . . . . . . . . . . . . . . 19

3.3 Finding all variable Uses. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Finding all Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.5 Constant Primitive Field Value Finder. . . . . . . . . . . . . . . . . . . . 21

4 Basic AST Transformations 25

4.1 Condition Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Shortcut increments and decrements. . . . . . . . . . . . . . . . . . . . . 26

4.3 De-Inlining Static Final Fields. . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Variable Declarations and Initialization. . . . . . . . . . . . . . . . . . . . 27

4.5 String concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

4.6 Shortcut Array Declarations. . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 Removing default constructors. . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 The super invocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

4.8.1 Invalid code using complicated expressions. . . . . . . . . . . . . 33

4.8.2 Invalid code usingPreinitialization in AspectJ . . . . . . . . 35

4.8.3 Transforming invalid code using indirection. . . . . . . . . . . . . 37

5 Simple Pattern Based Structuring 43

5.1 Conditional Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Grammar for aggregated boolean expressions. . . . . . . . . . . . 45

5.1.2 And Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.3 Or Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . .48

5.2 Loop strengthening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.2.1 Using a nestedIf-Else Statement to Strengthen Loop Nodes. . . 56

5.2.2 Using a nested If Statement to Strengthen loop Nodes. . . . . . . . 57

5.3 Handling Abrupt Control Flow. . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 If-Else Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Uselessbreak statement Remover. . . . . . . . . . . . . . . . . . 63

5.3.3 Useless Label Remover. . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.4 Reducing the scope of labeled blocks. . . . . . . . . . . . . . . . 67

x



6 A Structure-Based Flow Analysis Framework 69

6.1 Merge Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

6.2 Dealing with Abrupt-Control Flow Constructs. . . . . . . . . . . . . . . . 71

6.3 Construct specific processing. . . . . . . . . . . . . . . . . . . . . . . . . 72

7 AST rewriting using Structure-based Flow Analyses 87

7.1 Reaching Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

7.1.1 For Loop Construction. . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Reaching Copies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

7.2.1 Copy Elimination. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Constant Propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

7.3.1 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

7.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

7.3.3 Constant Substitution. . . . . . . . . . . . . . . . . . . . . . . . .106

7.3.4 Expression Simplification. . . . . . . . . . . . . . . . . . . . . .107

7.3.5 Removing Redundant Conditional Statements. . . . . . . . . . . .109

7.3.6 Unreachable code Elimination. . . . . . . . . . . . . . . . . . . .112

7.3.7 Program Deobfuscation. . . . . . . . . . . . . . . . . . . . . . .113

7.4 Must and May Assign . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

7.4.1 Final Field Initialization . . . . . . . . . . . . . . . . . . . . . . .118

8 Naming Mechanism 127

8.1 Heuristic-based naming. . . . . . . . . . . . . . . . . . . . . . . . . . . .127

8.2 Displaying qualified types. . . . . . . . . . . . . . . . . . . . . . . . . .130

9 Testing and Empirical Results 135

9.1 Unit Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

9.2 Complexity Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

9.2.1 Program Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

9.2.2 Number of Java Constructs. . . . . . . . . . . . . . . . . . . . . .137

9.2.3 Conditional Complexity. . . . . . . . . . . . . . . . . . . . . . .138

9.2.4 Identifier Complexity. . . . . . . . . . . . . . . . . . . . . . . . .138

xi



9.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

9.4 Evaluation of Decompiled Code. . . . . . . . . . . . . . . . . . . . . . .141

9.4.1 Program Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

9.4.2 Conditional Statements. . . . . . . . . . . . . . . . . . . . . . . .142

9.4.3 Condition Complexity . . . . . . . . . . . . . . . . . . . . . . . .143

9.4.4 Abrupt Control Flow. . . . . . . . . . . . . . . . . . . . . . . . .145

9.4.5 Labeled Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . .148

9.4.6 Local Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . .148

9.4.7 Loop Count. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

9.4.8 Overall Complexity . . . . . . . . . . . . . . . . . . . . . . . . .152

9.5 Evaluation of Obfuscated Code. . . . . . . . . . . . . . . . . . . . . . . .153

9.5.1 Benchmark Size. . . . . . . . . . . . . . . . . . . . . . . . . . .154

9.5.2 Conditional Statements. . . . . . . . . . . . . . . . . . . . . . . .156

9.5.3 Conditional Complexity. . . . . . . . . . . . . . . . . . . . . . .156

9.5.4 Abrupt Control Flow. . . . . . . . . . . . . . . . . . . . . . . . .157

9.5.5 Labeled Blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . .159

9.5.6 Identifier Complexity. . . . . . . . . . . . . . . . . . . . . . . . .159

9.5.7 Overall Complexity. . . . . . . . . . . . . . . . . . . . . . . . . .160

10 Related Work 163

10.1 Decompilers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

10.2 Obfuscators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

10.3 Visitor Design Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

10.4 Structure-Based Flow Analysis. . . . . . . . . . . . . . . . . . . . . . . .165

10.5 Complexity Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

11 Future Work and Conclusions 169

11.1 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

11.1.1 Abstract Syntax Tree Expansion. . . . . . . . . . . . . . . . . . .169

11.1.2 Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . .170

11.1.3 Adding comments to decompiler output. . . . . . . . . . . . . . .171

xii



11.1.4 Stronger refactoring analyses. . . . . . . . . . . . . . . . . . . . .171

11.1.5 Identifier Renaming. . . . . . . . . . . . . . . . . . . . . . . . .172

11.2 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

Bibliography 175

xiii



xiv



List of Figures

1.1 Sources of Java bytecode. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Comparing decompiler outputs. . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Decompiling Obfuscated Code. . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Baf and Jimple representations. . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Grimp representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.3 Dava Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.4 The Dava Front-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

2.5 Abstract Syntax Tree Class Hierarchy. . . . . . . . . . . . . . . . . . . . 15

2.6 The Dava Back-End. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

3.1 Pseudo-code for sample tree-traversal. . . . . . . . . . . . . . . . . . . . 18

4.1 Converting Binary Conditions to Unary Conditions. . . . . . . . . . . . . 26

4.2 DeInlining Static Final Variables. . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Variable Declarations and Initialization. . . . . . . . . . . . . . . . . . . . 28

4.4 String Concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

4.5 Verbose declaration of theprimes array . . . . . . . . . . . . . . . . . . . 30

4.6 Complex Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4.7 Uncompilable code due to incorrect placement ofsuper . . . . . . . . . . 35

4.8 Effect of a preinitialization pointcut targeting a constructor with before advice36

4.9 Avoiding compilation errors due tosuper invocation . . . . . . . . . . . . 38

4.10 Introducing the private static PreInit Method. . . . . . . . . . . . . . . . . 39

4.11 Storing and Retrieving args2. . . . . . . . . . . . . . . . . . . . . . . . . 41

xv



5.1 Simple Pattern Based Structuring. . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Dava’s AST Condition Grammar. . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Reducing using the && operator.. . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Application ofAnd Aggregation . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Reducing using thek operator . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Application ofOr Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Removing NestedIf statements using thek operator . . . . . . . . . . . . 53

5.8 Removing similarIf statements using thek operator. . . . . . . . . . . . . 54

5.9 Strengthening Loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

5.10 Strengthening Unconditional Loops. . . . . . . . . . . . . . . . . . . . . 58

5.11 Application of While Strengthening. . . . . . . . . . . . . . . . . . . . . 58

5.12 Strengthening a While Loop Using anIf statement. . . . . . . . . . . . . 59

5.13 Strengthening an Unconditional Loop Using anIf statement. . . . . . . . 61

5.14 Strengthening an Unconditional Loop Using anIf statement. . . . . . . . 62

5.15 If-Else Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

5.16 If-Else Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

5.17 Removing uselessbreak statements. . . . . . . . . . . . . . . . . . . . . 65

5.18 Comparing Dava output. . . . . . . . . . . . . . . . . . . . . . . . . . . .66

5.19 Reducing the scope of Labeled Blocks. . . . . . . . . . . . . . . . . . . . 67

5.20 Wrong Reduction of Scope. . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Structural Flow-Analysis Algorithm for Simple Java Constructs. . . . . . 73

6.2 The Structural Flow-Analysis Algorithm of If Construct.. . . . . . . . . . 75

6.3 The Structural Flow-Analysis Algorithm of IfElse Construct.. . . . . . . . 76

6.4 The Structural Flow-Analysis Algorithm of While Construct.. . . . . . . . 77

6.5 The Structural Flow-Analysis Algorithm of DoWhile Construct.. . . . . . 79

6.6 The Structural Flow-Analysis Algorithm of Unconditional-While Construct.80

6.7 The Structural Flow-Analysis Algorithm of For Construct.. . . . . . . . . 81

6.8 The Structural Flow-Analysis Algorithm of Switch Construct.. . . . . . . 83

6.9 The Structural Flow-Analysis Algorithm of Try-Catch Construct.. . . . . . 85

7.1 AST rewriting using Structure-Based Flow Analyses. . . . . . . . . . . . 88

xvi



7.2 Implemented Flow Analyses and transformations. . . . . . . . . . . . . . 89

7.3 Initializing the Reaching Definitions Flow Analysis. . . . . . . . . . . . . 90

7.4 Generating new Reaching Definitions and killing previous ones. . . . . . . 91

7.5 Input to catch Bodies for Reaching Definitions Flow Analysis. . . . . . . . 92

7.6 Conservative reaching definitions assumption for input to catch bodies. . . 93

7.7 TheWhile to For conversion. . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 Copy Elimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

7.9 Advantages of constant propagation. . . . . . . . . . . . . . . . . . . . .100

7.10 Using constant field information during Constant Propagation. . . . . . . 102

7.11 Preference to existing constant values. . . . . . . . . . . . . . . . . . . .105

7.12 Advantages of constant propagation. . . . . . . . . . . . . . . . . . . . .108

7.13 Simplifying conditions using DeMorgans Law. . . . . . . . . . . . . . . .110

7.14 Removing always trueIf statement . . . . . . . . . . . . . . . . . . . . .111

7.15 Reachability analysis for theIf-Else statement. . . . . . . . . . . . . . .114

7.16 Advantages of constant propagation. . . . . . . . . . . . . . . . . . . . .115

7.17 Dead code Elimination and AST Transformations. . . . . . . . . . . . . .116

7.18 Example of final field not initialized on all paths. . . . . . . . . . . . . . .119

7.19 Delaying assignment of a final field. . . . . . . . . . . . . . . . . . . . .122

8.1 For loop driving variables . . . . . . . . . . . . . . . . . . . . . . . . . .128

8.2 Conditional Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

8.3 Heuristics for size/length andfinal variables . . . . . . . . . . . . . . . .129

8.4 Usingget andset methods to get variable names. . . . . . . . . . . . . .129

8.5 Qualified Variable types . . . . . . . . . . . . . . . . . . . . . . . . . . .131

8.6 Importing classes with the same name. . . . . . . . . . . . . . . . . . . .131

9.1 Program size for decompiled code. . . . . . . . . . . . . . . . . . . . . .141

9.2 Conditional statements for decompiled code. . . . . . . . . . . . . . . . .142

9.3 Detecting simple non-aggregated conditional statements in original Source. 144

9.4 Average Condition Complexity for decompiled code. . . . . . . . . . . .145

9.5 Abrupt statements for decompiled code. . . . . . . . . . . . . . . . . . .146

9.6 Unnecessarycontinue statements produced by Jad. . . . . . . . . . . . .147

xvii



9.7 Labeled Blocks for decompiled code. . . . . . . . . . . . . . . . . . . . .148

9.8 Number of Locals for decompiled code. . . . . . . . . . . . . . . . . . .149

9.9 Reason for an increase in local variable count in Dava. . . . . . . . . . . .150

9.10 Converting aWhile loop to aFor loop . . . . . . . . . . . . . . . . . . . .152

9.11 Overall complexity for decompiled code. . . . . . . . . . . . . . . . . . .153

9.12 Program size for obfuscated code. . . . . . . . . . . . . . . . . . . . . . .155

9.13 Simple conditional statement count for obfuscated code. . . . . . . . . . .156

9.14 Average conditional complexity for obfuscated code. . . . . . . . . . . . .157

9.15 Abrupt control flow count for obfuscated code. . . . . . . . . . . . . . . .158

9.16 Labeled block count for obfuscated code. . . . . . . . . . . . . . . . . . .159

9.17 Identifier complexity for obfuscated code. . . . . . . . . . . . . . . . . .160

9.18 Overall complexity for obfuscated code. . . . . . . . . . . . . . . . . . .161

xviii



List of Tables

7.1 Intersection for Constant Propagation. (? indicates unknown value and>

represents a non-constant value). . . . . . . . . . . . . . . . . . . . . . .101

7.2 Strengthening Constant Propagation using Conditional comparison opera-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

7.3 Simplifying the && condition . . . . . . . . . . . . . . . . . . . . . . . .109

7.4 Simplifying thejj condition . . . . . . . . . . . . . . . . . . . . . . . . . .110

9.1 Breakdown of Loops for decompiled code. . . . . . . . . . . . . . . . . .151

xix



xx



List of Algorithms

1 Finding constant valued fields. . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Shortcut Array declaration and initialization. . . . . . . . . . . . . . . . . . 31

3 Removing the Default Class Constructor. . . . . . . . . . . . . . . . . . . 32

4 And Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

5 Or Aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

6 Or Aggregation for similar bodies. . . . . . . . . . . . . . . . . . . . . . . 55

7 Strengthening While Loops Using If statements. . . . . . . . . . . . . . . . 60

8 Removing Spurious Labeled Blocks. . . . . . . . . . . . . . . . . . . . . . 66

9 TheWhile to For conversion . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 processField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

11 handleAssignOnSomePaths. . . . . . . . . . . . . . . . . . . . . . . . . .121

12 createIndirection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

xxi



Chapter 1

Introduction and Motivation

Since its creation, the Java [GJS97] programming language has become increasingly

popular. The highly object-oriented design, exception handling, runtime checking and

garbage collection are some of the features making Java an attractive language for devel-

opers. The biggest reason for Java’s popularity, however, is the portability of the binaries

for Java. Java compilers, such as the standardjavac compiler created by Sun Microsys-

tems [Sun, Jav], produce Java class files and these are the binary form of the program which

can be distributed or made available via the Internet for execution by Java Virtual Machines

(JVMs) [LY99]. Although thejavac compiler is the most usual way of producing class

files, there are an increasing number of other tools that also produce Java class files. Fig-

ure1.1 shows some other sources of bytecode. There exist compilers for other languages

including AspectJ[KHH+01, asp03, ACH+05, abc], SML and C[AMP] that can produce

class files. Also, bytecode produced by compilers can be processed by bytecode optimizers

which produce faster and/or smaller class files, instrumentors and obfuscators which seek

to produce class files that are hard to decompile and understand.

Since Java class files contain Java bytecode, which is a fairly high-level intermediate

representation, there has been considerable interest and success in developing decompilers

which convert class files back to Java source. Such decompilers are useful in software en-

gineering, for programmers to understand code for which they don’t have Java source code,

and in the research community to help understand the effect of tools such as optimizers,

aspect weavers and obfuscators.

1



Introduction and Motivation

bytecode

Java Compiler

Java Source

Decompiled
Java Source

Decompiler

AspectJ / SML / C

Compiler

bytecode

instrumentor optimizer obfuscator

bytecode

Figure 1.1: Sources of Java bytecode

2



1.1. Javac-specific Decompilers

1.1 Javac-specific Decompilers

The original decompilers, such as Mocha[Moc], Jad[Jad], Jasmin[Jas], Wingdis[Win] and

SourceAgain[Sou], are javac-specific decompilersin that they work by reversing the spe-

cific compilation patterns used by the standardjavac compiler. When given class files

produced by ajavac compiler, they can produce very readable source files that correspond

closely to the original program. For example, consider the original Java program in Figure

1.2(a). When this program is compiled usingjavac from jdk1.4 to produce a class file and

then decompiled with SourceAgain and Jad, one gets the very respectable results in Figure

1.2(b) and (c).

By assuming that the bytecode to be decompiled was produced with a specific Java

compiler, javac-specific decompilers are able to simplify the decompilation task by revers-

ing the code generation strategy employed by the targeted compiler. By applying pattern

matching, inferred from the known code generation patterns of the compiler, the task of

creating a javac-specific decompiler becomes relatively easy and fast. Sometimes the pat-

terns applied to get the decompiler output are very specific. For example, compare the

results for Jad between the case when the original program was compiled with jdk1.4 (Fig-

ure1.2(c)) and with jdk1.3 (Figure1.2(d)). Clearly the Jad decompiler was implemented

to understand the code generation patterns fromjavac from jdk1.3 and it does not produce

as nice an output when used on class files produced usingjavac from jdk1.4. Hence as

the code generation strategy of the targeted compiler changes there is a need to update the

decompilation patterns in javac-specific decompilers to maintain their performance.

Although javac-specific decompilers perform well for specific compiler-generated code,

they are not able to decompile any arbitrary bytecode. This stems from the fact that often

the bytecode does not follow the same patterns implemented in the decompiler. This is

even more true for bytecode passed through optimizers and obfuscators. In this situation

javac-specific decompilers are often not able to produce valid Java code.

3



Introduction and Motivation

(a) Original Code

1 while(done && alsoDone){

2 if((a<3 && b==1) || b+a<1 )

3 System.out.println(b-a);

4 }

(b) SourceAgain (jdk1.4)

1 while( bool && bool1 ){

2 if( (i>=3 || j!=1) && j+i>=1 )

3 continue;

4 System.out.println(j-i);

5 }

(c) Jad (jdk1.4)

1 do{

2 if(!flag || !flag1)

3 break;

4 if(i < 3 && j == 1 || j + i < 1)

5 System.out.println(j-i);

6 } while(true);

(d) Jad (jdk1.3)

1 while(flag && flag1){

2 if(i < 3 && j == 1 || j + i < 1)

3 System.out.println(j - i);

4 }

(e) Dava (jdk1.4)

1 label_2:{

2 label_1:

3 while(z0 != false){

4 if (z1 == false){

5 break label_2;

6 }

7 else{

8 label_0:{

9 if(i0 < 3){

10 if(i1 == 1){

11 break label_0;

12 }

13 }

14 if(i1 + i0 >= 1){

15 continue label_1;

16 }

17 } //end label0:

18 System.out.println(r1);

19 }

20 }

21 } //end label2:

Figure 1.2: Comparing decompiler outputs

4



1.2. Tool-independent Decompilers

1.2 Tool-independent Decompilers

Dava [MH01, MH02] is atool-independent decompilerbuilt using the Soot [Soo, VRGH+00]

Java optimizing framework. Dava makes no assumptions regarding the source of the Java

bytecode and is therefore able to decompile arbitrary verifiable bytecode. However, this

generality comes with a price. Since the Dava decompiler relies on complex analyses to find

control-flow structure in arbitrary bytecode, the decompiled code is often not programmer-

friendly. For example, in Figure1.2(e), the output from Dava is correct, but not very

intuitive for a programmer. The goal of this research has been to provide tools that can

convert the correct, but unintuitive, output of Dava to a more programmer-friendly output.

1.3 Java Obfuscators

Java obfuscators aim to prevent code comprehension by mostly changing the names of iden-

tifiers in the Java bytecode. The first-generation obfuscators replace class, field, method and

local variable names with confusing and often misleading names. This kind of obfuscation

does not restrict reverse engineering attempts through decompilers.

A new class of Java obfuscators has also emerged that perform control flow obfusca-

tions. These second-generation obfuscators introduce complex, yet verifiable, bytecode

which causes most decompilers to fail. Since Dava is atool-independentdecompiler and

since obfuscated bytecode is verifiable bytecode, Dava is usually able to produce valid Java

source for obfuscated code.

The challenge of providing programmer-friendly output for obfuscated bytecode is

complex. For example, consider the example in Figure1.3. In this example we compiled

the Java program given in Figure1.3(a) with javac and then applied the Zelix KlassMas-

ter obfuscator[Klaa] to the generated class file. Figures1.3(b) and (c) show the results of

decompiling the obfuscated class file with Jad and SourceAgain (only key snippets of the

code are shown). In both cases the decompilers failed to produce valid Java code. How-

ever, as shown in Figure1.3(d), Dava does create a valid Java program, which exposes the

extra code introduced by the obfuscator. Even though correct, clearly this code is not very

programmer-friendly. This thesis lays down the foundations to address the big challenge of

5



Introduction and Motivation

(a) Original Code

1 class test {

2 Vector buffer = new Vector();

3 int getStringPos(String string) {

4 for(int i=0;i<buffer.size();i++){

5 String curString =

6 (String)buffer.elementAt(i);

7 if (curString.equals(string)) {

8 buffer.remove(i);

9 return i;

10 } }

11 return -1; } }

(b) Jad

1 if(flag)/� Loop isn’t completed�/

2 continue;

3 s1.equals(s);

4 if(flag) goto _L4; else goto _L3

5 _L3: JVM INSTR ifeq 59;

6 goto _L5 _L6

7 _L5: break MISSING_BLOCK_LABEL_48;

8 _L6: break MISSING_BLOCK_LABEL_59;

(c) SourceAgain

1 do{ String str = null;

2 if( i >= a.size() ){

3 //goto couldn’t be resolved

4 goto 81 }

5 }while( !bool );

(d) Dava

1 class a{

2 private java.util.Vector a;

3 public static boolean b;

4 public static boolean c;

5 int a(java.lang.String r1){

6 boolean z0, $z2, z3;

7 int i0, $i2, i3;

8 java.lang.String r2;

9 z0 = c; i0 = 0;

10 label_1:{

11 label_0:

12 while (i0 < a.size()){

13 r2 = (String) a.elementAt(i0);

14 if ( ! (z0)){

15 z3 = r2.equals(r1);

16 i3 = (int) z3;

17 $i2 = i3;

18 if (z0) break label_1;

19 if (i3 == 0) i0++;

20 else{

21 a.remove(i0);

22 return i0;

23 }

24 }

25 if (z0){

26 if ( ! (b)) $z2 = true;

27 else $z2 = false;

28 b = $z2;

29 break label_0;

30 }

31 }

32 $i2 = -1;

33 } //end label1:

34 return $i2; } }

Figure 1.3: Decompiling Obfuscated Code
6



1.4. Thesis Contributions and Organization

how we can convert the obfuscated code into something that is more readable.

1.4 Thesis Contributions and Organization

Dava’s initial implementation focused on correct detection of Java constructs and did not

address the complexity of the output. To be useful as a program understanding tool it is

important that Dava competes with other decompilers not only in the range of applicability,

but also the quality of output. By relying solely on the structure of the flow of control Dava

is able to produce Java source code which is semantically equivalent to the original source

code for most verifiable bytecode. However, as mentioned earlier (Figures1.2 and 1.3),

the output does not resemble the original source as closely as one would like.

The purpose of this research was to use the existing Dava decompiler as a front-end

which delivers correct, but overly complex abstract syntax trees (ASTs), and to develop

a completely new back-end which converts those ASTs into semantically equivalent, but

more programmer-friendly ASTs. The new ASTs are then used to generate readable Java

source code. In order to build this new back-end we have developed several new compo-

nents:

� Since the new back-end for Dava works by rewriting the AST we developed a visitor-

based AST traversal framework, as outlined in Chapter3.

� The visitor-based framework can be employed to do simple transformations to con-

form the output to generally accepted programming idioms as demonstrated in Chap-

ter4.

� Using the traversal mechanism we developed a large number of simple structural

patterns that could be used to perform structural rewrites of the AST. These trans-

formations mainly target the control flow of the decompiled output. Details of these

transformations can be found in Chapter5.

� Simple structural patterns can be used for many basic tasks, but in order to do many

more complicated rewrites we needed to have data flow information. Thus, we have

developed a structural data flow analysis framework, as outlined in Chapter6.

7



Introduction and Motivation

� Given the flow analysis information computed using the framework we have devel-

oped several more advanced patterns. In Chapter7 we discuss our advanced patterns

for improving the code quality including the use of reaching definitions, reaching

copies, constant propagationetc.information in transformations.

Chapter8 discusses new heuristic-based identifier renaming algorithms introduced in

Dava to help program comprehension. In Chapter9 we discuss some metrics to measure

the effect of the transformations on the complexity of decompiled output. Empirical results,

using the metrics established, are also discussed. Chapter10 discusses some related work.

In Chapter11we mention some future work planned for Dava and our conclusions.

8



Chapter 2

Background: Dava Architecture

Dava is built using the Soot Java bytecode transformation and annotation framework.

Soot provides three internal representations (baf, jimple andgrimp) to develop and test

new compiler optimizations. Java bytecode is first converted tobaf which is a stack-based

representation of disassembled Java class files. Figure2.1(a) shows a small Java method.

In Figure 2.1(b) we show thebaf representation of this method. As can be seen from

the figure thebaf representation resembles closely to the Java bytecode produced by the

compiler. Control flows through the code using labels andgoto statements and a stack is

used to perform operations on data.

Baf is then converted tojimple which is a 3-address representation of Java bytecode.

The most important difference betweenbaf andjimple is the absence of the Java stack in

jimple. Jimple also uses a static type inference engine to infer primitive and reference

types from the Java bytecode [GHM00]. Figure2.1(c) shows thejimple representation

of the code in Figure2.1(a). This representation is the most powerful intermediate repre-

sentation for performing compiler optimizations like copy propagation and array bounds

checks.

The third intermediate representation in soot isgrimp which stands for aggregated

jimple. This is the highest level intermediate representation in Soot and is therefore used

as input to Dava. Figure2.2 shows thegrimp representation of the code in Figure2.1(a).

Control flow ingrimp is still implemented using explicit labels and gotos. Java’s try-catch

blocks are represented as areas of protection in the form of exception handlers within the

9



Background: Dava Architecture

(a) Original Code

1 public int foo(int a,int b){

2 try{ a= a*4+b; }

3 catch(RuntimeException re){}

4 return a;

5 }

(b) Baf

1 public int foo(int, int) {

2 word r0, i0, i1;

3 r0 := @this: ir;

4 i0 := @parameter0: int;

5 i1 := @parameter1: int;

6 label0:

7 load.i i0;

8 push 4;

9 mul.i;

10 load.i i1;

11 add.i;

12 store.i i0;

13 label1:

14 goto label3;

15 label2:

16 store.r i1;

17 label3:

18 load.i i0;

19 return.i;

20 catch java.lang.RuntimeException

21 from label0 to label1 with label2;

22 }

(c) Jimple

1 public int foo(int, int){

2 ir r0;

3 int i0, i1, $i2;

4 java.lang.RuntimeException r1, $r2;

5

6 r0 := @this: ir;

7 i0 := @parameter0: int;

8 i1 := @parameter1: int;

9

10 label0:

11 $i2 = i0 * 4;

12 i0 = $i2 + i1;

13

14 label1:

15 goto label3;

16

17 label2:

18 $r2 := @caughtexception;

19 r1 = $r2;

20

21 label3:

22 return i0;

23

24 catch java.lang.RuntimeException

25 from label0 to label1 with label2;

26 }

Figure 2.1: Baf and Jimple representations

10



code. The code itself is represented using a reduced set of statements, as compared to Java,

which contains aggregated expressions. The reason whygrimp is chosen as the starting

point of the decompilation process is that certain decompilation issues have been already

dealt with in the creation of this intermediate representation. As already mentioned,grimp

is stack-less so the Java expression stack has been eliminated. Also from the type inference

engine appropriate types have been applied to all variable declarations.

1 public int foo(int, int){

2 ir r0;

3 int i0, i1;

4 java.lang.RuntimeException r1, $r2;

5

6 r0 := @this;

7 i0 := @parameter0;

8 i1 := @parameter1;

9

10 label0:

11 i0 = i0 * 4 + i1;

12 label1:

13 goto label3;

14 label2:

15 $r2 := @caughtexception;

16 r1 = $r2;

17 label3:

18 return i0;

19

20 catch java.lang.RuntimeException from label0 to label1 with label2;

21 }

Figure 2.2: Grimp representation

In Section2.1 we discuss the old Dava decompiler to which we have added a new

back-end. The front-end takes thegrimp representation of the Java bytecode as input and

11



Background: Dava Architecture

Java Construct Detection using

Control Flow Graph

AST AST Rewriting

Transformations

AST Pretty

Printer Java Source

Simplified

Existing Dava Front−End New Dava Back−End

grimp

Figure 2.3: Dava Architecture

produces an Abstract Syntax Tree representation of the decompiled Java source. Previously

this AST used to be pretty printed as the decompiler output. However, this thesis introduces

a new back-end to Dava which takes the complicated, through semantically correct AST,

and transforms it via AST rewriting to a simplified AST. This modified AST is then pretty

printed to produce more programmer-friendly Java source.

2.1 Existing Front-End

The internal workings of the Dava front-end are shown in Figure2.4. Thegrimp repre-

sentation of the bytecode is used to create a control flow graph (CFG). Each control flow

graph node contains agrimp statement with predecessor, successor, dominator and reach-

ability information. The control flow graph is also augmented with exception handling

information retrieved from thetraps information in the Java bytecode.

The next step is the detection of different Java constructs using the CFG as input. It

is not feasible to use a reduction-based approach to construct detection because of the

large set of isomorphic transformations possible for different Java constructs. Instead Dava

employs a unique approach, called staged encapsulation, to retrieve the Java constructs out

of the CFG. The strategy involves a series of complicated structuring algorithms which find

Java control flow statements based on their semantics rather than their locations relative to

other control flow statements. Since these analyses are general and do not resort to pattern

matching and/or simulating control flow using state machines, Dava is able to handle highly

unstructuredgrimp. This property proves to be crucial during decompiling convoluted

codee.g., obfuscated bytecode (Section7.3.7).

As shown in Figure2.4, the Structure Encapsulation Tree creation phase can be broken

12



2.1. Existing Front-End

into three categories:

� Regular Control flow. This include analyses for the detection ofWhile andDo-While

loops andIf andIf-Else conditional statements. This is followed by analyses to

determineSwitch constructs andLabeled-Block accompanied by the identification

of break andcontinue statements.

� Exceptional Control Flow. This involves the detection of theTry-Catch blocks.

As mentioned earlier the CFG has already been augmented with exception handling

information available throughtraps in the Java bytecode. Since Java bytecode does

not restrict overlapping exception handlers, ensuring that theTry-Catch blocks nest

properly within each other is a non-trivial task and requires several analyses.

� Idiomatic Control Flow.Synchronized blocks are detected in this stage. Although

Java bytecode is a high level representation yet there is still a large gap between

the bytecode and the Java source that it represents. TheSynchronized detection

attests to this fact. In Java, synchronized blocks are an easy way of providing mutual

exclusion. Because of the syntax of the synchronized construct, proper nesting of

synchronized blocks is always guaranteed. No such guarantees exist at the bytecode

level. Also, since the bytecode represents synchronization using theentermonitor

andexitmonitorbytecodes it has to go through great lengths to ensure that a monitor

lock acquired is always releasede.g., when an exception is thrown while holding

a monitor lock. In short, the bytecode representation of the JavaSynchronized

construct is complicated and a sophisticated graph analysis is required to be able to

retrieved theSynchronized blocks from the CFG.

As each construct is detected a data structure called the Structured Encapsulation Tree

(SET) is constructed. The last stage of the front-end is the creation of the Abstract Syn-

tax Tree. Previously it was this AST which used to be emitted to a file to produce the

decompiled Java source. Now the AST is fed into the newly created Dava back-end.

The AST exposes a different form of the constructed Java and allows for further anal-

yses. Since most of the analyses presented in this thesis work on this AST it is useful to

familiarize oneself with the constructs making up this tree. The type hierarchy of nodes

13



Background: Dava Architecture

Augmented Control

Control Flow

Abstract Syntax

Flow Detection
Regular Control

Flow Detection
Exceptional Control

Flow Detection
Idiomatic Control

grimp

AST

Graph Creation

Flow Graph Creation Tree Creation

Figure 2.4: The Dava Front-End

which can occur inside a AST is shown in Figure2.5. There is a node for each Java con-

struct. There is also one special node called theStatementSequence node which contains

the statements present in a particular Java construct. These statements aregrimp state-

ments which are printed out as Java statements. These include statements like assignment,

breaks or continues etc. The reason for keeping such a structure for the AST nodes is

that the nodes are more for the convenience of manipulating different Java constructs and

less for carrying actual code.

2.2 New Back-End

As mentioned before, the purpose of this research was to simplify the output produced by

Dava. We found that the AST representation of the Java bytecode is the ideal data structure

to perform these transformations. Figure2.6 shows the architecture of the back-end cre-

ated. The first step is to perform basic transformations on the AST to make it conform more

closely to programming idioms. Then simple pattern-based structuring transformations are

14



2.2. New Back-End

AbstractUnit

ASTNode

ASTStatementSequenceNode ASTMethodNode

ASTLabeledNode

ASTControlFlowNode

ASTForLoopNodeASTSwitchNode

ASTUnconditionalLoopNode ASTSynchronizedBlockNode

ASTLabeledBlockNode ASTTryNode

ASTIfElseNode

ASTWhileNode

ASTIfNode

ASTDoWhileNode

Figure 2.5: Abstract Syntax Tree Class Hierarchy

applied. The transformations detect the occurrence of certain sequences of AST nodes and

replace them with modified nodes representing simplified Java constructs and/or control

flow. However, it was noted that simple pattern-based transformations are not powerful

enough in many instances. The third stage in the back-end employs a series of transforma-

tions enabled using flow-analysis information.

The application of patterns in the second or third stage of the restructuring can enable

new transformations. The simple pattern-based structuring along with the flow-analyses-

based transformations are therefore applied iteratively until no pattern matches. By care-

fully ordering the transformations and ensuring that transformations always move towards a

fixed point we are guaranteed that the iterative application of transformation will terminate.

15



Background: Dava Architecture

Basic AST Transformations

AST

Simple Pattern Based Structuring Transformations

AST Rewriting using Structure Based Flow Analyses

Simplified
Java Source

Figure 2.6: The Dava Back-End

16



Chapter 3

A Tree Traversal Algorithm

A first step to implementing analyses/transformations on a tree structure is to have a

good traversal mechanism. Analyses to be performed on Dava’s AST require a traversal

routine that provides hooks into the traversal allowing modification to the AST structure or

the traversal routine.

Inspired by the traversal mechanism provided by SableCC[GH98], tree walker classes

were created using an extended version of the Visitor design pattern. The Visitor-based

traversal allows for the implementation of actions at any node of the AST, separately from

AST creation. This allows for modular implementation of distinct concerns and a mecha-

nism which is easily adaptable to the needs of different analyses.

The traversal mechanism also providesIN andOUT methods which are invoked by the

Visitor design pattern when entering and exiting each subtree node, respectively. Using

these methods makes the task of subtree rewriting, needed all the time for transformations, a

simple matter of overriding the appropriate method. Usually the transformations use theIN

methods to gather information regarding the node being traversed. Future transformation

decisions might use the information stored at this point. If a decision to modify the AST is

made then often theOUT method is used to perform the transformation.

An example of the usefulness of the extended Visitor design pattern is the detection,

and subsequent removal, of spuriousLabeled-Blockss. A Labeled-Block is spurious

if it encapsulates code that never targets theLabeled-Block. The Visitor design pattern

provides an elegant way of implementing this transformation. Very briefly, such a transfor-

17



A Tree Traversal Algorithm

mation can be implemented as follows.

TheIN method for entering aLabeled-Block is overridden and the label is stored in a

data structure used to store all “active” labels. The traversal then continues with visiting the

children of theLabeled-Block. TheIN method ofbreak statements is overridden (Note:

only break statements can target aLabeled-Block). If the break statement explicitly

targets a label then that label, from the list of active labels, is marked asneeded. TheOUT

method of aLabeled-Block block is also overridden. This method checks whether it’s

label has been marked asneeded. If unmarked, this indicates that there was nobreak

statement targeting theLabeled-Block and hence the block is spurious and can be re-

moved.

List activeLabels = new ArrayList();

List neededLabels = new ArrayList();

public void inASTLabeledBlockNode(ASTLabeledBlockNode node){

activeLabels.add(node.getLabel());

}

public void inBreakStatement(BreakStatement stmt){

NodeLabel label = stmt.getLabel();

if(activeLabels.contains(label){

neededLabels.add(label);

}

}

public void outASTLabeledBlockNode(ASTLabeledBlockNode node){

if(neededLabels.contains(node.getLabel)== false){

//spurious labeled block detected

//use AST rewriting to remove the labeled block

}

}

Figure 3.1: Pseudo-code for sample tree-traversal

18



3.1. Finding AST Parent Nodes

Apart from allowing transformations on the AST, the Visitor mechanism can also be

used to gather information for other transformations/analyses to use. In the remaining

sections of this chapter we discuss some of the tree traversals that have been implemented

which play a supporting role for other transformations.

3.1 Finding AST Parent Nodes

The Parent-Node Finder traversal is responsible for gathering information regarding the

different constructs in the AST. The class produces a HashMap, keyed by a node in the

AST and the parent of this construct as the value. In terms of this traversal a construct is

either a Java constructe.g., If, Do-While etc.or anygrimp statement present within the

Statement-Sequence node of the AST.

This analysis is required since transformations often traverse the AST and, at some

stage during the traversal, decide that a particular node has to be moved/replaced. Since

such a modification requires ancestor information it might have been a good idea to store

a parent pointer within each of the AST constructs. As the original implementors of Dava

had not intended to perform AST analyses this information is currently not present in the

AST class definitions. One option would have been to go through the code that creates and

manipulates AST nodes and add parent information. Instead we chose to write this helper

analysis which can be used to get appropriate parent information whenever needed.

The traversal algorithm works as a wrapper around the AST. It can be queried at any

time during a transformation to provide ancestor information. An example of the use of

this helper traversal is in the case of copy elimination (Section7.2.1) where to remove a

particular copy statement theStatement-Sequence node containing this statement has to

be found.

3.2 Finding the Closest Abrupt Target

Java programs contain two types of abrupt control flow statements:continue andbreak.

Thecontinue statement is used to terminate the current iteration of the closest loop. On

encountering acontinue statement the program execution continues with the re-evaluation

19



A Tree Traversal Algorithm

of the condition of the loop. For the case ofFor loop the update statements are executed

before the evaluation of the condition.

Thebreak statement can be used to terminate the execution of not only the closest loop

but also the execution of the closestSwitch statement. In each case the program execution

continues from just after the end of the statement broken.

The semantics discussed above are forImplicit break andcontinue statements. Java

also hasExplicit break andcontinue statements. These are statements of the form:break

labelN; and explicitly target a labeled construct within the code. With explicitbreaks the

program execution breaks the labeled construct explicitly stated in the statement. Explicit

breaks are more powerful in the sense that they can be used to break from any Java con-

struct which has a label. In our implementation this would mean all ASTNodes inheriting

from the ASTLabeledNode (Figure2.5). Explicit continues on the other hand do not

introduce new statements that can be targeted bycontinues. The advantage of explicit

continues is that these can be used to break out of an outer loop from within an inner

nested loop.

Finding the targets ofexplicit abrupt statements is easy since the label targeted is

explicitly mentioned in the abrupt statement. However, in the case of anImplicit break

or continue statement the construct targeted has to be tracked by moving up the AST. A

traversal was implemented which keeps track of the current construct that might be targeted

by anImplicit abrupt statement (a stack where targetable nodes are pushed when entering

the node and popped when exiting them). A mapping is created where the key is the abrupt

statement and the value the current targetable construct (top of the stack). This information

can be used by other analyses and is also used internally within the structure based flow

analysis framework (Chapter6).

3.3 Finding all variable Uses

A depth first traversal of the tree is utilized to find all the uses of a local variable within

a method. Similarly, all the uses of a field within a particular method can also be found.

The results of the traversal can then be queried. Given a local or field as the key, the results

provide a list of all places where this variable might be used. A number of transformations

20



3.4. Finding all Definitions

e.g., ensuring that final fields get defined on all paths and only once (Section7.4.1), use

these results.

3.4 Finding all Definitions

Another trivial analysis, this gathers a list of all definitions (assignments to locals or fields)

within a method. This information is used by a number of analyses including the

newInitialFlow implementation of the reaching defs flow analysis (Section7.1). The

following tree traversal analysis is another analysis which uses the definitions found by this

analysis to gather further information.

3.5 Constant Primitive Field Value Finder

This analysis finds all primitive fields that have a constant value throughout the execution of

a program. This information helps to give the extra information needed for more accurate

constant propagation as discussed in Section7.3.2.

The algorithm is a two-step process. In the first step all definitions for all fields with

primitive type in the application are collected. The all definitions finder analysis, discussed

in the previous subsection, is used to return a list of all definitions in each method. Defini-

tions to non-primitive fields are removed. At the end of this stage a list is created containing

all places in the code where the field might be assigned.

The second step processes each field one at a time. Algorithm1 shows this stage.

As mentioned earlier, the analysis only tracks values of fields with primitive types. Java

compilers store constant values for static final fields inside the constant pool. The SOOT

framework converts these constant values to tags to which Dava has access. Hence the

first step for a primitive type field (as shown in Algorithm1) is to look up whether there

is a constant value tag for this field. If one is found, the constant value tag provides the

value for this field. If not, then the list of definitions found in stage one of the analysis is

checked. If there is no definition for this field that means the field is never assigned a value.

We can therefore assume that the field gets the default value for this primitive type fieldi.e.,

21



A Tree Traversal Algorithm

booleans getfalse and others get zero. We can hence return the default constant value for

this field.

If there were some assignments to this field then the algorithm checks that all the as-

signments are default value assignments. This check must be made because a context-

insensitive inter-procedural analysis does not keep track of the order of execution of state-

ments. Hence a claim for the value of a field, after the execution of an unordered set of

assignments to the field, can only be made if all assignments assign the same value to the

field. Further, since a field might not be initialized, at declaration time, in which case it

is assigned the default value, a claim can in fact only be made if all the assignments to a

particular field are default values.

The end result of this analysis is a list of fields which always have the constant values.

This can include fields which are final and hence are by definition constant or fields which

are either never assigned or are always assigned the default value.

22



3.5. Constant Primitive Field Value Finder

Algorithm 1 : Finding constant valued fields
Input : SootFieldfield, List defList

Output : Constant value if found else null

//Only deal with primitive fields

if !(field.getType() instanceof PrimType )then
return null

//static final fields have constant value tags

if hasConstantValueTag(field) then
returngetConstantValueTag(field)

//if field is never assigned

if deflist.size() == 0 then
returncreateDefaultValue(field.getType());

else
//field is assigned some value within the code

forall definitions d, indefListdo
//Assignment should only be default assignment

if !d.isDefaultAssignment() then
return null;

end

//All assignments were default

returncreateDefaultValue(field.getType());

23



A Tree Traversal Algorithm

24



Chapter 4

Basic AST Transformations

The ability to traverse the AST, using a Visitor-based design pattern, allows for mod-

ular implementation of transformations. New traversals of the AST checking for simple

patterns can be implemented and plugged into the Dava back-end by inserting a call to the

new transformation in the already executing list of transformations. Given the traversal

mechanism, at a bare minimum, the mechanism can be used to transform Dava’s output to

produce code conforming more closely to programming idioms.

Programming idioms are common programming practices among the programmer com-

munity. These are highly subjective since they deal with a programmer’s personal prefer-

ence and style of coding. Nevertheless, in this section, we discuss some programming

idioms which, in our view, make program comprehension easier.

4.1 Condition Simplification

Expressions evaluating to boolean types are often used as unary conditions. An artifact of

the restrictive condition grammar in Dava (Figure5.2) resulted in representation of such

boolean expressions as binary operations, comparing the expressions to the boolean con-

stantsfalse or true.

Figure4.1shows the different conversions that can be carried out. Since most program-

mers are used to reading boolean expressions in the form of unary conditions the effect of

these transformation is that code becomes less verbose and easier to read.

25



Basic AST Transformations

A != false ---> A

A != true ---> !A

A == false ---> !A

A == true ---> A

Figure 4.1: Converting Binary Conditions to Unary Conditions

Applying this pattern on our working example of Figure1.2(e) results in the simplifi-

cation of the two boolean conditions in Statement 3 and 4.

4.2 Shortcut increments and decrements

Another simple transformation for ease of reading code is the use of shortcut increment

and decrement statements. It is common practice to represent the increment statement

i = i + 1 using the increment operator ++ and using a similar decrement operator for the

i = i - 1 statement. This transformation replaces occurrences of i = i + 1 with i++ and i=i-1

with i- -. A more general case for this is when a variable is updated using the previous value

of the variable along with a constant. For example, the expression x = x + 2 is converted to

x += 2.

4.3 De-Inlining Static Final Fields

Standard Java compilers inline the use of static final fields. The reasoning is that since the

field is final the value is not going to change and hence the constant value can be used in

the bytecode instead of having to look up the value from a class attribute. The decompiled

output therefore contains the constant values wherever there was a static final field in the

original code. We think it is a good idea to recover the use of the field that was used

in the original code since the name of the field might be able to deliver some contextual

information to the programmer. A transformation was written which keeps a pool of all

26



4.4. Variable Declarations and Initialization

static final fields and their corresponding values found in a particular class. A depth first

traversal is then carried out that checks for the occurrence of constant values in the code.

When a constant value is encountered it is checked with the list of known values for the

different static final fields. If there is a match then the use of the constant value is replaced

by the use of the static final field. For example in Figure4.2(a) the createMinArray method

returns a new array with size 5. However, a static final MINSIZE is also declared with the

value 5. The De-Inlining transformation will detect this occurrence and generate code as

shown in Figure4.2(b). This kind of transformation allows for more use of identifiers in

the code and the contextual information provides the programmer insight into the code.

(a) Inlined field

1 static final int MINSIZE = 5;

2

3 public int[] createMinArray(){

4 return new int[5];

5 }

(b) De-Inlining

1 static final int MINSIZE = 5;

2

3 public int[] createMinArray(){

4 return new int[MINSIZE];

5 }

Figure 4.2: DeInlining Static Final Variables

4.4 Variable Declarations and Initialization

Dava was previously unable to convert multiple variable declarations into a single dec-

laration. Also, previously a declaration and the subsequent initialization of the variable

was always broken into two consecutive statements (Figure4.3(a)). A transformation now

aggregates variables with the same type into one declaration. Also a variable which is

initialized as soon as it is declared can now be initialized as part of the declaration (Fig-

ure4.3(b)). This is a common programming idiom and makes the code more natural.

27



Basic AST Transformations

(a) Unreduced

1 int a;

2 int b;

3 b=3;

4 int c;

(b) Reduced

1 int a, b=3,c;

Figure 4.3: Variable Declarations and Initialization

4.5 String concatenation

String concatenation in Java can be carried out using the overloaded + operator. The se-

mantics of the operation allows for the addition of a String to a primitive type or any object

(whosetoString method is automatically invoked to get its String representation). For

instance the argument “hello” + 5 represents the concatenation of theString “hello” with

theString representation of the integer 5. In bytecode this conversion is achieved by us-

ing theStringBuffer class. A newStringBuffer is created wheneverString coercion

is required and the operands to theadditionoperator areappended to theStringBuffer.

The final output is thetoString of theStringBuffer. For instance the argument “hello”

+ 5 would be represented as

((new StringBuffer()).append(``Hello'').append(5).toString()).

We have implemented a transformation that looks for this pattern and retrieves the argu-

ments to the chainedappend methods. From there the argument is reconstructed using the

+ operator.

A common occurrence of this is theSystem.out.println method invocation, used to

output information. Programmers normally pass, as argument to this method, the expres-

sion which might contain implicit String coercion using the overloaded + operator. With

this transformation we are able to retrieve the original expression written by the program-

mer. Figure4.4 shows such an example where the verbose code previously generated by

the decompiler has now been simplified using the + operator. In our view this makes the

28



4.6. Shortcut Array Declarations

code much easier to read and adhere more closely to general programming practices.

(a) Unreduced

1 System.out.println(

2 (new StringBuffer()).append(``Hello'').append(5).toString())

(b) Reduced

1 System.out.println(``hello''+5)

Figure 4.4: String Concatenation

4.6 Shortcut Array Declarations

Arrays can be initialized using the shortcut declaration and initialization statement. For

example an array of the first five primes can be declared using: int[ ] primes =f1,2,3,5,7g;

When compiled the Java bytecode represents this as the initialization of an array of size

5 followed by the assignment of each of the five elements of the array. The decompiled

output for theprimes array, as represented in the bytecode, is shown in Figure4.5(a).

A pattern has been devised which converts the verbose array initialization code of Fig-

ure 4.5(a) to the shortcut array declaration shown in Figure4.5(b). Algorithm 2 shows

the transformation which looks for this pattern. The algorithm is self-explanatory. Briefly,

we start by looking for a statement which creates a new array. If one is found then we find

whether the length of the array is a known constant. This is important since we can only use

the shortcut array initialization statement if all elements of the array are being initialized.

If the size of the array is known then we check the subsequent statements. If all of them

initialize the appropriateelement locationi.e., the elements are initialized in order, the

29



Basic AST Transformations

(a) Unreduced

int[ ] primes = new int[5];

primes[0] = 1;

primes[1] = 2;

primes[2] = 3;

primes[3] = 5;

primes[4] = 7;

(b) Reduced

int[ ] primes = {1,2,3,5,7};

Figure 4.5: Verbose declaration of theprimes array

pattern is matched. The verbose array creation and initialization statements are removed

and replaced with the shortcut declaration and initialization statement.

4.7 Removing default constructors

A Java class does not need to have a declared constructor if certain conditions exist. These

are: the presence of only one constructor and the constructor being the default constructor

i.e., the constructor takes no arguments and executes no code except for the invocation of

the defaultsuper constructor. When a class containing no constructor is compiled, Java

compilers produce the default constructor as the<init>method which is then invoked in

the bytecode whenever an object of this class is created.

When decompiling a class with a default constructor the reverse approach can be taken.

If the bytecode contains only the default constructor then this constructor can be removed.

Algorithm 3 shows in pseudo-code the process of checking whether a constructor can be

removed from the class definition.

The algorithm starts off by finding all constructors defined by the class. If there is more

than one constructor the algorithm quits since in the presence of an overloaded constructor

along with the default constructor we cannot predict that all objects will invoke the over-

loaded constructor. If there is only one constructor then it is checked whether this is the

30



4.7. Removing default constructors

Algorithm 2 : Shortcut Array declaration and initialization

Input : ASTStatementSequenceNodenode

List stmts = node.getStatements()

Iterator it = stmts.iterator()

while it.hasNext() do
Stmt s = it.Next()

if ! (s. containsNewArrayExpr()) then
//First stmt of pattern should contain a new array creation

continue
if ! (s. getArrayExpr().getSize() instanceof IntConstant )then

//Can only apply pattern for arrays declared with known size

continue
int length = s.getArrayExpr(). getSize()

for int i=0;i<length;i++ do

if ! (it.hasNext() ) then
//Not all array elements initialized

transform = false

break
Stmt temp = stmts.get(stmts.indexOf(s) + i)

if stmttemp does not initialize index i of arraythen
//Can’t continue since we require inorder initialization of elements

transform=false

break
end

if transformthen
//Remove statement s and the following length number of stmts

//Create the new shortcut declaration and initialization stmt

//Add statement to position currentIndex in the statements list

end

31



Basic AST Transformations

Algorithm 3 : Removing the Default Class Constructor

Input : SootClasssootClass

constructorList sootClass.RetrieveConstructors()

if constructorList.size() != 1 then
//class contains more than one constructor

return;
end

SootMethod constructor = constructorList.get0

if constructor.getParameterCount() != 0 then
//constructor not the default constructor

return;
end

Body methodBody = constructor.getActiveBody()

if ! methodBody.isEmpty() then
//constructor doesnt have an empty body

return;
end

InvokeExpr superInvocation = methodBody.getConstructorExpr()

if superInvocation.getArgsCount() != 0 then
//super invocation not the default invocation

return;
end

//all conditions fullfilled. Remove the constructor

sootClass.removeMethod(constructor)

default constructori.e., it has no arguments in its method signature. If we do find that

the only constructor has no arguments in its signature then the method body’s contents are

checked. If there is no code, except for the defaultsuper invocation, we can continue with

the removal algorithm.

A related improvement in the output produced is the removal of defaultsuper invoca-

tions from a constructor’s body. Whenever a Java constructor is invoked, if asuper call

is not explicitly present as the first statement in the method body, the defaultsuper con-

32



4.8. The super invocation

structor is automatically invoked. Hence, if a constructor has an explicitsuper call to the

default parent constructor then this statement is redundant. Such an invocation is therefore

removed from the constructor body. Obviously this only works when the explicitsuper

invocation is the default invocationi.e., a super invocation without any arguments.

4.8 The super invocation

The Java specification requires any call to a constructor (super() or this()) to be the first

statement in a constructor’s body. Since such a restriction does not exist at the bytecode

level, the bytecode representation of a constructor can have code preceding the invocation

of the<init> method.

Even though one cannot write statements before the invocation ofthis() or super()

in Java, the compilation of a method might result in bytecode being placed before the

invocation of another constructor from within the constructor’s body. For instance if the

code in Figure4.6(a) is compiled, the produced bytecode (Figure4.6(b)) has the invocation

of theiterator method before the call to<init> (Statements 5 to 10 in Figure4.6(b)).

Sections4.8.1discusses this in more detail and Section4.8.2discusses similar issues for

bytecode produced by an AspectJ compiler.

Naively decompiling such code would result in uncompilable code unless the state-

ments added before the invocation of the parent constructor are handled appropriately.

Section4.8.3discusses the solution implemented in Dava.

4.8.1 Invalid code using complicated expressions

Figure4.6(a) shows two classes A and B where B extends A. The constructor of B invokes

the parent constructor using the Javasuper statement. However, within the arguments

of the super call the Iterator “it” is being assigned the same value as the argument

being sent to the parent constructor. This is valid Java code since the super classA expects

an Iterator as the argument to its constructor. Also since the call tosuper is the first

statement in the constructor ofB, the code will compile since all Java requirements are

satisfied.

33



Basic AST Transformations

(a) Original Code

1 class A{

2 public A(Iterator it){

3 }

4 }

5 class B extends A{

6 public B(List list,

7 Iterator it){

8 super(it=list.iterator());

9 }

10 }

(b) Jasmin Code

1 .method public <init>

2 (Ljava/util/List;Ljava/util/Iterator;)V

3 .limit stack 3

4 .limit locals 3

5 aload_0

6 aload_1

7 invokeinterface java/util/List/iterator()

8 Ljava/util/Iterator; 1

9 dup

10 astore_2

11 invokespecial

12 A/<init> (Ljava/util/Iterator;)V

13 return

14 .end method

Figure 4.6: Complex Expressions

At the bytecode level, the call tosuper is converted to a series of bytecodes which

first evaluate the argument of the call tosuper and then invoke thesuper method. The

evaluation of the argument results in the invocation of theiterator method of theList

class and the assignment of the result to the constructor parameter “it”. This evaluation

is shown in Figure4.6(b) by statements 5 to 10. Statement 11 is the invocation of the

constructor of the parent class.

As expected given the bytecode in Figure4.6(b) Dava produces the output shown in

Figure4.7. Statements 2 and 3 are the evaluation of the argument and statement 4 is the

invocation of the parent constructor using the evaluated argument. The decompiled output

is correct decompilation of the bytecode but is incorrect Java code since the call to the

parent constructor (Statement 3) is not the first statement of the method. The decompiled

code obviously does not recompile.

It can be argued that since the original code was able to represent the evaluation of the

34



4.8. The super invocation

1 public B(List r1, Iterator r2){

2 Iterator r3;

3 r3 = r1.iterator();

4 super(r3);

5 }

Figure 4.7: Uncompilable code due to incorrect placement ofsuper

argument within the invocation of the parent constructor, the decompiler should be able to

reconstruct the expression as an argument to the parent constructor. This is indeed correct.

However, there can be other occurrences where code might get added before the invocation

of the parent constructor which we discuss in the next section.

4.8.2 Invalid code using Preinitialization in AspectJ

AspectJ[KHH+01, asp03, ACH+05, abc] is an aspect-oriented extension to Java. It en-

ables clean, modular implementation of cross-cutting concerns such as logging and error

handling. The AspectJ language introduces a set of constructs, called pointcuts, which can

be used to pinpoint locations in the execution of code where the behavior of the program

can be altered if the need be. One such construct is thepreinitialization construct.

Using this construct the programmer is able to target the point just before the execution of

the super() call within the execution of a constructor. The programmer can weaveadvice

at this point which is executed whenever this execution point is reached. One possible

kind of advice isbefore advice which lets the programmer add code to run before the

matched point in the program. The result of weavingbefore advice on a pointcut using

thepreinitialization construct maps to adding code at the start of the constructor. If

however, in the original constructor the first statement was an invocation of another con-

structor (parent or own class) the advice is added before this invocation. This is exactly

what Java disallows. An example is shown in Figure4.8(a). There are two classes A and B

where B extends A. B’s constructor invokessuper and then executes a print statement. An

35



Basic AST Transformations

aspect is then introduced which prints out the string “before preinit” before the invocation

of the parent constructor. Using an AspectJ compiler such asabc [abc] the two classes and

the aspect are compiled.

(a) Original Code

1 class A {

2 public A(){

3 }

4 }

5 class B extends A {

6 public B(){

7 super();

8 S.O.println("hello");

9 }

10 public static void main (

11 String[] args){

12 B b = new B();

13 }

14 }

15 aspect Aspect {

16 before() :

17 preinitialization(B.new()) {

18 S.O.println("before preinit");

19 }

20 }

(b) Runtime Behaviour

1 before preinit

2 hello

(c) Dava’s Output

1 public class B extends A{

2 public B(){

3 Aspect.aspectOf();

4 S.O.println("before preinit");

5 super();

6 S.O.println("hello");

7 }

8 public static void main

9 (String[] r0){

10 B r1;

11 r1 = new B();

12 }

13 }

Figure 4.8: Effect of a preinitialization pointcut targeting a constructor with before advice

The execution of class B’s main method results in the creation of an object of type

B. The output from this is shown in Figure4.8(b). Notice the string “before preinit” gets

printed before the string “hello”. The reason being that the advice is executed before the call

to the parent constructor. The decompiler output produced for the constructor of class B is

shown in Figure4.8(c). Statements 1 and 2 are thebefore advice, followed by invocation

36



4.8. The super invocation

of the parent constructor in statement 3 and then statement 4 is B’s constructor’s remaining

body. Clearly this decompiled code produces the same output as in Figure4.8(b), however,

it is not compilable code. The reason being that the invocation of the parent constructor is

not the first statement in B’s constructor.

Before talking about correcting Dava’s output it is worth mentioning that both Jad and

SourceAgain also fail to produce correct code. Although Jad fails to decompile AspectJ

produced Java bytecode most of the time, it is able to decompile the bytecode produced

by the simple example in Figure4.8(a). The output in this case is exactly that of Dava’s

(Figure4.8(c)). SourceAgain does produce compilable Java code but with one major flaw.

Its output contains only Statements 1, 2 and 4 of Figure4.8(c). So in this case although

the output produced by SourceAgain is compilable it is semantically not equivalent to the

bytecode being decompiled. In our view this output is even more incorrect than the uncom-

pilable code produced by Dava and Jad.

4.8.3 Transforming invalid code using indirection

To avoid compilation errors produced by Java compilers thesuper() orthis() invocation

needs to always be the first statement in a constructor’s body The most elegant solution for

this is to execute the extra code as an argument to the constructor invocation. This is

illustrated in Figure4.9which shows a class A and its constructor. The code in (a) shows

invalid pseudo-code because of the presence of the offending statement chunk marked X

before the invocation ofsuper. This error has been fixed in (b) by moving the offending

code, X, as an argument tosuper. In the remaining section we deal with the algorithm

implemented in Dava dealing with moving the chunk X as an argument tosuper.

Code X in Figure4.9(a), which we want to execute as an argument tosuper, can be

any arbitrary code. It could be the complex evaluation of an argument (as discussed in

Section4.8.1) or it could be some code added by the application of some advice (Sec-

tion 4.8.2). Hence, it is not possible to handle all cases as an evaluation of an expression in

an argument tosuper. Instead a method invocation, executing X as an argument tosuper,

is required. Let’s name this methodPreInit. Also, if we want this method to be part of the

same class which contains the constructor with the compiler error (class A in Figure4.9(a))

37



Basic AST Transformations

(a) Invalid pseudo code

1 class A{

2 public A(<args1>){

3 ---------

4 X --------- //code causing

5 --------- //compilation error

6 super(<args2>)

7 ---------

8 Y ---------

9 ---------

10 }

11 }

(b) Valid pseudo code

1 public A(<args1>){

2 super(<args2>, X)

3 ---------

4 Y ---------

5 ---------

6 }

Figure 4.9: Avoiding compilation errors due tosuper invocation

this method needs to be static. This is so because a non-static method of a class cannot be

invoked until the constructor of the class has finished executing. Figure4.10(a) shows the

creation and invocation of thePreInit method. Code X is executed as the body of method

PreInit.

However, it might not be possible to introduce a new constructor in the parent class. An

example of this is when the parent class is a library class which one does not have access to

or one does not want to change. This issue is handled by introducing a new constructor in A

which takes one extra argument (markedSOMETYPE in Figure4.10(b)). The old constructor

invokes this new constructor with thePreInit method as the last argument. ThePreInit

method executes code X and returnsSOMETYPE. The remaining code (super and code Y)

from the old constructor is moved into the newly created constructor.

Another issue is that copying code X into the newly created method may result in

undefined variables. The code in X could be using any of the arguments of the constructor

(args1 in Figure4.10(a)). This is handled by passing args1i.e., all arguments to the old

constructor as arguments to the newly createdPreInit method.

38



4.8. The super invocation

(a) Using a static method to execute code X

1 class A {

2 public A(<args1>){

3 super(<args2>,A.PreInit())

4 ---------

5 Y ---------

6 ---------

7 }

8 private static void PreInit(){

9 ---------

10 X ---------

11 ---------

12 }

13 }

(b) Creating a new constructor

1 public A(<args1>){

2 this(<args1>,A.preInit(<args1>));

3 }

4 public A(<args1>,<SOMETYPE>){

5 super(<args2>);

6 ---------

7 Y ---------

8 ---------

9 }

10 private static SOMETYPE

11 PreInit(<args1>){

12 ---------

13 X ---------

14 ---------

15 return SOMETYPE;

16 }

Figure 4.10: Introducing the private static PreInit Method

Now let us discuss what the return type (SOMETYPE in Figure4.10(b)) should be. One

thing to note is that it is quite possible that code X, which is executed before the invocation

of super, could define some variables that are part of the arguments tosuper i.e., part of

args2. HenceSOMETYPE needs to be a data structure which can be used to return all possible

arguments in args2.

Also since args2 can be zero or more arguments we wantSOMETYPE to be a data struc-

ture which can return a list of arguments. Different arguments of args2 could then be re-

trieved from within this data structure using aget method. However, there is also another

consideration: the newly constructed constructor, the one which has parameters args1 and

SOMETYPE needs to be unique. It is therefore not possible to use any existing Java library

collection class asSOMETYPE since then we stand a chance of creating a constructor with

39



Basic AST Transformations

a signature which might already exist. For example, if the original args1 had an integer

type as the only argument and we chose an ArrayList asSOMETYPE then the new constructor

would have two arguments, an integer followed by an ArrayList. There is a possibility,

however remote, that such a constructor already exists in the class.

In order to avoid such an occurrence we decided to create a new data structure with a

unique type for the application. The data structure is a wrapper class for the Java Vector

class. This new class, namedDavaSuperHandler, allows the methodPreInit to store all

the args2 and return them as an argument to the new constructor. We are also guaranteed

that the signature of the new constructor will not match any existing constructor as we just

createdDavaSuperHandler which is the last argument of the constructor.

Figure 4.11 shows thePreInit method withDavaSuperHandler as its return type.

Also the new constructor hasDavaSuperHandler as its last argument. InPreInit the

method stores args2 intohandler before returning this object. This is possible since all

of these arguments are either any of args1 or any variable declared or defined in the code

X. The new constructor retrieves these arguments using theget method defined in the

DavaSuperHandler class.

With these changes to the code the old constructor now executes X followed by a call to

super and then body Y. To see this lets follow the chain of events. When the old constructor

is invoked this results in the invocation of the new constructor. However before the new

constructor is executed all arguments to the constructor have to be evaluated. We have

added to the arguments our ownPreInit method which causes code X to get executed.

Once this code is executed all values of args2 are packaged in aDavaSuperHandler object

and made available to the new constructor. The new constructor then invokessuper. In

its arguments it retrieves the args2 stored within theDavaSuperHandler object returned by

PreInit. Oncesuper has executed, then code Y is executed. This chain of execution

satisfies the language rules since the first statement in the old and the new constructor are

always either an invocation of another constructor of the same class or an invocation of the

parent constructor. We also make sure that the new constructor’s signature does not conflict

with any existing constructor and also that thePreInit method is uniquely defined in the

class.

40



4.8. The super invocation

1 public A(<args1>){

2 this(<args1>,A.preInit(<args1>));

3 }

4 public A(<args1>,DavaSuperHandler handler){

5 super(handler.get(0), .... handler.get(n));

6 /�

7 � where n are the number of arguments in

8 � the super invocation

9 �/

10 ---------

11 Y ---------

12 ---------

13 }

14 private static DavaSuperHandler PreInit(<args1>){

15 ---------

16 X ---------

17 ---------

18 DavaSuperHandler handler = new DavaSuperHandler();

19 //code to store args2 into handler comes here

20 return handler;

21 }

Figure 4.11: Storing and Retrieving args2

41



Basic AST Transformations

42



Chapter 5

Simple Pattern Based Structuring

Most of the transformations implemented to simplify the output are targeted towards

control flow simplifications. These are handled as the second stage of Dava’s back-end after

the application of basic programming idioms to the AST. Figure5.1 shows the sequence

of application of the transformations in this stage. As seen from the figure, control flow

simplifications can be broadly divided into three main categories: conditional aggregation,

loop strengthening and handling abrupt control flow. The order of application of these

transformations has been carefully chosen in order to maximize the number of patterns

matched using the minimum number of traversals through the tree. However, even with

this ordering, traversals sometimes have to be reapplied since the matching of a later pattern

might enable a preceding transformation. In the next three sections we discuss, in detail,

the patterns and related transformations.

5.1 Conditional Aggregation

The cryptic control flow in the decompiled output is complex largely due to the fact that

Java bytecode only allows binary comparison operations for deciding control flow. How-

ever, this restriction does not exist in Java where boolean expressions can be aggregated

using the && andk operators. Previously, Dava did not make use of this ability and hence

converted each comparison operation into a separate conditional construct. This results in

the creation of unnecessary Java constructs and their complicated nesting further increases

43



Simple Pattern Based Structuring

Figure 5.1: Simple Pattern Based Structuring

code complexity. For instance, anIf statement evaluating two conditions using the &&

operator in the source code gets decompiled into twoIf statements, one completely nested

within the other. Similarly, if a loop checks for multiple conditions in the source this gets

transformed into a loop with one condition. The remaining conditions are checked within

the loop body. By statically checking for such patterns, and merging the different condi-

tions, the number of Java constructs can be reduced, thereby reducing the complexity of

the output.

The reason that Dava, until now, did not use the ability to represent aggregated condi-

tions in Java is that thegrimp intermediate representation, which is the input to the decom-

piler, only contains binary comparison operators. The remaining parts of this section are

divided as follows: we first enrich thegrimp grammar by giving it the ability to represent

both unary conditions and aggregated conditions along with the existing binary conditions

(Section5.1.1). Then in Section5.1.2we discuss the pattern which is used to aggregate

two If statements by combining their conditions using &&. In Section5.1.3we discuss a

number of patterns which combineIf andIf-Else statements using thejj operator.

44



5.1. Conditional Aggregation

5.1.1 Grammar for aggregated boolean expressions

All types of AST nodes extendingASTControlFlowNode in Figure2.5contain a condition

which decides the flow of control through the program. The old grammar (grimp) and the

new enriched grammar, used by Dava, for the condition that can occur in the control flow

nodes are presented in Figure5.2. The old grammar is very restrictive in the sense that

it only allows binary comparison operations. Unary conditions, that evaluate totrue or

false in Java, are not allowed by the grammar. To be able to represent such conditions

using the old grammar a unary expression has to be compared with theBooleanConstants

true or false (Section4.1). This results in decompiled code that looks machine generated

and is generally less readable.

Another issue with the old grammar was that expressions could not be aggregated with

logical symbols && andk. In the old grammar, an arbitrary boolean expression can be

represented only by breaking the expression into multiple binary comparison control flow

checks. This results in complicated control flow and causes the output of the decompiler

to have many levels of nestings because of the use of many simple checks. To reduce the

complexity of the control flow and at the same time improve the readability of the code, it is

preferable to have relatively complicated checks, as is possible with the new grammar, but

use only a few of them. Chapter9 defines Conditional Complexity based on this enriched

grammar. It is expected that as the conditional complexity increases, due to increased

aggregation, the number of conditional constructs will decrease.

The important additions made to the grammar, as can be seen in the right side of Fig-

ure5.2, are the addition of unary expressions (e.g. a boolean variable, a method returning

a boolean etc), the introduction of && andk symbols and the composition of unary and

binary conditions using these symbols. Note that the grammar presented in Figure5.2 is

an ambiguous grammar. The purpose of the grammar is to illustrate the different types of

conditions that can occur, within the Dava AST. TheSootExpr in the grammar is treated as

a token in the grammar. Additionally, for the case of theBoolSimpleExpr all alternatives

for this production are restricted to have boolean types.

The addition of the new grammar has been carried out in such a way that the previous

analyses built in Dava still function as intended although without using the expressiveness

45



Simple Pattern Based Structuring

Condition :: = Simple Condition  |

SimpleCondition ::= ConditionExpr |
ConditionExpr ::= SootExpr condop SootExpr
Condop ::=  >  |  <  |  ==  |  !=  |  <=  |  >=

Condop ::=  >  |  <  |  ==  |  !=  |  <=  |  >=
ConditionExpr ::= SootExpr condop SootExpr

BoolSimpleExpr ::= id | true | false | SootExpr

UnaryExpr ::= ! UnaryExpr | BoolSimpleExpr

                           Condition   ||  Condition
                             Condition && Condition  |

                                           UnaryExpr

Figure 5.2: Dava’s AST Condition Grammar

of the added grammar. New analyses introduced into Dava are implemented using the new

grammar.

5.1.2 And Aggregation

And aggregation is used to aggregate twoIf statements into one using the && symbol.

Figure5.3(a) shows the control flow of twoIf conditions, one fully nested in the other.

From the control flow graph it can be seen that A is executed only if bothcond1 andcond2

evaluate to true. B is executed no matter what. In Figure5.3(b) we see the reduced form

of this graph where the twoIf statements have been merged into one by coalescing the

conditions using the && operator. Statements 9 to 13 in Figure1.2(e) match this pattern.

The matched pattern and the transformed code are shown in Figure5.4.

The pattern not only decreases the nesting level of constructs, by removing the inner

nestedIf statement, but also shrinks the overall size of the code. By shrinking the size

of the code using such an aggregation strategy the code becomes more readable and the

control flow is easier to follow.

In order to apply this transformation it is important to ensure that the nestedIf state-

ment should be the only construct within the parentIf statement. More specifically, during

a depth first traversal of the AST this pattern is matched if:

46



5.1. Conditional Aggregation

   T

F

T
F

A

B

if cond1 

if cond2

(a) Unreduced

if cond1 && cond2

A

FT

B

if (cond1 && cond2) {
           A

}

B

(b) Reduced

      if ( cond2 ) {

             A
       }

B

 }

if ( cond1 ) {

Figure 5.3: Reducing using the&& operator.

(a) Original Code

1 if(i0 < 3){

2 if(i1 == 1){

3 break label_0;

4 }

5 }

(b) Transformed Code

1 if(i0 <3 && i1 == 1){

2 break label_0;

3 }

Figure 5.4: Application ofAnd Aggregation

47



Simple Pattern Based Structuring

� An If statements1 has a childs2

� s2 is anIf statement

� s2 is the only child ofs1

Algorithm 4 shows the algorithm used to detect the And Pattern and to transform the AST

accordingly.

Algorithm 4 : And Aggregation

Input : ASTNodenode

if node is anIf Constructthen

B GetBody(node)

if B has one ASTNodethen

v GetNode(B)

if v is anIf Constructthen

cond1 GetCondition(node)

cond2 GetCondition(v)

newCondition ASTAndCondition(cond1,cond2)

newBody GetBody(v)

newNode newASTIfNode(newCondition,newBody)

replace(node,newNode)

end

end

end

5.1.3 Or Aggregation

Figure5.5shows the control flow of theOr Operator. The unreduced version of the control

flow shows that A is executed ifcond1 evaluates to true. If, however, the false branch is

taken thencond2 is evaluated and A is executed if this condition is false. B is executed

no matter what. In short, A is executed if the first condition is true or the negated second

condition is true, followed by the execution of B in all cases. This graph can therefore be

48



5.1. Conditional Aggregation

reduced to that in Figure5.5(b) where theIf statement aggregates the two conditions using

thek operator.

One of the patterns to which the control flow graph in Figure5.5(a) can map is shown

in Figure5.5. The pattern looks for a sequence of nIf statements (n is 2 in Figure5.5) with

the first n-1 statements breaking to a particular label (label 0 in Figure5.5) and the nth

statement targeting an outer label (label 1 in Figure5.5). During execution this results

in the evaluation of a sequence ofIf conditions and as soon as any of the n-1 conditions

evaluates to true or the nth condition evaluates to false a certain chunk of code (A in the

figure) is targeted. If the program gets to the nth condition and this evaluates to true then

in this case A is not executed. This code therefore corresponds to anIf statement with A

as its body and the condition the n-1 conditions and the negated nth condition combined

using thejj operator.

B

(a) Unreduced

F   T

F

T

if cond2

if cond1

A

T

if cond1 || ! cond2

F

B

label_1: {
   if( cond1 || 

}
B

(b) Reduced

    label_0 : {
        if (cond1)

            break label_0
        if (cond2)

             break label_1
     } // end label_0

     A
 } // end label_1

label_1: {

B

         A
!cond2 )

A

Figure 5.5: Reducing using thek operator

The decompiled code in Figure1.2(e) (reproduced here in Figure5.6(a) with theAnd

aggregation applied ) has one occurrence of this pattern. Statement 2 in Figure5.6(a) is the

49



Simple Pattern Based Structuring

outer label and Statement 8 the inner one. There are twoIf statements in the sequence:

statement 10 breaking the inner label and statement 13 targeting the outer one. The trans-

formation removes the secondIf statement by moving its negated condition into the first

statement. The new body of this statement consists of statement 16. The result of this

transformation is shown in Figure5.6(b).

(a) Original Code

1 label_2:{

2 label_1:

3 while(z0){

4 if (!z1){

5 break label_2;

6 }

7 else{

8 label_0:{

9 if(i0 < 3 && i1 == 1){

10 break label_0;

11 }

12 if(i1 + i0 >= 1){

13 continue label_1;

14 }

15 } //end label0:

16 System.out.println(r1);

17 }

18 }

19 } //end label2:

(b) Transformed Code

1 label_2:{

2 label_1:

3 while(z0){

4 if (!z1){

5 break label_2;

6 }

7 else{

8 if( (i0 < 3 && i1 == 1)

9 || i1 + i0 < 1 ){

10 System.out.println(r1);

11 }

12 }

13 }

14 } //end label2:

Figure 5.6: Application ofOr Aggregation

This transformation can greatly reduce the size of the code and improve the readability

as well. An interesting side-effect of the transformation is the removal of aLabeled-Block

andbreak statements. The first n-1 statements all breaklabel 0 whereas the nth statement

targetslabel 1. After the transformation all n-1break statements have been removed

50



5.1. Conditional Aggregation

Algorithm 5 : Or Aggregation

Input : ASTNodenode

if node is a Labeled Blockthen

foreach child nodeChildin node.GetBody() do

if nodeChild is a Labeled Blockthen
outerLabel GetLabel(node)

innerLabel GetLabel(nodeChild)

innerBody GetBody(nodeChild)

if FindIfSequence(innerBody,outerLabel,innerLabel) then
//Pattern Matched

CreatenewConditionby aggregating the sequence of conditions

using OR (last condition of the sequence is negated)

foreach successor childsChildof node.GetBody() after nodeChild

do
node.remove(sChild)

newBody.add(sChild)

end

newIfNode newASTIfNode(newCondition,newBody)

node.replace(nodeChild,newIfNode)

break
end

end

end

end

which also allows the removal oflabel 0. Also, although we cannot directly remove

label 1, without checking that theIf body does not target it, we have reduced the number

of abrupt edges targeting it by one. In Section5.3.3we discuss an algorithm that checks

for spurious labels and subsequently removes them.

The algorithm for the transformation is shown in Algorithm5. If at any stage of the

traversal of the tree we find a labeled block (node in Algorithm 5) then the body of this

51



Simple Pattern Based Structuring

block is searched for an inner labeled block. If one is found then theFindIfSequence

function is invoked which checks that there is a sequence ofIf statements adhering to the

pattern we are looking for. If the pattern is matched then first thenewCondition is created.

The body of the newIf statement (newBody in Algorithm 5) is the sequence of all nodes

within the outer labeled block which follow after the inner labeled block. Hence these

nodes are removed from the outer block’s body and used to create the body of the newIf

statement. Once done the newIf statement replaces the inner labeled block.

Function: FindIfSequence

Input : List body, StringouterLabel, StringinnerLabel

Output : booleanFoundOrNot

foreach ASTNode node in bodydo

if node is not an if constructthen
return false

ifBody GetBody(node)

if ifBody is not an abrupt statementthen
return false;

abruptStmt GetStmt(ifBody)

if node is the last node&& abruptStmt targets outerLabelthen
return true;

else if node is not the last node&& abruptStmt targets innerLabelthen
continue

else
return false

end

end

Other Or Aggregation Patterns

We discuss some other patterns in this section which can map to an aggregation of condi-

tions using theOr operator. In Figure5.7, code A is executed ifcond1 evaluates totrue.

52



5.1. Conditional Aggregation

if (cond1){
     A
}
else{
      if (cond2){
           A
       }
}
B

(a) Unreduced (b) Intermediate Reduction (c) Reduced

if (cond1 || cond2){
         A
}
else{

  //empty else body
}

B

if (cond1 || cond2){
      A
}
B

Figure 5.7: Removing NestedIf statements using thek operator

If cond1 is false then the second condition,cond2 is evaluated with thetrue branch re-

sulting in the execution of A. B is executed no matter what. The code therefore executes A

if either cond1 OR cond2 evaluates to true. We can hence reduce the pattern by creating

a newIf statement which has the condition the result of aggregatingcond1 andcond2

usingjj. The transformation is implemented in two stages. The first stage involves remov-

ing theIf statement in theelse body of theIf-Else construct and addingcond2 into

the condition of theIf-Else statement. The removal of theIf statement leaves theelse

body empty. The second stage of this transformation then takes theIf-Else statement and

converts it into anIf statement.

Figure5.8 shows anotherOr aggregation pattern. Figure5.8(a) shows twoIf state-

ments with the same body (in the general case the pattern works for a sequence ofIf state-

ments with the same body). The pattern can be reduced to the one shown in Figure5.8(b)

where the two conditions of theIf statements have been merged usingjj. However, this

transformation is only possible if the body common to theIf statements (A in Figure5.8)

ends with an abrupt statement. The reason for this can be seen by inspecting the execution

sequence of the code in Figure5.8(a) in both cases, when the common body has an abrupt

edge and when it does not.

53



Simple Pattern Based Structuring

� BodyA has an abrupt edge:

Abrupt edges include breaks, continues and return statements. The code starts exe-

cuting by checkingcond1. If cond1 evaluates to true then BodyA is executed. Since

BodyA contains an abrupt edge the execution moves to another place in the code and

the secondIf statement is not executed. If, however,cond1 evaluates to false the

secondIf statement is checked and BodyA is executed if cond2 evaluates to true.

The important thing to note is that BodyA gets executed ifcond1 evaluates to true or

if that doesn’t thencond2 does. Also because of the abrupt edges in BodyA, BodyA

only gets executed once. In this case we can combine thecond1 andcond2 using the

Or operator into oneIf statement with the body as BodyA.

� BodyA has no abrupt edge:

In this case the code starts out by checking the condition of the firstIf statement.

If this evaluates to true then Body A is executed. Since BodyA doesnot have an

abrupt edge then the secondIf statement is executed. If this condition,cond2 also

evaluates to true BodyA is executedagain. So in the case where BodyA does not

have an abrupt edge, BodyA has a chance of running twice (in our example) and

multiple times in the case of the more general pattern. Looking at this sequence

of execution it should be clear that in this case one cannot aggregate the twoIf

statements since that would change the semantics of the program.

if (cond1){
    A
}
if (cond2){

     A
}

        A
if(cond1 || cond2){

}

(a) Unreduced (b) Reduced

The pattern is only applicable if Body Ais an abrupt edge (return/break/continue). 

Figure 5.8: Removing similarIf statements using thek operator.

Another very important thing to keep in mind is that the order of the conditions in

54



5.1. Conditional Aggregation

the aggregated Or Condition is important. The reason being that the evaluation of these

conditions can have side effects. In the unreduced pattern, ifcond1 evaluates to true then

the program will never evaluatecond2. Hence we need the same semantics for our reduced

pattern. This is achieved by havingcond2 to the right ofcond1 in the aggregated condition.

This ensusures that ifcond1 evaluates to truecond2 will not be evaluated and we adhere to

the semantics of the original program. The pattern 3 transformation is implemented using

algorithm6.

Algorithm 6 : Or Aggregation for similar bodies

Input : ASTNodenode

body GetBody(node)

Iterator it body.iterator()

while it.hasNext () do
node1 it.Next()

if ! it.hasNext () then
return;

node2 it.Next()

if node1 and node2 are textttIf statementsthen
body1 GetBody(node1)

body2 GetBody(node2)

if body1 and body2 are the samethen

if body1 has an abrupt Edgethen
leftCond GetCondition (node1)

rightCond GetCondition (node2)

newCondition ASTOrCondition (leftCond,rightCond)

newIfNode ASTIfNode(body1,newCondition)

body.remove(node1)

body.replace(node2,newIfNode)

end

end

end

end

55



Simple Pattern Based Structuring

5.2 Loop strengthening

Previously, in the case where loops have multiple conditions, Dava used one of these condi-

tions as the loop condition and the remaining ones were added asIf or If-Else statements

inside the loop body. Hence, similar toIf andIf-Else statements, loops can now hold

aggregated conditions to be evaluated before execution of the loop body. Therefore pattern

matching can be used to strengthen the conditions within a loop. In the next two sections

we discuss howIf andIf-Else statements nested within loops can be used to strengthen

the conditions of loops and at the same time remove abrupt statements and shrink the code

base.

5.2.1 Using a nested If-Else Statement to Strengthen Loop Nodes

The decompiler usesIf-Else statements if the loop body is non-empty. TheIf body is

the non empty body of the original loop and theelse body contains abrupt control flow

out of the loop. Two different types of patterns can arise as discussed below.

Figure5.9(a) shows a while loop with anIf-Else statement as its only child. Reason-

ing about the control flow shows that Body A is executed if bothcond1 andcond2 evaluate

to true. If either of the conditions arefalse, the loop exits. This fits in with the notion

of a conditional loop with two conditions as seen in the reduced form of the code in Fig-

ure5.9(b). Notice that the label on theWhile loop is still present in the reduced code. This

is because there can be an abrupt edge in Body A targeting this label. After the reduction

the algorithm in Section5.3.3 is invoked to remove the label from the loop, if possible.

Notice that if the bodies in theIf-Else statement are reversed: theIf branch contains

thebreak out of the loop and theelse branch contains a body similar to the BodyA men-

tioned above. In this case by adding the negated condition of theIf-Else statement the

same transformation can be applied.

Figure5.10 shows a similar strengthening pattern for unconditional loops. The only

difference is that in this case theIf-Else statement is free to have any construct in both

branches as long as one of the branches has an abrupt edge targeting the labeled loop. The

reduction works by converting theUnconditional-While loop to a conditional loop with

56



5.2. Loop strengthening

(a) Unreduced conditional loops

1 label_0:

2 while(cond1){

3 if(cond2){

4 Body A

5 }

6 else{

7 break label_0

8 }

9 }//end while

(b) Reduced conditional loops

1 label_0:

2 while(cond1 && cond2){

3 Body A

4 }

Figure 5.9: Strengthening Loops

Body A as the body of the loop. Body B is then moved outside the loop. The specialized

pattern where Body B is empty makes this pattern the same as the pattern forWhile loops.

Looking at our working example (Figure5.6(b)) whereAnd andOr aggregation have

already been applied, reproduced as Figure5.11(a), we can see that statements 3 to 13

make aWhile loop which has oneIf-Else statement. Notice that in this case theIf-Else

statement is reversed: theIf branch contains the break out of the loop and theelse branch

contains Body A (statements 8-10). In this case we can apply theWhile strengthening

pattern by adding the negated condition of theIf-Else statement into theWhile condition.

The transformed code is shown in Figure5.11(b).

5.2.2 Using a nested If Statement to Strengthen loop Nodes

Pattern matching on loops containingIf statements results in loops with empty bodies with

the work being done from within the conditions of the loop. Such kind of loops are often

encountered in concurrent programs e.g. busy waiting.

The pattern shown in Figure5.12shows the transformation of a conditional while loop

to a loop in which the strength of the loop condition has been increased by the addition of

57



Simple Pattern Based Structuring

(a) Unreduced unconditional loops

1 label_0:

2 while(true){

3 if(cond1){

4 Body A

5 }

6 else{

7 Body B

8 break label_0

9 }

10 }//end while

(b) Reduced unconditional loops

1 label_0:

2 while(cond1){

3 Body A

4 }

5 Body B

Figure 5.10: Strengthening Unconditional Loops

(a) Original Code

1 label_2:{

2 label_1:

3 while(z0){

4 if (!z1){

5 break label_2;

6 }

7 else{

8 if( (i0 < 3 && i1 == 1)

9 || i1 + i0 < 1 ){

10 System.out.println(r1);

11 }

12 }

13 }

14 } //end label2:

(b) Transformed Code

1 label_2:{

2 label_1:

3 while(z0 && z1){

4 if( (i0 < 3 && i1 == 1)

5 || i1 + i0 < 1 ){

6 System.out.println(r1);

7 }

8 }

9 } //end label2:

Figure 5.11: Application of While Strengthening

58



5.2. Loop strengthening

cond2. The reasoning for this is that the execution of the code stays within the while loop

as long ascond1 evaluates to true andcond2 evaluates to false. If eithercond1 evaluates

to false orcond2 evaluates to true the while loop is broken and Body B is executed. There-

fore the pattern in Figure5.12(a) can be reduced to that in Figure5.12(b). Note that the

transformation is possible only if the while loop contains a singleIf statement in its body.

Specifically the point marked with an arrow in Figure5.12should not have any AST Node.

Algorithm 7 shows how the reduction can be implemented.

if cond2

label_1
while ( cond1 ) {

      if ( cond2 ) {
             break label_1

       }
 −−>

B
 }

(a) Unreduced

while cond1 

   T

B

T

F

(b) Reduced

while cond1 && !cond2

F

B

T
while ( cond1 && !cond2) {

       }

B

F

Figure 5.12: Strengthening a While Loop Using anIf statement

59



Simple Pattern Based Structuring

Algorithm 7 : Strengthening While Loops Using If statements

Input : ASTWhileNodenode

label GetLabel (node)

body GetBody (node)

if the only child,onlyChild in body is anIf statementthen
B GetBody(onlyChild)

if B has one statement onlythen
stmt GetStatement(B)

if stmt is a break stmtthen

if label is the same asGetLabel(stmt) then
cond1 GetCondition(node)

cond2 GetCondition(onlyChild)

cond2 FlipCondition(cond2)

newCondition ASTAndCondition(cond1,cond2)

newBody EmptyBody()

newNode newASTWhileNode(newCondition,newBody)

replace(node,newNode)

end

end

end

end

Figure5.13shows the counterpart of the previous pattern for unconditional loops. From

Figure5.13(a) it can be seen that the only way the loop terminates is ifcond1 evaluates

to true. This can therefore be represented as a conditional loop with the negatedcond1

as the condition. Again it is important to notice that the transformation is possible only

if the unconditional loop has theIf statement as the only child. After the transformation

the loop, which is now a conditional loop, will terminate only if the condition evaluates to

false. Since the condition is the negatedcond1 the semantics of the code are maintained.

The algorithm for this transformation is similar to Algorithm7. The only differences being

that the new while node contains theIf statement’s condition and that the new while node

60



5.2. Loop strengthening

replaces the old unconditional loop node.

label_1
while ( true ) {

 −−>

B
 }

while true while !cond1

T

      if ( cond1 ) {
             break label_1
       }

if cond1

T

B

F

F

while ( !cond1 ) {

       }

B

(b) Reduced(a) Unreduced

B

Figure 5.13: Strengthening an Unconditional Loop Using anIf statement

The pattern above can be generalized to include the case when theIf statement does

not only contain the abrupt statement. The reason this restriction was imposed for condi-

tional loops can be seen from Figure5.14(a). TheIf statement contains a body (BodyA)

followed by thebreak statement. If we were to apply the reduction we would get code

shown on the right side of Figure5.14(a). However, this code has different semantics from

the original code. This can be seen by checking when BodyA gets executed. In the un-

dreduced version BodyA gets executed only ifcond1 andcond2 are both true. However in

the reduced version BodyA can get executed ifcond1 is false.

In the case of unconditional loops it is noted that such a restriction is not needed. This

can be seen in Figure5.14(b). The reason for this being that no condition is checked in the

unconditional loop and hence the control flow decision is made solely from within the loop

body. As can be seen from the unreduced and reduced versions of this pattern BodyA gets

executed only ifcond1 evaluates to true and at the same time results in the control exiting

the loop.

61



Simple Pattern Based Structuring

label_1
while ( cond1 ) {

      if ( cond2 ) {

B
 }

       }
break label_1

Unreduced Reduced

(a) An Incorrect Transformation

label_1

while ( cond1 && !cond2) {

BodyA

while ( true ) {
      if ( cond1 ) {

break label_1
       }
 }
B

while ( !cond1 ) {

       }

B
B

       }

Unreduced Reduced

(b) A Correct Transformation

             Body A              Body A

             Body A

Figure 5.14: Strengthening an Unconditional Loop Using anIf statement

5.3 Handling Abrupt Control Flow

Abrupt control flow in the form of labeled blocks andbreak/continue statements, created

by Dava to handle anygoto statements not converted to Java constructs, also complicate

the output. Programmers rarely use such constructs, since it makes understanding code

harder, and it is therefore desirable to minimize their use.

5.3.1 If-Else Splitting

The restructuring of the bytecode often results in the creation ofIf-Else statements where

If statements would have sufficed, because of thegoto statements linking the different

chunks of bytecode together. An example of this is shown in Figure5.15(a). The proposed

transformation is shown in Figure5.15(b). Notice that BodyB which was in theelsebranch

of theIf-Else statement has been removed out of the conditional statement. This is possi-

ble because of the abrupt edge at the end of thethen branch of theIf-Else statement. The

abrupt statement indicates that control is going to flow to some other location of code. If

we can confirm that the abrupt statement does not target a label on thisIf-Else statement

62



5.3. Handling Abrupt Control Flow

then we know that BodyB will not be executed even if it is outside theIf statement. One

additional requirement is that if theIf-Else statement has a label on it then BodyB should

never target this label since once removed from theelsebranch it is no longer under the

scope of the label (which will now be on theIf statement).

(a) Unreduced

if(cond1){

BodyA;

<abrupt edge>

}

else{

BodyB;

}

(b) Reduced

if(cond1){

BodyA

<abrupt edge>

}

BodyB

Figure 5.15: If-Else Splitting

If this pattern does not get matched we also try the reverse of the patterni.e., where the

elsebranch has a body followed by an abrupt statement and thethen branch is some body

which does not target any label on theIf-Else statement. In this case, the newIf state-

ment contains theelsebranch as its body and the condition of the statement is the negated

condition of the originalIf-Else statement. Figure5.16shows code from a real decompi-

lation scenario where the reversedIf-Else pattern gets matched. TheIf-Else statement

in Figure5.16(a) contains areturn statement in theelsebranch. In Figure5.16(b), the

transformation is able to create aIf statement with the abrupt edge as part of the body, by

negating the originalIf-Else condition.

5.3.2 Useless break statement Remover

Another artifact of Java bytecode is the occurrence of unneededbreak statements. Java

constructs have predefined fall through semanticsi.e., after execution of a certain construct

control moves to the next statement in the code. Using this knowledge it is sometimes

63



Simple Pattern Based Structuring

(a) Unreduced

if(i3 == 0)

{

i0++;

}

else

{

a.remove(i0);

return;

}

(b) Reduced

if(i3 != 0){

a.remove(i0);

return;

}

i0++;

Figure 5.16: If-Else Splitting

possible to removebreak statements which target the same code location that is the natural

fall through of the labeled construct. Two examples of this are shown in Figure5.17.

The algorithm works by looking forbreak statements in the code. Whenever abreak

statement is found, the transformation finds the target node of thebreak statement. Then

each of the ancestors of thebreak statement up to the target node are analyzed. Thebreak

statement is unneeded if it is the last statement in its parent node, the parent node is the

last node of its parent and so on until we reach the target node. For instance, in the left

side of Figure5.17 the break statement is unneeded since it is the last statement in the

If statement which is itself the last node within thethen branch of theIf-Else branch.

Hence the natural fall through, BodyD, is the same as that targeted by thebreak statement.

Thebreak statement can be safely removed. On the right side of Figure5.17again we see

an unneeded break. Thebreak label8 statement targets BodyC which is the natural flow

through after execution of BodyB. Hence thisbreak statement can also be removed.

One important thing to remember is thatbreak statements are also used to break out of

a loop. Hence the transformation can only be applied if none of the ancestors of thebreak

statement up to the targeted node is a loop construct.

If a break statement is found to be unneeded then an added advantage of this can be

64



5.3. Handling Abrupt Control Flow

label1:

if(cond1){

BodyA

if (cond2){

BodyB

break label1

}

}

else{

BodyC

}

BodyD

label8:

try {

BodyA

}

catch (Exception e){

BodyB

break label8;

}

BodyC

Figure 5.17: Removing uselessbreak statements

that the label might also become removable, as discussed in the next section.

5.3.3 Useless Label Remover

The Or and And aggregation patterns provide new avenues for the reduction of labeled

blocks and abrupt edges. With the help of pattern detection, the number of abrupt edges

and labels can be reduced considerably.

Labels can occur in Java code in two forms: as labels on Java constructs e.g.While

loop or as labeled blocks. If a label is shown to be spurious, by showing that there is no

abrupt edge targeting it, then in the case of a labeled construct the label is simply omitted.

However, in the case of a labeled block, a transformation is required which removes the

labeled block from the AST. Algorithm8 shows how a spurious labeled block is removed

by replacing it with its body in the parent node.

When applied to the code in Figure5.11(b) label 2 andlabel 1 which were at state-

ments 1 and 2 are both removed. Looking back at the original source code from which

this decompiled output was generated (reproduced as Figure5.18(a) ) we see that, after

65



Simple Pattern Based Structuring

Algorithm 8 : Removing Spurious Labeled Blocks

Input : ASTNodenode

body GetBody(node)

Iteratorit  body.iterator()

while it.hasNext() do
node1 it.Next()

if node1 is a Labeled Block Nodethen

if IsUselessLabelBlock (node1)then
body1 GetBody(node1)

Replacenode1in bodyby body1

end

end

end

applying the AST rewriting, Dava’s output, Figure5.18(b), matches the original source

code.

(a) Original Code

while(done && alsoDone){

if((a<3 && b==1) || b+a<1 )

System.out.println(b-a);

}

(b) Final Dava Output

while(z0 && z1){

if( (i0<3 && i1==1) || i1+i0<1 ){

System.out.println(i1-i0);

}

}

Figure 5.18: Comparing Dava output

66



5.3. Handling Abrupt Control Flow

5.3.4 Reducing the scope of labeled blocks

While pattern matching labeled blocks to rewrite the AST, some pattern might not get

matched because the labeled block contains too many children in its body. It is sometimes

possible to reduce the scope of the labeled block. One such possibility can be seen in

Figure5.19(a). The unreduced code shows thatlabel 1, which is a labeled block, consists

of some code that does not use the label followed by code which targets this label (the

While loop in Figure5.19(a)). Since the initial code does not involve the use oflabel 1

there is no reason why this code cannot occur outside the scope of the labeled block. As

seen in the reduced form of the code (Figure5.19(b)) the labeled block has been removed

by placing the label directly on theWhile loop construct. Such a transformation is possible

label_2:
while (cond){

}

    //replace use of
//label_1 with label_2

label_2:
while (cond){
    //use of label_1
}

Nothing here

label_1 {

} //end label_1

(c) Unreduced (d) Reduced

no break label_1

label_1:
while (cond){

    //use of label_1
}

no break label_1

while (cond){
    //use of label_1
}

label_1 {

Nothing here

} //end label_1

(b) Reduced(a) Unreduced

Figure 5.19: Reducing the scope of Labeled Blocks

if the following conditions hold:

� The construct that holds the abrupt statement targeting the labeled block should itself

be able to hold a label. These include all the AST nodes derived from the AST

Labeled Node from the type hierarchy in Figure2.5.

� The construct that targets the label should be the last child of the labeled block node.

The reason for this restriction is illustrated in Figure5.20. In Figure5.20(a) body

A is a child of the labeled block occurring after theWhile loop which targets the

labeled block. If, according to the transformation, we were to remove the labeled

67



Simple Pattern Based Structuring

block by placing the label onto theWhile loop (as shown in Figure5.20(b)) then

BodyA is no longer under the scope of the label. Hence the execution of thebreak

statement breaks out of the loop but ends up executing BodyA which should not have

been executed.

no break label_1

label_1 {

while (cond){
    //use of label_1

}

BodyA

} //end label_1

(a) Unreduced

no break label_1

label_1:
while (cond){
    //use of label_1
}

BodyA

(b) Reduced

Figure 5.20: Wrong Reduction of Scope

� The construct that targets the labeled block should not already have a label on it.

If such a situation arises, as shown in Figure5.19(c), then the transformation can

still be successful. However, in this case the construct’s label is kept and any abrupt

edge targeting the labeled block is made to target the label on the construct. In Fig-

ure 5.19(d) this means keeping the labellabel2 on theWhile loop and removing

the labeled block. Any abrupt statement targetinglabel 1 is transformed to target

label2. Obviously this is only possible if the labeled block had only one child other-

wise the transformation changes the semantics for reasons similar to those discussed

above.

The reasoning behind trying to reduce the scopes of labels is that if there are fewer

children in a labeled block, then there are better chances that some other pattern will match.

If no pattern matches, reducing the labeled block size still has the advantage of improving

code complexity since the programmer now has to concentrate on a smaller chunk of code

to understand the abrupt control flow targeting the labeled block.

68



Chapter 6

A Structure-Based Flow Analysis Framework

Although AST rewriting based on pattern matching greatly reduces the complexity of

the decompiled output, this alone allows only for a limited scope of transformations. So-

phisticated transformations need additional information which is available only through the

use of static data flow analyses.

An example of this can be seen in Dava’s output, Figure1.3(d), for the obfuscated byte-

code produced for the original Java source shown in Figure1.3(a). Although semantically

equivalent to the original code the output is hard to understand. However, since obfuscators

have to ensure that their modifications do not change program semantics, a transformation

of the output, making it similar to the original code, may be possible. This requires an an-

swer to the questions: “What is the value of a particular variable at a program point?”, ”Is

a particular piece of code ever executed?” and so on. To answer such questions one needs

added information about the data and control flow which cannot be obtained from pattern

matching and requires data flow analysis. We discuss more about decompiling obfuscated

code in Section7.3.7.

Although SOOT provides a flow analysis framework for each of the intermediate rep-

resentationsi.e., baf, jimple andgrimp, this support did not extend to the higher level

intermediate representation of the decompiled code. Previously it was not possible to ap-

ply any flow analyses on Dava’s AST. To perform more sophisticated transformations we

implemented an analysis framework that can be used to implement static data flow analyses

on Dava’s AST. The analyses’ results can then be leveraged to perform further transforma-

69



A Structure-Based Flow Analysis Framework

tion on the AST. The framework removes the burden of correctly traversing the AST from

the analysis writer and allows him/her to concentrate on the analysis. With a framework in

hand, the process of writing analyses for Dava has been streamlined making it easier for

new developers to extend the system.

As the analyses for the decompiler are performed on the AST it is best to use a syntax-

directed method of data flow analysis such as structural analysis[HDE+93, Sha80]. The

advantage of using this technique is that it gives, for each type of high-level control-flow

construct in the language, a set of formulas that perform data flow analysis. For instance

it allows the analysis of aWhile loop by analyzing only its components: the conditional

expression and the body. For this reason we find that structural flow analysis provides

a more efficient and intuitive implementation of analysis on the tree representation than

graph-based approaches. Apart from supporting ordinary compositional constructs such

as conditionals and loops, the structural flow analysis also supportsbreak andcontinue

statements (Section6.2).

The Structural Flow analysis framework for Dava’s AST has been written by provid-

ing an abstractStructuredAnalysis Java class. Programmers wanting to implement an

analysis need only implement the abstract methods in this class which deal with the ini-

tialization of the analysis and then subsequently dealing with the type of information to be

stored by different constructs.

The analysis begins by traversing the AST. As each Java construct is encountered a

specialized method responsible for processing this construct is invoked. Aninput set

containing information gathered so far is sent as an argument. Each construct is handled

differently depending on the components it contains and its semantics. The processing of

the construct might add, remove or modify elements of theinput set. The result is returned

in the form of anoutput set which then becomes theinput set for the next construct.

This kind of structure-based flow analysis is not new. Similar work has been done by

Emami et. al. [HDE+93, Ema93] for gathering alias and points-to-analysis information for

the McCAT C compiler. Dava’s flow analysis framework is an implementation of the same

approach utilized in McCAT, but implemented for Java.

70



6.1. Merge Operations

6.1 Merge Operations

An important construct in flow analyses is the merge operation. Merge defines the seman-

tics of combining the information present in twoflow-sets. Such a situation arises for

instance when dealing with theflow-sets obtained by processing theIf andelse branch

of an If-Else construct. Since the framework gathers sets of information the program-

mer has the choice of choosing between union and intersection as the merge operation.

Customized merge operations might sometimes be needed for analyses. The framework

allows the extension of the already implemented merge operations or the implementation

of new merge operations. Section7.3.1shows such an extension of the intersection merge

operation for the constant propagation analysis.

6.2 Dealing with Abrupt-Control Flow Constructs

In grimp, control flow is represented using explicit goto statements. The Structured En-

capsulation Algorithms implemented in Dava are able to transform most of these goto

statements, along with appropriate code bodies, into Java constructs likeIf, While etc.

However, after all construct detection algorithms have been applied somegoto statements

might still be present in the AST. These remaininggotos are converted intobreak and

continue statements and embedded into the AST.

We handle these statements as follows: whenever an abrupt control flow statement is

encountered, the flow set containing information gathered by the analysis is stored. Pro-

cessing then continues with a specialflow-set namedBOTTOM sent onwards indicating that

this path is never realized (as the abrupt statement leads execution to some other area of the

code). We use a hash table, keyed by labels, to store theflow-sets for unrealized paths.

When a labeled construct is being processed allbreak-sets, or continue-sets, stored

when encountering abreak, orcontinue, targeting this label are retrieved. These are then

merged with each other to get one out-set which is the conservative approximation sum-

marizing the data flow sets from all abrupt statements targeting this particular construct.

This flow-set is then merged with theflow-set obtained through analysis of the con-

struct if no abrupt statement was encountered. The merging of the abrupt flow-sets is done

71



A Structure-Based Flow Analysis Framework

by the methodshandleBreak andhandleContinue for break andcontinue statements

respectively.

In order to be complete in handling all abrupt statements one also needs to handle

return andthrow statements. The framework, on encountering one of these statements,

outputsBOTTOM. Any other analysis-specific information to be gathered from the encoun-

tered abrupt statement can be obtained by over-riding appropriate methods provided by the

framework.

6.3 Construct specific processing

Structure-based flow analysis derives its power from the fact that each high-level control-

flow construct can be processed separately according to the semantics defined by the lan-

guage. In this section, we discuss the handling of Java constructs present in the AST.

Processing of each construct is presented with a control flow diagram showing the required

semantics of the construct along with pseudo-code illustrating how theflow-sets are car-

ried through the construct. Handling ofbreak andcontinue statements is carried out as

part of the processing and considerably complicates matters. The key to all these algo-

rithms is the right order of merging the sets flowing through the constructs.

JavaMethod Node

A method construct is the simplest construct to deal with. The in-set is passed to the algo-

rithm processing the body of the method. The output of processing this body becomes the

out-set of the method construct (Figure6.1(a)). This corresponds to the use of the flow-

analysis framework for intra-procedural analyses. In the future if inter-procedural analyses

are to be accommodated then the output set of processing the body would contain the out-

put of regular execution of the method code merged with all possible exits of the method:

return statements within the method’s body and anythrow statements that might escape

the method.

JavaLabeled-Block Nodes

Labeled blocks are often used in Java to separate different parts of an algorithm. Normal

72



6.3. Construct specific processing

1 process_Method(

2 ASTMethodNode node,

3 Object input){

4 out1 = processBody(node,input)

5 return out

6 }

(a) Java Methods

1 process_LabeledBlock(

2 ASTLabeledBlockNode node,

3 Object input){

4 out1 = processBody(node,input)

5 result = handleBreaks(out1,node)

6 return result

7 }

(b) Java Labeled Blocks

1 process_StatementsNode(

2 ASTStatementSequenceNode node,

3 Object input){

4 List stmts = node.getStatements()

5 out = clone(input)

6 for each stmt, s in stmts

7 out = process(s,out)

8 return out

9 }

(c) Java Statement Blocks

1 process_SynchBlock(

2 ASTSynchronizedNode node,

3 Object input){

4 out1 = processSynchedLocal(

5 local,input)

6 out2 = processBody(node,out1)

7 result = handleBreaks(out2,node)

8 return result

9 }

(d) Java Synchronized Block

Figure 6.1: Structural Flow-Analysis Algorithm for Simple Java Constructs

code execution flows by entering the start of a labeled block and exiting at the end. How-

ever,break statements can be used to target the end of the labeled block from anywhere

within the body of the block code. Taking that into account the processing of the labeled

block is shown in Figure6.1(b). If no break statement targets this block then the out-set

of the block is the output of the processing the body of the block. However, to handle any

break statements the output of normal execution of the block’s code needs to be merged

with all possibleflow-sets stored when encountering abreak statement targeting this

73



A Structure-Based Flow Analysis Framework

labeled block. This is done by statement 5 in Figure6.1(b).

Statement-Sequence Construct

Figure6.1(c) shows how the framework handles a sequence of statements. The processing

method iterates through the statements in the sequence with theoutput set of one statement

becoming theinput of the next statement. Theoutput set of the last statement is the

output set of the sequence of statements.

One interesting thing to note is that it is while processing aStatement-Sequence that

one may encounter abrupt statements. As mentioned in Section6.2 when such an abrupt

statement is encountered then the current flow-set is stored in the appropriatebreakList

or continueList. The out-set sent forward isBOTTOM indicating that this path is never

taken. Hence the output set of aStatement-Sequence containing an abrupt statement is

alwaysBOTTOM.

Synchronized Construct

A synchronized block contains two components to be analyzed. First is the object on which

the synchronization is carried out. The output of processing the synchronized object be-

comes the input of processing the synchronized body. Since synchronized blocks can have

labels on them the final output is the result of merging the output of the synchronized body

with any flow-sets stored in thebreakList.

If Construct

Figure6.2 shows the processing ofIf statements. Figure6.2(b) shows possible control

flow through anIf statement. When anIf statement is encountered the condition is eval-

uated. If the condition evaluates totrue theIf body is executed, otherwise control moves

forward, skipping theIf body. Keeping these semantics in mind the flow analysis pro-

cesses anIf statement (Figure6.2(a)) by first processing the condition. This output (out1

in Figure6.2(a) ) becomes the input to process theIf body. Since theIf body might or

might not be executed the output of theIf statement is the merge of the out-set of just

evaluating the condition (out1) with the out-set of processing theIf body (out2). Once

this merge is available anybreak sets that might have been targeting thisIf statement are

74



6.3. Construct specific processing

handled. That produces the final result of processing theIf statement.

1 process_if(ASTIfNode node,Object input){

2 out1 = processCondition(condition,input)

3 out2 = processBody(node,out1)

4

5 //merge cond evaluating to false

6 out = merge(out1,out2)

7

8 result = handleBreaks(out,node)

9 return result

10 }

(a) Pseudo-code

cond

body

input

out2 out1

out1

break;

result

(b) Graphical Representation

Figure 6.2: The Structural Flow-Analysis Algorithm of If Construct.

If-Else Construct

The semantics of anIf-Else statement are almost the same as that of anIf statement.

Execution begins with the evaluation of the condition. If the condition evaluates totrue

then theIf branch (also called thethen branch) is taken. In case the condition evaluated

to false then theelse branch is taken. The processing of this construct begins with the

processing of the condition. The out-set from the processed condition is cloned because

depending on the evaluation of the condition the same flow-set will be carried into the

then or else branch. The outputs of processing the two branch bodies (out2 and out3 in

Figure6.3(b) are then merged since statically we can not predict which branch is being

taken. The only remaining thing to do is to handle any breaks that might have targeted

theIf-Else construct if it has a label on it. This is done by thehandlebreaks method

in Statement 11. The output of this becomes the result of processing theIf-Else construct.

75



A Structure-Based Flow Analysis Framework

1 process_ifElse(ASTIfElseNode node,

2 Object input){

3 out1 = processCondition(condition,input)

4 clonedInput = clone(out1)

5 out2 = processBody(thenBody,clonedInput)

6

7 clonedInput = clone(out1)

8 out3 = processBody(elseBody,clonedInput)

9

10 out4 = merge(out2,out3)

11 result = handleBreaks(out4,node)

12 return result

13 }

(a) Pseudo-code

cond

input

Then Body Else Body

out1out1

out 3out 2

break;

break;

result

out 4

(b) Graphical Representation

Figure 6.3: The Structural Flow-Analysis Algorithm of IfElse Construct.

While Construct

Processing loops complicates matters because of a fixed point iteration required to compute

the out-set. Also with loops not only do we have to deal withbreak statements but also

continue statements that could be targeting the loop. The semantics of theWhile loop

dictate that processing starts with the evaluation of the condition. If the condition istrue

the body executes and then the condition is re-evaluated. Hence regular outputi.e., output

without anybreak statements, from theWhile loop always ends with the evaluation of the

condition. Thecontinue statements stop the execution of the body at whatever place the

continue statement is encountered and control goes back to the evaluation of theWhile

condition.

Figure6.4shows the control flow and pseudo-code for handling aWhile loop. The solid

back-edge indicates loop iteration and dotted lines indicate abrupt control flow. Firstly the

76



6.3. Construct specific processing

1 process_While(ASTWhileNode node,

2 Object input){

3 initialInput = clone(input)

4 input = processCondition(condition,

5 initialInput)

6 do{

7 lastin = clone(input)

8 out = processBody(node,input)

9 out = handleContinue(out,node)

10

11 //merge cond evaluating to false

12 input = merge(initialInput,out)

13 input = processCondition(

14 condition,input)

15 } while(lastin != input)

16 result = handleBreaks(input,node)

17 return result

18 }

(a) Pseudo-code

cond

input

out

initialInput

continue

continue

break

break

input

result

(b) Graphical Representation

Figure 6.4: The Structural Flow-Analysis Algorithm of While Construct.

analysis processes the condition of theWhile construct. Theoutput set of this becomes

theinput set for the fixed point computation. Within the fixed point computation the body

of the While loop is processed followed by the generation of theinput set for the next

iteration.

The input set for the next iteration is generated by merging theoutput set of the

current iteration with theflow-sets stored in thecontinue hash table, sincecontinue

statements could be targeting the loop.

Taking care of all possible entry points is essential for the correct working of the flow

analysis. Since it is quite possible that the condition of theWhile loop evaluates tofalse

77



A Structure-Based Flow Analysis Framework

without any iteration of the loop it is important that the initialInput to theWhile loop be

part of the input set to any re-evaluation of the condition. Hence the result of merging the

output of any possible iterations (solid back edge labeled out in Figure6.4(b)) with any

flow-sets from thecontinueList (dotted back edges in Figure6.4(b) ) has to be further

merged with the initialInput to theWhile loop. The result of this is the correct input to any

further evaluations of the condition. Once the fixed point is achieved then anyflow-sets

stored in thebreak hash table are also merged using thehandleBreaks method. The out-

put of this method is the final output of processing theWhile construct.

Do-While Construct

The only difference between aWhile loop and aDo-While loop is that in aDo-While loop

the loop body has to be executed at least once. The analysis starts off with first processing

the body of theDo-While loop. Then anyflow-sets stored in thecontinueList are

merged to produce the in-set for the condition. Once the condition is processed the input

set for further iterations is generated by merging the output of processing the condition with

the initialInput to theDo-While loop. This takes care of whether this is the first execution

of the body or an iteration. Once the fixed point has been achieved anybreak sets for this

loop are handled.

One important thing to note is that the handling of breaks takes as input the output set

of processing the condition and not the newly generated input for the fixed point iteration.

This is so because the loop has to execute at least once and hence the initialInput can never

be part of the final result. Hence at Statement 13 in the pseudo-code shown in Figure6.5(a)

the input tohandleBreak is the result of Statement 9 which contains the out-set of pro-

cessing theDo-While condition. Once any break sets have been merged the result is the

output of processing theDo-While loop.

Unconditional-While Construct

In anUnconditional-While loop the body of the loop keeps executing until there is a

break out of the loop. Hence the only way out of the loop is through one or morebreak

statements in theUnconditional-While body as shown in Figure6.6(b). The processing

of the loop is shown in Figure6.6(a). The fixed point iteration starts off by processing

78



6.3. Construct specific processing

1 process_DoWhile(ASTDoWhileNode node,

2 Object input){

3 initialInput = clone(input)

4 do{

5 lastin = clone(input)

6 out = processBody(node,input)

7

8 out = handleContinue(out,node)

9 out = processCondition(condition,out)

10

11 input = merge(initialInput,out)

12 } while(lastin != input)

13 result = handleBreaks(out,node)

14 return result

15 }

(a) Pseudo-code

continue

continue

break

break

cond

out

out

out

result

initialInput

(b) Graphical Representation

Figure 6.5: The Structural Flow-Analysis Algorithm of DoWhile Construct.

the body of the loop. Then anycontinue flow-sets are handled. Then the initial input is

merged to create the input set for the next iteration of the loop. Once the fixed point has

been achieved thebreak flow-sets are merged together to create the result of processing

theUnconditional-While loop.

Notice that the result of processing theUnconditional-While body is sent as input

to the MergeBreaks method. This is only used to retrieve the list ofbreak flow-sets

stored in the in-set and does not get included in the result since the only way out of the

Unconditional-While is through abreak statement.

79



A Structure-Based Flow Analysis Framework

1 process_UnconditionalLoop(

2 ASTUnconditionalWhileNode node,

3 Object input){

4 initialInput = clone(input)

5 do{

6 lastin = clone(input)

7 out = processBody(node,input)

8 out = handleContinue(out,node)

9

10 //merge cond evaluating to false

11 input = merge(initialInput,out)

12 } while(lastin != input)

13 result = MergeBreaks(out,node)

14 return result

15 }

(a) Pseudo-code

continue

continue

break

break

out

initialInput

result

(b) Graphical Representation

Figure 6.6: The Structural Flow-Analysis Algorithm of Unconditional-While Construct.

For Loops

The semantics of theFor loop are discussed in Section7.1.1. Briefly, when aFor loop is

encountered first the initializations are carried out followed by the evaluation of the con-

dition. If the condition evaluates totrue the body of the loop is executed followed by

any updates to be performed.Break statements result in the termination of the loop and

Continue statements target the update component of the loop (Figure6.7(b)). The pro-

cessing of theFor loop is shown in Figure6.7(a). First theinit component is processed.

Since this contains a sequence of statements it should be processed in the same way as any

otherStatement-Sequence block would be. Hence theStatement-Sequence flow anal-

ysis algorithm is invoked from within the algorithm of theFor loop. Once this has been

completed the condition of the loop is processed. The output of processing the condition

becomes the input to the algorithm which computes the fixed point for the body of the loop.

80



6.3. Construct specific processing

1 process_for(ASTForNode node,

2 Object input){

3 input = processInit(node,input)

4 initialInput = clone(input)

5 input = processCondition(condition,input)

6 do{

7 lastin = clone(input)

8 out1 = processBody(node,input)

9 out1 = handleContinue(out1,node)

10

11 out2 = clone(out1)

12 out2 = processUpdate(node,out2)

13 //merge cond evaluating to false

14 input = merge(initialInput,out2)

15 input = processCondition(condition,input)

16 } while(lastin != out2)

17 result = handleBreaks(input,node)

18 return result

19 }

(a) Pseudo-code

cond

init

input

update

initialInput

input

out1

out2

out2

continue

break

continue

break

input

result

(b) Graphical Representation

Figure 6.7: The Structural Flow-Analysis Algorithm of For Construct.

This is done by first processing the body. This is then followed by handling anycontinue

statements that might be targeting the update component of the loop. Once thecontinue

flow-sets have been handled it is time to handle any update statements. The update part of

theFor loop can be empty hence the output produced by handling thecontinue statements

is first copied into a new flow-set which is then used to process the update statements. The

update statements are a sequence of statements and are processed by internally invoking

theStatement-Sequence flow analysis algorithm. Once done, the input set for the next

iteration is created by merging the initial input set to the output of processing the update

81



A Structure-Based Flow Analysis Framework

statements (Statement 14 in Figure6.7(a)). As the regular executioni.e., when nobreak is

encountered always terminates at the evaluation of the condition the condition is processed

again. Once the fixed point is reached anybreak statements targeting this loop are handled

by merging theirbreak sets together. The output from this becomes the output of handling

theFor loop.

Switch Construct

The processing of theSwitch statement is shown in Figure6.8. The algorithm starts off

by processing the switch key. Since this component is always executed, the output from

the processing of the key becomes the initial input to all the possible cases of theSwitch

statement.

The algorithm continues forward by first retrieving the different cases of theSwitch

statement. Then for each case the case Body is processed. The input set for these bodies

is the merge of the initial input, if the case is the first case to be executed, and the previous

case’s output, since Java cases can have fall throughs (as shown in Figure6.8(b)).

After the processing of a case the output set of each set is stored in thecaseBreakSet

list. This information is needed since it is the out-set of each case that stores all thebreak

andcontinue sets which will be handled later in the algorithm.

While processing theSwitch statement cases, another possibility that is checked is

whether theSwitch statement has a default case. If one is found the out-set of the default

case is also stored (Statements 12 and 13 in Figure6.8(b)).

A number of different execution paths can be taken for aSwitch statement. Firstly it is

possible that aSwitch statement has no cases. Then the initial inputflow-set should be

the out-set of processing theSwitch statement (Statements 16 and 17 in Figure6.8(a)). If

theSwitch statement does contain one or more cases then there are two possibilities. First,

a default case is present meaning that if no case matches the default case will be executed.

Hence in this case the output becomes the merge of the default case with the conservative

out-set of having processed all the cases of the statement. The latter out-set is available as

the output of the processing of the last case of theSwitch statement.

The second possibility is that if there is no default case present then it is possible that

none of the cases in theSwitch statement match the key. In this case the output is the

82



6.3. Construct specific processing

1 process_switch(ASTSwitchNode node,

2 Object input){

3 input = processSwitchKey(key,input)

4 initialInput = clone(input)

5

6 Object default = null

7 List caseBreakSet

8 List cases = node.getSwitchCases()

9 for each case, c in cases{

10 out = processBody(c, input)

11 caseBreakSet.add(clone(out))

12 if(case is default case)

13 default = out

14 input = merge(out,initialInput)

15 }

16 if ( cases.size()==0 )

17 output = initialInput

18 else{

19 if(default != null)

20 output = merge(default,out)

21 else

22 output = merge(initialInput,out)

23 }

24

25 Object finalOut = output

26 for each break set s in caseBreakSet{

27 set = handleBreaks(s,node)

28 finalOut = merge(output,set)

29 }

30 return finalOut

31 }

(a) Pseudo-code

switchKey

break

break

input

initialInput

input initialInput initialInput

break

out out out

out

result

(b) Graphical Representation

Figure 6.8: The Structural Flow-Analysis Algorithm of Switch Construct.

83



A Structure-Based Flow Analysis Framework

initial Input (since no additional code is executed). To handle the instance when a case

does match, the output is the merge of the initial Input with the last out-set of the different

cases.

Once we have theoutput from normal processing of theSwitch statement the last

thing to do is handle anybreak statements. This is done in Figure6.8(a) Statements 25

to 29. Thebreak sets stored for each case of theSwitch statement (Statement 11) are

retrieved. ThehandleBreak method is invoked on each individualbreak set to handle

all possiblebreak statements that might be present in that particular case. After merging

the possibly different sets the result (set in Figure6.8(a) Statement 27) is merged with the

output of the regular processing. This is repeated for all the cases in theSwitch statement

(Statements 26 to 29 ). The output of this merging becomes the final output of processing

aSwitch statement.

Try-Catch Construct

In the case of aTry-Catch block the algorithm needs to conservatively assume that either

the try body will run to completion or one of the caught exceptions and the corresponding

code will be executed. Also, since the code enscapsulated in the try component of the

Try-Catch block (from here on called the try body) or any of the exception handlers (from

here on called the catch bodies) can containbreak statements these need to be handled

correctly.

The algorithm starts out with processing the try body of theTry-Catch block. Then

it processes each of the catch bodies. Notice that the input to each catch body is taken

by invoking thenewCatchBodyInitialFlow method (Statement 6 in Figure6.9(a)). This

method is one of the abstract methods declared by the flow-analysis framework and the

analysis writer is required to provide an implementation for it. The purpose of the method

is to take as input a conservative approximation for the input set of the catch bodies. Since

it is not possible to predict which statement in the try block might cause an exception, it is

prohibitively expensive to store each possible flow-set which could be the input to a catch

body. Hence a conservative approximation is the best that can be handled in any reasonable

amount of time and memory. Implemented analyses in Chapter7 discuss possible conser-

vative sets for some analyses. (Note:newCatchBodyInitialFlow is different from the

84



6.3. Construct specific processing

initial flow-set used to initialize an analysis. The initial flow-set, used as input to process a

method, is a safe set for the analysis of a method whereas thenewCatchBodyInitialFlow

is a conservative approximation to the input of catchBodies occurring within aTry-Catch

construct).

1 process_Try(ASTTryNode node,Object input){

2 tryBody = node.getTryBody();

3 tryBodyOutput = processBody(tryBody,input)

4

5 List catchBodyOutput

6 inputCatch = newCatchBodyInitialFlow()

7 for each catchBody , c in node{

8 in = clone(inputCatch)

9 out = processBody(c,in)

10 catchBodyOutput.add(out)

11 }

12 mergedOut = tryBodyOutput

13 for each out-set, catchOut in catchBodyOutput

14 mergedOut = merge(catchOut,mergedOut)

15

16 mergedOut = handleBreaks(tryBodyOutput,node)

17 for each catchOutput in catchBodyOutput{

18 breakout = handleBreaks(catchOutput,node)

19 mergedOut = merge(mergedOut,breakOut)

20 }

21 return mergedOut

22 }

(a) Pseudo-code

input

out

out1

1

CatchBody

initialFlow

CatchBody

N

initialFlow

TryBody

catchOuput NcatchOuput 1

(b) Graphical Representation

Figure 6.9: The Structural Flow-Analysis Algorithm of Try-Catch Construct.

Also note that the samecatchBodyInitialFlow set is cloned and passed as input to

each of the catch bodies processed (Statements 8 and 9 in Figure6.9(a)). The reason being

85



A Structure-Based Flow Analysis Framework

that only one of these catch bodies will ever be matched and hence the input should always

be the same flow-set for all catch bodies. The result of processing the catch bodies are

stored within the catchBodyOutput list (Statement 10 in Figure6.9(a)). Once all the catch

bodies have been processed the out-sets of these and the out-set if no exception is thrown

(tryBodyOutput from Statement 3 in Figure6.9(a)) are merged in Statements 12 to 14.

The last step then is the merge of all the possiblebreak statements. Again it is im-

portant to remember that if theTry-Catch node has a label on it then either the try body

or any of the catch bodies can target this label. Hence statements 16 to 20 ensure that all

stored breaksets for the tryBodyOutput as well as the catchOutput’s are correctly handled

for break-sets. The result of merging the break-sets with the execution of the tryBody

and/or one catch bodies becomes the final output of processing theTry-Catch block.

86



Chapter 7

AST rewriting using Structure-based Flow

Analyses

In this section we discuss some structural analyses, and transformations that use infor-

mation from structure-based analyses, to further improve code readability and comprehen-

sion. With the structure-based flow analysis framework, as described in the previous chap-

ter, we now have the resources to gather any additional information required for more com-

plex transformations. More precisely, we are now able to follow the flow of data through

the AST and make conservative assumptions regarding the reachability, executionetc.of

certain areas of the code. Figure7.1shows the internals of the back-end stage where flow

analyses are performed, the results of which are then used to enable further transformations

on Dava’s AST. This stage is an iterative process since the application of a transformation

may enable further transformations.

Figure7.2 shows the implemented analyses (rectangles) and the transformations (dia-

monds) using information gathered by these analyses.

The analyses implemented (reaching definitions, reaching copies, must/may assign and

constant propagation) are all well-known compiler flow analyses. An interesting obser-

vation is that usually these analyses are used by optimizing compilers for performance

improvements. However, in the context of Dava we have used these analyses for code

simplification.

In the remaining sections of this chapter we discuss the different analyses implemented

87



AST rewriting using Structure-based Flow Analyses

Figure 7.1: AST rewriting using Structure-Based Flow Analyses

along with transformations enabled because of these analyses.

7.1 Reaching Definitions

The reaching definition analysis is the basis of other structure-based flow analyses and is

also used in transformations.A definition d: x =<expr> reaches a point p in the program

if there exists a path from p such that there is no other definition of x between d and p. The

analysis is a forward flow analysis and gathers sets of definitions that reach each program

point.

The analysis is started by invoking theprocess method of theStructuredAnalysis

class. Theprocess method takes as input the body to be processed, in this case the method

being analyzed, followed by the initial input set. The initial input set for reaching defini-

tions is the empty set since no definitions reach the start of a method. The invocation of the

process method is shown in Figure7.3.

As seen from Figure7.3the merge operation is set union since the definitions reaching

a particular point p is the combination of definitions reaching from all paths leading to p.

88



7.1. Reaching Definitions

Definitions

Reaching

Useless Locals
Removal

Uses And

Definitions

Must /May
Assign Initialization

Final Field

Elimination

Copy

Copies
Reaching 

Construction
For−Loop

Propagation

Constant

Substitution

Constant
Simplification

Expression

Elimination
Code

Redundant

Elimination
Code

Unreachable 

Figure 7.2: Implemented Flow Analyses and transformations

89



AST rewriting using Structure-based Flow Analyses

public class ReachingDefs extends StructuredAnalysis{

ASTMethodNode toAnalyze;

/�

� Invoke the main process method to start processing the ‘‘toAnalyze’’ method node.

� Notice the process method is sent an emptyFlowSet as initial input since the safe assumption

� for reaching definitions is that no definition reaches the start of a method body.

�/

public ReachingDefs(Object toAnalyze){

super();

this.toAnalyze = (ASTMethodNode)toAnalyze;

DavaFlowSet temp = (DavaFlowSet)process(toAnalyze, emptyFlowSet());

}

//Implementation of inherited abstract method

public DavaFlowSet emptyFlowSet(){

return new DavaFlowSet();

}

// Implementation of inherited abstract method. Setting merge operator to UNION

public void setMergeType(){

MERGETYPE=UNION;

}

Figure 7.3: Initializing the Reaching Definitions Flow Analysis

New reaching definitions are generated whenever a local variable is assigned a value.

Hence, whenever such an assignment statement is encountered the current flow-set’s in-

formation needs to be augmented with this new reaching definition. However, before this

addition, any previous definitions of the same variable that are currently present in the

flow-set need to be removed. Figure7.4 shows how this is carried out by over-ridding

the processStatement method of theStructuredAnalysis class. Briefly, the current

reaching definitions in the flow-set are searched to find any that match the local variable be-

90



7.1. Reaching Definitions

ing redefined. Any such definitions are removed from the flow-set. Then the new definition

statement is added to the flow-set.

public Object processStatement(Stmt s, DavaFlowSet inSet){

if(! (s instanceof DefinitionStmt))

return inSet;

DavaFlowSet toReturn = (DavaFlowSet)cloneFlowSet(inSet);

Value definedVar = ((DefinitionStmt)s).getLeftOp();

if(definedVar instanceof Local){

// KILL any previous reaching defs of definedVar

List currentReachingDefs = toReturn.toList();

Iterator listIt = currentReachingDefs.iterator();

while(listIt.hasNext()){

//each entry is a reaching definition

DefinitionStmt reachingDef = (DefinitionStmt)listIt.next();

//we know this is a definition of a local

if(definedVar.getName().compareTo(

reachingDef.getLeftOp().getName())==0){

//need to kill this from the list

toReturn.remove(reachingDef);

}

}

//GEN: add stmt s to the toReturn flow set

toReturn.add((DefinitionStmt)s);

return toReturn;

}

}

Figure 7.4: Generating new Reaching Definitions and killing previous ones

The extension of theStructuredAnalysis class also requires the programmer to pro-

vide an implementation of theabstract newCatchBodyInitialFlow method. As dis-

cussed in the previous chapter, this is the conservative assumption used in processing the

91



AST rewriting using Structure-based Flow Analyses

catch Bodies of anyTry-Catch block found in the code. ThenewCatchBodyInitialFlow

for the reaching definitions analysis is the universal set of all definitions in the method body.

This is obtained using theAllDefinitionsFinder traversal discussed in Section3.4 as

shown in Figure7.5. Once all the definitions are obtained, the initial input flow-set is

populated with these definitions and becomes the input to the catch Bodies.

/�

� Implementation of inherited abstract method. The Initial flow into catch bodies is

� the universal set of all definitions in the method being analyzed.

�/

public Object newCatchBodyInitialFlow(){

DavaFlowSet initial = emptyFlowSet();

// Use an already implemented traversal routine to find all definitions in the method

AllDefinitionsFinder defFinder = new AllDefinitionsFinder();

toAnalyze.apply(defFinder);

List allDefs = defFinder.getAllDefs();

//allDefs is the list of all definition statements in the method

Iterator defIt = allDefs.iterator();

while(defIt.hasNext())

initial.add(defIt.next());

//initial is now the universal set of all definitions

return initial;

}

Figure 7.5: Input to catch Bodies for Reaching Definitions Flow Analysis

The universal set of all definitions is used as input for catch bodies since during analysis

we are not sure which statement of the try body will result in the exception being thrown.

Figure7.6 shows pseudo-code explaining this. Any statement in the try body can poten-

tially throw an exception which can result in the execution of the catch body. Hence at the

start of the catch body we don’t know the exact flow set. One way of creating the correct

92



7.1. Reaching Definitions

flow-set would be to merge data sets for all the statements of the try body and use that

conservative assumption as the input set for the catch body. However, this requires a lot of

memory. Therefore, it is better to be even more conservative and assume that all definitions

reach the catch body.

1 d: x = ....

2 try{

3 ......... the definition d reaches this area

4 .........

5 }

6 catch(....){

7 .... the definition d might not reach this area

8 }

Figure 7.6: Conservative reaching definitions assumption for input to catch bodies

The results of the reaching definition analysis are used to compute uD-dU chains. The

uD chain is a mapping of all definitions for a use of a variable. The dU chain gives all

uses of a variable where a particular definition might reach. The uD-dU chains are useful

while looking for complicated patterns. For example, modifications to the code that moves

variable uses around needs this information since we need to make sure that the correct

definitions of variables reach each use at all times.

A direct advantage of having this information is that looking at the dU chain we can

find definitions which will never get used. These definitions can simply be removed as

long as the definition does not have any other side effectse.g., invocation of a method to

assign to a field. In the next section we discuss the creation ofFor loops which wouldn’t

be possible without uD-dU information.

7.1.1 For Loop Construction

Certain conditionalWhile loops can be represented more compactly asFor loops. Pro-

grammers generally prefer to useFor loops instead ofWhile loops particularly when the

93



AST rewriting using Structure-based Flow Analyses

loop has a consistent increment on a particular variable. AFor loop has four important

components:

� Init: This is the part of theFor loop where variables to be used in the loop body can

be declared and initialized. The init is invoked once before the first iteration of the

loop.

� Condition: The loop continues to execute as long as the condition of the loop eval-

uates to true. The condition is evaluated each time before the iteration of the loop.

� Update: This part of theFor loop is executed at the end of each iteration. It is here

than any updates of the variables can be done.

� Body: The body of theFor loop consists of the code which is to be executed as long

as the condition evaluates to true.

We define naturalFor loops as those loops where all four components of theFor loop

contain at least one expression/statement. TheWhile to For transformation looks for pat-

terns which can be converted into naturalFor loops. The pattern is shown in Figure7.7(a).

(a) Unreduced

Body A;

Init Stmts

while (cond) {

Body B

Update C

} //end while

(b) Reduced

Body A

for (Init Stmts;cond;Update C){

Body B

} // end for

Figure 7.7: TheWhile to For conversion

94



7.1. Reaching Definitions

The general form of the reduction is shown in Figure7.7(b). However, there are a

number of restrictions on the different components and the transformation succeeds only

if all restrictions are fulfilled. The procedure and the restrictions can be best explained

by going through the algorithm for the transformation. Algorithm9 outlines the steps

taken to transform aWhile loop into aFor loop. The body of an ASTNode is searched

for a sequence of statements followed by aWhile loop. The statement sequence is the

combination of Body A and Init Stmts in Figure7.7(a). These statements are then analyzed

to retrieve the init using theGetInit function.

Algorithm 9 : TheWhile to For conversion

Input : ASTNodenode

body GetBody(node)

Iterator it body.iterator()

while it.hasNext () do

node1 it.Next()

node2 GetNextNode(node1)

if node1 is a series of statements and node2 is a conditional while loopthen

init  GetInit(node1)

update GetUpdate(init,node2)

newStmts removeInitStmts(node1,init)

stmtsNode ASTStatementSequenceNode(newStmts)

condition GetCondition(node2)

whileBody GetBody(node2)

forNode ASTForLoop(init,condition,update,whileBody)

Replacenode1andnode2by stmtsNodeandforNodein body

end

end

TheGetInit function goes through the sequence of statements and gathers all state-

ments that are initializing any variables. Once all such statements have been gathered they

are analyzed to check whether the initialized variables are only used within theWhile loop

95



AST rewriting using Structure-based Flow Analyses

body. This information is readily available through the uD-dU chains created using the

reaching defs flow analysis discussed in the previous section. If all uses of variables initial-

ized in theinit are present only in theWhile body then we know that the variable is live

only within this body and hence the initialization is converted into a loop-local declaration

and initialization statement.

The next step in the algorithm is to retrieve the update statements for theFor loop to be

created. This is achieved using theGetUpdate function. We know that the last statements

to be executed before starting a new iteration are the update statements. Hence we look for

these statements in the last node of the body of theWhile loop. TheGetUpdate function

retrieves the last node and checks that it is a sequence of statements. If so, the sequence

of statements is checked to see if they update a variable which is either initialized in the

init or is part of the condition of theWhile loop. If we can not find such a statement the

transformation fails since we only want to createnatural For loops. However, if we are

able to identify update statements, these are stripped away from the sequence of statements.

This again requires the use of the uD-dU chains to check that any update being made is

not utilized in the statements following the update statement. If there is a use of the update

statement before the loop body ends, then this statement cannot be removed from its current

location in the sequence.

If an init andupdate list are successfully retrieved then we can create theFor loop.

The first step is to create the sequence of statements that will replace the existing sequence

(the combined Body A and Init stmts node of Figure7.7(a)). This is achieved by the

RemoveInitStmts function which goes through the statements and keeps only those which

do not belong to theinit. Basically we are left with Body A which is then used to create

a new statement sequence node.

TheFor loop is then created with the condition of theWhile loop as its condition and

the body of theWhile loop as its body minus the update statements which becomes the

update part of theFor loop. The new statement sequence node and theFor loop then

96



7.2. Reaching Copies

replace the old statement sequence node andWhile loop in the AST.

Function: GetUpdate

Input : List init, ASTWhileNodenode

Output : List update

body GetBody(node)

lastNode GetLastNode(body)

if lastNode is a statement sequencethen
stmt GetLastStmt(lastNode)

if stmt is a definitionStmtthen
definedLocal GetDefinedLocal(stmt)

if definedLocal occurs in initthen
update.add(stmt)

else
condition GetCondition(node)

if definedLocal occurs in conditionthen
update.add(stmt)

end

end

end

end

return update

7.2 Reaching Copies

Copy statements are defined as statements of the form a = b where both a and b are vari-

ables. The reaching copies analysis, as implemented in Dava, tracks copy statements where

both a and b are local variables. Fields were excluded from this analysis since tracking field

values requires an inter-procedural context-sensitive analysis to be able to gather informa-

tion useful enough to justify the cost of the analysis.

The analysis gathers sets of reaching copies where a copy statement reaches a program

97



AST rewriting using Structure-based Flow Analyses

point p if all paths leading to p pass through the copy statement a = b and the values of

a and b are not changed between the copy statement and the statement p. For each copy

statement, a = b, the analysis stores a local variable pair (a,b). It is a forward analysis which

uses intersection as the merge operation since we are only interested in copy statements

which definitely reach the program point p. When some local variable is assigned a value

then any previous entries in the flow set are removed since the value of the variable is

now changed. If the assignment to the local variable is from anther locali.e., it is a copy

statement then a new entry of the form (a,b), is added to the flow set.

The initial input to the method body is the empty set since no copies reach the start

of the method. The input to the catch bodies is also the empty set since we cannot safely

assume that a certain copy statement reaches a program point p within the catch body.

7.2.1 Copy Elimination

The copy elimination algorithm aims to remove useless copy statements from the code. In

doing so it also minimizes the number of variables used in the program. A copy statement

a = b is useless if at all places where variable a is used we could have used the variable b

instead. We can use variable b instead of variable a if the value of a and b has not changed

between the copy statement and its use. This information is available from the reaching

copies analysis discussed in the previous section.

The transformation starts by looking for copy statements. When a copy statement is

found it uses the dU chain, created using the reaching definitions analysis in Section7.1,

to find all the potential places that this definition might get used. Then the reaching copies

analysis is used to find out whether at each potential use of this definition the flow set

contains this definition as a reaching copy. If it does that means that the values of a and b

have not been changed between the copy statement and its use. We can therefore remove

the copy statement and use the variable b wherever there is a use of variable a.

Two real-world examples of copy elimination, from our benchmark suite, are shown

in Figure7.8. The unreduced form of the code in Figure7.8(a) shows a copy statement

x=a; which gets eliminated in the reduced version due to copy elimination. The use of

variable x (line 3 in Figure7.8(a)) has been replaced by the use of variable a in line 2 of

98



7.3. Constant Propagation

Figure7.8(c). Similarly the copy statement of line 5 in Figure7.8(b) is useless since the

next line is the only use of this copied variable and there is no reason why we can’t use the

original variable in this use. Hence the use of r1 in line 6 of Figure7.8(b) can be replaced

by the use of variable e. The copy statement (line 5) is then useless and is removed from

the code.

(a) Unreduced

1 x = a; //copy stmt

2 if(b == 3)

3 foo(x);

(b) Unreduced

1 try{

2 BodyA

3 }

4 catch(Exception e){

5 r1 = e;

6 r1.printStackTrace();

7 }

(c) Reduced

1 if (b == 3)

2 foo(a);

(d) Reduced

1 try{

2 BodyA

3 }

4 catch(Exception e){

5 e.printStackTrace();

6 }

Figure 7.8: Copy Elimination

7.3 Constant Propagation

A constant propagation analysis aims to remove unnecessary use of variables in expres-

sions. If the value of a field or local can be statically determined there is no reason why

the code should not use that value instead of the variable. A more important advantage

of constant propagation is that sometimes valuable information can be obtained regard-

99



AST rewriting using Structure-based Flow Analyses

ing conditional expressions in the code. For instance, in figure7.9, the condition checks

whether a variable x is less than the constant 5. The constant propagation data flow anal-

ysis can determine that at statement 2, before evaluating the condition, the value of x is 3.

Hence statically it can be confirmed that the condition will evaluate to true. Therefore the

condition need not be evaluated and code can flow straight to the target of the condition,

side stepping the actual evaluation of the condition (in Figure7.9 this means removing the

If statement 2) and immediately executing code A after statement 1). Similarly, if code

A does not change the value of x, then condition at statement 5 evaluates to false since

constant propagation will know that x is still 5. Therefore, statements 5 to 7 can also be

removed from the code.

(a) Original Code

1 x = 3;

2 if(x<5){

3 <code A>

4 }

5 if(x ==1){

6 <code B>

7 }

(b) Transformed Code

1 x =3

2 <code A>

Figure 7.9: Advantages of constant propagation

Second-generation obfuscators, those which go further than just renaming class mem-

bers and local variables, rely heavily on confusing decompilers by producing complicated

code guarded by opaque predicates. One form of opaque predicates is the use of conditions

which never evaluate to true. Constant propagation can sometimes help the decompiler

confirm that the condition is always false and the conditional statement along with its body

can be discarded as dead code. Section7.3.5discusses this in more detail.

100



7.3. Constant Propagation

7.3.1 The analysis

Constant propagation is a forward data flow analysis. The analysis collects sets of local

value pairs.A local has a constant value at a program point p if on all program paths from

the start of the method to point p the local has been assigned this constant value and this

definition has not been modified from its definition point to the use at program point p.

The merge operation is defined as the pair wise intersection using the following rules:

Value 1 Value 2 Result

? ? –

C ? C

C1 C2 C1 if C1 == C2

else>

> ? / C /> >

Table 7.1: Intersection for Constant Propagation. (? indicates unknown value and> represents a

non-constant value)

The flow equations for the flow analysis deal with assignment statements of the form

x = expr where x is a local. The statement kills any known belief about the values of x in

the current flow-set. The information obtained from the statement (hereafter called the gen

set) contains an entry if one of two conditions is satisfied:

� expr is a constant value, C. In this case the gen set is the pair (x,C).

� expris a local variable which has a constant value pair present in the current flow set.

Supposingx = y is the statement and (y,C) belongs to the current flow set. Then the

gen set contains the pair (x,C).

These flow equations, however, are not general enough and miss many opportunities to

gather useful information. An example of this can be seen in Figure7.10. In the figure the

merge of the out-sets of B2 and B3 (the in-set of B4) will require the intersection of the

pairs (j,2) from B2 and (j,>) from B3. This means that the in-set for B4 will contain (j,>)

101



AST rewriting using Structure-based Flow Analyses

according to our merge rules (Table7.1). This is because the analysis does not interpret the

relatively simple aggregated expressioni +1 and gives the value of> to j in B3.

j = 2; j = i +1;

Entry

B1

B2 B3

B4

int x = field1;
field2 = 1;
int i =1;

FT

b == 2

 k = array[j];

Figure 7.10: Using constant field information during Constant Propagation

The flow equations are strengthened by adding equations for assignment statements

with expressions of the formexpr1 op expr2on the RHS. Briefly: the new equations check

whether expr1 and expr2 are constant values or have constant entries in the current flow set.

If yes and if the operation is one of addition, subtraction or multiplication the operation is

performed and this value is used to generate a pair for the local being assigned. Hence in

Figure7.10 the assignment statementj = i+1 will result in the pair (j,2) since expr1 is i

which has an entry, (i,1), in the in-set and expr2 is the constant value 1. Now the merge

of (j,2) from B2 and (j,2) from B3 results in (j,2) to be present in the in-set of B4 which

comes useful during the array access in B4.

A special case of this are the increment and decrement statements (i++ and i- -). In this

case if the in-set before processing the statement contains a constant value for i the out-set

contains the incremented/decremented value.

The initial flow set, when entering the method body, is the set of local value pairs

with values for all locals set to? since locals have no initial value and must be defined

before use. However, values for formals of the method, which are also local variables, are

102



7.3. Constant Propagation

assigned the value> since they receive their values from calling sites for which we have

no information. The input to the catch bodies is the set where formals and locals are all set

to>. This is so since we need to be conservative in our analysis and assume that none of

the variables are assigned constant values.

7.3.2 Extensions

Using only local variables and only checking for simple expressions on the RHS of the

assignment statement, as opposed to also looking for simple aggregated expressions, does

not fully utilize the potential of constant propagation and gives weak results. Extensions

to the analysis were implemented trying to gather a larger data set with information about

more local variables.

Using constant value fields

The constant values field finder analysis of Section3.5can be used to increase the amount

of information available to the analysis. To recap, this analysis gathers a list of all fields

in the application which are either final fields, hence their value is constant throughout

the program, or are fields which always get the default value. It is therefore logical to

add this set of, known, constant fields to the initial in-set. Notice that this does not mean

that the analysis is now an analysis on both fields and locals. All this extension allows

is the presence of some additional information when deciding to create the gen set for an

assignment statement. Figure7.10shows an example of this. Supposefield1 is part of the

constant value list provided by the constant primitive value finder analysis in Section3.5.

If we were not to use this information in our analysis then the gen set for the assignment

statementint x =field1; in B1 would contain the pair (x,>) sincefield1 is a field and we

do not track field values. However, if the in-set contained information about the constant

value fields then the gen set would for this statement would be (x,0) since (field1,0) will be

present in the in-set.

One thing to remember is that the only time a pair (x,const) where x is a field is added to

the in-set is the entry to a method. All such pairs are created from the list of constant value

fields provided by the constant primitive value finder analysis. In particular the statement

103



AST rewriting using Structure-based Flow Analyses

field2 = 1; contains an assignment to a field and is NOT added to the in-set. Although field

information can help, in the same way as local information can, in the general case it is

harder to track values of fields.

Conditional Expression results

Vital information about variables can be obtained from the conditional expressions in con-

ditional statements:If and If-Else and theSwitch construct. For instance, in Fig-

ure 7.10, the true branch of theIf statement is taken only if the local b has the value

2. Hence while entering the basic block B2 we know that (b,2) is valid. Although this in-

formation is short livedi.e., valid only within the basic block it can help gather information

regarding other locals which might be valid even after the basic block ends. Depending on

the type of conditional expression different beliefs can be generated. These are as follows:

� In anIf statement if the conditional expression is a boolean variable then the variable

holds the value true within the body of theIf statement.

� If the conditional expression of anIf-Else statement contains a boolean variable

then one of two things can occur:

1. If the variable is not negated, using the ! symbol, then the boolean variable is

true in thethen branch and false in theelsebranch.

2. If the variable is negated then the boolean variable is false in thethen branch

and true in theelsebranch.

� If an If-Else statement contains a binary comparison operation using the == or !=

comparison operators some information can be inferred about the operands. Assum-

ing the conditional expression isexpr1 op expr2then the types of inferences possible

are shown in Table7.2.

Similar inferences can be made for theIf statement for the == operator. One impor-

tant point to be careful of is that if there is a previous constant belief about a local

used in a conditional expr then that belief should get preference over any belief that

might get added due to the conditional expression. The reason being that a belief

104



7.3. Constant Propagation

expr1 op expr2 Result

constant == / != constant no information

constant == local add (local,constant) tothen branch

constant != local add (local,constant) toelsebranch

local == constant add (local,constant) tothen branch

local != constant add (local,constant) toelsebranch

local1 == local2 if (local1,const)2 in-set add (local2,const) tothen branch

else if (local2,const)2 in-set add (local1,const) tothen branch

local1 != local2 if (local1,const)2 in-set add (local2,const) toelsebranch

else if (local2,const)2 in-set add (local1,const) toelsebranch

Table 7.2: Strengthening Constant Propagation using Conditional comparison operations

which is not generated within a condition has the chance to hold true after the con-

dition whereas a belief generated by a condition only holds true within one of the

branches of the condition. Figure7.11shows a code snippet which illustrates this.

1 a=2;

2 if (a==3){

3 <code A>

4 }

5 <code B>

Figure 7.11: Preference to existing constant values

In Figure7.11using constant propagation we know that the out-set of statement 1

will contain (a,2). The conditional expression in statement 2 will generate (a,3) for

code A. However, if we were to add this pair to the in-set then the merge at the

end of theIf statement will try intersecting (a,2) with (a,3). This will generate the

pair (a,>) in the out-set which causes loss of information. In fact the condition in

statement 2 will always evaluate to false and is dead code. Section7.3.5discusses

105



AST rewriting using Structure-based Flow Analyses

more on this. In short, a belief is only generated from a conditional expression if

there is no existing belief regarding the variables involved prior to the evaluation of

the expression.

TheSwitch statement can also give some information for the value of a local. Suppose

the key for aSwitch statement is a local variable. Then within a particular case of the

Switch statement the value of the local is the same as the value checked in the case state-

ment. Again if any previous constant entry exists then the previous entry gets preference

since we know for sure that the particular case with a different constant value than the entry

in the in-set will never get matched and is essentially dead code (Section7.3.5).

7.3.3 Constant Substitution

The information gathered by the extended constant propagation analysis are used by a

transformation routine which searches for uses of locals in the code. At each such use

the constant propagation analysis results are queried to check whether we can statically

determine the value of this local at this point. If such an entry is found the use of the local

is replaced by the constant value. Some key things to keep in mind are:

� For querying the results of constant propagation on loops one needs to retrieve and

query the out-set of the loop. This is because only the entries in the out-set hold true

at all stages of the loop (first iteration, any middle iteration or when the exit condition

holds).

� In a For loop any locals used in theinit must be queried in the in-set of theFor

loop whereas the condition and theupdateshould be checked using the out-set. The

reasoning is the same as the case above.

� Conditional statements (If andIf-Else) and all other statements in the code use the

in-set for the statement to query for constant values for locals.

Immediately after applying constant substitution new uD-dU chains are created, using the

reaching definitions analysis introduced in Section7.1. This allows the application of use-

less local variable removal. Since local uses might have been substituted for constant val-

106



7.3. Constant Propagation

ues there is a good chance that some variable is declared and initialized but never used. All

these are removed from the code.

7.3.4 Expression Simplification

A direct effect of applying constant propagation is that expressions can be simplified. Fig-

ure 7.12 illustrates this. The code in Figure7.12(a) shows original code which is com-

piled and then decompiled with constant propagation enabled. The output is shown in Fig-

ure7.12(b). It is clear that the local variable cleaner is not doing its job. The reason being

that the implementation of the local variable cleaner only looks for definitions with locals

or constants on the RHS. In Figure7.12(b) we see that the RHS of statements 2 to 5 contain

aggregated expressions. However, it is obvious that these statements can be simplified. An

expression simplification pass of the AST is made after applying constant substitution. This

results in code shown in Figure7.12(c). Here the expressions were simplified by applying

the operations being performed between different constants. The resulting statements were

all of the formlocal = constant. The local variable cleaner then removes all of these state-

ments. The expression simplification checks for binary operations of the form constant1

op constant2 where the operation can be addition, subtraction or division. The conversion

is then made by evaluating the result of the operation and the binary operation is replaced

by the constant value result. This is applied moving upwards from the lowest subtree of an

expression tree all the way to the root resulting in the ability to simplify an expression with

multiple operations.

A specialized form of expression simplification is conditional expression simplification.

The aggregation patterns of Chapter5 can create complex aggregated conditions. Constant

propagation on these aggregated conditions can help replace some of the locals with con-

stants. It is important to simplify conditions as much as possible since they play a vital role

in program understanding. A number of simplification strategies are applied. These are

briefly discussed below:

Simplifying unary boolean constants: This converts conditions of the form !true to

false and !false to true.

Simplifying binary conditional expressions: These involve expressions of the form

107



AST rewriting using Structure-based Flow Analyses

(a) Original Code

1 int a = 2;

2 int b = a*3;

3 int c = a-b;

4 int d = c + a;

5 int e = 5;

6 int x = a +b +c +d +e;

7 System.out.println(a+b+c+d+e+x);

(b) After Constant Propagation

1 int i1, i2, i3, i5;

2 i1 = 2 * 3;

3 i2 = 2 - 6;

4 i3 = -4 + 2;

5 i5 = 2 + 6 + -4 + -2 + 5;

6 System.out.println(2 + 6 + -4 +

7 -2 + 5 + 7);

(c) After Expression Simplification

1 System.out.println(14);

Figure 7.12: Advantages of constant propagation

expr1 op expr2where the operation can be any of the relational operations (==,>=,>,<=,<,!=).

If expr1 and expr2 are constants then the comparison is carried out and the binary expres-

sions is replaced by its truth value obtained on evaluation. For instance 2==3 is replaced

by false.

Simplifying complex aggregated conditions: These involve conditions aggregated

together using && orjj symbols. Aggregated conditions using the && aggregation symbol

are first matched against Table7.3. The first four rows are the truth table for boolean truth

values for the && operator. The remaining for rows deal with && aggregation when one

of the two conditions is a constant and the other an expression to be evaluated.

If Expr 1 is a constant boolean but Expr 2 is an expression to be evaluated then the result

of the simplification is Expr 2 if the boolean constant is true (since now the RHS has to be

evaluated) or is false if the boolean constant is false (since RHS will never be evaluated).

In the case Expr 2 is a boolean constant Expr 1 is always evaluated. The condition can be

simplified by removing the LHS constant if it is true but in the case the constant is false

108



7.3. Constant Propagation

Expr 1 Expr 2 Result

true true true

true false false

false true false

false false false

true Expr 2 Expr 2

false Expr 2 false

Expr 1 true Expr 1

Expr 1 false Expr1 && false

Table 7.3: Simplifying the && condition

we cannot remove the constant as the condition itself is always false. The reason is that

even though we know that the condition is false we cannot simplify the condition to just

the boolean constant false is because of any potential side-effects that might be caused by

the evaluation of Expr 1. If basic tests can show that Expr 1 does not have any side-effects

then this can also be removed to further simplify the condition.

Table7.4gives a similar simplification for thejj operator. Reasoning about the simpli-

fication when dealing with one boolean constant and one expression is the same as that for

the && operator. Using tables7.3and7.4the complex aggregated conditions are simplified

as much as possible. As a last effort, if the condition still contains aggregation, we apply

DeMorgans law. The law states that:

!A && !B � !(A jj B)

!A jj !B � !(A && B)

An example of this is shown in Figure7.13.

7.3.5 Removing Redundant Conditional Statements

Once the conditional expressions have been simplified, after the application of constant

propagation, it is sometimes possible to remove redundantIf and If-Else statements

109



AST rewriting using Structure-based Flow Analyses

Expr 1 Expr 2 Result

true true true

true false true

false true true

false false false

true Expr 2 true

false Expr 2 Expr 2

Expr 1 true Expr 1jj true

Expr 1 false Expr1

Table 7.4: Simplifying thejj condition

(a) Original Code

1 if (a && b || c && d)

2 return true;

(b) Decompiled Code

1 if ( (z0 && z1) ||

2 (!( !(z2) || !(z3))) )

3 return true;

(c) After DeMorgans simplification

1 if ( (z0 && z1) || (z2 && z3) )

2 return true;

Figure 7.13: Simplifying conditions using DeMorgans Law

110



7.3. Constant Propagation

from the code. If the conditional expression is anIf statement, and if we know that the

condition has been simplified to a boolean constant, one of two things can occur:

1. The condition is the constant:true. In this case we know that the body of theIf

statement will always be executed. However, removing theIf statement and copying

its body into the parent node can produce incorrect Java code. In Figure7.14(a) one

would assume that since the code inside theIf statement is always executed there is

no need to check the condition and the code inside can simply be moved out of theIf

statement. However, as seen in Figure7.14(b) this can result in potentially uncompi-

lable code since the code labeledcodeA is dead code because of the return statement

copied out of theIf statement. Hence removal of such conditional statements is al-

ways followed by the analysis discussed next (Section7.3.6). This analysis looks for

unreachable pieces of code and removes it from the AST.

(a) Original Code

1 public void foo(){

2 <snip>

3 if(true){

4 return;

5 }

6 <codeA>

7 }

(b) Incorrect Transformation

1 public void foo(){

2 <snip>

3

4 return;

5 //javac compiler will give an error at this

6 //point due to unreachable code

7 <codeA>

8 }

Figure 7.14: Removing always trueIf statement

2. The constant condition is false. In this case theIf statement along with its body is

dead code and is removed from the code.

Similar to theIf statement, if on simplification anIf-Else statement contains a boolean

constant one of two things are possible:

111



AST rewriting using Structure-based Flow Analyses

1. The constant condition is true. This implies that thethen branch always executes.

Hence theIf-Else statement is removed and is replaced by the code in thethen

branch of the statement. Again simply moving thethen body out of theIf-Else

statement can cause potential compilation errors due to reasons similar to those of

removing the code out of aIf statement with atrue condition. The unreachable

code analysis discussed in Section7.3.6is applied right after this transformation to

remove any dead code produced.

2. The constant condition is false. This means that theelsebranch will be executed.

The same pattern as the above is appliedi.e., the If-Else statement is removed

and replaced by theelsebranch of the statement. The unreachable code elimination

transformation discussed is applied immediately afterwords to remove dead code.

7.3.6 Unreachable code Elimination

The unreachable code detection is carried out using a structure-based flow analysis. A

program point p is considered unreachable if there is no path from the start of the method

which can lead to program point p. SOOT already includes a dead code eliminator which

eliminates any dead code present in the bytecode read from the class file. However, certain

analyses like the redundant condition elimination discussed in the previous section can

produce unreachable code. The analysis traverses the AST flowingcanReach information

as it processes different Java constructs. The flow set of the analysis always contains one

entry which istrue if this path is reachable andfalse otherwise. Abrupt statementsi.e.,

break, continue andreturn, change thecanReach information tofalse. The merge

operation is theOR operationi.e., if both flow sets containfalse then the output isfalse.

In all other cases the flow set containstrue.

One interesting thing about the analysis is that the processing of the loops does not need

a fixed point computation. The processing rules for some of the interesting constructs are

listed below:

� If a loop is reachable then the construct following the loop is always reachable. This

is in accordance with the Java language specifications. In the case of conditional

112



7.3. Constant Propagation

loops since the loop condition might not evaluate totrue hence the construct fol-

lowing the loop is always reachable if the loop itself is reachable. For unconditional

loops either the loop is intended to be an infinite loop or the next construct is reach-

able from abreak from within the loop.

� If an If statement is reachable then the construct following this statement is also

reachable. Again since the condition within theIf statement might not evaluate to

true the next construct is reachable.

� For anIf-Else statement the construct following theIf-Else statement is reach-

able as long as one of the branches of theIf-Else statement targets the natural fall

through of theIf-Else construct. In Figure7.15(a) CodeC is reachable as long as

codeB does not end with an abrupt statement. Figure7.15(b) shows how codeC can

be unreachable since both branches of theIf-Else statement sidestep the execution

of codeC.

� Any labeled construct if targeted by a reachablebreak statement is itself reachable.

7.3.7 Program Deobfuscation

A practical use of constant propagation along with the expression simplification and dead

code elimination is seen in the case of decompiling obfuscated code. As mentioned in Sec-

tion 7.3second-generation obfuscators introduce complicated code into the program being

obfuscated. This code is never executed since it does not actually do anything meaningful.

One way of preventing the code from executing is to place the code within anIf statement

whose condition never evaluates to true. An example of this is shown in Figure7.16(a).

The code is the Dava output without constant propagation for a program obfuscated using

the Zelix KlassMaster [Klaa] obfuscator. Statements 23-28 is code guarded by the boolean

flag z0. An inspection of the program shows that the only place z0 is assigned a value is

statement 8. Tracking the value of c which is being assigned to z0 shows that this is in fact

a boolean field which is never assigned a value. Since a field which is never assigned a

value receives the default value this implies that c and hence z0 after statement 8 have the

113



AST rewriting using Structure-based Flow Analyses

(a) CodeC is Reachable

1 if(cond){

2 CodeA

3 return;

4 }

5 else{

6 codeB

7 }

8 CodeC

(b) CodeC is Unreachable

1 label1:{

2 if(cond){

3 CodeA

4 return;

5 }

6 else{

7 codeB

8 break label1;

9 }

10 CodeC

11 }

Figure 7.15: Reachability analysis for theIf-Else statement

default value false. Hence the condition in statement 23 always evaluates to false and the

code 24-27 is never executed and is dead code.

Figure7.16(b) shows the effects of applying constant propagation followed by local

variable cleaning. The boolean variable z0 is detected to hold a constant value, false, after

Statement 8 in Figure7.16(a). Hence all uses of z0 in the code (Statements 14, 18 and 23)

are replaced by the constant false. Statement 8 of Figure7.16(a) becomes useless and is

removed from the program.

Looking at Figure7.16(b) we see that condition simplification will simplify the con-

dition in Statement 13 to true. This means that theIf Statement 13 is un-needed and in

Figure7.17(a) has been removed from the code by replacing it with its body. Similarly

Statement 17 of Figure7.16(b) contains the condition false. The code is dead code and is

removed from the program. Looking at the condition in Statement 22 again we see that the

If Statement 22-27 will never be executed as the condition is false. Hence this code is also

removed from the output. Once dead code elimination has been applied to the program

there is a strong chance that the AST transformations (Chapter5) might be able to simplify

114



7.3. Constant Propagation

(a) Decompiled obfuscated Code

1 class a{

2 private Vector a;

3 public static boolean b, c;

4 int a(String r1){

5 boolean z0, $z2, z3;

6 int i0, $i2, i3;

7 String r2;

8 z0 = c;

9 i0 = 0;

10 label_1:{

11 label_0:

12 while (i0 < a.size()){

13 r2 = (String) a.elementAt(i0);

14 if ( ! (z0)){

15 z3 = r2.equals(r1);

16 i3 = z3 ? 1 : 0;

17 $i2 = i3;

18 if (z0) break label_1;

19 if (i3 == 0) i0++;

20 else{

21 a.remove(i0);

22 return i0; } }

23 if (z0){

24 if ( ! (b)) $z2 = true;

25 else $z2 = false;

26 b = $z2;

27 break label_0;

28 } }

29 $i2 = -1;

30 } //end label1:

31 return $i2; } }

(b) Code After constant propagation

1 class a{

2 private Vector a;

3 public static boolean b,c;

4 int a(String r1){

5 boolean $z2, z3;

6 int i0, $i2, i3;

7 String r2;

8 i0 = 0;

9 label_1:{

10 label_0:

11 while (i0 < a.size()){

12 r2 = (String) a.elementAt(i0);

13 if ( ! (false)){

14 z3 = r2.equals(r1);

15 i3 = z3 ? 1 : 0;

16 $i2 = i3;

17 if (false) break label_1;

18 if (i3 == 0)i0++;

19 else{

20 a.remove(i0);

21 return i0; } }

22 if (false){

23 if ( !(b)) $z2 = true;

24 else $z2 = false;

25 b = $z2;

26 break label_0;

27 }

28 }

29 $i2 = -1;

30 } //end label1:

31 return $i2; }

Figure 7.16: Advantages of constant propagation

115



AST rewriting using Structure-based Flow Analyses

(a) Dead Code Elimination

1 class a{

2 private Vector a;

3 public static boolean b,c;

4 int a(String r1){

5 boolean $z2, z3;

6 int i0, $i2, i3;

7 String r2;

8

9 i0 = 0;

10 label_1:{

11 label_0:

12 while (i0 < a.size()){

13 r2 = (String) a.elementAt(i0);

14 z3 = r2.equals(r1);

15 i3 = z3 ? 1 : 0;

16 $i2 = i3;

17 if (i3 == 0) i0++;

18 else{

19 a.remove(i0);

20 return i0;

21 }

22 }

23 $i2 = -1;

24 } //end label1:

25 return $i2; }

(b) Reapplying AST Transformations

1 class a{

2 private Vector a;

3 public static boolean b,c;

4 int a(String r1){

5 boolean z3;

6 int $i2, i3;

7 String r2;

8 for (int i0=0; i0<a.size();i0++){

9 r2 = (String) a.elementAt(i0);

10 z3 = r2.equals(r1);

11 i3 = z3 ? 1 : 0;

12 if (i3 != 0){

13 a.remove(i0);

14 return i0;

15 }

16 }

17 $i2 = -1;

18 return $i2;

19 }

20 }

Figure 7.17: Dead code Elimination and AST Transformations

116



7.4. Must and May Assign

the resulting AST. Hence the set of transformations are reapplied to the AST. The resulting

output is shown in Figure7.17(b). Notice that the labeled blocks have been removed since

dead code elimination removed the abrupt edges targeting these labels. Also notice that

theIf-Else statement (Statements 17 to 21 in Figure7.17(a)) has been converted to anIf

statement using the abruptIf-Else splitter analysis in Section5.3.1.

Also theWhile loop (Statements 12 to 22 in Figure7.17(a)) has been converted to a

For loop since the transformation discussed in Section7.1.1was matched.

One other interesting thing to note is that Statements 17 and 18 of Figure7.17(b) sug-

gest that reapplying constant propagation after AST transformations will simplify the code

further. However, in our opinion the costs of constant propagation are high enough that this

should not be included within a fixed point computation of the AST. We therefore leave

these statements unchanged.

7.4 Must and May Assign

Must Assign:A local or field ismust initialized at a program point p if on all paths

from the start to p the local or field occurs on the left side of an assignment statement.

The analysis is a forward analysis with intersection as the merge operation (there needs

to be an assignment on both paths for themust condition to be satisfied). Information stored

by the analysis at different points of the program are the set of locals or fields that aremust

initialized so far. A variable is added to this set if there is an assignment to the variable.

There are no specific constructs which kill a particular variable. Variables are therefore re-

moved only by the intersection operation applied at merge points. The out(start) and in(si)

are empty sets indicating no variable has beenmust initialized so far.

May Assign:Themay assign analysis works similarly to themust analysis and differs only

in the use of union as the merge operation. Hence this analysis gathers the local or fields that

have at least one assignment on at least one path in the code. The analysis adds variables to

flow sets similar to themust analysis. However, once a variable is added it is never removed

from the set indicating the fact that a variablemay be assigned on at least some path of the

program. An example of the use ofmust andmay analyses is discussed in the next section.

117



AST rewriting using Structure-based Flow Analyses

7.4.1 Final Field Initialization

The Java Language specifies that all instance variables of a class that are declaredfinal

should be initialized at the time of construction of the object. Static final fields have to

be initialized as part of the declaration or in the static initializer block. Non-static final

fields need to be initialized as part of the declaration or within all constructors of the class

defining this instance variable. If the initialization of a final field takes place within a code

bodyi.e., not as part of the declaration statement then the field needs to be declared on ALL

paths within the code body.

When decompiling code produced by a Java compiler all field initializations are handled

correctly as the bytecode necessarily contains initializations of the fields either as part of

the constructors or as class attributes that can be retrieved.

Things start to get tricky when the bytecode being decompiled originates from a dif-

ferent source than a standard Java compiler. At the bytecode level there is no restriction

for final fields to be necessarily initialized. Hence decompiling bytecode produced from

a bytecode optimizer like Soot or code generated by other compilers, such as AspectJ,

can easily lead to decompiled output which violates the Java specifications. Java obfusca-

tors in fact exploit this by introducing uninitialized fields in the bytecode since they will

lead to uncompilable code once decompiled. Figure 7.18(a) shows such an example. The

field myField is declared final, but is never initialized. A Java compiler will not compile

this code since it violates the language specifications. Figure 7.18(b) shows decompiled

pseudo-code which can be produced when decompiling bytecode produced using an As-

pectJ compiler. In this case the Java language specifications are violated since the field

myField is not initialized on all paths in the methodfoo.

In order to generate recompilable code for bytecode produced by compilers other than

the standardjavac compiler and to thwart obfuscators we have written a transformation

which relies heavily onmustInitialize andmayInitialize analyses, discussed in the

previous section. The aim of this transformation is to ensure that if a field is declared

as final then it is alwaysmust initialized in the constructors of the class. We discuss this

transformation in the following sections.

118



7.4. Must and May Assign

(a) No assignment to final field

1 class FinalField{

2 public final int myField;

3

4 public FinalField(){

5 }

6 }

(b) Final field not initialized on all paths

1 final int myField;

2 public void foo(){

3 BodyA

4 if(cond){

5 BodyB

6 myField = <assignment>;

7 BodyC

8 }

9 BodyD

10 }

Figure 7.18: Example of final field not initialized on all paths

The Indirect Assignment Algorithm

To ensure that all final fields are always initialized theprocessField algorithm is

invoked for each field. The static modifier of the field is checked. If the field is static

then the algorithm only proceeds forward if the current method is the static initializer.

Similarly if the field is non-static then the algorithm proceeds only if the current method is

a constructor of the class.

A check is then made to see whether the field has a tag associated with it. These tags are

created by SOOT from class attributes and contain information about the constant values

in the application. If the field has a tag associated with it then the value for the field is

retrieved from the tag. If no tag is found then this indicates that the assignment to the field

is being carried out either in the static-initializer or the constructors of the class. In this

case there is a need to confirm that the field is initialized on all paths.

TheisMustInitialized method of Algorithm10checks to see whether the final field

is initialized on all paths of the method being processed. The method uses information from

the structure-basedmust assign flow analysis, discussed in the previous section. Using the

119



AST rewriting using Structure-based Flow Analyses

must assign analysis the method returns true if the final field is in fact assigned on all paths

in the method being analyzed. This guarantees that at compile time the code will not result

in a “final field not initialized error”. IfisMustInitialized returns false then we know

that compilation of this method would result in a compilation error as the field has not

being initialized on all possible paths.

Algorithm 10 : processField
Input : SootFieldfield , ASTMethodNodemethod

if !isFinal(field) then
return;

if !isStaticInitializer(method) jj !isStatic(field) then
return;

else if!isConstructor(method) jj isStatic(field) then
return;

if hasTag(field) then
return;

if isMustInitialized(field) then
return;

if !isMayInitialized(field) then
addDefaultAssignmentStatement (method, field);

else
defs getDefs(field);

handleAssignOnSomePaths (method, field, defs);

In the case that a field is notmust assigned amay assign analysis is applied (Sec-

tion 7.4) using theisMayInitialized method. Let us first consider the case where the

isMayInitialized method returns false. This indicates that there is no assignment of a

field on any path through the method. In this situation the decompiler adds a statement

assigning a default value to the field. This is achieved using the

addDefaultAssignmentStatement function. The function checks the type of the field

and accordingly adds to the AST a default assignment statement of that type: object fields

are assignednull, integers the value 0, booleans are set tofalse etc.

Now considering the case whenisMayInitialized returns true: this indicates that

there is an assignment to the field on at least one path through the program. Given that the

120



7.4. Must and May Assign

field is notmust initialized (isMustInitialized returned false), we need to transform the

AST such that themust initialize condition is fulfilled. This is handled by

handleAssignOnSomePaths which we now discuss.

Algorithm 11 : handleAssignOnSomePaths

if defs.size() ! = 1 then
cancelFinalModifier(field);

return;
end

allUses getUses(field);

if allUses! = null && allUses.size() ! = 0 then
cancelFinalModifier(field);

return;
end

clonedMethod clone(method);

newMethod createIndirection(cloneMethod,field);

if isMethodCallSafe(newMethod) then
replaceMethodBodies(method,newMethod);

return;

The aim of thehandleAssignOnSomePaths function is to rewrite the AST such that the

field under observation, currently satisfying themay initialize property, bemust initialized.

The only reason why a variable ismay initialized is that all assignments to the variable are

nested within some control flow path which might or might-not be taken. This is shown

in Figure 7.19(a) where the field ismay assigned since its assignment is within theIf

statement. The approach followed by the algorithm is to delay the assignment within the

nested control flow as much as needed such that it lies on themust initialize path. In the case

of Figure7.19(a) this means delaying the assignment to “field” until after theIf statement.

A few things have to be kept in mind while doing such a delayed assignment. One of

them being the value of the field if the path that did assign to the field is not taken. In

our example what should be the value to field ifcond evaluates to false? The suggested

transformation to delay the assignment of the field is to use a dummy variable of the same

121



AST rewriting using Structure-based Flow Analyses

(a) May assigned field

1 public void foo(){

2 BodyA

3 if(cond){

4 BodyB

5 field = <assignment>;

6 BodyC

7 }

8 BodyD

9 }

(b) Delayed Assignment makes field Must assigned

1 public void foo(){

2 <Field Type> tempField;

3 tempField = <default>

4 BodyA

5 if(cond){

6 BodyB

7 tempField = <assignment>

8 BodyC

9 }

10 field = tempField;

11 BodyD

12 }

Figure 7.19: Delaying assignment of a final field

type as the field being assigned (variable tempField in Figure7.19(b)). This variable is then

assigned a default value depending on the type of the field (object types get null, booleans

getfalse etc). Then the assignment to the actual field is substituted by an assignment to

the just created dummy field. A position in the code is then found where the original field

is assigned the value from the dummy field (in Figure7.19(b) this position is right after

the end of theIf statement). By doing this we have moved the assignment of the field to

a must assign path. In the case that themay assign path is taken, the field is assigned the

intended value. On the other hand if that path is not taken (cond evaluates to false) then

because of the default assignment to the temporary variable the field is also assigned the

default variable.

Delaying such initialization is tricky and we only deal with the cases where there is

only one assignment of the field that has to be delayed. Also, if in the original code the

field is used after it has been defined we are unable to delay the assignment since then it is

essential that the delayed statement be above all uses of the field. In our transformation we

122



7.4. Must and May Assign

delay the assignment to JUST as much as is needed to put the field assignment on themust

initialize path.

TheMay Assign structure-based analysis not only tells us whether a particular variable

may have been assigned on some path in the program but also stores the different definition

(assignment) statements that might be executed. ThehandleAssignOnSomePaths checks

whether there are more than one definition statements of the field within the code. If there

are more than one definitions, then the analysis gives up and invokes the

cancelFinalModifier method which will remove the final keyword from the field’s dec-

laration (Remember that only final fieldsmust be assigned values). If there is only one

definition then the algorithm checks whether there is any use of this field within the body

of the method. If there are any uses then the algorithm gives up trying to delay the assign-

ment to the field. In this case also the final keyword is removed from the field.

However, if there is only one definition of the field and the field is not used after its

definition then the algorithm continues with its “delaying of assignment” approach. This

is achieved by invoking thecreateIndirection method. Once the delayed method body

has been created one last thing that needs to be checked is that there is no method call

between the original assignment of the field and the new position of assignment. This is

necessary since we are delaying the assignment of a field which might be accessed by other

methods. Conservatively we restrict the transformation to only those instances in which

there is no method invoked between the old and new position of assignment.

Let us look in more detail the workings of algorithm to create the indirection. Algo-

rithm 12 shows the pseudo-code for the creation of delayed assignment. Briefly explained

the algorithm works like this:

� Create a new local variable with the same type as the final field

� Add this variable to the list of locals in the method under process (Statementt 1 in

Figure7.19(b))

� Create a default assignment statement for this new local variable

� Add default assignment statement to method body (Statement 2 in Figure7.19(b))

� Modify the current assignment statement of the field by assigning the value to the

123



AST rewriting using Structure-based Flow Analyses

new local (Statement 3 in Figure7.19(b))

� Create new indirect assignment statement of field using new variable

� Find the correct position in the method body to place this statement (Statement 4 in

Figure7.19(b))

The last part of this algorithm deserves further discussion. Our aim is to delay the

assignment to the field till as late as it is necessary.createIndirection does this by

trying to place the new assignment statement in the parent of the node in which it orig-

inally existed. If this does not result inmust initialization the algorithm tries the grand-

parent and rechecksmust initialize. If that does not work then the great-grandparent is

checked and so on. Using this algorithm we are guaranteed that the first ancestor at which

isMustInitialized returns true will be used to place the new assignment to the field.

With the help of this transformation Dava is able to ensure that there are no compilation

errors resulting from final fields not being initialized. If a final field is not assigned on all

paths then either the final keyword is removed or in some cases the assignment is delayed

to the point that the field is in fact assigned on all paths.

124



7.4. Must and May Assign

Algorithm 12 : createIndirection
Input : SootFieldfield , ASTMethodNodeclonedMethod

// Create and add local for indirect assignment

localType getType(field);

newLocal newJimpleLocal(uniqueName,localType);

addNewLocal (clonedMethod,newLocal);

// Initialize newly created local to default value

initStmt createDefaultStmt(newLocal);

index 0

addStatement (clonedMethod,initStmt,index);

// Assign required value for field to new local

defStmt getDef(field); defStmt.setLeftOp(newLocal);

// create indirect field assignment statement

assignStmt newAssignStmt(field, newLocal);

// Add indirect assignment at the first possible place

parent getParentOf(defStmt); grandParent getParentOf(parent);

while ! isMustInitialized(field) do

if isMethodNode(grandParent) then
throw new DavaError(”Unable to must-initialize”);

ancestor getParentOf(grandParent);

ancestorSubBody= ancestor.getSubBodyContaining(grandParent);

index ancestorSubBody.indexOf(grandParent);

addStatement(ancestorSubBody,assignStmt,index);

if ! isMustInitialized(field) then

// problem not solved remove the stmt just added

ancestorSubBody.removeStatement(assignStmt);

// we should put assign in one level above than current

grandParent getParentOf(grandParent);

end

end

return clonedMethod;
125



AST rewriting using Structure-based Flow Analyses

126



Chapter 8

Naming Mechanism

Local variable names present in Java source code may be lost at compile time. At

the same time the most common obfuscation technique is to rename all identifiers in an

application to meaningless and often confusing names. Until recently Dava had a very

naive naming strategy for allocating names for local variables in the decompiled code, the

result being source code with hard to follow variable names.

The new Dava back-end now contains a naming stage where all identifiers in an ap-

plication (class names, methods, fields and local variables) can be renamed. The reason

for including non-local variables as part of the namer stems from the fact that obfuscators

most often use name obfuscation to confuse the code. With a naming mechanism for all

identifiers in the application we hope to be able to build some contextual information of the

program and convey that to the programmer via identifier names.

8.1 Heuristic-based naming

There are many attributes that contribute to how a programmer names a variable. Some

basic ones that are easily identifiable are used to provide rudimentary renaming to variables

in Dava. The future work (Section11.1) discusses ideas on further improving the naming

mechanism.

� Variables used inFor loops: It is common practice to use variables named i, j or k

for driving variables inFor loops.

127



Naming Mechanism

1 for(int i=0;i<var;i++){

2 //for loop code

3 }

Figure 8.1: For loop driving variables

� Variables used as flags:Variables that haveboolean types are usually used as flags.

They can be used to terminateWhile loops or used inIf/If-Else statements. When

used in aWhile loop they represent code as shown in Figure8.2(a). The variable

notDone is used as a flag to terminate theWhile loop when a certain condition is

satisfied. Such variables can be calledflags.

1 while(notDone){

2 //while loop code

3 }

1 if(isFinished){

2 //then code

3 }

Figure 8.2: Conditional Flags

� Variables used to hold size or length of a data structure:In Java many classes,

implementing data structures, contain the methodsize or a fieldlength. Hence a

variable with the same name can give good contextual information regarding the data

it is holding.

� Variables declared final: It is common programming practice to namefinal

fields with names with capital letters (Figure8.3(b)).

� Variables whose exact names can be obtained:The use ofget andset methods

in Java gives additional hints regarding the use of a variable. Since method names

are conserved during compilation, an assignment from aget method can be used to

128



8.1. Heuristic-based naming

1 int length = classObject.length;

2 int size = classObject.size();

1 final int DIRECTION=1;

2 final int SIZE = 10;

Figure 8.3: Heuristics for size/length andfinal variables

name a variable. Similarly an argument to aset method can be given the name of

theset method.

1 id = classObject.getId();

2 name = classObject.getName();

3 index = classObject.getIndex();

4

5 classObject.setSize(size);

6 classObject.setX(x);

Figure 8.4: Usingget andset methods to get variable names

� Exception Names:It is common practice to name exception variables with the first

letters of each identifier making up the exception converted to lower case. For exam-

ple a variable of type FileNotFoundException can be named fnfe and an IOException

variable can be named ioe.

� Main method argument: A rather trivial heuristic, only applicable to themain

method of an application, this heuristic looks for the main method and names the

argument of the method toargs.

� Arrays: If a better name for an array variable is not available then one can append

the type of the variable to the string “array” to convey to the programmer that this is

an array. Hence we can have variables with names intArray or nodeArrayetc..

129



Naming Mechanism

� Local assignment using fields:Since compiled code contains field names, a local

variable assigned a field value can be given a name similar to the field.

� Object type: If a local is assigned the result of creating a new object or if an object

is cast to a particular type then the type of the variable can be used to decide on the

name of the variable.

� Remove confusing characters:Confusing symbols should in all cases be removed

from variable names. These include the use of $ symbols, generated by SOOT for

internal (stack) variables. At the same time obfuscators tend to add other confusing

characters such as a sequence of underscores or combinations of the letter S and the

digit 5. The renamer looks for such sequences and removes them.

8.2 Displaying qualified types

Java bytecode represents objects with their fully qualified types. For instance, if a class ex-

tends theThread class the class definition would contain “extends java.lang.Thread”.

Similarly, a field or local of typeString would have the definitionjava.lang.String.

This ensures that all types are explicit and no confusion occurs when executing code for

objects of the same class names, but belonging to different packages. An example of this

can be the use ofTimer objects in Java. Thejava.util package and thejavax.swing

package both contain aTimer class. Hence in this case, or in any application that uses

different classes with the same name, it is critical that there be no type ambiguities.

Type ambiguities are handled by restricting the Java compiler to only allow unambigu-

ous types at compilation. Hence in the presence of only one importedTimer class it is legal

to use “Timer t” to define aTimer object with name t which belongs to whichever type is

imported in the class definition (In Figure8.5(a) the timer object t has typejava.util.Timer

since that is the imported class). However, if multiple Timer classes have been imported

then the user has to explicitly refer to each type. The code in Figure8.5(b) shows a

Java program which will produce compile time errors since the packagesjava.util and

javax.swing both have Timer classes. Statements 4 and 5 define ambiguous Timer objects

and need to be fully qualified in order for the program to compile.

130



8.2. Displaying qualified types

(a) Legal variable declarations

1 import java.util.Timer;

2 public class TimerTest{

3 Timer t;

4 }

(b) Illegal variable declarations

1 import java.util.*;

2 import javax.swing.*;

3 public class TimerTest{

4 Timer swingTimer;

5 Timer utilTimer;

6 <code>

7 }

Figure 8.5: Qualified Variable types

Another related, and important, restriction is that in the case of importing two classes

with the same name it is illegal to import the fully qualified class names. Figure8.6(a)

shows two illegal import statements (Statements 1 and 2). If classes from different packages

but with the same name have to be imported then instead of importing the classes the

packages need to be imported. Figure8.6(b) shows the correct version of the code. Notice

that the Timer objects (Statements 4 and 5) are created using the fully qualified type name.

(a) Illegal Class Imports

1 import java.util.Timer;

2 import javax.swing.Timer;

3 public class TimerTest{

4 <code>

5 }

(b) Legal Imports

1 import java.util.*;

2 import javax.swing.*;

3 public class TimerTest{

4 javax.swing.Timer swingTimer;

5 java.util.Timer utilTimer;

6 <code>

7 }

Figure 8.6: Importing classes with the same name

131



Naming Mechanism

When decompiling bytecode, the original Dava front-end always produced code with

fully qualified type names even though most of the time the types are unambiguous. This

resulted in verbose code. A back-end transformation has now been implemented which

converts unambiguous types to their truncated form. An important requirement for deciding

when a type is ambiguous is knowing exactly which classes have been imported. Hence, the

first step for this transformation is to detect all Java classes that need to be imported. This

is done by processing the entire Java class being decompiled and storing all references to

library and application classes. Note that we do not store the list of packages to be imported

but the individual classes that are needed by the Java class. This is necessary since we

intend to look for cases when two classes with the same Java class name but belonging to

different Java packages are imported.

The removal of fully qualified class names occurs at the time the decompiled code is be-

ing output. The transformation implemented checks whether a class type is being printed.

At this time the truncated name of the type being printed is checked with the list of imported

classes. If the import list contains multiple classes matching the truncated name then the re-

moval of the fully qualified name for this type will result in an ambiguity. If only one match

is found then the qualified name can be truncated. Hence, looking back at Figure8.5(a)

when the decompiler is printing statement 3, the declaration of thejava.util.Timer ob-

ject, the type name can be truncated since the import list only contains oneTimer class.

If an ambiguity existsi.e., the import list contains two classes belonging to different

packages with the same name, then not only can we not truncate the fully qualified name

of the class but we also need to import the entire package instead of explicitly importing

the class. This is shown in Figure8.6(b). Statement 4 and 5 are two declarations ofTimer

objects belonging to different packages. When the decompiler creates the import list both

java.util.Timer andjavax.swing.Timer will be present in this list. When the types

of the declaration statements are being printed the list will be searched for the truncated

name,Timer. Since multiple occurrences of this name will be found the type names in

statements 4 and 5 will be left un-truncated. At the same time the import statements for the

two Timer classes are marked such that instead of printing the explicit imports to the two

132



8.2. Displaying qualified types

Timer classes their respective packages are imported, as seen from statements 1 and 2 in

Figure8.6(b). Using this transformation most of the types (fields, formals, locals etc) get

truncated names since ambiguities rarely exist.

133



Naming Mechanism

134



Chapter 9

Testing and Empirical Results

The key requirement in our implementation has always been the correctness of the

transformations. Previously, Dava produced semantically correct but complicated output.

The newly introduced back-end aims to improve the code quality but should not do so

at the expense of producing incorrect code. Great care has been taken to ensure that the

semantics of the program don’t change because of the transformations performed. This

requires not only confidence in the correctness of the transformation but also testing the

semantic equivalence of the AST before and after transformations and the interaction of

transformations when applied iteratively to a program.

We performed two types of experiments. The first kind performs unit testing for each

implemented transformation and analysis (discussed in the next section). Since the goal of

the back-end is to simplify the code we needed to evaluate the effects of the transformations.

We designed a set of metrics that give insight to the complexity and comprehensibility of

the code. The second set of experiments computes these metrics for a set of benchmarks.

In Section9.2we discuss the metrics and benchmarks used in our experiments. Empirical

data and its discussion can be found in Sections9.4and 9.5.

9.1 Unit Testing

As each transformation was implemented, we created test cases that checked that the trans-

formation was sound. These stress cases check for bugs in the implementation and ensure

135



Testing and Empirical Results

that the transformations result in the desired control flow. Since the transformations ap-

ply pattern matching techniques another very important set of tests were the cases where

a pattern does not get matched. Hence by checking both cases: when the pattern should

get matched and when it shouldn’t we are sure that the transformations will not change

the program behavior. Another advantage of using test cases is they can be used to reason

about the control flow.

9.2 Complexity Metrics

We experimented with a wide variety of metrics and in this section we present those metrics

that we found to be most useful for the purposes of evaluating the quality of code produced

by decompilers.1 We first present the simplest metrics for size and counting relevant con-

structs. One of the key differences among decompilers is their treatment of conditional

expressions and hence we define aconditional complexitymetric designed to expose those

differences. Finally, a special problem introduced in decompilation and obfuscation is the

naming of identifiers. Hence, we introduce anidentifier complexitymetric to measure the

complexity of identifier names.

All of the metrics were computed using specialized traversals over the abstract syntax

tree (AST) representation of Java source as produced by the polyglot-based SOOT front-

end.

9.2.1 Program Size

A simple program size metric is useless in comparing twodifferentprograms other than to

say one is larger than the other. However, this metric can be very useful in comparing two

representations of thesameprogram. Arguably, more verbose code is more complex and

this metric is a good high-level measurement to see if decompilers produce unnecessarily

verbose code and if obfuscators inserted useless code.

For our purposes, we defineprogram sizeto be the number of nodes in program’s AST

1The design and implementation of these metrics has been done jointly with Micheal Batchelder from the
School of Computer Science, McGill University, who is currently working on the JBCO obfuscator

136



9.2. Complexity Metrics

representation. Measuring size in this way discounts comments, spurious parentheses and

any program formatting issues.

9.2.2 Number of Java Constructs

Another simple metric for the comprehensibility of a Java program is the frequency of

different Java constructs in the code. Of course it is necessary to identify which constructs

are strong indicators of complexity. After considering empirical results, we narrowed our

attention to four categories:

� If andIf-Else statements (Simple Conditionals)

� Abrupt control flow (break andcontinue)

� Labeled blocks

� Local variables

Simple conditionals help to indicate the amount of decision-making in a program. A

more complex program will have more branching and therefore moreIf and If-Else

statements.

Abrupt control flow directives are even more indicative of complex programming. It

is argued that the use of these statements decreases the tractability of control flow and

therefore increases code complexity.

Labeled blocks are compound statements which are explicitly labeled. While program-

mers will often section their code using blocks, the existence of a label suggests the block

is used for controlling execution flow (through the use of a explicitly labeledbreak or

continue). Other than exception handling, this is one of the most complex control flow

mechanisms in Java.

Local variable counts can also indicate complexity. The more information one must

consider when reading code the harder it is to understand. Programmers don’t usually

create unnecessary identifiers, but tools like decompilers and obfuscators often do.

137



Testing and Empirical Results

9.2.3 Conditional Complexity

Boolean expressions which decide control flow in a program (i.e., those decidingIf, For,

and While branching) play a particularly crucial role in analyzing code. Aside from

boolean constants (true or false), the simplest conditional expressions consist of a unary

boolean literal - a boolean variable. This is assigned a complexity weight of 1. However,

conditional expressions can be aggregations or nestings of simpler expressions. A boolean

literal can be reversed with the negation operator, ! or relational operators (<,>,<=,>=,

==) can be used to compare expressions. We argue that these operators, while more com-

plex than a single boolean, are still fairly easy to understand and therefore we give them a

weight of 0.5. Expression aggregation using the && orjj operators requires the reader of

code to evaluate the meaning of two subexpressions and then to combine the two - arguably

a more complex task - so we define the weight for these operators to be 1.

The complexity for each boolean expression in a program is simply the sum of all the

weights described above. Taking the subtree that represents the expression, the leaves of

the tree are boolean literals (increasing the complexity by 1 each) and every internal node

is either an unary, relational, or binary operation (increasing the complexity by 0.5, 0.5, or

1, respectively).

Given this description, the expressiona<b && !done would be assigned a complexity

of 5. a<b refers to two variables (weight of 1 each) and the relational operator giving it

a complexity of 2.5.!done is a boolean with a negation operator and is given 1.5. The

aggregation (&&) adds another 1 to the overall complexity for a total of 5.

Average conditional complexityfor a program is simply the average of the conditional

complexities over all boolean expressions in the program.

9.2.4 Identifier Complexity

The name used for an identifier can provide valuable insight into the context in which the

variable is used. This in turn can ease a programmer’s task of understanding the code.

Indeed, most obfuscators garble identifiers in a program. We compute the complexity of

identifiers by calculating a sum of complexities for all identifiers where each is weighted

by a relative importance. An identifierx has it’s importance factorI(x) defined as follows:

138



9.3. Benchmarks

I(x) is 4 if x is a method name, 3 if it is a class identifier, 2 if it is a field, 1.5 if it is a formal

and locals have 1 as the importance factor.

We argue that method names are particularly important for program understanding so

we give them the highest importance value. Each identifier’s complexity is computed as the

sum of token and character complexities (described below) multiplied by their importance

factor. Total identifier complexity is then calculated as a sum over all individual identifier

complexities.

Token complexity is a measure of recognizable language. Alpha tokens are parsed and

delimited by non-alphas and uppercase alphas. For example,getASTNode is split intoget,

AST andNode. Notice ASTNode is split into two tokens, the second one starting with a

capital alpha). Similarly,___Junk$$name is broken intoJunk andname. Tokens are then

counted and thetoken complexityis defined as the ratio of total tokens to those found in

a dictionary.2 If the dictionary contains the tokensget andNode but notAST then token

complexity forgetASTNode will be 1.5.

Character complexity is a ratio of total characters to those classified as non-complex.

Non-complex characters are those which arenotpart of a sequence of non-alphas of length

greater than 1. The character complexity for the identifier___Junk$$name, for example,

is 1.625 as there are five complex to 8 non-complex characters (, , , $ , $ and J, u, n, k,

n, a, m, e, respectively). Note that a sequence of non-alphas of length one is not considered

as complex since it very likely exists as a word separator, as inget Socket.

9.3 Benchmarks

The benchmarks have been culled from a graduate-level compiler optimizations course

where students were required to develop interesting and computation-intensive programs

for comparing the performance of various Java Virtual Machines. Each one was written in

the Java source language and compiled withjavac. The following is a brief description of

each.
2The dictionary used in our experiments was a standard English language dictionary. However, one could

use a special-purpose dictionary that also contained domain-specific identifiers.

139



Testing and Empirical Results

Asac: is a multi-threaded sorter which compares the performance of the Bubble Sort, Se-

lection Sort, and Quick Sort algorithms.

Chromo: implements a genetic algorithm, an optimization technique that uses randomiza-

tion instead of a deterministic search strategy. It generates a random population of

chromosomes. With mutations and crossovers it tries to achieve the best chromosome

over successive generations.

Decode: implements an algorithm for decoding encrypted messages using Shamir’s Secret

Sharing scheme.

FFT: performs fast fourier transformations on complex double precision data.

Fractal: generates a tree-like (as in leaves) fractal image.

LU: implements Lower/Upper Triangular Decomposition for matrix factorization.

Matrix: performs the inversion function on matrices.

Probe: uses the Poisson distribution to compute a theoretical approximation to pi for a

given alpha.

Sliding: solves the well-known Sliding Block Puzzle Problem.

Traffic: is an animation of a road intersection controlled by a traffic signal. It uses multi-

threading to simulate cars moving through the intersection.

Triphase: performs three separate numerically-intensive programs. The first is linpack

linear system solver that performs heavy double precision floating-point arithmetic.

The second is a heavily multithreaded matrix multiplication algorithm. The third is

a multithreaded variant of the Sieve prime-finder algorithm.

The benchmarks we selected are not large (our size metric is shown in Figure9.1), but

are quite varied and exhibit many different properties and coding styles.3

3We would have liked to experiment with some larger benchmarks as well, but in order to do so in a
rigorous manner all of the decompilers and obfuscators would have to work correctly on those benchmarks.
This appears not to be the case. As the other tools mature and become more robust on larger applications, it
will be possible to experiment with larger programs.

140



9.4. Evaluation of Decompiled Code

9.4 Evaluation of Decompiled Code

We discuss the results obtained from measuring the decompiled output of different decom-

pilers. Each benchmark was decompiled using four different decompilers: the original

Dava decompiler (henceforth referred to as Dava(Original)), the improved version of Dava

(referred to as Dava(Improved)), Jad[Jad] and SourceAgain[Sou].

9.4.1 Program Size

Since each decompiler has its own source code formatting style, we normalized all output

with a style formatter (JRefactory’s JavaStyle [JRe]) in order to remove these differences.

The formatter ensures that the AST contains the same number of AST nodes for the same

constructs (anIf block with one statement in its body is calculated the same whether

brackets exist, distinguishing the block as a compound statement, or not). Figure9.1shows

the number of nodes in the AST for all benchmarks. Traffic is largest with triphase, sliding,

and chromo following it.

It is interesting to note that the output produced by different decompilers does change

0

1000

2000

3000

4000

5000

6000

7000

8000

Fractal asac triphase LU decode probe sliding traffic Matrix FFT chromo

Original

Jad

SourceAgain

Dava(Improved)

Dava(Original)

Figure 9.1: Program size for decompiled code

the size of the code. Dava(Original)i.e., Dava without its back-end enabled produces the

141



Testing and Empirical Results

largest size AST. However, once the back-end is enabled this AST decreases in size (mostly

because of the removal of abrupt statements and labeled blocks and the aggregation of

conditional statements using the boolean && andjj operators). Usually the output produced

by Jad and SourceAgain matches very closely to the original source code. This being an

expected result since the decompilers use pattern matching to reverse the code generated

by the compiler used.

9.4.2 Conditional Statements

Since Dava(Original) did not deal with short-circuit control flow created by && andjj op-

erators, it produces moreIf andIf-Else statements. Dava(Improved) implements numer-

ous aggregation transformations, greatly reducing the number of conditionals, as supported

by the metrics in Figure9.2attests to this fact.4

0

20

40

60

80

100

120

140

160

Fractal asac triphase probe sliding traffic Matrix chromo

Original
Jad
SourceAgain
Dava(Improved)
Dava(Original)

Figure 9.2: Conditional statements for decompiled code

The largest peaks for the number of conditionals are from Dava(Original). With

Dava(Improved), however, there is a drastic drop in these constructs which, in most cases,

matches that of the other decompilers. Interestingly, all decompiler output (except

Dava(Original)) for the sliding benchmark contain fewer conditionals than the original

4Note that in this and subsequent graphs we do not show results for benchmarks for which the metrics are
the same, or nearly the same, for all versions of the benchmark.

142



9.4. Evaluation of Decompiled Code

source. This would indicate that the benchmark’s original code used very simple non-

aggregated conditional statements and was perhaps written by a novice programmer. An

examination of this benchmark proved this. Figure9.3(a) shows a code snippet from the

original source code of the sliding benchmark. Statement 3 in the code is an

Unconditional-While loop and statement 4 and 5 are the exit condition for the loop.

In the decompiled code produced by Dava we see that theUnconditional-While loop

has been replaced by a conditional loop by pulling in the condition from statement 4 into

the loop body (use of aggregation pattern discussed in Section5.2.2). Another bad pro-

gramming instance is detected at statements 9 and 10 of Figure9.3(a) where theIf-Else

statement contains an emptyif body. This has been converted by Dava to anIf statement

with the condition negated (Statements 8 and 9 in Figure9.3(b)).

An interesting observation is that the general strategies in Dava(Improved) sometimes

find more aggregation opportunities than Jad and SourceAgain (asac and chromo), and

sometimes find fewer (triphase). This demonstrates that different decompilation strategies

can impact the quality of the output.

9.4.3 Condition Complexity

Conditional complexity is a measure of the complexity of the boolean expressions within

conditional constructs (If, If-Else, and loop constructs). Conditional complexity in-

creases as boolean subexpressions are aggregated using the && orjj operators. At the

same time the use of negations (!) also increases conditional complexity. Figure9.4shows

conditional complexity for the benchmarks.

For most benchmarks Jad and SourceAgain produce code with almost the same measure

as the original. Small variations occur when a boolean flag is represented using the negated

flag and vice versa.

An exception to this is the sliding benchmark. Here we see that all the decompilers

increase the complexity by almost the same amount. This again strengthens our belief

that the benchmark was written by a novice programmer who used simple non-aggregated

boolean expressions. The decompilers merely detect the chance to aggregate the different

conditions and in doing so increase the conditional complexity and reduce the number of

143



Testing and Empirical Results

(a) Original Source code

1 public static int search(Problem p) throws Exception {

2 nodes.add(new Node(p.getStartState()));

3 while (true) {

4 if (nodes.size() == 0)

5 throw new Exception("No solution found!");

6 <snip>

7 for (i = 0; i < succ.size(); i++) {

8 Node toInsert = (Node) succ.elementAt(i);

9 if (FindCycle(toInsert, x, y)) ;

10 else nodes.add(toInsert);

11 }

12 }

13 }

(b) Dava(Improved) output

1 public static int search(Problem p) throws Exception{

2 nodes.add(new Node(p.getStartState()));

3 while (nodes.size() != 0){

4 n = Astar.removeBest();

5 <snip>

6 for (i = 0; i < succ.size(); i++){

7 toInsert = (Node) succ.elementAt(i);

8 if ( ! (Astar.FindCycle(toInsert, x, y)))

9 nodes.add(toInsert);

10 }

11 }

12 throw new Exception("No solution found!");

13 }

Figure 9.3: Detecting simple non-aggregated conditional statements in original Source

144



9.4. Evaluation of Decompiled Code

0

0.5

1

1.5

2

2.5

3

3.5

4

Fractal asac triphase probe sliding LU traffic Matrix chromo

Original
Jad
SourceAgain
Dava(Improved)
Dava(Original)

Figure 9.4: Average Condition Complexity for decompiled code

If andIf-Else statements.

Comparing Dava(Improved) and Dava(Original) we see that apart from the probe bench-

mark there is a definite increase in conditional complexity implying the aggregation of con-

ditions. When we investigated the probe code, we noticed that whereas Dava(Original) was

creating conditions of the form “!flag” Dava(Improved) was able to switch the bodies to

have conditions of the form “flag”. Further, there was no chance of aggregation in the code.

Thus, the removal of negation decreases the complexity and we see this in the complexity

values for probe.

By examining the values for the original metrics, we see that a conditional complexity

between 2 and 3 is normal. In the future, a metric-aware Dava could use its aggregation

transformation sparingly in an attempt to maintain this level.

9.4.4 Abrupt Control Flow

Eliminating Break and Continue statements is one of the key transformations imple-

mented in Dava(Improved). We argue that these abrupt control flow devices, of all Java

145



Testing and Empirical Results

constructs, add the most complexity to source code because they represent disjoint exe-

cution flow. The more abrupt edges there are in a program, the less the code reads se-

quentially. This makes it difficult for a programmer because it increases the the number of

scoping levels that must be kept track of, as well as the cohesion of disparate code chunks.

Out of all the benchmarks, sliding and traffic were the only ones which had a sizable

number ofbreak statements. All decompilers end up introducing some abrupt flow but this

number is usually very low for javac-specific decompilers, Jad and SourceAgain, as seen

in Figure9.5. Again, this is due to the matching of code patterns to obtain concise output.

0

20

40

60

80

100

asac triphase probe sliding LU traffic chromo

Original
Jad
SourceAgain
Dava(Improved)
Dava(Original)

Figure 9.5: Abrupt statements for decompiled code

Dava(Original), on the other hand, suffers greatly by producing code with many com-

plicatedbreak statements nested withinLabeled-Block constructs. This is because the

low-level bytecode represents all of its control flow through onlyIf andgoto instruc-

tions; a naive decompiler will take the simplest route and transform these into abrupt

breaks. The impact of more complex abrupt flow transformations, as implemented in

Dava(Improved), can be seen in the reduction of abrupt statements for Dava(Improved)

as compared to Dava(Original). In many cases Dava is able to produce fewer, if not the

same, number of abrupt statements as Jad and SourceAgain. However, sliding and traffic

146



9.4. Evaluation of Decompiled Code

are two benchmarks which still show there is room for improvement. On inspection of the

code it becomes obvious that thesebreak statements can be removed by applying more

generalized patterns on the AST. A few of these are discussed as future work.

An interesting anomaly is noticed in the metric values for the chromo and probe bench-

marks. The abrupt statement counts for the output produced by Jad is higher than that

produced by SourceAgain or Dava(Improved). On inspection it was noticed that Jad some-

times produces unnecessarycontinue statements. Figure9.6(a) shows code produced by

Jad. Thecontinue statement can be avoided by negating the condition of theIf statement

(Statement 2 in Figure9.6(a)) and adding Statement 4 as the new body of theIf statement.

This is exactly what SourceAgain and Dava(Improved) do, as shown in Figure9.6(b).

(a) Jad output

1 for(int j1 = 0; j1 < i; j1++){

2 if(d < a1[j1].cfitnessGet() || d >= a1[j1 + 1].cfitnessGet())

3 continue;

4 a1[j1 + 1].copyChromosome(a2[i1]);

5 }

(b) Dava(Improved) output

1 for (i2 = 0; i2 < i0; i2++){

2 if (d1 - r1[i2].cfitnessGet() >= 0 && d1 - r1[i2 + 1].cfitnessGet() < 0){

3 r1[i2 + 1].copyChromosome(r2[i7]);

4 }

5 }

Figure 9.6: Unnecessarycontinue statements produced by Jad

147



Testing and Empirical Results

9.4.5 Labeled Blocks

Directly related to abrupt statements are the number of labeled blocks present in decom-

piled code. Labeled blocks are especially bad programming practice and, in fact, they

exacerbate the previous problems with abrupt control flow by allowing more disjoint exe-

cution jumps than available with unlabeledbreak statements. Unsurprisingly, no labeled

blocks appear in the original source of any of the benchmarks. Jad and SourceAgain are

able to maintain this minimum. The general restructuring algorithm in Dava(Original), on

the other hand, produces a high number (Figure9.7). Figure9.7 also shows that 75% of

these labeled blocks, introduced by Dava(Original), are removed by the pattern-matching

based transformations implemented in Dava(Improved).

0

5

10

15

20

25

asac triphase decode probe sliding traffic chromo

Dava(Improved)

Dava(Original)

Figure 9.7: Labeled Blocks for decompiled code

9.4.6 Local Variables

Dava(Original) produces many local variables in its output. This is because Dava takes its

input fromgrimp which has been computed from the low-level Soot IR which uses many

local variables in order to get simple and precise compiler analyses.

148



9.4. Evaluation of Decompiled Code

Although local variable webs are collapsed while creatinggrimp the reduction in the

number of locals is not as much as one would like. With Dava(Improved), copy elimina-

tion (Section7.2.1) and constant substitution (Section7.3) considerably reduce the use of

intermediate local variables. Figure9.8 shows the number of local variables for some of

the benchmarks. Jad and SourceAgain output is, again, very close to the original for this

metric.

0

20

40

60

80

100

120

140

asac triphase decode probe sliding traffic Matrix chromo FFT

Original
Jad
SourceAgain
Dava(Improved)
Dava(Original)

Figure 9.8: Number of Locals for decompiled code

An exception to this is triphase where we see an abnormally high number of local vari-

ables for Jad and Dava. Inspection of the decompiled code produced by Jad for triphase

shows that it is unable to handle aggregated floating point and double precious calculations.

These are broken down into 3-address statements where each statement introduces a new

local variable. On inspection of code produced by Dava(Improved) we noticed that the

increase in number of locals was mainly due to the presence of shortcutIf statements in

the original code. An example of this is shown in Figure9.9(a). Whereas SourceAgain

and Jad are both able to produce this shortcut construct Dava fails to detect the pattern and

produces output shown in Figure9.9(b). In the triphase benchmark the shortcutIf state-

ment occurs numerous times and this explains the higher number of local variables in Dava.

149



Testing and Empirical Results

(a) Original source code

1 final double abs(double d) {

2 return (d >= 0) ? d : -d;

3 }

(b) Dava(Improved) output

1 final double abs(double d0){

2 double $d1;

3 if (d0 - 0.0 < 0)

4 $d1 = (- (d0));

5 else

6 $d1 = d0;

7 return $d1;

8 }

Figure 9.9: Reason for an increase in local variable count in Dava

Dava(Improved) shows decent amount of improvement over Dava(Original) (particularly

for traffic). The difference of local variables for Dava(Improved) with Original source code

is now with an acceptable range in most case.

9.4.7 Loop Count

Table9.1 shows the breakdown of different loops within the decompiled outputs of the

different decompilers as compared to the original source code. Both Jad and SourceAgain

aggressively createFor loops which we think is a good feature to have sinceFor loops are

inherently easier to understand than theirWhile counterparts. Previously, Dava was unable

to generateFor loops and represented all loops using one of the three flavors ofWhile

loops (While, Do-While or Unconditional-While). With the implementation of theFor

loop construction transformation ( Section7.1.1) Dava is now able to generateFor loops.

However, in Dava we restrict the conversion of aWhile loop to aFor loop to cases where

all the four components of theFor loop can be determined (Section7.1.1).

The sliding benchmark shows some interesting results. The original source code con-

tained anUnconditional-While loop which has been converted to aWhile loop in

Dava(Improved). This was previously illustrated in Figure9.3 where we see that the con-

150



9.4. Evaluation of Decompiled Code

Do For While UnConditional

triphase(Original) 0 43 3 0

triphase(Jad) 1 45 0 0

triphase(SourceAgain) 0 44 2 0

triphase(Dava-Original) 0 0 46 0

triphase(Dava-Improved)0 45 1 0

decode(Original) 0 29 1 0

decode(Jad) 0 30 0 0

decode(SourceAgain) 0 29 1 0

decode(Dava-Original) 0 0 30 0

decode(Dava-Improved) 0 29 1 0

sliding(Original) 0 21 2 1

sliding(Jad) 1 22 1 0

sliding(SourceAgain) 0 21 3 0

sliding(Dava-Original) 0 0 24 0

sliding(Dava-Improved) 0 22 2 0

Matrix(Original) 0 21 0 0

Matrix(Jad) 0 21 0 0

Matrix(SourceAgain) 0 20 1 0

Matrix(Dava-Original) 0 0 21 0

Matrix(Dava-Improved) 0 20 1 0

Table 9.1: Breakdown of Loops for decompiled code

dition of a nestedIf statement is pulled into theWhile loop as it’s condition.

Another interesting thing to note in the results for sliding are that even after the con-

version of theUnconditional-While loop to aWhile loop both the original code and

Dava(Improved) have the same number ofWhile loops. The reason being that one of the

While loops in the original code can be better represented as aFor loop. This conversion is

illustrated in Figure9.10. Figure9.10(a) shows the original code snippet. Since thisWhile

loop contains a condition which checks on a pointer’snull value, which is consistently

151



Testing and Empirical Results

updated within the loop body, Dava converts theWhile loop into aFor as illustrated in

Figure9.10(b).

(a) Original source code

1 ptr = n;

2 while ((ptr.getParent()) != null) {

3 store.addElement(ptr.getblockType());

4 store.addElement(ptr.getopcode());

5 ptr = ptr.getParent();

6 }

(b) Dava(Improved) output

1 for (r4 = r0; r4.getParent() != null; r4 = r4.getParent()){

2 r3.addElement(r4.getblockType());

3 r3.addElement(r4.getopcode());

4 }

Figure 9.10: Converting aWhile loop to aFor loop

9.4.8 Overall Complexity

In order to provide one summary metric, we experimented with a variety of composite

metrics. We found a good overall complexity metric that is defined by first expressing

each component metric as a normalized value with respect to the value for the original Java

benchmark, and then combining the normalized values, each component multiplied by a

constant representing that metric’s importance. The sum of the constants is 1, so that when

comparing the original javac source to itself will always result in an overall metric of 1.

For example, for the size component we compute the normalized value by (size of de-

compiled benchmark)/(size of original benchmark) and we multiply this normalized value

152



9.5. Evaluation of Obfuscated Code

by 0.2. Figure9.11gives the result using 0.2 * size + 0.2 * ifcount + 0.2 * condcomplexity

+ 0.1 * num abrupt + 0.1 * numlabeled + 0.2 * numlocals, where each component of this

metric corresponds to normalized values of the metrics as presented in Section9.2.

0

0.5

1

1.5

2

2.5

Fractal asac triphase decode probe sliding LU traffic Matrix chromo FFT

Original
Jad
SourceAgain
Dava(Improved)
Dava(Original)

Figure 9.11: Overall complexity for decompiled code

Using this overall metric we can see that Jad and SourceAgain produce decompiled

code that is close to the original code (remember that these benchmarks have not been

obfuscated and thus javac-specific decompilers work well for them). We can also observe

that Dava(Original) does in fact produce (ugly) code that is not as similar to the original

code, but that the additional transformations implemented in Dava(Improved) do improve

upon this substantially.

9.5 Evaluation of Obfuscated Code

The experiments in this section were performed as follows. We created our baseline by

first compiling the application using an ordinaryjavac compiler to produce the class files

and then decompiled those class files with our Dava decompiler, with all of the advanced

transformations turned on. This option is labeled Dava(Improved) in subsequent figures.

Notice that in decompiling obfuscated code we only use Dava and not Jad or SourceAgain.

153



Testing and Empirical Results

Both Jad and SourceAgain are not able to decompile much of the obfuscated code. Dava

on the other hand is robust enough to be able to decompile code after first- and second-

generation obfuscations. In order to be able to obtain metrics we need compilable Java

source and hence our choice of decompiler.

To create the obfuscated versions of the source code we first applied the obfuscators

(Klassmaster and JBCO) to the class files to produce obfuscated class files. We then de-

compiled the obfuscated class files using Dava. We used Dava in two configurations, the

Original one, and theImprovedone where all simplifications are applied. In the subsequent

figures JBCO(Improved) refers to the case where we obfuscated with JBCO and then de-

compiled with Dava(Improved) and JBCO(Original) refers to the case where we obfuscated

with JBCO and then decompiled with Dava(Original). Similarly, we created two versions

for the Klassmaster obfuscator.

By comparing the Dava(Improved) versions with JBCO(Improved) and

Klassmaster(Improved) one can observe the impact that the two obfuscators had on the

metrics. By comparing the Klassmaster(Improved) to Klassmaster(Original), and simi-

larly comparing JBCO(Improved) to JBCO(Original), we can observe the impact of the

advanced Dava simplifications in undoing some of the obfuscations introduced by the ob-

fuscators. These include some identifier renaming optimizations, control-flow simplifica-

tions, copy elimination and advanced dead-code elimination.

Although we computed all the metrics for both obfuscators, we only show results for

Klassmaster in many of the figures. This is because JBCO has no effect on some of the

metrics since we enable only two obfuscations: renaming identifiers and moving library

calls into new methods with obfuscated names.

9.5.1 Benchmark Size

Figure9.12 shows the program size metric. It is clear that both JBCO and Klassmaster

increase the size in all cases. Comparing the two obfuscators we see that the size increase

is greater for Klassmaster. This is expected because Klassmaster adds dead code guarded

by opaque predicates which can therefore not be removed by the static analyses performed

by Dava. JBCO size increases are due to the addition of methods which are used to in-

154



9.5. Evaluation of Obfuscated Code

voke library calls through an extra level of indirection. Therefore, the difference between

the unobfuscated Dava(Improved) case with the JBCO(Improved) case is directly propor-

tional to the number of unique library methods called in the program. A smart decompiler

could apply a refactoring algorithm to overcome this obfuscation through re-inlining these

unneeded indirections.

0

1000

2000

3000

4000

5000

6000

7000

Fractal asac triphase decode probe chromo FFT

Dava(Improved)
JBCO(Improved)
JBCO(Original)
klassmaster(Improved)
klassmaster(Original)

Figure 9.12: Program size for obfuscated code

Also interesting is the difference between Klassmaster with and without Dava’s ad-

vanced simplification analyses, Klassmaster(Original) versus Klassmaster(Improved). This

difference is most obvious for the decode and chromo benchmarks. In these cases the Dava

dead code elimination removes a large amount of code introduced by Klassmaster. Never-

theless, not all dead code is removed because much of it is guarded by opaque predicates.

Dava is unable to statically detect the values of these predicates and hence the code remains.

A much more powerful context-sensitive flow analysis would be required to remove the re-

maining dead code.

155



Testing and Empirical Results

9.5.2 Conditional Statements

Figure 9.13 demonstrates a large increase in the number of conditional statements after

obfuscation by Klassmaster. This is consistent with Klassmaster’s technique of introducing

redundant or dead code enclosed by simpleIf statements. Dava attempts to aggregate

many of the conditionals and can sometimes remove some redundancies, as illustrated

by the difference between Klassmaster(Original) and Klassmaster(Improved). However, a

large number of these conditions still remain.

0

20

40

60

80

100

120

140

160

180

200

Fractal asac triphase LU probe sliding traffic Matrix chromo

Dava(Improved)

Klassmaster(Improved)

Klassmaster(Original)

Figure 9.13: Simple conditional statement count for obfuscated code

9.5.3 Conditional Complexity

Conditional complexity is shown in Figure9.14. Here, the decrease in complexity is mainly

due to the fact that Klassmaster introduces its own conditional constructs which are simple

un-aggregated boolean expressions. Hence, although the number of conditional constructs

increases, the average conditional complexity decreases. An additional possible reason for

the drop in complexity is that the original bytecode is intermixed with obfuscation code.

156



9.5. Evaluation of Obfuscated Code

This inhibits the pattern-based simplifications and therefore results in fewer conditional

aggregations. The increase seen in Klassmaster(Improved) versus Klassmaster(Original) is

due to the aggregation of conditions. Some benchmarks show a decrease which most likely

occurs due to removal of dead code which included complex conditionals.

0

0.5

1

1.5

2

2.5

3

3.5

4

Fractal asac triphase decode probe sliding LU traffic Matrix chromo

Dava(Improved)

Klassmaster(Improved)

Klassmaster(Original)

Figure 9.14: Average conditional complexity for obfuscated code

9.5.4 Abrupt Control Flow

The count of abrupt statements (break andcontinue) for the obfuscated code as compared

to the un-obfuscated code is shown in Figure9.15. We can see a marked increase in abrupt

statements (particularly in triphase, decode and chromo).

The abrupt metric is particularly useful in identifying obfuscated code. Abrupt edges

in the flow graph of a program are a direct result of control-flow obfuscation techniques

and it clearly worsens the readability. As stated earlier, a programmer has a lot to keep

track of when trying to follow abrupt control, especially when execution jumps directly out

of multiple nesting levels. Thus, programmers tend to make sparse use of complex abrupt

control-flow, whereas obfuscators intentionally add them in to complicate the control flow.

157



Testing and Empirical Results

0

20

40

60

80

100

120

140

asac triphase probe sliding traffic Matrix chromo FFT

Dava (Improved)

Klassmaster(Improved)

Klassmaster(Original)

Figure 9.15: Abrupt control flow count for obfuscated code

It is interesting to note that javac-specific decompilers such as Jad and SourceAgain

often fail to decompile such code because the control-flow in the class files does not cor-

respond to any known structured Java control flow pattern. Dava succeeds in decompiling

and reducing the number of abrupt control flow statements due to its use use of graph-based

restructurings.

As demonstrated by comparing Klassmaster(Original) to Klassmaster(Improved), the

Dava simplifications are able to restructure some of the code to reduce abrupt control flow

in many of the benchmarks, but not all cases of abrupt control-flow can be removed. We

suggest some more transformations in our future work to further decrease the number of

abrupt statements, but it seems unlikely that all abrupt flow introduced by obfuscation could

be eliminated.

158



9.5. Evaluation of Obfuscated Code

9.5.5 Labeled Blocks

Labeled blocks are shown in Figure9.16, correlating closely with the number of abrupt

statements. The Klassmaster(Original) case has a large number of labels but Klassmas-

ter(Improved) shows that Dava’s simplifications can reduce these to a more acceptable

level. For some benchmarks (FFT and probe) all labeled blocks can be removed. Over

the whole benchmark suite 65% of the labeled blocks are removed. With the addition of

further transformations discussed in the future work section it seems likely that even more

labeled blocks can be removed from the code.

0

5

10

15

20

25

30

35

40

asac triphase decode probe sliding LU traffic Matrix chromo FFT

Dava(Improved)
Klassmaster(Improved)
Klassmaster(Original)

Figure 9.16: Labeled block count for obfuscated code

9.5.6 Identifier Complexity

Identifier obfuscation is a very important metric for evaluating obfuscators. Nearly all ob-

fuscators perform identifier obfuscation and it is perhaps the only technique that is truly

irreversible [BGI+01]. Figure9.17shows that JBCO performs good identifier obfusca-

tion based on our metric. Klassmaster also does well, though a difference between the

Klassmaster(Original) and Klassmaster(Improved) values can be seen due to a basic local

159



Testing and Empirical Results

variable renaming algorithm implemented in Dava. Also, removal of dead code reduces

local variables, some of which have complex names, hence decreasing the complexity.

0

50

100

150

200

250

300

350

400

triphase decode probe sliding LU Matrix traffic chromo FFT

Dava(Improved)
JBCO(Improved)
JBCO(Original)
Klassmaster(Improved)
Klassmaster(Original)

Figure 9.17: Identifier complexity for obfuscated code

9.5.7 Overall Complexity

Figure9.18reports the overall complexity metric. Note that this metric does not include

identifier complexity, so one should really consider both the identifier complexity presented

in figure 9.17 and the overall metric in figure9.18 which summarizes control-flow like

obfuscations, when considering the effect of obfuscators.

Considering these two figures we can see that, as expected, the effect of JBCO5 is

mostly on identifier obfuscation, whereas Klassmaster shows significant impacts on the

structure of the code. It is also interesting to note that the Klassmaster(Improved) is closer

5In these experiments we used a preliminary version of JBCO, the final version of JBCO will support
many more control flow obfuscations

160



9.5. Evaluation of Obfuscated Code

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

Fra
cta

l
as

ac

tri
phas

e

dec
od

e

pro
be

sli
din

g
LU

tra
ffi

c

M
at

rix

ch
ro

m
o

FFT

Dava(Improved)
JBCO(Improved)
JBCO(Original)
klassmaster(Improved)
klassmaster(Original)

Figure 9.18: Overall complexity for obfuscated code

to the unobfuscated code than Klassmaster(Original), indicating that the advanced trans-

formations in Dava do help to clean up the code.

161



Testing and Empirical Results

162



Chapter 10

Related Work

To the best of our knowledge Dava is the only available tool-independent decompiler for

Java. It is therefore difficult to compare methodologies used in Dava to other decompilers

since the issues encountered for Dava are more complex than the simple reversing of code

generation carried out by other decompilers.

10.1 Decompilers

There are numerous decompilers available for Java bytecode. Two notable ones are Jad

[Jad] and SourceAgain [Sou]. Jad is a javac-specific decompiler which is free for non-

commercial use. Its decompilation module has been integrated into several graphical user

interfaces including FrontEnd Plus[Fro], Decafe Pro[Dec], DJ Java Decompiler[DJJ] and

Cavaj[Cav]. It is relatively easy to break the decompiler by introducing non-standard,

though verifiable, bytecode.

SourceAgain is a commercial decompiler with an online version available to test its

capabilities. The decompiler creates a flow graph representation from which it detects Java

constructs. Due to the use of a flow graph representation it does a better job at decom-

pilation than Jad. Although SourceAgain claims to be able to decompile obfuscated code

our tests have shown that it is only able to handle name obfuscation(by converting these to

indexed names) and fails when control flow obfuscation has been carried out.

163



Related Work

10.2 Obfuscators

To test Dava’s capabilities in decompiling and simplifying obfuscated code we used the

Zelix Klassmaster [Klaa] obfuscator. Although Java obfuscation has become popular in

recent years, both in academic and commercial communities, there aren’t many obfusca-

tors which do more than name obfuscation. Zelix Klassmaster stands out since it applies

complicated control flow obfuscations by adding predicates guarding “presumably” unde-

compilable code. The Klassmaster documentation states:

“The obfuscator makes slight changes to the bytecode that obscures the control

flow without changing what the code does at runtime. Typically, selection (e.g.

if...else...) and looping constructs (e.g. while and for loops) are changed so

that they no longer have a direct Java source code equivalent”[Klab].

Our tests with the obfuscator indicate that the changes made are not “slight”. Large chunks

of code, which includes loops, are added to confuse the decompilers (Section9.2). This

creates convoluted code but at the expense of a slow down in the application runtime. Since

one key selling point of Dava has always been its general applicability to verifiable byte-

code, in most of our test cases, and all the benchmarks selected, Dava was able to correctly

decompile the obfuscated code. KlassMaster claims to be the only “Second generation”

Java obfuscator, a term coined for obfuscators performing strong control flow obfuscation.

Our experiments with obfuscated code using different obfuscators attest to this claim. Zelix

Klassmaster does reflect the latest technology, available for non-academic use, in the field

of Java bytecode obfuscation.

The second obfuscator used was JBCO (Java Bytecode Obfuscator) which is still under

development at the Sable Research Group at McGill University. Using the Soot [Soo] Java

bytecode analysis framework, the same framework used by Dava, this obfuscator promises

to be a top-notch Java bytecode obfuscator. JBCO’s philosophy is to introduce the least,

if any, amount of dead code and to incur minimum runtime slowdowns. JBCO’s proposed

transformations take into account the minute details of the Java language specification in

order to exploit little-known options in bytecode representation. Although bytecode is rel-

atively high level there is still a large gap between Java bytecode and Java source. Utilizing

164



10.3. Visitor Design Pattern

the additional expressiveness of the bytecode, transformations are proposed which will

have no, or very complicated, Java source code equivalent.

10.3 Visitor Design Pattern

The inspiration for the extended version of the visitor design pattern, now implemented for

Dava’s AST, was taken from Sablecc [GH98]. SableCC generates compilers (and inter-

preters) in the Java programming language from a given specifications grammar. The key

features of SableCC include the use of object-oriented techniques to automatically build a

strictly-typed abstract syntax tree and the generation of tree-walker classes for the gener-

ated AST. It is this implementation of the traversal routines, enabling the implementation

of actions on the nodes of the AST using inheritance, that we have borrowed for use within

Dava.

10.4 Structure-Based Flow Analysis

As the analyses for the decompiler are performed on the AST it is best to use a syntax-

directed method of data flow analysis such as structural analysis. Structural Flow analysis

initially presented by Sharir[Sha80] is ideal for data-flow analysis using a structured rep-

resentation of the program. The advantage of using this technique is that it gives, for each

type of high level control-flow construct in the language, a set of formulas that perform data

flow analysis. This technique has been successfully used in creating an optimizing com-

piler which uses a hierarchy of structured intermediate representations [HDE+93]. Work

done by Emami et. al. [Ema93] for gathering alias and points-to-analysis information for

the McCAT C compiler matches very closely to what was required for Dava. Dava’s flow

analysis framework is an implementation of the same approach utilized in McCAT along

with handling of complexities introduced by Java.

165



Related Work

10.5 Complexity Metrics

There has been much research into software complexity and many metrics have been pro-

posed and embraced by the software engineering community throughout the years. Classic

examples are McCabe’s cyclomatic number [McC76], and Halstead’s programming effort

measures [Hal77]. More recent efforts have been geared towards quality analysis for large-

scale software projects and processes [LSP05, Con04].

These complexity measures are interested in measuring effectiveness, code reliability,

programming effort, and clarity (or cognitive expressibility / representability) [Tai84].

What we are interested in within this research is this specific idea of cognitive expressibility.

When a decompiler sets out to recover the higher-level source code of a binary program it is

effectively attempting to recover a cognitive representation - a human-readable (or at least

programmer-readable) version of the program that is semantically equivalent to the binary.

Likewise, when an obfuscator sets out to garble a program it is attempting to decrease the

cognitive representability of the program by adding complexity of some kind.

Because the quality of the cognitive representation is our key interest, some well-

developed metrics in the literature are somewhat useless here. McCabe’s Cyclomatic num-

ber, for example, shows the complexity of the control flow through a piece of code. It is the

number of linearly independent paths through a program. However, if a program segment

S is compiled into a binary B and then decompiled into a source code segment S’ then S

and S’ will have the same cyclomatic number regardless of how the decompiler chooses to

represent the loops and other branching instructions in the program. Therefore the metric

shows us nothing of the differences between the cognitive representation of S and S’.

Similarly, Halstead’s metrics are not all suitable for our case. They are often used

during code development in large projects in order to track complexity trends. A spike in

Halstead metrics can signify a highly error-prone module, for example. However, this is

not our concern. We wish to use metrics to compare two high-level representations of a

program, both with the same semantics. Halstead’s metrics do not lend themselves well to

this problem.

Program volume, for example, is a measure of the minimum number of bits required for

coding a program. In the case of Java, non-local variables (either class fields or statics) and

166



10.5. Complexity Metrics

method names are preserved in the compiled bytecode. A common Java obfuscation tech-

nique is to rename these identifiers, often with shorter and more incomprehensible names.

This effectively reduces the program volume but also reduces the ability of a decompiler to

recover the full cognitive representation of the original program.

Indeed, many metrics are designed to compare large software projects in a very abstract

way in order to predict maintainability, reliability and/or programming effort. Most of these

are not useful to the particular problem at hand.

However, some of the criticism that Halstead’s measures have seen over the years -

specifically the argument that they are a bad measure because they consider lexical and

textual complexity rather than the structural complexity of a program [HF82] - is a key

ingredient to our own proposed metrics. The high-level measures of lexical and textual

structure, and complexity are in fact exactly what we wish to measure, along with control

flow complexity.

We are much more interested in the high-level human-readable source code represen-

tation of the program’s methods. This makes the approach in [RCC91] a good starting

point as they measure such intricacies as identifier length, nesting depth, and decision node

complexity.

167



Related Work

168



Chapter 11

Future Work and Conclusions

11.1 Future Work

Although we have improved the output produced by Dava there are clear indications of

areas where work should be carried out.

11.1.1 Abstract Syntax Tree Expansion

Currently Dava works on a per-method basis. Each method is separately decompiled and

an AST, with anASTMethodeNode as the root of the tree, is created. Although per-method

decompilation works well for general decompilation, a class-based decompilation can pro-

vide additional avenues for analyses. It would be useful to modify the abstract syntax tree

representation within Dava to handle per-class, instead of per-method decompilation. This

can be achieved by the creation of an ASTClassNode data structure which could then hold

all methods and fields of the class. This would help streamline and modularize some of

the interprocedural analyses implemented as part of this thesis. The biggest advantage,

however, would be the ability to retrieve and produce inner classes within the decompiler

output. Also handling of field-aware analyses would become much easier if the fields were

represented as elements of the abstract syntax tree.

169



Future Work and Conclusions

11.1.2 Transformations

More aggressiveLabeled-Block removal transformations are also needed. Currently the

transformations apply to small patterns. Larger, more general patterns can and should be

implemented to remove the complexity introduced byLabeled-Block constructs. As seen

in the results section, although the output has been greatly simplified, the numbers for

abrupt control flow constructs show room for further improvement.

We have not fully explored all possible analyses and transformations that could help

remove local variables. The increase in the number of local variables seen in Dava is due

largely because of the effect of removing local variable webs from the bytecode. Also

stack locations are allocated intermediate local variables which result in an increase in the

number of locals at thejimple level. grimp does a decent job of aggregating expressions

and in doing so removes a large number of stack variables. However, there is still a large

gap between the actual number of variables used in the original source and that produced

by Dava. Although it would be an interesting experiment to see by how much the num-

ber of locals can be reduced, the effect of having fewer locals in a program on program

comprehensibility is a grey area. Where too many locals (indirections) might be confusing

to the programmer too few locals might also be a complicating factor since then the pro-

grammer has to track the current value stored in a local. We think there is a need to find

the right balance in dealing with the number of locals such that they don’t cause any added

complications.

The aggregations carried out in Chapter5, the for-loop detection patterns (Section7.1.1)

and the breaking of theIf-Else statement discussed in Section5.3.1are some of the design

decisions which are related to a certain style of programming. By allowing a customizable

Dava back-end, where the user gets to decide which transformations to apply, the output

could be transformed to best suit the individual rather than the general programming com-

munity. Work on this was already started by setting flags for advanced transformationse.g.,

constant substitution and aggressively producing potentially more complicated but compil-

able code (Sections7.3and4.8). Making Dava’s back-end more adaptable would generate

code which is customized to a programmer’s personal likes and dislikes. A related idea

is to have a formating tool (Jalopy [Jal], JRefactory [JRe]) which could take the output

170



11.1. Future Work

produced by Dava and pretty print it using customized formatting rules.

11.1.3 Adding comments to decompiler output

Since the goal of decompilation is program comprehension we think that being able to

convey any additional information to the user helps in program understanding. A feature

to add comments within the decompiler output would be really useful. The best way of

achieving this would be to have aCOMMENT tag associated with each AST node. This tag

could be given a value if there is a need to insert some comment into the decompiled output.

Tags could be specialized to hold single line comments using the // symbol or the long C

style comments if there is a large comment to be added.

A lot of times the application bytecode comes along with the API, in the form of

javadocs. Another proposed idea is to parse the javadocs information available and place

them in the decompiled output as javadocs style comments.

11.1.4 Stronger refactoring analyses

Now that we have an efficient traversal mechanism and a flow analysis framework the

decompiler can use these to implement refactoring. One possible refactoring is method

inlining. Using whatever heuristics that seem fit (number of lines of code to be inlined,

number of method call sites etc) it might be useful to inline methods. A known obfuscation

technique used in JBCO is that library calls are moved to methods with confusing names.

This is done since renaming library methods/fields is not possible. By putting a level of

indirection the obfuscator is able to confuse the programmer since the new method invoca-

tion does not give any clues that this is in fact a library call. In such situations by selectively

inlining methods the understandability of the code can be increased.

Another related refactoring is to move methods from one class to another. This again

counters an obfuscation technique in which a method is moved to an unrelated class. This

creates difficulties for the programmer to reason about the component structure of the ap-

plication. By using heuristics (method only invoked from methods of a particular class,

method performs operations on data of a certain classetc.) it might be reasonable to move

a method to a different class.

171



Future Work and Conclusions

Method de-inlining, moving similar code to a separate method and replacing it with

invocations to the newly created method, can also help in simplifying program output.

Although this type of obfuscation has not been seen in the obfuscators tested so far, the

implementation of this refactoring transformation might simplify un-obfuscated code also.

11.1.5 Identifier Renaming

A naming stage has been included in Dava’s back-end. However, so far the naming strategy

uses very simple heuristics to name local variables. Firstly, the naming mechanism needs to

be modified to include naming classes and methods for obfuscated bytecode. Since current

obfuscators mostly concentrate on name obfuscation, having even a basic naming strategy

for identifiers in the program will help a programmer understand code.

The Java class libraries provide the best starting point to naming identifiers. Variables

assigned from library invocations can be allotted names created using the name of the

method invoked. Similarly classes extending or encapsulating library data types can have

names which include the library type that they utilize.

Another interesting idea, worth exploring, is doing a “flow-analysis” looking for vari-

able names. The analysis would gather potential names for each identifier, as data flows

through a program. Once the sets of potential names is obtained the best possible name is

alloted to the identifier. Obviously the “best” name is very subjective but a heuristic-based

decision can be made to pick a name from a set of possible names.

Currently we perform naming intra-procedurally. Including interprocedural heuristics,

results of a method performing some computation, retrieval of a field from an objectetc.

can add to the set of potential names.

11.2 Conclusions

In dealing with arbitrary bytecode, Dava uses a control flow graph representation of the

bytecode to generate valid Java programs. Previously the output of the decompiler was

verbose and difficult to understand because of the use of complicated control flow using

break statements and labeled blocks. Also the absence of boolean expression aggregation

172



11.2. Conclusions

resulted in a large number of conditional constructs making the code output harder to track.

This thesis introduces a new back-end to Dava based on matching patterns to simplify

the control flow of the decompiled output. Our philosophy for writing transformations has

been that a smaller number of conditional statements and less verbose code are easier to

understand. Transformations, implemented using the Visitor design pattern implementation

for the AST, perform semantically-equivalent rewrites of the AST.

More complicated transformations have been enabled using a newly implemented structure-

based flow analysis framework. The implementation of the framework was a non-trivial

task resulting from the complexities introduced by complex Java constructse.g., Try-Catch,

Switch and dealing withbreak andcontinue statements. The framework is extensible,

hence making it possible for researchers to test new simplification and refactoring tech-

niques for the decompiler.

Currently Dava uses the flow analysis framework to implement flow analyses often used

for compiler optimizations. This is a novel application of compiler analyses that have been

traditionally used for execution performance improvements. Certain more complicated

transformations were implemented using these flow-analyses to help Dava simplify code

generated for obfuscated bytecode.

We have developed metrics that identify code complexity in terms of code layout and

number of constructs. We chose several benchmarks and performed compile-decompile ex-

periments on them. We observed the change in values of complexity metrics with the code

simplification transformations enabled or disabled. It was quite obvious that Dava’s new

back-end reduces the complexity of the output making it more comprehensible. Another

set of experiments following the compile-obfuscate-decompile pattern was also carried out.

The results of these experiments showed that along with being able to correctly decompile

obfuscated code, the complexity of the decompiled code can be greatly reduced with the

new back-end transformations enabled.

Dava, with its general applicability for Java bytecode along with its AST rewriting

transformations, is a robust decompiler compared to its peers. We feel that with more

work on programming idioms support, and the suggestions mentioned as future work, Dava

will stand out as the decompiler of choice for reverse-engineering applications from Java

bytecode.

173



Future Work and Conclusions

174



Bibliography

[abc] abc. The AspectBench Compiler. Home page with downloads, FAQ, docu-

mentation, support mailing lists, and bug database.http://aspectbench.

org.

[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Jennifer Lhot́ak, Onďrej Lhot́ak, Damien Sereni, Ganesh Sittampalam, and

Julian Tibble. abc: An extensible AspectJ compiler. InAspect-Oriented

Software Develipment Conference, 2005, pages 87–98.

[AMP] Axiomatic Multi-Platform C compiler suite.

<http://www.axiomsol.com> .

[asp03] The AspectJ home page, 2003.

<http://eclipse.org/aspectj/> .

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sa-

hai, Salil Vadhan, and Ke Yang.On the (im)possibility of obfuscating pro-

grams. Lecture Notes in Computer Science, 2139, 2001.

[Cav] Cavaj Java Decompiler.

<http://www.bysoft.se/sureshot/cavaj/> .

[Con04] Richard Conn.A reusable, academic-strength, metrics-based software en-

gineering process for capstone courses and projects. In Proceedings of the

175

http://aspectbench.org
http://aspectbench.org
http://aspectbench.org
http://www.axiomsol.com
http://www.axiomsol.com
http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
file:citeseer.ist.psu.edu/article/barak01impossibility.html
file:citeseer.ist.psu.edu/article/barak01impossibility.html
http://www.bysoft.se/sureshot/cavaj/
http://www.bysoft.se/sureshot/cavaj/
http://doi.acm.org/10.1145/971300.971465
http://doi.acm.org/10.1145/971300.971465


Bibliography

35th SIGCSE Technical Symposium on Computer Science Education, Nor-

folk, Virginia, USA, 2004, pages 492–496.

[Dec] Decafe Pro.

<http://decafe.hypermart.net/> .

[DJJ] Dj Java Decompiler.

<http://members.fortunecity.com/neshkov/dj.html> .

[Ema93] Maryam Emami. A practical interprocedural alias analysis for an optimiz-

ing/parallelizing C compiler. Master’s thesis, School of Computer Science,

McGill University, August 1993.

[Fro] Frontend Plus.

<http://www.softpile.com/development/java/review03171index.html> .

[GH98] Etienne M. Gagnon and Laurie J. Hendren. SableCC, an object-oriented

compiler framework. InTOOLS ’98: Proceedings of the Technology of

Object-Oriented Languages and Systems, 1998, page 140. IEEE Computer

Society, Washington, DC, USA.

[GHM00] Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient

inference of static types for Java bytecode. InStatic Analysis Symposium

2000, June 2000, Lecture Notes in Computer Science, pages 199–219.

[GJS97] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-

Wesley, 1997.

[Hal77] Maurice H. Halstead.Elements of Software Science (Operating and program-

ming systems series). Elsevier Science Inc., New York, NY, USA, 1977.

[HDE+93] Laurie J. Hendren, Chris Donawa, Maryam Emami, Guang R. Gao, Justiani,

and Bhama Sridharan. Designing the McCAT Compiler Based on a Family

of Structured Intermediate Representations. InProceedings of the 5th In-

ternational Workshop on Languages and Compilers for Parallel Computing,

1993, pages 406–420. Springer-Verlag.

176

http://decafe.hypermart.net/
http://decafe.hypermart.net/
http://members.fortunecity.com/neshkov/dj.html
http://members.fortunecity.com/neshkov/dj.html
http://www.softpile.com/development/java/review_03171_index.html
http://www.softpile.com/development/java/review_03171_index.html


Bibliography

[HF82] Peter G. Hamer and Gillian D. Frewin. M.H. halstead’s software science -

a critical examination. InICSE ’82: Proceedings of the 6th international

conference on Software engineering, Tokyo, Japan, 1982, pages 197–206.

IEEE Computer Society Press, Los Alamitos, CA, USA.

[Jad] Jad - the fast JAva Decompiler.http://www.geocities.com/SiliconValley/-

Bridge/8617/jad.html.

[Jal] Jalopy: the source code formatting tool.

<hhttp://jalopy.sourceforge.net/> .

[Jas] SourceTec Java Decompiler.http://www.srctec.com/decompiler/.

[Jav] Java Programming Language.

<http://java.sun.com> .

[JRe] A Java Refactoring Tool.

<http://jrefactory.sourceforge.net/> .

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, ed-

itor, European Conference on Object-oriented Programming, 2001, volume

2072 ofLecture Notes in Computer Science, pages 327–353. Springer.

[Klaa] Zelix KlassMaster - The second generation Java Obfuscator.http://www.-

zelix.com/klassmaster.

[Klab] Zelix KlassMaster - The second generation Java Obfuscator.http://www.-

zelix.com/klassmasterfeaturesFlowObfuscation.html.

[LSP05] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Visualization-

based analysis of quality for large-scale software systems. InProceedings

of the 20th IEEE/ACM international Conference on Automated software en-

gineering, 2005, pages 214–223.

177

hhttp://jalopy.sourceforge.net/
hhttp://jalopy.sourceforge.net/
http://java.sun.com
http://java.sun.com
http://jrefactory.sourceforge.net/
http://jrefactory.sourceforge.net/


Bibliography

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison-Wesley, Reading, MA, USA, second edition, 1999.

[McC76] Thomas J. McCabe. A complexity metric.IEEE Transactions on Software

Engineering, 2(4):308–320, December 1976.

[MH01] Jerome Miecznikowski and Laurie Hendren. Decompiling Java using staged

encapsulation. InProceedings of the Working Conference on Reverse Engi-

neering, October 2001, pages 368–374.

[MH02] J. Miecnikowski and L. J. Hendren. Decompiling Java bytecode: prob-

lems, traps and pitfalls. In R. N. Horspool, editor,Compiler Construction,

2002, volume 2304 ofLecture Notes in Computer Science, pages 111–127.

Springer Verlag.

[Moc] Mocha, the Java Decompiler.http://www.brouhaha.com/~eric/computers/-

mocha.html.

[RCC91] Pierre N. Robillard, Daniel Coupal, and François Coallier. Profiling software

through the use of metrics.Softw. Pract. Exper., 21(5):507–518, 1991.

[Sha80] Micha Sharir. Structural analysis: A new approch to flow analysis in opti-

mizing compilers.Computer Languages, 5:141–153, 1980.

[Soo] Soot - a Java Optimization Framework.http://www.sable.mcgill.ca/soot/.

[Sou] Source Again - A Java Decompiler.http://www.ahpah.com/.

[Sun] Sun Microsystems.

<http://www.sun.com> .

[Tai84] Kuo-Chung Tai. A program complexity metric based on data flow informa-

tion in control graphs. InICSE ’84: Proceedings of the 7th international

conference on Software engineering, Orlando, Florida, United States, 1984,

pages 239–248. IEEE Press, Piscataway, NJ, USA.

178

http://www.sun.com
http://www.sun.com


Bibliography

[VRGH+00] Raja Valĺee-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice

Pominville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot

framework: Is it feasible? In David A. Watt, editor,Compiler Construction,

9th International Conference, March 2000, volume 1781 ofLecture Notes in

Computer Science, pages 18–34. Springer, Berlin, Germany.

[Win] WingDis - A Java Decompiler.http://www.wingsoft.com/wingdis.html.

179


	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction and Motivation
	Javac-specific Decompilers
	Tool-independent Decompilers
	Java Obfuscators
	Thesis Contributions and Organization

	Background: Dava Architecture
	Existing Front-End
	New Back-End

	A Tree Traversal Algorithm
	Finding AST Parent Nodes
	Finding the Closest Abrupt Target
	Finding all variable Uses
	Finding all Definitions
	Constant Primitive Field Value Finder

	Basic AST Transformations
	Condition Simplification
	Shortcut increments and decrements
	De-Inlining Static Final Fields
	Variable Declarations and Initialization
	String concatenation
	Shortcut Array Declarations
	Removing default constructors
	The super invocation
	Invalid code using complicated expressions
	Invalid code using Preinitialization in AspectJ
	Transforming invalid code using indirection


	Simple Pattern Based Structuring
	Conditional Aggregation
	Grammar for aggregated boolean expressions
	And Aggregation
	Or Aggregation

	Loop strengthening
	Using a nested If-Else Statement to Strengthen Loop Nodes
	Using a nested If Statement to Strengthen loop Nodes

	Handling Abrupt Control Flow
	If-Else Splitting
	Useless break statement Remover
	Useless Label Remover
	Reducing the scope of labeled blocks


	A Structure-Based Flow Analysis Framework
	Merge Operations
	Dealing with Abrupt-Control Flow Constructs
	Construct specific processing

	AST rewriting using Structure-based Flow Analyses
	Reaching Definitions
	For Loop Construction

	Reaching Copies
	Copy Elimination

	Constant Propagation
	The analysis
	Extensions
	Constant Substitution
	Expression Simplification
	Removing Redundant Conditional Statements
	Unreachable code Elimination
	Program Deobfuscation

	Must and May Assign 
	Final Field Initialization


	Naming Mechanism
	Heuristic-based naming
	Displaying qualified types

	Testing and Empirical Results
	Unit Testing
	Complexity Metrics
	Program Size
	Number of Java Constructs
	Conditional Complexity
	Identifier Complexity

	Benchmarks 
	Evaluation of Decompiled Code
	Program Size
	Conditional Statements
	Condition Complexity
	Abrupt Control Flow
	Labeled Blocks
	Local Variables
	Loop Count
	Overall Complexity 

	Evaluation of Obfuscated Code
	Benchmark Size
	Conditional Statements
	Conditional Complexity
	Abrupt Control Flow
	Labeled Blocks
	Identifier Complexity
	Overall Complexity


	Related Work
	Decompilers
	Obfuscators
	Visitor Design Pattern
	Structure-Based Flow Analysis
	Complexity Metrics

	Future Work and Conclusions
	Future Work
	Abstract Syntax Tree Expansion
	Transformations
	Adding comments to decompiler output
	Stronger refactoring analyses
	Identifier Renaming

	Conclusions

	Bibliography

